Sample records for normal lung development

  1. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  2. Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung

    DOE PAGES

    Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; ...

    2017-02-01

    Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murinemore » lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 928 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. Finally, this multi-omic view provides a unique resource and deeper insight into normal pulmonary development.« less

  3. Unique spatial and cellular expression patterns of Hoxa5, Hoxb4 and Hoxb6 proteins in normal developing murine lung are modified in pulmonary hypoplasia

    PubMed Central

    Volpe, MaryAnn Vitoria; Wang, Karen Ting Wai; Nielsen, Heber Carl; Chinoy, Mala Romeshchandra

    2009-01-01

    Background Hox transcription factors modulate signaling pathways controlling organ morphogenesis and maintain cell fate and differentiation in adults. Retinoid signaling, key in regulating Hox expression, is altered in pulmonary hypoplasia. Information on pattern-specific expression of Hox proteins in normal lung development and in pulmonary hypoplasia is minimal. Our objective was to determine how pulmonary hypoplasia alters temporal, spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 proteins compared to normal lung development. Methods Temporal, spatial and cellular Hoxa5, Hoxb4 and Hoxb6 expression was studied in normal (untreated) and nitrofen-induced hypoplastic (NT-PH) lungs from gestational day 13.5, 16, 19 fetuses and neonates using western blot and immunohistochemistry. Results Modification of protein levels and spatial and cellular Hox expression patterns in NT-PH lungs was consistent with delayed lung development. Distinct protein isoforms were detected for each Hox protein. Expression levels of the Hoxa5 and Hoxb6 isoforms changed with development and further in NT-PH lungs. Compared to normal lungs, Gd19 and neonatal NT-PH lungs had decreased Hoxb6 and increased Hoxa5 and Hoxb4. Hoxa5 cellular localization changed from mesenchyme to epithelia earlier in normal lungs. Hoxb4 was expressed in mesenchyme and epithelial cells throughout development. Hoxb6 remained mainly in mesenchymal cells around distal airways. Conclusions Unique spatial and cellular expression of Hoxa5, Hoxb4 and Hoxb6 participates in branching morphogenesis and terminal sac formation. Altered Hox protein temporal and cellular balance of expression either contributes to pulmonary hypoplasia or functions as a compensatory mechanism attempting to correct abnormal lung development and maturation in this condition. PMID:18553509

  4. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    PubMed Central

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  5. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    PubMed Central

    Stein, Jill M.; Walkup, Laura L.; Brody, Alan S.; Fleck, Robert J.

    2016-01-01

    Background The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. Objective To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. Materials and methods We conducted a retrospective query of normal CT chest examinations in children ages 0–7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. Results We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42±27 months). Lung volume ranged 0.10–1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as −380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately −650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of −860 HU as age and lung volume increased. Conclusion Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. PMID:27576458

  6. Embryonic essential myosin light chain regulates fetal lung development in rats.

    PubMed

    Santos, Marta; Moura, Rute S; Gonzaga, Sílvia; Nogueira-Silva, Cristina; Ohlmeier, Steffen; Correia-Pinto, Jorge

    2007-09-01

    Congenital diaphragmatic hernia (CDH) is currently the most life-threatening congenital anomaly the major finding of which is lung hypoplasia. Lung hypoplasia pathophysiology involves early developmental molecular insult in branching morphogenesis and a late mechanical insult by abdominal herniation in maturation and differentiation processes. Since early determinants of lung hypoplasia might appear as promising targets for prenatal therapy, proteomics analysis of normal and nitrofen-induced hypoplastic lungs was performed at 17.5 days after conception. The major differentially expressed protein was identified by mass spectrometry as myosin light chain 1a (MLC1a). Embryonic essential MLC1a and regulatory myosin light chain 2 (MLC2) were characterized throughout normal and abnormal lung development by immunohistochemistry and Western blot. Disruption of MLC1a expression was assessed in normal lung explant cultures by antisense oligodeoxynucleotides. Since early stages of normal lung development, MLC1a was expressed in vascular smooth muscle (VSM) cells of pulmonary artery, and MLC2 was present in parabronchial smooth muscle and VSM cells of pulmonary vessels. In addition, early smooth muscle differentiation delay was observed by immunohistochemistry of alpha-smooth muscle actin and transforming growth factor-beta1. Disruption of MLC1a expression during normal pulmonary development led to significant growth and branching impairment, suggesting a role in branching morphogenesis. Both MLC1a and MLC2 were absent from hypoplastic fetal lungs during pseudoglandular stage of lung development, whereas their expression partially recovered by prenatal treatment with vitamin A. Thus, a deficiency in contractile proteins MLC1a and MLC2 might have a role among the early molecular determinants of lung hypoplasia in the rat model of nitrofen-induced CDH.

  7. Effects of tracheal occlusion with retinoic acid administration on normal lung development.

    PubMed

    Delabaere, Amélie; Marceau, Geoffroy; Coste, Karen; Blanchon, Loïc; Déchelotte, Pierre-Jean; Blanc, Pierre; Sapin, Vincent; Gallot, Denis

    2017-05-01

    Tracheal occlusion (TO) is an investigational therapy for severe congenital diaphragmatic hernia that decreases pulmonary hypoplasia, but sustained TO also induces deficient surfactant synthesis. Intramuscular maternal administration of retinoic acid (RA) in a surgical rabbit model of congenital diaphragmatic hernia showed a beneficial effect on lung maturation. We evaluated the potential of RA delivery into the trachea and studied the combined effects of TO and RA on normal lung development. Experiments were performed on normal rabbit fetuses. Liposomes and capric triglyceride (Miglyol ® ), alone and with RA, were administered in the trachea just before TO (d26). Lung morphology and surfactant production were studied at term (d30). Tracheal occlusion increased lung weight and enhanced alveolar development but increased apoptotic activity and decreased surfactant expression. Tracheal injection of RA improved surfactant production to levels of normal controls. We established the potential of liposome and Miglyol as RA vehicle for delivering this bioactive molecule in the fetal airways. Tracheal RA injection seems to oppose the effects of TO in fetuses with normal lungs. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  8. STATs in Lung Development: Distinct Early and Late Expression, Growth Modulation and Signaling Dysregulation in Congenital Diaphragmatic Hernia.

    PubMed

    Piairo, Paulina; Moura, Rute S; Baptista, Maria João; Correia-Pinto, Jorge; Nogueira-Silva, Cristina

    2018-01-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  10. HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.

    PubMed

    Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F

    2001-03-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.

  11. HOX Genes in Human Lung

    PubMed Central

    Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.

    2001-01-01

    HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043

  12. I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.

    NASA Astrophysics Data System (ADS)

    Jafari, Farhad

    The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the echo characteristics on each patient group and their pulmonary pathology is made. It is concluded that the technique may provide a potential tool in detecting pulmonary abnormalities. More controlled patient studies, however, are indicated as necessary to determine the sensitivity of the ultrasound technique.

  13. Fetal and post-natal lung defects reveal a novel and required role for Fgf8 in lung development

    PubMed Central

    Yu, Shibin; Poe, Bryan; Schwarz, Margaret; Elliot, Sarah; Albertine, Kurt H.; Fenton, Stephen; Garg, Vidu; Moon, Anne M.

    2016-01-01

    The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound. PMID:20727874

  14. Stem cells are dispensable for lung homeostasis but restore airways after injury.

    PubMed

    Giangreco, Adam; Arwert, Esther N; Rosewell, Ian R; Snyder, Joshua; Watt, Fiona M; Stripp, Barry R

    2009-06-09

    Local tissue stem cells have been described in airways of the lung but their contribution to normal epithelial maintenance is currently unknown. We therefore developed aggregation chimera mice and a whole-lung imaging method to determine the relative contributions of progenitor (Clara) and bronchiolar stem cells to epithelial maintenance and repair. In normal and moderately injured airways chimeric patches were small in size and not associated with previously described stem cell niches. This finding suggested that single, randomly distributed progenitor cells maintain normal epithelial homeostasis. In contrast we found that repair following severe lung injury resulted in the generation of rare, large clonal cell patches that were associated with stem cell niches. This study provides evidence that epithelial stem cells are dispensable for normal airway homeostasis. We also demonstrate that stem cell activation and robust clonal cellular expansion occur only during repair from severe lung injury.

  15. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation.

  16. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  17. Challenging embryological theories on congenital diaphragmatic hernia: future therapeutic implications for paediatric surgery.

    PubMed Central

    Jesudason, E. C.

    2002-01-01

    Lung hypoplasia is central to the poor prognosis of babies with congenital diaphragmatic hernia (CDH). Prolapse of abdominal organs through a diaphragmatic defect has traditionally been thought to impair lung growth by compression. The precise developmental biology of CDH remains unresolved. Refractory to fetal correction, lung hypoplasia in CDH may instead originate during embryogenesis and before visceral herniation. Resolving these conflicting hypotheses may lead to reappraisal of current clinical strategies. Genetic studies in murine models and the fruitfly, Drosophila melanogaster are elucidating the control of normal respiratory organogenesis. Branchless and breathless are Drosophila mutants lacking fibroblast growth factor (FGF) and its cognate receptor (FGFR), respectively. Sugarless and sulphateless mutants lack enzymes essential for heparan sulphate (HS) biosynthesis. Phenotypically, all these mutants share abrogated airway branching. Mammalian organ culture and transgenic models confirm the essential interaction of FGFs and HS during airway ramification. Embryonic airway development (branching morphogenesis) occurs in a defined spatiotemporal sequence. Unlike the surgically-created lamb model, the nitrofen rat model permits investigation of embryonic lung growth in CDH. Microdissecting embryonic lung primordia from the nitrofen CDH model and normal controls, we demonstrated that disruption of stereotyped airway branching correlates with and precedes subsequent CDH formation. To examine disturbed branching morphogenesis longitudinally, we characterised a system that preserves lung hypoplasia in organ culture. We tested FGFs and heparin (an HS analogue) as potential therapies on normal and hypoplastic lungs. Observing striking differences in morphological response to FGFs between normal and hypoplastic lung primordia, we postulated abnormalities of FGF/HS signalling in the embryonic CDH lung. Evaluating this hypothesis further, we examined effects of an HS-independent growth factor (epidermal growth factor, EGF) on hypoplastic lung development. Visible differences in morphological response indicate an intrinsic abnormality of hypoplastic lung primordia that may involve shared targets of FGFs and EGE. These studies indicate that lung hypoplasia precedes diaphragmatic hernia and may involve disturbances of mitogenic signalling pathways fundamental to embryonic lung development. What does this imply for human CDH? Fetal surgery may be 'too little, too late' to correct an established lung embryopathy. In utero growth factor therapy may permit antenatal lung rescue. Prevention of the birth defect by preconceptual prophylaxis may represent the ultimate solution. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:12215028

  18. The role of integrin α8β1 in fetal lung morphogenesis and injury

    PubMed Central

    Benjamin, John T.; Gaston, David C.; Halloran, Brian A.; Schnapp, Lynn M.; Zent, Roy; Prince, Lawrence S.

    2009-01-01

    Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1, is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggests that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD. PMID:19769957

  19. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen morphogenesis by maintaining cell–cell contacts. Thus we reveal novel and important roles for Scrib in lung development operating via the PCP pathway, and in regulating junctional complexes and cell cohesion. PMID:23195221

  20. Microscopic FTIR studies of lung cancer cells in pleural fluid.

    PubMed

    Wang, H P; Wang, H C; Huang, Y J

    1997-10-01

    Structural changes associated with lung cancer and tuberculous cells in pleural fluid were studied by microscopic FTIR spectroscopy. Infrared spectra demonstrate significant spectral differences between normal, lung cancer and tuberculous cells. The ratio of the peak intensities of the 1030 and 1080 cm-1 bands (originated mainly in glycogen and phosphodiester groups of nucleic acids) differs greatly between normal and lung cancer samples. Such findings prompt the consideration that recording infrared spectra from lung cancer and tuberculous cells may be of diagnostic value. Since measurements of IR spectra of lung cancer cells in the pleural fluid can be a very rapid inexpensive process, our finding warrant exploration of this possibility in the investigation of the mechanism whereby the environmental pollution related cancers develop.

  1. Diagnosis and treatment of pulmonary hypertension in infancy

    PubMed Central

    Steinhorn, Robin H.

    2013-01-01

    Normal pulmonary vascular development in infancy requires maintenance of low pulmonary vascular resistance after birth, and is necessary for normal lung function and growth. The developing lung is subject to multiple genetic, pathological and/or environmental influences that can adversely affect lung adaptation, development, and growth, leading to pulmonary hypertension. New classifications of pulmonary hypertension are beginning to account for these diverse phenotypes, and or pulmonary hypertension in infants due to PPHN, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). The most effective pharmacotherapeutic strategies for infants with PPHN are directed at selective reduction of PVR, and take advantage of a rapidly advancing understanding of the altered signaling pathways in the remodeled vasculature. PMID:24083892

  2. Novel algorithm to identify and differentiate specific digital signature of breath sound in patients with diffuse parenchymal lung disease.

    PubMed

    Bhattacharyya, Parthasarathi; Mondal, Ashok; Dey, Rana; Saha, Dipanjan; Saha, Goutam

    2015-05-01

    Auscultation is an important part of the clinical examination of different lung diseases. Objective analysis of lung sounds based on underlying characteristics and its subsequent automatic interpretations may help a clinical practice. We collected the breath sounds from 8 normal subjects and 20 diffuse parenchymal lung disease (DPLD) patients using a newly developed instrument and then filtered off the heart sounds using a novel technology. The collected sounds were thereafter analysed digitally on several characteristics as dynamical complexity, texture information and regularity index to find and define their unique digital signatures for differentiating normality and abnormality. For convenience of testing, these characteristic signatures of normal and DPLD lung sounds were transformed into coloured visual representations. The predictive power of these images has been validated by six independent observers that include three physicians. The proposed method gives a classification accuracy of 100% for composite features for both the normal as well as lung sound signals from DPLD patients. When tested by independent observers on the visually transformed images, the positive predictive value to diagnose the normality and DPLD remained 100%. The lung sounds from the normal and DPLD subjects could be differentiated and expressed according to their digital signatures. On visual transformation to coloured images, they retain 100% predictive power. This technique may assist physicians to diagnose DPLD from visual images bearing the digital signature of the condition. © 2015 Asian Pacific Society of Respirology.

  3. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis

    PubMed Central

    Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.

    2010-01-01

    The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754

  4. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  5. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents

    PubMed Central

    Szabo, Eva; Miller, Mark Steven; Lubet, Ronald A.; You, Ming; Wang, Yian

    2017-01-01

    Due to exposure to environmental toxicants, a “field cancerization” effect occurs in the lung resulting in the development of a field of initiated but morphologically normal appearing cells in the damaged epithelium of bronchial airways with dysregulated gene expression patterns. Using a mouse model of lung squamous cell carcinoma (SCC), we performed transcriptome sequencing (RNA-Seq) to profile bronchial airway gene expression and found activation of the PI3K and Myc signaling networks in cytologically normal bronchial airway epithelial cells of mice with preneopastic lung SCC lesions, which was reversed by treatment with the PI3K Inhibitor XL-147 and pioglitazone, respectively. Activated MYC signaling was also present in premalignant and tumor tissues from human lung SCC patients. In addition, we identified a key microRNA, mmu-miR-449c-5p, whose suppression significantly up-regulated Myc expression in the normal bronchial airway epithelial cells of mice with early stage SCC lesions. We developed a novel bronchial genomic classifier in mice and validated it in humans. In the classifier, Ppbp (pro-platelet basic protein) was overexpressed 115 fold in the bronchial airways of mice with preneoplastic lung SCC lesions. This is the first report that demonstrates Ppbp as a novel biomarker in the bronchial airway for lung cancer diagnosis. PMID:27935865

  6. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia

    PubMed Central

    Shue, Eveline; Wu, Jianfeng; Schecter, Samuel; Miniati, Doug

    2013-01-01

    Purpose Many infants develop a postsurgical chylothorax after diaphragmatic hernia repair. The pathogenesis remains elusive but may be due to dysfunctional lymphatic development. This study characterizes pulmonary lymphatic development in the nitrofen mouse model of CDH. Methods CD1 pregnant mice were fed nitrofen/bisdiamine (N/B) or olive oil at E8.5. At E14.5 and E15.5, lung buds were categorized by phenotype: normal, N/B without CDH (N/B−CDH), or N/B with CDH (N/B+CDH). Anti-CD31 was used to localize all endothelial cells, while anti-LYVE-1 was used to identify lymphatic endothelial cells in lung buds using immunofluorescence. Differential protein expression of lymphatic-specific markers was analyzed. Results Lymphatic endothelial cells localized to the mesenchyme surrounding the airway epithelium at E15.5. CD31 and LYVE-1 colocalization identified lymphatic endothelial cells. LYVE-1 expression was upregulated in N/B+CDH lung buds in comparison to N/B−CDH and normal lung buds by immunofluorescence. Western blotting shows that VEGF-D, LYVE-1, Prox-1, and VEGFR-3 expression was upregulated in N/B+CDH lung buds in comparison to N/B−CDH or control lung buds at E14.5. Conclusions Lung lymphatics are hyperplastic in N/B+CDH. Upregulation of lymphatic-specific genes suggest that lymphatic hyperplasia plays an important role in dysfunctional lung lymphatic development in the nitrofen mouse model of CDH. PMID:23845607

  7. Aberrant pulmonary lymphatic development in the nitrofen mouse model of congenital diaphragmatic hernia.

    PubMed

    Shue, Eveline; Wu, Jianfeng; Schecter, Samuel; Miniati, Doug

    2013-06-01

    Many infants develop a postsurgical chylothorax after diaphragmatic hernia repair. The pathogenesis remains elusive but may be owing to dysfunctional lymphatic development. This study characterizes pulmonary lymphatic development in the nitrofen mouse model of CDH. CD1 pregnant mice were fed nitrofen/bisdiamine (N/B) or olive oil at E8.5. At E14.5 and E15.5, lung buds were categorized by phenotype: normal, N/B without CDH (N/B - CDH), or N/B with CDH (N/B+CDH). Anti-CD31 was used to localize all endothelial cells, while anti-LYVE-1 was used to identify lymphatic endothelial cells in lung buds using immunofluorescence. Differential protein expression of lymphatic-specific markers was analyzed. Lymphatic endothelial cells localized to the mesenchyme surrounding the airway epithelium at E15.5. CD31 and LYVE-1 colocalization identified lymphatic endothelial cells. LYVE-1 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH and normal lung buds by immunofluorescence. Western blotting shows that VEGF-D, LYVE-1, Prox-1, and VEGFR-3 expression was upregulated in N/B+CDH lung buds in comparison to N/B - CDH or control lung buds at E14.5. Lung lymphatics are hyperplastic in N/B+CDH. Upregulation of lymphatic-specific genes suggests that lymphatic hyperplasia plays an important role in dysfunctional lung lymphatic development in the nitrofen mouse model of CDH. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  9. Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge

    2006-04-01

    Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.

  10. CD10/neutral endopeptidase 24.11 in developing human fetal lung. Patterns of expression and modulation of peptide-mediated proliferation.

    PubMed

    Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A

    1992-12-01

    The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.

  11. Emphysema (image)

    MedlinePlus

    Emphysema is a lung disease involving damage to the air sacs (alveoli). There is progressive destruction of alveoli and the surrounding tissue that supports the alveoli. With more advanced disease, large air cysts develop where normal lung ...

  12. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Riyahi, S; Lu, W

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM])more » were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal lung diseases. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less

  13. Deep neural network convolution (NNC) for three-class classification of diffuse lung disease opacities in high-resolution CT (HRCT): consolidation, ground-glass opacity (GGO), and normal opacity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Noriaki; Suzuki, Kenji; Liu, Junchi; Hirano, Yasushi; MacMahon, Heber; Kido, Shoji

    2018-02-01

    Consolidation and ground-glass opacity (GGO) are two major types of opacities associated with diffuse lung diseases. Accurate detection and classification of such opacities are crucially important in the diagnosis of lung diseases, but the process is subjective, and suffers from interobserver variability. Our study purpose was to develop a deep neural network convolution (NNC) system for distinguishing among consolidation, GGO, and normal lung tissue in high-resolution CT (HRCT). We developed ensemble of two deep NNC models, each of which was composed of neural network regression (NNR) with an input layer, a convolution layer, a fully-connected hidden layer, and a fully-connected output layer followed by a thresholding layer. The output layer of each NNC provided a map for the likelihood of being each corresponding lung opacity of interest. The two NNC models in the ensemble were connected in a class-selection layer. We trained our NNC ensemble with pairs of input 2D axial slices and "teaching" probability maps for the corresponding lung opacity, which were obtained by combining three radiologists' annotations. We randomly selected 10 and 40 slices from HRCT scans of 172 patients for each class as a training and test set, respectively. Our NNC ensemble achieved an area under the receiver-operating-characteristic (ROC) curve (AUC) of 0.981 and 0.958 in distinction of consolidation and GGO, respectively, from normal opacity, yielding a classification accuracy of 93.3% among 3 classes. Thus, our deep-NNC-based system for classifying diffuse lung diseases achieved high accuracies for classification of consolidation, GGO, and normal opacity.

  14. Quantitative features in the computed tomography of healthy lungs.

    PubMed Central

    Fromson, B H; Denison, D M

    1988-01-01

    This study set out to determine whether quantitative features of lung computed tomography scans could be identified that would lead to a tightly defined normal range for use in assessing patients. Fourteen normal subjects with apparently healthy lungs were studied. A technique was developed for rapid and automatic extraction of lung field data from the computed tomography scans. The Hounsfield unit histograms were constructed and, when normalised for predicted lung volumes, shown to be consistent in shape for all the subjects. A three dimensional presentation of the data in the form of a "net plot" was devised, and from this a logarithmic relationship between the area of each lung slice and its mean density was derived (r = 0.9, n = 545, p less than 0.0001). The residual density, calculated as the difference between measured density and density predicted from the relationship with area, was shown to be normally distributed with a mean of 0 and a standard deviation of 25 Hounsfield units (chi 2 test: p less than 0.05). A presentation combining this residual density with the net plot is described. PMID:3353883

  15. Immunohistochemical quantification of expression of a tight junction protein, claudin-7, in human lung cancer samples using digital image analysis method.

    PubMed

    Lu, Zhe; Liu, Yi; Xu, Junfeng; Yin, Hongping; Yuan, Haiying; Gu, Jinjing; Chen, Yan-Hua; Shi, Liyun; Chen, Dan; Xie, Bin

    2018-03-01

    Tight junction proteins are correlated with cancer development. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies. We have previously reported that claudin-7 was strongly expressed in benign bronchial epithelial cells at the cell-cell junction while expression of claudin-7 was either altered with discontinued weak expression or completely absent in lung cancers. Based on these results, we continued working on the expression pattern of claudin-7 and its relationship with lung cancer development. We herein proposed a new Digital Image Classification, Fragmentation index, Morphological analysis (DICFM) method for differentiating the normal lung tissues and lung cancer tissues based on the claudin-7 immunohistochemical staining. Seventy-seven lung cancer samples were obtained from the Second Affiliated Hospital of Zhejiang University and claudin-7 immunohistochemical staining was performed. Based on C++ and Open Source Computer Vision Library (OpenCV, version 2.4.4), the DICFM processing module was developed. Intensity and fragmentation of claudin-7 expression, as well as the morphological parameters of nuclei were calculated. Evaluation of results was performed using Receiver Operator Characteristic (ROC) analysis. Agreement between these computational results and the results obtained by two pathologists was demonstrated. The intensity of claudin-7 expression was significantly decreased while the fragmentation was significantly increased in the lung cancer tissues compared to the normal lung tissues and the intensity was strongly positively associated with the differentiation of lung cancer cells. Moreover, the perimeters of the nuclei of lung cancer cells were significantly greater than that of the normal lung cells, while the parameters of area and circularity revealed no statistical significance. Taken together, our DICFM approach may be applied as an appropriate approach to quantify the immunohistochemical staining of claudin-7 on the cell membrane and claudin-7 may serve as a marker for identification of lung cancer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb lung.

    PubMed Central

    Alcorn, D; Adamson, T M; Maloney, J E; Robinson, P M

    1980-01-01

    The relationship between fetal espiratory activity and fetal lung development has been studied at the cellular level using two experimental models. Chronic bilateral phrenectomy over a period of 20-28 days during the last trimester of the fetal lamb resulted in hypoplastic lungs, although cellular maturity, as indicated by the presence of alveolar epithelial Type II cells, was present. In the lungs from fetal lambs undergoing sham operations for a similar time course there was evidence of enhanced alveolar proliferation when compared with lungs from normal fetal sheep of a similar gastational age, most probably as a result of operative stress. Following chronic bilateral vagotomy no changes in size or histology of the fetal lamb lungs were detected. At an ultrastructural level, however, inclusions of Type II cells consistently showed the loss of the typical osmiophilic lamellated appearance. These results indicate the importance of the fetal breathing apparatus in maintaining a volume of lung liquid which is adequate for normal pulmonary development, particularly during the phase in which alveoli are formed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7429961

  17. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    PubMed

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  18. Scintigraphy at 3 months after single lung transplantation and observations of primary graft dysfunction and lung function.

    PubMed

    Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann

    2012-06-01

    Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.

  19. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  20. Adrenomedullin promotes lung angiogenesis, alveolar development, and repair.

    PubMed

    Vadivel, Arul; Abozaid, Sameh; van Haaften, Tim; Sawicka, Monika; Eaton, Farah; Chen, Ming; Thébaud, Bernard

    2010-08-01

    Bronchopulmonary dysplasia (BPD) and emphysema are significant global health problems at the extreme stages of life. Both are characterized by alveolar simplification and abnormal distal airspace enlargement due to arrested development or loss of alveoli, respectively. Both lack effective treatments. Mechanisms that inhibit distal lung growth are poorly understood. Adrenomedullin (AM), a recently discovered potent vasodilator, promotes angiogenesis and has protective effects on the cardiovascular and respiratory system. Its role in the developing lung is unknown. We hypothesized that AM promotes lung angiogenesis and alveolar development. Accordingly, we report that lung mRNA expression of AM increases during normal alveolar development. In vivo, intranasal administration of the AM antagonist, AM22-52 decreases lung capillary density (12.4 +/- 1.5 versus 18 +/- 1.5 in control animals; P < 0.05) and impairs alveolar development (mean linear intercept, 52.3 +/- 1.5 versus 43.8 +/- 1.8 [P < 0.05] and septal counts 62.0 +/- 2.7 versus 90.4 +/- 3.5 [P < 0.05]) in neonatal rats, resulting in larger and fewer alveoli, reminiscent of BPD. This was associated with decreased lung endothelial nitric oxide synthase and vascular endothelial growth factor-A mRNA expression. In experimental oxygen-induced BPD, a model of arrested lung vascular and alveolar growth, AM attenuates arrested lung angiogenesis (vessel density, 6.9 +/- 1.1 versus 16.2 +/- 1.3, P < 0.05) and alveolar development (mean linear intercept, 51.9 +/- 3.2 versus 44.4 +/- 0.7, septal counts 47.6 +/- 3.4 versus 67.7 +/- 4.0, P < 0.05), an effect in part mediated by inhibition of apoptosis. AM also prevents pulmonary hypertension in this model, as assessed by decreased right ventricular hypertrophy and pulmonary artery medial wall thickness. Our findings suggest a role for AM during normal alveolar development. AM may have therapeutic potential in diseases associated with alveolar injury.

  1. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  2. SU-E-J-178: A Normalization Method Can Remove Discrepancy in Ventilation Function Due to Different Breathing Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, H; Yu, N; Stephans, K

    2014-06-01

    Purpose: To develop a normalization method to remove discrepancy in ventilation function due to different breathing patterns. Methods: Twenty five early stage non-small cell lung cancer patients were included in this study. For each patient, a ten phase 4D-CT and the voluntarily maximum inhale and exhale CTs were acquired clinically and retrospectively used for this study. For each patient, two ventilation maps were calculated from voxel-to-voxel CT density variations from two phases of the quiet breathing and two phases of the extreme breathing. For the quiet breathing, 0% (inhale) and 50% (exhale) phases from 4D-CT were used. An in-house toolmore » was developed to calculate and display the ventilation maps. To enable normalization, the whole lung of each patient was evenly divided into three parts in the longitude direction at a coronal image with a maximum lung cross section. The ratio of cumulated ventilation from the top one-third region to the middle one-third region of the lung was calculated for each breathing pattern. Pearson's correlation coefficient was calculated on the ratios of the two breathing patterns for the group. Results: For each patient, the ventilation map from the quiet breathing was different from that of the extreme breathing. When the cumulative ventilation was normalized to the middle one-third of the lung region for each patient, the normalized ventilation functions from the two breathing patterns were consistent. For this group of patients, the correlation coefficient of the normalized ventilations for the two breathing patterns was 0.76 (p < 0.01), indicating a strong correlation in the ventilation function measured from the two breathing patterns. Conclusion: For each patient, the ventilation map is dependent of the breathing pattern. Using a regional normalization method, the discrepancy in ventilation function induced by the different breathing patterns thus different tidal volumes can be removed.« less

  3. Computerized scheme for detection of diffuse lung diseases on CR chest images

    NASA Astrophysics Data System (ADS)

    Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio

    2008-03-01

    We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.

  4. New formulas for calculating the lung-to-head ratio in healthy fetuses between 20 and 40 weeks' gestation.

    PubMed

    Kehl, Sven; Eckert, Sven; Berlit, Sebastian; Tuschy, Benjamin; Sütterlin, Marc; Siemer, Jörn

    2013-11-01

    The purpose of this study was to develop new formulas for the expected fetal lung area-to-head circumference ratio in normal singleton pregnancies between 20 and 40 weeks' gestation. The lung-to-head ratio and complete fetal biometric parameters of 126 fetuses between 20 and 40 weeks' gestation were prospectively measured. The lung-to-head ratio was measured by 3 different methods (longest diameter, anteroposterior diameter, and tracing). Formulas for predicting right and left lung-to-head ratios with regard to gestational age and biometric parameters were derived by stepwise regression analysis. New formulas for calculating right and left lung-to-head ratios by each measurement method were derived. The formulas included gestational age only and no biometric parameters. The new formulas for estimating the expected lung-to-head ratio by the 3 different methods in normal singleton pregnancies up to 40 weeks' gestation may help improve the prognostic power of observed-to-expected lung-to-head ratio assessment in fetuses with congenital diaphragmatic hernias.

  5. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  6. Aberrant systemic arterial supply to normal lung arising from the proper hepatic artery discovered during transarterial chemoembolization.

    PubMed

    Walsworth, Matthew K; Yap, Felix Y; McWilliams, Justin P

    2015-11-01

    We report a rare case of dual arterial supply to an otherwise normal lung discovered incidentally during initial angiography performed with the intent of chemoembolization of hepatocellular carcinoma. In addition to normal hepatic arterial supply, the proper hepatic artery provided systemic arterial supply to the lower lobe of the left lung. Subsequent chest computed tomography angiography demonstrated a normal tracheobronchial tree and normal pulmonary arterial supply to the lung. Although other anatomic variants have been reported, there are no other reported cases of systemic arterial supply from the proper hepatic artery to the lung. Identifying systemic arterial supply to the lung during angiography is important while performing transcatheter chemoembolization or radioembolization in the liver in order to minimize non-target embolization of the lung.

  7. Predicting Survival within the Lung Cancer Histopathological Hierarchy Using a Multi-Scale Genomic Model of Development

    PubMed Central

    Liu, Hongye; Kho, Alvin T; Kohane, Isaac S; Sun, Yao

    2006-01-01

    Background The histopathologic heterogeneity of lung cancer remains a significant confounding factor in its diagnosis and prognosis—spurring numerous recent efforts to find a molecular classification of the disease that has clinical relevance. Methods and Findings Molecular profiles of tumors from 186 patients representing four different lung cancer subtypes (and 17 normal lung tissue samples) were compared with a mouse lung development model using principal component analysis in both temporal and genomic domains. An algorithm for the classification of lung cancers using a multi-scale developmental framework was developed. Kaplan–Meier survival analysis was conducted for lung adenocarcinoma patient subgroups identified via their developmental association. We found multi-scale genomic similarities between four human lung cancer subtypes and the developing mouse lung that are prognostically meaningful. Significant association was observed between the localization of human lung cancer cases along the principal mouse lung development trajectory and the corresponding patient survival rate at three distinct levels of classical histopathologic resolution: among different lung cancer subtypes, among patients within the adenocarcinoma subtype, and within the stage I adenocarcinoma subclass. The earlier the genomic association between a human tumor profile and the mouse lung development sequence, the poorer the patient's prognosis. Furthermore, decomposing this principal lung development trajectory identified a gene set that was significantly enriched for pyrimidine metabolism and cell-adhesion functions specific to lung development and oncogenesis. Conclusions From a multi-scale disease modeling perspective, the molecular dynamics of murine lung development provide an effective framework that is not only data driven but also informed by the biology of development for elucidating the mechanisms of human lung cancer biology and its clinical outcome. PMID:16800721

  8. Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma

    PubMed Central

    Cinegaglia, Naiara C.; Andrade, Sonia Cristina S.; Tokar, Tomas; Pinheiro, Maísa; Severino, Fábio E.; Oliveira, Rogério A.; Hasimoto, Erica N.; Cataneo, Daniele C.; Cataneo, Antônio J.M.; Defaveri, Júlio; Souza, Cristiano P.; Marques, Márcia M.C.; Carvalho, Robson F.; Coutinho, Luiz L.; Gross, Jefferson L.; Rogatto, Silvia R.; Lam, Wan L.; Jurisica, Igor; Reis, Patricia P.

    2016-01-01

    Herein, we aimed at identifying global transcriptome microRNA (miRNA) changes and miRNA target genes in lung adenocarcinoma. Samples were selected as training (N = 24) and independent validation (N = 34) sets. Tissues were microdissected to obtain >90% tumor or normal lung cells, subjected to miRNA transcriptome sequencing and TaqMan quantitative PCR validation. We further integrated our data with published miRNA and mRNA expression datasets across 1,491 lung adenocarcinoma and 455 normal lung samples. We identified known and novel, significantly over- and under-expressed (p ≤ 0.01 and FDR≤0.1) miRNAs in lung adenocarcinoma compared to normal lung tissue: let-7a, miR-10a, miR-15b, miR-23b, miR-26a, miR-26b, miR-29a, miR-30e, miR-99a, miR-146b, miR-181b, miR-181c, miR-421, miR-181a, miR-574 and miR-1247. Validated miRNAs included let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-200b; higher levels of miR-21 expression were associated with lower patient survival (p = 0.042). We identified a regulatory network including miR-15b and miR-155, and transcription factors with prognostic value in lung cancer. Our findings may contribute to the development of treatment strategies in lung adenocarcinoma. PMID:27081085

  9. WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT

    PubMed Central

    Cornett, Bridget; Snowball, John; Varisco, Brian M.; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-01-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. PMID:23523683

  10. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was a negative correlationmore » (r . -0.81) between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhenc-Gelas, F.; Weare, J.A.; Johnson, R.L. Jr.

    CE (converting enzyme) was purified from human lung, and antisera were raised in rabbits. Antisera inhibited the activity of the purified enzyme from lung and kidney and the plasma CE of normal persons and sarcoid patients. With antisera at a titer of 1:100,000, a sensitive, direct RIA was developed. CE purified from lung or kidney and CE present in normal and in sarcoid plasma gave parallel logit-log displacement lines, suggesting immunological identity. The level of CE in normal human plasma was 400 +/- 131 ng/ml. In untreated sarcoid patients, the enzyme level and activity increased in parallel. There was amore » negative correlation between enzyme level and diffusing capacity of the lung for CO in sarcoid patients. Synthetic inhibitors such as captopril or MK 421 did not interfere with the RIA, permitting enzyme levels to be monitored in patients undergoing acute inhibitor therapy. During administration of MK 421, CE activity was negligible and plasma levels of CE did not change. In contrast, renin activity increased eightfold during the inhibitor therapy.« less

  13. Population effect model identifies gene expression predictors of survival outcomes in lung adenocarcinoma for both Caucasian and Asian patients

    PubMed Central

    Cai, Guoshuai; Xiao, Feifei; Cheng, Chao; Li, Yafang; Amos, Christopher I.; Whitfield, Michael L.

    2017-01-01

    Background We analyzed and integrated transcriptome data from two large studies of lung adenocarcinomas on distinct populations. Our goal was to investigate the variable gene expression alterations between paired tumor-normal tissues and prospectively identify those alterations that can reliably predict lung disease related outcomes across populations. Methods We developed a mixed model that combined the paired tumor-normal RNA-seq from two populations. Alterations in gene expression common to both populations were detected and validated in two independent DNA microarray datasets. A 10-gene prognosis signature was developed through a l1 penalized regression approach and its prognostic value was evaluated in a third independent microarray cohort. Results Deregulation of apoptosis pathways and increased expression of cell cycle pathways were identified in tumors of both Caucasian and Asian lung adenocarcinoma patients. We demonstrate that a 10-gene biomarker panel can predict prognosis of lung adenocarcinoma in both Caucasians and Asians. Compared to low risk groups, high risk groups showed significantly shorter overall survival time (Caucasian patients data: HR = 3.63, p-value = 0.007; Asian patients data: HR = 3.25, p-value = 0.001). Conclusions This study uses a statistical framework to detect DEGs between paired tumor and normal tissues that considers variances among patients and ethnicities, which will aid in understanding the common genes and signalling pathways with the largest effect sizes in ethnically diverse cohorts. We propose multifunctional markers for distinguishing tumor from normal tissue and prognosis for both populations studied. PMID:28426704

  14. Abnormal lung sounds in patients with asthma during episodes with normal lung function.

    PubMed

    Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J

    1994-07-01

    Even in patients with clinically stable asthma with normal lung function, the airways are characterized by inflammatory changes, including mucosal swelling. In order to investigate whether lung sounds can distinguish these subjects from normal subjects, we compared lung sound characteristics between eight normal and nine symptom-free subjects with mild asthma. All subjects underwent simultaneous recordings of airflow, lung volume changes, and lung sounds during standardized quiet breathing, and during forced maneuvers. Flow-dependent power spectra were computed using fast Fourier transform. For each spectrum we determined lung sound intensity (LSI), frequencies (Q25%, Q50%, Q75%) wheezing (W), and W%. The results were analyzed by ANOVA. During expiration, LSI was lower in patients with asthma than in healthy controls, in particular at relatively low airflow values. During quiet expiration, Q25% to Q75% were higher in asthmatics than in healthy controls, while the change of Q25% to Q75% with flow was greater in asthmatic than in normal subjects. The W and W% were not different between the subject groups. The results indicate that at given airflows, lung sounds are lower in intensity and higher in pitch in asthmatics as compared with controls. This suggests that the generation and/or transmission of lung sounds in symptom-free patients with stable asthma differ from that in normal subjects, even when lung function is within the normal range. Therefore, airflow standardized phonopneumography might reflect morphologic changes in airways of patients with asthma.

  15. Lung-Specific Loss of α3 Laminin Worsens Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Morales-Nebreda, Luisa I.; Rogel, Micah R.; Eisenberg, Jessica L.; Hamill, Kevin J.; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A.; Ridge, Karen M.; Misharin, Alexander V.; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M.; Pardo, Annie; Selman, Moises; Jones, Jonathan C. R.

    2015-01-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3fl/fl). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression. PMID:25188360

  16. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    PubMed

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  17. Whole exome sequencing identifies driver mutations in asymptomatic computed tomography-detected lung cancers with normal karyotype.

    PubMed

    Belloni, Elena; Veronesi, Giulia; Rotta, Luca; Volorio, Sara; Sardella, Domenico; Bernard, Loris; Pece, Salvatore; Di Fiore, Pier Paolo; Fumagalli, Caterina; Barberis, Massimo; Spaggiari, Lorenzo; Pelicci, Pier Giuseppe; Riva, Laura

    2015-04-01

    The efficacy of curative surgery for lung cancer could be largely improved by non-invasive screening programs, which can detect the disease at early stages. We previously showed that 18% of screening-identified lung cancers demonstrate a normal karyotype and, following high-density genome scanning, can be subdivided into samples with 1) numerous; 2) none; and 3) few copy number alterations. Whole exome sequencing was applied to the two normal karyotype, screening-detected lung cancers, constituting group 2, as well as normal controls. We identified mutations in both tumors, including KEAP1 (commonly mutated in lung cancers) in one, and TP53, PMS1, and MSH3 (well-characterized DNA-repair genes) in the other. The two normal karyotype screening-detected lung tumors displayed a typical lung cancer mutational profile that only next generation sequencing could reveal, which offered an additional contribution to the over-diagnosis bias concept hypothesized within lung cancer screening programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  19. Extracellular matrix in lung development, homeostasis and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  20. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  1. Lung transplantation after allogeneic marrow transplantation in pediatric patients: the Memorial Sloan-Kettering experience.

    PubMed

    Heath, J A; Kurland, G; Spray, T L; Kernan, N A; Small, T N; Brochstein, J A; Gillio, A P; Boklan, J; O'Reilly, R J; Boulad, F

    2001-12-27

    Chronic lung disease and pulmonary failure are complications that can occur after bone marrow transplantation (BMT) and are associated with severe morbidity and mortality. We report on four patients who developed chronic, progressive, and irreversible lung disease 1 to 3 years after allogeneic BMT in childhood. These patients had chronic graft-versus-host disease (n=3) or radiation-related pulmonary fibrosis (n=1). Three patients underwent double lung transplants and one patient underwent a single lung transplant 2 to 14 years after BMT. All four patients tolerated the lung transplantation procedure well and showed significant clinical improvement with normalization of pulmonary function tests by 1 year posttransplant. One patient died from infectious complications 3 years after lung transplantation, and one patient died after chronic rejection of the transplanted lungs 6 years posttransplant. Two patients remain alive without significant respiratory impairment 2 and 7 years after lung transplantation. We conclude that lung transplantation offers a viable therapeutic option for patients who develop respiratory failure secondary to BMT.

  2. Bombesin-like peptides and receptors in normal fetal baboon lung: roles in lung growth and maturation.

    PubMed

    Emanuel, R L; Torday, J S; Mu, Q; Asokananthan, N; Sikorski, K A; Sunday, M E

    1999-11-01

    Previously, we have shown that bombesin-like peptide (BLP) promotes fetal lung development in rodents and humans but mediates postnatal lung injury in hyperoxic baboons. The present study analyzed the normal ontogeny of BLP and BLP receptors as well as the effects of BLP on cultured normal fetal baboon lungs. Transcripts encoding gastrin-releasing peptide (GRP), a pulmonary BLP, were detectable on gestational day 60 (ED60), peaked on approximately ED90, and then declined before term (ED180). Numbers of BLP-immunopositive neuroendocrine cells peaked from ED80 to ED125 and declined by ED160, preceding GRP-receptor mRNAs detected from ED125 until birth. BLP (0.1-10 nM) stimulated type II cell differentiation in organ cultures as assessed by [(3)H]choline incorporation into surfactant phospholipids, electron microscopy, and increased surfactant protein (SP) A- and/or SP-C-immunopositive cells and SP-A mRNA. BLP also induced neuroendocrine differentiation on ED60. Cell proliferation was induced by GRP, peaking on ED90. Similarly, blocking BLP degradation stimulated lung growth and maturation, which was completely reversed by a BLP-specific antagonist. The dissociation between GRP and GRP-receptor gene expression during ontogeny suggests that novel BLP receptors and/or peptides might be implicated in these responses.

  3. Heterochrony and early left-right asymmetry in the development of the cardiorespiratory system of snakes.

    PubMed

    van Soldt, Benjamin J; Metscher, Brian D; Poelmann, Robert E; Vervust, Bart; Vonk, Freek J; Müller, Gerd B; Richardson, Michael K

    2015-01-01

    Snake lungs show a remarkable diversity of organ asymmetries. The right lung is always fully developed, while the left lung is either absent, vestigial, or well-developed (but smaller than the right). A 'tracheal lung' is present in some taxa. These asymmetries are reflected in the pulmonary arteries. Lung asymmetry is known to appear at early stages of development in Thamnophis radix and Natrix natrix. Unfortunately, there is no developmental data on snakes with a well-developed or absent left lung. We examine the adult and developmental morphology of the lung and pulmonary arteries in the snakes Python curtus breitensteini, Pantherophis guttata guttata, Elaphe obsoleta spiloides, Calloselasma rhodostoma and Causus rhombeatus using gross dissection, MicroCT scanning and 3D reconstruction. We find that the right and tracheal lung develop similarly in these species. By contrast, the left lung either: (1) fails to develop; (2) elongates more slowly and aborts early without (2a) or with (2b) subsequent development of faveoli; (3) or develops normally. A right pulmonary artery always develops, but the left develops only if the left lung develops. No pulmonary artery develops in relation to the tracheal lung. We conclude that heterochrony in lung bud development contributes to lung asymmetry in several snake taxa. Secondly, the development of the pulmonary arteries is asymmetric at early stages, possibly because the splanchnic plexus fails to develop when the left lung is reduced. Finally, some changes in the topography of the pulmonary arteries are consequent on ontogenetic displacement of the heart down the body. Our findings show that the left-right asymmetry in the cardiorespiratory system of snakes is expressed early in development and may become phenotypically expressed through heterochronic shifts in growth, and changes in axial relations of organs and vessels. We propose a step-wise model for reduction of the left lung during snake evolution.

  4. Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold.

    PubMed

    Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles

    2006-08-01

    We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.

  5. Structural basis for pulmonary functional imaging.

    PubMed

    Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H

    2001-03-01

    An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.

  6. Simple, Inexpensive Model Spirometer for Understanding Ventilation Volumes

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; DiCarlo, Stephen E.

    2004-01-01

    Spirometers are useful for enhancing students' understanding of normal lung volumes, capacities, and flow rates. Spirometers are also excellent for understanding how lung diseases alter ventilation volumes. However, spirometers are expensive, complex, and not appropriate for programs with limited space and budgets. Therefore, we developed a…

  7. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  8. A biomechanical approach for in vivo diaphragm muscle motion prediction during normal respiration

    NASA Astrophysics Data System (ADS)

    Coelho, Brett; Karami, Elham; Haddad, Seyyed M. H.; Seify, Behzad; Samani, Abbas

    2017-03-01

    Lung cancer is one of the leading causes of cancer death in men and women. External Beam Radiation Therapy (EBRT) is a commonly used primary treatment for the condition. A major challenge with such treatments is the delivery of sufficient radiation dose to the lung tumor while ensuring that surrounding healthy lung parenchyma receives only minimal dose. This can be achieved by coupling EBRT with respiratory computer models which can predict the tumour location as a function of phase during the breathing cycle1. The diaphragm muscle contraction is mainly responsible for a large portion of the lung tumor motion during normal breathing, especially when tumours are in the lower lobes, therefore the importance of accurately modelling the diaphragm is paramount in lung tumour motion prediction. The goal of this research is to develop a biomechanical model of the diaphragm, including its active and passive response, using detailed geometric, biomechanical and anatomical information that mimics the diaphragmatic behaviour in a patient specific manner. For this purpose, a Finite Element Model (FEM) of the diaphragm was developed in order to predict the in vivo motion of the diaphragm, paving the way for computer assisted lung cancer tumor tracking in EBRT. Preliminary results obtained from the proposed model are promising and they indicate that it can be used as a plausible tool for effective lung cancer EBRT to improve patient care.

  9. Heterochrony and Early Left-Right Asymmetry in the Development of the Cardiorespiratory System of Snakes

    PubMed Central

    van Soldt, Benjamin J.; Metscher, Brian D.; Poelmann, Robert E.; Vervust, Bart; Vonk, Freek J.; Müller, Gerd B.; Richardson, Michael K.

    2015-01-01

    Snake lungs show a remarkable diversity of organ asymmetries. The right lung is always fully developed, while the left lung is either absent, vestigial, or well-developed (but smaller than the right). A ‘tracheal lung’ is present in some taxa. These asymmetries are reflected in the pulmonary arteries. Lung asymmetry is known to appear at early stages of development in Thamnophis radix and Natrix natrix. Unfortunately, there is no developmental data on snakes with a well-developed or absent left lung. We examine the adult and developmental morphology of the lung and pulmonary arteries in the snakes Python curtus breitensteini, Pantherophis guttata guttata, Elaphe obsoleta spiloides, Calloselasma rhodostoma and Causus rhombeatus using gross dissection, MicroCT scanning and 3D reconstruction. We find that the right and tracheal lung develop similarly in these species. By contrast, the left lung either: (1) fails to develop; (2) elongates more slowly and aborts early without (2a) or with (2b) subsequent development of faveoli; (3) or develops normally. A right pulmonary artery always develops, but the left develops only if the left lung develops. No pulmonary artery develops in relation to the tracheal lung. We conclude that heterochrony in lung bud development contributes to lung asymmetry in several snake taxa. Secondly, the development of the pulmonary arteries is asymmetric at early stages, possibly because the splanchnic plexus fails to develop when the left lung is reduced. Finally, some changes in the topography of the pulmonary arteries are consequent on ontogenetic displacement of the heart down the body. Our findings show that the left-right asymmetry in the cardiorespiratory system of snakes is expressed early in development and may become phenotypically expressed through heterochronic shifts in growth, and changes in axial relations of organs and vessels. We propose a step-wise model for reduction of the left lung during snake evolution. PMID:25555231

  10. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Collins, Jennifer J P; van Haaften, Tim; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2013-01-01

    Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.

  11. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung.

    PubMed

    McGee, Kiaran P; Mariappan, Yogesh K; Hubmayr, Rolf D; Carter, Rickey E; Bao, Zhonghao; Levin, David L; Manduca, Armando; Ehman, Richard L

    2012-08-15

    Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ≈ 30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.

  12. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    PubMed

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  13. Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair.

    PubMed

    Vadivel, Arul; van Haaften, Tim; Alphonse, Rajesh S; Rey-Parra, Gloria-Juliana; Ionescu, Lavinia; Haromy, Al; Eaton, Farah; Michelakis, Evangelos; Thébaud, Bernard

    2012-03-01

    Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. We hypothesized that EphrinB2 promotes alveolar development and repair. We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.

  14. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  15. Incidental Transient Cortical Blindness after Lung Resection.

    PubMed

    Oncel, Murat; Sunam, Guven Sadi; Varoglu, Asuman Orhan; Karabagli, Hakan; Yildiran, Huseyin

    2016-03-01

    Transient vision loss after major surgical procedures is a rare clinical complication. The most common etiologies are cardiac, spinal, head, and neck surgeries. There has been no report on vision loss after lung resection. A 65-year-old man was admitted to our clinic with lung cancer. Resection was performed using right upper lobectomy with no complications. Cortical blindness developed 12 hours later in the postoperative period. Results from magnetic resonance imaging and diffusion-weighted investigations were normal. The neurologic examination was normal. The blood glucose level was 92 mg/dL and blood gas analysis showed a PO 2 of 82 mm Hg. After 24 hours, the patient began to see and could count fingers, and his vision was fully restored within 72 hours after this point. Autonomic dysfunction due to impaired microvascular structures in diabetes mellitus may induce posterior circulation dysfunction, even when the hemodynamic state is normal in the perioperative period. The physician must keep in mind that vision loss may occur after lung resection due to autonomic dysfunction, especially in older patients with diabetes mellitus.

  16. Interpretation of normal anatomic structures on chest radiography: Comparison of Fuji Computed Radiography (FCR) 5501D with FCR 5000 and screen‐film system

    PubMed Central

    Nakashima, Kazuaki; Ashizawa, Kazuto; Ochi, Makoto; Hashmi, Rashid; Hayashi, Kuniaki; Gotoh, Shinichi; Honda, Sumihisa; Igarashi, Akito; Komaki, Takao

    2003-01-01

    The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen‐film system (S/F). Posteroanterior chest radiographs often patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio‐technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five‐point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung. © 2003 American College of Medical Physics. PACS number(s): 87.57.–s, 87.62.+n PMID:12540822

  17. An optimized two-photon method for in vivo lung imaging reveals intimate cell collaborations during infection

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas

    2013-02-01

    Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.

  18. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.

    PubMed

    Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi

    2017-03-01

    Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P  < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P  < 0.05). Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis.

    PubMed

    Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz

    2018-02-19

    Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.

  20. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    PubMed

    Choi, Jiwoong; Hoffman, Eric A; Lin, Ching-Long; Milhem, Mohammed M; Tessier, Jean; Newell, John D

    2017-01-01

    Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells) through interactions with host cells. We explored this with serial inspiratory computed tomography (CT) and image matching to assess regional changes in lung expansion. We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05. Lung regions of metastatic sarcoma patients (but not the normal control group) demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05). There was also evidence of increased lung "tissue" volume (non-air components) in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions. This new quantitative CT (QCT) method for linking serial acquired inspiratory CT images may provide a diagnostic and prognostic means to objectively characterize regional responses in the lung following oncological treatment and monitoring for lung metastases.

  1. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics.

    PubMed

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in lung volume with each breath will, in time, lead to unstable alveoli and pulmonary damage. Reducing the change in lung volume by increasing the PEEP, even with high inflation pressure, prevents alveolar instability and reduces injury. We speculate that ventilation with large changes in lung volume over time results in surfactant deactivation, which leads to alveolar instability.

  2. Normal expiratory flow rate and lung volumes in patients with combined emphysema and interstitial lung disease: a case series and literature review.

    PubMed

    Heathcote, Karen L; Cockcroft, Donald W; Fladeland, Derek A; Fenton, Mark E

    2011-01-01

    Pulmonary function tests in patients with idiopathic pulmonary fibrosis characteristically show a restrictive pattern including small lung volumes and increased expiratory flow rates resulting from a reduction in pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. When the diseases coexist, pulmonary volumes are compensated, and a smaller than expected reduction or even normal lung volumes can be found. The present report describes 10 patients with progressive breathlessness, three of whom experienced severe limitation in their quality of life. All patients showed lung interstitial involvement and emphysema on computed tomography scan of the chest. The 10 patients showed normal spirometry and lung volumes with severe compromise of gas exchange. Normal lung volumes do not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  3. Ischaemia-reperfusion injury in orthotopic mouse lung transplants – a scanning electron microscopy study

    PubMed Central

    Draenert, Alice; Marquardt, Klaus; Inci, Ilhan; Soltermann, Alex; Weder, Walter; Jungraithmayr, Wolfgang

    2011-01-01

    Lung ischaemia-reperfusion (I/R) injury remains a major cause of graft failure in lung transplantation (Tx). With the implementation of orthotopic lung Tx in mice, a physiological model on the base of a perfused and ventilated graft became available for the investigation of I/R injury. Using the scanning electron microscopy (SEM) technique, we here present an analysis of early and late morphological changes of pulmonary I/R injury. Syngeneic lungs were orthotopically transplanted between C57BL/6 mice. Grafts were exposed to 2 h of cold ischaemia. Transplants and right lungs were examined by SEM with corresponding haematoxylin–eosin histology 30 min and 4 h after reperfusion. Thirty minutes after reperfusion, the alveolar surface of transplants showed a discontinued lining of surfactant, while the lining of the non-transplanted lung was normal. Within the graft, leucocytes displayed an irregular surface with development of pseudopodia, and microvilli were detected on the membrane of pneumocytes. At 4 h after reperfusion, leucocytes significantly increased in numbers within the alveolar space. Also, the number of microvilli on pneumocytes increased significantly. Similar to these, the endothelium of vessels increasingly developed microvilli from 30 min towards 4 h after reperfusion. The airways of transplanted grafts showed mild changes with thickening of the bronchial epithelium and a destruction of kinocilia. Taken together, SEM detects pathological events of I/R that are previously not described in normal histology. These findings may influence the interpretation of studies investigating the I/R injury in the mouse model of lung Tx. PMID:21272104

  4. Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age.

    PubMed

    Blayney, M; Kerem, E; Whyte, H; O'Brodovich, H

    1991-02-01

    To evaluate the natural history of bronchopulmonary dysplasia, we studied the same 32 patients at a mean age of 7 and 10 years. The group as a whole had normal height and weight percentiles, and each child grew along his or her established somatic growth curve. Although some children had abnormal values, the group maintained a normal mean total lung capacity and functional residual capacity. The mean residual volume and the residual volume/total lung capacity ratios were elevated at both ages. At age 7 years the 19 patients (59%) who had a forced expiratory volume in 1 second (FEV1) of less than 80% had "catch up" improvement by 10 years of age (65 +/- 11% to 72 +/- 16% of predicted value; p less than 0.05). All the children who had a normal FEV1 at 7 years of age continued to have a normal FEV1 at age 10 years. Resting single-breath carbon monoxide uptake by the lung was normal when measured at age 10 years. The majority of patients had a positive methacholine challenge test result at both ages, although there was a low incidence of clinically diagnosed asthma. This study demonstrates that patients with bronchopulmonary dysplasia who have normal lung function at age 7 have had normal lung growth and that those with evidence of mild to moderate lung disease have continued lung growth or repair, or both, during their school years.

  5. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    PubMed

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  6. Micromechanical model of lung parenchyma hyperelasticity

    NASA Astrophysics Data System (ADS)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic volumetric expansion, but also for three other anisotropic loading conditions for different levels of tissue porosity, while displaying superior computational efficiency and stability in estimating coarse-scale response when compared to direct numerical simulations of RVEs. Further, we find that the most influential microstructural parameters on the response of the micromechanical model are the reference porosity and the alveolar wall elasticity. We also show that the model can reproduce uniaxial experimental tests on lung tissue samples, and estimate the Poisson ratio to be 0.22. We envision that our model will enable predictive and efficient whole-organ simulations useful to study the normal and diseased lung.

  7. Developmental Regulation of p66Shc Is Altered by Bronchopulmonary Dysplasia in Baboons and Humans

    PubMed Central

    Lee, Matt K.; Pryhuber, Gloria S.; Schwarz, Margaret A.; Smith, Susan M.; Pavlova, Zdena; Sunday, Mary E.

    2005-01-01

    Rationale: The p66Shc adapter protein antagonizes mitogen-activated protein, or MAP, kinase, mediates oxidative stress, and is developmentally regulated in fetal mouse lungs. Objectives: To determine if p66Shc is similarly regulated in primates and in bronchopulmonary dysplasia (BPD), which results from oxidative injury to immature lungs. Methods: Normal and injured lungs from humans and baboons were evaluated by Western analysis and immunohistochemistry. Measurements and Main Results: In baboons, p66Shc decreased 80% between 125 and 175 days' gestation (p = 0.025), then doubled after term delivery at 185 days (p = 0.0013). In the hyperoxic 140-day fetal baboon BPD model, p66Shc expression persisted, and its localization shifted from the epithelium of gestational controls to the mesenchyme of diseased lungs, coincident with expression of proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase, a marker of apoptosis. Treatment with the antibombesin antibody 2A11 attenuated BPD, reduced cell proliferation, increased p66Shc expression 10.5-fold, and preserved epithelial p66Shc localization. p66Shc also decreased during normal human lung development, falling 87% between 18 and 24 weeks' gestation (p = 0.02). p66Shc was expressed throughout 18-week human lungs, became restricted to scattered epithelial cells by 24 weeks, and localized to isolated mesenchymal cells after term delivery. In contrast, p66Shc remained prominent in the epithelium of lungs with acute injury or mild BPD, and in the mesenchyme of lungs with severe disease. p66Shc localized to tissues expressing proliferating cell nuclear antigen and cleaved poly(adenyl ribose) polymerase. Conclusions: p66Shc expression, cell proliferation, and apoptosis are concomitantly altered during lung development and in BPD. PMID:15778491

  8. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    PubMed Central

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  9. Idiopathic interstitial pneumonias and emphysema: detection and classification using a texture-discriminative approach

    NASA Astrophysics Data System (ADS)

    Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.

    2012-03-01

    Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.

  10. Automated extraction of pleural effusion in three-dimensional thoracic CT images

    NASA Astrophysics Data System (ADS)

    Kido, Shoji; Tsunomori, Akinori

    2009-02-01

    It is important for diagnosis of pulmonary diseases to measure volume of accumulating pleural effusion in threedimensional thoracic CT images quantitatively. However, automated extraction of pulmonary effusion correctly is difficult. Conventional extraction algorithm using a gray-level based threshold can not extract pleural effusion from thoracic wall or mediastinum correctly, because density of pleural effusion in CT images is similar to those of thoracic wall or mediastinum. So, we have developed an automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion. Our method used a template of lung obtained from a normal lung for segmentation of lungs with pleural effusions. Registration process consisted of two steps. First step was a global matching processing between normal and abnormal lungs of organs such as bronchi, bones (ribs, sternum and vertebrae) and upper surfaces of livers which were extracted using a region-growing algorithm. Second step was a local matching processing between normal and abnormal lungs which were deformed by the parameter obtained from the global matching processing. Finally, we segmented a lung with pleural effusion by use of the template which was deformed by two parameters obtained from the global matching processing and the local matching processing. We compared our method with a conventional extraction method using a gray-level based threshold and two published methods. The extraction rates of pleural effusions obtained from our method were much higher than those obtained from other methods. Automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion is promising for diagnosis of pulmonary diseases by providing quantitative volume of accumulating pleural effusion.

  11. Developing a Reference of Normal Lung Sounds in Healthy Peruvian Children

    PubMed Central

    Ellington, Laura E.; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H.; Tielsch, James M.; Chavez, Miguel A.; Marin-Concha, Julio; Figueroa, Dante; West, James

    2018-01-01

    Purpose Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. Methods 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81 %) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Results Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47 % were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Conclusions Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments. PMID:24943262

  12. Developing a reference of normal lung sounds in healthy Peruvian children.

    PubMed

    Ellington, Laura E; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H; Tielsch, James M; Chavez, Miguel A; Marin-Concha, Julio; Figueroa, Dante; West, James; Checkley, William

    2014-10-01

    Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81%) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47% were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments.

  13. Bronchopulmonary Dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases

    PubMed Central

    McEvoy, Cindy T.; Jain, Lucky; Schmidt, Barbara; Abman, Steven; Bancalari, Eduardo

    2014-01-01

    Bronchopulmonary dysplasia (BPD) is the most common complication of extreme preterm birth. Infants who develop BPD manifest aberrant or arrested pulmonary development and can experience lifelong alterations in cardiopulmonary function. Despite decades of promising research, primary prevention of BPD has proven elusive. This workshop report identifies current barriers to the conduct of primary prevention studies for BPD and causal pathways implicated in BPD pathogenesis. Throughout, we highlight promising areas for research to improve understanding of normal and aberrant lung development, distinguish BPD endotypes, and ascertain biomarkers for more targeted therapeutic approaches to prevention. We conclude with research recommendations and priorities to accelerate discovery and promote lung health in infants born preterm. PMID:24754823

  14. 3D cine magnetic resonance imaging of rat lung ARDS using gradient-modulated SWIFT with retrospective respiratory gating

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoharu; Lei, Jianxun; Utecht, Lynn; Garwood, Michael; Ingbar, David H.; Bhargava, Maneesh

    2015-03-01

    SWeep Imaging with Fourier Transformation (SWIFT) with gradient modulation and DC navigator retrospective gating is introduced as a 3D cine magnetic resonance imaging (MRI) method for the lung. In anesthetized normal rats, the quasi-simultaneous excitation and acquisition in SWIFT enabled extremely high sensitivity to the fast-decaying parenchymal signals (TE=~4 μs), which are invisible with conventional MRI techniques. Respiratory motion information was extracted from DC navigator signals and the SWIFT data were reconstructed to 3D cine images with 16 respiratory phases. To test this technique's capabilities, rats exposed to > 95% O2 for 60 hours for induction of acute respiratory distress syndrome (ARDS), were imaged and compared with normal rat lungs (N=7 and 5 for ARDS and normal groups, respectively). SWIFT images showed lung tissue density differences along the gravity direction. In the cine SWIFT images, a parenchymal signal drop at the inhalation phase was consistently observed for both normal and ARDS rats due to lung inflation (i.e. decrease of the proton density), but the drop was less for ARDS rats. Depending on the respiratory phase and lung region, the lungs from the ARDS rats showed 1-24% higher parenchymal signal intensities relative to the normal rat lungs, likely due to accumulated extravascular water (EVLW). Those results demonstrate that SWIFT has high enough sensitivity for detecting the lung proton density changes due to gravity, different phases of respiration and accumulation of EVLW in the rat ARDS lungs.

  15. Neonatal lungs--can absolute lung resistivity be determined non-invasively?

    PubMed

    Brown, B H; Primhak, R A; Smallwood, R H; Milnes, P; Narracott, A J; Jackson, M J

    2002-07-01

    The electrical resistivity of lung tissue can be related to the structure and composition of the tissue and also to the air content. Conditions such as pulmonary oedema and emphysema have been shown to change lung resistivity. However, direct access to the lungs to enable resistivity to be measured is very difficult. We have developed a new method of using electrical impedance tomographic (EIT) measurements on a group of 142 normal neonates to determine the absolute resistivity of lung tissue. The methodology involves comparing the measured EIT data with that from a finite difference model of the thorax in which lung tissue resistivity can be changed. A mean value of 5.7 +/- 1.7 omega(m) was found over the frequency range 4 kHz to 813 kHz. This value is lower than that usually given for adult lung tissue but consistent with the literature on the composition of the neonatal lung and with structural modelling.

  16. Wnt4 is essential to normal mammalian lung development.

    PubMed

    Caprioli, Arianna; Villasenor, Alethia; Wylie, Lyndsay A; Braitsch, Caitlin; Marty-Santos, Leilani; Barry, David; Karner, Courtney M; Fu, Stephen; Meadows, Stryder M; Carroll, Thomas J; Cleaver, Ondine

    2015-10-15

    Wnt signaling is essential to many events during organogenesis, including the development of the mammalian lung. The Wnt family member Wnt4 has been shown to be required for the development of kidney, gonads, thymus, mammary and pituitary glands. Here, we show that Wnt4 is critical for proper morphogenesis and growth of the respiratory system. Using in situ hybridization in mouse embryos, we identify a previously uncharacterized site of Wnt4 expression in the anterior trunk mesoderm. This expression domain initiates as early as E8.25 in the mesoderm abutting the tracheoesophageal endoderm, between the fusing dorsal aortae and the heart. Analysis of Wnt4(-/-) embryos reveals severe lung hypoplasia and tracheal abnormalities; however, aortic fusion and esophageal development are unaffected. We find decreased cell proliferation in Wnt4(-/-) lung buds, particularly in tip domains. In addition, we observe reduction of the important lung growth factors Fgf9, Fgf10, Sox9 and Wnt2 in the lung bud during early stages of organogenesis, as well as decreased tracheal expression of the progenitor factor Sox9. Together, these data reveal a previously unknown role for the secreted protein Wnt4 in respiratory system development. Copyright © 2015. Published by Elsevier Inc.

  17. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  18. The role of soluble and insoluble gastric fluid components in the pathogenesis of obliterative bronchiolitis in rat lung allografts.

    PubMed

    Leung, Jason H; Chang, Jui-Chih; Bell, Sadé M; Holzknecht, Zoie E; Thomas, Samantha M; Everett, Mary Lou; Parker, William; Davis, R Duane; Lin, Shu S

    2016-02-01

    Repetitive gastric fluid aspirations have been shown to lead to obliterans bronchiolitis (OB), but the component or components of gastric fluid that are responsible are unknown. This study investigates the role of particulates and, separately, soluble material in gastric fluid during the development of OB. Whole gastric fluid (WGF) was collected from male Fischer 344 (F344) rats and separated by centrifugation into particle reduced gastric fluid (PRGF) and particulate components resuspended in normal saline (PNS). Orthotopic left lung transplants from male Wistar-Kyoto rats into F344 rats were performed using a modification of the nonsuture external cuff technique with prolonged cold ischemia. Rats were subjected to weekly aspiration of 0.5 ml/kg of WGF (n = 9), PRGF (n = 10), PNS (n = 9), or normal saline (control, NS; n = 9) for 8 weeks following transplantation. Lung allografts treated with WGF, PRGF, or PNS developed a significantly greater percentage of OB-like lesions compared with the control. No statistical difference was observed when comparing the fibrosis grades or the percentage of OB lesions of WGF, PRGF, and PNS groups, suggesting that both soluble and insoluble components of gastric fluid can promote the development of aspiration-induced OB and fibrosis in lung allografts. © 2015 Steunstichting ESOT.

  19. The spleen can influence the metastasis of AH130 hepatoma cells in rats.

    PubMed

    Toyonaga, M; Hiraoka, T; Tanaka, H; Miyauchi, Y

    1993-06-01

    The effect of pathophysiological conditions due to disturbance of the spleen is still unclear. We studied the effects of splenectomy in normal and methylcellulose-induced hypersplenic rats on the development of pulmonary metastases created by intravenous injection of ascites containing AH130 hepatoma cells from male Hos-Donryu rats. Growth of metastatic lesions in the lung was not affected by splenectomy in normal rats, but was increased by splenectomy in hypersplenic rats. Overall, there were fewer pulmonary metastases in rats with hypersplenism, but after splenectomy rats with hypersplenism had a significantly greater number of metastases than did normal rats. The metastases rate correlated somewhat with changes in the blood coagulation and T lymphocyte profile. There is a relationship between the spleen and formation of metastases in cancer. Formation of metastases in the lung was affected most by splenectomy in hypersplenism. To elucidate the mechanism by which metastases are formed in the lung under these pathologic conditions, further studies on the exact role of the spleen are required.

  20. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, Markus; Michel, Geert; Hoefer, Christina

    2007-08-10

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies inmore » type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns.« less

  1. Non-Essential Role for TLR2 and Its Signaling Adaptor Mal/TIRAP in Preserving Normal Lung Architecture in Mice

    PubMed Central

    Ruwanpura, Saleela M.; McLeod, Louise; Lilja, Andrew R.; Brooks, Gavin; Dousha, Lovisa F.; Seow, Huei J.; Bozinovski, Steven; Vlahos, Ross; Hertzog, Paul J.; Anderson, Gary P.; Jenkins, Brendan J.

    2013-01-01

    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4−/− mice by 6 months of age, the lungs of Tlr2−/− mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4−/− mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal−/− mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal−/− mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4−/− mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema. PMID:24205107

  2. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed

    Thompson, Sophie M; Connell, Marilyn G; van Kuppevelt, Toin H; Xu, Ruoyan; Turnbull, Jeremy E; Losty, Paul D; Fernig, David G; Jesudason, Edwin C

    2011-06-14

    Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.

  3. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?

    PubMed Central

    2011-01-01

    Background Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. Results The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. Conclusions The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality. PMID:21672206

  4. Tobacco smoke induces production of chemokine CCL20 to promote lung cancer.

    PubMed

    Wang, Gui-Zhen; Cheng, Xin; Li, Xin-Chun; Liu, Yong-Qiang; Wang, Xian-Quan; Shi, Xu; Wang, Zai-Yong; Guo, Yong-Qing; Wen, Zhe-Sheng; Huang, Yun-Chao; Zhou, Guang-Biao

    2015-07-10

    Tobacco kills nearly 6 million people each year, and 90% of the annual 1.59 million lung cancer deaths worldwide are caused by cigarette smoke. Clinically, a long latency is required for individuals to develop lung cancer since they were first exposed to smoking. In this study, we aimed to identify clinical relevant inflammatory factors that are critical for carcinogenesis by treating normal human lung epithelial cells with tobacco carcinogen nicotine-derived nitrosaminoketone (NNK) for a long period (60 days) and systematic screening in 84 cytokines/chemokines. We found that a chemokine CCL20 was significantly up-regulated by NNK, and in 78/173 (45.1%) patients the expression of CCL20 was higher in tumor samples than their adjacent normal lung tissues. Interestingly, CCL20 was up-regulated in 48/92 (52.2%) smoker and 29/78 (37.2%) nonsmoker patients (p = 0.05), and high CCL20 was associated with poor prognosis. NNK induced the production of CCL20, which promoted lung cancer cell proliferation and migration. In addition, an anti-inflammation drug, dexamethasone, inhibited NNK-induced CCL20 production and suppressed lung cancer in vitro and in vivo. These results indicate that CCL20 is crucial for tobacco smoke-caused lung cancer, and anti-CCL20 could be a rational approach to fight against this deadly disease. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Ischaemia-reperfusion injury in orthotopic mouse lung transplants - a scanning electron microscopy study.

    PubMed

    Draenert, Alice; Marquardt, Klaus; Inci, Ilhan; Soltermann, Alex; Weder, Walter; Jungraithmayr, Wolfgang

    2011-02-01

    Lung ischaemia-reperfusion (I/R) injury remains a major cause of graft failure in lung transplantation (Tx). With the implementation of orthotopic lung Tx in mice, a physiological model on the base of a perfused and ventilated graft became available for the investigation of I/R injury. Using the scanning electron microscopy (SEM) technique, we here present an analysis of early and late morphological changes of pulmonary I/R injury. Syngeneic lungs were orthotopically transplanted between C57BL/6 mice. Grafts were exposed to 2 h of cold ischaemia. Transplants and right lungs were examined by SEM with corresponding haematoxylin-eosin histology 30 min and 4 h after reperfusion. Thirty minutes after reperfusion, the alveolar surface of transplants showed a discontinued lining of surfactant, while the lining of the non-transplanted lung was normal. Within the graft, leucocytes displayed an irregular surface with development of pseudopodia, and microvilli were detected on the membrane of pneumocytes. At 4 h after reperfusion, leucocytes significantly increased in numbers within the alveolar space. Also, the number of microvilli on pneumocytes increased significantly. Similar to these, the endothelium of vessels increasingly developed microvilli from 30 min towards 4 h after reperfusion. The airways of transplanted grafts showed mild changes with thickening of the bronchial epithelium and a destruction of kinocilia. Taken together, SEM detects pathological events of I/R that are previously not described in normal histology. These findings may influence the interpretation of studies investigating the I/R injury in the mouse model of lung Tx. © 2011 The Authors. International Journal of Experimental Pathology © 2011 International Journal of Experimental Pathology.

  6. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  7. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation.

    PubMed

    Lee, J Y; Shank, B; Bonfiglio, P; Reid, A

    1984-10-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.

  8. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis

    PubMed Central

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F.

    2013-01-01

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated. PMID:23171502

  9. Differential susceptibility of inbred mouse strains to chlorine-induced airway fibrosis.

    PubMed

    Mo, Yiqun; Chen, Jing; Schlueter, Connie F; Hoyle, Gary W

    2013-01-15

    Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.

  10. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  11. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    NASA Astrophysics Data System (ADS)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  12. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  13. Development of a computer-aided detection system for lung cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Inaoka, Noriko; Takabatake, Hirotsugu; Mori, Masaki; Sasaoka, Soichi; Natori, Hiroshi; Suzuki, Akira

    1992-06-01

    This paper describes a modified system for automatic detection of lung nodules by means of chest x ray image processing techniques. The objective of the system is to help radiologists to improve their accuracy in cancer detection. It is known from retrospective studies of chest x- ray images that radiologists fail to detect about 30 percent of lung cancer cases. A computerized method for detecting lung nodules would be very useful for decreasing the proportion of such oversights. Our proposed system consists of five sub-systems, for image input, lung region determination, nodule detection, rule-based false-positive elimination, and statistical false-positive elimination. In an experiment with the modified system, using 30 lung cancer cases and 78 normal control cases, we obtained figures of 73.3 percent and 89.7 percent for the sensitivity and specificity of the system, respectively. The system has been developed to run on the IBM* PS/55* and IBM RISC System/6000* (RS/6000), and we give the processing time for each platform.

  14. Hypoxia-inducible factors promote alveolar development and regeneration.

    PubMed

    Vadivel, Arul; Alphonse, Rajesh S; Etches, Nicholas; van Haaften, Timothy; Collins, Jennifer J P; O'Reilly, Megan; Eaton, Farah; Thébaud, Bernard

    2014-01-01

    Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.

  15. SU-F-T-130: [18F]-FDG Uptake Dose Response in Lung Correlates Linearly with Proton Therapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; Titt, U; Mirkovic, D

    2016-06-15

    Purpose: Analysis of clinical outcomes in lung cancer patients treated with protons using 18F-FDG uptake in lung as a measure of dose response. Methods: A test case lung cancer patient was selected in an unbiased way. The test patient’s treatment planning and post treatment positron emission tomography (PET) were collected from picture archiving and communication system at the UT M.D. Anderson Cancer Center. Average computerized tomography scan was registered with post PET/CT through both rigid and deformable registrations for selected region of interest (ROI) via VelocityAI imaging informatics software. For the voxels in the ROI, a system that extracts themore » Standard Uptake Value (SUV) from PET was developed, and the corresponding relative biological effectiveness (RBE) weighted (both variable and constant) dose was computed using the Monte Carlo (MC) methods. The treatment planning system (TPS) dose was also obtained. Using histogram analysis, the voxel average normalized SUV vs. 3 different doses was obtained and linear regression fit was performed. Results: From the registration process, there were some regions that showed significant artifacts near the diaphragm and heart region, which yielded poor r-squared values when the linear regression fit was performed on normalized SUV vs. dose. Excluding these values, TPS fit yielded mean r-squared value of 0.79 (range 0.61–0.95), constant RBE fit yielded 0.79 (range 0.52–0.94), and variable RBE fit yielded 0.80 (range 0.52–0.94). Conclusion: A system that extracts SUV from PET to correlate between normalized SUV and various dose calculations was developed. A linear relation between normalized SUV and all three different doses was found.« less

  16. [Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].

    PubMed

    Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María

    2008-01-01

    Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  17. Elevated expression of WWP2 in human lung adenocarcinoma and its effect on migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; He, Yao; Chen, Shanshan

    Lung cancer has been a hot area of research because of its high incidence and mortality. In this study, WWP2, an E3 ubiquitin ligase, is proposed to be an oncoprotein contributing to lung tumorigenesis. We attempted to determine if WWP2 gene expression is correlated with the development of human lung adenocarcinoma. Real-time PCR and western blotting were used to detect the expression of WWP2 in 65 paired lung adenocarcinoma and adjacent normal lung tissues. We found that WWP2 expression was elevated in lung adenocarcinoma tissues and was correlated with the tumor differentiation stage, TNM stage and presence of lymph nodemore » metastasis. We performed CCK-8 and colony formation assays and found that down-regulation of WWP2 inhibited proliferation in A549 and SPC-A-1 cells. A wound healing assay and trans-well invasion assays showed that down-regulation of WWP2 inhibited the migration and invasion of lung adenocarcinoma cells. It could be predicted from these data that elevated expression of WWP2 may play a role in facilitating the development of lung adenocarcinoma. - Highlights: • Expression of WWP2 is firstly reported in human lung adenocarcinoma. • Function of WWP2 is firstly explored in lung adenocarcinoma cells.« less

  18. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Eldib, A; Ma, C

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less

  19. Vitamin D Receptor Expression in Normal, Premalignant, and Malignant Human Lung Tissue

    PubMed Central

    Menezes, Ravi J.; Cheney, Richard T.; Husain, Aliya; Tretiakova, Maria; Loewen, Gregory; Johnson, Candace S.; Jayaprakash, Vijay; Moysich, Kirsten B.; Salgia, Ravi; Reid, Mary E.

    2009-01-01

    Background There is a strong interest in identifying chemopreventive agents that might help decrease the burden of lung cancer. The active metabolite of vitamin D, 1,25-dihydroxycholecalciferol (calcitriol), has been shown to have antiproliferative effects in several tumor types, mediated by the vitamin D receptor (VDR). This is the first comprehensive survey of VDR expression in a series of human lung tissues, including normal and premalignant central airway biopsies and lung tumors. Methods Immunohistochemical expression of nuclear and cytoplasmic VDR was examined in 180 premalignant or malignant bronchial biopsies from bronchoscopy of 78 high-risk individuals at the Roswell Park Cancer Institute and also in 63 tumor samples from 35 lung cancer patients from the University of Chicago Hospitals. Associations between clinicopathologic data and VDR expression were examined. Results VDR expression was present in many samples. In biopsies, VDR was commonly detected throughout the full epithelial layer. Most histologically normal (60%, 53 of 88) and metaplastic (61%, 39 of 64) samples had moderate to high nuclear intensity; dysplastic samples mostly had low nuclear intensity (10 of 18, 55%). In tumor samples, 62% (38 of 61) were lacking cytoplasmic VDR, with nuclear expression present in 79%(49 of 62). Analysis of all samples revealed a positive linear trend between proportion of samples with greater nuclear than cytoplasmic intensity and increasing histologic grade (P < 0.01). Conclusions VDR expression spanned the lung carcinogenesis spectrum. Nuclear expression was similar across various histologies, whereas cytoplasmic expression decreased with increasing histologic grade. These results indicate that there is potential for the use of calcitriol as a chemopreventive agent against the development of lung cancer. (Cancer Epidemiol Bio-markers Prev 2008;17(5):1104–10) PMID:18483332

  20. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner

    PubMed Central

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-01-01

    Background The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Methods Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Results Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Conclusions Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. PMID:27558745

  1. Cancer-specific production of N-acetylaspartate via NAT8L overexpression in non-small cell lung cancer and its potential as a circulating biomarker

    PubMed Central

    Lou, Tzu-Fang; Sethuraman, Deepa; Dospoy, Patrick; Srivastva, Pallevi; Kim, Hyun Seok; Kim, Joongsoo; Ma, Xiaotu; Chen, Pei-Hsuan; Huffman, Kenneth E.; Frink, Robin E.; Larsen, Jill E.; Lewis, Cheryl; Um, Sang-Won; Kim, Duk-Hwan; Ahn, Jung-Mo; DeBerardinis, Ralph J.; White, Michael A.; Minna, John D.; Yoo, Hyuntae

    2015-01-01

    In order to identify new cancer-associated metabolites that may be useful for early detection of lung cancer, we performed a global metabolite profiling of a non-small cell lung cancer (NSCLC) line and immortalized normal lung epithelial cells from the same patient. Among several metabolites with significant cancer/normal differences, we identified a unique metabolic compound, N-acetylaspartate (NAA) in cancer cells — undetectable in normal lung epithelium. NAA’s cancer-specific detection was validated in additional cancer and control lung cells as well as selected NSCLC patient tumors and control tissues. NAA’s cancer-specificity was further supported in our analysis of NAA synthetase (gene symbol: NAT8L) gene expression levels in The Cancer Genome Atlas: elevated NAT8L expression in approximately 40% of adenocarcinoma and squamous cell carcinoma cases (N=577), with minimal expression in all non-malignant lung tissues (N=74). We then showed that NAT8L is functionally involved in NAA production of NSCLC cells through siRNA-mediated suppression of NAT8L, which caused selective reduction of intracellular and secreted NAA. Our cell culture experiments also indicated that NAA biosynthesis in NSCLC cells depends on glutamine availability. For preliminary evaluation of NAA’s clinical potential as a circulating biomarker, we developed a sensitive NAA blood assay and found that NAA blood levels were elevated in 46% of NSCLC patients (N=13) in comparison with age-matched healthy controls (N=21) among individuals aged 55 years or younger. Taken together, these results indicate that NAA is produced specifically in NSCLC tumors through NAT8L overexpression and its extracellular secretion can be detected in blood. PMID:26511490

  2. FTIR characterization of animal lung cells: normal and precancerous modified e10 cell line

    NASA Astrophysics Data System (ADS)

    Zezell, D. M.; Pereira, T. M.; Mennecier, G.; Bachmann, L.; Govone, A. B.; Dagli, M. L. Z.

    2012-06-01

    The chemical carcinogens from tobacco are related to over 90% of lung cancers around the world. The risk of death of this kind of cancer is high because the diagnosis usually is made only in advanced stages. Therefore, it is necessary to develop new diagnostic methods for detecting the lung cancer in earlier stages. The Fourier Transform Infrared Spectroscopy (FTIR) can offer high sensibility and accuracy to detect the minimal chemical changes into the biological sample. The aim of this study is to evaluate the differences on infrared spectra between normal lung cells and precancerous lung cells transformed by NNK. Non-cancerous lung cell line e10 (ATCC) and NNK-transformed e10 cell lines were maintained in complete culture medium (1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 [DMEM/Ham's F12], supplemented with 100 ng/ml cholera enterotoxin, 10 lg/ml insulin, 0.5 lg/ml. hydrocortisol, 20 ng/ml epidermal growth factor, and 5% horse serum. The cultures were maintained in alcohol 70%. The infrared spectra were acquired on ATR-FTIR Nicolet 6700 spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 3 spectra recorded, 30 infrared spectra were obtained from each cell line. The second derivate of spectra indicates that there are displacement in 1646 cm-1 (amine I) and 1255 cm-1(DNA), allowing the possibility to differentiate the two king of cells, with accuracy of 89,9%. These preliminary results indicate that ATR-FTIR is useful to differentiate normal e10 lung cells from precancerous e10 transformed by NNK.

  3. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer

    PubMed Central

    Davidson, Shawn M.; Papagiannakopoulos, Thales; Olenchock, Benjamin A.; Heyman, Julia E.; Keibler, Mark A.; Luengo, Alba; Bauer, Matthew R.; Jha, Abhishek K.; O’Brien, James P.; Pierce, Kerry A.; Gui, Dan Y.; Sullivan, Lucas B.; Wasylenko, Thomas M.; Subbaraj, Lakshmipriya; Chin, Christopher R.; Stephanopolous, Gregory; Mott, Bryan T.; Jacks, Tyler; Clish, Clary B.; Vander Heiden, Matthew G.

    2016-01-01

    SUMMARY Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid (TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells. PMID:26853747

  4. Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung.

    PubMed

    Gosemann, Jan-Hendrik; Doi, Takashi; Kutasy, Balazs; Friedmacher, Florian; Dingemann, Jens; Puri, Prem

    2012-05-01

    Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in normal lung development. Peroxisome proliferator-activated receptor γ messenger RNA (mRNA) is detectable at 18 days of gestation in fetal rat lungs, and levels peak just before birth. Peroxisome proliferator-activated receptor γ agonists are reported to stimulate lung development, whereas inhibition of PPARγ disrupts postnatal lung maturation. Monocyte chemoattractant protein 1 (MCP-1), which is inhibited by PPARγ, is reported to disrupt late lung morphogenesis. This study was designed to investigate the hypothesis that PPARγ expression is downregulated and that MCP-1 expression is upregulated during the late stages of lung development in nitrofen-induced hypoplastic lungs. Pregnant rats were treated with nitrofen or vehicle on D9. RNA was extracted from fetal lungs (D18 and D21), and relative mRNA expression levels of PPARγ and MCP-1 were determined by reverse transcriptase-polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression/distribution of PPARγ and MCP-1. Relative mRNA expression levels of PPARγ were significantly downregulated in the nitrofen group compared with controls on D21, whereas MCP-1 levels were upregulated. Immunohistochemical study showed markedly decreased PPARγ and increased MCP-1 immunoreactivity in the nitrofen-induced hypoplastic lungs compared with controls on gestational day 21. Altered pulmonary gene expression of PPARγ and MCP-1 during late gestation may impair lung development and maturation, contributing to pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia model. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Molecular Profiles for Lung Cancer Pathogenesis and Detection in US Veterans

    DTIC Science & Technology

    2011-10-01

    expression data was analyzed using the BRB-ArrayTools v .4.1.0 developed by Dr. Richard Simon and the BRB-ArrayTools Development Team and then normalized...14. Spira A, Beane J, Shah V , et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101...10143-10148 15. Spira A, Beane JE, Shah V , et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer

  6. Molecular Profiles for Lung Cancer Pathogenesis and Detection in US Veterans

    DTIC Science & Technology

    2011-10-01

    data was analyzed using the BRB-ArrayTools v .4.1.0 developed by Dr. Richard Simon and the BRB-ArrayTools Development Team and then normalized and log...Spira A, Beane J, Shah V , et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101:10143...10148 15. Spira A, Beane JE, Shah V , et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat

  7. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace.

    PubMed

    Hecker, Louise

    2018-04-01

    The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.

  8. The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis

    PubMed Central

    Li, Hefei; Sun, Zhenqing; Guo, Qiang; Shi, Hongyun; Jia, Youchao

    2017-01-01

    Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients. PMID:28724602

  9. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis

    PubMed Central

    Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.

    2014-01-01

    Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319

  10. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  11. Esophagus and Contralateral Lung-Sparing IMRT for Locally Advanced Lung Cancer in the Community Hospital Setting.

    PubMed

    Kao, Johnny; Pettit, Jeffrey; Zahid, Soombal; Gold, Kenneth D; Palatt, Terry

    2015-01-01

    The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue-sparing IMRT can allow safe dose escalation resulting in decreased acute and late toxicity. We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of three-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT). From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity, and overall survival. Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 vs. 60.8 Gy, p = 0.04), patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, esophageal V60, and mean esophagus doses compared to patients treated with standard RT (p ≤ 0.001). Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0 vs. 11%, p < 0.001), acute grade ≥2 weight loss (2 vs. 16%, p = 0.04), and late grade ≥2 pneumonitis (7 vs. 21%, p = 0.02). The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p = 0.015). These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose-volume constraints are feasible in the community hospital setting without sacrificing disease control.

  12. Clinical significance of preoperative serum albumin level for prognosis in surgically resected patients with non-small cell lung cancer: Comparative study of normal lung, emphysema, and pulmonary fibrosis.

    PubMed

    Miura, Kentaro; Hamanaka, Kazutoshi; Koizumi, Tomonobu; Kitaguchi, Yoshiaki; Terada, Yukihiro; Nakamura, Daisuke; Kumeda, Hirotaka; Agatsuma, Hiroyuki; Hyogotani, Akira; Kawakami, Satoshi; Yoshizawa, Akihiko; Asaka, Shiho; Ito, Ken-Ichi

    2017-09-01

    This study was performed to clarify whether preoperative serum albumin level is related to the prognosis of non-small cell lung cancer patients undergoing surgical resection, and the relationships between serum albumin level and clinicopathological characteristics of lung cancer patients with emphysema or pulmonary fibrosis. We retrospectively evaluated 556 patients that underwent surgical resection for non-small cell lung cancer. The correlation between preoperative serum albumin level and survival was evaluated. Patients were divided into three groups according to the findings on chest high-resolution computed tomography (normal lung, emphysema, and pulmonary fibrosis), and the relationships between serum albumin level and clinicopathological characteristics, including prognosis, were evaluated. The cut-off value of serum albumin level was set at 4.2g/dL. Patients with low albumin levels (albumin <4.2) had significantly poorer prognosis than those with high albumin levels (albumin ≥4.2) with regard to both overall survival and recurrence-free survival. Serum albumin levels in the emphysema group (n=48) and pulmonary fibrosis group (n=45) were significantly lower than that in the normal lung group (n=463) (p=0.009 and <0.001, respectively). Low serum albumin level was a risk factor in normal lung and pulmonary fibrosis groups, but not in the emphysema group. Preoperative serum albumin level was an important prognostic factor for overall survival and recurrence-free survival in patients with resected non-small cell lung cancer. Divided into normal lung, emphysema, and pulmonary fibrosis groups, serum albumin level showed no influence only in patients in the emphysema group. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.

    PubMed

    Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas

    2011-10-01

    Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.

  14. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis.

    PubMed

    Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter.

    PubMed

    Xian, Jian; Aitchison, Alan; Bobrow, Linda; Corbett, Gerard; Pannell, Richard; Rabbitts, Terence; Rabbitts, Pamela

    2004-09-15

    The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.

  16. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  17. Respirator triggering of electron beam computed tomography (EBCT): evaluation of dynamic changes during mechanical expiration in the traumatized patient

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph

    1999-05-01

    The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.

  18. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    PubMed

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.

  19. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    smokers [7]. In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways...previously shown that gene-expression profiles in cytologically normal mainstem bronchus epithelium can distinguish smokers with and without lung cancer...spatially mapping the molecular field of injury associated with smoking-related lung cancer. In smokers undergoing resection of lung lesions, high

  20. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  1. CCAAT/Enhancer Binding Protein–α Regulates the Protease/Antiprotease Balance Required for Bronchiolar Epithelium Regeneration

    PubMed Central

    Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.

    2012-01-01

    Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201

  2. Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis in resource-poor settings: protocol and methods for an observational study

    PubMed Central

    Gilman, Robert H; Tielsch, James M; Steinhoff, Mark; Figueroa, Dante; Rodriguez, Shalim; Caffo, Brian; Tracey, Brian; Elhilali, Mounya; West, James; Checkley, William

    2012-01-01

    Introduction WHO case management algorithm for paediatric pneumonia relies solely on symptoms of shortness of breath or cough and tachypnoea for treatment and has poor diagnostic specificity, tends to increase antibiotic resistance. Alternatives, including oxygen saturation measurement, chest ultrasound and chest auscultation, exist but with potential disadvantages. Electronic auscultation has potential for improved detection of paediatric pneumonia but has yet to be standardised. The authors aim to investigate the use of electronic auscultation to improve the specificity of the current WHO algorithm in developing countries. Methods This study is designed to test the hypothesis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged ≤5 years, 100 each with consolidative pneumonia, diffuse interstitial pneumonia, asthma, bronchiolitis, upper respiratory infections and normal lungs at a children's hospital in Lima, Peru. The authors will compare CLSA with the WHO algorithm and other detection approaches, including physical exam findings, chest ultrasound and microbiologic testing to construct an improved algorithm for pneumonia diagnosis. Discussion This study will develop standardised methods for electronic auscultation and chest ultrasound and compare their utility for detection of pneumonia to standard approaches. Utilising signal processing techniques, the authors aim to characterise lung sounds and through machine learning, develop a classification system to distinguish pathologic sounds. Data will allow a better understanding of the benefits and limitations of novel diagnostic techniques in paediatric pneumonia. PMID:22307098

  3. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom.

    PubMed

    Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz

    2018-06-01

    The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Using gEUD based plan analysis method to evaluate proton vs. photon plans for lung cancer radiation therapy.

    PubMed

    Xiao, Zhiyan; Zou, Wei J; Chen, Ting; Yue, Ning J; Jabbour, Salma K; Parikh, Rahul; Zhang, Miao

    2018-03-01

    The goal of this study was to exam the efficacy of current DVH based clinical guidelines draw from photon experience for lung cancer radiation therapy on proton therapy. Comparison proton plans and IMRT plans were generated for 10 lung patients treated in our proton facility. A gEUD based plan evaluation method was developed for plan evaluation. This evaluation method used normal lung gEUD(a) curve in which the model parameter "a" was sampled from the literature reported value. For all patients, the proton plans delivered lower normal lung V 5 Gy with similar V 20 Gy and similar target coverage. Based on current clinical guidelines, proton plans were ranked superior to IMRT plans for all 10 patients. However, the proton and IMRT normal lung gEUD(a) curves crossed for 8 patients within the tested range of "a", which means there was a possibility that proton plan would be worse than IMRT plan for lung sparing. A concept of deficiency index (DI) was introduced to quantify the probability of proton plans doing worse than IMRT plans. By applying threshold on DI, four patients' proton plan was ranked inferior to the IMRT plan. Meanwhile if a threshold to the location of curve crossing was applied, 6 patients' proton plan was ranked inferior to the IMRT plan. The contradictory ranking results between the current clinical guidelines and the gEUD(a) curve analysis demonstrated there is potential pitfalls by applying photon experience directly to the proton world. A comprehensive plan evaluation based on radio-biological models should be carried out to decide if a lung patient would really be benefit from proton therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  5. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma

    PubMed Central

    Zhang, Feng; Chen, Xia; Wei, Ke; Liu, Daoming; Xu, Xiaodong; Zhang, Xing; Shi, Hong

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways. PMID:28081052

  6. Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses.

    PubMed

    Zamora, Irving J; Sheikh, Fariha; Cassady, Christopher I; Olutoye, Oluyinka O; Mehollin-Ray, Amy R; Ruano, Rodrigo; Lee, Timothy C; Welty, Stephen E; Belfort, Michael A; Ethun, Cecilia G; Kim, Michael E; Cass, Darrell L

    2014-06-01

    The purpose of this study was to evaluate fetal magnetic resonance imaging (MRI) as a modality for predicting perinatal outcomes and lung-related morbidity in fetuses with congenital lung masses (CLM). The records of all patients treated for CLM from 2002 to 2012 were reviewed retrospectively. Fetal MRI-derived lung mass volume ratio (LMVR), observed/expected normal fetal lung volume (O/E-NFLV), and lesion-to-lung volume ratio (LLV) were calculated. Multivariate regression and receiver operating characteristic analyses were applied to determine the predictive accuracy of prenatal imaging. Of 128 fetuses with CLM, 93% (n=118) survived. MRI data were available for 113 fetuses. In early gestation (<26weeks), MRI measurements of LMVR and LLV correlated with risk of fetal hydrops, mortality, and/or need for fetal intervention. In later gestation (>26weeks), LMVR, LLV, and O/E-NFLV correlated with neonatal respiratory distress, intubation, NICU admission and need for neonatal surgery. On multivariate regression, LMVR was the strongest predictor for development of fetal hydrops (OR: 6.97, 1.58-30.84; p=0.01) and neonatal respiratory distress (OR: 12.38, 3.52-43.61; p≤0.001). An LMVR >2.0 predicted worse perinatal outcome with 83% sensitivity and 99% specificity (AUC=0.94; p<0.001). Fetal MRI volumetric measurements of lung masses and residual normal lung are predictive of perinatal outcomes in fetuses with CLM. These data may assist in perinatal risk stratification, counseling, and resource utilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  8. Elevated soluble CD30 correlates with development of bronchiolitis obliterans syndrome following lung transplantation.

    PubMed

    Fields, Ryan C; Bharat, Ankit; Steward, Nancy; Aloush, Aviva; Meyers, Brian F; Trulock, Elbert P; Chapman, William C; Patterson, G Alexander; Mohanakumar, Thalachallour

    2006-12-27

    The long-term function of lung transplants is limited by chronic rejection (bronchiolitis obliterans syndrome, BOS). Due to lack of specific markers, BOS is diagnosed clinically. Because there is strong evidence that alloimmunity plays a significant role in the pathogenesis of BOS, we investigated whether soluble CD30 (sCD30), a T-cell activation marker, would correlate with BOS. Sera collected serially from BOS+ (n = 20) and matched BOS- (n = 20) lung transplant (LT) patients were analyzed for sCD30 by enzyme-linked immunosorbent assay. Pretransplant sera and sera from normal donors were also analyzed. PreLT levels were comparable to normal subjects. However, posttransplant there was a significant elevation in sCD30 levels during BOS development in all BOS+ patients, compared to BOS- (mean 139.8+/-10.7 vs. 14.8+/-2.7 U/ml, P < 0.001). sCD30 levels declined in the BOS+ patients but were still elevated compared to BOS- (48.52+/-5.04 vs. 7.19+/-2.9, P < 0.0001). We conclude that sCD30 may represent a novel marker to monitor the development of BOS.

  9. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  10. Murine aggregation chimeras and wholemount imaging in airway stem cell biology.

    PubMed

    Rosewell, Ian R; Giangreco, Adam

    2012-01-01

    Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.

  11. Unsupervised segmentation of lungs from chest radiographs

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Antani, Sameer K.; Long, L. Rodney; Thoma, George R.

    2012-03-01

    This paper describes our preliminary investigations for deriving and characterizing coarse-level textural regions present in the lung field on chest radiographs using unsupervised grow-cut (UGC), a cellular automaton based unsupervised segmentation technique. The segmentation has been performed on a publicly available data set of chest radiographs. The algorithm is useful for this application because it automatically converges to a natural segmentation of the image from random seed points using low-level image features such as pixel intensity values and texture features. Our goal is to develop a portable screening system for early detection of lung diseases for use in remote areas in developing countries. This involves developing automated algorithms for screening x-rays as normal/abnormal with a high degree of sensitivity, and identifying lung disease patterns on chest x-rays. Automatically deriving and quantitatively characterizing abnormal regions present in the lung field is the first step toward this goal. Therefore, region-based features such as geometrical and pixel-value measurements were derived from the segmented lung fields. In the future, feature selection and classification will be performed to identify pathological conditions such as pulmonary tuberculosis on chest radiographs. Shape-based features will also be incorporated to account for occlusions of the lung field and by other anatomical structures such as the heart and diaphragm.

  12. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.

    PubMed Central

    Schreur, H J; Sterk, P J; Vanderschoot, J; van Klink, H C; van Vollenhoven, E; Dijkman, J H

    1992-01-01

    BACKGROUND: A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in normal and emphysematous subjects in relation to airflow. METHODS: Eight normal men (45-63 years, FEV1 79-126% predicted) and nine men with severe emphysema (50-70 years, FEV1 14-63% predicted) participated in the study. Emphysema was diagnosed according to pulmonary history, results of lung function tests, and radiographic criteria. All subjects underwent phonopneumography during standardised breathing manoeuvres between 0.5 and 2 1 below total lung capacity with inspiratory and expiratory target airflows of 2 and 1 l/s respectively during 50 seconds. The synchronous measurements included airflow at the mouth and lung volume changes, and lung sounds at four locations on the right chest wall. For each microphone airflow dependent power spectra were computed by using fast Fourier transformation. Lung sound intensity was expressed as log power (in dB) at 200 Hz at inspiratory flow rates of 1 and 2 l/s and at an expiratory flow rate of 1 l/s. RESULTS: Lung sound intensity was well repeatable on two separate days, the intraclass correlation coefficient ranging from 0.77 to 0.94 between the four microphones. The intensity was strongly influenced by microphone location and airflow. There was, however, no significant difference in lung sound intensity at any flow rate between the normal and the emphysema group. CONCLUSION: Airflow standardised lung sound intensity does not differ between normal and emphysematous subjects. This suggests that the auscultatory finding of diminished breath sounds during the regular physical examination in patients with emphysema is due predominantly to airflow limitation. Images PMID:1440459

  13. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  14. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility

    PubMed Central

    Fang, Xue; Li, Xuelian; Yin, Zhihua; Xia, Lingzi; Quan, Xiaowei; Zhao, Yuxia; Zhou, Baosen

    2017-01-01

    Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. PMID:29190968

  15. Improved biochemical preservation of lung slices during cold storage.

    PubMed

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P < 0.0001). Protein synthesis was significantly higher in the lung slices stored in NPS compared with all other solutions at 6, 12, and 18 h of preservation (P < 0.05). This lung slice model allows the rapid and efficient screening of lung preservation solutions and their components using quantifiable biochemical endpoints. Using this model, we have developed a novel solution that improves the biochemical preservation of lung slices during cold storage. Copyright 2000 Academic Press.

  16. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung.

    PubMed

    Jiang, Sen; Yu, Dong; Jie, Bing

    2016-09-01

    To evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung. Thirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months, respectively. Technical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases. TAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.

  17. Vitiligo in a patient with lung adenocarcinoma treated with nivolumab: A case report.

    PubMed

    Uenami, Takeshi; Hosono, Yuki; Ishijima, Mikako; Kanazu, Masaki; Akazawa, Yuki; Yano, Yukihiro; Mori, Masahide; Yamaguchi, Toshihiko; Yokota, Soichiro

    2017-07-01

    Nivolumab, an anti-programmed cell death-1 protein monoclonal antibody, is effective for treating patients with late-stage non-small-cell lung cancer. Immune checkpoint inhibitors such as nivolumab induce various kinds of immune-related adverse events, including vitiligo. Vitiligo has been reported in patients with melanoma but not lung cancer. We describe a 75-year-old man with lung adenocarcinoma, stage 4 with pleural and pericardial effusion, that progressed after first-line chemotherapy. Subsequently, he was treated with nivolumab as second-line therapy. After 6days of administering nivolumab, he developed vitiligo suddenly on the trunk of his body. Except for vitiligo, his physical examination was normal, and treatment with nivolumab was well tolerated. Therefore, this treatment was continued without further development or expansion of vitiligo. A computed tomography scan showed a reduction in the size of the lung nodule and stabilization of the pleural and pericardial effusion. This is the first case of vitiligo associated with the use of nivolumab in a patient with lung adenocarcinoma. Copyright © 2017. Published by Elsevier B.V.

  18. Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers.

    PubMed

    Zhang, Yu-An; Ma, Xiaotu; Sathe, Adwait; Fujimoto, Junya; Wistuba, Ignacio; Lam, Stephen; Yatabe, Yasushi; Wang, Yi-Wei; Stastny, Victor; Gao, Boning; Larsen, Jill E; Girard, Luc; Liu, Xiaoyun; Song, Kai; Behrens, Carmen; Kalhor, Neda; Xie, Yang; Zhang, Michael Q; Minna, John D; Gazdar, Adi F

    2016-03-01

    The human secretin gene (SCT) encodes secretin, a hormone with limited tissue distribution. Analysis of the 450k methylation array data in The Cancer Genome Atlas (TCGA) indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential biomarker for lung cancer. We analyzed data from TCGA and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays. The analyses of TCGA 450K data for 801 samples showed that SCT hypermethylation has an area under the curve (AUC) value greater than 0.98 that can be used to distinguish lung adenocarcinomas or squamous cell carcinomas from nonmalignant lung tissue. Bisulfite sequencing of lung cancer cell lines and normal blood cells allowed us to confirm that SCT methylation is highly discriminative. By applying a quantitative methylation-specific polymerase chain reaction assay, we found that SCT hypermethylation is frequently detected in all major subtypes of malignant non-small cell lung cancer (AUC = 0.92, n = 108) and small cell lung cancer (AUC = 0.93, n = 40) but is less frequent in lung carcinoids (AUC = 0.54, n = 20). SCT hypermethylation appeared in samples of lung carcinoma in situ during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450k data showed that SCT hypermethylation is highly discriminative in most other types of malignant tumors but less frequent in low-grade malignant tumors. The only normal tissue with a high level of methylation was the placenta. Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, is less frequent in low-grade malignant tumors (including lung carcinoids), and appears at the carcinoma in situ stage. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  19. Regional Radiation Pneumonitis After SIRT of a Subcapsular Liver Metastasis: What is the Effect of Direct Beta Irradiation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrocky, Tomas, E-mail: tomas.dobrocky@insel.ch; Fuerstner, Markus, E-mail: markus.fuerstner@insel.ch; Klaeser, Bernd, E-mail: bernd.klaeser@insel.ch

    2015-08-15

    We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.

  20. [The prevention and treatment of suppurative-inflammatory complications in the bronchopulmonary system during prolonged artificial ventilation].

    PubMed

    Mozhaev, G A; Tikhonovskiĭ, I Iu

    1992-01-01

    The use of physical methods, namely low frequency magnetic field in critically ill patients under respiratory therapy made it possible to prevent and in case of their development to effectively treat pyoinflammatory bronchopulmonary complications that accompany prolonged controlled lung ventilation. The results obtained were due to the elimination of an unfavourable effect of controlled lung ventilation on natural resistance and immune response of the respiratory tract because of normalization of physicochemical properties of the tracheobronchial tree secretion, enhanced functional capacities of phagocytes, repaired bonds between cellular and humoral local immunity in the lungs.

  1. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    PubMed Central

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  2. The non-specificity of the left/right ventricular amplitude ratio (LV/RV) for mitral insufficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, D.F.; Reinsel, M.S.; Martin, N.L.

    1984-01-01

    The purpose of this study was to determine the specificity of the LV/RV for mitral insufficiency. One hundred and sixty patients underwent MUGA studies as part of their diagnostic evaluation. Phase analysis was performed. In the amplitude image, the LV/RV was measured. Patients were divided into 11 clinical groups based on chart review after adequate follow-up. The groups were compared by Duncan's Multiple Comparsion Test. Patients with mitral insufficiency (N = 12, mean LV/RV = 2.36), those with idiopathic myocardiopathy (8, 2.29) and those with normal hearts having lung disease on chest x-ray (22, 1.78) formed a group which atmore » the p < .05 level were not different from one another. Patients with idiopathic myocardiography, normal hearts with lung disease on chest x-ray, normal hearts with lung disease (23, 1.71) formed a second group which partially overlapped with both the first and third groups. The third group consisted of normal hearts with lung disease, normal hearts not taking adriamycin (18, 1.53), normal hearts taking adriamycin (22, 1.50), congestive heart failure (19, 1.50), arteriosclerotic heart disease, normal hearts (15, 1.29), chronic obstructive pulmonary disease and acute myocardial infarction. The LV/RV is not specific for mitral insufficiency. Idiopathic myocardiography, and normal hearts with lung disease on chest x-ray (metastases, cancer of the lung, infiltrates, fibrosis, and/or COPD) cannot be differentiated on a statistical basis. The mitral insufficiency group had the greatest values of LV/RV. It appears that decreased RV amplitude seen with diseases causing strain on the right ventricle will result in elevated LV/RV ratios.« less

  3. Perinatal stress and early life programming of lung structure and function

    PubMed Central

    Wright, Rosalind J.

    2010-01-01

    Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145

  4. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2.

    PubMed

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer.

  5. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung cancer cells by targeting ATP6AP2

    PubMed Central

    Kong, Xiao-Mei; Zhang, Ge-Hong; Huo, Yun-Kui; Zhao, Xiao-Hong; Cao, Da-Wei; Guo, Shu-Fang; Li, Ai-Min; Zhang, Xin-Ri

    2015-01-01

    MicroRNAs are small noncoding RNA molecules that regulate gene expression at the post-transcriptional level. Compelling evidence reveals that there is a causative link between microRNAs deregulation and lung cancer development and metastasis. The aim of present study was to explore the function of miR-140-3p in the development and metastasis of lung cancer cell. Using real-time PCR, we detected the miR-140-3p expression of lung cancer tissues and its pared non-lung cancer tissue. Then, we evaluated the role of miR-140-3p in cell proliferation, invasion and migration using MTT, colony formation assay, Transwell invasion and Transwell migration assay in lung cancer cell lines. As a result, miR-140-3p expression level was lower in lung cancer tissues compared to adjacent normal lung cancer tissue. After miR-140-3p was upregulated in A549 or H1299 cells, cell proliferation, invasion and migration was notably attenuated. Furthermore, we identified ATP6AP2, which is associated with adenosine triphosphatases (ATPases), was a directly target of miR-140-3p in lung cancer cells. In conclusion, our data suggest miR-140-3p/ATP6AP2 axis might act as a potential therapeutic biomarker for lung cancer. PMID:26722475

  6. A clinicopathological study of surgically resected lung cancer in patients with usual interstitial pneumonia.

    PubMed

    Watanabe, Yasutaka; Kawabata, Yoshinori; Koyama, Nobuyuki; Ikeya, Tomohiko; Hoshi, Eishin; Takayanagi, Noboru; Koyama, Shinichiro

    2017-08-01

    The clinicopathological characteristics of lung cancer with concomitant usual interstitial pneumonia (UIP) are insufficiently understood. This study aimed to elucidate a characteristic pathological feature of lung cancer that develops in patients with UIP, with a focus on the location of its onset. We reviewed surgically obtained specimens, including 547 tumors from 526 patients who underwent lobectomy for lung cancer. Surveyed patients were classified into three groups: patients with UIP (UIP group), patients with lung pathology other than UIP (non-UIP group), and patients without any associated lung pathology (normal group). The histology as well as the lobe and location of the onset of lung cancer were compared among these groups. The peripheral location was subdivided into subpleural, inner and tumor involved centrally secondary to extension. The UIP group comprised 82 patients (male, 71 [87%]; mean age, 71 years; smoking rate, 94%), the non-UIP group comprised 334 patients (male, 267 [80%]; mean age, 69 years; smoking rate, 81%), and the normal group comprised 110 patients (male, 33 [30%]; mean age, 63; smoking rate, 29%). No statistical differences were noted in sex, mean age, or smoking index between the UIP and non-UIP groups. Compared with the non-UIP group, the frequency of squamous cell carcinoma (63% vs. 32%), lower lobe origin (76% vs. 32%), and subpleural location (24% vs. 5%) were significantly higher in the UIP group. Lung cancers in patients with UIP show a predilection for the subpleural region, where UIP is also thought to originate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synchrotron x-ray imaging of pulmonary alveoli in respiration in live intact mice

    NASA Astrophysics Data System (ADS)

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-01

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 +/- 14 (mean +/- s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 +/- 4.7% (mean +/- s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 +/- 4.3% (mean +/- s.d.)) than in the apices (5.7 +/- 3.2% (mean +/- s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 +/- 3.8% (mean +/- s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  8. The concept of "baby lung".

    PubMed

    Gattinoni, Luciano; Pesenti, Antonio

    2005-06-01

    The "baby lung" concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300-500 g aerated tissue). The respiratory system compliance is linearly related to the "baby lung" dimensions, suggesting that the acute respiratory distress syndrome lung is not "stiff" but instead small, with nearly normal intrinsic elasticity. Initially we taught that the "baby lung" is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the "baby lung" is a functional and not an anatomical concept. This provides a rational for "gentle lung treatment" and a background to explain concepts such as baro- and volutrauma. From a physiological perspective the "baby lung" helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the V(T)/kg ratio but instead the V(T)/"baby lung" ratio. The practical message is straightforward: the smaller the "baby lung," the greater is the potential for unsafe mechanical ventilation.

  9. The effect of methacholine-induced acute airway narrowing on lung sounds in normal and asthmatic subjects.

    PubMed

    Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J

    1995-02-01

    The association between lung sound alterations and airways obstruction has long been recognized in clinical practice, but the precise pathophysiological mechanisms of this relationship have not been determined. Therefore, we examined the changes in lung sounds at well-defined levels of methacholine-induced airway narrowing in eight normal and nine asthmatic subjects with normal baseline lung function. All subjects underwent phonopneumography at baseline condition and at > or = 20% fall in forced expiratory volume in one second (FEV1), and in asthmatic subjects also at > or = 40% fall in FEV1. Lung sounds were recorded at three locations on the chest wall during standardized quiet breathing, and during maximal forced breathing. Airflow-dependent power spectra were computed using fast Fourier transform. For each spectrum, we determined the intensity and frequency content of lung sounds, together with the extent of wheezing. The results were analysed using analysis of variance (ANOVA). During acute airway narrowing, the intensity and frequency content of the recorded sounds, as well as the extent of wheezing, were higher than at baseline in both groups of subjects. At similar levels of obstruction, both the pitch and the change in sound intensity with airflow were higher in asthmatics than in normal subjects. Wheezing, being nondiscriminative between the subject groups at baseline, was more prominent in asthmatics than in normal subjects at 20% fall in FEV1. We conclude that, at given levels of acute airway narrowing, lung sounds differ between asthmatics and normal subjects. This suggests that airflow-standardized phonopneumography is a sensitive method for detecting abnormalities in airway dynamics in asthma.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Promotion of Lung Health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases

    PubMed Central

    Budinger, G. R. Scott; Escobar, Gabriel J.; Hansel, Nadia N.; Hanson, Corrine K.; Huffnagle, Gary B.; Buist, A. Sonia

    2014-01-01

    Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes “health promotion” (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate “normal” age-related declines—not only for spirometry but across multiple measures of lung health. In developing a successful strategy, a “life course” approach is important. Unfortunately, we are unable to achieve the full benefit of this approach until we have better measures of lung health and an improved understanding of the normal trajectory, both over an individual’s life span and possibly across generations. We discuss key questions in lung health promotion, with an emphasis on the upper (healthier) end of the distribution of lung functioning and resiliency and briefly summarize the few interventions that have been studied to date. We conclude with suggestions regarding the most promising future research for this important, but largely neglected, area of lung research. PMID:24754821

  11. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    PubMed

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  12. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  13. Developmental expression of the receptor for advanced glycation end-products (RAGE) and its response to hyperoxia in the neonatal rat lung

    PubMed Central

    Lizotte, Pierre-Paul; Hanford, Lana E; Enghild, Jan J; Nozik-Grayck, Eva; Giles, Brenda-Louise; Oury, Tim D

    2007-01-01

    Background The receptor for advanced glycation end products (mRAGE) is associated with pathology in most tissues, while its soluble form (sRAGE) acts as a decoy receptor. The adult lung is unique in that it expresses high amounts of RAGE under normal conditions while other tissues express low amounts normally and up-regulate RAGE during pathologic processes. We sought to determine the regulation of the soluble and membrane isoforms of RAGE in the developing lung, and its expression under hyperoxic conditions in the neonatal lung. Results Fetal (E19), term, 4 day, 8 day and adult rat lung protein and mRNA were analyzed, as well as lungs from neonatal (0–24 hrs) 2 day and 8 day hyperoxic (95% O2) exposed animals. mRAGE transcripts in the adult rat lung were 23% greater than in neonatal (0–24 hrs) lungs. On the protein level, rat adult mRAGE expression was 2.2-fold higher relative to neonatal mRAGE expression, and adult sRAGE protein expression was 2-fold higher compared to neonatal sRAGE. Fetal, term, 4 day and 8 day old rats had a steady increase in both membrane and sRAGE protein expression evaluated by Western Blot and immunohistochemistry. Newborn rats exposed to chronic hyperoxia showed significantly decreased total RAGE expression compared to room air controls. Conclusion Taken together, these data show that rat pulmonary RAGE expression increases with age beginning from birth, and interestingly, this increase is counteracted under hyperoxic conditions. These results support the emerging concept that RAGE plays a novel and homeostatic role in lung physiology. PMID:17343756

  14. Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia.

    PubMed

    Witsch, Thilo J; Turowski, Pawel; Sakkas, Elpidoforos; Niess, Gero; Becker, Simone; Herold, Susanne; Mayer, Konstantin; Vadász, István; Roberts, Jesse D; Seeger, Werner; Morty, Rory E

    2014-02-01

    Bronchopulmonary dysplasia (BPD) is a common and serious complication of premature birth, characterized by a pronounced arrest of alveolar development. The underlying pathophysiological mechanisms are poorly understood although perturbations to the maturation and remodeling of the extracellular matrix (ECM) are emerging as candidate disease pathomechanisms. In this study, the expression and regulation of three members of the lysyl hydroxylase family of ECM remodeling enzymes (Plod1, Plod2, and Plod3) in clinical BPD, as well as in an experimental animal model of BPD, were addressed. All three enzymes were localized to the septal walls in developing mouse lungs, with Plod1 also expressed in the vessel walls of the developing lung and Plod3 expressed uniquely at the base of developing septa. The expression of plod1, plod2, and plod3 was upregulated in the lungs of mouse pups exposed to 85% O2, an experimental animal model of BPD. Transforming growth factor (TGF)-β increased plod2 mRNA levels and activated the plod2 promoter in vitro in lung epithelial cells and in lung fibroblasts. Using in vivo neutralization of TGF-β signaling in the experimental animal model of BPD, TGF-β was identified as the regulator of aberrant plod2 expression. PLOD2 mRNA expression was also elevated in human neonates who died with BPD or at risk for BPD, compared with neonates matched for gestational age at birth or chronological age at death. These data point to potential roles for lysyl hydroxylases in normal lung development, as well as in perturbed late lung development associated with BPD.

  15. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those twomore » CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. Results: The mean TRE (and standard deviation) was 0.6 ± 0.7 mm (smaller than the voxel dimension) for DIR between pre contrast and postcontrast end-inspiratory CT image data sets. No singularities were observed in the displacement vector fields. The mean HU enhancement (and standard deviation) was 37.3 ± 10.5 HU for normal lung subjects and 30.7 ± 13.5 HU for diseased lung subjects. Spatial heterogeneity of regional perfusion was found to be higher for diseased lung subjects than for normal lung subjects, i.e., a mean coefficient of variation of 2.06 vs 1.59 (p = 0.07). The average gravitationally directed gradient was strong and significant (R{sup 2} = 0.99, p < 0.01) for normal lung dogs, whereas it was moderate and nonsignificant (R{sup 2} = 0.61, p = 0.12) for diseased lung dogs. Conclusions: This canine study demonstrated the accuracy of DIR with subvoxel TREs on average, higher spatial heterogeneity of regional perfusion for diseased lung subjects than for normal lung subjects, and a strong gravitationally directed gradient for normal lung subjects, providing proof-of-principle for single-energy CT pulmonary perfusion imaging. Further studies such as comparison with other perfusion imaging modalities will be necessary to validate the physiological significance.« less

  16. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    PubMed

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  17. [Horseshoe lung with normal pulmonary venous return].

    PubMed

    Gondra Sangroniz, A; Elorz Lambarri, J; Villar Alvarez, M A; Lecumberri Cortes, I; Ayala Curiel, J

    2010-09-01

    Horseshoe lung is a rare congenital anomaly characterised by a midline isthmus of pulmonary parenchyma connecting the posterior basal segments of the lungs behind the heart in conjunction with unilateral pulmonary hypoplasia. Of all cases, 80% are associated with scimitar syndrome, consisting of right anomalous pulmonary venous drainage, pulmonary hypoplasia of the right lung and systemic arterial perfusion to some lung areas. A six year old girl who had recurrent lower respiratory infections since birth. Chest Rx, angioCT and MR showed: hypoplasia of the right lung, dextrocardia and pulmonary isthmus bridging both lungs behind the pericardium. The right hypoplastic lung had little systemic supply coming from the abdominal aorta. The right pulmonary artery was hypoplastic. The right pulmonary venous drainage was normal. We present a case of horseshoe lung without abnormal venous drainage. 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  18. Acute and Chronic Toxicity of Inhaled Plutonium in Dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J. F.; Willard, D. H.; Marks, S.

    1962-01-01

    Beagle dogs were given single exposures to Pu 239O 2 aerosols. Deposition of 0.9 to 0.1 mu c/g of lung caused death in 31 dogs in 55 to 412 days after exposure. Average radiation dose to lungs was 4000-14,000 rads. Lymphopenia, polypnea, weight loss and bradycardia developed prior to death. Gross and histopathlogic tissue changes were limited to the lungs and associated lymph nodes, which contained 99 per cent of the plutonium content of the dog. One dog died 862 days following deposition of approximately 0.05 mu c/g of lung. Dogs exposed to lesser quantities of plutonium appear normal 2more » to 21/2 years after exposure except for lymphopenia.« less

  19. Measurement and classification of heart and lung sounds by using LabView for educational use.

    PubMed

    Altrabsheh, B

    2010-01-01

    This study presents the design, development and implementation of a simple low-cost method of phonocardiography signal detection. Human heart and lung signals are detected by using a simple microphone through a personal computer; the signals are recorded and analysed using LabView software. Amplitude and frequency analyses are carried out for various phonocardiography pathological cases. Methods for automatic classification of normal and abnormal heart sounds, murmurs and lung sounds are presented. Various cases of heart and lung sound measurement are recorded and analysed. The measurements can be saved for further analysis. The method in this study can be used by doctors as a detection tool aid and may be useful for teaching purposes at medical and nursing schools.

  20. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis

    PubMed Central

    Mora, Ana L.; Rojas, Mauricio

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients. PMID:28145905

  1. Mitochondria in Lung Diseases

    PubMed Central

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  2. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner.

    PubMed

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-12-01

    The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Randomised comparison of two neonatal resuscitation bags in manikin ventilation.

    PubMed

    Thallinger, Monica; Ersdal, Hege Langli; Ombay, Crescent; Eilevstjønn, Joar; Størdal, Ketil

    2016-07-01

    To compare ventilation properties and user preference of a new upright neonatal resuscitator developed for easier cleaning, reduced complexity, and possibly improved ventilation properties, with the standard Laerdal neonatal resuscitator. Eighty-seven Tanzanian and Norwegian nursing and medical students without prior knowledge of newborn resuscitation were briefly trained in bag-mask ventilation. The two resuscitators were used in random order on a manikin connected to a test lung with normal or low lung compliance. Data were collected with the Laerdal Newborn Resuscitation Monitor. The students graded mask seal and ease of air entry on a four-point scale ranging from 1 ('difficult') to 4 ('easy') and stated which device they preferred. (Equipment from Laerdal Global Health and Laerdal Medical). For upright versus standard resuscitator and normal lung compliance, mean expiratory lung volume was 15.5 mL vs 13.9 mL (p=0.001), mean mask leakage 48% vs 58% (p<0.001), and mean airway pressure 20 cm H2O vs 19 cm H2O (p=0.003), respectively. For low lung compliance, mean expiratory lung volume was 8.6 mL vs 8.1 mL (p=0.045), mean mask leakage 53% vs 62% (p<0.001), and mean airway pressure 21 cm H2O vs 20 cm H2O (p=0.004) for upright versus standard. The upright resuscitator was preferred by 82% and 68% of students during ventilation with normal and low lung compliance, respectively (p=0.001). Expiratory volumes were higher, mask leakage lower, and mean airway pressure slightly higher with upright versus standard resuscitator when ventilating a manikin. The majority of students preferred the upright resuscitator. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Relationship between thoracic auscultation and lung pathology detected by ultrasonography in sheep.

    PubMed

    Scott, Phil; Collie, Dave; McGorum, Bruce; Sargison, Neil

    2010-10-01

    The utility of routine auscultation to detect and characterise the nature of a range of superficial lung and pleural pathologies in domestic sheep was assessed using ultrasonographic examination to indicate and localise pathologies pre-mortem. Necropsy examination was then used to fully characterise the nature and extent of the lesions. Auscultation recordings were made from 10 normal sheep with no clinical evidence of respiratory disease and with absence of significant superficial lung pathology, which was confirmed initially by ultrasound examination and subsequently at necropsy examination. A further two sheep with endotoxaemia and 30 sheep with well-defined lung lesions were also examined. Increased audibility of normal lung sounds in 4/10 normal sheep was associated with tachypnoea as a consequence of handling and transport during hot weather and was also observed in the two sheep with endotoxaemia. Moderate to severe coarse crackles detected in all advanced cases of ovine pulmonary adenocarcinoma (n=16) were audible over an area larger than the lesion distribution identified during ultrasound examination, and confirmed later at necropsy. Auscultation did not detect abnormal sounds in any of the five sheep with focal pleural abscesses (up to 10 cm diameter). Unilateral pyothorax caused attenuation of sounds relative to the contra-lateral normal lung in all three sheep with this condition. Marked fibrinous pleurisy caused attenuation of sounds relative to normal areas of lung in six sheep. No sounds resembling the description of pleural frictions rubs were heard in the sheep with marked fibrinous pleurisy (n=6) or associated with focal pleural abscesses (n=5). Routine interpretation of auscultated sound did not allow the presence of superficial lung pathology or its distribution to be accurately defined in the respiratory diseases represented in this study. Copyright © 2009 Elsevier Ltd. All rights reserved.

  5. Midkine and pleiotrophin concentrations in needle biopsies of breast and lung masses.

    PubMed

    Giamanco, Nicole M; Jee, Youn Hee; Wellstein, Anton; Shriver, Craig D; Summers, Thomas A; Baron, Jeffrey

    2017-09-07

    Midkine (MDK) and pleiotrophin (PTN) are two closely related heparin-binding growth factors which are overexpressed in a wide variety of human cancers. We hypothesized that the concentrations of these factors in washout of biopsy needles would be higher in breast and lung cancer than in benign lesions. Seventy subjects underwent pre-operative core needle biopsies of 78 breast masses (16 malignancies). In 11 subjects, fine needle aspiration was performed ex vivo on 7 non-small cell lung cancers and 11 normal lung specimens within surgically excised lung tissue. The biopsy needle was washed with buffer for immunoassay. The MDK/DNA and the PTN/DNA ratio in most of the malignant breast masses were similar to the ratios in benign masses except one lobular carcinoma in situ (24-fold higher PTN/DNA ratio than the average benign mass). The MDK/DNA and PTN/DNA ratio were similar in most malignant and normal lung tissue except one squamous cell carcinoma (38-fold higher MDK/DNA ratio than the average of normal lung tissue). Both MDK and PTN are readily measurable in washout of needle biopsy samples from breast and lung masses and levels are highly elevated only in a specific subset of these malignancies.

  6. Predictive equations for total lung capacity and residual volume calculated from radiographs in a random sample of the Michigan population.

    PubMed Central

    Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K; Miller, A

    1992-01-01

    BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: Total lung capacity was measured from standard posteroanterior and lateral chest radiographs and forced vital capacity by spirometry in a population sample of 771 subjects. Prediction equations were developed for total lung capacity (TLC), residual volume (RV) and RV/TLC in two groups--normal and total. Subjects with signs or symptoms of cardiopulmonary disease were combined with the normal subjects and equations for all subjects were also modelled. RESULTS: Prediction equations for TLC and RV in non-smoking normal men and women were square root transformations which included height and weight but not age. They included a coefficient for duration of smoking in current smokers. The predictive equation for RV/TLC included weight, age, age and duration of smoking for current smokers and ex-smokers of both sexes. For the total population the equations took the same form but the height coefficients and constants were slightly different. CONCLUSION: These population based prediction equations for TLC, RV and RV/TLC provide reference standards in a population that has provided reference standards for spirometry and single breath transfer factor for carbon monoxide. PMID:1412094

  7. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Sen, E-mail: jasfly77@vip.163.com; Yu, Dong; Jie, Bing

    PurposeTo evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung.MethodsThirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months,more » respectively.ResultsTechnical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases.ConclusionTAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.« less

  8. Upregulated INHBA Expression May Promote Cell Proliferation and Is Associated with Poor Survival in Lung Adenocarcinoma1

    PubMed Central

    Seder, Christopher W; Hartojo, Wibisono; Lin, Lin; Silvers, Amy L; Wang, Zhuwen; Thomas, Dafydd G; Giordano, Thomas J; Chen, Guoan; Chang, Andrew C; Orringer, Mark B; Beer, David G

    2009-01-01

    Introduction The expression, mechanisms of regulation, and functional impact of INHBA (activin A) in lung adenocarcinoma (AD) have not been fully elucidated. Methods INHBA expression was examined in 96 lung samples (86 ADs, 10 normal lung) using oligonucleotide microarrays and 187 lung samples (164 ADs, 6 bronchioalveolar carcinomas, and 17 normal lung) using immunohistochemistry. The proliferation of AD cell lines H460 and SKLU1 was examined with WST-1 assays after treatment with recombinant activin A, follistatin, and INHBA-targeting small-interfering RNA. Cells were also treated with 5-aza-2′ deoxycytidine and trichostatin A to investigate the role of epigenetic regulation in INHBA expression. Results Primary ADs expressed 3.1 times more INHBA mRNA than normal lung. In stage I AD patients, high levels of primary tumor INHBA transcripts were associated with worse prognosis. Immunohistochemistry confirmed higher inhibin βA protein expression in ADs (78.7%) and bronchioalveolar carcinomas (66.7%) compared with normal lung (11.8%). H460 and SKLU1 demonstrated increased proliferation when treated with exogenous activin A and reduced proliferation when treated with follistatin or INHBA-targeting small-interfering RNA. INHBA mRNA expression in H460 cells was upregulated after treatment with trichostatin A and 5-aza-2′ deoxycytidine. Conclusions INHBA is overexpressed in AD relative to controls. Inhibin βA may promote cell proliferation, and its overexpression is associated with worse survival in stage I AD patients. In addition, overexpression of INHBA may be affected by promoter methylation and histone acetylation in a subset of lung ADs. PMID:19308293

  9. Identification of Importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens

    PubMed Central

    Nguewa, Paul A; Agorreta, Jackeline; Blanco, David; Lozano, Maria Dolores; Gomez-Roman, Javier; Sanchez, Blas A; Valles, Iñaki; Pajares, Maria J; Pio, Ruben; Rodriguez, Maria Jose; Montuenga, Luis M; Calvo, Alfonso

    2008-01-01

    Background The accurate normalization of differentially expressed genes in lung cancer is essential for the identification of novel therapeutic targets and biomarkers by real time RT-PCR and microarrays. Although classical "housekeeping" genes, such as GAPDH, HPRT1, and beta-actin have been widely used in the past, their accuracy as reference genes for lung tissues has not been proven. Results We have conducted a thorough analysis of a panel of 16 candidate reference genes for lung specimens and lung cell lines. Gene expression was measured by quantitative real time RT-PCR and expression stability was analyzed with the softwares GeNorm and NormFinder, mean of |ΔCt| (= |Ct Normal-Ct tumor|) ± SEM, and correlation coefficients among genes. Systematic comparison between candidates led us to the identification of a subset of suitable reference genes for clinical samples: IPO8, ACTB, POLR2A, 18S, and PPIA. Further analysis showed that IPO8 had a very low mean of |ΔCt| (0.70 ± 0.09), with no statistically significant differences between normal and malignant samples and with excellent expression stability. Conclusion Our data show that IPO8 is the most accurate reference gene for clinical lung specimens. In addition, we demonstrate that the commonly used genes GAPDH and HPRT1 are inappropriate to normalize data derived from lung biopsies, although they are suitable as reference genes for lung cell lines. We thus propose IPO8 as a novel reference gene for lung cancer samples. PMID:19014639

  10. [Testing and analyzing the lung functions in the normal population in Hebei province].

    PubMed

    Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin

    2004-08-01

    To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.

  11. THE HUMAN FETAL LUNG XENOGRAFT: VALIDATION AS MODEL OF MICROVASCULAR REMODELING IN THE POSTGLANDULAR LUNG

    PubMed Central

    De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu

    2012-01-01

    Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288

  12. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury

    PubMed Central

    Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J.; Wu, Tzong-Jin; Konduri, Girija G.

    2017-01-01

    Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. PMID:28213471

  13. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  14. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  15. Fetal Onset of Aberrant Gene Expression Relevant to Pulmonary Carcinogenesis in Lung Adenocarcinoma Development Induced by In Utero Arsenic Exposure

    PubMed Central

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2009-01-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-α (ER-α) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-β-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. in utero arsenic exposure also induced overexpression of α-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-α expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-α expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-α activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood. PMID:17077188

  16. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure.

    PubMed

    Shen, Jun; Liu, Jie; Xie, Yaxiong; Diwan, Bhalchandra A; Waalkes, Michael P

    2007-02-01

    Arsenic is a human pulmonary carcinogen. Our work indicates that in utero arsenic exposure in mice can induce or initiate lung cancer in female offspring. To define early molecular changes, pregnant C3H mice were given 85 ppm arsenic in drinking water from days 8 to 18 of gestation and expression of selected genes in the fetal lung or in lung tumors developing in adults was examined. Transplacental arsenic exposure increased estrogen receptor-alpha (ER-alpha) transcript and protein levels in the female fetal lung. An overexpression of various estrogen-regulated genes also occurred, including trefoil factor-3, anterior gradient-2, and the steroid metabolism genes 17-beta-hydroxysteroid dehydrogenase type 5 and aromatase. The insulin growth factor system, which can be influenced by ER and has been implicated in the pulmonary oncogenic process, was activated in fetal lung after gestational arsenic exposure. In utero arsenic exposure also induced overexpression of alpha-fetoprotein, epidermal growth factor receptor, L-myc, and metallothionein-1 in fetal lung, all of which are associated with lung cancer. Lung adenoma and adenocarcinoma from adult female mice exposed to arsenic in utero showed widespread, intense nuclear ER-alpha expression. In contrast, normal adult lung and diethylnitrosamine-induced lung adenocarcinoma showed little evidence of ER-alpha expression. Thus, transplacental arsenic exposure at a carcinogenic dose produced aberrant estrogen-linked pulmonary gene expression. ER-alpha activation was specifically associated with arsenic-induced lung adenocarcinoma and adenoma but not with nitrosamine-induced lung tumors. These data provide evidence that arsenic-induced aberrant ER signaling could disrupt early life stage genetic programing in the lung leading eventually to lung tumor formation much later in adulthood.

  17. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  18. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  19. VEGF receptor expression decreases during lung development in congenital diaphragmatic hernia induced by nitrofen

    PubMed Central

    Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.

    2014-01-01

    Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134

  20. [Unilateral lung transplant in a case of terminal pulmonary fibrosis].

    PubMed

    Santillán-Doherty, P

    1990-01-01

    Up to 1980, less than 40 lung transplants had been reported worldwide without any success. The factors influencing these poor results were related to complications at the bronchial anastomosis and ineffective immunosuppressive regimens. The development of new immunosuppressive drugs has permitted the reevaluation of lung transplantation as a therapeutic option. The success with heart-lung transplantation stimulated the development of clinical human single-lung and double-lung transplantation. However the world experience is still scarce. In our institution we have developed experimental work leading to the establishment of a lung transplant program. This paper describes our first single lung transplant patient. The patient, a 33 year old man with end-stage pulmonary fibrosis, was totally oxygen dependant, maintaining arterial blood oxygen levels below 40 mmHg without oxygen supplementation and confined to a wheelchair. A single left lung transplant was performed from a young brain-dead donor. The bronchial anastomosis was protected with an omental flap. The immunosuppressive regimen was based on cyclosporin A and azathioprine from the beginning, adding prednisone on the third postoperative week. There has been only one episode suggestive of acute rejection which was managed with methylprednisolone. On the 9th postoperative week the patient developed a bronchial stenoses at the anastomotic site which required dilation and stenting with an endobronchial silastic stent. His clinical course has been uneventful since then. His ventilatory parameters showed an increase of vital capacity from 900 to 2100 mL and his FEV1 from 700 to 1500 mL. His gas exchange has been normal with arterial blood gas oxygen above 60 mmHg and oxygen saturation above 94%.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Normalization of Elevated Tumor Marker CA27-29 after Bilateral Lung Transplantation in a patient with Breast Cancer and Idiopathic Pulmonary Fibrosis.

    PubMed

    Copur, Mehmet Sitki; Wurdeman, Julie Marie; Nelson, Debra; Ramaekers, Ryan; Gauchan, Dron; Crockett, David

    2017-12-11

    Solid tumors involving glandular organs express mucin glycoprotein which is eventually shed into the circulation. As aresult these proteins can easily be measured in the serum and be used as potential tumor markers. The most commonly used tumor markers for breast cancer are CA 27-29 and CA 15-3, which both measure the glycoprotein product of the mucin-1 (MUC1) gene. CA 27-29 has been approved by the US Food and Drug Administration for monitoring disease activity in breast cancer patients. Most oncology clinical practice guidelines do not recommend the use of tumor markers for routine surveillance of early stage disease but recognize their utility in the metastatic setting. Herein, we present a patient with stage III-A breast cancer and pre-existing hypersensitivity pneumonitis who is found to have an elevated serum tumor marker CA 27-29. After successful curative intent treatment of her early stage breast cancer, she developed gradual and progressive worsening of her lung disease with eventual development of severe pulmonary fibrosis requiring bilateral lung transplantation. As part of the pre-transplant evaluation, she was found to have an elevation of serum tumor marker CA 27-29. While the diagnostic evaluation, including imaging studies was negative for the presence of recurrent disease, the serial serum tumor marker CA 27-29 levels remained persistently elevated. The decision was made for her to undergo bilateral lung transplantation. Shortly after surgery her CA27-29 tumor marker level returned to normal range, and it has continued to remain in the normal range with no evidence of breast cancer recurrence.

  2. Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells.

    PubMed

    Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima

    2017-06-13

    Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.

  3. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, C; Ju, S; Ahn, Y

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directionalmore » block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.« less

  4. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span

    PubMed Central

    Morales-Nebreda, Luisa; Cuda, Carla M.; Walter, James M.; Chen, Ching-I; Anekalla, Kishore R.; Joshi, Nikita; Williams, Kinola J.N.; Abdala-Valencia, Hiam; Yacoub, Tyrone J.; Chi, Monica; Gates, Khalilah; Homan, Philip J.; Soberanes, Saul; Dominguez, Salina; Saber, Rana; Hinchcliff, Monique; Marshall, Stacy A.; Bharat, Ankit; Berdnikovs, Sergejs; Bhorade, Sangeeta M.; Balch, William E.; Chandel, Navdeep S.; Jain, Manu; Ridge, Karen M.; Bagheri, Neda; Shilatifard, Ali

    2017-01-01

    Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion. PMID:28694385

  5. Hand ultrasound: a high-fidelity simulation of lung sliding.

    PubMed

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  6. Increased Lymphatic Vessel Length Is Associated With the Fibroblast Reticulum and Disease Severity in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia

    PubMed Central

    Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.

    2012-01-01

    Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508

  7. [Pulmonary thromboendarterectomy].

    PubMed

    Lausberg, H F; Tscholl, D; Schäfers, H-J

    2004-08-01

    Chronic thromboembolic pulmonary hypertension with concomitant right heart failure may develop as a sequela of acute pulmonary embolism with organization instead of thrombolysis of intravascular clots. Medical therapy aims at prevention of recurrent embolism by anticoagulation and vascular remodelling using vasodilator therapy. Lung transplantation or combined heart-lung transplantation is associated with unsatisfactory long-term results and comorbidity and therefore remains justified only in selected patients. Pulmonary thromboendarterectomy allows specific treatment of intravascular obstruction. This closed endarterectomy of the pulmonary arteries requires deep hypothermic circulatory arrest and can be performed with a perioperative mortality of less than 10%. The procedure significantly decreases pulmonary vascular resistance and often normalizes pulmonary hemodynamics and gas exchange. Postoperatively the patients' clinical condition improves and the majority have normal exercise capacity and activity.

  8. Radiation-induced lung fibrosis in a tumor-bearing mouse model is associated with enhanced Type-2 immunity.

    PubMed

    Chen, Jing; Wang, Yacheng; Mei, Zijie; Zhang, Shimin; Yang, Jie; Li, Xin; Yao, Ye; Xie, Conghua

    2016-03-01

    Lung fibrosis may be associated with Type-2 polarized inflammation. Herein, we aim to investigate whether radiation can initiate a Type-2 immune response and contribute to the progression of pulmonary fibrosis in tumor-bearing animals. We developed a tumor-bearing mouse model with Lewis lung cancer to receive either radiation therapy alone or radiation combined with Th1 immunomodulator unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotide (CpG-ODN). The Type-2 immune phenotype in tumors and the histological grade of lung fibrosis were evaluated in mice sacrificed three weeks after irradiation. Mouse lung tissues were analyzed for hydroxyproline and the expression of Type-1/Type-2 key transcription factors (T-bet/GATA-3). The concentration of Type-1/Type-2 cytokines in serum was measured by cytometric bead array. Lung fibrosis was observed to be more serious in tumor-bearing mice than in normal mice post-irradiation. The fibrosis score in irradiated tumor-bearing mice on Day 21 was 4.33 ± 0.82, which was higher than that of normal mice (2.00 ± 0.63; P < 0.05). Hydroxyproline and GATA-3 expression were increased in the lung tissues of tumor-bearing mice following irradiation. CpG-ODN attenuated fibrosis by markedly decreasing GATA-3 expression. Serum IL-13 and IL-5 were elevated, whereas INF-γ and IL-12 expression were decreased in irradiated tumor-bearing mice. These changes were reversed after CpG-ODN treatment. Thus, Type-2 immunity in tumors appeared to affect the outcome of radiation damage and might be of interest for future studies on developing approaches in which Type-1-related immunotherapy and radiotherapy are used in combination. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Structural and quantitative expression analyses of HERV gene family in human tissues.

    PubMed

    Ahn, Kung; Kim, Heui-Soo

    2009-08-31

    Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

  10. Increased Risk of Interstitial Lung Disease in Children with a Single R288K Variant of ABCA3

    PubMed Central

    Wittmann, Thomas; Frixel, Sabrina; Höppner, Stefanie; Schindlbeck, Ulrike; Schams, Andrea; Kappler, Matthias; Hegermann, Jan; Wrede, Christoph; Liebisch, Gerhard; Vierzig, Anne; Zacharasiewicz, Angela; Kopp, Matthias Volkmar; Poets, Christian F; Baden, Winfried; Hartl, Dominik; van Kaam, Anton H; Lohse, Peter; Aslanidis, Charalampos; Zarbock, Ralf; Griese, Matthias

    2016-01-01

    The ABCA3 gene encodes a lipid transporter in type II pneumocytes critical for survival and normal respiratory function. The frequent ABCA3 variant R288K increases the risk for neonatal respiratory distress syndrome among term and late preterm neonates, but its role in children’s interstitial lung disease has not been studied in detail. In a retrospective cohort study of 228 children with interstitial lung disease related to the alveolar surfactant system, the frequency of R288K was assessed and the phenotype of patients carrying a single R288K variant further characterized by clinical course, lung histology, computed tomography and bronchoalveolar lavage phosphatidylcholine PC 32:0. Cell lines stably transfected with ABCA3-R288K were analyzed for intracellular transcription, processing and targeting of the protein. ABCA3 function was assessed by detoxification assay of doxorubicin, and the induction and volume of lamellar bodies. We found nine children with interstitial lung disease carrying a heterozygous R288K variant, a frequency significantly higher than in the general Caucasian population. All identified patients had neonatal respiratory insufficiency, recovered and developed chronic interstitial lung disease with intermittent exacerbations during early childhood. In vitro analysis showed normal transcription, processing, and targeting of ABCA3-R288K, but impaired detoxification function and smaller lamellar bodies. We propose that the R288K variant can underlie interstitial lung disease in childhood due to reduced function of ABCA3, demonstrated by decelerated detoxification of doxorubicin, reduced PC 32:0 content and decreased lamellar body volume. PMID:26928390

  11. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    PubMed

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  12. The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features.

    PubMed

    Herrera-Martínez, Aura D; Gahete, Manuel D; Sánchez-Sánchez, Rafael; Salas, Rosa Ortega; Serrano-Blanch, Raquel; Salvatierra, Ángel; Hofland, Leo J; Luque, Raúl M; Gálvez-Moreno, María A; Castaño, Justo P

    2017-07-01

    Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Treatment with Huisheng oral solution inhibits the development of pulmonary thromboembolism and metastasis in mice with Lewis lung carcinoma

    PubMed Central

    WANG, WEI; WANG, HONG; WANG, CHUN-MEI; GOU, SI; CHEN, ZHONG-HUA; GUO, JIE

    2014-01-01

    The aim of this study was to investigate whether Huisheng oral solution (HSOS) has an inhibitory effect on the development of pulmonary thrombosis and metastasis in mice with Lewis lung carcinoma (LLC), and to explore the possible mechanisms involved. A mouse model of LLC was developed, and model mice were divided into either a treatment group or a control group to undergo treatment with HSOS or normal saline. Normal mice treated with saline were used as normal controls. On day 25 after treatment, blood samples were drawn from the eyes of half the mice in each group to determine blood cell counts and plasma levels of D-Dimer and vascular endothelial growth factor (VEGF), while heart blood samples were collected from the remaining mice to measure the rate of thrombin-induced platelet aggregation. For all mice, pathological analyses of the cerebrum, lung, mesentery, femoral vein, external iliac vein and spleen were performed. Tumors were weighed to assess the impact of HSOS treatment on tumor growth, and the number of thrombi, metastatic nodules and neovessels in the tumor tissue were counted. In addition, 24 normal New Zealand rabbits were divided into two groups and treated with either HSOS or normal saline to determine the rates of ADP-, collagen- or thrombin-induced platelet aggregation. Compared with the model group, HSOS treatment decreased the incidence of pulmonary thromboembolism and metastasis, the number of metastatic nodules, the plasma levels of D-dimer and VEGF, the rate of collagen-induced platelet aggregation in rabbits and the numbers of leukocytes and tumor neovessels (P<0.05 for all). It increased the thymus and spleen coefficients and the number of platelets (P<0.05 for all), but had no significant effect on thrombin-induced platelet aggregation in mice and rabbits, ADP-induced platelet aggregation in rabbits, or the number of red blood cells. The reduced rate of tumor growth was 9.7% in mice treated with HSOS. HSOS treatment effectively reduced the development of pulmonary thromboembolism and metastasis in mice bearing LLC via mechanisms possibly associated with ameliorating a blood hypercoagulable state, decreasing tumor angiogenesis and enhancing immunity. PMID:24348827

  14. HOXB2 as a novel prognostic indicator for stage I lung adenocarcinomas.

    PubMed

    Inamura, Kentauro; Togashi, Yuki; Okui, Michiyo; Ninomiya, Hironori; Hiramatsu, Miyako; Satoh, Yukitoshi; Okumura, Sakae; Nakagawa, Ken; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi

    2007-09-01

    Outcomes of patients with lung adenocarcinomas can be predicted to some extent from the pathologic stage (p-stage). Although all attempts are made to fully remove cancer lesions, still a number of p-stage I patients without metastatic disease at the time of surgery develop recurrences and die of cancer. It is thus very important to identify p-stage I patients who are at risk of recurrence. Previously, using microdissected samples, we identified metastasis-related genes. Using real-time reverse-transcriptase polymerase chain reaction analysis, we investigated the transcriptional levels of the top metastasis-related genes using 96 independent test lung adenocarcinoma samples and investigated their correlations with the prognosis. We document evidence that p-stage I patients with HOXB2 up-regulation have a worse prognosis than those with HOXB2 down-regulation (p = 0.0065), whereas the HOXB2 status has no prognostic significance for p-stage II-IV patients. Comparing tumors and corresponding normal lung tissue, we confirmed HOXB2 up-regulated lesions to have much higher HOXB2 expression than the corresponding normal tissue. Confirmation with a larger number of samples is needed, with further research to clarify the molecular functions of HOXB2.

  15. Small Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy

    PubMed Central

    Han, Bingshe; Park, Dongkyoo; Li, Rui; Xie, Maohua; Owonikoko, Taofeek K.; Zhang, Guojing; Sica, Gabriel L.; Ding, Chunyong; Zhou, Jia; Magis, Andrew T.; Chen, Zhuo G.; Shin, Dong M.; Ramalingam, Suresh S.; Khuri, Fadlo R.; Curran, Walter J.; Deng, Xingming

    2015-01-01

    SUMMARY The BH4 domain of Bcl2 is required for its antiapoptotic function, thus constituting a promising anticancer target. We identified a small molecule Bcl2-BH4 domain-antagonist (BDA-366) that binds BH4 with high affinity and selectivity. BDA-366-Bcl2 binding induces conformational change in Bcl2 that abrogates its antiapoptotic function, converting it from a survival to a cell death inducer. BDA-366 suppresses growth of lung cancer xenografts derived from cell lines and patient without significant normal tissue toxicity at effective doses. mTOR inhibition up-regulates Bcl2 in lung cancer cells and tumor tissues from clinical trial patients. Combined BDA-366 and RAD001 treatment exhibits strong synergy against lung cancer in vivo. Development of this Bcl2-BH4 antagonist may provide a strategy to improve lung cancer outcome. PMID:26004684

  16. [Arf6, RalA and BIRC5 protein expression in non small cell lung cancer].

    PubMed

    Knizhnik, A V; Kovaleva, O B; Laktionov, K K; Mochal'nikova, V V; Komel'kov, A V; Chevkina, E M; Zborovskaia, I B

    2011-01-01

    Evaluation of tumor markers expression pattern which determines individual progression parameters is one of the major topics in molecular oncopathology research. This work presents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA and BIRC5) in accordance with clinical criteria in non small cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA and BIRC5 expression has been analyzed in parallel in 53 non small cell lung cancer samples of different origin. Arf6 protein expression was elevated in 55% non small cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer Arf6 expression elevation was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of non small cell lung cancer regardless to morphological structure. Correlation between RalA protein expression decrease and absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time elevation of BIRC5 expression was fixed only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.0158) of RalA protein expression and increase (p = 0.0498) of Arf6 protein expression in comparison with normal tissue was found for T1-2N0M0 and T1-2N1-2M0 groups of squamous cell lung cancer correspondingly.

  17. Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.

    PubMed

    McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C

    2016-05-12

    Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).

  18. Promotion of a cancer-like phenotype, through chronic exposure to inflammatory cytokines and hypoxia in a bronchial epithelial cell line model

    PubMed Central

    Baird, Anne-Marie; Gray, Steven G.; Richard, Derek J.; O’Byrne, Kenneth J.

    2016-01-01

    Globally, lung cancer accounts for approximately 20% of all cancer related deaths. Five-year survival is poor and rates have remained unchanged for the past four decades. There is an urgent need to identify markers of lung carcinogenesis and new targets for therapy. Given the recent successes of immune modulators in cancer therapy and the improved understanding of immune evasion by tumours, we sought to determine the carcinogenic impact of chronic TNF-α and IL-1β exposure in a normal bronchial epithelial cell line model. Following three months of culture in a chronic inflammatory environment under conditions of normoxia and hypoxia (0.5% oxygen), normal cells developed a number of key genotypic and phenotypic alterations. Important cellular features such as the proliferative, adhesive and invasive capacity of the normal cells were significantly amplified. In addition, gene expression profiles were altered in pathways associated with apoptosis, angiogenesis and invasion. The data generated in this study provides support that TNF-α, IL-1β and hypoxia promotes a neoplastic phenotype in normal bronchial epithelial cells. In turn these mediators may be of benefit for biomarker and/or immune-therapy target studies. This project provides an important inflammatory in vitro model for further immuno-oncology studies in the lung cancer setting. PMID:26759080

  19. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  20. Synchrotron X-ray imaging of pulmonary alveoli in respiration in live intact mice.

    PubMed

    Chang, Soeun; Kwon, Namseop; Kim, Jinkyung; Kohmura, Yoshiki; Ishikawa, Tetsuya; Rhee, Chin Kook; Je, Jung Ho; Tsuda, Akira

    2015-03-04

    Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray microscopy. Our studies, for the first time, determine the alveolar size of normal mice in respiration without positive end expiratory pressure as 58 ± 14 (mean ± s.d.) μm on average, accurately measured in the lung bases as well as the apices. Individual alveoli of normal lungs clearly show heterogeneous inflation from zero to ~25% (6.7 ± 4.7% (mean ± s.d.)) in size. The degree of inflation is higher in the lung bases (8.7 ± 4.3% (mean ± s.d.)) than in the apices (5.7 ± 3.2% (mean ± s.d.)). The fraction of the total tidal volume allocated for alveolar inflation is 34 ± 3.8% (mean ± s.e.m). This study contributes to the better understanding of alveolar dynamics and helps to develop potential treatment options for pulmonary diseases.

  1. Modeling of lung cancer risk due to radon exhalation of granite stone in dwelling houses.

    PubMed

    Abbasi, Akbar

    2017-01-01

    Due to increasing occurrences of lung cancer, radon exhalation rates, radon concentrations, and lung cancer risks in several types of commonly used granite stone, samples used for flooring in buildings, have been investigated. We measured the radon exhalation rates due to granite stones by means of an AlphaGUARD Model PQ2000 in a cube container with changeable floor by various granite stones. The lung cancer risk and percentage of lung cancer deaths (LCRn) due to those conditions were calculated using Darby's model. The radon exhalation rates ranged from 1.59 ± 0.41 to 9.43 ± 0.74 Bq/m 2/h. The radon concentrations in the standard room with poor and normal ventilation were calculated 20.10-71.09 Bq/m 3 and 16.12-47.01 Bq/m 3, respectively. The estimated numbers of lung cancer deaths attributable to indoor radon due to granite stones in 2013 were 145 (3.33%) and 103 (2.37%) for poor and normal ventilation systems, respectively. According to our estimations, the values of 3.33% and 2.37% of lung cancer deaths in 2013 are attributed to radon exhalation of granite stones with poor and normal ventilation systems, respectively.

  2. Lung lobe segmentation based on statistical atlas and graph cuts

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a novel method that can extract lung lobes by utilizing probability atlas and multilabel graph cuts. Information about pulmonary structures plays very important role for decision of the treatment strategy and surgical planning. The human lungs are divided into five anatomical regions, the lung lobes. Precise segmentation and recognition of lung lobes are indispensable tasks in computer aided diagnosis systems and computer aided surgery systems. A lot of methods for lung lobe segmentation are proposed. However, these methods only target the normal cases. Therefore, these methods cannot extract the lung lobes in abnormal cases, such as COPD cases. To extract lung lobes in abnormal cases, this paper propose a lung lobe segmentation method based on probability atlas of lobe location and multilabel graph cuts. The process consists of three components; normalization based on the patient's physique, probability atlas generation, and segmentation based on graph cuts. We apply this method to six cases of chest CT images including COPD cases. Jaccard index was 79.1%.

  3. LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION

    PubMed Central

    Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik

    2017-01-01

    The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520

  4. Lung boundary detection in pediatric chest x-rays

    NASA Astrophysics Data System (ADS)

    Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.

    2015-03-01

    Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

  5. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer.

    PubMed

    Chen, Yong; Min, Lingfeng; Ren, Chuanli; Xu, Xingxiang; Yang, Jianqi; Sun, Xinchen; Wang, Tao; Wang, Fang; Sun, Changjiang; Zhang, Xizhi

    2017-01-01

    Lung cancer is the leading cause of cancer death in the world, and aberrant expression of miRNA is a common feature during the cancer initiation and development. Our previous study showed that levels of miRNA-148a assessed by quantitative real-time polymerase chain reaction (qRT-PCR) were a good prognosis factor for non-small cell lung cancer (NSCLC) patients. In this study, we used high-throughput formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays and in situ hybridization (ISH) to determine the clinical significances of miRNA-148a and aimed to find novel target of miRNA-148a in lung cancer. Our results showed that there were 86 of 159 patients with low miRNA-148a expression and miRNA-148a was significantly down-regulated in primary cancer tissues when compared with their adjacent normal lung tissues. Low expression of miRNA-148a was strongly associated with high tumor grade, lymph node (LN) metastasis and a higher risk of tumor-related death in NSCLC. Lentivirus mediated overexpression of miRNA-148a inhibited migration and invasion of A549 and H1299 lung cancer cells. Furthermore, we validated Wnt1 as a direct target of miRNA-148a. Our data showed that the Wnt1 expression was negatively correlated with the expression of miRNA-148a in both primary cancer tissues and their corresponding adjacent normal lung tissues. In addition, overexpression of miRNA-148a inhibited Wnt1 protein expression in cancer cells. And knocking down of Wnt-1 by siRNA had the similar effect of miRNA-148a overexpression on cell migration and invasion in lung cancer cells. In conclusion, our results suggest that miRNA-148a inhibited cell migration and invasion through targeting Wnt1 and this might provide a new insight into the molecular mechanisms of lung cancer metastasis.

  6. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    PubMed

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  7. Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia

    PubMed Central

    Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150

  8. Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Sheng Ke; Benedict, Stanley H.

    2009-09-01

    Purpose: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. Methods and Materials: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. Results: Both temporal and spatial variations of pulmonary mechanics were observed inmore » normal subjects, including shear motion between different lobes of the same lung. Conclusion: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.« less

  9. Prohormone convertase and autocrine growth factor mRNAs are coexpressed in small cell lung carcinoma.

    PubMed

    Rounseville, M P; Davis, T P

    2000-08-01

    A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.

  10. Hyperoxia and hypergravity are independent risk factors of atelectasis in healthy sitting humans: a pulmonary ultrasound and SPECT/CT study.

    PubMed

    Dussault, C; Gontier, E; Verret, C; Soret, M; Boussuges, A; Hedenstierna, G; Montmerle-Borgdorff, S

    2016-07-01

    Aeroatelectasis has developed in aircrew flying routine peacetime flights on the latest generation high-performance aircraft, when undergoing excessive oxygen supply. To single out the effects of hyperoxia and hypergravity on lung tissue compression, and on ventilation and perfusion, eight subjects were studied before and after 1 h 15 min exposure to +1 to +3.5 Gz in a human centrifuge. They performed the protocol three times, breathing air, 44.5% O2, or 100% O2 and underwent functional and topographical imaging of the whole lung by ultrasound and single-photon emission computed tomography combined with computed tomography (SPECT/CT). Ultrasound lung comets (ULC) and atelectasis both increased after exposure. The number of ULC was <1 pre protocol (i.e., normal lung) and larger post 100% O2 (22 ± 3, mean ± SD) than in all other conditions (P < 0.001). Post 44.5% O2 differed from air (P < 0.05). Seven subjects showed low- to medium-grade atelectasis post 100% O2 There was an effect on grade of gas mixture and hypergravity, with interaction (P < 0.001, respectively); 100% O2, 44.5% O2, and air differed from each other (P < 0.05). SPECT ventilation and perfusion were always normal. Ultrasound concurred with CT in showing normal lung in the upper third and ULC/atelectasis in posterior and inferior areas, not for other localizations. In conclusion, hyperoxia and hypergravity are independent risk factors of reversible atelectasis formation. Ultrasound is a useful screening tool. Together with electrical impedance tomography measurements (reported separately), these findings show that zones with decreased ventilation prone to transient airway closure are present above atelectatic areas. Copyright © 2016 the American Physiological Society.

  11. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer

    PubMed Central

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M.; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-01-01

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression. PMID:25742785

  12. Complement-mediated neutrophil activation in sepsis- and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, hadmore » elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.« less

  13. Lysyl oxidase expression is decreased in the developing diaphragm and lungs of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Takahashi, Hiromizu; Daniel Hofmann, Alejandro; Puri, Prem

    2015-02-01

    Malformation of the nonmuscular tissue components in congenital diaphragmatic hernia (CDH) is thought to underlie the diaphragmatic defect, causing intrathoracic herniation of abdominal viscera and thus disturbing normal lung development. It has been shown that diaphragmatic and pulmonary morphogeneses require the structural integrity of connective tissue, and developmental mutations that inhibit the formation of extracellular matrix (ECM) result in CDH with hypoplastic lungs. Lysyl oxidase (lox), an extracellular enzyme that catalyzes the cross-linking of ECM proteins, plays an essential role during diaphragmatic and pulmonary development by controlling the formation of connective tissue. Furthermore, lox (-/-) knockouts exhibit abnormal connective tissue with diaphragmatic defects and impaired airway morphogenesis. We designed this study to investigate the hypothesis that diaphragmatic and pulmonary lox expression is decreased in the nitrofen-induced CDH model. Timed-pregnant Sprague-Dawley rats were exposed to either nitrofen or vehicle on gestational day 9 (D9), and fetuses were harvested on selected time points D15 and D18. The micro-dissected fetal diaphragms (n=48) and lungs (n=48) were divided into two groups: control and nitrofen-exposed samples (n=12 per specimen and time point, respectively). Diaphragmatic and pulmonary gene expression levels of lox were analyzed by quantitative real-time polymerase chain reaction. Immunohistochemical staining was performed to evaluate lox protein expression in diaphragms and lungs. Relative mRNA expression of lox was significantly reduced in diaphragms and lungs of nitrofen-exposed fetuses on D15 (0.29 ± 0.08 vs. 0.12 ± 0.05; p<0.05 and 0.52 ± 0.44 vs. 0.20 ± 0.04; p<0.05) and D18 (0.90 ± 0.25 vs. 0.57 ± 0.23; p<0.05 and 0.59 ± 0.26 vs. 0.35 ± 0.09; p<0.05) compared with controls. Diaphragmatic and pulmonary immunoreactivity of lox was markedly decreased in nitrofen-exposed fetuses on D15 and D18 compared with controls. Decreased lox expression during diaphragmatic development and lung branching morphogenesis may interfere with normal cross-linking of ECM proteins, disrupting the integrity of connective tissue, and contributing to the diaphragmatic defect and impaired airway formation in the nitrofen-induced CDH model. Georg Thieme Verlag KG Stuttgart · New York.

  14. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-18

    that the adjacent field cancerization extends to relatively less invasive large airways and harbors markers that can detect lung cancer in smokers ; 5...profiles have been described in the normal-appearing bronchial epithelium of healthy smokers (9) including those that were diagnostic of lung cancer...10). In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways and the

  15. SU-F-T-134: Can We Use the Same Dose Constrains Learnt From Photon World to Plan Proton for Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Z; Zou, J; Yue, N

    Purpose: To evaluate if the same DVH constrains used in photon plans can be safely used to plan proton therapy for lung cancer. Since protons and photons have different dose deposition patterns, the hypothesis is following DVH constrains derived from photon world is not safe for proton. Methods: We retrospectively evaluated plans for 11 lung cancer patients. Each patient was planned with photon and proton following the same dose constrains. Dose statistics on PTV, normal lung, heart and esophagus were extracted for comparison. gEUD for normal lung was calculated and compared between proton and photon plans. We calculated series ofmore » gEUDs for each plan by varying the parameter “a” in gEUD formula from 0.1 to 3, covering the whole confidence interval. Results: For all patients, proton plans yield similar PTV coverage and lower dose to heart and esophagus than photon plans. Normal lung V5 was 32.3 % on average in proton plans than 55.4 % in photon. Normal lung gEUD monotonically increased with increasing “a” for all proton and photon plans. For a given patient, the gEUD-proton(a) had a steeper slope than gEUD-photon(a). The two curves crossed for 8 out of 11 patients when “a” = [0.1, 3]. a-crossing ranged from 0.8 to 2.44 with an average of 1.15. For a« less

  16. Differential expression patterns of housekeeping genes increase diagnostic and prognostic value in lung cancer

    PubMed Central

    Chang, Yu-Chun; Ding, Yan; Dong, Lingsheng; Zhu, Lang-Jing; Jensen, Roderick V.

    2018-01-01

    Background Using DNA microarrays, we previously identified 451 genes expressed in 19 different human tissues. Although ubiquitously expressed, the variable expression patterns of these “housekeeping genes” (HKGs) could separate one normal human tissue type from another. Current focus on identifying “specific disease markers” is problematic as single gene expression in a given sample represents the specific cellular states of the sample at the time of collection. In this study, we examine the diagnostic and prognostic potential of the variable expressions of HKGs in lung cancers. Methods Microarray and RNA-seq data for normal lungs, lung adenocarcinomas (AD), squamous cell carcinomas of the lung (SQCLC), and small cell carcinomas of the lung (SCLC) were collected from online databases. Using 374 of 451 HKGs, differentially expressed genes between pairs of sample types were determined via two-sided, homoscedastic t-test. Principal component analysis and hierarchical clustering classified normal lung and lung cancers subtypes according to relative gene expression variations. We used uni- and multi-variate cox-regressions to identify significant predictors of overall survival in AD patients. Classifying genes were selected using a set of training samples and then validated using an independent test set. Gene Ontology was examined by PANTHER. Results This study showed that the differential expression patterns of 242, 245, and 99 HKGs were able to distinguish normal lung from AD, SCLC, and SQCLC, respectively. From these, 70 HKGs were common across the three lung cancer subtypes. These HKGs have low expression variation compared to current lung cancer markers (e.g., EGFR, KRAS) and were involved in the most common biological processes (e.g., metabolism, stress response). In addition, the expression pattern of 106 HKGs alone was a significant classifier of AD versus SQCLC. We further highlighted that a panel of 13 HKGs was an independent predictor of overall survival and cumulative risk in AD patients. Discussion Here we report HKG expression patterns may be an effective tool for evaluation of lung cancer states. For example, the differential expression pattern of 70 HKGs alone can separate normal lung tissue from various lung cancers while a panel of 106 HKGs was a capable class predictor of subtypes of non-small cell carcinomas. We also reported that HKGs have significantly lower variance compared to traditional cancer markers across samples, highlighting the robustness of a panel of genes over any one specific biomarker. Using RNA-seq data, we showed that the expression pattern of 13 HKGs is a significant, independent predictor of overall survival for AD patients. This reinforces the predictive power of a HKG panel across different gene expression measurement platforms. Thus, we propose the expression patterns of HKGs alone may be sufficient for the diagnosis and prognosis of individuals with lung cancer. PMID:29761043

  17. Lung gallium scan

    MedlinePlus

    ... the lungs. This is most often due to sarcoidosis or a certain type of pneumonia. Normal Results ... it may mean any of the following problems: Sarcoidosis (disease in which inflammation occurs in the lungs ...

  18. Inactivation of LLC1 gene in nonsmall cell lung cancer

    PubMed Central

    Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin

    2007-01-01

    Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513

  19. Protein regulator of cytokinesis-1 expression: prognostic value in lung squamous cell carcinoma patients

    PubMed Central

    Zhan, Ping; Xi, Guang-Min; Liu, Hong-Bing; Liu, Ya-Fang; Xu, Wu-Jian; Zhu, Qingqing; Zhou, Ze-Jun; Miao, Ying-Ying; Wang, Xiao-Xia; Jin, Jia-Jia

    2017-01-01

    Background Protein regulator of cytokinesis-1 (PRC1) has been shown to participate in the completion of cytokinesis, and it is dysregulated in cancer processes. However, its relevance in lung squamous cell carcinoma (SCC) remained largely unknown. We aimed to study the expression pattern of PRC1 and assess its clinical significance in lung SCC. Methods PRC1 protein expression in human lung SCC and adjacent normal lung tissues was detected by immunohistochemistry. PRC1 expression was assessed in association with clinicopathological features and clinical outcomes of lung SCC patients. Results In lung SCC tissues, PRC1 protein expression was significantly higher than those in paired normal lung tissues. The lung SCC patients with PRC1 overexpression had an advanced pathological stage (TNM stage), positive lymph node metastasis, and a shorter overall survival (OS) time more frequently than patients with low PRC1 expression. Additional, PRC1 expression was also shown to be poor as a prognostic factor for OS in patients with lung SCC. Conclusions Our study indicated that aberrant expression of PRC1 may point to biochemical recurrence in lung SCC. This highlights its potential as a valuable prognostic marker for lung SCC. PMID:28840006

  20. Embryonic Wnt gene expression in the nitrofen-induced hypoplastic lung using 3-dimensional imaging.

    PubMed

    Takayasu, Hajime; Murphy, Paula; Sato, Hideaki; Doi, Takashi; Puri, Prem

    2010-11-01

    Wnts have been reported to play a key role in the lung morphogenesis. We have previously reported that pulmonary gene expression of Wnt2 and Wnt7b is downregulated on day 15 of gestation in the nitrofen-induced congenital diaphragmatic hernia (CDH) model. However, the distribution pattern of gene expression of Wnts in the very early lung development remains unclear. Optical projection tomography (OPT) is a new technique for 3-dimensional imaging of small developing organs and gene distribution combined with whole-mount in situ hybridization. We designed this study to investigate the distribution pattern of Wnts gene expression in lung buds of nitrofen-induced CDH model using OPT. Embryos from normal and nitrofen-treated dams were harvested on embryonic day 10 (E10), and divided into controls and nitrofen group, respectively. Whole-mount in situ hybridization to detect transcripts of Wnt2 and Wnt7b was performed, analyzed, and reconstructed using OPT. The expression of Wnt2 transcripts was detected in the lung bud mesenchyme and markedly diminished in nitrofen group compared to controls, whereas Wnt7b transcripts were expressed in the mesoderm of bronchi and the lung bud with no detectable difference between 2 groups. We provide evidence for the first time that Wnt2 expression is downregulated at lung bud stage in the nitrofen model. Optical projection tomography is potentially a useful approach to visualize both gene expression and morphology during very early stages of lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  2. IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions

    PubMed Central

    Airoldi, Irma; Di Carlo, Emma; Cocco, Claudia; Caci, Emanuela; Cilli, Michele; Sorrentino, Carlo; Sozzi, Gabriella; Ferrini, Silvano; Rosini, Sandra; Bertolini, Giulia; Truini, Mauro; Grossi, Francesco; Galietta, Luis Juan Vicente; Ribatti, Domenico; Pistoia, Vito

    2009-01-01

    Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well known immune-modulatory properties of the cytokine and may provide a rational basis for the development of a clinical trial. PMID:19582164

  3. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  4. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    DTIC Science & Technology

    2015-12-01

    normal DNA synthesis. In contrast, pol eta shows a combination of high efficiency and low fidelity when replicating 8-oxo-G. These combined properties...are consistent with a pro- mutagenic role for pol eta when replicating this DNA lesion under cellular conditions. Studies with modified nucleotide...analogs indicate that pol eta relies heavily on hydrogen-bonding interactions during normal and translesion synthesis. However, some nucleobase

  5. Lung partitioning for x-ray CAD applications

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Raja, Anand

    2011-03-01

    Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.

  6. Anti-Podocalyxin Monoclonal Antibody 47-mG2a Detects Lung Cancers by Immunohistochemistry.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Lung cancer is one of the leading causes of cancer-related deaths in the world. Regardless of the advances in lung cancer treatments, the prognosis is still poor. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is expressed in normal tissues, including the heart, pancreas, and breast. It is also found and used as a diagnostic marker in many cancers, such as renal, brain, breast, oral, and lung cancers. We previously developed specific and sensitive anti-PODXL monoclonal antibodies, PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ), both of which were suitable for immunohistochemical analyses of oral cancers. In this study, we investigated the utility of PcMab-47 and 47-mG 2a for the immunohistochemical analyses of lung cancers. PcMab-47 stained 51/70 (72.9%) cases of lung cancer, whereas 47-mG 2a stained 59/70 (84.3%) cases, indicating that the latter antibody is more sensitive and is useful for detecting PODXL in lung cancers.

  7. Uranium miner lung cancer study. Progress report for period, July 1, 1977--July 1 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccomanno, G.

    1978-09-15

    This study was initiated in 1957 by the U.S. Public Health, and many facets of this project are reaching final objectives. Many new studies have developed in the course of this study and will continue. The projects supported by The Department of Energy during the past year are of utmost importance and consist of: (a) collection of material from uranium miners known to have cancer of the lung into a tumor registry; (b) completion and publication of the Manual on Pulmonary Cytology; (c) regression study of sputum cytological findings in uranium miners who showed marked atypical squamous cell metaplasia andmore » have quit smoking cigarettes, mining, or both; (d) continuation of sputum collection and collection of lungs from deceased miners; (e) sensory development for localization of carcinoma in situ of the lung; and (f) lung histology program. Since we have examined approximately 80,000 sputum samples the last 21 years in cases that showed normal cytology at the inception of the study and some subsequently developed carcinoma of the lung, we have an accumulation of material that is worthy of study and presentation. In addition, we continue to add new knowledge to the art of diagnostic pulmonary cytology. This is a relatively new field, and our contributions resulting from these studies have added much to this new diagnostic tool.« less

  8. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaparpalvi, R; Mynampati, D; Kuo, H

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performedmore » using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm may very well be warranted.« less

  9. The Effects of Smoking on the Developing Lung: Insights from a Biologic Model for Lung Development, Homeostasis, and Repair

    PubMed Central

    Asotra, Kamlesh; Torday, John S.

    2010-01-01

    There is extensive epidemiologic and experimental evidence from both animal and human studies that demonstrates detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. However, the molecular mechanisms underlying these associations are not understood. Therefore, it is not surprising that that there is no effective intervention to prevent the damaging effects of perinatal smoke exposure. Using a biologic model of lung development, homeostasis, and repair, we have determined that in utero nicotine exposure disrupts specific molecular paracrine communications between epithelium and interstitium that are driven by parathyroid hormone-related protein and peroxisome proliferator-activated receptor (PPAR)γ, resulting in transdifferentiation of lung lipofibroblasts to myofibroblasts, i.e., the conversion of the lipofibroblast phenotype to a cell type that is not conducive to alveolar homeostasis, and is the cellular hallmark of chronic lung disease, including asthma. Furthermore, we have shown that by molecularly targeting PPARγ expression, nicotine-induced lung injury can not only be significantly averted, it can also be reverted. The concept outlined by us differs from the traditional paradigm of teratogenic and toxicological effects of tobacco smoke that has been proposed in the past. We have argued that since nicotine alters the normal homeostatic epithelial-mesenchymal paracrine signaling in the developing alveolus, rather than causing totally disruptive structural changes, it offers a unique opportunity to prevent, halt, and/or reverse this process through targeted molecular manipulations. PMID:19641967

  10. Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.

    2012-07-01

    We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.

  11. Deformation of a flexible disk bonded to an elastic half space-application to the lung.

    PubMed

    Lai-Fook, S J; Hajji, M A; Wilson, T A

    1980-08-01

    An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.

  12. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  13. Insulin receptor is downregulated in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2010-05-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is still poorly understood. During fetal lung development, the insulin receptor (IR) plays an important role by mediating the cellular uptake of glucose, which is a major substrate for the biosynthesis of surfactant phospholipids. In fetal rat lung, IR gene expression has been revealed on type II pneumocytes. Recent studies have demonstrated that downregulation of pulmonary IR in late gestation causes pulmonary hypoplasia by inhibition of surfactant synthesis. We hypothesized that pulmonary gene expression of IR is downregulated during the late stages of lung development in the nitrofen-induced CDH model. Timed pregnant Sprague-Dawley rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). Cesarean deliveries were performed on D15, D18, and D21. Fetal lungs were divided into 3 groups: control, nitrofen without CDH (CDH[-]), and nitrofen with CDH (CDH[+]) (n = 8 at each time-point, respectively). Relative messenger RNA (mRNA) levels of IR were determined by using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of IR. Relative expression levels of IR mRNA on D21 were significantly decreased in CDH(-) and CDH(+) group (3.99 +/- 1.50 and 5.14 +/- 0.99, respectively) compared to control (7.45 +/- 3.95; P < .05). Immunohistochemistry showed decreased IR expression in the proximal alveolar epithelium on D21 in hypoplastic lungs compared to control lungs. Downregulation of IR gene and protein expression in hypoplastic lung during late stages of lung development may interfere with normal surfactant synthesis, causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. NEUTROPHIL DEPLETION ATTENUATES INTERLEUKIN-8 PRODUCTION IN MILD-OVERSTRETCHED VENTILATED NORMAL RABBIT LUNG

    EPA Science Inventory

    OBJECTIVE: Acute lung injury induced by lung overstretch is associated with neutrophil influx, but the pathogenic role of neutrophils in overstretch-induced lung injury remains unclear. DESIGN: To assess the contribution of neutrophils, we compared the effects of noninjurious lar...

  15. Assessment of pulmonary vascular reactivity to oxygen using fractional moving blood volume in fetuses with normal lung development and pulmonary hypoplasia in congenital diaphragmatic hernia.

    PubMed

    DeKoninck, Philip; Jimenez, Julio; Russo, Francesca M; Hodges, Ryan; Gratacós, Eduard; Deprest, Jan

    2014-10-01

    The objective of this study is to evaluate whether assessment pulmonary vascular reactivity in response to maternal hyperoxygenation using fractional moving blood volume (FMBV) is associated with lesser variability between individual measurements than what is observed with direct Doppler measurements. Forty-five measurements were performed in 15 singleton fetuses with normal lung development at three time points in the latter half of pregnancy (range: 25.9-36.7 weeks). We further evaluated five fetuses with severe congenital diaphragmatic hernia. Lung perfusion was assessed using power Doppler ultrasound, and images were stored for offline FMBV calculation, both at base line and during oxygen administration (9 L/min for 10 min). The proportionate difference between both measurements is further referred to as deltaFMBV. Overall, 91% of images were of sufficient quality for further analysis. There was no correlation between pulmonary reactivity to oxygen (deltaFMBV) and gestational age in controls (12.9 ± 32.1%). Moreover, deltaFMBV showed large variability between subjects, as well as within the same fetus throughout gestation. We observed good intraobserver (0.88; 0.84) and interobserver (0.88; 0.77) reproducibility for both controls and congenital diaphragmatic hernia, respectively (intraclass correlation coefficients). Despite being a reproducible method to study the lung vasculature, the large variability of FMBV following hyperoxygenation limits its clinical translation. © 2014 John Wiley & Sons, Ltd.

  16. Optical measurement of isolated canine lung filtration coefficients at normal hematocrits.

    PubMed

    Klaesner, J W; Pou, N A; Parker, R E; Finney, C; Roselli, R J

    1997-12-01

    In this study, lung filtration coefficient (Kfc) values were measured in eight isolated canine lung preparations at normal hematocrit values using three methods: gravimetric, blood-corrected gravimetric, and optical. The lungs were kept in zone 3 conditions and subjected to an average venous pressure increase of 10.24 +/- 0.27 (SE) cmH2O. The resulting Kfc (ml . min-1 . cmH2O-1 . 100 g dry lung wt-1) measured with the gravimetric technique was 0.420 +/- 0.017, which was statistically different from the Kfc measured by the blood-corrected gravimetric method (0.273 +/- 0.018) or the product of the reflection coefficient (sigmaf) and Kfc measured optically (0. 272 +/- 0.018). The optical method involved the use of a Cellco filter cartridge to separate red blood cells from plasma, which allowed measurement of the concentration of the tracer in plasma at normal hematocrits (34 +/- 1.5). The permeability-surface area product was measured using radioactive multiple indicator-dilution methods before, during, and after venous pressure elevations. Results showed that the surface area of the lung did not change significantly during the measurement of Kfc. These studies suggest that sigmafKfc can be measured optically at normal hematocrits, that this measurement is not influenced by blood volume changes that occur during the measurement, and that the optical sigmafKfc agrees with the Kfc obtained via the blood-corrected gravimetric method.

  17. Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background

    PubMed Central

    Sukstanskii, A.L.; Yablonskiy, D.A.

    2011-01-01

    The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985

  18. Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis.

    PubMed

    Espindola, Milena S; Habiel, David M; Narayanan, Rohan; Jones, Isabelle; Coelho, Ana L; Murray, Lynne A; Jiang, Dianhua; Noble, Paul W; Hogaboam, Cory M

    2018-06-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.

  19. Heart-lung transplant - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100147.htm Heart-lung transplant - series—Normal anatomy To use the sharing features ... Editorial team. Related MedlinePlus Health Topics Heart Transplantation Lung Transplantation A.D.A.M., Inc. is accredited by ...

  20. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons.

    PubMed

    Fish, Trevor J; Benninghoff, Abby D

    2017-11-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Production and Assessment of Decellularized Pig and Human Lung Scaffolds

    PubMed Central

    Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-01-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production. PMID:23638920

  2. Production and assessment of decellularized pig and human lung scaffolds.

    PubMed

    Nichols, Joan E; Niles, Jean; Riddle, Michael; Vargas, Gracie; Schilagard, Tuya; Ma, Liang; Edward, Kert; La Francesca, Saverio; Sakamoto, Jason; Vega, Stephanie; Ogadegbe, Marie; Mlcak, Ronald; Deyo, Donald; Woodson, Lee; McQuitty, Christopher; Lick, Scott; Beckles, Daniel; Melo, Esther; Cortiella, Joaquin

    2013-09-01

    The authors have previously shown that acellular (AC) trachea-lung scaffolds can (1) be produced from natural rat lungs, (2) retain critical components of the extracellular matrix (ECM) such as collagen-1 and elastin, and (3) be used to produce lung tissue after recellularization with murine embryonic stem cells. The aim of this study was to produce large (porcine or human) AC lung scaffolds to determine the feasibility of producing scaffolds with potential clinical applicability. We report here the first attempt to produce AC pig or human trachea-lung scaffold. Using a combination of freezing and sodium dodecyl sulfate washes, pig trachea-lungs and human trachea-lungs were decellularized. Once decellularization was complete we evaluated the structural integrity of the AC lung scaffolds using bronchoscopy, multiphoton microscopy (MPM), assessment of the ECM utilizing immunocytochemistry and evaluation of mechanics through the use of pulmonary function tests (PFTs). Immunocytochemistry indicated that there was loss of collagen type IV and laminin in the AC lung scaffold, but retention of collagen-1, elastin, and fibronectin in some regions. MPM scoring was also used to examine the AC lung scaffold ECM structure and to evaluate the amount of collagen I in normal and AC lung. MPM was used to examine the physical arrangement of collagen-1 and elastin in the pleura, distal lung, lung borders, and trachea or bronchi. MPM and bronchoscopy of trachea and lung tissues showed that no cells or cell debris remained in the AC scaffolds. PFT measurements of the trachea-lungs showed no relevant differences in peak pressure, dynamic or static compliance, and a nonrestricted flow pattern in AC compared to normal lungs. Although there were changes in content of collagen I and elastin this did not affect the mechanics of lung function as evidenced by normal PFT values. When repopulated with a variety of stem or adult cells including human adult primary alveolar epithelial type II cells both pig and human AC scaffolds supported cell attachment and cell viability. Examination of scaffolds produced using a variety of detergents indicated that detergent choice influenced human immune response in terms of T cell activation and chemokine production.

  3. Endothelin-1–Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups

    PubMed Central

    Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H.

    2016-01-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1–ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ETA (BQ123/BQ610) and ETB (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1–ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. PMID:27760762

  4. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups.

    PubMed

    Gien, Jason; Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H

    2016-12-01

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1-ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ET A (BQ123/BQ610) and ET B (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1-ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. Copyright © 2016 the American Physiological Society.

  5. Changes of Arterial Blood Gases After Different Ranges of Surgical Lung Resection

    PubMed Central

    Cukic, Vesna; Lovre, Vladimir

    2012-01-01

    Introduction: In recent years there has been increase in the number of patients who need thoracic surgery – first of all different types of pulmonary resection because of primary bronchial cancer, and very often among patients whose lung function is impaired due to different degree of bronchial obstruction so it is necessary to assess functional status before and after lung surgery to avoid the development of respiratory insufficiency. Objective: To show the changes in the level of arterial blood gases after various ranges of lung resection. Material and methods: The study was done on 71 patients surgically treated at the Clinic for Thoracic Surgery KCU Sarajevo, who were previously treated at the Clinic for Pulmonary Diseases “Podhrastovi” in the period from 01. 06. 2009. to 01. 09. 2011. Different types of lung resection were made. Patients whose percentage of ppoFEV1 was (prognosed postoperative FEV1) was less than 30% of normal values of FEV1 for that patients were not given a permission for lung resection. We monitored the changes in levels-partial pressures of blood gases (PaO2, PaCO2 and SaO2) one and two months after resection and compared them to preoperative values. As there were no significant differences between the values obtained one and two months after surgery, in the results we showed arterial blood gas analysis obtained two months after surgical resection. Results were statistically analyzed by SPSS and Microsoft Office Excel. Statistical significance was determined at an interval of 95%. Results: In 59 patients (83%) there was an increase, and in 12 patients (17%) there was a decrease of PaO2, compared to preoperative values. In 58 patients (82%) there was a decrease, and in 13 patients (18%) there was an increase in PaCO2, compared to preoperative values. For all subjects (group as whole): The value of the PaO2 was significantly increased after lung surgery compared to preoperative values (p <0.05) so is the value of the SaO2%. The value of the PaCO2 was significantly decreased after lung surgery compared to preoperative values (p <0.05). Respiratory insufficiency was developed in none of patients. Conclusion: If the % ppoFEV1 (% prognosed postoperative FEV1) is bigger than 30% of normal values of FEV1 (according to sex, weight, height, age) in patient planned for lung resection surgery there is no development of respiratory insufficiency after resection. PMID:23922525

  6. Methods for Measuring Lung Volumes: Is There a Better One?

    PubMed

    Tantucci, Claudio; Bottone, Damiano; Borghesi, Andrea; Guerini, Michele; Quadri, Federico; Pini, Laura

    2016-01-01

    Accurate measurement of lung volumes is of paramount importance to establish the presence of ventilatory defects and give insights for diagnostic and/or therapeutic purposes. It was the aim of this study to measure lung volumes in subjects with respiratory disorders and in normal controls by 3 different techniques (plethysmographic, dilutional and radiographic methods), in an attempt to clarify the role of each of them in performing such a task, without any presumptive 'a priori' superiority of one method above others. Patients andMethods: In different groups of subjects with obstructive and restrictive ventilatory defects and in a normal control group, total lung capacity, functional residual capacity (FRC) and residual volume were measured by body plethysmography, multi-breath helium (He) dilution and radiographic CT scan method with spirometric gating. The 3 methods gave comparable results in normal subjects and in patients with a restrictive defect. In patients with an obstructive defect, CT scan and plethysmography showed similar lung volumes, while on average significantly lower lung volumes were obtained with the He dilution technique. Taking into account that the He dilution technique does primarily measure FRC during tidal breathing, our data suggest that in some patients with an obstructive defect, a number of small airways can be functionally closed at end-expiratory lung volume, preventing He to reach the lung regions subserved by these airways. In all circumstances, both CT scan with spirometric gating and plethysmographic methods provide similar values of lung volumes. In contrast, the He dilution method can measure lower lung volumes in some patients with chronic airflow obstruction. © 2016 S. Karger AG, Basel.

  7. An integrated nanotechnology-enabled transbronchial image-guided intervention strategy for peripheral lung cancer

    PubMed Central

    Jin, Cheng S.; Wada, Hironobu; Anayama, Takashi; McVeigh, Patrick Z; Hu, Hsin Pei; Hirohashi, Kentaro; Nakajima, Takahiro; Kato, Tatsuya; Keshavjee, Shaf; Hwang, David; Wilson, Brian C.; Zheng, Gang; Yasufuku, Kazuhiro

    2016-01-01

    Early detection and efficient treatment modality of early-stage peripheral lung cancer is essential. Current non-surgical treatments for peripheral lung cancer show critical limitations associated with various complications, requiring alternative minimally invasive therapeutics. Porphysome nanoparticle-enabled fluorescence-guided transbronchial photothermal therapy (PTT) of peripheral lung cancer was developed and demonstrated in preclinical animal models. Systemically-administered porphysomes accumulated in lung tumors with significantly enhanced disease-to-normal tissue contrast, as confirmed in three subtypes of orthotopic human lung cancer xenografts (A549, H460 and H520) in mice and in an orthotopic VX2 tumor in rabbits. An in-house prototype fluorescence bronchoscope demonstrated the capability of porphysomes for in vivo imaging of lung tumors in the mucosal/submucosal layers, providing real-time fluorescence guidance for transbronchial PTT. Porphysomes also enhanced the efficacy of transbronchial PTT significantly and resulted in selective and efficient tumor tissue ablation in the rabbit model. A clinically used cylindrical diffuser fiber successfully achieved tumor-specific thermal ablation, showing promising evidence for the clinical translation of this novel platform to impact upon non-surgical treatment of early-stage peripheral lung cancer. PMID:27543602

  8. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    PubMed

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals a protein profile associated with NSCLC exosomes that suggests a role these vesicles have in the progression of lung carcinogenesis, as well as identifies several promising candidates that could be utilized as a multi-marker protein panel in a diagnostic platform for NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lung Ultrasound Pattern Is Normal during the Last Gestational Weeks: An Observational Pilot Study.

    PubMed

    Arbeid, Erik; Demi, Alessio; Brogi, Etrusca; Gori, Elisa; Giusto, Teresa; Soldati, Gino; Vetrugno, Luigi; Giunta, Francesco; Forfori, Francesco

    2017-01-01

    The normal lung ultrasound (US) pattern during a regular pregnancy has not been evaluated extensively in the current literature. Pregnancy-related changes in the respiratory tract affect maternal predisposition to several respiratory complications; consequently, it is important to differentiate between a physiologic pattern during pregnancy and a pathologic lung pattern, due to respiratory failure. The goal of our study was to assess the normal US lung pattern in women without known comorbidities in the last weeks of pregnancy. We conducted a prospective cross-sectional observational pilot study. Chest wall was examined in 8 areas, 1 scan for each area with women in supine position. One hundred fifty parturients were enrolled during the 36th-38th gestational weeks. None of the participants showed pleural effusion, pneumothorax or lung consolidation. None presented an interstitial syndrome US pattern. One hundred thirteen participants out of 150 (75%) showed A-lines in all the regions. The remaining 25% showed 1 or 2 B-lines in at least 3 regions. Only 2 participants showed 2 positive regions also. We found that, in the majority of the women examined, the lung US pattern matches the physiological pattern in non-pregnant patients. Lung US assessment is a feasible and a helpful diagnostic tool during pregnancy. © 2016 S. Karger AG, Basel.

  10. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu-wen Tan; Ying Jin; Hui Yu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less

  11. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution.

    PubMed

    Kozian, Alf; Schilling, Thomas; Schütze, Hartmut; Senturk, Mert; Hachenberg, Thomas; Hedenstierna, Göran

    2011-05-01

    The increased tidal volume (V(T)) applied to the ventilated lung during one-lung ventilation (OLV) enhances cyclic alveolar recruitment and mechanical stress. It is unknown whether alveolar recruitment maneuvers (ARMs) and reduced V(T) may influence tidal recruitment and lung density. Therefore, the effects of ARM and OLV with different V(T) on pulmonary gas/tissue distribution are examined. Eight anesthetized piglets were mechanically ventilated (V(T) = 10 ml/kg). A defined ARM was applied to the whole lung (40 cm H(2)O for 10 s). Spiral computed tomographic lung scans were acquired before and after ARM. Thereafter, the lungs were separated with an endobronchial blocker. The pigs were randomized to receive OLV in the dependent lung with a V(T) of either 5 or 10 ml/kg. Computed tomography was repeated during and after OLV. The voxels were categorized by density intervals (i.e., atelectasis, poorly aerated, normally aerated, or overaerated). Tidal recruitment was defined as the addition of gas to collapsed lung regions. The dependent lung contained atelectatic (56 ± 10 ml), poorly aerated (183 ± 10 ml), and normally aerated (187 ± 29 ml) regions before ARM. After ARM, lung volume and aeration increased (426 ± 35 vs. 526 ± 69 ml). Respiratory compliance enhanced, and tidal recruitment decreased (95% vs. 79% of the whole end-expiratory lung volume). OLV with 10 ml/kg further increased aeration (atelectasis, 15 ± 2 ml; poorly aerated, 94 ± 24 ml; normally aerated, 580 ± 98 ml) and tidal recruitment (81% of the dependent lung). OLV with 5 ml/kg did not affect tidal recruitment or lung density distribution. (Data are given as mean ± SD.) The ARM improves aeration and respiratory mechanics. In contrast to OLV with high V(T), OLV with reduced V(T) does not reinforce tidal recruitment, indicating decreased mechanical stress.

  12. Excited state proton transfer in the lysosome of live lung cells: normal and cancer cells.

    PubMed

    Chowdhury, Rajdeep; Saha, Abhijit; Mandal, Amit Kumar; Jana, Batakrishna; Ghosh, Surajit; Bhattacharyya, Kankan

    2015-02-12

    Dynamics of excited state proton transfer (ESPT) in the lysosome region of live lung cells (normal and cancer) is studied by picosecond time-resolved confocal microscopy. For this, we used a fluorescent probe, pyranine (8-hydroxy-pyrene-1,3,6-trisulfonate, HPTS). From the colocalization of HPTS with a lysotracker dye (lysotracker yellow), we confirmed that HPTS resides in the lysosome for both of the cells. The diffusion coefficient (Dt) in the lysosome region was obtained from fluorescence correlation spectroscopy (FCS). From Dt, the viscosity of lysosome is estimated to be ∼40 and ∼30 cP in the cancer and normal cells, respectively. The rate constants of the elementary steps of ESPT in a normal lung cell (WI38) are compared with those in a lung cancer cell (A549). It is observed that the time constant of the initial proton transfer process in a normal cell (τ(PT) = 40 ps) is similar to that in a cancer cell. The recombination of the geminate ion pair is slightly faster (τ(rec) = 25 ps) in the normal cell than that (τ(rec) = 30 ps) in a cancer cell. The time constant of the dissociation (τ(diss)) of the geminate ion pair for the cancer cell (τ(diss) = 80 ps) is 1.5 times faster compared to that (τ(diss) = 120 ps) in a normal cell.

  13. Exponential analysis of the lung pressure-volume curve in patients with chronic pigeon-breeder's lung.

    PubMed

    Sansores, R; Perez-Padilla, R; Paré, P D; Selman, M

    1992-05-01

    Pigeon-breeder's lung (PBL) is extremely common in Mexico City and often progresses to irreversible pulmonary fibrosis. The exponential analysis of the lung pressure-volume (PV) curve (V = A - Be-kp) has been suggested as a method to separate the lung restriction caused by inflammation from that caused by pulmonary fibrosis; a significantly decreased value for the exponential constant, k, suggests a change in the mechanical properties of the functioning lung parenchyma, while a normal value accompanied by restriction suggests subtraction of lung units without a change in the mechanical properties of the functioning units. We measured lung volumes and static PV curves in 29 patients who had persistent lung restriction following a biopsy-proven diagnosis of PBL. Mean values in the 29 subjects were as follows: age, 43 +/- 13 years; TLC, 61 +/- 15 percent of predicted; VC, 46 +/- 19 percent of predicted; and k, 55 +/- 17 percent of predicted. Twenty-four of the 29 patients had values for k that were below the 95 percent confidence level, and five had "normal" values. There was no difference in TLC and VC (percent of predicted) between those with or without a decreased value for k. Four of five patients with a normal value for k improved subsequent to diagnosis, while only one of 21 patients with a decreased k improved. We conclude that increased lung elasticity manifested by a low value for k is common in patients with chronic PBL. These results support the observation of frequent irreversible lung fibrosis in these patients. Measurements of k could prove a good prognostic indicator at the time of initial diagnosis.

  14. Animal Models, Learning Lessons to Prevent and Treat Neonatal Chronic Lung Disease

    PubMed Central

    Jobe, Alan H.

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is a unique injury syndrome caused by prolonged injury and repair imposed on an immature and developing lung. The decreased septation and decreased microvascular development phenotype of BPD can be reproduced in newborn rodents with increased chronic oxygen exposure and in premature primates and sheep with oxygen and/or mechanical ventilation. The inflammation caused by oxidants, inflammatory agonists, and/or stretch injury from mechanical ventilation seems to promote the anatomic abnormalities. Multiple interventions targeted to specific inflammatory cells or pathways or targeted to decreasing ventilation-mediated injury can substantially prevent the anatomic changes associated with BPD in term rodents and in preterm sheep or primate models. Most of the anti-inflammatory therapies with benefit in animal models have not been tested clinically. None of the interventions that have been tested clinically are as effective as anticipated from the animal models. These inconsistencies in responses likely are explained by the antenatal differences in lung exposures of the developing animals relative to very preterm humans. The animals generally have normal lungs while the lungs of preterm infants are exposed variably to intrauterine inflammation, growth abnormalities, antenatal corticosteroids, and poorly understood effects from the causes of preterm delivery. The animal models have been essential for the definition of the mediators that can cause a BPD phenotype. These models will be necessary to develop and test future-targeted interventions to prevent and treat BPD. PMID:26301222

  15. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung. Copyright © 2017 the American Physiological Society.

  16. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundarraj, Shenbagamoorthy, E-mail: sundarrajbu09@gmail.com; Thangam, Ramar; Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, TN

    2014-03-15

    Epidermal growth factor receptor antibody (EGFRAb) conjugated silica nanorattles (SNs) were synthesized and used to develop receptor mediated endocytosis for targeted drug delivery strategies for cancer therapy. The present study determined that the rate of internalization of silica nanorattles was found to be high in lung cancer cells when compared with the normal lung cells. EGFRAb can specifically bind to EGFR, a receptor that is highly expressed in lung cancer cells, but is expressed at low levels in other normal cells. Furthermore, in vitro studies clearly substantiated that the cPLA{sub 2}α activity, arachidonic acid release and cell proliferation were considerablymore » reduced by pyrrolidine-2 loaded EGFRAb-SN in H460 cells. The cytotoxicity, cell cycle arrest and apoptosis were significantly induced by the treatment of pyrrolidine-2 loaded EGFRAb-SN when compared with free pyrrolidine-2 and pyrrolidine-2 loaded SNs in human non-small cell lung cancer cells. An in vivo toxicity assessment showed that silica nanorattles and EGFRAb-SN-pyrrolidine-2 exhibited low systemic toxicity in healthy Balb/c mice. The EGFRAb-SN-pyrrolidine-2 showed a much better antitumor activity (38%) with enhanced tumor inhibition rate than the pyrrolidine-2 on the non-small cell lung carcinoma subcutaneous model. Thus, the present findings validated the low toxicity and high therapeutic potentials of EGFRAb-SN-pyrrolidine-2, which may provide a convincing evidence of the silica nanorattles as new potential carriers for targeted drug delivery systems. - Highlights: • EGFRAb-SN developed for receptor-mediated Drug delivery system (DDS). • EGFRAb-SN-pyrrolidine-2 targeted DDS for cPLA2α inhibition in NSLC. • Study indicates EGFRAb-SN-pyrrolidine-2 as an efficient in target dug delivery carrier. • Study explains entire efficiency of EGFRAb-SN-pyrrolidine-2 in vitro and in vivo models.« less

  17. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.

    1987-11-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-(/sup 68/Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of (/sup 68/Ga)citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escapemore » rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury.« less

  18. Endothelial nitric oxide synthase in hypoxic newborn porcine pulmonary vessels

    PubMed Central

    Hislop, A; Springall, D; Oliveira, H; Pollock, J; Polak, J; Haworth, S

    1997-01-01

    AIMS—To determine if the failure of neonatal pulmonary arteries to dilate is due to a lack of nitric oxide synthase (NOS).
METHODS—A monoclonal antibody to endothelial NOS was used to demonstrate the distribution and density of NOS in the developing porcine lung after a period in hypobaric hypoxia. Newborn piglets were made hypertensive by exposure to hypobaric hypoxia (50.8 kPa) from < 5 minutes of age to 2.5 days of age, 3-6 days of age or 14-17 days of age. A semiquantitative scoring system was used to assess the distribution of endothelial NOS by light microscopy.
RESULTS—NOS was present in the arteries in all hypoxic animals. However, hypoxia from birth caused a reduction in NOS compared with those lungs normal at birth and those normal at 3 days. Hypoxia from 3-6 days led to a high density of NOS compared with normal lungs at 6 days. Hypoxia from 14-17 days had little effect on the amount of NOS. On recovery in room air after exposure to hypoxia from birth there was a transient increase in endothelial NOS after three days of recovery, mirroring that seen at three days in normal animals.
CONCLUSIONS—Suppression of NOS production in the first few days of life may contribute to pulmonary hypertension in neonates.

 Keywords: pulmonary circulation; nitric oxide synthase; hypoxia; endothelium; piglets PMID:9279177

  19. Alteration of lung atrial natriuretic peptide receptors in genetic cardiomyopathy.

    PubMed

    Mukaddam-Daher, S; Tremblay, J; Fujio, N; Koch, C; Jankowski, M; Quillen, E W; Gutkowska, J

    1996-07-01

    These studies were designed to characterize the atrial natriuretic peptide (ANF) receptor subtypes [guanylyl cyclase natriuretic peptide receptors (NPR-A, NPR-B) and NPR-C] in lungs of normal hamsters and to evaluate alterations in receptor kinetics in genetic cardiomyopathy (CMO), a model of human congestive heart failure. Lung membranes were obtained from normal and CMO 200-to 230-day-old hamsters. Cross-linking and competitive binding receptor assays using 125I-labeled human ANF showed that lung membranes exhibit NPR, mainly guanylyl cyclase NPR-A and clearance NPR-C receptors. Stimulation of guanylyl cyclase by ANF and C-type natriuretic peptide (CNP) confirmed the presence of NPR-A and NPR-B. The maximum binding capacity of total ANF binding sites (442 +/- 68 vs. 271 +/- 57 fmol/mg protein, P < 0.05) was reduced, but dissociation constant (0.26 +/- 0.04 vs. 0.41 +/- 0.08 nM) was not altered in CMO animals. Similar reductions were observed in the binding sites for brain natriuretic peptide (BNP; 438 +/- 83 vs. 236 +/- 53 fmol/mg protein) and CNP (321 +/- 80 vs. 165 +/- 56 fmol/mg protein, P < 0.05) which may reflect a decline in NPR-A and NPR-B and/or NPR-C. Acid wash improved binding of 125I-labeled rat ANF to lung membranes of both normal and CMO hamsters, but the tendency towards reduced binding in CMO hamsters did not reach statistical significance, implying that downregulation may not have been due only to prior occupancy of the receptors. Transcripts of NPR-A, NPR-B, and NPR-C receptors in hamster lungs were detected by quantitative polymerase chain reaction. Compared with normal controls, the CMO hamster lung NPR-A mRNA was reduced by 50%, but NPR-B mRNA and NPR-C mRNA were not altered. Moreover, CMO hamster lungs showed less activation of guanylyl cyclase by ANF. These studies demonstrate that lung NPR are downregulated in hamster CMO.

  20. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system.

    PubMed

    Nebuya, S; Noshiro, M; Yonemoto, A; Tateno, S; Brown, B H; Smallwood, R H; Milnes, P

    2006-05-01

    Inter-subject variability has caused the majority of previous electrical impedance tomography (EIT) techniques to focus on the derivation of relative or difference measures of in vivo tissue resistivity. Implicit in these techniques is the requirement for a reference or previously defined data set. This study assesses the accuracy and optimum electrode placement strategy for a recently developed method which estimates an absolute value of organ resistivity without recourse to a reference data set. Since this measurement of tissue resistivity is absolute, in Ohm metres, it should be possible to use EIT measurements for the objective diagnosis of lung diseases such as pulmonary oedema and emphysema. However, the stability and reproducibility of the method have not yet been investigated fully. To investigate these problems, this study used a Sheffield Mk3.5 system which was configured to operate with eight measurement electrodes. As a result of this study, the absolute resistivity measurement was found to be insensitive to the electrode level between 4 and 5 cm above the xiphoid process. The level of the electrode plane was varied between 2 cm and 7 cm above the xiphoid process. Absolute lung resistivity in 18 normal subjects (age 22.6 +/- 4.9, height 169.1 +/- 5.7 cm, weight 60.6 +/- 4.5 kg, body mass index 21.2 +/- 1.6: mean +/- standard deviation) was measured during both normal and deep breathing for 1 min. Three sets of measurements were made over a period of several days on each of nine of the normal male subjects. No significant differences in absolute lung resistivity were found, either during normal tidal breathing between the electrode levels of 4 and 5 cm (9.3 +/- 2.4 Omega m, 9.6 +/- 1.9 Omega m at 4 and 5 cm, respectively: mean +/- standard deviation) or during deep breathing between the electrode levels of 4 and 5 cm (10.9 +/- 2.9 Omega m and 11.1 +/- 2.3 Omega m, respectively: mean +/- standard deviation). However, the differences in absolute lung resistivity between normal and deep tidal breathing at the same electrode level are significant. No significant difference was found in the coefficient of variation between the electrode levels of 4 and 5 cm (9.5 +/- 3.6%, 8.5 +/- 3.2% at 4 and 5 cm, respectively: mean +/- standard deviation in individual subjects). Therefore, the electrode levels of 4 and 5 cm above the xiphoid process showed reasonable reliability in the measurement of absolute lung resistivity both among individuals and over time.

  1. Sex Steroid Signaling: Implications for Lung Diseases

    PubMed Central

    Sathish, Venkatachalem; Martin, Yvette N.; Prakash, Y.S.

    2015-01-01

    There is increasing recognition that the sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine. PMID:25595323

  2. Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development

    PubMed Central

    Liu, Sheng; Young, Sarah Marie

    2014-01-01

    Postnatal lung development requires coordination of three processes (surface area expansion, microvascular growth, and matrix remodeling). Because normal elastin structure is important for lung morphogenesis, because physiological remodeling of lung elastin has never been defined, and because elastin remodeling is angiogenic, we sought to test the hypothesis that, during lung development, elastin is remodeled in a defined temporal-spatial pattern, that a novel protease is associated with this remodeling, and that angiogenesis is associated with elastin remodeling. By elastin in situ zymography, lung elastin remodeling increased 24-fold between embryonic day (E) 15.5 and postnatal day (PND) 14. Remodeling was restricted to major vessels and airways on PND1 with a sevenfold increase in alveolar wall elastin remodeling from PND1 to PND14. By inhibition assays and literature review, we identified chymotrypsin-like elastase 1 (CELA1) as a potential mediator of elastin remodeling. CELA1 mRNA levels increased 12-fold from E15.5 to PND9, and protein levels increased 3.4-fold from E18.5 to PND9. By costaining experiments, the temporal-spatial pattern of CELA1 expression matched that of elastin remodeling, and 58–85% of CELA1+ cells were <10 μm from an elastase signal. An association between elastin remodeling and angiogenesis was tested by similar methods. At PND7 and PND14, 60–95% of angiogenin+ cells were associated with elastin remodeling. Both elastase inhibition and CELA1 silencing impaired angiogenesis in vitro. Our data defines the temporal-spatial pattern of elastin remodeling during lung development, demonstrates an association of this remodeling with CELA1, and supports a role for elastin remodeling in regulating angiogenesis. PMID:24793170

  3. Nuclear Factor-Kappa-B Signaling in Lung Development and Disease: One Pathway, Numerous Functions

    PubMed Central

    Alvira, Cristina M

    2014-01-01

    In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects. Birth Defects Research (Part A) 100:202–216, 2014. © 2014 Wiley Periodicals, Inc. PMID:24639404

  4. Toll-like receptor 4 deficiency causes pulmonary emphysema

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Jiang, Ge; Cohn, Lauren; Lee, Patty J.

    2006-01-01

    TLRs have been studied extensively in the context of pathogen challenges, yet their role in the unchallenged lung is unknown. Given their direct interface with the external environment, TLRs in the lungs are prime candidates to respond to air constituents, namely particulates and oxygen. The mechanism whereby the lung maintains structural integrity in the face of constant ambient exposures is essential to our understanding of lung disease. Emphysema is characterized by gradual loss of lung elasticity and irreversible airspace enlargement, usually in the later decades of life and after years of insult, most commonly cigarette smoke. Here we show Tlr4–/– mice exhibited emphysema as they aged. Adoptive transfer experiments revealed that TLR4 expression in lung structural cells was required for maintaining normal lung architecture. TLR4 deficiency led to the upregulation of what we believe to be a novel NADPH oxidase (Nox), Nox3, in lungs and endothelial cells, resulting in increased oxidant generation and elastolytic activity. Treatment of Tlr4–/– mice or endothelial cells with chemical NADPH inhibitors or Nox3 siRNA reversed the observed phenotype. Our data identify a role for TLR4 in maintaining constitutive lung integrity by modulating oxidant generation and provide insights into the development of emphysema. PMID:17053835

  5. Computed tomography of the lung of healthy snakes of the species Python regius, Boa constrictor, Python reticulatus, Morelia viridis, Epicrates cenchria, and Morelia spilota.

    PubMed

    Pees, Michael; Kiefer, Ingmar; Thielebein, Jens; Oechtering, Gerhard; Krautwald-Junghanns, Maria-Elisabeth

    2009-01-01

    Thirty-nine healthy boid snakes representing six different species (Python regius, Boa constrictor, Python reticulatus, Morelia viridis, Epicrates cenchria, and Morelia spilota) were examined using computed tomography (CT) to characterize the normal appearance of the respiratory tissue. Assessment was done subjectively and densitometry was performed using a defined protocol. The length of the right lung was calculated to be 11.1% of the body length, without a significant difference between species. The length of the left lung in proportion to the right was dependent on the species examined. The most developed left lung was in P. regius (81.2%), whereas in B. constrictor, the left lung was vestigial or absent (24.7%). A median attenuation of -814.6 HU and a variability of 45.9 HU were calculated for all species with no significant difference between species. Within the species, a significantly higher attenuation was found for P. regius in the dorsal and cranial aspect of the lung compared with the ventral and caudal part. In B. constrictor, the reduced left lung was significantly hyperattenuating compared with the right lung. Results of this study emphasize the value of CT and provide basic reference data for assessment of the snake lung in these species. Veterinary Radiology &

  6. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  7. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer

    NASA Astrophysics Data System (ADS)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  8. Ontogeny of adrenal-like glucocorticoid synthesis pathway and of 20α-hydroxysteroid dehydrogenase in the mouse lung.

    PubMed

    Boucher, Eric; Provost, Pierre R; Tremblay, Yves

    2014-03-01

    Glucocorticoids exert recognized positive effects on lung development. The genes involved in the classical pathway of glucocorticoid synthesis normally occurring in adrenals were found to be expressed on gestation day (GD) 15.5 in the developing mouse lung. Recently, expression of two of these genes was also detected on GD 17.5 suggesting a more complex temporal regulation than previously expected. Here, we deepen the knowledge on expression of "adrenal" glucocorticoid synthesis genes in the mouse lung during the perinatal period and we also study expression of the gene encoding for the steroid inactivating enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We performed an ontogenic study of P450scc, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase 1 (3β-HSD1), 21-hydroxylase, 11β-hydroxylase, 11β-HSD1, and 11β-HSD2 expression up to post natal day (PN) 15. The substrate (progesterone) and the product (deoxycorticosterone) of 21-hydroxylase are substrates of 20α-HSD, thus 20α-HSD (Akr1c18) gene expression was investigated. In lung samples collected between GD 15.5 and PN 15, 11β-hydroxylase was only detected on GD 15.5. In contrast, all the other tested genes were expressed throughout the analyzed period with different temporal expression patterns. P450scc, 21-hydroxylase, 20α-HSD and 11β-HSD2 mRNA levels increased after birth with different patterns including an increase from PN 3 with a possible sex difference for 21-hydroxylase mRNA. Also, the 21-hydroxylase protein was observed by Western blot in perinatal lungs with higher levels after birth. Progesterone is present at high levels during gestation and the product of 21-hydroxylase, deoxycorticosterone, can bind the glucocorticoid receptor with an affinity close to that of corticosterone. Detection of 21-hydroxylase at the protein level during antenatal lung development is the first evidence that the adrenal-like glucocorticoid synthesis pathway detected during lung development has the machinery to produce glucocorticoids in the fetal lung. Glucocorticoids from lung 21-hydroxylase appear to modulate lung ontogenesis through paracrine/intracrine actions.

  9. Neutral endopeptidase: variable expression in human lung, inactivation in lung cancer, and modulation of peptide-induced calcium flux.

    PubMed

    Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E

    1996-02-15

    Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP expression. NEP, therefore, is a signal transduction and possibly a growth modulator for both SCLC and NSCLC, emphasizing the role of neuropeptides in the pathogenesis of the major histological forms of lung cancer.

  10. New insights into lung diseases using hyperpolarized gas MRI.

    PubMed

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  11. Invited commentary: on population subgroups, mathematics, and interventions.

    PubMed

    Jacobs, David R; Meyer, Katie A

    2011-02-15

    New sex-specific equations, each with race/ethnic-specific intercept, for predicted lung function illustrate a methodological point, that complex differences between groups may not imply interactions with other predictors, such as age and height. The new equations find that race/ethnic identity does not interact with either age or height in the prediction equations, although there are race/ethnic-specific offsets. Further study is warranted of the effect of possible small race/ethnic interactions on disease classification. Additional study of repeated measures of lung function is warranted, given that the new equations were developed in cross-sectional designs. Predicting lung function is more than a methodological exercise. Predicted values are important in disease diagnosis and monitoring. It is suggested that measurement and tracking of lung function throughout young adulthood could be used to provide an early warning of potential long-term lung function losses to encourage improvement of risky behaviors including smoking and failure to maintain normal body weight in the general population.

  12. Separation of left and right lungs using 3D information of sequential CT images and a guided dynamic programming algorithm

    PubMed Central

    Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin

    2011-01-01

    Objective this article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on CT examinations. Methods we developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. Results the scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing dataset of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. Conclusions The proposed method is able to robustly and accurately disconnect all connections between left and right lungs and the guided dynamic programming algorithm is able to remove redundant processing. PMID:21412104

  13. Separation of left and right lungs using 3-dimensional information of sequential computed tomography images and a guided dynamic programming algorithm.

    PubMed

    Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin

    2011-01-01

    This article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on computed tomography (CT) examinations. We developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. The scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing data set of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. The proposed method is able to robustly and accurately disconnect all connections between left and right lungs, and the guided dynamic programming algorithm is able to remove redundant processing.

  14. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  15. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: a digital phantom study.

    PubMed

    Bernatowicz, K; Keall, P; Mishra, P; Knopf, A; Lomax, A; Kipritidis, J

    2015-01-01

    Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CT can significantly reduce lung imaging artifacts. Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) "conventional" 4D CT that uses a constant imaging and couch-shift frequency, (ii) "beam paused" 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) "respiratory-gated" 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm(3) spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10(-19)). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%-1.4%), false positives (4.0%-2.6%), and false negatives (2.7%-1.3%). These percentage reductions correspond to gating reducing image artifacts by 24-90 cm(3) of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm(3) of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.

  16. Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, A.W.

    The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less

  17. Extracting the normal lung dose-response curve from clinical DVH data: a possible role for low dose hyper-radiosensitivity, increased radioresistance

    NASA Astrophysics Data System (ADS)

    Gordon, J. J.; Snyder, K.; Zhong, H.; Barton, K.; Sun, Z.; Chetty, I. J.; Matuszak, M.; Ten Haken, R. K.

    2015-09-01

    In conventionally fractionated radiation therapy for lung cancer, radiation pneumonitis’ (RP) dependence on the normal lung dose-volume histogram (DVH) is not well understood. Complication models alternatively make RP a function of a summary statistic, such as mean lung dose (MLD). This work searches over damage profiles, which quantify sub-volume damage as a function of dose. Profiles that achieve best RP predictive accuracy on a clinical dataset are hypothesized to approximate DVH dependence. Step function damage rate profiles R(D) are generated, having discrete steps at several dose points. A range of profiles is sampled by varying the step heights and dose point locations. Normal lung damage is the integral of R(D) with the cumulative DVH. Each profile is used in conjunction with a damage cutoff to predict grade 2 plus (G2+) RP for DVHs from a University of Michigan clinical trial dataset consisting of 89 CFRT patients, of which 17 were diagnosed with G2+ RP. Optimal profiles achieve a modest increase in predictive accuracy—erroneous RP predictions are reduced from 11 (using MLD) to 8. A novel result is that optimal profiles have a similar distinctive shape: enhanced damage contribution from low doses (<20 Gy), a flat contribution from doses in the range ~20-40 Gy, then a further enhanced contribution from doses above 40 Gy. These features resemble the hyper-radiosensitivity / increased radioresistance (HRS/IRR) observed in some cell survival curves, which can be modeled using Joiner’s induced repair model. A novel search strategy is employed, which has the potential to estimate RP dependence on the normal lung DVH. When applied to a clinical dataset, identified profiles share a characteristic shape, which resembles HRS/IRR. This suggests that normal lung may have enhanced sensitivity to low doses, and that this sensitivity can affect RP risk.

  18. Signs of Gas Trapping in Normal Lung Density Regions in Smokers.

    PubMed

    Bodduluri, Sandeep; Reinhardt, Joseph M; Hoffman, Eric A; Newell, John D; Nath, Hrudaya; Dransfield, Mark T; Bhatt, Surya P

    2017-12-01

    A substantial proportion of subjects without overt airflow obstruction have significant respiratory morbidity and structural abnormalities as visualized by computed tomography. Whether regions of the lung that appear normal using traditional computed tomography criteria have mild disease is not known. To identify subthreshold structural disease in normal-appearing lung regions in smokers. We analyzed 8,034 subjects with complete inspiratory and expiratory computed tomographic data participating in the COPDGene Study, including 103 lifetime nonsmokers. The ratio of the mean lung density at end expiration (E) to end inspiration (I) was calculated in lung regions with normal density (ND) by traditional thresholds for mild emphysema (-910 Hounsfield units) and gas trapping (-856 Hounsfield units) to derive the ND-E/I ratio. Multivariable regression analysis was used to measure the associations between ND-E/I, lung function, and respiratory morbidity. The ND-E/I ratio was greater in smokers than in nonsmokers, and it progressively increased from mild to severe chronic obstructive pulmonary disease severity. A proportion of 26.3% of smokers without airflow obstruction had ND-E/I greater than the 90th percentile of normal. ND-E/I was independently associated with FEV 1 (adjusted β = -0.020; 95% confidence interval [CI], -0.032 to -0.007; P = 0.001), St. George's Respiratory Questionnaire scores (adjusted β = 0.952; 95% CI, 0.529 to 1.374; P < 0.001), 6-minute-walk distance (adjusted β = -10.412; 95% CI, -12.267 to -8.556; P < 0.001), and body mass index, airflow obstruction, dyspnea, and exercise capacity index (adjusted β = 0.169; 95% CI, 0.148 to 0.190; P < 0.001), and also with FEV 1 change at follow-up (adjusted β = -3.013; 95% CI, -4.478 to -1.548; P = 0.001). Subthreshold gas trapping representing mild small airway disease is prevalent in normal-appearing lung regions in smokers without airflow obstruction, and it is associated with respiratory morbidity. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  19. [Tripartite-motif protein 25 and pyruvate kinase M2 protein expression in non-small cell lung cancer].

    PubMed

    Jing, Huai-Zhi; Qiu, Feng; Chen, Shi-Zhi; Su, Lin; Qu, Can

    2015-03-01

    To investigate the expression of tripartite-motif protein 25 (TRIM25) and pyruvate kinase M2 (PKM2) protein in non-small cell lung cancer (NSCLC) and explore their role in the occurrence and progression of NSCLC. The expressions of TRIM25 and PKM2 protein were detected in 60 NSCLC specimens and 20 adjacent normal lung tissue (>5 cm from the lesions) with immunofluorescence histochemical method and in 10 fresh specimens of NSCLC with Western blotting. The results were analyzed in relation with the clinicopathological features of the patients. The positivity rates of TRIM25 expression was 45% in the 60 lung carcinoma specimens, significantly higher than that in the 20 normal lung tissues (10%, P=0.005). TRIM25 protein was expressed in 28.6% of lung adenocarcinoma tissues and in 59.4% of squamous carcinoma tissues (P=0.017). TRIM25 protein expression was positively correlated with the TNM stages and lymph node metastasis of NSCLC (P<0.05). The expressions of PKM2 protein in 60 cases of lung carcinoma was 73.3%,while in 20 cases of normal lung tissues the expressions was 30%(P=0.001). The positivity rates of PKM2 expression differed significantly between lung adenocarcinoma and squamous carcinoma (57.1% vs 87.5%, P=0.008). An inverse correlation was noted between TRIM25 and PKM2 expressions (P=0.026). TRIM25 and PKM2 protein may participate in the occurrence and progression of NSCLC, and their expressions are inversely correlated.

  20. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  1. Glucose Transporter-1 Distribution in Fibrotic Lung Disease

    PubMed Central

    Malide, Daniela; Yao, Jianhua; Nathan, Steven D.; Rosas, Ivan O.; Gahl, William A.; Moss, Joel; Gochuico, Bernadette R.

    2013-01-01

    Background: [18F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. Methods: We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. Results: In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. Conclusions: Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis. PMID:23699745

  2. [Estimation of pulmonary hypertension in lung and valvular heart diseases by perfusion lung scintigraphy].

    PubMed

    Fujii, T; Tanaka, M; Yazaki, Y; Kitabayashi, H; Koizumi, T; Kubo, K; Sekiguchi, M; Yano, K

    1999-06-01

    To estimate pulmonary hypertension, we measured postural differences in pulmonary blood flow for the lateral decubitus positions on perfusion lung scintigrams with Tc-99 m macro-aggregated albumin, applying the method devised by Tanaka et al (Eur J Nucl Med 17: 320-326, 1990). Utilizing a scintillation camera coupled to a minicomputer system, changes in the distribution of pulmonary blood flow caused by gravitational effects, namely, changes in the total count ratios for the right lung versus the left lung in the right and left lateral decubitus positions (R/L), were obtained for 44 patients with lung disease, 95 patients with valvular heart disease, and 23 normal subjects. Mean standard deviation in the R/L ratios was 3.09 +/- 1.28 for the normal subjects, 1.97 +/- 0.89 for the patients with lung disease, and 1.59 +/- 0.59 for the patients with valvular heart disease. The R/L ratios correlated with mean pulmonary arterial pressure and cardio-thoracic ratios in the lung disease and valvular heart disease groups, with pulmonary arteriolar resistance in the former, and with pulmonary capillary wedge pressure in the latter. Defining pulmonary hypertension (> 20 mmHg) as an R/L ratio of less than 1.81, which is the mean-1 standard deviation for normal subjects, the sensitivity and the specificity of the R/L ratio for the diagnosis of pulmonary hypertension were 62.9% and 76.2%, respectively, for the lung disease patients, and 80.3% and 61.8%, respectively, for the valvular heart disease patients. This method seems to be useful for the pathophysiologic evaluation of pulmonary perfusion in cases of lung disease and valvular heart disease.

  3. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells.

    PubMed

    Odewumi, Caroline; Latinwo, Lekan M; Sinclair, Andre; Badisa, Veera L D; Abdullah, Ahkinyala; Badisa, Ramesh B

    2015-11-01

    Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)‑1α and IL‑10 cytokines at various concentrations and incubation durations were assessed in MRC‑9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme‑linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC‑9 lung cells. In the normal MRC‑9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC‑9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.

  4. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  5. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  6. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higenbottam, T.; Jackson, M.; Woolman, P.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilledmore » distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.« less

  7. Increased hydrostatic pressure enhances motility of lung cancer cells.

    PubMed

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  8. New era of radiotherapy: an update in radiation-induced lung disease

    PubMed Central

    Benveniste, M. F. K.; Welsh, J.; Godoy, M. C. B.; Betancourt, S. L.; Mawlawi, O. R; Munden, R. F.

    2014-01-01

    Over the last few decades, advances in radiotherapy (RT) technology have improved delivery of radiation therapy dramatically. Advances in treatment planning with the development of image-guided radiotherapy and in techniques such as proton therapy, allows the radiation therapist to direct high doses of radiation to the tumour. These advancements result in improved local regional control while reducing potentially damaging dosage to surrounding normal tissues. It is important for radiologists to be aware of the radiological findings from these advances in order to differentiate expected radiation-induced lung injury (RILD) from recurrence, infection, and other lung diseases. In order to understand these changes and correlate them with imaging, the radiologist should have access to the radiation therapy treatment plans. PMID:23473474

  9. Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR

    NASA Astrophysics Data System (ADS)

    Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon

    2009-05-01

    Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.

  10. [Mechanism and Prospect of Radiotherapy Combined with Apotatinib
in the Treatment of Non-small Cell Lung Cancer].

    PubMed

    Liu, Guohui; Wang, Chunbo; E, Mingyan

    2017-12-20

    Non-small cell lung cancer is one of the most commom malignant tumor being harmful to people's life and health. Most of the patients have developed to the last stage which not suitable for surgical indications, so radiation and chemotherapy is the main treatment strategy. In recent years, with the theory of anti-angiogenesis therapy for malignant tumors, apatinib as a promising novel medicine to treat malignant tumors, represents synergistic antitumor effects in combination with radiotherapy. The underlying mechanisms may include make blood vessel normalization, alleviating inner hypoxia, and angiogenic factors regulation. Apatinib in combination with radiotherapy may become a new and effective treatment strategy of non-small cell lung cancer.

  11. Unilateral lung transplantation for pulmonary fibrosis.

    PubMed

    1986-05-01

    Improvements in immunosuppression and surgical techniques have made unilateral lung transplantation feasible in selected patients with end-stage interstitial lung disease. We report two cases of successful unilateral lung transplantation for end-stage respiratory failure due to pulmonary fibrosis. The patients, both oxygen-dependent, had progressive disease refractory to all treatment, with an anticipated life expectancy of less than one year on the basis of the rate of progression of the disease. Both patients were discharged six weeks after transplantation and returned to normal life. They are alive and well at 26 months and 14 months after the procedure. Pulmonary-function studies have shown substantial improvement in their lung volumes and diffusing capacities. For both patients, arterial oxygen tension is now normal and there is no arterial oxygen desaturation with exercise. This experience shows that unilateral lung transplantation, for selected patients with end-stage interstitial lung disease, provides a good functional result. Moreover, it avoids the necessity for cardiac transplantation, as required by the combined heart-lung procedure, and permits the use of the donor heart for another recipient.

  12. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats.

    PubMed

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L; Thébaud, Bernard

    2009-12-01

    Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.

  13. Fully automated calculation of cardiothoracic ratio in digital chest radiographs

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Jiang, Luan; Chen, Gang; Li, Qiang

    2017-03-01

    The calculation of Cardiothoracic Ratio (CTR) in digital chest radiographs would be useful for cardiac anomaly assessment and heart enlargement related disease indication. The purpose of this study was to develop and evaluate a fully automated scheme for calculation of CTR in digital chest radiographs. Our automated method consisted of three steps, i.e., lung region localization, lung segmentation, and CTR calculation. We manually annotated the lung boundary with 84 points in 100 digital chest radiographs, and calculated an average lung model for the subsequent work. Firstly, in order to localize the lung region, generalized Hough transform was employed to identify the upper, lower, and outer boundaries of lung by use of Sobel gradient information. The average lung model was aligned to the localized lung region to obtain the initial lung outline. Secondly, we separately applied dynamic programming method to detect the upper, lower, outer and inner boundaries of lungs, and then linked the four boundaries to segment the lungs. Based on the identified outer boundaries of left lung and right lung, we corrected the center and the declination of the original radiography. Finally, CTR was calculated as a ratio of the transverse diameter of the heart to the internal diameter of the chest, based on the segmented lungs. The preliminary results on 106 digital chest radiographs showed that the proposed method could obtain accurate segmentation of lung based on subjective observation, and achieved sensitivity of 88.9% (40 of 45 abnormalities), and specificity of 100% (i.e. 61 of 61 normal) for the identification of heart enlargements.

  14. Impact of combined pulmonary fibrosis and emphysema on surgical complications and long-term survival in patients undergoing surgery for non-small-cell lung cancer.

    PubMed

    Hata, Atsushi; Sekine, Yasuo; Kota, Ohashi; Koh, Eitetsu; Yoshino, Ichiro

    2016-01-01

    The outcome of radical surgery for lung cancer was investigated in patients with combined pulmonary fibrosis and emphysema (CPFE). A retrospective chart review involved 250 patients with lung cancer who underwent pulmonary resection at Tokyo Women's Medical University Yachiyo Medical Center between 2008 and 2012. Based on the status of nontumor-bearing lung evaluated by preoperative computed tomography (CT), the patients were divided into normal, emphysema, interstitial pneumonia (IP), and CPFE groups, and their clinical characteristics and surgical outcome were analyzed. The normal, emphysema, IP, and CPFE groups comprised 124 (49.6%), 108 (43.2%), seven (2.8%), and eleven (4.4%) patients, respectively. The 5-year survival rate of the CPFE group (18.7%) was significantly lower than that of the normal (77.5%) and emphysema groups (67.1%) (P<0.0001 and P=0.0027, respectively) but equivalent to that of the IP group (44.4%) (P=0.2928). In a subset analysis of cancer stage, the 5-year overall survival rate of the CPFE group in stage I (n=8, 21.4%) was also lower than that of the normal group and emphysema group in stage I (n=91, 84.9% and n=70, 81.1%; P<0.0001 and P<0.0001, respectively). During entire observation period, the CPFE group was more likely to die of respiratory failure (27.2%) compared with the normal and emphysema groups (P<0.0001). Multivariate analysis of prognostic factors using Cox proportional hazard model identified CPFE as an independent risk factor (P=0.009). CPFE patients have a poorer prognosis than those with emphysema alone or with normal lung on CT finding. The intensive evaluation of preoperative CT images is important, and radical surgery for lung cancer should be decided carefully when patients concomitantly harbor CPFE, because of unfavorable prognosis.

  15. Three distinct pneumotypes characterize the microbiome of the lung in BALB/cJ mice.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2017-01-01

    Bacteria can rarely be isolated from normal healthy lungs using conventional culture techniques, supporting the traditional belief that the lungs are sterile. Yet recent studies using next generation sequencing report that bacterial DNA commonly found in the upper respiratory tract (URT) is present at lower levels in the lungs. Interpretation of that finding is complicated by the technical limitations and potential for contamination introduced when dealing with low biomass samples. The current work sought to overcome those limitations to clarify the number, type and source of bacteria present in the lungs of normal mice. Results showed that the oral microbiome is diverse and highly conserved whereas murine lung samples fall into three distinct patterns. 33% of the samples were sterile, as they lacked culturable bacteria and their bacterial DNA content did not differ from background. 9% of samples contained comparatively higher amounts of bacterial DNA whose composition mimicked that detected in the URT. A final group (58%) contained smaller amounts of microbial DNA whose composition was correlating to that of rodent chow and cage bedding, likely acquired by inspiration of food and bedding fragments. By analyzing each sample independently rather than working with group averages, this work eliminated the bias introduced by aspiration-contaminated samples to establish that three distinct microbiome pneumotypes are present in normal murine lungs.

  16. Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance.

    PubMed Central

    Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.

    1996-01-01

    As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278

  17. Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows.

    PubMed

    Depeursinge, Adrien; Vargas, Alejandro; Gaillard, Frédéric; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-01-01

    Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the system.

  18. EFFECT OF THE LESION DUE TO INFLUENZA VIRUS ON THE RESISTANCE OF MICE TO INHALED PNEUMOCOCCI

    PubMed Central

    Harford, Carl G.; Leidler, Virginia; Hara, Mary

    1949-01-01

    1. The normal lung of the mouse possesses the power of reducing markedly its content of Type I pneumococci within 3 hours after inhalation of the organisms in the form of fine droplets. 2. Lungs with fully developed influenza viral pneumonia not only fail to reduce the pulmonary content of pneumococci administered in this manner but, on the contrary, support their growth. 3. After intrabronchial inoculation into mice, influenza virus multiplies rapidly in the lung within 24 hours. 4. Criteria have been established for distinction between true viral lesions of the lung and changes due to the inoculation of diluents as vehicles for the virus. 5. 24 hours after inoculation of virus, there are no macroscopic lesions in the lung and the microscopic changes are due to the diluent. 6. Presence and multiplication of the virus in the lung 24 hours after inoculation have no apparent effect on the power of the lung to reduce rapidly its content of inhaled pneumococci. 7. The effect of the virus in lowering resistance to secondary bacterial infection appears to be due to the presence of the lesion produced by the virus. PMID:18099165

  19. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  20. Lung clearance of /sup 99m/Tc-DTPA in patients with acute lung injury and pulmonary edema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, G.; O'Brodovich, H.; Dolovich, M.

    1988-07-01

    Several acute and chronic conditions that alter the integrity of the pulmonary epithelium increased the rate of absorption or clearance into the circulation of small solutes deposited in the alveoli. Technetium 99m diethylenetriamine pentaacetic acid can be deposited in the lungs as a submicronic aerosol and its rate of clearance measured with a gamma camera or simple probe. This clearance technique is currently being used to evaluate patients who have developed pulmonary edema and also to detect those patients from a high risk group who are likely to develop adult respiratory distress syndrome (ARDS). Its role in the evaluation ofmore » patients with pulmonary edema is still under active investigation. It is clear that a single measurement in patients who smoke is not useful, but repeated measurements may provide important information. The lung clearance measurement is very sensitive to changes in epithelial integrity but is not specific for ARDS. It may be most useful in combination with other predictive tests or when the clearance rate is normal. 54 references.« less

  1. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    NASA Astrophysics Data System (ADS)

    Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.

    2011-01-01

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  2. Effects of body position on lung density estimated from EIT data

    NASA Astrophysics Data System (ADS)

    Noshiro, Makoto; Ebihara, Kei; Sato, Ena; Nebuya, Satoru; Brown, Brian H.

    2010-04-01

    Normal subjects took the sitting, supine, prone, right lateral and left lateral positions during the measurement procedure. One minute epochs of EIT data were collected at the levels of the 3rd, 4th, 5th and 6th intercostal spaces in each position during normal tidal breathing. Lung density was then determined from the EIT data using the method proposed by Brown5. Lung density at the electrode level of the 6th intercostal space was different from that at almost any other levels in both male and female subjects, and lung density at the electrode levels of the 4th and 5th intercostal spaces in male subjects did not depend upon position.

  3. Prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii): 89 cases (2002-2005).

    PubMed

    Stockman, Jonathan; Innis, Charles J; Solano, Mauricio; O'Sullivan Brisson, Jennifer; Kass, Philip H; Tlusty, Michael F; Weber, E Scott

    2013-03-01

    To evaluate the prevalence, distribution, and progression of radiographic abnormalities in the lungs of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) and associations between these abnormalities and body weight, carapace length, and hematologic and plasma biochemical variables. Retrospective case series. 89 cold-stunned juvenile Kemp's ridley sea turtles. Medical records were reviewed. Dorsoventral and horizontal beam craniocaudal radiographs were evaluated for the presence, distribution, and progression of lung abnormalities. Turtles were categorized as having radiographically normal or abnormal lungs; those with abnormalities detected were further categorized according to the distribution of abnormalities (left lung, right lung, or both affected). Body weight, carapace length, and hematologic and plasma biochemical data were compared among categories. 48 of 89 (54%) turtles had radiographic abnormalities of the lungs. Unilateral abnormalities of the right or left lung were detected in 14 (16%) and 2 (2%), respectively; both lungs were affected in 32 (36%). Prevalence of unilateral abnormalities was significantly greater for the right lung than for the left lung. Evaluation of follow-up radiographs indicated clinical improvement over time for most (18/31 [58%]) turtles. Prevalence of bilateral radiographic abnormalities was positively correlated with body weight and carapace length. There was no significant association between radiographic category and hematologic or plasma biochemical variables. Radiographic abnormalities of the lungs were commonly detected in cold-stunned Kemp's ridley turtles. Results of this study may aid clinicians in developing effective diagnostic and treatment plans for these patients.

  4. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.

    PubMed

    Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun

    2011-09-01

    Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment.

    PubMed

    Viswanathan, S; Berlin Grace, V M

    2018-08-20

    Molecular targeted therapy for specific genes is an emerging research. Retinoic Acid Receptor (RAR-β) is a key tumor suppressor which is found to be lost drastically during much cancer progression. We hence, analyzed the expression level of RAR-β gene during B(a)P induced lung cancer development in mice and studied the lung cancer targeted action of All Trans Retinoic Acid (ATRA) in DOTAP liposomal formulation. The effect of its treatment on lung cancer was determined by histopathological analysis. RAR-β gene expression was assessed by RT-PCR and qPCR. A distinct band for RAR-β gene (density - 0.5123 for lung and 0.5160 for liver) was observed in normal mice, whereas no visible band was observed in cancer induced group, indicating loss of RAR-β gene expression. Both ATRA and lipo-ATRA treated groups showed detectable RAR-β expression with relatively lesser density than the normal group. The expression was more intense in lipo-ATRA treatment (density-0.2973) compared with free ATRA treatment (density-0.1549) in lung tissues. The qPCR results also have highlighted a highly significant (p ≤ 0.01) variation RQ values between lipo-ATRA group (15.46 ± 1.54) and free ATRA group (7.58 ± 1.30) in lung tissue sample on 30th day. The mean RQ value for normal lung on 30th day was 20.86 ± 2.58 against the cancer control. The 120th day mice also showed the similar RAR-β expression pattern with further declined expression levels as there was no treatment given after 30 days. Interestingly, the lipo-ATRA treatment could show a highly significant (p ≤ 0.001) expression (12.00 ± 2.31) when compared with free ATRA treatment (3.31 ± 0.58) which implies that the lipo-ATRA formulation could result in sustained delivery of ATRA in target site. Histopathology of lung and liver on 120th day also revealed an effective therapeutic indication in lipo-ATRA treatment compared to free ATRA treatment due to lipo-ATRA's stealth property and it efficiently inhibited the metastasis to liver. These results revealed that the lipo-ATRA treatment has efficiently delivered ATRA into target site than free ATRA and in-turn it might have induced the expression of RAR-β gene or prevented loss of RAR-β gene in cancer animals. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Antenatal Steroids and the IUGR Fetus: Are Exposure and Physiological Effects on the Lung and Cardiovascular System the Same as in Normally Grown Fetuses?

    PubMed Central

    Morrison, Janna L.; Botting, Kimberley J.; Soo, Poh Seng; McGillick, Erin V.; Hiscock, Jennifer; Zhang, Song; McMillen, I. Caroline; Orgeig, Sandra

    2012-01-01

    Glucocorticoids are administered to pregnant women at risk of preterm labour to promote fetal lung surfactant maturation. Intrauterine growth restriction (IUGR) is associated with an increased risk of preterm labour. Hence, IUGR babies may be exposed to antenatal glucocorticoids. The ability of the placenta or blood brain barrier to remove glucocorticoids from the fetal compartment or the brain is compromised in the IUGR fetus, which may have implications for lung, brain, and heart development. There is conflicting evidence on the effect of exogenous glucocorticoids on surfactant protein expression in different animal models of IUGR. Furthermore, the IUGR fetus undergoes significant cardiovascular adaptations, including altered blood pressure regulation, which is in conflict with glucocorticoid-induced alterations in blood pressure and flow. Hence, antenatal glucocorticoid therapy in the IUGR fetus may compromise regulation of cardiovascular development. The role of cortisol in cardiomyocyte development is not clear with conflicting evidence in different species and models of IUGR. Further studies are required to study the effects of antenatal glucocorticoids on lung, brain, and heart development in the IUGR fetus. Of specific interest are the aetiology of IUGR and the resultant degree, duration, and severity of hypoxemia. PMID:23227338

  7. Quantitative label-free multimodality nonlinear optical imaging for in situ differentiation of cancerous lesions

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyun; Li, Xiaoyan; Cheng, Jie; Liu, Zhengfan; Thrall, Michael J.; Wang, Xi; Wang, Zhiyong; Wong, Stephen T. C.

    2013-03-01

    The development of real-time, label-free imaging techniques has recently attracted research interest for in situ differentiation of cancerous lesions from normal tissues. Molecule-specific intrinsic contrast can arise from label-free imaging techniques such as Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG), which, in combination, would hold the promise of a powerful label-free tool for cancer diagnosis. Among cancer-related deaths, lung carcinoma is the leading cause for both sexes. Although early treatment can increase the survival rate dramatically, lesion detection and precise diagnosis at an early stage is unusual due to its asymptomatic nature and limitations of current diagnostic techniques that make screening difficult. We investigated the potential of using multimodality nonlinear optical microscopy that incorporates CARS, TPEAF, and SHG techniques for differentiation of lung cancer from normal tissue. Cancerous and non-cancerous lung tissue samples from patients were imaged using CARS, TPEAF, and SHG techniques for comparison. These images showed good pathology correlation with hematoxylin and eosin (H and E) stained sections from the same tissue samples. Ongoing work includes imaging at various penetration depths to show three-dimensional morphologies of tumor cell nuclei using CARS, elastin using TPEAF, and collagen using SHG and developing classification algorithms for quantitative feature extraction to enable lung cancer diagnosis. Our results indicate that via real-time morphology analyses, a multimodality nonlinear optical imaging platform potentially offers a powerful minimally-invasive way to differentiate cancer lesions from surrounding non-tumor tissues in vivo for clinical applications.

  8. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis.

    PubMed

    McKleroy, William; Lee, Ting-Hein; Atabai, Kamran

    2013-06-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production.

  9. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis

    PubMed Central

    McKleroy, William; Lee, Ting-Hein

    2013-01-01

    Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production. PMID:23564511

  10. Effect of prolonged bed rest on lung volume in normal individuals

    NASA Technical Reports Server (NTRS)

    Beckett, W. S.; Vroman, N. B.; Nigro, D.; Thompson-Gorman, S.; Wilkerson, J. E.

    1986-01-01

    The effect of prolonged bed rest on the lung function was studied by measuring forced vital capacity (FVC) and total lung capacity (TLC) in normal subjects before, during, and after 11- to 12-day rest periods. It was found that both FVC and TLC increased during bed rest (compared with the ambulatory controls), while residual volume and functional residual capacity of the respiratory system did not change. It is concluded that the increase in TLC by prolonged bed rest is not dependent on alterations in plasma volume.

  11. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    PubMed

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  12. Bioengineered Lungs: A Challenge and An Opportunity.

    PubMed

    Farré, Ramon; Otero, Jordi; Almendros, Isaac; Navajas, Daniel

    2018-01-01

    Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Effect of SO/sub 2/ on the clearance of Listeria monocytogenes from the lungs of emphysematous hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimpe, K.L.; Weiss, H.; Zwilling, B.S.

    1986-10-01

    The effect of sulfur dioxide on the clearance of Listeria monocytogenes from normal and emphysematous hamsters was assessed by measuring the number of colony forming units recovered from whole lung homogenates. Continuous exposure to SO/sub 2/ after intratracheal instillation of Listeria significantly altered the clearance of viable bacteria from the lungs of emphysematous but not normal hamsters. Pre-exposure of hamsters to SO/sub 2/ for 2 weeks prior to respiratory infection had similar effects. The emphysematous hamsters exposed to SO/sub 2/ had a lower average number of Listeria in the lungs after the first week of infection than control groups. Thismore » effect appears to result from the combined influence of the SO/sub 2/, the Listeria infection, and the emphysematous condition within the lungs.« less

  14. Synchrotron-based dynamic computed tomography of tissue motion for regional lung function measurement

    PubMed Central

    Dubsky, Stephen; Hooper, Stuart B.; Siu, Karen K. W.; Fouras, Andreas

    2012-01-01

    During breathing, lung inflation is a dynamic process involving a balance of mechanical factors, including trans-pulmonary pressure gradients, tissue compliance and airway resistance. Current techniques lack the capacity for dynamic measurement of ventilation in vivo at sufficient spatial and temporal resolution to allow the spatio-temporal patterns of ventilation to be precisely defined. As a result, little is known of the regional dynamics of lung inflation, in either health or disease. Using fast synchrotron-based imaging (up to 60 frames s−1), we have combined dynamic computed tomography (CT) with cross-correlation velocimetry to measure regional time constants and expansion within the mammalian lung in vivo. Additionally, our new technique provides estimation of the airflow distribution throughout the bronchial tree during the ventilation cycle. Measurements of lung expansion and airflow in mice and rabbit pups are shown to agree with independent measures. The ability to measure lung function at a regional level will provide invaluable information for studies into normal and pathological lung dynamics, and may provide new pathways for diagnosis of regional lung diseases. Although proof-of-concept data were acquired on a synchrotron, the methodology developed potentially lends itself to clinical CT scanning and therefore offers translational research opportunities. PMID:22491972

  15. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S.; Banerjee, Rinti

    2014-11-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  16. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study.

    PubMed

    Klapsing, Philipp; Herrmann, Peter; Quintel, Michael; Moerer, Onnen

    2017-12-01

    Quantitative lung computed tomographic (CT) analysis yields objective data regarding lung aeration but is currently not used in clinical routine primarily because of the labor-intensive process of manual CT segmentation. Automatic lung segmentation could help to shorten processing times significantly. In this study, we assessed bias and precision of lung CT analysis using automatic segmentation compared with manual segmentation. In this monocentric clinical study, 10 mechanically ventilated patients with mild to moderate acute respiratory distress syndrome were included who had received lung CT scans at 5- and 45-mbar airway pressure during a prior study. Lung segmentations were performed both automatically using a computerized algorithm and manually. Automatic segmentation yielded similar lung volumes compared with manual segmentation with clinically minor differences both at 5 and 45 mbar. At 5 mbar, results were as follows: overdistended lung 49.58mL (manual, SD 77.37mL) and 50.41mL (automatic, SD 77.3mL), P=.028; normally aerated lung 2142.17mL (manual, SD 1131.48mL) and 2156.68mL (automatic, SD 1134.53mL), P = .1038; and poorly aerated lung 631.68mL (manual, SD 196.76mL) and 646.32mL (automatic, SD 169.63mL), P = .3794. At 45 mbar, values were as follows: overdistended lung 612.85mL (manual, SD 449.55mL) and 615.49mL (automatic, SD 451.03mL), P=.078; normally aerated lung 3890.12mL (manual, SD 1134.14mL) and 3907.65mL (automatic, SD 1133.62mL), P = .027; and poorly aerated lung 413.35mL (manual, SD 57.66mL) and 469.58mL (automatic, SD 70.14mL), P=.007. Bland-Altman analyses revealed the following mean biases and limits of agreement at 5 mbar for automatic vs manual segmentation: overdistended lung +0.848mL (±2.062mL), normally aerated +14.51mL (±49.71mL), and poorly aerated +14.64mL (±98.16mL). At 45 mbar, results were as follows: overdistended +2.639mL (±8.231mL), normally aerated 17.53mL (±41.41mL), and poorly aerated 56.23mL (±100.67mL). Automatic single CT image and whole lung segmentation were faster than manual segmentation (0.17 vs 125.35seconds [P<.0001] and 10.46 vs 7739.45seconds [P<.0001]). Automatic lung CT segmentation allows fast analysis of aerated lung regions. A reduction of processing times by more than 99% allows the use of quantitative CT at the bedside. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. MEETING AT CAMBRIDGE, MA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and d...

  18. MEETING AT SAN DIEGO, CA: GENE EXPRESSION IN NORMAL HUMAN KERATINOCYTES MODULATED BY TRIVALENT ARSENICALS

    EPA Science Inventory

    Arsenic exposure has been correlated with the development of several human cancers including those found in the skin, lung, liver, kidney and urinary bladder. Humans are generally exposed to inorganic forms of arsenic, which may be inhaled or ingested. Arsenic forms mono- and di-...

  19. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    PubMed

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  20. Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer.

    PubMed

    Nguyen, P L; Niehans, G A; Cherwitz, D L; Kim, Y S; Ho, S B

    1996-01-01

    Abnormalities of mucin-type glycoproteins have been described in lung cancers, but their molecular basis is unknown. In this study, mucin-core-peptide-specific antibodies and cDNA probes were used to determine the relative expression of mucin genes corresponding to one membrane-bound mucin (MUC1), two intestinal mucins (MUC2 and MUC3), and one tracheobronchial mucin (MUC4) in normal (nonneoplastic) lung, and in lung neoplasms. Normal lung tissues exhibited a distinct pattern of mucin gene expression, with high levels of MUC1 and MUC4 mRNA and low to absent levels of MUC2 and MUC3 mucin immunoreactivity and mRNA. In contrast, lung adenocarcinomas, especially well-differentiated cancers, exhibited increased MUC1, MUC3, and MUC4 mRNA levels. Lung squamous-cell, adenosquamous, and large-cell carcinomas were characterized by increased levels of MUC4 mucin only. We conclude that the expression of one membrane-bound and several secretory-type mucins is independently regulated and markedly altered in lung neoplasms. The frequent occurrence of increased MUC4 transcripts in a variety of non-small-cell lung cancers indicates the potential importance of this type of mucin in lung cancer biology.

  1. Can lung function measurements be used to predict which patients will be at risk of developing interstitial pneumonitis after bone marrow transplantation?

    PubMed

    Milburn, H J; Prentice, H G; du Bois, R M

    1992-06-01

    Lung function often deteriorates after bone marrow transplantation for haematological malignancies. Whether pulmonary function measurements are useful for monitoring patients' progress after transplantation and for alerting clinicians to the development of pneumonitis is uncertain. Serial pulmonary function measurements were made in 39 patients with a haematological malignancy, and the values from 18 recipients of T cell depleted allogeneic (n = 17) or autologous (n = 1) bone marrow transplants who developed interstitial pneumonitis were compared retrospectively with values from 21 recipients of allogeneic (n = 17) or autologous (n = 4) transplants who did not develop pneumonitis. Lung function was measured at the onset of a further 18 episodes of pneumonitis. Measurements made before transplantation showed no difference in forced expiratory volume in one second (FEV1), transfer factor for carbon monoxide (TLCO), or total lung capacity between the two groups, but the forced vital capacity (FVC) was slightly higher in those who developed pneumonitis (mean (SD)% predicted 104 (12)) than in those who did not (93 (17%)). Six weeks and three months after transplantation all pulmonary function measurements had fallen slightly in both groups but TLCO had fallen considerably more in those who later developed pneumonitis, being 71% (SD 11%) and 77% (7%) of pretransplant values in patients who later developed pneumonitis compared with 109% (38%) and 96% (26%) in those who did not. All lung function measurements were significantly lower at the onset of pneumonitis than three months after transplantation, even in patients with no abnormal signs and a normal chest radiograph. Serial measurements of gas transfer before and after bone marrow transplantation may be useful for predicting which patients will be at risk of developing pneumonitis and may help to diagnose pneumonitis in breathless patients with no abnormal signs.

  2. Sex steroid signaling: implications for lung diseases.

    PubMed

    Sathish, Venkatachalem; Martin, Yvette N; Prakash, Y S

    2015-06-01

    There is increasing recognition that sex hormones (estrogen, progesterone, and testosterone) have biological and pathophysiological actions in peripheral, non-reproductive organs, including the lung. Clinically, sex differences in the incidence, morbidity and mortality of lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, lung cancer and pulmonary hypertension have been noted, although intrinsic sex differences vs. the roles of sex steroids are still not well-understood. Accordingly, it becomes important to ask the following questions: 1) Which sex steroids are involved? 2) How do they affect different components of the lung under normal circumstances? 3) How does sex steroid signaling change in or contribute to lung disease, and in this regard, are sex steroids detrimental or beneficial? As our understanding of sex steroid signaling in the lung improves, it is important to consider whether such information can be used to develop new therapeutic strategies to target lung diseases, perhaps in both sexes or in a sex-specific manner. In this review, we focus on the basics of sex steroid signaling, and the current state of knowledge regarding how they influence structure and function of specific lung components across the life span and in the context of some important lung diseases. We then summarize the potential for sex steroids as useful biomarkers and therapeutic targets in these lung diseases as a basis for future translational research in the area of gender and individualized medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Diagnosing lung cancer using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Yang, Yaliang; Xing, Jiong; Thrall, Michael J.; Wang, Zhiyong; Li, Fuhai; Luo, Pengfei; Wong, Kelvin K.; Zhao, Hong; Wong, Stephen T. C.

    2011-03-01

    Lung carcinoma is the most prevalent type of cancer in the world, and it is responsible for more deaths than other types of cancer. During diagnosis, a pathologist primarily aims to differentiate small cell carcinoma from non-small cell carcinoma on biopsy and cytology specimens, which is time consuming due to the time required for tissue processing and staining. To speed up the diagnostic process, we investigated the feasibility of using coherent anti-Stokes Raman scattering (CARS) microscopy as a label-free strategy to image lung lesions and differentiate subtypes of lung cancers. Different mouse lung cancer models were developed by injecting human lung cancer cell lines, including adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, into lungs of the nude mice. CARS images were acquired from normal lung tissues and different subtypes of cancer lesions ex vivo using intrinsic contrasts from symmetric CH2 bonds. These images showed good correlation with the hematoxylin and eosin (H&E) stained sections from the same tissue samples with regard to cell size, density, and cell-cell distance. These features are routinely used in diagnosing lung lesions. Our results showed that the CARS technique is capable of providing a visualizable platform to differentiate different kinds of lung cancers using the same pathological features without histological staining and thus has the potential to serve as a more efficient examination tool for diagnostic pathology. In addition, incorporating with suitable fiber-optic probes would render the CARS technique as a promising approach for in vivo diagnosis of lung cancer.

  4. A preclinical rodent model of acute radiation-induced lung injury after ablative focal irradiation reflecting clinical stereotactic body radiotherapy.

    PubMed

    Hong, Zhen-Yu; Lee, Hae-June; Choi, Won Hoon; Lee, Yoon-Jin; Eun, Sung Ho; Lee, Jung Il; Park, Kwangwoo; Lee, Ji Min; Cho, Jaeho

    2014-07-01

    In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Masson's trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.

  5. Time-series analysis of lung texture on bone-suppressed dynamic chest radiograph for the evaluation of pulmonary function: a preliminary study

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Matsuda, Hiroaki; Sanada, Shigeru

    2017-03-01

    The density of lung tissue changes as demonstrated on imagery is dependent on the relative increases and decreases in the volume of air and lung vessels per unit volume of lung. Therefore, a time-series analysis of lung texture can be used to evaluate relative pulmonary function. This study was performed to assess a time-series analysis of lung texture on dynamic chest radiographs during respiration, and to demonstrate its usefulness in the diagnosis of pulmonary impairments. Sequential chest radiographs of 30 patients were obtained using a dynamic flat-panel detector (FPD; 100 kV, 0.2 mAs/pulse, 15 frames/s, SID = 2.0 m; Prototype, Konica Minolta). Imaging was performed during respiration, and 210 images were obtained over 14 seconds. Commercial bone suppression image-processing software (Clear Read Bone Suppression; Riverain Technologies, Miamisburg, Ohio, USA) was applied to the sequential chest radiographs to create corresponding bone suppression images. Average pixel values, standard deviation (SD), kurtosis, and skewness were calculated based on a density histogram analysis in lung regions. Regions of interest (ROIs) were manually located in the lungs, and the same ROIs were traced by the template matching technique during respiration. Average pixel value effectively differentiated regions with ventilatory defects and normal lung tissue. The average pixel values in normal areas changed dynamically in synchronization with the respiratory phase, whereas those in regions of ventilatory defects indicated reduced variations in pixel value. There were no significant differences between ventilatory defects and normal lung tissue in the other parameters. We confirmed that time-series analysis of lung texture was useful for the evaluation of pulmonary function in dynamic chest radiography during respiration. Pulmonary impairments were detected as reduced changes in pixel value. This technique is a simple, cost-effective diagnostic tool for the evaluation of regional pulmonary function.

  6. Aberrant microRNA-137 promoter methylation is associated with lymph node metastasis and poor clinical outcomes in non-small cell lung cancer

    PubMed Central

    Min, Lingfeng; Wang, Fang; Hu, Suwei; Chen, Yong; Yang, Junjun; Liang, Sudong; Xu, Xingxiang

    2018-01-01

    MicroRNA-137 (miR-137) functions as a tumor suppressor and is silenced by aberrant promoter methylation. Previous studies have demonstrated that miR-137 is downregulated in lung cancer. The purpose of the present study was to investigate miR-137 promoter methylation and to assess its prognostic value in non-small cell lung cancer (NSCLC). The expression of miR-137 was analyzed inhuman lung cancer A549 and H1299 cells and normal bronchial epithelial BEAS-2B cells, 10 paired formalin-fixed paraffin-embedded lung cancer and normal tissue samples, and 56 archived paraffin-embedded lung cancer tissues. Quantitative methylation-specific polymerase chain reaction analysis was used to assess the miR-137 methylation status. The associations between miR-137 promoter methylation and the clinicopathological features and prognosis of patients with NSCLC (n=56) were analyzed using analysis of variance. miR-137 was markedly downregulated in lung cancer cells and lung cancer tissue specimens compared with expression in BEAS-2B cells and matched adjacent normal lung tissues. A significant negative correlation between miR-137 expression and miR-137 promoter methylation was observed in human lung cancer tissues (r=−0.343; P=0.01). Smoking, lymph node metastasis and advanced clinical stage were associated with significantly lower expression of miR-137 in variance analysis. High levels of miR-137 promoter methylation were associated with a significantly poorer disease-free survival rate (P=0.034), but were not associated with overall survival, in Kaplan-Meier analysis and univariate analysis. In conclusion, the results of the present study indicated that miR-137 is downregulated and that its promoter is aberrantly methylated in lung cancer, and that high levels of miR-137 promoter methylation may have prognostic value for poor disease-free survival. PMID:29740491

  7. Prenatal retinoic acid treatment upregulates late gestation lung protein 1 in the nitrofen-induced hypoplastic lung in late gestation.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-02-01

    Pulmonary hypoplasia (PH), the leading cause of mortality in congenital diaphragmatic hernia (CDH), is associated with arrested alveolarization. Late gestation lung protein 1 (LGL1) plays a crucial role in the regulation of alveolarization. Inhibition of LGL1 impairs alveolar maturation in fetal rat lungs. LGL1 heterozygotus knockout mice display delayed lung maturation. It is well known that prenatal administration of retinoic acid (RA) stimulates alveologenesis in nitrofen-induced PH. In vitro studies have reported that RA is a key modulator of LGL1 during alveologenesis. We hypothesized, that pulmonary gene expression of LGL1 is downregulated in the late stage of lung development, and that prenatal administration of RA upregulates pulmonary LGL1 expression in the nitrofen CDH model. Pregnant rats were exposed to nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on D18, D19 and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH and CDH + RA group. Expression levels of LGL1 were determined using RT-PCR and immunohistochemistry. On D21, LGL1 relative mRNA expression levels were significantly downregulated in CDH group compared to controls. After RA treatment, gene expression levels of LGL1 were significantly upregulated in CDH + RA and control + RA compared to CDH group. Immunohistochemical studies confirmed these results. Downregulation of pulmonary LGL1 gene expression in the late stage of lung development may interfere with normal alveologenesis. Upregulation of LGL1 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in the nitrofen CDH model.

  8. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    PubMed

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  9. [Lung dysfunction in patients with mild chronic obstructive bronchitis].

    PubMed

    Nefedov, V B; Popova, L A; Shergina, E A

    2004-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Ravt, Riin, Rex, DLCO-SS, PaO2, and PaO2 were determined in 33 patients with mild chronic obstructive lung disease (FEV1 > 70% of the normal value). All the patients were found to have impaired bronchial patency; most (63.6%) patients had lung volume and capacity changes, almost half (45.5%) the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased MEF50, MEF15, and FEV1/VC%; altered lung volumes and capacities manifested chiefly by increased RV and decreased VC; pulmonary gas exchange dysfunction showed up primarily as lowered PaO2. The magnitude of the observed functional changes was generally slight. MEF50, MEF75, FEV1/VC%, and VC dropped to 59-20 and 79-70% of the normal value, respectively. RV increased up to 142-196% of the normal value; PaO2 reduced up to 79-60% mm Hg.

  10. β2-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence.

    PubMed

    Gao, Na; Wang, Ying; Zheng, Chun-Ming; Gao, Yan-Li; Li, Hui; Li, Yan; Fu, Ting-Ting; Xu, Li-Li; Wang, Wei; Ying, Sun; Huang, Kewu

    2017-05-01

    β 2 -Microglobulin (β 2 M), the light chain of the major histocompatibility complex class I (MHC I), has been identified as a proaging factor and is involved in the pathogenesis of neurodegenerative disorders by driving cognitive and regenerative impairments. However, little attention has focused on the effect of β 2 M in the development of lung emphysema. Here, we found that concentrations of β 2 M in plasma were significantly elevated in patients with lung emphysema than those in normal control subjects (1.89 ± 0.12 vs. 1.42 ± 0.06 mg/l, P < 0.01). Moreover, the expression of β 2 M was significantly higher in lung tissue of emphysema (39.90 ± 1.97 vs. 23.94 ± 2.11%, P < 0.01). Immunofluorescence showed that β 2 M was mainly expressed in prosurfactant protein C-positive (pro-SPC + ) alveolar epithelial cells and CD14 + macrophages. Exposure to recombinant human β 2 M and cigarette smoke extract (CSE) in vitro enhanced cellular senescence and inhibited proliferation of A549 cells, which was partially reversed by the presence of anti-β 2 M antibody. However, anti-β 2 M antibody did not attenuate the elevated production of IL-1β, IL-6, and TNF-α in A549 cells that were exposed to CSE. Immunofluorescence showed that colocalization of β 2 M, and the hemochromatosis gene (HFE) protein was observed on A549 cells. These data suggest β 2 M might participate in the development of lung emphysema through induction of lung epithelial cell senescence and inhibition. Copyright © 2017 the American Physiological Society.

  11. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, H; Xia, P; Yu, N

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dosemore » was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.« less

  12. Lung function not affected by asbestos exposure in workers with normal Computed Tomography scan.

    PubMed

    Schikowsky, Christian; Felten, Michael K; Eisenhawer, Christian; Das, Marco; Kraus, Thomas

    2017-05-01

    It has been suggested that asbestos exposure affects lung function, even in the absence of asbestos-related pulmonary interstitial or pleural changes or emphysema. We analyzed associations between well-known asbestos-related risk factors, such as individual cumulative asbestos exposure, and key lung function parameters in formerly asbestos-exposed power industry workers (N = 207) with normal CT scans. For this, we excluded participants with emphysema, fibrosis, pleural changes, or any combination of these. The lung function parameters of FVC, FEV1, DLCO/VA, and airway resistance were significantly associated with the burden of smoking, BMI and years since end of exposure (only DLCO/VA). However, they were not affected by factors directly related to amount (eg, cumulative exposure) or duration of asbestos exposure. Our results confirm the well-known correlation between lung function, smoking habits, and BMI. However, we found no significant association between lung function and asbestos exposure. © 2017 Wiley Periodicals, Inc.

  13. Algorithm of pulmonary emphysema extraction using thoracic 3-D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2008-03-01

    Emphysema patients have the tendency to increase due to aging and smoking. Emphysematous disease destroys alveolus and to repair is impossible, thus early detection is essential. CT value of lung tissue decreases due to the destruction of lung structure. This CT value becomes lower than the normal lung- low density absorption region or referred to as Low Attenuation Area (LAA). So far, the conventional way of extracting LAA by simple thresholding has been proposed. However, the CT value of CT image fluctuates due to the measurement conditions, with various bias components such as inspiration, expiration and congestion. It is therefore necessary to consider these bias components in the extraction of LAA. We removed these bias components and we proposed LAA extraction algorithm. This algorithm has been applied to the phantom image. Then, by using the low dose CT(normal: 30 cases, obstructive lung disease: 26 cases), we extracted early stage LAA and quantitatively analyzed lung lobes using lung structure.

  14. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer.

    PubMed

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T C

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. A case of systemic arterial supply to the right lower lobe of the lung: imaging findings and review of the literature.

    PubMed

    Mautone, Marcela; Naidoo, Parm

    2014-03-01

    Systemic arterialization of the lung without pulmonary sequestration is the rarest form of anomalous systemic arterial supply to the lung. This condition is characterised by an aberrant arterial branch arising from the aorta which supplies an area of lung parenchyma with normal bronchopulmonary anatomy. It is often diagnosed following investigation of an incidental cardiac murmur or based on abnormal imaging, as most patients are asymptomatic or minimally symptomatic. Thoracic computed tomography and computed tomography angiography are generally the most useful diagnostic tests. We present a case of a 22-year old female who was diagnosed with systemic arterial supply to a portion of otherwise normal right lower lobe following investigation of low volume haemoptysis.

  16. An open question.

    PubMed

    Ayling, John

    2004-01-01

    The lungs are surrounded by the pleural membranes. The visceral pleura directly covers the lung and is separated from the parietal pleura by a layer of surfactant, which reduces friction during respiratory movement. A potential space exists between these two layers, and they may become separated by fluid or air. A lung can collapse to the size of a fist under pressure from either. Standard treatment in the field for an open chest wound is an occlusive dressing. The first thing that can be used to occlude the wound is a gloved hand. After placing the dressing, evaluate the breath sounds and determine if they have improved. The dressing should be taped down on three sides, leaving one side open to relieve the pressure during exhalation (one-way valve). "Burping" the dressing involves lifting one side to make sure any pressure buildup is relieved, as occasionally the dressing can become adhered to the skin, which may lead to a tension pneumothorax. If, after ensuring the occlusive dressing is properly in place, the respiratory rate increases, distress level worsens, oxygen saturations fall and breath sounds decrease, then needle decompression is required. A neurovascular bundle is located underneath each rib, and it is important to avoid damage to that bundle by performing a decompression over the top of a rib. If the patient is intubated before the development of a tension pneumothorax, carefully evaluate the breath sounds (especially if the left-side sounds are diminished) to determine if the ET tube needs to be withdrawn a centimeter. The rescuer performing ventilation will usually recognize a tension pneumothorax by the difficulty in bagging the patient. Remember, when you perform a needle thoracentesis, you are creating an open chest wound. Early signs and symptoms of a tension pneumothorax include diminished or absent breath sounds, severe dyspnea, narrowing pulse pressure, tachycardia and restlessness. Neck veins may be distended, but this can be a normal finding in a supine patient. The classic sign is a deviated trachea; the trachea shifts toward the "good" lung as the buildup of pressure collapses the "bad" lung. This is a late sign and suggests the tension pneumothorax has been developing for some time. One sign that does not normally accompany a plain pneumothorax is hypotension. In this case, the persistent low BP, combined with cool, mottled skin and a delayed capillary refill time, led providers to suspect that a hemothorax was developing as well. With endotracheal intubation and pleural decompression, the positive-pressure ventilations allowed the affected right lung to inflate more fully, utilize more of the available alveolar space and "bag out" some of the blood pooling at the base. The patient's vital signs and saturation improved. He needed surgical treatment and removal of the blood in the pleural space before ventilation and oxygenation could normalize.

  17. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells

    PubMed Central

    Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako

    2015-01-01

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047

  18. Sivelestat sodium hydrate attenuates acute lung injury by decreasing systemic inflammation in a rat model of severe burns.

    PubMed

    Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P

    2016-01-01

    Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved symptoms of ALI and significantly decreased inflammatory parameters NE and IL-8.

  19. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    PubMed

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.

  20. Beta-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice

    USDA-ARS?s Scientific Manuscript database

    Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosa...

  1. Trace element analysis by PIXE in several biomedical fields

    NASA Astrophysics Data System (ADS)

    Weber, G.; Robaye, G.; Bartsch, P.; Collignon, A.; Beguin, Y.; Roelandts, I.; Delbrouck, J. M.

    1984-04-01

    Since 1980 in the University of Liége trace element analysis by PIXE has been developed in several directions, among these: the elemental composition of lung parenchyma, hilar lymph nodes, blood content in hematological disorders and renal insufficiency. The content in trace elements of lung tumor and surrounding tissue is measured and compared to similar content previously obtained on unselected patients of comparable ages. The normalization of the bromine deficiency observed in hemodialized patients is achieved by using a dialyzing bath doped with NaBr in order to obtain a normal bromine level of 5.7 μg/ml. The content of Cu, Zn, Br and Se in blood serum from more than 100 patients suffering from malignant hemopathy has been measured. The results are compared with a reference group. These oligoelements have also been measured sequentially for patients under intensive chemotherapy in acute myeloid leukemia.

  2. IgA antibasement membrane nephritis with pulmonary hemorrhage.

    PubMed

    Border, W A; Baehler, R W; Bhathena, D; Glassock, R J

    1979-07-01

    Goodpasture's syndrome has characteristically been described as being mediated by IgG antibodies. We have recently seen a 55-year-old man who developed renal failure and hemoptysis; a renal biopsy showed linear deposits of IgA and C3 involving glomerular and tubular basement membrane. Serologic tests for detecting (IgG) antiglomerular basement membrane antibodies were negative. Elution studies of kidney and lung showed the presence of an IgA antibasement membrane antibody only. The patient's serum contained IgA, but not IgG, antibodies reactive with glomerular and tubular basement membrane of normal human kidney and alveolar basement membrane of normal human lung. Attempts to transfer disease with the patient's IgA antibody to a monkey and to Lewis and Brown-Norway rats were unsuccessful. Immunoglobulin A antibasement membrane antibody must be considered in the design of immunoserologic procedures for the diagnosis of Goodpasture's syndrome.

  3. Long-term follow-up of ventilator treated low birthweight infants. I. Chest X-ray, pulmonary mechanics, clinical lung disease and growth.

    PubMed

    Lindroth, M; Mortensson, W

    1986-09-01

    Chest X-ray, pulmonary mechanics, clinical lung disease and growth were studied in 48 low birthweight infants surviving after ventilator treatment in the neonatal period. Bronchopulmonary dysplasia (BPD) was present in 14 infants shortly after weaning off ventilator. At 4 to 6 years of age most patients had normal chest radiographs but 13 still showed signs of pulmonary fibrosis and hyperinflation. Most patients had low dynamic compliance and high pulmonary resistance shortly after ventilator treatment. All but 8, however, had normal findings at 1 to 1 1/2 years of age. Pneumonias and bronchitis were common during the first two years but thereafter declined in frequency. Weight and length development were retarded for BPD patients during the first two years and for non-BPD patients for the first year. Both groups had a complete catch-up.

  4. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  5. Detection of early changes in lung cell cytology by flow-systems analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1976-12-01

    This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory cells in test animals exposed by inhalation to toxic agents associated with nonnuclear energy production, the specific goal being the application of advanced multiparameter flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. Normal Syrian hamster lung cell samples composed of macrophages, leukocytes, ciliated columnar cells, and epithelial cells were stained with fluorescent dyes specific for different biochemical parameters and were analyzed in liquid suspension as they flowed through a chamber intersecting a laser beam of exciting light.more » Multiple sensors measured the total or two-color fluorescence and light scatter on a cell-by-cell basis. Cellular parameters proportional to optical measurements (i.e., cell size, DNA content, total protein, nonspecific esterase activity, nuclear and cytoplasmic diameters) were displayed as frequency distribution histograms. Lung cell samples were also separated according to various cytological parameters and identified microscopically. The basic operating features of the methodology are discussed briefly, along with specific examples of preliminary results illustrating the initial characterization of exfoliated pulmonary cells from normal hamsters. As the flow technology is adapted further to the analysis of respiratory cells, measurements of changes in physical and biochemical properties as a function of exposure to toxic agents will be performed.« less

  6. Sensitivity and specificity of 3-D texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in stage 0 COPD

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Sonka, Milan; McLennan, Geoffrey; Guo, Junfeng; Hoffman, Eric

    2005-04-01

    Lung parenchyma evaluation via multidetector-row CT (MDCT), has significantly altered clinical practice in the early detection of lung disease. Our goal is to enhance our texture-based tissue classification ability to differentiate early pathologic processes by extending our 2-D Adaptive Multiple Feature Method (AMFM) to 3-D AMFM. We performed MDCT on 34 human volunteers in five categories: emphysema in severe Chronic Obstructive Pulmonary Disease (COPD) as EC, emphysema in mild COPD (MC), normal appearing lung in COPD (NC), non-smokers with normal lung function (NN), smokers with normal function (NS). We volumetrically excluded the airway and vessel regions, calculated 24 volumetric texture features for each Volume of Interest (VOI); and used Bayesian rules for discrimination. Leave-one-out and half-half methods were used for testing. Sensitivity, specificity and accuracy were calculated. The accuracy of the leave-one-out method for the four-class classification in the form of 3-D/2-D is: EC: 84.9%/70.7%, MC: 89.8%/82.7%; NC: 87.5.0%/49.6%; NN: 100.0%/60.0%. The accuracy of the leave-one-out method for the two-class classification in the form of 3-D/2-D is: NN: 99.3%/71.6%; NS: 99.7%/74.5%. We conclude that 3-D AMFM analysis of the lung parenchyma improves discrimination compared to 2-D analysis of the same images.

  7. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  8. Discrimination and quantification of autofluorescence spectra of human lung cells

    NASA Astrophysics Data System (ADS)

    Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria

    2016-10-01

    To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.

  9. Detection of early subclinical lung disease in children with cystic fibrosis by lung ventilation imaging with hyperpolarised gas MRI.

    PubMed

    Marshall, Helen; Horsley, Alex; Taylor, Chris J; Smith, Laurie; Hughes, David; Horn, Felix C; Swift, Andrew J; Parra-Robles, Juan; Hughes, Paul J; Norquay, Graham; Stewart, Neil J; Collier, Guilhem J; Teare, Dawn; Cunningham, Steve; Aldag, Ina; Wild, Jim M

    2017-08-01

    Hyperpolarised 3 He ventilation-MRI, anatomical lung MRI, lung clearance index (LCI), low-dose CT and spirometry were performed on 19 children (6-16 years) with clinically stable mild cystic fibrosis (CF) (FEV 1 >-1.96), and 10 controls. All controls had normal spirometry, MRI and LCI. Ventilation-MRI was the most sensitive method of detecting abnormalities, present in 89% of patients with CF, compared with CT abnormalities in 68%, LCI 47% and conventional MRI 22%. Ventilation defects were present in the absence of CT abnormalities and in patients with normal physiology, including LCI. Ventilation-MRI is thus feasible in young children, highly sensitive and provides additional information about lung structure-function relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Quantifying the impact of respiratory-gated 4D CT acquisition on thoracic image quality: A digital phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernatowicz, K., E-mail: kingab@student.ethz.ch; Knopf, A.; Lomax, A.

    Purpose: Prospective respiratory-gated 4D CT has been shown to reduce tumor image artifacts by up to 50% compared to conventional 4D CT. However, to date no studies have quantified the impact of gated 4D CT on normal lung tissue imaging, which is important in performing dose calculations based on accurate estimates of lung volume and structure. To determine the impact of gated 4D CT on thoracic image quality, the authors developed a novel simulation framework incorporating a realistic deformable digital phantom driven by patient tumor motion patterns. Based on this framework, the authors test the hypothesis that respiratory-gated 4D CTmore » can significantly reduce lung imaging artifacts. Methods: Our simulation framework synchronizes the 4D extended cardiac torso (XCAT) phantom with tumor motion data in a quasi real-time fashion, allowing simulation of three 4D CT acquisition modes featuring different levels of respiratory feedback: (i) “conventional” 4D CT that uses a constant imaging and couch-shift frequency, (ii) “beam paused” 4D CT that interrupts imaging to avoid oversampling at a given couch position and respiratory phase, and (iii) “respiratory-gated” 4D CT that triggers acquisition only when the respiratory motion fulfills phase-specific displacement gating windows based on prescan breathing data. Our framework generates a set of ground truth comparators, representing the average XCAT anatomy during beam-on for each of ten respiratory phase bins. Based on this framework, the authors simulated conventional, beam-paused, and respiratory-gated 4D CT images using tumor motion patterns from seven lung cancer patients across 13 treatment fractions, with a simulated 5.5 cm{sup 3} spherical lesion. Normal lung tissue image quality was quantified by comparing simulated and ground truth images in terms of overall mean square error (MSE) intensity difference, threshold-based lung volume error, and fractional false positive/false negative rates. Results: Averaged across all simulations and phase bins, respiratory-gating reduced overall thoracic MSE by 46% compared to conventional 4D CT (p ∼ 10{sup −19}). Gating leads to small but significant (p < 0.02) reductions in lung volume errors (1.8%–1.4%), false positives (4.0%–2.6%), and false negatives (2.7%–1.3%). These percentage reductions correspond to gating reducing image artifacts by 24–90 cm{sup 3} of lung tissue. Similar to earlier studies, gating reduced patient image dose by up to 22%, but with scan time increased by up to 135%. Beam paused 4D CT did not significantly impact normal lung tissue image quality, but did yield similar dose reductions as for respiratory-gating, without the added cost in scanning time. Conclusions: For a typical 6 L lung, respiratory-gated 4D CT can reduce image artifacts affecting up to 90 cm{sup 3} of normal lung tissue compared to conventional acquisition. This image improvement could have important implications for dose calculations based on 4D CT. Where image quality is less critical, beam paused 4D CT is a simple strategy to reduce imaging dose without sacrificing acquisition time.« less

  11. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Kai, E-mail: gk161@163.com; Department of Respiration, 161th Hospital, PLA, Wuhan 430015; Jin, Faguang, E-mail: jinfag@fmmu.edu.cn

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5more » also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.« less

  12. Resonance Raman Spectroscopy of human brain metastasis of lung cancer analyzed by blind source separation

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Pu, Yang; Cheng, Gangge; Yu, Xinguang; Zhou, Lixin; Lin, Dongmei; Zhu, Ke; Alfano, Robert R.

    2017-02-01

    Resonance Raman (RR) spectroscopy offers a novel Optical Biopsy method in cancer discrimination by a means of enhancement in Raman scattering. It is widely acknowledged that the RR spectrum of tissue is a superposition of spectra of various key building block molecules. In this study, the Resonance Raman (RR) spectra of human metastasis of lung cancerous and normal brain tissues excited by a visible selected wavelength at 532 nm are used to explore spectral changes caused by the tumor evolution. The potential application of RR spectra human brain metastasis of lung cancer was investigated by Blind Source Separation such as Principal Component Analysis (PCA). PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components (PCs). The results show significant RR spectra difference between human metastasis of lung cancerous and normal brain tissues analyzed by PCA. To evaluate the efficacy of for cancer detection, a linear discriminant analysis (LDA) classifier is utilized to calculate the sensitivity, and specificity and the receiver operating characteristic (ROC) curves are used to evaluate the performance of this criterion. Excellent sensitivity of 0.97, specificity (close to 1.00) and the Area Under ROC Curve (AUC) of 0.99 values are achieved under best optimal circumstance. This research demonstrates that RR spectroscopy is effective for detecting changes of tissues due to the development of brain metastasis of lung cancer. RR spectroscopy analyzed by blind source separation may have potential to be a new armamentarium.

  13. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series)

    PubMed Central

    Kropski, Jonathan A.; Richmond, Bradley W.; Gaskill, Christa F.; Foronjy, Robert F.

    2017-01-01

    Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis. PMID:29040010

  14. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    PubMed

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  15. No Clinically Significant Changes in Pulmonary Function Following Stereotactic Body Radiation Therapy for Early- Stage Peripheral Non-Small Cell Lung Cancer: An Analysis of RTOG 0236

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanic, Sinisa, E-mail: sinisa.stanic@carle.com; Paulus, Rebecca; Timmerman, Robert D.

    2014-04-01

    Purpose: To investigate pulmonary function test (PFT) results and arterial blood gas changes (complete PFT) following stereotactic body radiation therapy (SBRT) and to see whether baseline PFT correlates with lung toxicity and overall survival in medically inoperable patients receiving SBRT for early stage, peripheral, non-small cell lung cancer (NSCLC). Methods and Materials: During the 2-year follow-up, PFT data were collected for patients with T1-T2N0M0 peripheral NSCLC who received effectively 18 Gy × 3 in a phase 2 North American multicenter study (Radiation Therapy Oncology Group [RTOG] protocol 0236). Pulmonary toxicity was graded by using the RTOG SBRT pulmonary toxicity scale. Paired Wilcoxon signedmore » rank test, logistic regression model, and Kaplan-Meier method were used for statistical analysis. Results: At 2 years, mean percentage predicted forced expiratory volume in the first second and diffusing capacity for carbon monoxide declines were 5.8% and 6.3%, respectively, with minimal changes in arterial blood gases and no significant decline in oxygen saturation. Baseline PFT was not predictive of any pulmonary toxicity following SBRT. Whole-lung V5 (the percentage of normal lung tissue receiving 5 Gy), V10, V20, and mean dose to the whole lung were almost identical between patients who developed pneumonitis and patients who were pneumonitis-free. Poor baseline PFT did not predict decreased overall survival. Patients with poor baseline PFT as the reason for medical inoperability had higher median and overall survival rates than patients with normal baseline PFT values but with cardiac morbidity. Conclusions: Poor baseline PFT did not appear to predict pulmonary toxicity or decreased overall survival after SBRT in this medically inoperable population. Poor baseline PFT alone should not be used to exclude patients with early stage lung cancer from treatment with SBRT.« less

  16. Performance comparison of quantitative semantic features and lung-RADS in the National Lung Screening Trial

    NASA Astrophysics Data System (ADS)

    Li, Qian; Balagurunathan, Yoganand; Liu, Ying; Schabath, Matthew; Gillies, Robert J.

    2016-03-01

    Background: Lung-RADS is the new oncology classification guideline proposed by American College of Radiology (ACR), which provides recommendation for further follow up in lung cancer screening. However, only two features (solidity and size) are included in this system. We hypothesize that additional sematic features can be used to better characterize lung nodules and diagnose cancer. Objective: We propose to develop and characterize a systematic methodology based on semantic image traits to more accurately predict occurrence of cancerous nodules. Methods: 24 radiological image traits were systematically scored on a point scale (up to 5) by a trained radiologist, and lung-RADS was independently scored. A linear discriminant model was used on the semantic features to access their performance in predicting cancer status. The semantic predictors were then compared to lung-RADS classification in 199 patients (60 cancers, 139 normal controls) obtained from the National Lung Screening Trial. Result: There were different combinations of semantic features that were strong predictors of cancer status. Of these, contour, border definition, size, solidity, focal emphysema, focal fibrosis and location emerged as top candidates. The performance of two semantic features (short axial diameter and contour) had an AUC of 0.945, and was comparable to that of lung-RADS (AUC: 0.871). Conclusion: We propose that a semantics-based discrimination approach may act as a complement to the lung-RADS to predict cancer status.

  17. Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target

    PubMed Central

    Watanabe, Hideo; Francis, Joshua M.; Woo, Michele S.; Etemad, Banafsheh; Lin, Wenchu; Fries, Daniel F.; Peng, Shouyong; Snyder, Eric L.; Tata, Purushothama Rao; Izzo, Francesca; Schinzel, Anna C.; Cho, Jeonghee; Hammerman, Peter S.; Verhaak, Roel G.; Hahn, William C.; Rajagopal, Jayaraj; Jacks, Tyler; Meyerson, Matthew

    2013-01-01

    The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas. PMID:23322301

  18. Chronic aspiration of gastric fluid induces the development of obliterative bronchiolitis in rat lung transplants.

    PubMed

    Li, B; Hartwig, M G; Appel, J Z; Bush, E L; Balsara, K R; Holzknecht, Z E; Collins, B H; Howell, D N; Parker, W; Lin, S S; Davis, R D

    2008-08-01

    Long-term survival of a pulmonary allograft is currently hampered by obliterative bronchiolitis (OB), a form of chronic rejection that is unique to lung transplantation. While tracheobronchial aspiration from gastroesophageal reflux disease (GERD) has clinically been associated with OB, no experimental model exists to investigate this problem. Using a WKY-to-F344 rat orthotopic left lung transplant model, the effects of chronic aspiration on pulmonary allograft were evaluated. Recipients received cyclosporine with or without 8 weekly aspirations of gastric fluid into the allograft. Six (66.7%) of 9 allografts with aspiration demonstrated bronchioles with surrounding monocytic infiltrates, fibrosis and loss of normal lumen anatomy, consistent with the development of OB. In contrast, none of the allografts without aspiration (n = 10) demonstrated these findings (p = 0.002). Of the grafts examined grossly, 83% of the allografts with chronic aspiration but only 20% without aspiration appeared consolidated (p = 0.013). Aspiration was associated with increased levels of IL-1 alpha, IL-1 beta, IL-6, IL-10, TNF-alpha and TGF-beta in BAL and of IL-1 alpha, IL-4 and GM-CSF in serum. This study provides experimental evidence linking chronic aspiration to the development of OB and suggests that strategies aimed at preventing aspiration-related injuries might improve outcomes in clinical lung transplantation.

  19. ANG-1 TIE-2 and BMPR Signalling Defects Are Not Seen in the Nitrofen Model of Pulmonary Hypertension and Congenital Diaphragmatic Hernia

    PubMed Central

    Corbett, Harriet Jane; Connell, Marilyn Gwen; Fernig, David Garth

    2012-01-01

    Background Pulmonary hypertension (PH) is a lethal disease that is associated with characteristic histological abnormalities of the lung vasculature and defects of angiopoetin-1 (ANG-1), TIE-2 and bone morphogenetic protein receptor (BMPR)-related signalling. We hypothesized that if these signalling defects cause PH generically, they will be readily identifiable perinatally in congenital diaphragmatic hernia (CDH), where the typical pulmonary vascular changes are present before birth and are accompanied by PH after birth. Methods CDH (predominantly left-sided, LCDH) was created in Sprague-Dawley rat pups by e9.5 maternal nitrofen administration. Left lungs from normal and LCDH pups were compared at fetal and postnatal time points for ANG-1, TIE-2, phosphorylated-TIE-2, phosphorylated-SMAD1/5/8 and phosphorylated-ERK1/2 by immunoprecipitation and Western blotting of lung protein extracts and by immunohistochemistry on lung sections. Results In normal lung, pulmonary ANG-1 protein levels fall between fetal and postnatal life, while TIE-2 levels increase. Over the corresponding time period, LCDH lung retained normal expression of ANG-1, TIE-2, phosphorylated-TIE-2 and, downstream of BMPR, phosphorylated-SMAD1/5/8 and phosphorylated-p44/42. Conclusion In PH and CDH defects of ANG-1/TIE-2/BMPR-related signalling are not essential for the lethal vasculopathy. PMID:22539968

  20. Sox17 is required for normal pulmonary vascular morphogenesis

    PubMed Central

    Lange, Alexander W.; Haitchi, Hans Michael; LeCras, Timothy D.; Sridharan, Anusha; Xu, Yan; Wert, Susan E.; James, Jeanne; Udell, Nicholas; Thurner, Philipp J.; Whitsett, Jeffrey A.

    2015-01-01

    The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis. PMID:24418654

  1. Noninvasive measurement of lung carbon-11-serotonin extraction in man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, G.; Firnau, G.; Meyer, G.J.

    1991-04-01

    The fraction of serotonin extracted on a single passage through the lungs is being used as an early indicator of lung endothelial damage but the existing techniques require multiple arterial blood samples. We have developed a noninvasive technique to measure lung serotonin uptake in man. We utilized the double indicator diffusion principle, a positron camera, {sup 11}C-serotonin as the substrate, and {sup 11}CO-erythrocytes as the vascular marker. From regions of interest around each lung, we recorded time-activity curves in 0.5-sec frames for 30 sec after a bolus injection of first the vascular marker {sup 11}CO-erythrocytes and 10 min later {supmore » 11}C-serotonin. A second uptake measurement was made after imipramine 25-35 mg was infused intravenously. In three normal volunteers, the single-pass uptake of {sup 11}C-serotonin was 63.9% +/- 3.6%. This decreased in all subjects to a mean of 53.6% +/- 1.4% after imipramine. The rate of lung washout of {sup 11}C was also significantly prolonged after imipramine. This noninvasive technique can be used to measure lung serotonin uptake to detect early changes in a variety of conditions that alter the integrity of the pulmonary endothelium.« less

  2. Thoracic Insufficiency Syndrome

    MedlinePlus

    ... Patients with this condition can't maintain normal respiration or lung growth. The thorax (spine, rib cage, and sternum) is the engine of respiration. It must have adequate space for the lungs ...

  3. The Prognosis of Small Cell Lung Cancer in Patients with Pulmonary Fibrosis.

    PubMed

    Matsumoto, Yoko; Ohara, Sayaka; Furukawa, Ryutaro; Usui, Kazuhiro

    2017-10-01

    The purpose of this study was to assess the prognosis of small cell lung cancer (SCLC) based on the underlying pulmonary disease. A total of 204 patients with SCLC were reviewed and categorized into three groups: normal, emphysema and fibrosis. The median overall survival duration (OS) in patients with normal lungs (n=57), with emphysema (n=105) and fibrosis (n=42) was 21.3, 16.4 and 10.8 months (p=0.063). In limited-stage disease (LD), the median OS in patients with fibrosis (7.4 months) was shorter than normal (52.7 months) or emphysema patients (26.4 months) (p=0.034). In extensive-stage disease (ED), the median OS in patients with fibrosis (12.7 months) was not significantly different from normal (11.4 months) or emphysema patients (13.5 months) (p=0.600). Patients with fibrosis had a poorer prognosis than normal or emphysema patients in LD-SCLC, but the coexistence of pulmonary fibrosis did not affect the prognostic outcomes in ED-SCLC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging

    PubMed Central

    Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections. PMID:23555692

  5. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    PubMed

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.

  6. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    PubMed

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-09-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20-22 s. Spontaneous breathing at normal tidal volume VT and at increased VT was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal VT in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased VT, the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased VT suggests that the degressive part of the pressure-volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs.

  7. Pleural plaques and their effect on lung function in Libby vermiculite miners.

    PubMed

    Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C

    2014-09-01

    Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.

  8. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced esophageal squamous cell carcinoma.

    PubMed

    Hirano, Yasuhiro; Onozawa, Masakatsu; Hojo, Hidehiro; Motegi, Atsushi; Zenda, Sadatomo; Hotta, Kenji; Moriya, Shunsuke; Tachibana, Hidenobu; Nakamura, Naoki; Kojima, Takashi; Akimoto, Tetsuo

    2018-02-09

    The purpose of this study was to perform a dosimetric comparison between proton beam therapy (PBT) and photon radiation therapy in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who were treated with PBT in our institution. In addition, we evaluated the correlation between toxicities and dosimetric parameters, especially the doses to normal lung or heart tissue, to clarify the clinical advantage of PBT over photon radiation therapy. A total of 37 consecutive patients with Stage III thoracic ESCC who had received PBT with or without concurrent chemotherapy between October 2012 and December 2015 were evaluated in this study. The dose distributions of PBT were compared with those of dummy 3-dimensional conformal radiation therapy (3DCRT) and Intensity Modulated Radiation Therapy (IMRT), focusing especially on the doses to organs at risk, such as normal lung and heart tissue. Of the 37 patients, the data from 27 patients were analyzed. Among these 27 patients, four patients (15%) developed grade 2 pericardial effusion as a late toxicity. None of the patients developed grade 3 or worse acute or late pulmonary and cardiac toxicities. When the dosimetric parameters between PBT and planned 3DCRT were compared, all the PBT domestic variables for the lung dose except for lung V10 GyE and V15 GyE were significantly lower than those for the dummy 3DCRT plans, and the PBT domestic variables for the heart dose were also significantly lower than those for the dummy 3DCRT plans. When the PBT and IMRT plans were compared, all the PBT domestic variables for the doses to the lung and heart were significantly lower than those for the dummy IMRT plans. Regarding the correlation between the grades of toxicities and the dosimetric parameters, no significant correlation was seen between the occurrence of grade 2 pericardial effusion and the dose to the heart. When the dosimetric parameters of the dose distributions for the treatment of patients with locally advanced stage III ESCC were compared between PBT and 3DCRT or IMRT, PBT enabled a significant reduction in the dose to the lung and heart, compared with 3DCRT or IMRT.

  9. Four SNPs and Systemic Level of FOXP3 in Smokers and Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Chu, Shuyuan; Zhong, Xiaoning; Zhang, Jianquan; Lai, Xiaoying; Xie, Jiajun; Li, Yu

    2016-12-01

    Forkhead box P3 (FOXP3) is the essential transcription factor for the function of regulatory T-cell (Treg). However, the gene mutation of FOXP3 in patients with chronic obstructive pulmonary disease (COPD) at different stages has not been reported. We aim to investigate four single nucleotide polymorphisms (SNPs) and the mRNA expression of FOXP3 in smokers with normal lung function and smokers with COPD at different stages. FOXP3 mRNA expression and SNPs in FOXP3 were assessed in nonsmokers with normal lung function (N), smokers with normal lung function (S), smokers with COPD in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 or 2 grade (COPD 1-2), and smokers with COPD in GOLD 3 or 4 grade (COPD 3-4). In peripheral blood sample, FOXP3 mRNA was assessed using real-time quantitative PCR and SNPs were analyzed by TaqMan PCR. FOXP3 mRNA level in peripheral blood sample was decreased when COPD was aggravated. The frequency of FOXP3 rs5902434 genotype del/del and allele del are lower in COPD 1-2 and COPD 3-4 than that in N or S. The rs5902434 genotype del/del and allele del were, respectively, associated with decreased risk of COPD and lung function decline. The rs5902434 genotypic distribution was correlated with FOXP3 mRNA level. In conclusion, both FOXP3 rs5902434 genotypes and alleles were differently distributed in COPD patients and smokers with normal lung function. The distribution of del/del genotype was associated with systemic expression of FOXP3 mRNA. More research is needed to explore the role of FOXP3 gene polymorphism in immunoinflammation of COPD.

  10. Function of the Dräger Oxylog ventilator at high altitude.

    PubMed

    Thomas, G; Brimacombe, J

    1994-06-01

    We have assessed the performance of the Dräger Oxylog ventilator at high altitude using a decompression chamber and a lung simulator set to mimic the normal and non-compliant lung. In the normal lung, tidal volume increased by 28% at 2040 metres and by 106% at 9120 metres. A lesser change, but in the opposite direction, occurred in respiratory rate. The net effect was a linear increase in minute volume with altitude. At 2040 and 9144 metres minute volume increased by 13% and by 45%, and rate decreased by 10% and 30% respectively. In the abnormal lung stimulation, similar, but slightly less marked, changes occurred in all variables. These changes are of sufficient magnitude to require frequent observation of tidal volume and respiratory rate during aircraft ascent and descent.

  11. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity.

    PubMed

    Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T

    2016-04-01

    Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.

  12. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity

    PubMed Central

    Green, Jenna; Endale, Mehari; Auer, Herbert

    2016-01-01

    Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960

  13. Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma

    PubMed Central

    Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.

    2016-01-01

    Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781

  14. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Nakamura, Yuko; Harada, Toshiko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies with the acute toxicity induced by photosensitizers after exposure to NIR-light. Herein, we evaluate the efficacy of NIR-PIT in preventing lung metastases in a mouse model. Lung is one of the most common sites for developing metastases, but it also has the deepest tissue light penetration. Thus, lung is the ideal site for treating early metastases by using a light-based strategy. In vitro NIR-PIT cytotoxicity was assessed with dead cell staining, luciferase activity, and a decrease in cytoplasmic GFP fluorescence in 3T3/HER2-luc-GFP cells incubated with an anti-HER2 antibody photosensitizer conjugate. Cell-specific killing was demonstrated in mixed 2D/3D cell cultures of 3T3/HER2-luc-GFP (target) and 3T3-RFP (non-target) cells. In vivo NIR-PIT was performed in the left lung in a mouse model of lung metastases, and the number of metastasis nodules, tumor fluorescence, and luciferase activity were all evaluated. All three evaluations demonstrated that the NIR-PIT-treated lung had significant reductions in metastatic disease (*p < 0.0001, Mann-Whitney U-test) and that NIR-PIT did not damage non-target tumors or normal lung tissue. Thus, NIR-PIT can specifically prevent early metastases and is a promising anti-metastatic therapy. PMID:25992770

  15. Smoking, p53 Mutation, and Lung Cancer

    PubMed Central

    Gibbons, Don L.; Byers, Lauren A.; Kurie, Jonathan M.

    2014-01-01

    This issue marks the 50th Anniversary of the release of the U.S. Surgeon General’s Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models. PMID:24442106

  16. The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs

    NASA Astrophysics Data System (ADS)

    Cerello, Piergiorgio; MAGIC-5 Collaboration

    2010-11-01

    Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Università e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.

  17. Analysis of point-to-point lung motion with full inspiration and expiration CT data using non-linear optimization method: optimal geometric assumption model for the effective registration algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Heo, Jeong Nam; Kang, Suk-Ho

    2007-03-01

    The study was conducted to develop a simple model for more robust lung registration of volumetric CT data, which is essential for various clinical lung analysis applications, including the lung nodule matching in follow up CT studies, semi-quantitative assessment of lung perfusion, and etc. The purpose of this study is to find the most effective reference point and geometric model based on the lung motion analysis from the CT data sets obtained in full inspiration (In.) and expiration (Ex.). Ten pairs of CT data sets in normal subjects obtained in full In. and Ex. were used in this study. Two radiologists were requested to draw 20 points representing the subpleural point of the central axis in each segment. The apex, hilar point, and center of inertia (COI) of each unilateral lung were proposed as the reference point. To evaluate optimal expansion point, non-linear optimization without constraints was employed. The objective function is sum of distances from the line, consist of the corresponding points between In. and Ex. to the optimal point x. By using the nonlinear optimization, the optimal points was evaluated and compared between reference points. The average distance between the optimal point and each line segment revealed that the balloon model was more suitable to explain the lung expansion model. This lung motion analysis based on vector analysis and non-linear optimization shows that balloon model centered on the center of inertia of lung is most effective geometric model to explain lung expansion by breathing.

  18. Intrapulmonary vascular remodeling: MSCT-based evaluation in COPD and alpha-1 antitrypsin deficient subjects

    NASA Astrophysics Data System (ADS)

    Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves

    2016-03-01

    Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.

  19. The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature.

    PubMed

    Kim, Il-Man; Ramakrishna, Sneha; Gusarova, Galina A; Yoder, Helena M; Costa, Robert H; Kalinichenko, Vladimir V

    2005-06-10

    Transgenic and gene knock-out studies demonstrated that the mouse Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is essential for hepatocyte entry into mitosis during liver development, regeneration, and liver cancer. Targeted deletion of Foxm1 gene in mice produces an embryonic lethal phenotype due to severe abnormalities in the development of liver and heart. In this study, we show for the first time that Foxm1(-/-) lungs exhibit severe hypertrophy of arteriolar smooth muscle cells and defects in the formation of peripheral pulmonary capillaries as evidenced by significant reduction in platelet endothelial cell adhesion molecule 1 staining of the distal lung. Consistent with these findings, significant reduction in proliferation of the embryonic Foxm1(-/-) lung mesenchyme was found, yet proliferation levels were normal in the Foxm1-deficient epithelial cells. Severe abnormalities of the lung vasculature in Foxm1(-/-) embryos were associated with diminished expression of the transforming growth factor beta receptor II, a disintegrin and metalloprotease domain 17 (ADAM-17), vascular endothelial growth factor receptors, Polo-like kinase 1, Aurora B kinase, laminin alpha4 (Lama4), and the Forkhead Box f1 transcription factor. Cotransfection studies demonstrated that Foxm1 stimulates transcription of the Lama4 promoter, and this stimulation requires the Foxm1 binding sites located between -1174 and -1145 bp of the mouse Lama4 promoter. In summary, development of mouse lungs depends on the Foxm1 transcription factor, which regulates expression of genes essential for mesenchyme proliferation, extracellular matrix remodeling, and vasculogenesis.

  20. APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Kološa, Katja; Filipič, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits α7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  1. Retinoblastoma function is essential for establishing lung epithelial quiescence after injury.

    PubMed

    Mason-Richie, Nicole A; Mistry, Meenakshi J; Gettler, Caitlin A; Elayyadi, Asmaa; Wikenheiser-Brokamp, Kathryn A

    2008-06-01

    The retinoblastoma gene product (RB) regulates cell cycle, quiescence, and survival in a cell type-dependent and environment-dependent manner. RB function is critical in the pulmonary epithelium, as evidenced by nearly universal RB inactivation in lung cancer and increased lung cancer risk in persons with germline RB gene mutations. Lung carcinomas occur in the context of epithelial remodeling induced by cytotoxic damage. Whereas the role of RB in development and normal organ homeostasis has been extensively studied, RB function in the context of cellular injury and repair has remained largely unexplored. In the current studies, the RB gene was selectively deleted in the respiratory epithelium of the mouse. Although RB was not required for establishing or maintaining quiescence during lung homeostasis, RB was essential for establishing quiescence during epithelial repair after injury. Notably, aberrant cell cycle progression was sustained for 9 months after injury in RB-deficient lungs. Prenatal and postnatal RB ablation had similar effects, providing evidence that timing of RB loss was not critical to the outcome and that the injury-induced phenotype was not secondary to compensatory alterations occurring during development. These data show that RB is essential for repair of the respiratory epithelium after cytotoxic damage and support a critical unique role for RB in the context of epithelial remodeling after injury. Because human cancers are associated with chronic cellular damage, these findings have important new implications for RB-mediated tumor suppression.

  2. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q; Lei, Y; Zheng, D

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less

  3. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease

    PubMed Central

    Hunt, James M.; Bethea, Brian; Liu, Xiang; Gandjeva, Aneta; Mammen, Pradeep P. A.; Stacher, Elvira; Gandjeva, Marina R.; Parish, Elisabeth; Perez, Mario; Smith, Lynelle; Graham, Brian B.; Kuebler, Wolfgang M.

    2013-01-01

    Despite the importance of pulmonary veins in normal lung physiology and the pathobiology of pulmonary hypertension with left heart disease (PH-LHD), pulmonary veins remain largely understudied. Difficult to identify histologically, lung venous endothelium or smooth muscle cells display no unique characteristic functional and structural markers that distinguish them from pulmonary arteries. To address these challenges, we undertook a search for unique molecular markers in pulmonary veins. In addition, we addressed the expression pattern of a candidate molecular marker and analyzed the structural pattern of vascular remodeling of pulmonary veins in a rodent model of PH-LHD and in lung tissue of patients with PH-LHD obtained at time of placement on a left ventricular assist device. We detected urokinase plasminogen activator receptor (uPAR) expression preferentially in normal pulmonary veins of mice, rats, and human lungs. Expression of uPAR remained elevated in pulmonary veins of rats with PH-LHD; however, we also detected induction of uPAR expression in remodeled pulmonary arteries. These findings were validated in lungs of patients with PH-LHD. In selected patients with sequential lung biopsy at the time of removal of the left ventricular assist device, we present early data suggesting improvement in pulmonary hemodynamics and venous remodeling, indicating potential regression of venous remodeling in response to assist device treatment. Our data indicate that remodeling of pulmonary veins is an integral part of PH-LHD and that pulmonary veins share some key features present in remodeled yet not normotensive pulmonary arteries. PMID:24039255

  4. Thyroid function in lung cancer

    PubMed Central

    Ratcliffe, J G; Stack, B H R; Burt, R W; Ratcliffe, W A; Spilg, W G S; Cuthbert, J; Kennedy, R S

    1978-01-01

    Thyroid function was assessed at the time of initial diagnosis in 204 patients with lung cancer and compared with that of age and sex-matched patients with non-malignant lung disease. Abnormalities in thyroid function were found in 67 patients (33%). The most prevalent abnormality was a low T3 concentration; this was not associated with other clinical or biochemical evidence of hypothyroidism, but the short-term prognosis of these patients was worse than that of matched patients with lung cancer having normal T3 concentrations. Primary hypothyroidism occurred in three patients, low T4 concentrations and free thyroxine index (FTI) with normal thyrotrophin (TSH) concentrations in four patients, and moderately raised TSH with normal thyroid hormone concentrations in six patients; nine patients had a raised FTI with or without raised T4 concentration as the sole abnormality. Overall, the pattern of thyroid hormone metabolism in lung cancer was a tendency towards reduced T3 concentrations with significantly increased T4/T3 ratios and modestly increased 3,3′,5′-triiodothyronine (rT3) concentrations. The altered T4/T3 ratio was particularly noticeable in patients with anaplastic tumours of small (“oat cell”) and large cell types, but was not apparently related to detectable extrathoracic metastases. These data suggest that thyroid hormone metabolism is altered in patients with lung cancer by decreased 5′-monodeiodination of T4. The resulting low T3 concentrations and altered T4/T3 ratio may be partly responsible for the reduced ratio of androsterone to aetiocholanolone observed in lung cancer, which is known to be a poor prognostic sign. PMID:620266

  5. Application of a High Throughput Method of Biomarker Discovery to Improvement of the EarlyCDT®-Lung Test

    PubMed Central

    Macdonald, Isabel K.; Murray, Andrea; Healey, Graham F.; Parsy-Kowalska, Celine B.; Allen, Jared; McElveen, Jane; Robertson, Chris; Sewell, Herbert F.; Chapman, Caroline J.; Robertson, John F. R.

    2012-01-01

    Background The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung) to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP) cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV)). Methods and Findings Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165). Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7). Conclusion This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT­-Lung test, and so further aid the early detection of lung cancer. PMID:23272083

  6. Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation.

    PubMed

    Konheim, Jeremy A; Kon, Zachary N; Pasrija, Chetan; Luo, Qingyang; Sanchez, Pablo G; Garcia, Jose P; Griffith, Bartley P; Jeudy, Jean

    2016-04-01

    Size matching for lung transplantation is widely accomplished using height comparisons between donors and recipients. This gross approximation allows for wide variation in lung size and, potentially, size mismatch. Three-dimensional computed tomography (3D-CT) volumetry comparisons could offer more accurate size matching. Although recipient CT scans are universally available, donor CT scans are rarely performed. Therefore, predicted donor lung volumes could be used for comparison to measured recipient lung volumes, but no such predictive equations exist. We aimed to use 3D-CT volumetry measurements from a normal patient population to generate equations for predicted total lung volume (pTLV), predicted right lung volume (pRLV), and predicted left lung volume (pLLV), for size-matching purposes. Chest CT scans of 400 normal patients were retrospectively evaluated. 3D-CT volumetry was performed to measure total lung volume, right lung volume, and left lung volume of each patient, and predictive equations were generated. The fitted model was tested in a separate group of 100 patients. The model was externally validated by comparison of total lung volume with total lung capacity from pulmonary function tests in a subset of those patients. Age, gender, height, and race were independent predictors of lung volume. In the test group, there were strong linear correlations between predicted and actual lung volumes measured by 3D-CT volumetry for pTLV (r = 0.72), pRLV (r = 0.72), and pLLV (r = 0.69). A strong linear correlation was also observed when comparing pTLV and total lung capacity (r = 0.82). We successfully created a predictive model for pTLV, pRLV, and pLLV. These may serve as reference standards and predict donor lung volume for size matching in lung transplantation. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. [Scimitar syndrome. Correlation anatomo-embryological].

    PubMed

    Muñoz-Castellanos, Luis; Kuri-Nivon, Magdalena

    2016-01-01

    To describe morphologically a toracoabdominal visceral block of a scimitar's syndrome case. We propose a pathogenetic theory wich explains the development of the pulmonary venous connection in this syndrome. The anatomic specimen was described with the segmental sequential system. The situs was solitus, the connections between the cardiac segments and the associated anomalies were determined. The anatomy of both lungs, including the venous pulmonary connection, was described. A pathogenetic hypothesis was made, which explains the pulmonary venous connection throw a correlation between the pathology of this syndrome and the normal development of the pulmonary veins. The situs was solitus, the connections of the cardiac chambers were normal; there were hypoplasia and dysplasia of the right lung with sequestration of the inferior lobe; the right pulmonary veins were connected with a curved collector which drainaged into the suprahepatic segment of the inferior vena cava; the left pulmonary veins were open into the left atrium. The sequestered inferior lobe of the right lung received irrigation throw a collateral aortopulmonary vessel. There was an atrial septal defect. The pathogenetic hypothesis propose that the pulmonary venous connection in this syndrome represent the persistent of the Streeter's horizon xiv (28-30 days of development), period in which the sinus of the pulmonary veins has double connection, with the left atrium and with a primitive collector into the right viteline vein which forms the suprahepatic segment of the inferior vena cava. Copyright © 2015 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. [Features of the biochemical action of paraquat on oxidative deamination of biogenic amines and other nitrogen compounds].

    PubMed

    Amanov, K; Mamadiev, M; Khuzhamberdiev, M A; Gorkin, V Z

    1994-01-01

    Intoxication of rats with the herbicide paraquat (1,1-dimethyl-4,4-bipyridilium dichloride) was accompanied by accumulation in lungs, brain, heart, liver or kidney of malonic dialdehyde (MDA) (the compounds reacting with 2-thiobarbituric acid), indicating that the intoxication stimulated lipid peroxidation (LPO) in biomembranes. Treatment of the intoxicated rats with the antioxidant diludin (2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine) or with the nucleophilic reagents sodium ascorbate or thiosulphate normalized the content of MDA in lungs, brain, heart, liver or kidney demonstrating the reversibility of the LPO stimulation caused by paraquat. On incubation of mitochondrial fractions of homogenates of lungs, brain, heart, liver or kidney of the intoxicated rats (as compared with the corresponding fractions from the intact animals) a decrease was noted in deamination of the substrates of monoamine oxidases serotonin, tryptamine, benzylamine, tyramine; at the same time, deamination of glucosamine and gamma-aminobutyric acid was increased and deamination of putrescine and L-lysine appeared. These impairments in deamination of nitrogenous compounds caused by paraquat were reversible. All the impairments were normalized by the treatment of the experimental animals with the antioxidative and nucleophilic reagents; a decrease was noted in the rate of development of the lethal paraquat intoxication and appearance of morphological manifestations of normalization. The data obtained suggest that the reversible, qualitative modification ("transformation") of the monoamine oxidases of the type A might explain the peculiarities of the alterations in deamination of nitrogenous compounds in paraquat intoxication.

  9. Lung volume is a determinant of aerosol bolus dispersion.

    PubMed

    Schulz, Holger; Eder, Gunter; Heyder, Joachim

    2003-01-01

    The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.

  10. Respiratory mechanics and breathing pattern in the neonatal foal.

    PubMed

    Koterba, A M; Kosch, P C

    1987-01-01

    Breathing pattern, respiratory muscle activation pattern, lung volumes and volume-pressure characteristics of the respiratory system of normal, term, neonatal foals on Days 2 and 7 of age were determined to test the hypothesis that the foal actively maintains end-expiratory lung volume (EEV) greater than the relaxation volume of the respiratory system (Vrx) because of a highly compliant chest wall. Breathing pattern was measured in the awake, unsedated foal during quiet breathing in lateral and standing positions. The typical neonatal foal breathing pattern was characterized by a monophasic inspiratory and expiratory flow pattern. Both inspiration and expiration were active, with onset of Edi activity preceding onset of inspiratory flow, and phasic abdominal muscle activity detectable throughout most of expiration. No evidence was found to support the hypothesis that the normal, term neonatal foal actively maintains EEV greater than Vrx. In the neonatal foal, normalized lung volume and lung compliance values were similar to those reported for neonates of other species, while normalized chest wall compliance was considerably lower. We conclude that the chest wall of the term neonatal foal is sufficiently rigid to prevent a low Vrx. This characteristic probably prevents the foal from having to use a breathing strategy which maintains an EEV greater than Vrx.

  11. An Approach for Reducing the Error Rate in Automated Lung Segmentation

    PubMed Central

    Gill, Gurman; Beichel, Reinhard R.

    2016-01-01

    Robust lung segmentation is challenging, especially when tens of thousands of lung CT scans need to be processed, as required by large multi-center studies. The goal of this work was to develop and assess a method for the fusion of segmentation results from two different methods to generate lung segmentations that have a lower failure rate than individual input segmentations. As basis for the fusion approach, lung segmentations generated with a region growing and model-based approach were utilized. The fusion result was generated by comparing input segmentations and selectively combining them using a trained classification system. The method was evaluated on a diverse set of 204 CT scans of normal and diseased lungs. The fusion approach resulted in a Dice coefficient of 0.9855 ± 0.0106 and showed a statistically significant improvement compared to both input segmentation methods. In addition, the failure rate at different segmentation accuracy levels was assessed. For example, when requiring that lung segmentations must have a Dice coefficient of better than 0.97, the fusion approach had a failure rate of 6.13%. In contrast, the failure rate for region growing and model-based methods was 18.14% and 15.69%, respectively. Therefore, the proposed method improves the quality of the lung segmentations, which is important for subsequent quantitative analysis of lungs. Also, to enable a comparison with other methods, results on the LOLA11 challenge test set are reported. PMID:27447897

  12. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-05

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.

  13. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Jijo; Yang, Cungeng; Wu, Hui

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from themore » daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.« less

  14. SU-E-J-86: Functional Conformal Planning for Stereotactic Body Radiation Therapy with CT-Pulmonary Ventilation Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosawa, T; Moriya, S; Sato, M

    2015-06-15

    Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less

  15. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography.

    PubMed

    Paul, Jijo; Yang, Cungeng; Wu, Hui; Tai, An; Dalah, Entesar; Zheng, Cheng; Johnstone, Candice; Kong, Feng-Ming; Gore, Elizabeth; Li, X Allen

    2017-06-01

    To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R 2  > 0.99) and correlates weakly with the change in GTV (R 2  = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. TU-CD-BRA-11: Application of Bone Suppression Technique to Inspiratory/expiratory Chest Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, R; Sanada, S; Sakuta, K

    Purpose: The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images normally obtained by the dual-energy subtraction technique. This study was performed to investigate the usefulness of bone suppression technique in quantitative analysis of pulmonary function in inspiratory/expiratory chest radiography. Methods: Commercial bone suppression image processing software (ClearRead; Riverain Technologies) was applied to paired inspiratory/expiratory chest radiographs of 107 patients (normal, 33; abnormal, 74) to create corresponding bone suppression images. The abnormal subjects had been diagnosed with pulmonary diseases, such as pneumothorax, pneumonia, emphysema, asthma, and lung cancer.more » After recognition of the lung area, the vectors of respiratory displacement were measured in all local lung areas using a cross-correlation technique. The measured displacement in each area was visualized as displacement color maps. The distribution pattern of respiratory displacement was assessed by comparison with the findings of lung scintigraphy. Results: Respiratory displacement of pulmonary markings (soft tissues) was able to be quantified separately from the rib movements on bone suppression images. The resulting displacement map showed a left-right symmetric distribution increasing from the lung apex to the bottom region of the lung in many cases. However, patients with ventilatory impairments showed a nonuniform distribution caused by decreased displacement of pulmonary markings, which were confirmed to correspond to area with ventilatory impairments found on the lung scintigrams. Conclusion: The bone suppression technique was useful for quantitative analysis of respiratory displacement of pulmonary markings without any interruption of the rib shadows. Abnormal areas could be detected as decreased displacement of pulmonary markings. Inspiratory/expiratory chest radiography combined with the bone suppression technique has potential for predicting local lung function on the basis of dynamic analysis of pulmonary markings. This work was partially supported by Nakatani Foundation, Grant-in-aid for Scientific Research (C) of Ministry of Education, Culture, Sports, Science and Technology, JAPAN (Grant number : 24601007), and Nakatani Foundation, Mitsubishi Foundation, and the he Mitani Foundation for Research and Development. Yasushi Kishitani is a staff of TOYO corporation.« less

  17. Dosimetric impact of gold markers implanted closely to lung tumors: a Monte Carlo simulation.

    PubMed

    Shiinoki, Takehiro; Sawada, Akira; Ishihara, Yoshitomo; Miyabe, Yuki; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2014-05-08

    We are developing an innovative dynamic tumor tracking irradiation technique using gold markers implanted around a tumor as a surrogate signal, a real-time marker detection system, and a gimbaled X-ray head in the Vero4DRT. The gold markers implanted in a normal organ will produce uncertainty in the dose calculation during treatment planning because the photon mass attenuation coefficient of a gold marker is much larger than that of normal tissue. The purpose of this study was to simulate the dose variation near the gold markers in a lung irradiated by a photon beam using the Monte Carlo method. First, the single-beam and the opposing-beam geometries were simulated using both water and lung phantoms. Subsequently, the relative dose profiles were calculated using a stereotactic body radiotherapy (SBRT) treatment plan for a lung cancer patient having gold markers along the anterior-posterior (AP) and right-left (RL) directions. For the single beam, the dose at the gold marker-phantom interface laterally along the perpendicular to the beam axis increased by a factor of 1.35 in the water phantom and 1.58 in the lung phantom, respectively. Furthermore, the entrance dose at the interface along the beam axis increased by a factor of 1.63 in the water phantom and 1.91 in the lung phantom, while the exit dose increased by a factor of 1.00 in the water phantom and 1.12 in the lung phantom, respectively. On the other hand, both dose escalations and dose de-escalations were canceled by each beam for opposing portal beams with the same beam weight. For SBRT patient data, the dose at the gold marker edge located in the tumor increased by a factor of 1.30 in both AP and RL directions. In clinical cases, dose escalations were observed at the small area where the distance between a gold marker and the lung tumor was ≤ 5 mm, and it would be clinically negligible in multibeam treatments, although further investigation may be required.

  18. Measurements of pulmonary gas exchange efficiency using expired gas and oximetry: results in normal subjects.

    PubMed

    West, John B; Wang, Daniel L; Prisk, G Kim

    2018-04-01

    We are developing a novel, noninvasive method for measuring the efficiency of pulmonary gas exchange in patients with lung disease. The patient wears an oximeter, and we measure the partial pressures of oxygen and carbon dioxide in inspired and expired gas using miniature analyzers. The arterial Po 2 is then calculated from the oximeter reading and the oxygen dissociation curve, using the end-tidal Pco 2 to allow for the Bohr effect. This calculation is only accurate when the oxygen saturation is <94%, and therefore, these normal subjects breathed 12.5% oxygen. When the procedure is used in patients with hypoxemia, they breathe air. The Po 2 difference between the end-tidal and arterial values is called the "oxygen deficit." Preliminary data show that this index increases substantially in patients with lung disease. Here we report measurements of the oxygen deficit in 20 young normal subjects (age 19 to 31 yr) and 11 older normal subjects (47 to 88 yr). The mean value of the oxygen deficit in the young subjects was 2.02 ± 3.56 mmHg (means ± SD). This mean is remarkably small. The corresponding value in the older group was 7.53 ± 5.16 mmHg (means ± SD). The results are consistent with the age-related trend of the traditional alveolar-arterial difference, which is calculated from the calculated ideal alveolar Po 2 minus the measured arterial Po 2 . That measurement requires an arterial blood sample. The present study suggests that this noninvasive procedure will be valuable in assessing the degree of impaired gas exchange in patients with lung disease.

  19. FBXW7 mutations typically found in human cancers are distinct from null alleles and disrupt lung development

    PubMed Central

    Davis, Hayley; Lewis, Annabelle; Spencer-Dene, Bradley; Tateossian, Hilda; Stamp, Gordon; Behrens, Axel; Tomlinson, Ian

    2011-01-01

    FBXW7 is the substrate recognition component of a SCF-type E3 ubiquitin ligase. It has multiple targets such as Notch1, c-Jun, and cyclin E that function in critical developmental and signalling pathways. Mutations in FBXW7 are often found in many types of cancer. In most cases, these mutations do not inactivate the protein, but are mono-allelic missense changes at specific arginine resides involved in substrate binding. We have hypothesized that FBXW7 mutations are selected in cancers for reasons other than haploinsufficiency or full loss-of-function. Given that the existing mutant Fbxw7 mice carry null alleles, we created a mouse model carrying one of the commonly occurring point mutations (Fbxw7) in the WD40 substrate recognition domain of Fbxw7. Mice heterozygous for this mutation apparently developed normally in utero, died perinatally due to a defect in lung development, and in some cases showed cleft palate and eyelid fusion defects. By comparison, Fbxw7+/− mice were viable and developed normally. Fbxw7−/− animals died of vascular abnormalities at E10.5. We screened known FBXW7 targets for changes in the lungs of the Fbxw7R482Q/+ mice and found Tgif1 and Klf5 to be up-regulated. Fbxw7 alleles are not functionally equivalent to heterozygous or homozygous null alleles, and we propose that they are selected in tumourigenesis because they cause a selective or partial loss of FBXW7 function. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:21503901

  20. [Physical activity and respiratory tract diseases asthma and allergy].

    PubMed

    Carlsen, K H

    2000-11-10

    This article presents a review of the relationship between physical training and airways diseases: the relationship between physical activity and the development of airways diseases, and the effect of physical training in rehabilitation after airways diseases. The article is a systematic review of exercise-induced asthma (EIA), the effect of physical training upon bronchial hyperresponsiveness and the development of asthma; how chronic lung diseases affect the ability to participate in physical activity; and the use of physical training in rehabilitation after airways diseases. Physical training may provoke EIA in asthmatic patients. Furthermore, heavy regular training over long periods of time may contribute to the development of asthma. Mastering EIA is an important goal in the management of asthma, especially in children and adolescents, in order to foster normal physical and mental development. Physical training improves fitness and the mastering of asthma, but not of bronchial hyperresponsiveness and asthma activity. In other airways disorders like cystic fibrosis or chronic obstructive lung disease, a reduced lung function may limit the ability to participate in physical activity. Training is an important tool in the rehabilitation of patients with pulmonary disorders as it improves physical fitness and quality of life.

  1. Inhibition of mTOR enhances radiosensitivity of lung cancer cells and protects normal lung cells against radiation.

    PubMed

    Zheng, Hang; Wang, Miao; Wu, Jing; Wang, Zhi-Ming; Nan, Hai-Jun; Sun, He

    2016-06-01

    Radiotherapy has been used for a long time as a standard therapy for cancer; however, there have been no recent research breakthroughs. Radioresistance and various side-effects lead to the unexpected outcomes of radiation therapy. Specific and accurate targeting as well as reduction of radioresistance have been major challenges for irradiation therapy. Recent studies have shown that rapamycin shows promise for inhibiting tumorigenesis by suppressing mammalian target of rapamycin (mTOR). We found that the combination of rapamycin with irradiation significantly diminished cell viability and colony formation, and increased cell apoptosis, as compared with irradiation alone in lung cancer cell line A549, suggesting that rapamycin can enhance the effectiveness of radiation therapy by sensitizing cancer cells to irradiation. Importantly, we observed that the adverse effects of irradiation on a healthy lung cell line (WI-38) were also offset. No enhanced protein expression of mTOR signaling was observed in WI-38 cells, which is normally elevated in lung cancer cells. Moreover, DNA damage was significantly less with the combination therapy than with irradiation therapy alone. Our data suggest that the incorporation of rapamycin during radiation therapy could be a potent way to improve the sensitivity and effectiveness of radiation therapy as well as to protect normal cells from being damaged by irradiation.

  2. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide.

    PubMed

    Tourkina, Elena; Bonner, Michael; Oates, James; Hofbauer, Ann; Richard, Mathieu; Znoyko, Sergei; Visconti, Richard P; Zhang, Jing; Hatfield, Corey M; Silver, Richard M; Hoffman, Stanley

    2011-07-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors.

  3. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide

    PubMed Central

    2011-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in scleroderma (systemic sclerosis, or SSc). Fibrocytes are a monocyte-derived cell population implicated in the pathogenesis of fibrosing disorders. Given the recently recognized importance of caveolin-1 in regulating function and signaling in SSc monocytes, in the present study we examined the role of caveolin-1 in the migration and/or trafficking and phenotype of monocytes and fibrocytes in fibrotic lung disease in human patients and an animal model. These studies fill a gap in our understanding of how monocytes and fibrocytes contribute to SSc-ILD pathology. We found that C-X-C chemokine receptor type 4-positive (CXCR4+)/collagen I-positive (ColI+), CD34+/ColI+ and CD45+/ColI+ cells are present in SSc-ILD lungs, but not in control lungs, with CXCR4+ cells being most prevalent. Expression of CXCR4 and its ligand, stromal cell-derived factor 1 (CXCL12), are also highly upregulated in SSc-ILD lung tissue. SSc monocytes, which lack caveolin-1 and therefore overexpress CXCR4, exhibit almost sevenfold increased migration toward CXCL12 compared to control monocytes. Restoration of caveolin-1 function by administering the caveolin scaffolding domain (CSD) peptide reverses this hypermigration. Similarly, transforming growth factor β-treated normal monocytes lose caveolin-1, overexpress CXCR4 and exhibit 15-fold increased monocyte migration that is CSD peptide-sensitive. SSc monocytes exhibit a different phenotype than normal monocytes, expressing high levels of ColI, CD14 and CD34. Because ColI+/CD14+ cells are prevalent in SSc blood, we looked for such cells in lung tissue and confirmed their presence in SSc-ILD lungs but not in normal lungs. Finally, in the bleomycin model of lung fibrosis, we show that CSD peptide diminishes fibrocyte accumulation in the lungs. Our results suggest that low caveolin-1 in SSc monocytes contributes to ILD via effects on cell migration and phenotype and that the hyperaccumulation of fibrocytes in SSc-ILD may result from the altered phenotype and migratory activity of their monocyte precursors. PMID:21722364

  4. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new approach was quantified. Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V(10), V(20), and V(30) of 6.3% ± 1.7%, 10.6% ± 3.9%, and 12.9% ± 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% ± 2.5%, 7.2% ± 2.5%, and 10.6% ± 3.6%, respectively. The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.

  5. Dubinett - Targeted Sequencing 2012 — EDRN Public Portal

    Cancer.gov

    we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.

  6. TU-A-BRD-01: Outcomes of Hypofractionated Treatments - Initial Results of the WGSBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Lee, P; Ohri, N

    2014-06-15

    Stereotactic Body Radiation Therapy (SBRT) has emerged in recent decades as a treatment paradigm that is becoming increasingly important in clinical practice. Clinical outcomes data are rapidly accumulating. Although published relations between outcomes and dose distributions are still sparse, the field has progressed to the point where evidence-based normal tissue dose-volume constraints, prescription strategies, and Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) models can be developed. The Working Group on SBRT (WGSBRT), under the Biological Effects Subcommittee of AAPM, is a group of physicists and physicians working in the area of SBRT. It is currently performing criticalmore » literature reviews to extract and synthesize usable data and to develop guidelines and models to aid with safe and effective treatment. The group is investigating clinically relevant findings from SBRT in six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session of AAPM 2014, interim results are presented on TCP for lung and liver, NTCP for thoracic organs, and radiobiological foundations:• Lung TCP: Detailed modeling of TCP data from 118 published studies on early stage lung SBRT investigates dose response and hypothesized mechanisms to explain the improved outcomes of SBRT. This is presented from the perspective of a physicist, a physician, and a radiobiologist.• Liver TCP: For primary and metastatic liver tumors, individual patient data were extracted from published reports to examine the effects of biologically effective dose on local control.• Thoracic NTCP: Clinically significant SBRT toxicity of lung, rib / chest wall and other structures are evaluated and compared among published clinical data, in terms of risk, risk factors, and safe practice.• Improving the clinical utility of published toxicity reports from SBRT and Hypofractionated treatments. What do we want, and how do we get it? Methods and problems of synthesizing data from published reports. Learning Objectives: Common SBRT fractionation schemes and current evidence for efficacy. Evidence for normal tissue tolerances in hypofractionated treatments. Clinically relevant radiobiological effects at large fraction sizes.« less

  7. Detection of early changes in lung cell cytology by flow-systems analysis techniques. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1980-03-01

    Ongoing experiments designed to develop automated flow-analysis methods for assaying damage to pulmonary lavage cells in experimental animals exposed by inhalation to environmental pollutants are summarized. Pulmonary macrophages were characterized on their ability to phagocytize polystyrene latex fluorescent spheres. Lung cells consisting primarily of macrophages and leukocytes were analyzed for fluorescence (phagocytosis of spheres) and size using flow cytometric methods. Studies also concentrated on combining phagocytosis with other cellular parameters (DNA content, cell viability, and B-glucuronidase activity). As baseline studies are completed in normal animals, experimental animals will be exposed to gaseous and particulate environmental pollutants. (ERB

  8. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  9. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, A; Bostani, M; McMillan, K

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  10. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  11. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    PubMed

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Bombesin-like peptide receptors in human bronchial epithelial cells.

    PubMed

    Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A

    1996-01-01

    Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.

  13. Impact of Lung Cancer Screening Results on Smoking Cessation

    PubMed Central

    Berg, Christine D.; Riley, Thomas L.; Cunningham, Christopher R.; Taylor, Kathryn L.

    2014-01-01

    Background Lung cancer screening programs may provide opportunities to reduce smoking rates among participants. This study evaluates the impact of lung cancer screening results on smoking cessation. Methods Data from Lung Screening Study participants in the National Lung Screening Trial (NLST; 2002–2009) were used to prepare multivariable longitudinal regression models predicting annual smoking cessation in those who were current smokers at study entry (n = 15489, excluding those developing lung cancer in follow-up). The associations of lung cancer screening results on smoking cessation over the trial period were analyzed. All hypothesis testing used two sided P values. Results In adjusted analyses, smoking cessation was strongly associated with the amount of abnormality observed in the previous year’s screening (P < .0001). Compared with those with a normal screen, individuals were less likely to be smokers if their previous year’s screen had a major abnormality that was not suspicious for lung cancer (odds ratio [OR] = 0.811; 95% confidence interval [CI] = 0.722 to 0.912; P < .001), was suspicious for lung cancer but stable from previous screens (OR = 0.785; 95% CI = 0.706 to 0.872; P < .001), or was suspicious for lung cancer and was new or changed from the previous screen (OR = 0.663; 95% CI = 0.607 to 0.724; P < .001). Differences in smoking prevalence were present up to 5 years after the last screen. Conclusions Smoking cessation is statistically significantly associated with screen-detected abnormality. Integration of effective smoking cessation programs within screening programs should lead to further reduction in smoking-related morbidity and mortality. PMID:24872540

  14. Preservation of normal lung regions in the adult respiratory distress syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maunder, R.J.; Shuman, W.P.; McHugh, J.W.

    1986-05-09

    In this report, the authors challenge the commonly held assumption that the adult respiratory distress syndrome (ARDS) is a homogeneous process associated with generalized and relatively uniform damage to the alveolar capillary membrane. They studied 13 patients with ARDS, comparing the pulmonary parenchymal changes seen by standard bedside chest roentgenograms with those seen by computed tomography of the chest. Three patients demonstrated generalized lung involvement by both radiologic techniques. In another eight patients, despite the appearance of generalized involvement on the standard chest x-ray film, the computed tomographic scans showed patchy infiltrates interspersed with areas of normal-appearing lung. Two patientsmore » showed patchy involvement by both techniques. The fact that ARDS spares some regions of lung parenchyma is useful knowledge in understanding the gas-exchange abnormalities of ARDS, the variable responsiveness to positive end-expiratory pressure, and the occurrence of oxygen toxicity. The problem of regional inhomogeneity should also be kept in mind when interpreting lung biopsy specimens or bronchoalveolar lavage fluid in patients with ARDS.« less

  15. Effects of oxygen toxicity on cuprolinic blue-stained proteoglycans in alveolar basement membranes.

    PubMed

    Ferrara, T B; Fox, R B

    1992-02-01

    Effects of oxygen toxicity on distribution and density of proteoglycans in basement membranes of newborn rat lungs were assessed by electron microscopic analysis of tissues processed with cuprolinic blue, a cationic label that characteristically labels these anionically charged macromolecules. Newborn rats placed in greater than 95% oxygen at birth were killed at weekly intervals for 4 wk, and lung tissues fixed in 2.5% glutaraldehyde with 0.2% cuprolinic blue were processed for electron microscopy. Alveolar basement membranes from oxygen-treated and control animals were compared for differences in thickness and proteoglycan concentration and distribution. Results showed progressive thickening of alveolar basement membranes with increased duration of oxygen exposure. The normal distribution of proteoglycans, which is predominantly in the lamina rara externa of alveolar basement membranes, was frequently lost in thickened membranes found in oxygen-treated animals. Density of proteoglycans in these membranes decreased to 56% of normal by 2 wk of age and remained low with continued oxygen administration. Proteoglycan concentration in basement membranes on the interstitial side of alveolar capillaries in both control and oxygen-treated animals was low compared with proteoglycan concentration in basement membranes that opposed the alveolar air space, and administration of oxygen diminished these differences. These results demonstrate a direct alteration of proteoglycan distribution and density in the developing lung as a result of oxygen toxicity. This could result in decreased cell adhesion, influence the cellular response to lung injury, and contribute to the increased permeability seen with this disorder.

  16. Effects of hypoxia and hyperoxia on the differential expression of VEGF-A isoforms and receptors in Idiopathic Pulmonary Fibrosis (IPF).

    PubMed

    Barratt, Shaney L; Blythe, Thomas; Ourradi, Khadija; Jarrett, Caroline; Welsh, Gavin I; Bates, David O; Millar, Ann B

    2018-01-15

    Dysregulation of VEGF-A bioavailability has been implicated in the development of lung injury/fibrosis, exemplified by Idiopathic Pulmonary Fibrosis (IPF). VEGF-A is a target of the hypoxic response via its translational regulation by HIF-1α. The role of hypoxia and hyperoxia in the development and progression of IPF has not been explored. In normal lung (NF) and IPF-derived fibroblasts (FF) VEGF-A xxx a protein expression was upregulated by hypoxia, mediated through activation of VEGF-A xxx a gene transcription. VEGF-A receptors and co-receptors were differentially expressed by hypoxia and hyperoxia. Our data supports a potential role for hypoxia, hyperoxia and VEGF-A xxx a isoforms as drivers of fibrogenesis.

  17. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system.

    PubMed

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-06-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.

  18. Transbronchial biopsies safely diagnose amyloid lung disease

    PubMed Central

    Govender, Praveen; Keyes, Colleen M.; Hankinson, Elizabeth A.; O’Hara, Carl J.; Sanchorawala, Vaishali; Berk, John L.

    2018-01-01

    Background Autopsy identifies lung involvement in 58–92% of patients with the most prevalent forms of systemic amyloidoses. In the absence of lung biopsies, amyloid lung disease often goes unrecognized. Report of a death following transbronchial biopsies in a patient with systemic amyloidosis cautioned against the procedure in this patient cohort. We reviewed our experience with transbronchial biopsies in patients with amyloidosis to determine the safety and utility of bronchoscopic lung biopsies. Methods We identified patients referred to the Amyloidosis Center at Boston Medical Center with lung amyloidosis diagnosed by transbronchial lung biopsies (TBBX). Amyloid typing was determined by immunohistochemistry or mass spectrometry. Standard end organ assessments, including pulmonary function test (PFT) and chest tomography (CT) imaging, and extra-thoracic biopsies established the extent of disease. Results Twenty-five (21.7%) of 115 patients with lung amyloidosis were diagnosed by TBBX. PFT classified 33.3% with restrictive physiology, 28.6% with obstructive disease, and 9.5% mixed physiology; 9.5% exhibited isolated diffusion defects while 19% had normal pulmonary testing. Two view chest or CT imaging identified focal opacities in 52% of cases and diffuse interstitial disease in 48%. Amyloid type and disease extent included 68% systemic AL disease, 16% localized (lung limited) AL disease, 12% ATTR disease, and 4% AA amyloidosis. Fluoroscopy was not used during biopsy. No procedure complications were reported. Conclusions Our case series of 25 patients supports the use of bronchoscopic transbronchial biopsies for diagnosis of parenchymal lung amyloidosis. Normal PFTs do not rule out the histologic presence of amyloid lung disease. PMID:28393574

  19. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  20. Fibrocytes Regulate Wilms’ Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease

    PubMed Central

    Sontake, Vishwaraj; Shanmukhappa, Shiva K.; DiPasquale, Betsy A.; Reddy, Geereddy B.; Medvedovic, Mario; Hardie, William D.; White, Eric S.; Madala, Satish K.

    2015-01-01

    Collagen-producing myofibroblast transdifferentiation is considered a crucial determinant in the formation of scar tissue in the lungs of patients with idiopathic pulmonary fibrosis (IPF). Multiple resident pulmonary cell types and bone marrow-derived fibrocytes have been implicated as contributors to fibrotic lesions due to the transdifferentiation potential of these cells into myofibroblasts. In this study, we assessed the expression of Wilms’ tumor 1 (WT1), a known marker of mesothelial cells, in various cell types in normal and fibrotic lungs. We demonstrate that WT1 is expressed by both mesothelial and mesenchymal cells in IPF lungs, but has limited or no expression in normal human lungs. We also demonstrate that WT1-positive cells accumulate in fibrotic lung lesions, using two different mouse models of pulmonary fibrosis and WT1 promoter-driven fluorescent reporter mice. Reconstitution of bone-marrow cells into a transforming growth factor-α transgenic-mouse model demonstrated that fibrocytes do not transform into WT1-positive mesenchymal cells, but do augment accumulation of WT1-positive cells in severe fibrotic lung disease. Importantly, the number of WT1-positive cells in fibrotic lesions were correlated with severity of lung disease as assessed by changes in lung function, histology, and hydroxyproline levels in mice. Finally, inhibition of WT1 expression was sufficient to attenuate collagen and other extracellular-matrix gene production by mesenchymal cells from both murine and human fibrotic lungs. Thus, the results of this study demonstrate a novel association between fibrocyte-driven WT1-positive cell accumulation and severe fibrotic lung disease. PMID:26371248

  1. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, WD; Oncora Medical, LLC, Philadelphia, PA; Berlind, CG

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013more » was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced machine learning methodologies need be consider in the future.« less

  2. Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury.

    PubMed

    Carvalho, Alysson Roncally S; Jandre, Frederico C; Pino, Alexandre V; Bozza, Fernando A; Salluh, Jorge; Rodrigues, Rosana; Ascoli, Fabio O; Giannella-Neto, Antonio

    2007-01-01

    Protective ventilatory strategies have been applied to prevent ventilator-induced lung injury in patients with acute lung injury (ALI). However, adjustment of positive end-expiratory pressure (PEEP) to avoid alveolar de-recruitment and hyperinflation remains difficult. An alternative is to set the PEEP based on minimizing respiratory system elastance (Ers) by titrating PEEP. In the present study we evaluate the distribution of lung aeration (assessed using computed tomography scanning) and the behaviour of Ers in a porcine model of ALI, during a descending PEEP titration manoeuvre with a protective low tidal volume. PEEP titration (from 26 to 0 cmH2O, with a tidal volume of 6 to 7 ml/kg) was performed, following a recruitment manoeuvre. At each PEEP, helical computed tomography scans of juxta-diaphragmatic parts of the lower lobes were obtained during end-expiratory and end-inspiratory pauses in six piglets with ALI induced by oleic acid. The distribution of the lung compartments (hyperinflated, normally aerated, poorly aerated and non-aerated areas) was determined and the Ers was estimated on a breath-by-breath basis from the equation of motion of the respiratory system using the least-squares method. Progressive reduction in PEEP from 26 cmH2O to the PEEP at which the minimum Ers was observed improved poorly aerated areas, with a proportional reduction in hyperinflated areas. Also, the distribution of normally aerated areas remained steady over this interval, with no changes in non-aerated areas. The PEEP at which minimal Ers occurred corresponded to the greatest amount of normally aerated areas, with lesser hyperinflated, and poorly and non-aerated areas. Levels of PEEP below that at which minimal Ers was observed increased poorly and non-aerated areas, with concomitant reductions in normally inflated and hyperinflated areas. The PEEP at which minimal Ers occurred, obtained by descending PEEP titration with a protective low tidal volume, corresponded to the greatest amount of normally aerated areas, with lesser collapsed and hyperinflated areas. The institution of high levels of PEEP reduced poorly aerated areas but enlarged hyperinflated ones. Reduction in PEEP consistently enhanced poorly or non-aerated areas as well as tidal re-aeration. Hence, monitoring respiratory mechanics during a PEEP titration procedure may be a useful adjunct to optimize lung aeration.

  3. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  4. Feasibility of using 'lung density' values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients.

    PubMed

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-06-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m(-3), pneumonia; 306 ± 38.6 kg m(-3), atelectasis; 497 ± 130 kg m(-3), pleural effusion; 467 ± 113 kg m(-3): Steel-Dwass test, p < 0.05). In addition, in order to compare lung density with CT image pixels, the image resolution of CT images, which was originally 512 × 512 pixels, was changed to 16 × 16 pixels to match that of the EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m(-3)) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT.

  5. [Combined pulmonary fibrosis and emphysema (CPFE)--limitation of usual lung function test and challenge at practice].

    PubMed

    Takai, Daiya

    2014-12-01

    Spirometry and the flow-volume curve test are commonly performed lung function tests. However, a unique clinical entity occasionally shows almost normal data in these tests, and is therefore missed on screening tests. The clinical entity of combined pulmonary emphysema and pulmdoary fibrosis was recognized and documented in the 90's in Japan, the USA, and Europe. Typical emphysema shows obstructive disorders, and pulmonary fibrosis shows restrictive disorders. Thus, the combination of both should lead to a combined disorder pattern in lung function tests, but this is not the case. In 2005, Cottin reported and redefined this combination of emphysema and fibrosis of the lung as "Combined Pulmonary Fibrosis and Emphysema" (CPFE). The patients are typically heavily smoking males who show an almost normal lung function. The upper lobe of these patients usually shows severe emphysema, which contributes to a static volume and a late phase in the forced volume test. On the other hand their lower lobe shows fibrotic change. The fibrotic portion contributes to early phase flow in the flow-volume curve. These mechanisms are a reason for the normal pattern appearance in lung function tests in CPFE patients. As a matter of course, these patients have damaged upper and lower lobes: their diffusing capacity of the lung shows a low performance, their saturation of blood hemoglobin decreases soon after light exercise, and their KL-6 (a blood marker of pulmonary fibrosis) usually shows a high value. They are considered a high risk group regarding complications of post-surgical treatment. Thus, when medical technologists identify suspicious cases, they should advise doctors to add diffusing capacity and KL-6 tests. (Review).

  6. Simulation of late inspiratory rise in airway pressure during pressure support ventilation.

    PubMed

    Yu, Chun-Hsiang; Su, Po-Lan; Lin, Wei-Chieh; Lin, Sheng-Hsiang; Chen, Chang-Wen

    2015-02-01

    Late inspiratory rise in airway pressure (LIRAP, Paw/ΔT) caused by inspiratory muscle relaxation or expiratory muscle contraction is frequently seen during pressure support ventilation (PSV), although the modulating factors are unknown. We investigated the effects of respiratory mechanics (normal, obstructive, restrictive, or mixed), inspiratory effort (-2, -8, or -15 cm H2O), flow cycle criteria (5-40% peak inspiratory flow), and duration of inspiratory muscle relaxation (0.18-0.3 s) on LIRAP during PSV using a lung simulator and 4 types of ventilators. LIRAP occurred with all lung models when inspiratory effort was medium to high and duration of inspiratory muscle relaxation was short. The normal lung model was associated with the fastest LIRAP, whereas the obstructive lung model was associated with the slowest. Unless lung mechanics were normal or mixed, LIRAP was unlikely to occur when inspiratory effort was low. Different ventilators were also associated with differences in LIRAP speed. Except for within the restrictive lung model, changes in flow cycle level did not abolish LIRAP if inspiratory effort was medium to high. Increased duration of inspiratory relaxation also led to the elimination of LIRAP. Simulation of expiratory muscle contraction revealed that LIRAP occurred only when expiratory muscle contraction occurred sometime after the beginning of inspiration. Our simulation study reveals that both respiratory resistance and compliance may affect LIRAP. Except for under restrictive lung conditions, LIRAP is unlikely to be abolished by simply lowering flow cycle criteria when inspiratory effort is strong and relaxation time is rapid. LIRAP may be caused by expiratory muscle contraction when it occurs during inspiration. Copyright © 2015 by Daedalus Enterprises.

  7. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    PubMed

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  8. Deconvoluting lung evolution: from phenotypes to gene regulatory networks

    PubMed Central

    Torday, John S.; Rehan, Virender K.; Hicks, James W.; Wang, Tobias; Maina, John; Weibel, Ewald R.; Hsia, Connie C.W.; Sommer, Ralf J.; Perry, Steven F.

    2007-01-01

    Speakers in this symposium presented examples of respiratory regulation that broadly illustrate principles of evolution from whole organ to genes. The swim bladder and lungs of aquatic and terrestrial organisms arose independently from a common primordial “respiratory pharynx” but not from each other. Pathways of lung evolution are similar between crocodiles and birds but a low compliance of mammalian lung may have driven the development of the diaphragm to permit lung inflation during inspiration. To meet the high oxygen demands of flight, bird lungs have evolved separate gas exchange and pump components to achieve unidirectional ventilation and minimize dead space. The process of “screening” (removal of oxygen from inspired air prior to entering the terminal units) reduces effective alveolar oxygen tension and potentially explains why nonathletic large mammals possess greater pulmonary diffusing capacities than required by their oxygen consumption. The “primitive” central admixture of oxygenated and deoxygenated blood in the incompletely divided reptilian heart is actually co-regulated with other autonomic cardiopulmonary responses to provide flexible control of arterial oxygen tension independent of ventilation as well as a unique mechanism for adjusting metabolic rate. Some of the most ancient oxygen-sensing molecules, i.e., hypoxia-inducible factor-1alpha and erythropoietin, are up-regulated during mammalian lung development and growth under apparently normoxic conditions, suggesting functional evolution. Normal alveolarization requires pleiotropic growth factors acting via highly conserved cell–cell signal transduction, e.g., parathyroid hormone-related protein transducing at least partly through the Wingless/int pathway. The latter regulates morphogenesis from nematode to mammal. If there is commonality among these diverse respiratory processes, it is that all levels of organization, from molecular signaling to structure to function, co-evolve progressively, and optimize an existing gas-exchange framework. PMID:20607138

  9. Metyrapone Alleviates Deleterious Effects of Maternal Food Restriction on Lung Development and Growth of Rat Offspring

    PubMed Central

    Paek, David S.; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S.

    2015-01-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  10. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    PubMed

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. © The Author(s) 2014.

  11. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients.

    PubMed

    Yagi, Satomi; Koh, Yasuhiro; Akamatsu, Hiroaki; Kanai, Kuninobu; Hayata, Atsushi; Tokudome, Nahomi; Akamatsu, Keiichiro; Endo, Katsuya; Nakamura, Seita; Higuchi, Masayuki; Kanbara, Hisashige; Nakanishi, Masanori; Ueda, Hiroki; Yamamoto, Nobuyuki

    2017-01-01

    Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48-85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.

  12. Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise

    2007-09-01

    Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.

  13. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    PubMed

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal.

  14. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome.

    PubMed

    Whitmore, Laura C; Goss, Kelli L; Newell, Elizabeth A; Hilkin, Brieanna M; Hook, Jessica S; Moreland, Jessica G

    2014-07-01

    Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation. We recently demonstrated that NOX2 protects against lung injury and mortality in a murine model of SIRS. In the present study, we investigated the role of NOX2-derived oxidants in the progression from SIRS to MODS. Using a murine model of sterile systemic inflammation, we observed significantly greater illness and subacute mortality in gp91(phox-/y) (NOX2-deficient) mice compared with wild-type mice. Cellular analysis revealed continued neutrophil recruitment to the peritoneum and lungs of the NOX2-deficient mice and altered activation states of both neutrophils and macrophages. Histological examination showed multiple organ pathology indicative of MODS in the NOX2-deficient mice, and several inflammatory cytokines were elevated in lungs of the NOX2-deficient mice. Overall, these data suggest that NOX2 function protects against the development of MODS and is required for normal resolution of systemic inflammation. Copyright © 2014 the American Physiological Society.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobler, Matt; Watson, Gordon; Leavitt, Dennis

    Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less

  16. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    PubMed

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 < 200 μg m(-3)) were collected from December 2012 until June 2013 in Ahvaz, the capital of Khuzestan Province in Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determination of a potential quantitative measure of the state of the lung using lung ultrasound spectroscopy.

    PubMed

    Demi, Libertario; van Hoeve, Wim; van Sloun, Ruud J G; Soldati, Gino; Demi, Marcello

    2017-10-06

    B-lines are ultrasound-imaging artifacts, which correlate with several lung-pathologies. However, their understanding and characterization is still largely incomplete. To further study B-lines, lung-phantoms were developed by trapping a layer of microbubbles in tissue-mimicking gel. To simulate the alveolar size reduction typical of various pathologies, 170 and 80 µm bubbles were used for phantom-type 1 and 2, respectively. A normal alveolar diameter is approximately 280 µm. A LA332 linear-array connected to the ULA-OP platform was used for imaging. Standard ultrasound (US) imaging at 4.5 MHz was performed. Subsequently, a multi-frequency approach was used where images were sequentially generated using orthogonal sub-bands centered at different frequencies (3, 4, 5, and 6 MHz). Results show that B-lines appear predominantly with phantom-type 2. Moreover, the multi-frequency approach revealed that the B-lines originate from a specific portion of the US spectrum. These results can give rise to significant clinical applications since, if further confirmed by extensive in-vivo studies, the native frequency of B-lines could provide a quantitative-measure of the state of the lung.

  18. Fluorescent cellular assay for screening agents inhibiting Pseudomonas aeruginosa adherence.

    PubMed

    Nosková, Libuše; Kubíčková, Božena; Vašková, Lucie; Bláhová, Barbora; Wimmerová, Michaela; Stiborová, Marie; Hodek, Petr

    2015-01-16

    Antibodies against Pseudomonas aeruginosa (PA) lectin, PAIIL, which is a virulence factor mediating the bacteria binding to epithelium cells, were prepared in chickens and purified from egg yolks. To examine these antibodies as a prophylactic agent preventing the adhesion of PA we developed a well plate assay based on fluorescently labeled bacteria and immortalized epithelium cell lines derived from normal and cystic fibrosis (CF) human lungs. The antibodies significantly inhibited bacteria adhesion (up to 50%) in both cell lines. In agreement with in vivo data, our plate assay showed higher susceptibility of CF cells towards the PA adhesion as compared to normal epithelium. This finding proved the reliability of the developed experimental system.

  19. IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection

    PubMed Central

    Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.

    2014-01-01

    Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254

  20. Mast cells in the human lung at high altitude

    NASA Astrophysics Data System (ADS)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  1. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins

    PubMed Central

    2011-01-01

    Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV) is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k) representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com). Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins led us to identification of several genes involved in SCLC tumor development. Furthermore, our study reveled that the Aryl Hydrocarbon Receptor Signaling is the primarily affected pathway by the E6/E7 oncoproteins expression and that this pathway is also deregulated in human SCLC. Our results provide the basis for the development of new therapeutic approaches against human SCLC. PMID:21205295

  2. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    PubMed

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  3. Normal versus sickle red blood cells: hemodynamic and permeability characteristics in reperfusion lung injury.

    PubMed

    Haynes, J; Seibert, A; Shah, A; Taylor, A

    1990-01-01

    Decreased deformability and increased internal viscosity of the sickle red blood cell (SRBC) contribute to abnormal flow in the microcirculation. Since the lungs are commonly affected in sickle cell disease, we compared the hemodynamics of the normal human red blood cell (NRBC) with the SRBC in the pulmonary circulation. The SRBC has decreased antioxidant enzyme activities compared with the NRBC. Thus, using the capillary filtration coefficient (Kfc), we determined the ability of the NRBC and the SRBC to attenuate the increased permeability and resulting edema seen in the oxidant stress of reperfusion lung injury (RLI). We found that lungs perfused with a 5% SRBC perfusate had higher pulmonary arterial pressures (Ppa) and resistances than lungs perfused with a 5% NRBC perfusate. Lungs made ischemic and reperfused with a physiologic cell-free perfusate resulted in a significant increase (P less than .05) in Kfc compared with the preischemic Kfc (.45 +/- .06 to 1.4 +/- 22 mL.min-1.cm H2O.100 g-1). In lungs reperfused with 5% RBC-containing perfusates, the Kfc did not change from preischemic Kfc with NRBCs and decreased from the preischemic Kfc with SRBCs. These findings suggest that the SRBC causes physiologically significant increases in Ppa and resistances and the SRBC, like the NRBC, offers apparent protection in RLI.

  4. Association of incidental emphysema with annual lung function decline and future development of airflow limitation

    PubMed Central

    Koo, Hyeon-Kyoung; Jin, Kwang Nam; Kim, Deog Kyeom; Chung, Hee Soon; Lee, Chang-Hoon

    2016-01-01

    Objectives Emphysema is one of the prognostic factors for rapid lung function decline in patients with COPD, but the impact of incidentally detected emphysema on population without spirometric abnormalities has not been evaluated. This study aimed to determine whether emphysema detected upon computed tomography (CT) screening would accelerate the rate of lung function decline and influence the possibility of future development of airflow limitation in a population without spirometric abnormalities. Materials and methods Subjects who participated in a routine screening for health checkup and follow-up pulmonary function tests for at least 3 years between 2004 and 2010 were retrospectively enrolled. The percentage of low-attenuation area below −950 Hounsfield units (%LAA−950) was calculated automatically. A calculated value of %LAA−950 that exceeded 10% was defined as emphysema. Adjusted annual lung function decline was analyzed using random-slope, random-intercept mixed linear regression models. Results A total of 628 healthy subjects within the normal range of spriometric values were included. Multivariable analysis showed that the emphysema group exhibited a faster decline in forced vital capacity (−33.9 versus −18.8 mL/year; P=0.02). Emphysema was not associated with the development of airflow limitation during follow-up. Conclusion Incidental emphysema quantified using CT scan was significantly associated with a more rapid decline in forced vital capacity in the population with normative spirometric values. However, an association between emphysema and future development of airflow limitation was not observed. PMID:26893550

  5. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage.

    PubMed

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A; Koziol-White, Cynthia; Panettieri, Reynold A; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-11-25

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  6. Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    PubMed Central

    Velalopoulou, Anastasia; Chatterjee, Shampa; Pietrofesa, Ralph A.; Koziol-White, Cynthia; Panettieri, Reynold A.; Lin, Liyong; Tuttle, Stephen; Berman, Abigail; Koumenis, Constantinos; Christofidou-Solomidou, Melpo

    2017-01-01

    Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS), pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung. PMID:29186841

  7. The role of STATs in lung carcinogenesis: an emerging target for novel therapeutics.

    PubMed

    Karamouzis, Michalis V; Konstantinopoulos, Panagiotis A; Papavassiliou, Athanasios G

    2007-05-01

    The signal transducer and activator of transcription (STAT) proteins are a family of latent cytoplasmic transcription factors, which form dimers when activated by cytokine receptors, tyrosine kinase growth factor receptors as well as non-receptor tyrosine kinases. Dimeric STATs translocate to the nucleus, where they bind to specific DNA-response elements in the promoters of target genes, thereby inducing unique gene expression programs often in association with other transcription regulatory proteins. The functional consequence of different STAT proteins activation varies, as their target genes play diverse roles in normal cellular/tissue functions, including growth, apoptosis, differentiation and angiogenesis. Certain activated STATs have been implicated in human carcinogenesis, albeit only few studies have focused into their role in lung tumours. Converging evidence unravels their molecular interplays and complex multipartite regulation, rendering some of them appealing targets for lung cancer treatment with new developing strategies.

  8. An ovine in vivo framework for tracheobronchial stent analysis.

    PubMed

    McGrath, Donnacha J; Thiebes, Anja Lena; Cornelissen, Christian G; O'Shea, Mary B; O'Brien, Barry; Jockenhoevel, Stefan; Bruzzi, Mark; McHugh, Peter E

    2017-10-01

    Tracheobronchial stents are most commonly used to restore patency to airways stenosed by tumour growth. Currently all tracheobronchial stents are associated with complications such as stent migration, granulation tissue formation, mucous plugging and stent strut fracture. The present work develops a computational framework to evaluate tracheobronchial stent designs in vivo. Pressurised computed tomography is used to create a biomechanical lung model which takes into account the in vivo stress state, global lung deformation and local loading from pressure variation. Stent interaction with the airway is then evaluated for a number of loading conditions including normal breathing, coughing and ventilation. Results of the analysis indicate that three of the major complications associated with tracheobronchial stents can potentially be analysed with this framework, which can be readily applied to the human case. Airway deformation caused by lung motion is shown to have a significant effect on stent mechanical performance, including implications for stent migration, granulation formation and stent fracture.

  9. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.

    PubMed

    Fejtek, M; Souza, K; Neff, A; Wassersug, R

    1998-06-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  10. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    NASA Technical Reports Server (NTRS)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  11. AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE

    EPA Science Inventory

    Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...

  12. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.

    PubMed

    Groneberg, D A; Eynott, P R; Döring, F; Dinh, Q Thai; Oates, T; Barnes, P J; Chung, K F; Daniel, H; Fischer, A

    2002-01-01

    Aerosol administration of peptide based drugs has an important role in the treatment of various pulmonary and systemic diseases. The characterisation of pulmonary peptide transport pathways can lead to new strategies in aerosol drug treatment. Immunohistochemistry and ex vivo uptake studies were established to assess the distribution and activity of the beta-lactam transporting high affinity proton coupled peptide transporter PEPT2 in normal and cystic fibrosis human airway tissue. PEPT2 immunoreactivity in normal human airways was localised to cells of the tracheal and bronchial epithelium and the endothelium of small vessels. In peripheral lung immunoreactivity was restricted to type II pneumocytes. In sections of cystic fibrosis lung a similar pattern of distribution was obtained with signals localised to endothelial cells, airway epithelium, and type II pneumocytes. Functional ex vivo uptake studies with fresh lung specimens led to an uptake of the fluorophore conjugated dipeptide derivative D-Ala-L-Lys-AMCA into bronchial epithelial cells and type II pneumocytes. This uptake was competitively inhibited by dipeptides and cephalosporins but not ACE inhibitors, indicating a substrate specificity as described for PEPT2. These findings provide evidence for the expression and function of the peptide transporter PEPT2 in the normal and cystic fibrosis human respiratory tract and suggest that PEPT2 is likely to play a role in the transport of pulmonary peptides and peptidomimetics.

  13. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung

    PubMed Central

    Groneberg, D; Eynott, P; Doring, F; Thai, D; Oates, T; Barnes, P; Chung, K; Daniel, H; Fischer, A

    2002-01-01

    Background: Aerosol administration of peptide based drugs has an important role in the treatment of various pulmonary and systemic diseases. The characterisation of pulmonary peptide transport pathways can lead to new strategies in aerosol drug treatment. Methods: Immunohistochemistry and ex vivo uptake studies were established to assess the distribution and activity of the ß-lactam transporting high affinity proton coupled peptide transporter PEPT2 in normal and cystic fibrosis human airway tissue. Results: PEPT2 immunoreactivity in normal human airways was localised to cells of the tracheal and bronchial epithelium and the endothelium of small vessels. In peripheral lung immunoreactivity was restricted to type II pneumocytes. In sections of cystic fibrosis lung a similar pattern of distribution was obtained with signals localised to endothelial cells, airway epithelium, and type II pneumocytes. Functional ex vivo uptake studies with fresh lung specimens led to an uptake of the fluorophore conjugated dipeptide derivative D-Ala-L-Lys-AMCA into bronchial epithelial cells and type II pneumocytes. This uptake was competitively inhibited by dipeptides and cephalosporins but not ACE inhibitors, indicating a substrate specificity as described for PEPT2. Conclusions: These findings provide evidence for the expression and function of the peptide transporter PEPT2 in the normal and cystic fibrosis human respiratory tract and suggest that PEPT2 is likely to play a role in the transport of pulmonary peptides and peptidomimetics. PMID:11809991

  14. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    NASA Astrophysics Data System (ADS)

    Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.

    2016-08-01

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.

  15. Lung scintigraphy in differential diagnosis of peripheral lung cancer and community-acquired pneumonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.

    Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less

  16. A newly developed solution enhances thirty-hour preservation in a canine lung transplantation model.

    PubMed

    Liu, C J; Ueda, M; Kosaka, S; Hirata, T; Yokomise, H; Inui, K; Hitomi, S; Wada, H

    1996-09-01

    Ischemia and reperfusion cause the production of oxygen free radicals. These damage grafts or disrupt normal vascular homeostatic mechanisms, with a parallel reduction in endothelial nitric oxide and adenosine 3',5'-cyclic monophosphate levels. We hypothesized that lung preservation failure may be related to these events. To improve lung preservation, we prepared a new ET-Kyoto solution, which contains N-acetylcysteine (a radical scavenger), nitroglycerin (to elevate the nitric oxide level), and dibutyryl adenosine 3',5'-cyclic monophosphate (to elevate the adenosine 3',5'-cyclic monophosphate level) and examined its efficacy in a canine single-lung transplantation model. Lungs were flushed with new ET-Kyoto solution (group I, n = 9), basal ET-Kyoto solution (group II, n = 6), basal ET-Kyoto solution plus ethanol and propylene glycol (solvents of nitroglycerin; group III, n = 6), or low-potassium dextran glucose solution (group IV, n = 6), and stored at 4 degrees C for 30 hours. After left single-lung transplantation, the right main bronchus and right pulmonary artery were ligated and the functions of the transplanted lung were assessed for 6 hours. Arterial oxygen tension was significantly higher in group I than in groups II, III, and IV (p < 0.05). Peak inspiratory pressure and wet-to-dry lung weight ratio were significantly lower in group I than in groups II and IV (p < 0.01). Histologic and ultrastructural studies showed better preservation in group I than in groups II, III, and IV. We conclude that the new ET-Kyoto solution provides enhanced 30-hour lung preservation.

  17. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  18. Leptin does not influence surfactant synthesis in fetal sheep and mice lungs

    PubMed Central

    Sato, Atsuyasu; Schehr, Angelica

    2011-01-01

    In the fetus, leptin in the circulation increases at late gestation and likely influences fetal organ development. Increased surfactant by leptin was previously demonstrated in vitro using fetal lung explant. We hypothesized that leptin treatment given to fetal sheep and pregnant mice might increase surfactant synthesis in the fetal lung in vivo. At 122–124 days gestational age (term: 150 days), fetal sheep were injected with 5 mg of leptin or vehicle using ultrasound guidance. Three and a half days after injection, preterm lambs were delivered, and lung function was studied during 30-min ventilation, followed by pulmonary surfactant components analyses. Pregnant A/J mice were given 30 or 300 mg of leptin or vehicle by intraperitoneal injection according to five study protocols with different doses, number of treatments, and gestational ages to treat. Surfactant components were analyzed in fetal lung 24 h after the last maternal treatment. Leptin injection given to fetal sheep increased fetal body weight. Control and leptin-treated groups were similar in lung function (preterm newborn lamb), surfactant components pool sizes (lamb and fetal mice), and expression of genes related to surfactant synthesis in the lung (fetal mice). Likewise, saturated phosphatidylcholine and phospholipid were normal in mice lungs with absence of circulating leptin (ob/ob mice) at all ages. These studies coincided in findings that neither exogenously given leptin nor deficiency of leptin influenced fetal lung maturation or surfactant pool sizes in vivo. Furthermore, the key genes critically required for surfactant synthesis were not affected by leptin treatment. PMID:21216976

  19. Defective parasympathetic innervation is associated with airway branching abnormalities in experimental CDH

    PubMed Central

    Rhodes, Julie; Saxena, Deeksha; Zhang, GuangFeng; Gittes, George K.

    2015-01-01

    Developmental mechanisms leading to lung hypoplasia in congenital diaphragmatic hernia (CDH) remain poorly defined. Pulmonary innervation is defective in the human disease and in the rodent models of CDH. We hypothesize that defective parasympathetic innervation may contribute to airway branching abnormalities and, therefore, lung hypoplasia, during lung development in CDH. The murine nitrofen model of CDH was utilized to study the effect of the cholinergic agonist carbachol on embryonic day 11.5 (E11.5) lung explant cultures. Airway branching and contractions were quantified. In a subset of experiments, verapamil was added to inhibit airway contractions. Sox9 immunostaining and 5-bromo-2-deoxyuridine incorporation were used to identify and quantify the number and proliferation of distal airway epithelial progenitor cells. Intra-amniotic injections were used to determine the in vivo effect of carbachol. Airway branching and airway contractions were significantly decreased in nitrofen-treated lungs compared with controls. Carbachol resulted in increased airway contractions and branching in nitrofen-treated lungs. Nitrofen-treated lungs exhibited an increased number of proliferating Sox9-positive distal epithelial progenitor cells, which were decreased and normalized by treatment with carbachol. Verapamil inhibited the carbachol-induced airway contractions in nitrofen-treated lungs but had no effect on the carbachol-induced increase in airway branching, suggesting a direct carbachol effect independent of airway contractions. In vivo treatment of nitrofen-treated embryos via amniotic injection of carbachol at E10.5 resulted in modest increases in lung size and branching at E17.5. These results suggest that defective parasympathetic innervation may contribute to airway branching abnormalities in CDH. PMID:25934671

  20. Lung granulomatous response induced by infection with the intestinal nematode Nippostrongylusbrasiliensis is suppressed in mast cell-deficient Ws/Ws rats

    PubMed Central

    ARIZONO, N; NISHIDA, M; UCHIKAWA, R; YAMADA, M; MATSUDA, S; TEGOSHI, T; KITAMURA, Y; SASABE, M

    1996-01-01

    Certain nematode infections induce eosinophil infiltration and granulomatous responses in the lungs. To examine the role of mast cells in the development of lung lesions, normal +/+ and genetically mast cell-deficient Ws/Ws rats were infected with the nematode Nippostrongylusbrasiliensis. In +/+ rats, numbers of eosinophils in bronchoalveolar lavage fluid (BALF) increased significantly 3–7 days after infection, and granulomatous responses composed of histiocytes/macrophages and multinucleate giant cells were triggered in the lungs 3–14 days after infection. Challenge infection, which was carried out on day 28 after primary infection, induced much higher levels of granulomatous response than after primary infection, suggesting that the response is mediated at least in part by an immunological mechanism. In Ws/Ws rats, both the eosinophil percentage in BALF and the size of the granulomas in the lungs were significantly smaller than in +/+ rats after primary as well as after challenge infection. The amount of rat mast cell protease (RMCP) II in +/+ rat BALF was increased 1 day after primary infection and more significantly after challenge infection, suggesting that lung mucosal mast cells were activated more markedly after the challenge infection. In Ws/Ws rats, RMCP II was undetectable throughout the observation period. The time course of nematode migration in the lungs did not differ in +/+ and Ws/Ws rats. These results suggest that mast cell activation might be relevant to eosinophil infiltration and granulomatous response in the lungs, although the responses do not affect lung migration of the nematode. PMID:8870698

  1. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival.

    PubMed

    Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A

    2013-02-26

    Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.

  2. Sex Differences and Sex Steroids in Lung Health and Disease

    PubMed Central

    Townsend, Elizabeth A.; Miller, Virginia M.

    2012-01-01

    Sex differences in the biology of different organ systems and the influence of sex hormones in modulating health and disease are increasingly relevant in clinical and research areas. Although work has focused on sex differences and sex hormones in cardiovascular, musculoskeletal, and neuronal systems, there is now increasing clinical evidence for sex differences in incidence, morbidity, and mortality of lung diseases including allergic diseases (such as asthma), chronic obstructive pulmonary disease, pulmonary fibrosis, lung cancer, as well as pulmonary hypertension. Whether such differences are inherent and/or whether sex steroids play a role in modulating these differences is currently under investigation. The purpose of this review is to define sex differences in lung structure/function under normal and specific disease states, with exploration of whether and how sex hormone signaling mechanisms may explain these clinical observations. Focusing on adult age groups, the review addresses the following: 1) inherent sex differences in lung anatomy and physiology; 2) the importance of certain time points in life such as puberty, pregnancy, menopause, and aging; 3) expression and signaling of sex steroid receptors under normal vs. disease states; 4) potential interplay between different sex steroids; 5) the question of whether sex steroids are beneficial or detrimental to the lung; and 6) the potential use of sex steroid signaling as biomarkers and therapeutic avenues in lung diseases. The importance of focusing on sex differences and sex steroids in the lung lies in the increasing incidence of lung diseases in women and the need to address lung diseases across the life span. PMID:22240244

  3. Identification of Immunogenic Targets for Lung Cancer Vaccines

    DTIC Science & Technology

    2017-09-01

    quantitative proteomic analysis to identify proteins overexpressed in non-small cell lung cancer cell lines compared with normal lung epithelial...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

  4. Brief communication: Legionnaire's disease successfully treated in acute myelocytic leukemia during severe neutropenia.

    PubMed

    Guthrie, T H; Mahizhnan, P

    1983-01-01

    A patient with acute nonlymphocytic leukemia developed progressive lung infiltrates and unremitting fevers during a profound neutropenic state. Legionnaire's disease was diagnosed by simple immunologic studies and successfully treated with erythromycin. This index case alerts physicians toward a treatable infection which would not normally be susceptible to the empiric antibiotic regimens given neutropenic patients with fevers.

  5. Changes of air-tissue ratio evaluated by EBCT after cardiopulmonary resuscitation (CPR): validation in swine

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Schuster, Antonius H.; Kleinsasser, Axel; Loeckinger, Alexander; Hoermann, Christoph; zur Nedden, Dieter

    2001-05-01

    The purpose was to evaluate changes of the air-tissue ratio (ATR) in previously defined regions of interest after cardiopulmonary resuscitation (CPR) in porcine model. Eight anesthetized and ventilated pigs we scanned in supine position before and 30 minutes after CPR at two different constant PEEP levels (5 cm H2O, 15 cm H2O). Volume scans were obtained using 6 mm slices. The gray values of the lung were divided into steps of 100 HU in order to get access to the changes of ATR. ATR was evaluated in ventral, intermediate and dorsal regions of the lung. CPR for 9 minutes led to an uneven distribution of ventilation. In the ventral region, areas with high ATR increased. Areas with normal ATR decreased. In contrast the dorsal regions with low ATR increased. ATR in the intermediate regions remained almost unchanged. Using the higher PEEP level, areas with normal ATR showed a marked increase accompanied by a decrease of areas with low ATR. After CPR, an uneven distribution of lung aeration was detected. According to the impaired hemodynamics, areas with normal ATR decreased and areas with high and low ATR increased. Using higher PEEP levels improved lung aeration.

  6. Individualized Radical Radiotherapy of Non-Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth

    2008-08-01

    Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissuemore » dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.« less

  7. Prospective longitudinal evaluation of lung function during the first year of life after extracorporeal membrane oxygenation.

    PubMed

    Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M

    2011-03-01

    To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p < .001) at 6 mos and 12 mos: -1.1 (0.1) and -1.2 (0.1), respectively. At 12 mos, infants with diaphragmatic hernia had a functional residual capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.

  8. Asbestos-associated genome-wide DNA methylation changes in lung cancer.

    PubMed

    Kettunen, Eeva; Hernandez-Vargas, Hector; Cros, Marie-Pierre; Durand, Geoffroy; Le Calvez-Kelm, Florence; Stuopelyte, Kristina; Jarmalaite, Sonata; Salmenkivi, Kaisa; Anttila, Sisko; Wolff, Henrik; Herceg, Zdenko; Husgafvel-Pursiainen, Kirsti

    2017-11-15

    Previous studies have revealed a robust association between exposure to asbestos and human lung cancer. Accumulating evidence has highlighted the role of epigenome deregulation in the mechanism of carcinogen-induced malignancies. We examined the impact of asbestos on DNA methylation. Our genome-wide studies (using Illumina HumanMethylation450K BeadChip) of lung cancer tissue and paired normal lung from 28 asbestos-exposed or non-exposed patients, mostly smokers, revealed distinctive DNA methylation changes. We identified a number of differentially methylated regions (DMR) and differentially variable, differentially methylated CpGs (DVMC), with individual CpGs further validated by pyrosequencing in an independent series of 91 non-small cell lung cancer and paired normal lung. We discovered and validated BEND4, ZSCAN31 and GPR135 as significantly hypermethylated in lung cancer. DMRs in genes such as RARB (FDR 1.1 × 10 -19 , mean change in beta [Δ] -0.09), GPR135 (FDR 1.87 × 10 -8 , mean Δ -0.09) and TPO (FDR 8.58 × 10 -5 , mean Δ -0.11), and DVMCs in NPTN, NRG2, GLT25D2 and TRPC3 (all with p <0.05, t-test) were significantly associated with asbestos exposure status in exposed versus non-exposed lung tumors. Hypomethylation was characteristic to DVMCs in lung cancer tissue from asbestos-exposed subjects. When DVMCs related to asbestos or smoking were analyzed, 96% of the elements were unique to either of the exposures, consistent with the concept that the methylation changes in tumors may be specific for risk factors. In conclusion, we identified novel DNA methylation changes associated with lung tumors and asbestos exposure, suggesting that changes may be present in causal pathway from asbestos exposure to lung cancer. © 2017 UICC.

  9. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    PubMed

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  10. Transpulmonary pressures and lung mechanics with glossopharyngeal insufflation and exsufflation beyond normal lung volumes in competitive breath-hold divers.

    PubMed

    Loring, Stephen H; O'Donnell, Carl R; Butler, James P; Lindholm, Peter; Jacobson, Francine; Ferrigno, Massimo

    2007-03-01

    Throughout life, most mammals breathe between maximal and minimal lung volumes determined by respiratory mechanics and muscle strength. In contrast, competitive breath-hold divers exceed these limits when they employ glossopharyngeal insufflation (GI) before a dive to increase lung gas volume (providing additional oxygen and intrapulmonary gas to prevent dangerous chest compression at depths recently greater than 100 m) and glossopharyngeal exsufflation (GE) during descent to draw air from compressed lungs into the pharynx for middle ear pressure equalization. To explore the mechanical effects of these maneuvers on the respiratory system, we measured lung volumes by helium dilution with spirometry and computed tomography and estimated transpulmonary pressures using an esophageal balloon after GI and GE in four competitive breath-hold divers. Maximal lung volume was increased after GI by 0.13-2.84 liters, resulting in volumes 1.5-7.9 SD above predicted values. The amount of gas in the lungs after GI increased by 0.59-4.16 liters, largely due to elevated intrapulmonary pressures of 52-109 cmH(2)O. The transpulmonary pressures increased after GI to values ranging from 43 to 80 cmH(2)O, 1.6-2.9 times the expected values at total lung capacity. After GE, lung volumes were reduced by 0.09-0.44 liters, and the corresponding transpulmonary pressures decreased to -15 to -31 cmH(2)O, suggesting closure of intrapulmonary airways. We conclude that the lungs of some healthy individuals are able to withstand repeated inflation to transpulmonary pressures far greater than those to which they would normally be exposed.

  11. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.

    PubMed

    Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M

    2008-07-01

    Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.

  12. Sound transmission in porcine thorax through airway insonification.

    PubMed

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J

    2016-04-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.

  13. Sound transmission in porcine thorax through airway insonification

    PubMed Central

    Dai, Zoujun; Mansy, Hansen A.; Henry, Brian M.; Sandler, Richard H.; Balk, Robert A.; Royston, Thomas J.

    2015-01-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration. PMID:26280512

  14. The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.

    2012-03-01

    Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.

  15. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    PubMed Central

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with normal lung function, implying that patients with COPD who continue to smoke will experience enhanced oxidative stress, prompting disease progression. PMID:26557249

  16. Pulmonary anatomy and a case of unilateral aplasia in a common snapping turtle (Chelydra serpentina): developmental perspectives on cryptodiran lungs.

    PubMed

    Schachner, E R; Sedlmayr, J C; Schott, R; Lyson, T R; Sanders, R K; Lambertz, M

    2017-12-01

    The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member of Testudines; however, very little is known concerning developmental anomalies and soft tissue pathologies of turtles and other reptiles. Here, we present an unusual case of unilateral pulmonary aplasia, asymmetrical carapacial kyphosis, and mild scoliosis in a live adult C. serpentina. The detailed three-dimensional (3D) anatomy of the respiratory system in both the pathological and normal adult C. serpentina, and a hatchling are visualized using computed tomography (CT), microCT, and 3D digital anatomical models. In the pathological turtle, the right lung consists of an extrapulmonary bronchus that terminates in a blind stump with no lung present. The left lung is hyperinflated relative to the normal adult, occupying the extra coelomic space facilitated by the unusual mid-carapacial kyphotic bulge. The bronchial tree of the left lung retains the overall bauplan of the normal specimens, with some minor downstream variation in the number of secondary airways. The primary difference between the internal pulmonary structure of the pathological individual and that of a normal adult is a marked increase in the surface area and density of the parenchymal tissue originating from the secondary airways, a 14.3% increase in the surface area to volume ratio. Despite this, the aplasia has not had an impact upon the ability of the turtle to survive; however, it did interfere with aquatic locomotion and buoyancy control under water. This turtle represents a striking example of a non-fatal congenital defect and compensatory visceral hypertrophy. © 2017 Anatomical Society.

  17. Four-Dimensional CT of the Diaphragm in Children: Initial Experience

    PubMed Central

    2018-01-01

    Objective To evaluate the technical feasibility of four-dimensional (4D) CT for the functional evaluation of the pediatric diaphragm. Materials and Methods In 22 consecutive children (median age 3.5 months, age range 3 days–3 years), 4D CT was performed to assess diaphragm motion. Diaphragm abnormalities were qualitatively evaluated and diaphragm motion was quantitatively measured on 4D CT. Lung density changes between peak inspiration and expiration were measured in the basal lung parenchyma. The diaphragm motions and lung density changes measured on 4D CT were compared between various diaphragm conditions. In 11 of the 22 children, chest sonography was available for comparison. Results Four-dimensional CT demonstrated normal diaphragm (n = 8), paralysis (n = 10), eventration (n = 3), and diffusely decreased motion (n = 1). Chest sonography demonstrated normal diaphragm (n = 2), paralysis (n = 6), eventration (n = 2), and right pleural effusion (n = 1). The sonographic findings were concordant with the 4D CT findings in 90.9% (10/11) of the patients. In diaphragm paralysis, the affected diaphragm motion was significantly decreased compared with the contralateral normal diaphragm motion (−1.1 ± 2.2 mm vs. 7.6 ± 3.8 mm, p = 0.005). The normal diaphragms showed significantly greater motion than the paralyzed diaphragms (4.5 ± 2.1 mm vs. −1.1 ± 2.2 mm, p < 0.0001), while the normal diaphragm motion was significantly smaller than the motion of the contralateral normal diaphragm in paralysis (4.5 ± 2.1 mm vs. 7.6 ± 3.8 mm, p = 0.01). Basal lung density change of the affected side was significantly smaller than that of the contralateral side in diaphragm paralysis (89 ± 73 Hounsfield units [HU] vs. 180 ± 71 HU, p = 0.03), while no significant differences were found between the normal diaphragms and the paralyzed diaphragms (136 ± 66 HU vs. 89 ± 73 HU, p = 0.1) or between the normal diaphragms and the contralateral normal diaphragms in paralysis (136 ± 66 HU vs. 180 ± 71 HU, p = 0.1). Conclusion The functional evaluation of the pediatric diaphragm is feasible with 4D CT in select children. PMID:29354007

  18. Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography.

    PubMed

    Philipsen, R H H M; Maduskar, P; Hogeweg, L; Melendez, J; Sánchez, C I; van Ginneken, B

    2015-09-01

    Automated quantitative analysis systems for medical images often lack the capability to successfully process images from multiple sources. Normalization of such images prior to further analysis is a possible solution to this limitation. This work presents a general method to normalize medical images and thoroughly investigates its effectiveness for chest radiography (CXR). The method starts with an energy decomposition of the image in different bands. Next, each band's localized energy is scaled to a reference value and the image is reconstructed. We investigate iterative and local application of this technique. The normalization is applied iteratively to the lung fields on six datasets from different sources, each comprising 50 normal CXRs and 50 abnormal CXRs. The method is evaluated in three supervised computer-aided detection tasks related to CXR analysis and compared to two reference normalization methods. In the first task, automatic lung segmentation, the average Jaccard overlap significantly increased from 0.72±0.30 and 0.87±0.11 for both reference methods to with normalization. The second experiment was aimed at segmentation of the clavicles. The reference methods had an average Jaccard index of 0.57±0.26 and 0.53±0.26; with normalization this significantly increased to . The third experiment was detection of tuberculosis related abnormalities in the lung fields. The average area under the Receiver Operating Curve increased significantly from 0.72±0.14 and 0.79±0.06 using the reference methods to with normalization. We conclude that the normalization can be successfully applied in chest radiography and makes supervised systems more generally applicable to data from different sources.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieske, T.R.; Sunderrajan, E.V.; Passamonte, P.M.

    A patient with chronic eosinophilic pneumonia was evaluated using bronchoalveolar lavage, technetium-99m glucoheptonate, and transbronchial lung biopsy. Bronchoalveolar lavage revealed 43 percent eosinophils and correlated well with results of transbronchial lung biopsy. Technetium-99m glucoheptonate lung imaging demonstrated intense parenchymal uptake. After eight weeks of corticosteroid therapy, the bronchoalveolar lavage eosinophil population and the technetium-99m glucoheptonate uptake had returned to normal. We suggest that bronchoalveolar lavage, with transbronchial lung biopsy, is a less invasive way than open lung biopsy to diagnose chronic eosinophilic pneumonia. The mechanism of uptake of technetium-99m glucoheptonate in this disorder remains to be defined.

  20. Changes in lung ultrastructure following heterologous and homologous serum albumin infusion in the treatment of hemorrhagic shock.

    PubMed Central

    Moss, G S; Das Gupta, T K; Brinkman, R; Sehgal, L; Newsom, B

    1979-01-01

    The object of this study was to compare the ultrastructure pulmonary effects of the infusion of homologous and heterologous serum albumin solution in the treatment of hemorrhagic shock in baboons. Adult baboons subjected to hemorrhagic shock were resuscitated with either baboon serum albumin, human serum albumin, or Ringer's lactate solution. The lungs were fixed in vivo with potassium pyroantimony, a solution which produces electron dense interstitial precipitation of sodium. The lungs from animals resuscitated with baboon serum albumin showed evidence of interstitial edema, including dispersion of collagen fibers, interstitial smudging and increased interstital sodium concentrations. Similar changes were seen following human serum albumin infusions. Lung tissue from animals treated with Ringer's lactate solution showed minimal changes from normal. These results suggest that interstitial pulmonary edema develops after either homologous or heterologous serum albumin infusion in the treatment of hemorrhagic shock in baboons. Images Figs. 2a and b. Figs. 3a and b. Figs. 4a and b. Figs. 5a and b. Figs. 6a and b. PMID:106780

Top