Sample records for normal mechanical function

  1. Biomechanics of Cardiac Function

    PubMed Central

    Voorhees, Andrew P.; Han, Hai-Chao

    2015-01-01

    The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462

  2. Protein mislocalization: mechanisms, functions and clinical applications in cancer

    PubMed Central

    Wang, Xiaohong; Li, Shulin

    2014-01-01

    The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009

  3. Functional movement impairment in dancers: An assessment and treatment approach utilizing the Biomechanical Asymmetry Corrector (BAC) to restore normal mechanics of the spine and pelvis.

    PubMed

    Keller, K; West, J C

    1995-01-01

    Musculoskeletal injuries to the spine and pelvis are common in dancers. These injuries are associated with mechanical dysfunctions that impair spinal adaptation to the movement demands of the art form. This article introduces the biomechanical asymmetry corrector (BAC), a dynamic assessment and treatment tool, designed to restore normal spinal mechanics and functional movement patterns in dancers. A discussion of lumbo-pelvic mechanics and dance injury provides a theoretical context for describing exercises on the BAC.

  4. Effectiveness of surgical reconstruction to restore radiocarpal joint mechanics after scapholunate ligament injury: an in vivo modeling study.

    PubMed

    Johnson, Joshua E; Lee, Phil; McIff, Terence E; Toby, E Bruce; Fischer, Kenneth J

    2013-05-31

    Disruption of the scapholunate ligament can cause a loss of normal scapholunate mechanics and eventually lead to osteoarthritis. Surgical reconstruction attempts to restore scapholunate relationship show improvement in functional outcomes, but postoperative effectiveness in restoring normal radiocarpal mechanics still remains a question. The objective of this study was to investigate the benefits of surgical repair by observing changes in contact mechanics on the cartilage surface before and after surgical treatment. Six patients with unilateral scapholunate dissociation were enrolled in the study, and displacement driven magnetic resonance image-based surface contact modeling was used to investigate normal, injured and postoperative radiocarpal mechanics. Model geometry was acquired from images of wrists taken in a relaxed position. Kinematics were acquired from image registration between the relaxed images, and images taken during functional loading. Results showed a trend for increase in radiocarpal contact parameters with injury. Peak and mean contact pressures significantly decreased after surgery in the radiolunate articulation and there were no significant differences between normal and postoperative wrists. Results indicated that surgical repair improves contact mechanics after injury and that contact mechanics can be surgically restored to be similar to normal. This study provides novel contact mechanics data on the effects of surgical repair after scapholunate ligament injury. With further work, it may be possible to more effectively differentiate between treatments and degenerative changes based on in vivo contact mechanics data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

    PubMed

    Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko

    2013-07-01

    Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  6. Flux pinning mechanism in codoped-MgB2 with Al2O3 and SiC

    NASA Astrophysics Data System (ADS)

    Kiafiroozkoohi, Narjess Sadat; Ghorbani, Shaban Reza; Arabi, Hadi

    2018-05-01

    MgB2 superconductor samples, co-doped with 0.02 wt of Al2O3 and 0.02 wt SiC, have been examined by M-H loop measurements and calculation of the critical current density based on the Bean model. Normalized volume pinning force, f = F/Fmax, as a function of the reduced magnetic field, h = H/Hmax has been obtained at each temperature. Hughochi flux pinning model, which was included the normal point pinning, the normal surface pinning, and the pinning based on spatial variation in the Ginzburg-Landau parameter, was used to study the flux pinning mechanisms. It was found that the Δκ effect and the normal point pinning mechanisms play the main role in the flux pinning at the magnetic field lower than Hmax and the contribution of the Δκ mechanism increases with the increasing temperature, while the contribution of normal point pinning mechanism decreases. At magnetic field larger than Hmax, the only mechanism that acts as the flux pinning was the normal surface pinning mechanism.

  7. Power flow in normal human voice production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2016-11-01

    The principal mechanisms of energy utilization in voicing are quantified using a simplified model, in order to better define voice efficiency. A control volume analysis of energy utilization in phonation is presented to identify the energy transfer mechanisms in terms of their function. Conversion of subglottal airstream potential energy into useful work done (vocal fold vibration, flow work, sound radiation), and into heat (sound radiation absorbed by the lungs, glottal jet dissipation) are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  8. Metabolic Cost, Mechanical Work, and Efficiency during Normal Walking in Obese and Normal-Weight Children

    ERIC Educational Resources Information Center

    Huang, Liang; Chen, Peijie; Zhuang, Jie; Zhang, Yanxin; Walt, Sharon

    2013-01-01

    Purpose: This study aimed to investigate the influence of childhood obesity on energetic cost during normal walking and to determine if obese children choose a walking strategy optimizing their gait pattern. Method: Sixteen obese children with no functional abnormalities were matched by age and gender with 16 normal-weight children. All…

  9. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    PubMed

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.

  10. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  11. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  12. Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in Caenorhabditis elegans

    PubMed Central

    Pandey, Pratima; Bhardwaj, Ashwani; Babu, Kavita

    2017-01-01

    Perturbations in synaptic function could affect the normal behavior of an animal, making it important to understand the regulatory mechanisms of synaptic signaling. Previous work has shown that in Caenorhabditis elegans an immunoglobulin superfamily protein, RIG-3, functions in presynaptic neurons to maintain normal acetylcholine receptor levels at the neuromuscular junction (NMJ). In this study, we elucidate the molecular and functional mechanism of RIG-3. We demonstrate by genetic and BiFC (Bi-molecular Fluorescence Complementation) assays that presynaptic RIG-3 functions by directly interacting with the immunoglobulin domain of the nonconventional Wnt receptor, ROR receptor tyrosine kinase (RTK), CAM-1, which functions in postsynaptic body-wall muscles. This interaction in turn inhibits Wnt/LIN-44 signaling through the ROR/CAM-1 receptor, and allows for maintenance of normal acetylcholine receptor, AChR/ACR-16, levels at the neuromuscular synapse. Further, this work reveals that RIG-3 and ROR/CAM-1 function through the β-catenin/HMP-2 at the NMJ. Taken together, our results demonstrate that RIG-3 functions as an inhibitory molecule of the Wnt/LIN-44 signaling pathway through the RTK, CAM-1. PMID:28515212

  13. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia

    PubMed Central

    Williams, David A; Gracely, Richard H

    2006-01-01

    Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318

  14. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  15. Cardiac mechanics: Physiological, clinical, and mathematical considerations

    NASA Technical Reports Server (NTRS)

    Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.

    1974-01-01

    Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.

  16. Functional Esophageal Disorders.

    PubMed

    Aziz, Qasim; Fass, Ronnie; Gyawali, C Prakash; Miwa, Hiroto; Pandolfino, John E; Zerbib, Frank

    2016-02-15

    Functional esophageal disorders consist of a disease category that present with esophageal symptoms (heartburn, chest pain, dysphagia, globus) not explained by mechanical obstruction (stricture, tumor, eosinophilic esophagitis), major motor disorders (achalasia, EGJ outflow obstruction, absent contractility, distal esophageal spasm, jackhammer esophagus), or gastroesophageal reflux disease (GERD). While mechanisms responsible are unclear, it is theorized that visceral hypersensitivity and hypervigilance play an important role in symptom generation, in the context of normal or borderline function. Treatments directed at improving borderline motor dysfunction or reducing reflux burden to sub-normal levels have limited success in symptom improvement. In contrast, strategies focused on modulating peripheral triggering and central perception are mechanistically viable and clinically meaningful. However, outcome data from these treatment options are limited. Future research needs to focus on understanding mechanisms underlying visceral hypersensitivity and hypervigilance so that appropriate targets and therapies can be developed. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Coronary flow reserve/diastolic function relationship in angina-suffering patients with normal coronary angiography.

    PubMed

    Anchisi, Chiara; Marti, Giuliano; Bellacosa, Ilaria; Mary, David; Vacca, Giovanni; Marino, Paolo; Grossini, Elena

    2017-05-01

    Coronary blood flow and diastolic function are well known to interfere with each other through mechanical and metabolic mechanisms. We aimed to assess the relationship between coronary flow reserve (CFR) and diastolic dysfunction in patients suffering from angina but with normal coronary angiography. In 16 patients with chest pain and angiographically normal coronary arteries, CFR was measured using transthoracic echo-Doppler by inducing hyperemia through dipyridamole infusion. Diastolic function (E/A, deceleration time, isovolumetric relaxation time [IVRT], propagation velocity [Vp]) and left ventricular mass were evaluated by means of two-dimensional transthoracic echocardiography. The patients were initially divided into two groups on the grounds of CFR only (ACFR: altered CFR, n = 9; NACFR: unaltered CFR, n = 7). Thereafter they were divided into four groups on the grounds of CFR and diastolic function (NN: normal; AA: altered CFR/diastole; AN: altered CFR/normal diastole; NA: normal CFR/altered diastole). Most of the subjects were scheduled in AA (n = 8) or NA (n = 5) groups, which were taken into consideration for further analysis. Patients were not different regarding various risk factors. ACFR and AA patients were older with normal body weight in comparison with NACFR and NA patients (P < 0.05). In the AA group, CFR and diastolic variables were found to be related to each other. Diastolic dysfunction and reduced CFR were correlated in patients with concomitant alterations of those variables only. Because most risk factors were shared with patients with altered diastolic properties only, our findings could represent a direct relationship between altered CFR and diastole.

  18. Sub-Network Access Control Technology Demonstrator: Software Design of the Network Management System

    DTIC Science & Technology

    2002-08-01

    Canadian Operational Fleet. Requirements The proposed network management solution must provide the normal monitoring and configuration mechanisms generally...Joint Warrior Inter- operability Demonstrations (JWID) m and the Communication System Network Inter- Operability (CSNI) Navy Network Trials. In short...management functional area normally includes two main functions: fault isolation and diagnosis, and restoration of the system . In short, an operator

  19. Respirator triggering of electron beam computed tomography (EBCT): evaluation of dynamic changes during mechanical expiration in the traumatized patient

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Hatschenberger, Robert; Knapp, Rudolf; zur Nedden, Dieter; Hoermann, Christoph

    1999-05-01

    The purpose of this project is to evaluate the dynamic changes during expiration at different levels of positive end- expiratory pressure (PEEP) in the ventilated patient. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (1) with normal lung function; (2) ARDS). We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm. The table position remained unchanged. An electronic trigger was developed, that utilizes the respirators synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU/-500HU), poorly- aerated (-500HU/-100HU) and non-aerated (-100HU/+100HU). Pathological and normal lung function showed different dynamic changes (FIG.4-12). The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only a very limited number of patients, respirator triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in the mechanically ventilated patient.

  20. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  1. Normal central retinal function and structure preserved in retinitis pigmentosa.

    PubMed

    Jacobson, Samuel G; Roman, Alejandro J; Aleman, Tomas S; Sumaroka, Alexander; Herrera, Waldo; Windsor, Elizabeth A M; Atkinson, Lori A; Schwartz, Sharon B; Steinberg, Janet D; Cideciyan, Artur V

    2010-02-01

    To determine whether normal function and structure, as recently found in forms of Usher syndrome, also occur in a population of patients with nonsyndromic retinitis pigmentosa (RP). Patients with simplex, multiplex, or autosomal recessive RP (n = 238; ages 9-82 years) were studied with static chromatic perimetry. A subset was evaluated with optical coherence tomography (OCT). Co-localized visual sensitivity and photoreceptor nuclear layer thickness were measured across the central retina to establish the relationship of function and structure. Comparisons were made to patients with Usher syndrome (n = 83, ages 10-69 years). Cross-sectional psychophysical data identified patients with RP who had normal rod- and cone-mediated function in the central retina. There were two other patterns with greater dysfunction, and longitudinal data confirmed that progression can occur from normal rod and cone function to cone-only central islands. The retinal extent of normal laminar architecture by OCT corresponded to the extent of normal visual function in patients with RP. Central retinal preservation of normal function and structure did not show a relationship with age or retained peripheral function. Usher syndrome results were like those in nonsyndromic RP. Regional disease variation is a well-known finding in RP. Unexpected was the observation that patients with presumed recessive RP can have regions with functionally and structurally normal retina. Such patients will require special consideration in future clinical trials of either focal or systemic treatment. Whether there is a common molecular mechanism shared by forms of RP with normal regions of retina warrants further study.

  2. Duration of division-related events in cleaving sand dollar eggs.

    PubMed

    Rappaport, R; Rappaport, B N

    1993-07-01

    A minimal mechanism for cytokinesis comprises a stimulus-to-surface contraction, a receptive surface, and a localized surface contractile mechanism. Duration of each is brief and times when they function are predictable. The processes that begin and end the functional period of each component were investigated. Sand dollar blastomeres from the completion of first cleavage to the beginning of fourth cleavage were used. By changing a cell's shape, it was possible to determine whether its capacity to accomplish an activity is restricted to its usual time frame. The first appearance of the furrow was advanced about 5 min by confining the mitotic apparatus in a narrow cytoplasmic cylinder. The period when the mitotic apparatus induces furrowing was prolonged about 18 min by moving the mitotic apparatus in an elongate cell each time the furrow appeared. The period of active furrowing was prolonged to about 21.8 min by pushing the mitotic apparatus close to the cell margin and then stretching the region through which the unilateral furrow must pass. In relation to normal division cycle events, results showed that each event of cytokinesis can operate both before and after its normal active period. Components of the mechanism are capable of functioning for about half the period of the division cycle. Normal timing of events may be determined by geometrical factors and the normal consequences of each activity.

  3. Metaiodobenzylguanidine (/sup 131/I) scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-12-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine (/sup 131/I) to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine (/sup 131/I) and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4more » hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine (/sup 131/I) scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine (/sup 123/I) scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients.« less

  4. Systematic gene microarray analysis of the lncRNA expression profiles in human uterine cervix carcinoma.

    PubMed

    Chen, Jie; Fu, Ziyi; Ji, Chenbo; Gu, Pingqing; Xu, Pengfei; Yu, Ningzhu; Kan, Yansheng; Wu, Xiaowei; Shen, Rong; Shen, Yan

    2015-05-01

    The human uterine cervix carcinoma is one of the most well-known malignancy reproductive system cancers, which threatens women health globally. However, the mechanisms of the oncogenesis and development process of cervix carcinoma are not yet fully understood. Long non-coding RNAs (lncRNAs) have been proved to play key roles in various biological processes, especially development of cancer. The function and mechanism of lncRNAs on cervix carcinoma is still rarely reported. We selected 3 cervix cancer and normal cervix tissues separately, then performed lncRNA microarray to detect the differentially expressed lncRNAs. Subsequently, we explored the potential function of these dysregulated lncRNAs through online bioinformatics databases. Finally, quantity real-time PCR was carried out to confirm the expression levels of these dysregulated lncRNAs in cervix cancer and normal tissues. We uncovered the profiles of differentially expressed lncRNAs between normal and cervix carcinoma tissues by using the microarray techniques, and found 1622 upregulated and 3026 downregulated lncRNAs (fold-change>2.0) in cervix carcinoma compared to the normal cervical tissue. Furthermore, we found HOXA11-AS might participate in cervix carcinogenesis by regulating HOXA11, which is involved in regulating biological processes of cervix cancer. This study afforded expression profiles of lncRNAs between cervix carcinoma tissue and normal cervical tissue, which could provide database for further research about the function and mechanism of key-lncRNAs in cervix carcinoma, and might be helpful to explore potential diagnosis factors and therapeutic targets for cervix carcinoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    ERIC Educational Resources Information Center

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  6. Integration of mechanical, structural and electrical imaging to understand response to cardiac resynchronization therapy.

    PubMed

    Silva, Etelvino; Bijnens, Bart; Berruezo, Antonio; Mont, Lluis; Doltra, Adelina; Andreu, David; Brugada, Josep; Sitges, Marta

    2014-10-01

    There is extensive controversy exists on whether cardiac resynchronization therapy corrects electrical or mechanical asynchrony. The aim of this study was to determine if there is a correlation between electrical and mechanical sequences and if myocardial scar has any relevant impact. Six patients with normal left ventricular function and 12 patients with left ventricular dysfunction and left bundle branch block, treated with cardiac resynchronization therapy, were studied. Real-time three-dimensional echocardiography and electroanatomical mapping were performed in all patients and, where applicable, before and after therapy. Magnetic resonance was performed for evaluation of myocardial scar. Images were postprocessed and mechanical and electrical activation sequences were defined and time differences between the first and last ventricular segment to be activated were determined. Response to therapy was defined as a reduction in left ventricular end-systolic volume ≥ 15% after 12 months of follow-up. Good correlation between electrical and mechanical timings was found in patients with normal left ventricular function (r(2) = 0.88; P = .005) but not in those with left ventricular dysfunction (r(2) = 0.02; P = not significant). After therapy, both timings and sequences were modified and improved, except in those with myocardial scar. Despite a close electromechanical relationship in normal left ventricular function, there is no significant correlation in patients with dysfunction. Although resynchronization therapy improves this correlation, the changes in electrical activation may not yield similar changes in left ventricular mechanics particularly depending on the underlying myocardial substrate. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  7. Functional MRI evidence for the decline of word retrieval and generation during normal aging.

    PubMed

    Baciu, M; Boudiaf, N; Cousin, E; Perrone-Bertolotti, M; Pichat, C; Fournet, N; Chainay, H; Lamalle, L; Krainik, A

    2016-02-01

    This fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing, due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming, and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automatisms and overlearned information. In terms of behavioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuropsychological scores, and the overactivation of these uncorrelated regions would simply reveal dedifferentiation that occurs with aging. Altogether, our results suggest that normal aging is associated with a more difficult access to lexico-semantic operations and representations by a slowdown in executive functions, without any conceptual loss.

  8. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  9. A unified theory of bone healing and nonunion: BHN theory.

    PubMed

    Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G

    2016-07-01

    This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.

  10. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms.

    PubMed

    Torres, Viviana I; Inestrosa, Nibaldo C

    2018-06-01

    Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.

  11. Platelet ERK5 is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion

    PubMed Central

    Cameron, Scott J.; Ture, Sara K.; Mickelsen, Deanne; Chakrabarti, Enakshi; Modjeski, Kristina L.; McNitt, Scott; Seaberry, Micheal; Field, David J.; Le, Nhat-Tu; Abe, Jun-ichi; Morrell, Craig N.

    2015-01-01

    Background Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes (ACS). Compared to platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species (ROS) rich environments may not be the same as in normal healthy conditions. Extracellular Regulated Protein Kinase 5 (ERK5) is a Mitogen Activated Protein Kinase (MAPK) family member activated in hypoxic, ROS rich environments, and in response to receptor signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells following ischemia. We present evidence that platelets express ERK5 and platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent ROS mediated mechanisms in ischemic myocardium. Methods and Results Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and platelet specific ERK5−/− mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5 regulated proteins is reduced in ERK5−/− platelets post-MI. Conclusions ERK5 functions as a platelet activator in ischemic conditions and platelet ERK5 maintains the expression of some platelet proteins following MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment. PMID:25934838

  12. An Inherited Platelet Function Defect in Basset Hounds

    PubMed Central

    Johnstone, I. B.; Lotz, F.

    1979-01-01

    An inherited platelet function defect occurring in a family of basset hounds has been described. The trait is transmitted as an autosomal characteristic and appears to be expressed clinically only in the homozygous state. The characteristics of this platelet defect include: 1) marked bleeding tendencies and prolonged skin bleeding times in either male or female dogs. 2) normal blood coagulation mechanism. 3) adequate numbers of circulating platelets which appear morphologically normal by light microscopy. 4) normal whole blood clot retraction. 5) deficient in vivo platelet consumption and in vitro platelet retention in glass bead columns. 6) defective ADP-induced platelet aggregation in homozygotes, apparently normal ADP response in heterozygotes, and defective collagen-induced platelet aggregation in both. PMID:509382

  13. Basic Mechanisms of Mitral Regurgitation

    PubMed Central

    Dal-Bianco, Jacob P.; Beaudoin, Jonathan

    2014-01-01

    Any structural or functional impairment of the mitral valve (MV) apparatus that exhausts MV tissue redundancy available for leaflet coaptation will result in mitral regurgitation (MR). The mechanism responsible for MV malcoaptation and MR can be dysfunction or structural change of the left ventricle, the papillary muscles, the chordae tendineae, the mitral annulus and the MV leaflets. The rationale for MV treatment depends on the MR mechanism and therefore it is essential to identify and understand normal and abnormal MV and MV apparatus function. PMID:25151282

  14. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning plastic change. Other models of plastic change, such as normal visuospatial learning or re-establishing speech comprehension after cochlear implantation in the deaf illustrate how patterns of brain function adapt over time. Limitations of the scanning techniques and prospects for the future are discussed in relation to new developments in the neuroimaging field.

  15. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  16. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    PubMed Central

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  17. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery

    PubMed Central

    Harris, Nancy Lee; Stein, Harald; Isaacson, Peter G.

    2008-01-01

    In the past 50 years, we have witnessed explosive growth in the understanding of normal and neoplastic lymphoid cells. B-cell, T-cell, and natural killer (NK)–cell neoplasms in many respects recapitulate normal stages of lymphoid cell differentiation and function, so that they can be to some extent classified according to the corresponding normal stage. Likewise, the molecular mechanisms involved the pathogenesis of lymphomas and lymphoid leukemias are often based on the physiology of the lymphoid cells, capitalizing on deregulated normal physiology by harnessing the promoters of genes essential for lymphocyte function. The clinical manifestations of lymphomas likewise reflect the normal function of lymphoid cells in vivo. The multiparameter approach to classification adopted by the World Health Organization (WHO) classification has been validated in international studies as being highly reproducible, and enhancing the interpretation of clinical and translational studies. In addition, accurate and precise classification of disease entities facilitates the discovery of the molecular basis of lymphoid neoplasms in the basic science laboratory. PMID:19029456

  18. A review of cetacean lung morphology and mechanics.

    PubMed

    Piscitelli, Marina A; Raverty, Stephen A; Lillie, Margo A; Shadwick, Robert E

    2013-12-01

    Cetaceans possess diverse adaptations in respiratory structure and mechanics that are highly specialized for an array of surfacing and diving behaviors. Some of these adaptations and air management strategies are still not completely understood despite over a century of study. We have compiled the historical and contemporary knowledge of cetacean lung anatomy and mechanics in regards to normal lung function during ventilation and air management while diving. New techniques are emerging utilizing pulmonary mechanics to measure lung function in live cetaceans. Given the diversity of respiratory adaptations in cetaceans, interpretations of these results should consider species-specific anatomy, mechanics, and behavior. Copyright © 2013 Wiley Periodicals, Inc.

  19. Sexual dysfunction with antihypertensive and antipsychotic agents.

    PubMed

    Smith, P J; Talbert, R L

    1986-05-01

    The physiology of the normal sexual response, epidemiology of sexual dysfunction, and the pharmacologic mechanisms involved in antihypertensive- and antipsychotic-induced problems with sexual function are discussed, with recommendations for patient management. The physiologic mechanisms involved in the normal sexual response include neurogenic, psychogenic, vascular, and hormonal factors that are coordinated by centers in the hypothalamus, limbic system, and cerebral cortex. Sexual dysfunction is frequently attributed to antihypertensive and antipsychotic agents and is a cause of noncompliance. Drug-induced effects include diminished libido, delayed orgasm, ejaculatory disturbances, gynecomastia, impotence, and priapism. The pharmacologic mechanisms proposed to account for these adverse effects include adrenergic inhibition, adrenergic-receptor blockade, anticholinergic properties, and endocrine and sedative effects. The most frequently reported adverse effect on sexual function with the antihypertensive agents is impotence. It is seen most often with methyldopa, guanethidine, clonidine, and propranolol. In contrast, the most common adverse effect on sexual function with the antipsychotic agents involves ejaculatory disturbances. Thioridazine, with its potent anticholinergic and alpha-blocking properties, is cited most often. Drug-induced sexual dysfunction may be alleviated by switching to agents with dissimilar mechanisms to alter the observed adverse effect while maintaining adequate control of the patient's disease state.

  20. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology.

    PubMed

    Suchyna, Thomas M

    2017-11-01

    Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K + selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy. Published by Elsevier Ltd.

  1. Analytical bound-state solutions of the Schrödinger equation for the Manning-Rosen plus Hulthén potential within SUSY quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-01-01

    In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  2. Functional Hydrogel Materials Inspired by Amyloid

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2012-02-01

    Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.

  3. Functional classification of skeletal muscle networks. I. Normal physiology

    PubMed Central

    Wang, Yu; Winters, Jack

    2012-01-01

    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling. PMID:23085959

  4. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  5. Mechanical ventilation alone, and in the presence of sepsis, impair protein metabolism in the diaphragm of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  6. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. © 2013 Published by Elsevier Ltd.

  7. Factors associated with resistance to dementia despite high Alzheimer disease pathology.

    PubMed

    Erten-Lyons, D; Woltjer, R L; Dodge, H; Nixon, R; Vorobik, R; Calvert, J F; Leahy, M; Montine, T; Kaye, J

    2009-01-27

    Autopsy series have shown that some elderly people remain with normal cognitive function during life despite having high burdens of pathologic lesions associated with Alzheimer disease (AD) at death. Understanding why these individuals show no cognitive decline, despite high AD pathologic burdens, may be key to discovery of neuroprotective mechanisms. A total of 36 subjects who on autopsy had Braak stage V or VI and moderate or frequent neuritic plaque scores based on Consortium to Establish a Registry for Alzheimer's Disease (CERAD) standards were included. Twelve had normal cognitive function and 24 a diagnosis of AD before death. Demographic characteristics, clinical and pathologic data, as well as antemortem brain volumes were compared between the groups. In multiple regression analysis, antemortem hippocampal and total brain volumes were significantly larger in the group with normal cognitive function after adjusting for gender, age at MRI, time from MRI to death, Braak stage, CERAD neuritic plaque score, and overall presence of vascular disease. Larger brain and hippocampal volumes were associated with preserved cognitive function during life despite a high burden of Alzheimer disease (AD) pathologic lesions at death. A better understanding of processes that lead to preservation of brain volume may provide important clues for the discovery of mechanisms that protect the elderly from AD.

  8. Impact of Prosthesis-Patient Mismatch on Long-term Functional Capacity After Mechanical Aortic Valve Replacement.

    PubMed

    Petit-Eisenmann, Hélène; Epailly, Eric; Velten, Michel; Radojevic, Jelena; Eisenmann, Bernard; Kremer, Hélène; Kindo, Michel

    2016-12-01

    The impact of prosthesis-patient mismatch (PPM) after aortic valve replacement (AVR) for aortic stenosis on exercise capacity remains controversial. The aim of this study was to analyze the long-term impact of PPM after mechanical AVR on maximal oxygen uptake (VO 2max ). The study included 75 patients who had undergone isolated mechanical AVR for aortic stenosis with normal left ventricular (LV) function between 1994 and 2012. Their functional capacity was evaluated on average 4.6 years after AVR by exercise testing, including measurement of their VO 2max , and by determining their New York Heart Association functional class and Short Form-36 score. Two groups were defined by measuring the patients' indexed effective orifice area (iEOA) by transthoracic echocardiography: a PPM group (iEOA < 0.85 cm 2 /m 2 ) and a no-PPM group (iEOA ≥ 0.85 cm 2 /m 2 ). PPM was present in 37.0% of the patients. The percentage of the predicted VO 2max achieved was significantly lower in the PPM group (86.7 ± 19.5% vs 97.5 ± 23.0% in the no-PPM group; P = 0.04). Compared with the no-PPM group, the PPM group contained fewer patients in New York Heart Association functional class I and their mean Short Form-36 physical component summary score was significantly lower. The mean transvalvular gradient was significantly higher in the PPM group than in the no-PPM group (P < 0.001). Systolic and diastolic function and LV mass had normalized in both groups. PPM is associated in the long term with moderate but significant impairment of functional capacity, despite optimal LV reverse remodelling and normalization of LV systolic and diastolic function. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  10. Different Signal Enhancement Pathways of Attention and Consciousness Underlie Perception in Humans.

    PubMed

    van Boxtel, Jeroen J A

    2017-06-14

    It is not yet known whether attention and consciousness operate through similar or largely different mechanisms. Visual processing mechanisms are routinely characterized by measuring contrast response functions (CRFs). In this report, behavioral CRFs were obtained in humans (both males and females) by measuring afterimage durations over the entire range of inducer stimulus contrasts to reveal visual mechanisms behind attention and consciousness. Deviations relative to the standard CRF, i.e., gain functions, describe the strength of signal enhancement, which were assessed for both changes due to attentional task and conscious perception. It was found that attention displayed a response-gain function, whereas consciousness displayed a contrast-gain function. Through model comparisons, which only included contrast-gain modulations, both contrast-gain and response-gain effects can be explained with a two-level normalization model, in which consciousness affects only the first level and attention affects only the second level. These results demonstrate that attention and consciousness can effectively show different gain functions because they operate through different signal enhancement mechanisms. SIGNIFICANCE STATEMENT The relationship between attention and consciousness is still debated. Mapping contrast response functions (CRFs) has allowed (neuro)scientists to gain important insights into the mechanistic underpinnings of visual processing. Here, the influence of both attention and consciousness on these functions were measured and they displayed a strong dissociation. First, attention lowered CRFs, whereas consciousness raised them. Second, attention manifests itself as a response-gain function, whereas consciousness manifests itself as a contrast-gain function. Extensive model comparisons show that these results are best explained in a two-level normalization model in which consciousness affects only the first level, whereas attention affects only the second level. These findings show dissociations between both the computational mechanisms behind attention and consciousness and the perceptual consequences that they induce. Copyright © 2017 the authors 0270-6474/17/375912-11$15.00/0.

  11. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain.

    PubMed

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld; Habgood, Mark D

    2018-05-17

    Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the "blood-brain barrier". These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity

    PubMed Central

    Vallejo, Mauricio; Hartzler, Lynn K

    2017-01-01

    Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. PMID:28914603

  13. The Recovery of Walking in Stroke Patients: A Review

    ERIC Educational Resources Information Center

    Jang, Sung Ho

    2010-01-01

    We reviewed the literature on walking recovery of stroke patients as it relates to the following subjects: epidemiology of walking dysfunction, recovery course of walking, and recovery mechanism of walking (neural control of normal walking, the evaluation methods for leg motor function, and motor recovery mechanism of leg). The recovery of walking…

  14. [Study on an Exoskeleton Hand Function Training Device].

    PubMed

    Hu, Xin; Zhang, Ying; Li, Jicai; Yi, Jinhua; Yu, Hongliu; He, Rongrong

    2016-02-01

    Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users' contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user's fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.

  15. Kinesin and Dynein Mechanics: Measurement Methods and Research Applications.

    PubMed

    Abraham, Zachary; Hawley, Emma; Hayosh, Daniel; Webster-Wood, Victoria A; Akkus, Ozan

    2018-02-01

    Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

  16. Corticocortical feedback increases the spatial extent of normalization.

    PubMed

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  17. Corticocortical feedback increases the spatial extent of normalization

    PubMed Central

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  18. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans.

    PubMed

    Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping

    2014-05-02

    Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.

  19. Mechanisms for pituitary tumorigenesis: the plastic pituitary

    PubMed Central

    Melmed, Shlomo

    2003-01-01

    The anterior pituitary gland integrates the repertoire of hormonal signals controlling thyroid, adrenal, reproductive, and growth functions. The gland responds to complex central and peripheral signals by trophic hormone secretion and by undergoing reversible plastic changes in cell growth leading to hyperplasia, involution, or benign adenomas arising from functional pituitary cells. Discussed herein are the mechanisms underlying hereditary pituitary hypoplasia, reversible pituitary hyperplasia, excess hormone production, and tumor initiation and promotion associated with normal and abnormal pituitary differentiation in health and disease. PMID:14660734

  20. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  1. The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease

    PubMed Central

    Shah, Kaushik; DeSilva, Shanal; Abbruscato, Thomas

    2012-01-01

    The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain. PMID:23202918

  2. Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-02-01

    In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  3. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  4. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  5. Hard to “tune in”: neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder

    PubMed Central

    Tanabe, Hiroki C.; Kosaka, Hirotaka; Saito, Daisuke N.; Koike, Takahiko; Hayashi, Masamichi J.; Izuma, Keise; Komeda, Hidetsugu; Ishitobi, Makoto; Omori, Masao; Munesue, Toshio; Okazawa, Hidehiko; Wada, Yuji; Sadato, Norihiro

    2012-01-01

    Persons with autism spectrum disorders (ASD) are known to have difficulty in eye contact (EC). This may make it difficult for their partners during face to face communication with them. To elucidate the neural substrates of live inter-subject interaction of ASD patients and normal subjects, we conducted hyper-scanning functional MRI with 21 subjects with autistic spectrum disorder (ASD) paired with typically-developed (normal) subjects, and with 19 pairs of normal subjects as a control. Baseline EC was maintained while subjects performed real-time joint-attention task. The task-related effects were modeled out, and inter-individual correlation analysis was performed on the residual time-course data. ASD–Normal pairs were less accurate at detecting gaze direction than Normal–Normal pairs. Performance was impaired both in ASD subjects and in their normal partners. The left occipital pole (OP) activation by gaze processing was reduced in ASD subjects, suggesting that deterioration of eye-cue detection in ASD is related to impairment of early visual processing of gaze. On the other hand, their normal partners showed greater activity in the bilateral occipital cortex and the right prefrontal area, indicating a compensatory workload. Inter-brain coherence in the right IFG that was observed in the Normal-Normal pairs (Saito et al., 2010) during EC diminished in ASD–Normal pairs. Intra-brain functional connectivity between the right IFG and right superior temporal sulcus (STS) in normal subjects paired with ASD subjects was reduced compared with in Normal–Normal pairs. This functional connectivity was positively correlated with performance of the normal partners on the eye-cue detection. Considering the integrative role of the right STS in gaze processing, inter-subject synchronization during EC may be a prerequisite for eye cue detection by the normal partner. PMID:23060772

  6. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.

    PubMed

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-12-01

    Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.

  7. Recent tissue engineering advances for the treatment of temporomandibular joint disorders

    PubMed Central

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-01-01

    Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395

  8. Zebrafish pax5 regulates development of the utricular macula and vestibular function.

    PubMed

    Kwak, Su-Jin; Vemaraju, Shruti; Moorman, Stephen J; Zeddies, David; Popper, Arthur N; Riley, Bruce B

    2006-11-01

    The zebrafish otic vesicle initially forms with only two sensory epithelia, the utricular and saccular maculae, which primarily mediate vestibular and auditory function, respectively. Here, we test the role of pax5, which is preferentially expressed in the utricular macula. Morpholino knockdown of pax5 disrupts vestibular function but not hearing. Neurons of the statoacoustic ganglion (SAG) develop normally. Utricular hair cells appear to form normally but a variable number subsequently undergo apoptosis and are extruded from the otic vesicle. Dendrites of the SAG persist in the utricle but become disorganized after hair cell loss. Hair cells in the saccule develop and survive normally. Otic expression of pax5 requires pax2a and fgf3, mutations in which cause vestibular defects, albeit by distinct mechanisms. Thus, pax5 works in conjunction with fgf3 and pax2a to establish and/or maintain the utricular macula and is essential for vestibular function. (c) 2006 Wiley-Liss, Inc.

  9. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  10. Functional Adaptation of the Calcaneus in Historical Foot Binding

    PubMed Central

    Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah

    2017-01-01

    ABSTRACT The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock‐dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long‐sought‐after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. PMID:28561380

  11. Functional Adaptation of the Calcaneus in Historical Foot Binding.

    PubMed

    Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah; Stevens, Molly M

    2017-09-01

    The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  12. Vestibular evoked myogenic potentials in response to lateral skull taps are dependent on two different mechanisms.

    PubMed

    Brantberg, Krister; Westin, Magnus; Löfqvist, Lennart; Verrecchia, Luca; Tribukait, Arne

    2009-05-01

    To explore the mechanisms for skull tap induced vestibular evoked myogenic potentials (VEMP). The muscular responses were recorded over both sternocleidomastoid (SCM) muscles using skin electrodes. A skull tapper which provided a constant stimulus intensity was used to test cervical vestibular evoked myogenic potentials (VEMP) in response to lateral skull taps in healthy subjects (n=10) and in patients with severe unilateral loss of vestibular function (n=10). Skull taps applied approximately 2 cm above the outer ear canal caused highly reproducible VEMP. There were differences in VEMP in both normals and patients depending on side of tapping. In normals, there was a positive-negative ("normal") VEMP on the side contra-lateral to the skull tapping, but no significant VEMP ipsi-laterally. In patients, skull taps above the lesioned ear caused a contra-lateral positive-negative VEMP (as it did in the normals), in addition there was an ipsi-lateral negative-positive ("inverted") VEMP. When skull taps were presented above the healthy ear there was only a small contra-lateral positive-negative VEMP but, similar to the normals, no VEMP ipsi-laterally. The present data, in conjunction with earlier findings, support a theory that skull-tap VEMP responses are mediated by two different mechanisms. It is suggested that skull tapping causes both a purely ipsi-lateral stimulus side independent SCM response and a bilateral and of opposite polarity SCM response that is stimulus side dependent. Possibly, the skull tap induced VEMP responses are the sum of a stimulation of two species of vestibular receptors, one excited by vibration (which is rather stimulus site independent) and one excited by translation (which is more stimulus site dependent). Skull-tap VEMP probably have two different mechanisms. Separation of the two components might reveal the status of different labyrinthine functions.

  13. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    PubMed

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.

  14. The R-spondin family of proteins: emerging regulators of WNT signaling

    PubMed Central

    Jin, Yong-Ri; Yoon, Jeong Kyo

    2012-01-01

    Recently, the R-spondin (RSPO) family of proteins has emerged as important regulators of WNT signaling. Considering the wide spectrum of WNT signaling functions in normal biological processes and disease conditions, there has been a significantly growing interest in understanding the functional roles of RSPOs in multiple biological processes and determining the molecular mechanisms by which RSPOs regulate the WNT signaling pathway. Recent advances in the RSPO research field revealed some of the in vivo functions of RSPOs and provided new information regarding the mechanistic roles of RSPO activity in regulation of WNT signaling. Herein, we review recent progress in RSPO research with an emphasis on signaling mechanisms and biological functions. PMID:22982762

  15. Systolic ventricular filling.

    PubMed

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles involved in this action. This contraction occurs during the last part of classical systole and the first part of diastole. Therefore, the most important part of ventricular diastole (i.e. the rapid filling phase), in which it receives >70% of the stroke volume, belongs to the active muscular contraction of the ascendent segment. We hope that these facts will give rise to new understanding of the principal mechanisms involved in normal and abnormal diastolic heart function.

  16. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    PubMed

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  17. Functions of autophagy in normal and diseased liver

    PubMed Central

    Czaja, Mark J.; Ding, Wen-Xing; Donohue, Terrence M.; Friedman, Scott L.; Kim, Jae-Sung; Komatsu, Masaaki; Lemasters, John J.; Lemoine, Antoinette; Lin, Jiandie D.; Ou, Jing-hsiung James; Perlmutter, David H.; Randall, Glenn; Ray, Ratna B.; Tsung, Allan; Yin, Xiao-Ming

    2013-01-01

    Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases. PMID:23774882

  18. Between destiny and disease: genetics and molecular pathways of human central nervous system aging.

    PubMed

    Glorioso, Christin; Sibille, Etienne

    2011-02-01

    Aging of the human brain is associated with "normal" functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human post-mortem brain microarray studies, which we hypothesize, point to a potential genetically controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The character of sleep disturbances produced by multiple administrations of atropine the antagonist of brain muscarinic cholinergic system.

    PubMed

    Maglakelidze, N T; Chkhartishvili, E V; Mchedlidze, O M; Dzadzamiia, Sh Sh; Nachkebiia, N G

    2012-03-01

    Modification of brain muscarinic cholinergic system normal functioning can be considered as an appropriate strategy for the study of its role in sleep-wakefulness cycle basic mechanisms in general and in the course/maintenance of PS in particular. For this aim systemic application of muscarinic cholinoreceptors antagonists is significant because it gives possibility to modify functioning all of known five sub-types of muscarinic cholinoreceptors and to study the character of sleep disturbances in these conditions. Problem is very topical because the question about the intimate aspects of BMChS involvement in PS maintaining mechanisms still remains unsolved. In cats Atropine systemic administration was made once daily at 10:00 a.m. and continuous EEG registration of sleep-wakefulness cycle ultradian structure, lasting for 10 hour daily, was started immediately. In sum each animal received anti-muscarinic drugs for 12 times. Thereafter drug administrations were ceased and EEG registration of sleep-wakefulness cycle ultradian structure was continued during 10 consecutive days. On the basis of results obtained in these conditions we can conclude that brain muscarinic cholinergic system normal functioning is significant for basic mechanisms of sleep-wakefulness cycle. During wakefulness, at the level of neocortex and hippocampus, MChS supports only EEG activation, while it is one of the main factors in PS triggering and maintaining mechanisms.

  20. Theories of Impaired Consciousness in Epilepsy

    PubMed Central

    Yu, Lissa; Blumenfeld, Hal

    2015-01-01

    Although the precise mechanisms for control of consciousness are not fully understood, emerging data show that conscious information processing depends on the activation of certain networks in the brain and that the impairment of consciousness is related to abnormal activity in these systems. Epilepsy can lead to transient impairment of consciousness, providing a window into the mechanisms necessary for normal consciousness. Thus, despite differences in behavioral manifestations, cause, and electrophysiology, generalized tonic–clonic, absence, and partial seizures engage similar anatomical structures and pathways. We review prior concepts of impaired consciousness in epilepsy, focusing especially on temporal lobe complex partial seizures, which are a common and debilitating form of epileptic unconsciousness. We discuss a “network inhibition hypothesis” in which focal temporal lobe seizure activity disrupts normal cortical–subcortical interactions, leading to depressed neocortical function and impaired consciousness. This review of the major prior theories of impaired consciousness in epilepsy allows us to put more recent data into context and to reach a better understanding of the mechanisms important for normal consciousness. PMID:19351355

  1. Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing

    PubMed Central

    Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice

    2011-01-01

    Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154

  2. Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.

    2018-07-01

    MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.

  3. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  4. [The respiratory system--its self-cleaning system. General mechanisms of clearance].

    PubMed

    Mustajbegović, J; Zuskin, E

    1998-01-01

    The behaviour of particles and deposition in different parts of respiratory system are described. Listed are factors which contribute to the deposition of particles in the lungs and upper areas of the respiratory system. The general mechanisms of lung clearance and their action such as cough, mucociliary transport, alveolar clearance and immunological system are reported. Particularly is stressed the necessity of coordination of all defense mechanisms in order to maintain normal respiratory function.

  5. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  6. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    PubMed

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  7. Role of TRPV1 in high-threshold rat colonic splanchnic afferents is revealed by inflammation.

    PubMed

    Phillis, Benjamin D; Martin, Chris M; Kang, Daiwu; Larsson, Håkan; Lindström, Erik A; Martinez, Vicente; Blackshaw, L Ashley

    2009-08-07

    The vanilloid-1 receptor TRPV1 is known to play a role in extrinsic gastrointestinal afferent function. We investigated the role of TRPV1 in mechanosensitivity in afferents from normal and inflamed tissue. Colonic mechanosensitivity was determined in an in vitro rat colon preparation by recording from attached splanchnic nerves. Recordings were made from serosal/mesenteric afferents responding only at high thresholds to graded mechanical stimulation with von Frey probes. Colonic inflammation was induced by adding 5% dextran sulphate sodium (DSS) to the drinking water for 5 days, and was confirmed by histopathology. The selective TRPV1 antagonist, SB-750364 (10(-8) to 10(-6)M), was tested on mechanosensory stimulus response functions of afferents from normal and inflamed preparations (N=7 each). Mechanosensory responses had thresholds of 1-2g, and maximal responses were observed at 12 g. The stimulus response function was not affected by DSS-induced colitis. SB-750364 had no effect on stimulus response functions in normal preparations, but reduced (up to 60%) in a concentration-dependent manner those in inflammation (2-way ANOVA, p<0.05). Moreover, in inflamed tissue, spontaneous afferent activity showed a dose-dependent trend toward reduction with SB-750364. We conclude that mechanosensitivity of high-threshold serosal colonic splanchnic afferents to graded stimuli is unaffected during DSS colitis. However, there is a positive influence of TRPV1 in mechanosensitivity in inflammation, suggesting up-regulation of excitatory TRPV1-mediated mechanisms.

  8. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  9. Estrogen and progesterone signalling in the normal breast and its implications for cancer development.

    PubMed

    Hilton, Heidi N; Clarke, Christine L; Graham, J Dinny

    2018-05-05

    The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  11. The Functional Organization of Trial-Related Activity in Lexical Processing after Early Left Hemispheric Brain Lesions: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…

  12. A Failure of Left Temporal Cortex to Specialize for Language Is an Early Emerging and Fundamental Property of Autism

    ERIC Educational Resources Information Center

    Eyler, Lisa T.; Pierce, Karen; Courchesne, Eric

    2012-01-01

    Failure to develop normal language comprehension is an early warning sign of autism, but the neural mechanisms underlying this signature deficit are unknown. This is because of an almost complete absence of functional studies of the autistic brain during early development. Using functional magnetic resonance imaging, we previously observed a trend…

  13. The PAX3-FOXO1 Fusion Protein Present in Rhabdomyosarcoma Interferes with Normal FOXO Activity and the TGF-β Pathway

    PubMed Central

    Schmitt-Ney, Michel; Camussi, Giovanni

    2015-01-01

    PAX3-FOXO1 (PAX3-FKHR) is the fusion protein produced by the genomic translocation that characterizes the alveolar subtype of Rhabdomyosarcoma, a pediatric sarcoma with myogenic phenotype. PAX3-FOXO1 is an aberrant but functional transcription factor. It retains PAX3-DNA-binding activity and functionally overlaps PAX3 function while also disturbing it, in particular its role in myogenic differentiation. We herein show that PAX3-FOXO1 interferes with normal FOXO function. PAX3-FOXO1 affects FOXO-family member trans-activation capability and the FOXO-dependent TGF-β response. PAX3-FOXO1 may contribute to tumor formation by inhibiting the tumor suppressor activities which are characteristic of both FOXO family members and TGF-β pathways. The recognition of this mechanism raises new questions about how FOXO family members function. PMID:25806826

  14. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  15. The mechanical role of the cervix in pregnancy

    PubMed Central

    Myers, Kristin M.; Feltovich, Helen; Mazza, Edoardo; Vink, Joy; Bajka, Michael; Wapner, Ronald J.; Hall, Timothy J.; House, Michael

    2015-01-01

    Appropriate mechanical function of the uterine cervix is critical for maintaining a pregnancy to term so that the fetus can develop fully. At the end of pregnancy, however, the cervix must allow delivery, which requires it to markedly soften, shorten and dilate. There are multiple pathways to spontaneous preterm birth, the leading global cause of death in children less than 5 years old, but all culminate in premature cervical change, because that is the last step in the final common pathway to delivery. The mechanisms underlying premature cervical change in pregnancy are poorly understood, and therefore current clinical protocols to assess preterm birth risk are limited to surrogate markers of mechanical function, such as sonographically measured cervical length. This is what motivates us to study the cervix, for which we propose investigating clinical cervical function in parallel with a quantitative engineering evaluation of its structural function. We aspire to develop a common translational language, as well as generate a rigorous integrated clinical-engineering framework for assessing cervical mechanical function at the cellular to organ level. In this review, we embark on that challenge by describing the current landscape of clinical, biochemical, and engineering concepts associated with the mechanical function of the cervix during pregnancy. Our goal is to use this common platform to inspire novel approaches to delineation of normal and abnormal cervical function in pregnancy. PMID:25841293

  16. The mechanical role of the cervix in pregnancy.

    PubMed

    Myers, Kristin M; Feltovich, Helen; Mazza, Edoardo; Vink, Joy; Bajka, Michael; Wapner, Ronald J; Hall, Timothy J; House, Michael

    2015-06-25

    Appropriate mechanical function of the uterine cervix is critical for maintaining a pregnancy to term so that the fetus can develop fully. At the end of pregnancy, however, the cervix must allow delivery, which requires it to markedly soften, shorten and dilate. There are multiple pathways to spontaneous preterm birth, the leading global cause of death in children less than 5 years old, but all culminate in premature cervical change, because that is the last step in the final common pathway to delivery. The mechanisms underlying premature cervical change in pregnancy are poorly understood, and therefore current clinical protocols to assess preterm birth risk are limited to surrogate markers of mechanical function, such as sonographically measured cervical length. This is what motivates us to study the cervix, for which we propose investigating clinical cervical function in parallel with a quantitative engineering evaluation of its structural function. We aspire to develop a common translational language, as well as generate a rigorous integrated clinical-engineering framework for assessing cervical mechanical function at the cellular to organ level. In this review, we embark on that challenge by describing the current landscape of clinical, biochemical, and engineering concepts associated with the mechanical function of the cervix during pregnancy. Our goal is to use this common platform to inspire novel approaches to delineate normal and abnormal cervical function in pregnancy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fluid and electrolyte disturbances in cirrhosis.

    PubMed

    Papper, S

    1976-01-01

    Glomerular filtration rate and renal plasma flow may be normal, reduced or increased in cirrhosis. The mechanism of departures from normal is not known. Other renal functional changes in cirrhosis include avid sodium reabsorption, impaired concentrating and diluting abilities, and partial renal tubular acidosis. Fluid and electrolyte disorders are common. Sodium retention with edema and ascites should generally be treated conservatively because they tend to disappear as the liver heals and because forced diuresis has hazards. The indications for diuretics are (1) incipient or overt atelectasis; (2) abdominal distress; and (3) possibility of skin breakdown. Hyponatremia is common and its mechanism and treatment must be assessed in each patient. Hypokalemia occurs and requires treatment. Respiratory alkalosis and renal tubular acidosis seldom need therapy. The hepatorenal syndrome is defined as functional renal failure in the absence of other known causes of renal functional impairment. The prognosis is terrible and therapy is unsatisfactory. The best approach is not to equate the occurrence of renal failure in cirrhosis with the hepatorenal syndrome. Rather the physician should first explore all treatable causes of renal failure, eg, dehydration, obstruction, infection, heart failure, potassium depletion, and others.

  18. Esophageal motor disorders: recent advances.

    PubMed

    Dogan, Ibrahim; Mittal, Ravinder K

    2006-07-01

    The aim of this article is to highlight literature published during the last year in the context of previous knowledge. A number of novel techniques - high-resolution manometry, esophageal electrical impedance and intra-luminal ultrasound imaging - have improved our understanding of esophageal function in health and disease. Several studies address the function of longitudinal muscle layer of the esophagus in normal subjects and patients with motor disorders of the esophagus. Esophageal electrical impedance recordings reveal abnormal transit in patients with diffuse esophageal spasm, achalasia and patients with normal manometry. Loss of the mammalian Sprouty2 gene leads to enteric neuronal hyperplasia and esophageal achalasia. Several studies showed excellent long-term results of medical and surgical treatment of achalasia of the esophagus. For the first time, mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients are reported. Novel pharmacologic strategies in the treatment of reflux disease are highlighted. Several novel techniques, perfected during recent years, have improved our understanding of esophageal function and dysfunction. A number of important observations, reviewed here, provide important insight into the pathogenesis of esophageal motor disorders and treatment of gastroesophageal reflux disease.

  19. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  20. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    PubMed

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. Effect of Water on the Thermo-Mechanical Behavior of Carbon Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Stokes, Eric; Baker, Eric H.

    2011-01-01

    The results of thermo-mechanical experiments, which were conducted previously by one of the authors, are reviewed. The strain in the direction normal to the fabric plane was measured as a function of temperature for a variety of initial moisture contents and heating rates. In this paper, the general features of the thermo-mechanical response are discussed and the effect of heating rate and initial moisture content are highlighted. The mechanical interaction between the phenolic polymer and water trapped within its free volumes as the polymer is heated to high temperatures is discussed. An equation for the internal stresses which are generated within the polymer due to trapped water is obtained from the total stress expression for a binary mixture of polymer and water. Numerical solutions for moisture diffusion in the thermo-mechanical experiments were performed and the results of these solutions are presented. The results of the moisture diffusion solutions help to explain the effects of heating rate and moisture content on the strain behavior normal to the fabric plane.

  2. The Tension-sensitive Ion Transport Activity of MSL8 is Critical for its Function in Pollen Hydration and Germination.

    PubMed

    Hamilton, Eric S; Haswell, Elizabeth S

    2017-07-01

    All cells respond to osmotic challenges, including those imposed during normal growth and development. Mechanosensitive (MS) ion channels provide a conserved mechanism for regulating osmotic forces by conducting ions in response to increased membrane tension. We previously demonstrated that the MS ion channel MscS-Like 8 (MSL8) is required for pollen to survive multiple osmotic challenges that occur during the normal process of fertilization, and that it can inhibit pollen germination. However, it remained unclear whether these physiological functions required ion flux through a mechanically gated channel provided by MSL8. We introduced two point mutations into the predicted pore-lining domain of MSL8 that disrupted normal channel function in different ways. The Ile711Ser mutation increased the tension threshold of the MSL8 channel while leaving conductance unchanged, and the Phe720Leu mutation severely disrupted the MSL8 channel. Both of these mutations impaired the ability of MSL8 to preserve pollen viability during hydration and to maintain the integrity of the pollen tube when expressed at endogenous levels. When overexpressed in an msl8-4 null background, MSL8I711S could partially rescue loss-of-function phenotypes, while MSL8F720L could not. When overexpressed in the wild-type Ler background, MSL8I711S suppressed pollen germination, similar to wild-type MSL8. In contrast, MSL8F720L failed to suppress pollen germination and increased pollen bursting, thereby phenocopying the msl8-4 mutant. Thus, an intact MSL8 channel is required for normal pollen function during hydration and germination. These data establish MSL8 as the first plant MS channel to fulfill previously established criteria for assignment as a mechanotransducer. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Determination of rolling resistance coefficient based on normal tyre stiffness

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.

    2018-03-01

    The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.

  4. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.

  5. Suppression tuning of distortion-product otoacoustic emissions: Results from cochlear mechanics simulation

    PubMed Central

    Liu, Yi-Wen; Neely, Stephen T.

    2013-01-01

    This paper presents the results of simulating the acoustic suppression of distortion-product otoacoustic emissions (DPOAEs) from a computer model of cochlear mechanics. A tone suppressor was introduced, causing the DPOAE level to decrease, and the decrement was plotted against an increasing suppressor level. Suppression threshold was estimated from the resulting suppression growth functions (SGFs), and suppression tuning curves (STCs) were obtained by plotting the suppression threshold as a function of suppressor frequency. Results show that the slope of SGFs is generally higher for low-frequency suppressors than high-frequency suppressors, resembling those obtained from normal hearing human ears. By comparing responses of normal (100%) vs reduced (50%) outer-hair-cell sensitivities, the model predicts that the tip-to-tail difference of the STCs correlates well with that of intra-cochlear iso-displacement tuning curves. The correlation is poorer, however, between the sharpness of the STCs and that of the intra-cochlear tuning curves. These results agree qualitatively with what was recently reported from normal-hearing and hearing-impaired human subjects, and examination of intra-cochlear model responses can provide the needed insight regarding the interpretation of DPOAE STCs obtained in individual ears. PMID:23363112

  6. A crucial role of ROCK for alleviation of senescence-associated phenotype.

    PubMed

    Park, Joon Tae; Kang, Hyun Tae; Park, Chi Hyun; Lee, Young-Sam; Cho, Kyung A; Park, Sang Chul

    2018-06-01

    In our previous study, we uncovered a novel mechanism in which amelioration of Hutchinson-Gilford progeria syndrome (HGPS) phenotype is mediated by mitochondrial functional recovery upon rho-associated protein kinase (ROCK) inhibition. However, it remains elusive whether this mechanism is also applied to the amelioration of normal aging cells. In this study, we used Y-27632 and fasudil as effective ROCK inhibitors, and examined their role in senescence. We found that ROCK inhibition induced the functional recovery of the mitochondria as well as the metabolic reprogramming, which are two salient features that are altered in normal aging cells. Moreover, microarray analysis revealed that the up-regulated pathway upon ROCK inhibition is enriched for chromatin remodeling genes, which may play an important role in the alleviation of senescence-associated cell cycle arrest. Indeed, ROCK inhibition induced cellular proliferation, concomitant with the amelioration of senescent phenotype. Furthermore, the restorative effect by ROCK inhibition was observed in vivo as evidenced by the facilitated cutaneous wound healing. Taken together, our data indicate that ROCK inhibition might be utilized to ameliorate normal aging process and to treat age-related disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  8. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  9. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  10. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  11. Regulation and function of mTOR signalling in T cell fate decision

    PubMed Central

    Chi, Hongbo

    2012-01-01

    The evolutionary conserved kinase mTOR couples cell growth and metabolism to environmental inputs in eukaryotes. T cells depend on mTOR signalling to integrate immune signals and metabolic cues for their proper maintenance and activation. Under steady-state conditions, mTOR is actively controlled by multiple inhibitory mechanisms, and this enforces normal T cell homeostasis. Antigen recognition by naïve CD4+ and CD8+ T cells triggers mTOR activation, which in turn programs their differentiation into functionally distinct lineages. This Review focuses on the signalling mechanisms of mTOR in T cell homeostatic and functional fates and therapeutic implications of targeting mTOR in T cells. PMID:22517423

  12. Nrf2: bane or blessing in cancer?

    PubMed

    Xiang, MingJun; Namani, Akhileshwar; Wu, ShiJun; Wang, XiaoLi

    2014-08-01

    The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor-E2-related factor 2 (Nrf2)-antioxidant response element pathway serves a major function in endogenous cytoprotection in normal cells. Nrf2 is a transcription factor that mainly regulates the expression of a wide array of genes that produce the antioxidants and other proteins responsible for the detoxification of xenobiotics and reactive oxygen species. Nrf2 mediates the chemoprevention of cancer in normal cells. Growing body of evidence suggests that Nrf2 is not only involved in the chemoprevention of normal cells but also promotes the growth of cancer cells. However, the mechanism underlying the function of Nrf2 in oncogenesis and tumor protection in cancer cells remains unclear and thus requires further study. This review aims to rationalize the existing functions of Nrf2 in chemoprevention and tumorigenesis, as well as the somatic mutations of Nrf2 and Keap1 in cancer and Nrf2 cross talk with miRNAs. This review also discusses the future challenges in Nrf2 research.

  13. NADPH oxidases of the brain: distribution, regulation, and function.

    PubMed

    Infanger, David W; Sharma, Ram V; Davisson, Robin L

    2006-01-01

    The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.

  14. Statistical Characterization of the Mechanical Parameters of Intact Rock Under Triaxial Compression: An Experimental Proof of the Jinping Marble

    NASA Astrophysics Data System (ADS)

    Jiang, Quan; Zhong, Shan; Cui, Jie; Feng, Xia-Ting; Song, Leibo

    2016-12-01

    We investigated the statistical characteristics and probability distribution of the mechanical parameters of natural rock using triaxial compression tests. Twenty cores of Jinping marble were tested under each different levels of confining stress (i.e., 5, 10, 20, 30, and 40 MPa). From these full stress-strain data, we summarized the numerical characteristics and determined the probability distribution form of several important mechanical parameters, including deformational parameters, characteristic strength, characteristic strains, and failure angle. The statistical proofs relating to the mechanical parameters of rock presented new information about the marble's probabilistic distribution characteristics. The normal and log-normal distributions were appropriate for describing random strengths of rock; the coefficients of variation of the peak strengths had no relationship to the confining stress; the only acceptable random distribution for both Young's elastic modulus and Poisson's ratio was the log-normal function; and the cohesive strength had a different probability distribution pattern than the frictional angle. The triaxial tests and statistical analysis also provided experimental evidence for deciding the minimum reliable number of experimental sample and for picking appropriate parameter distributions to use in reliability calculations for rock engineering.

  15. Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization.

    PubMed

    Vucic, Steve; Kiernan, Matthew C

    2008-03-01

    Although the acute clinical effects of ciguatera poisoning, due to ingestion of ciguatoxin, are mediated by activation of transient Na+ channels, the mechanisms underlying ciguatera sensitization remain undefined. Axonal excitability studies were performed by stimulating the median motor and sensory nerves in two patients with ciguatera sensitization. Excitability parameters were all within normal limits, thereby arguing against dysfunction of axonal membrane ion channels in large-diameter fibers in ciguatera sensitization.

  16. Individual Differences Reveal Correlates of Hidden Hearing Deficits

    PubMed Central

    Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.

    2015-01-01

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371

  17. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  18. Dreaming is not controlled by hippocampal mechanisms.

    PubMed

    Solms, Mark

    2013-12-01

    Links with the Humanities are to be welcomed, but they cannot be exempted from normal scientific criteria. Any hypothesis regarding the function of dreams that is premised on rapid eye movement (REM)/dream isomorphism is unsupportable on empirical grounds. Llewellyn's hypothesis has the further problem of counter-evidence in respect of its claim that dreaming relies upon hippocampal functions. The hypothesis also lacks face validity.

  19. Disordered follicle development

    PubMed Central

    Chang, R. Jeffrey; Cook-Andersen, Heidi

    2013-01-01

    Alterations of ovarian follicle morphology and function have been well documented in women with PCOS. These include increased numbers of growing preantral follicles, failure of follicle growth beyond the mid-antral stage, evidence of granulosa call degeneration, and theca cell hyperplasia. Functional abnormalities include paradoxical granulosa cell hyperresponsiveness to FSH which is clinically linked to ovarian hyperstimulation during ovulation induction. In addition, there is likely a primary theca cell defect that accounts for the majority of excess androgen production in this disorder. The precise mechanisms responsible for altered follicle function are not completely clear. However, several factors appear to influence normal advancement of follicle development as well as impair ovarian steroidogenesis. These include intra- as well as extraovarian influences that distort normal ovarian growth and disrupt steroid production by follicle cells. PMID:22874072

  20. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical modelmore » was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function between thesubendocardial and transmural infarcts manifest themselves in myocardialSPECT images. The normal FE model produced strain distributions that wereconsistent with those reported in the literature and a motion consistentwith that defined in the normal 4D NCAT beating heart model based ontagged MRI data. The addition of a subendocardial ischemic region changedthe average transmural circumferential strain from a contractile value of0.19 to a tensile value of 0.03. The addition of a transmural ischemicregion changed average circumferential strain to a value of 0.16, whichis consistent with data reported in the literature. Model resultsdemonstrated differences in contractile function between subendocardialand transmural infarcts and how these differences in function aredocumented in simulated myocardial SPECT images produced using the 4DNCAT phantom. In comparison to the original NCAT beating heart model, theFE mechanical model produced a more accurate simulation for the cardiacmotion abnormalities. Such a model, when incorporated into the 4D NCATphantom, has great potential for use in cardiac imaging research. Withits enhanced physiologically-based cardiac model, the 4D NCAT phantom canbe used to simulate realistic, predictive imaging data of a patientpopulation with varying whole-body anatomy and with varying healthy anddiseased states of the heart that will provide a known truth from whichto evaluate and improve existing and emerging 4D imaging techniques usedin the diagnosis of cardiac disease.« less

  1. The meridian system and mechanism of acupuncture: a comparative review. Part 3: Mechanisms of acupuncture therapies.

    PubMed

    Chang, Shyang

    2013-06-01

    The human body is a hierarchical organism containing many levels of mutually interacting oscillatory systems. From the viewpoint of traditional Chinese medicine, health is a state of harmony emergent from the interactions of these systems and disease is a state of discord. Hence, human diseases are considered as disturbed functions rather than changed structures. Indeed, the change from normal to abnormal structure may be beneficent rather than maleficent. For example, when one kidney becomes twice the normal size following the destruction of the other kidney, it is good and not bad for us because we might be dead otherwise. Therefore, in Part 3 of this three-part series, emphasis is mainly laid on the acupuncture mechanisms of treating disturbed physiological functions rather than disordered structures. At first, the basic tenets of conventional neuroscience and cardiology are reevaluated so that clear understanding of how nervous and cardiovascular systems work together can be obtained. Then, the general principles of diagnosis and treatment in traditional Chinese medicine from the integrative perspective of complex dynamic systems are proposed. Finally, mechanisms of acupuncture therapies for treating 14 different categories of disorders will be elucidated via the magneto-electric inductive effects of the meridian system. Copyright © 2013. Published by Elsevier B.V.

  2. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  3. Role of gender in heart failure with normal left ventricular ejection fraction.

    PubMed

    Regitz-Zagrosek, Vera; Brokat, Sebastian; Tschope, Carsten

    2007-01-01

    Heart failure with normal ejection fraction (HF-NEF) is frequently believed to be more common in women than in men. However, the interaction of gender and age has rarely been analyzed in detail, and knowledge of the distinction between pre- and postmenopausal women is lacking. Some of the studies that have described a higher prevalence of HF-NEF in women relied on clinical diagnoses of HF together with normal systolic function and did not measure diastolic function. This applies to the analysis of patients hospitalized for HF and some epidemiological investigations that agree on the greater prevalence of HF-NEF in women. Population-based studies with echocardiographic determination of diastolic function have suggested equal or greater prevalence of diastolic dysfunction in men. Major risk factors for HF-NEF include hypertension, aging, obesity, diabetes, and ischemia. Hypertension is more frequent in women and can contribute to left ventricular and arterial stiffening in a gender-specific way. Aging, obesity, and diabetes affect myocardial and vascular stiffness differently and lead to different forms of myocardial hypertrophy in women and men. In contrast, ischemia may play a greater role in men. Gender differences in ventricular diastolic distensibility, in vascular stiffness and ventricular/vascular coupling, in skeletal muscle adaptation to HF, and in the perception of symptoms may contribute to a greater rate of HF-NEF in women. The underlying molecular mechanisms include gender differences in calcium handling, in the NO system, and in natriuretic peptides. Estrogen affects collagen synthesis and degradation and inhibits the renin-angiotensin system. Effects of estrogen may provide benefit to premenopausal women, and the loss of its protective mechanisms may render the heart of postmenopausal women more vulnerable. Thus, a number of molecular mechanisms can contribute to the gender differences in HF-NEF.

  4. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model.

    PubMed

    Hermeling, Evelien; Delhaas, Tammo; Prinzen, Frits W; Kuijpers, Nico H L

    2012-01-01

    In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team

    2016-11-01

    In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.

  6. [The influence of the LK-92 "Adeli" treatment loading suit on electro-neuro-myographic characteristics in patients with infantile cerebral paralysis].

    PubMed

    Semenova, K A; Antonova, L V

    1998-01-01

    Treatment-loading costume (LK-92 "Adely") was investigated in terms of its influence on functional state of neuromotor apparatus in 25 children with infantile cerebral paralysis in the form of spastic diplegia. Improvement of motor functions observed may be conditioned by a decrease of an amplitude of bioelectric activity in spastic muscles at physiologic rest and by an increase of an amplitude of agonists' biopotentials at arbitrary movements. Improvement of motor functions may be also caused by normalization of both the coefficients characterizing coordinated muscules' interactions and functional state of spinal motoneurons as well as of the mechanisms of their suprasegmental regulation. It is suggested that such effect may be, realized because of the afferentation normalization as well as by means of the influence of LK-92 "Adely" on both central and segmentary structures of motor analyzer including neuromediator systems.

  7. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  8. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  9. Enterocyte protein tyrosine nitration in response to Eimeria infection in broilers

    USDA-ARS?s Scientific Manuscript database

    Activation of pathogen-sensing mechanisms in intestinal cells initiate the generation of pathway effectors that perturb normal nutritional enterocyte (ETC) functions. Among the conserved pathway mediator molecules generated are nitric oxide (NO) and superoxide anion (SOA) which are known to interac...

  10. Use of high-throughput and in vivo data to support read-across predictions

    EPA Science Inventory

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence ...

  11. Between strain and tissue differences exist in global hydroxymethylation after acute ozone exposure.

    EPA Science Inventory

    Epigenetics have been increasingly recognized as a mechanism linking environment and gene expression with both normal physiologic function as well as disease states. Demethylation of cysteine residues, generally leading to gene activation, is an oxygen-dependent reaction and crea...

  12. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    PubMed

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  13. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism

    PubMed Central

    Hussain, Abid; Li, Yi-Feng; Cheng, Yu; Liu, Yang; Chen, Chuan-Cheng; Wen, Shuo-Yang

    2013-01-01

    Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites. PMID:23874972

  14. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    PubMed

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  15. Polarity Proteins as Regulators of Cell Junction Complexes: Implications for Breast Cancer

    PubMed Central

    Bazzoun, Dana; Lelièvre, Sophie; Talhouk, Rabih

    2013-01-01

    The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment direct cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells towards oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions. PMID:23458609

  16. Mechanism of valvular regurgitation.

    PubMed

    Khoo, Nee S; Smallhorn, Jeffery F

    2011-10-01

    Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.

  17. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension.

    PubMed

    Topilsky, Yan; Khanna, Amber; Le Tourneau, Thierry; Park, Soon; Michelena, Hector; Suri, Rakesh; Mahoney, Douglas W; Enriquez-Sarano, Maurice

    2012-05-01

    Functional tricuspid regurgitation (FTR) with structurally normal valve is of poorly defined mechanisms. Prevalence and clinical context of idiopathic FTR (Id-FTR) (without overt TR cause) are unknown. To investigate prevalence, clinical context, and mechanisms specific to FTR types, Id-FTR versus pulmonary hypertension-related (PHTN-FTR, systolic pulmonary pressure ≥50 mm Hg), we analyzed 1161 patients with prospectively quantified TR. Id-FTR (prevalence 12%) was associated with aging and atrial fibrillation. For mechanistic purposes, we measured valvular and right ventricular (RV) remodeling in 141 Id-FTR matched to 140 PHTN-FTR and to 99 controls with trivial TR for age, sex, atrial fibrillation, and ejection fraction. PHTN-FTR and Id-FTR were also matched for TR effective-regurgitant-orifice (ERO). Id-FTR valvular alterations (versus controls) were largest annular area (3.53±0.6 versus 2.74±0.4 cm(2), P<0.0001) and lowest valvular/annular coverage ratio (1.06±0.1 versus 1.45±0.2, P<0.0001) but normal valve tenting height. PHTN-FTR had mild annular enlargement but excessive valve tenting height (0.8±0.3 versus 0.35±0.1 cm, P<0.0001). Valvular changes were linked to specific RV changes, largest basal dilatation, and normal length (RV conical deformation) in Id-FTR versus longest RV with elliptical/spherical deformation in PHTN-FTR. With increasing FTR severity (ERO ≥40 mm(2)), changes specific to each FTR type were accentuated, and RV function (index of myocardial performance) was consistently reduced. Id-FTR is frequent, linked to aging and atrial fibrillation, can be severe, and is of unique mechanism. In Id-FTR, excess annular and RV-basal enlargement exhausts valvular/annular coverage reserve, and RV conical deformation does not cause notable valvular tenting. Conversely, PHTN-FTR is determined by valvular tethering with tenting linked to RV elongation and elliptical/spherical deformation. These specific FTR-mechanisms may be important in considering surgical correction in FTR.

  18. Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapunova, Elena, E-mail: lyapunova@icmm.ru; Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000; Nikituk, Alexander, E-mail: nas@icmm.ru

    Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithmsmore » (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.« less

  19. Giant mitochondria do not fuse and exchange their contents with normal mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, Marian; Terman, Alexei; Arriaga, Edgar A.

    2008-01-01

    Giant mitochondria accumulate within aged or diseased postmitotic cells as a consequence of insufficient autophagy, which is normally responsible for mitochondrial degradation. We report that giant mitochondria accumulating in cultured rat myoblasts due to inhibition of autophagy have low inner membrane potential and do not fuse with each other or with normal mitochondria. In addition to the low inner mitochondrial membrane potential in giant mitochondria, the quantity of the OPA1 mitochondrial fusion protein in these mitochondria was low, but the abundance of mitofusin-2 (Mfn2) remained unchanged. The combination of these factors may explain the lack of mitochondrial fusion in giantmore » mitochondria and imply that the dysfunctional giant mitochondria cannot restore their function by fusing and exchanging their contents with fully functional mitochondria. These findings have important implications for understanding the mechanisms of accumulation of age-related mitochondrial damage in postmitotic cells.« less

  20. Influence of thyroid function on glomerular filtration rate and other estimates of kidney function in two pediatric patients.

    PubMed

    Uemura, Osamu; Iwata, Naoyuki; Nagai, Takuhito; Yamakawa, Satoshi; Hibino, Satoshi; Yamamoto, Masaki; Nakano, Masaru; Tanaka, Kazuki

    2018-05-01

    To determine the optimal method of evaluating kidney function in patients with thyroid dysfunction, this study compared the estimated glomerular filtration rate derived from serum creatinine, cystatin C, or β2-microglobulin with inulin or creatinine clearance in two pediatric patients, one with hypothyroidism and the other with hyperthyroidism. It was observed that the kidney function decreased in a hypothyroid child and enhanced in a hyperthyroid child, with their kidney function becoming normalized by treatment with drugs, which normalized their thyroid function. Kidney function cannot be accurately evaluated using cystatin C-based or β2-microglobulin-based estimated glomerular filtration rate in patients with thyroid dysfunction, as these tests overestimated glomerular filtration rate in a patient with hypothyroidism and underestimated glomerular filtration rate in a patient with hyperthyroidism, perhaps through a metabolic rate-mediated mechanism. In both our patients, 24-h urinary creatinine secretion was identical before and after treatment, suggesting that creatinine production is not altered in patients with thyroid dysfunction. Therefore, kidney function in patients with thyroid dysfunction should be evaluated using creatinine-based estimated glomerular filtration rate.

  1. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung.

    PubMed

    Suki, Béla

    2014-09-01

    Recently, an exciting new approach has emerged in regenerative medicine pushing the forefront of tissue engineering to create bioartificial organs. The basic idea is to create biological scaffolds made of extracellular matrix (ECM) that preserves the three-dimensional architecture of an entire organ. These scaffolds are then used as templates for functional tissue and organ reconstruction after re-seeding the structure with stem cells or appropriately differentiated cells. In order to make sure that these bioartificial organs will be able to function in the mechanical environment of the native tissue, it is imperative to fully characterize their mechanical properties and match them with those of the normal native organs. This mini-review briefly summarizes modern measurement techniques of mechanical function characterized mostly by the material or volumetric stiffness. Micro-scale and macro-scale techniques such as atomic force microscopy and the tissue strip stress-strain approach are discussed with emphasis on those that combine mechanical measurements with structural visualization. Proper micro-scale stiffness helps attachment and differentiation of cells in the bioartificial organ whereas macro-scale functionality is provided by the overall mechanical properties of the construct. Several approaches including failure mechanics are also described, which specifically probe the contributions of the main ECM components including collagen, elastin, and proteoglycans to organ level ECM function. Advantages, drawbacks, and possible pitfalls as well as interpretation of the data are given throughout. Finally, specific techniques to assess the functionality of the ECM of bioartificial lungs are separately discussed. © 2014 Wiley Periodicals, Inc.

  2. Loss‐of‐function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice

    PubMed Central

    Fan, Xiaolei; Wu, Jiemin; Chen, Taiyu; Tie, Weiwei; Chen, Hao; Zhou, Fei

    2015-01-01

    Abstract Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss‐of‐function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2O2 and abscisic acid levels were significantly higher in slac7‐1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7‐1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7‐1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7‐1. When grown in dark conditions, slac7‐1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. PMID:25739330

  3. Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction

    PubMed Central

    Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir

    2008-01-01

    It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348

  4. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities.

    PubMed

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2015-09-30

    Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal-occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention.

  5. Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET

    2018-05-01

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.

  6. Statistical process control applied to mechanized peanut sowing as a function of soil texture.

    PubMed

    Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.

  7. Statistical process control applied to mechanized peanut sowing as a function of soil texture

    PubMed Central

    Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095

  8. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  9. Cardiovascular effects of variations in habitual levels of physical activity

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. G.; Mitchell, J. H.

    1975-01-01

    Mechanisms involved in human cardiovascular adaption to stress, particularly adaption to different levels of physical activity are determined along with quantitative noninvasive methods for evaluation of cardiovascular function during stess in normal subjects and in individuals with latent or manifest cardiovascular disease. Results are summarized.

  10. Glottal Aerodynamic Measures in Women with Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction

    ERIC Educational Resources Information Center

    Espinoza, Victor M.; Zañartu, Matías; Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.

    2017-01-01

    Purpose: The purpose of this study was to determine the validity of preliminary reports showing that glottal aerodynamic measures can identify pathophysiological phonatory mechanisms for phonotraumatic and nonphonotraumatic vocal hyperfunction, which are each distinctly different from normal vocal function. Method: Glottal aerodynamic measures…

  11. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  12. microRNA-497 overexpression decreases proliferation, migration and invasion of human retinoblastoma cells via targeting vascular endothelial growth factor A

    PubMed Central

    Li, Jianjun; Zhang, Yinghui; Wang, Xiuchao; Zhao, Ruibo

    2017-01-01

    The expression level and roles of microRNA-497 (miR-497) have been frequently reported in previous studies on cancer. However, its expression, function and associated molecular mechanisms in retinoblastoma remain unknown. In the present study, miR-497 expression levels in human retinoblastoma tissues, normal retinal tissues and retinoblastoma cell lines were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a Cell Counting Kit-8 assay, cell migration assay, cell invasion assay, western blot analysis and Dual-Luciferase reporter assay were used to explore the expression, functions and molecular mechanisms of miR-497 in human retinoblastoma. It was demonstrated that miR-497 was significantly downregulated in retinoblastoma tissues and cell lines compared with normal retinal tissues. Ectopic expression of miR-497 decreased the proliferation, migration and invasion of retinoblastoma cells. Furthermore, VEGFA was verified as a potential direct target of miR-497 in vitro. Taken together, the results indicate that miR-497 functions as a tumor suppressor in the carcinogenesis and progression of retinoblastoma via targeting VEGFA. miR-497 should be investigated as a potential therapeutic target for the treatment of retinoblastoma. PMID:28588740

  13. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  14. Does oxidative stress modulate left ventricular diastolic function in asymptomatic subjects with hereditary hemochromatosis?

    PubMed

    Shizukuda, Yukitaka; Bolan, Charles D; Tripodi, Dorothy J; Sachdev, Vandana; Nguyen, Tammy T; Botello, Gilberto; Yau, Yu-Ying; Sidenko, Stanislav; Inez, Ernst; Ali, Mir I; Waclawiw, Myron A; Leitman, Susan F; Rosing, Douglas R

    2009-11-01

    Little is known about the early mechanisms mediating left ventricular (LV) diastolic dysfunction in patients with hereditary hemochromatosis (HH). However, the increased oxidative stress related to iron overload may be involved in this process, and strain rate (SR), a sensitive echocardiography-derived measure of diastolic function, may detect such changes. we evaluated the relationship between left ventricular diastolic function measured with tissue Doppler SR and oxidative stress in asymptomatic HH subjects and control normal subjects. Ninety-four consecutive visits of 43 HH subjects, age 30-74 (50 +/- 10, mean +/- SD), and 37 consecutive visits of 21 normal volunteers, age 30-63 (48 +/- 8), were evaluated over a 3-year period. SR was obtained from the basal septum in apical four-chamber views. All patients had confirmed C282Y homozygosity, a documented history of iron overload, and were New York Heart Association functional class I. Normal volunteers lacked HFE gene mutations causing HH. In the HH subjects, the SR demonstrated moderate but significant correlations with biomarkers of oxidative stress; however, no correlations were noted in normal subjects. The biomarkers of iron overload per se did not show significant correlations with the SR. Although our study was limited by the relatively small subject number, these results suggest that a possible role of oxidative stress to affect LV diastolic function in asymptomatic HH subjects and SR imaging may be a sensitive measure to detect that effect.

  15. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    PubMed Central

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  16. Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.

    PubMed

    Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J

    2011-11-09

    The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.

  17. Calcineurin Regulates Myocardial Function during Acute Endotoxemia

    PubMed Central

    Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.

    2006-01-01

    Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445

  18. Individual differences reveal correlates of hidden hearing deficits.

    PubMed

    Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G

    2015-02-04

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.

  19. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    PubMed Central

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  20. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  1. Neuronal Function in Male Sprague Dawley Rats During Normal Ageing.

    PubMed

    Idowu, A J; Olatunji-Bello, I I; Olagunju, J A

    2017-03-06

    During normal ageing, there are physiological changes especially in high energy demanding tissues including the brain and skeletal muscles. Ageing may disrupt homeostasis and allow tissue vulnerability to disease. To establish an appropriate animal model which is readily available and will be useful to test therapeutic strategies during normal ageing, we applied behavioral approaches to study age-related changes in memory and motor function as a basis for neuronal function in ageing in male Sprague Dawley rats. 3 months, n=5; 6 months, n=5 and 18 months, n=5 male Sprague Dawley Rats were tested using the Novel Object Recognition Task (NORT) and the Elevated plus Maze (EPM) Test. Data was analyzed by ANOVA and the Newman-Keuls post hoc test. The results showed an age-related gradual decline in exploratory behavior and locomotor activity with increasing age in 3 months, 6 months and 18 months old rats, although the values were not statistically significant, but grooming activity significantly increased with increasing age. Importantly, we established a novel finding that the minimum distance from the novel object was statistically significant between 3 months and 18 months old rats and this may be an index for age-related memory impairment in the NORT. Altogether, we conclude that the male Sprague Dawley rat show age-related changes in neuronal function and may be a useful model for carrying out investigations into the mechanisms involved in normal ageing.

  2. The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice

    PubMed Central

    Goggs, Robert; Savage, Joshua S.; Mellor, Harry; Poole, Alastair W.

    2013-01-01

    Background Formation of filopodia and other shape change events are vital for platelet hemostatic function. The mechanisms regulating filopodia formation by platelets are incompletely understood however. In particular the small GTPase responsible for initiating filopodia formation by platelets remains elusive. The canonical pathway involving Cdc42 is not essential for filopodia formation in mouse platelets. The small GTPase Rif (RhoF) provides an alternative route to filopodia generation in other cell types and is expressed in both human and mouse platelets. Hypothesis/Objective We hypothesized that Rif might be responsible for generating filopodia by platelets and generated a novel knockout mouse model to investigate the functional role of Rif in platelets. Methodology/Principal Findings Constitutive RhoF−/− mice are viable and have normal platelet, leukocyte and erythrocyte counts and indices. RhoF−/− platelets form filopodia and spread normally on various agonist surfaces in static conditions and under arterial shear. In addition, RhoF−/− platelets have normal actin dynamics, are able to activate and aggregate normally and secrete from alpha and dense granules in response to collagen related peptide and thrombin stimulation. Conclusions The small GTPase Rif does not appear to be critical for platelet function in mice. Functional overlap between Rif and other small GTPases may be responsible for the non-essential role of Rif in platelets. PMID:23359340

  3. CHANGES IN GENE EXPRESSION DURING DIFFERENTIATION OF CULTURED HUMAN PRIMARY BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Primary airway epithelial cell cultures are a useful tool for the in vitro study of normal bronchial cell differentiation and function, airway disease mechanisms, and pathogens and toxin response. Growth of these cells at an air-liquid interface for several days results in the f...

  4. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis.

    PubMed

    Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y

    2010-01-01

    Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.

  5. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.

    PubMed Central

    Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A

    1993-01-01

    Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density lipoprotein resistance to ex vivo oxidation. PMID:8265642

  6. [Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].

    PubMed

    Nerlich, A

    1995-01-01

    Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly, the lack of HSPG in the BM of lymph capillaries can be regarded as the correlate for a free fluid influx into lymphatic capillaries. The relative reduction in HSPG-staining in the developing glomerular BM also explains the still immature filter function. Furthermore, the low content of HSPG in placental chorionic capillaries can be regarded as morphological correlate for the required free fluid exchange between maternal and fetal blood systems. In diabetic glomerulopathy, the loss of HSPG coincides with a reduced filter function providing further support for the function of the HSPG. In further analyses of diabetic glomerulopathy, we provide evidence for an extensive matrix dysregulation resulting in either the overexpression of certain BM-components (diffuse glomerulosclerosis) or microfibrillar collagen VI (nodular glomerulosclerosis) indicating changes in cell function and possibly also cellular "differentiation". The analysis of congenital nephropathies additionally indicates that also the HSPG side chains with their negative charges may be involved in certain diseases with filter impairment. 4.) Furthermore, HSPG serves as a binding site for growth factors, particularly for the basic fibroblast growth factor (bFGF). It is of particular interest that the localization of HSPG and bFGF is not completely identical indicating some tissue specific differences in the receptor-ligand interaction. The functional importance of the bFGF-HSPG-interaction is exemplified by arteriosclerotic intima lesions where in highly cellular lesions high amounts of bFGF and HSPG coincide and low levels of both appear in poorly cellular lesions. Similarly, the granulation tissue in wound healing contains large amounts of bFGF-positive mesenchymal cells. 5.) The role of individual matrix components can be deduced from the normal human wound healing process, where epithelial cells migrate on a fibronectin matrix without complete BM.

  7. BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment

    PubMed Central

    Hsu, Ying; Kim, Gunhee; Zhang, Qihong; Datta, Poppy; Seo, Seongjin

    2017-01-01

    Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated. PMID:29049287

  8. Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects.

    PubMed

    Wang, Jing; Fritzsch, Claire; Bernarding, Johannes; Krause, Thomas; Mauritz, Karl-Heinz; Brunetti, Maddalena; Dohle, Christian

    2013-01-01

    Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.

  9. The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology

    PubMed Central

    Winkelman, Michael J.

    2017-01-01

    Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS). PMID:29033783

  10. Perceived functional impact of abnormal facial appearance.

    PubMed

    Rankin, Marlene; Borah, Gregory L

    2003-06-01

    Functional facial deformities are usually described as those that impair respiration, eating, hearing, or speech. Yet facial scars and cutaneous deformities have a significant negative effect on social functionality that has been poorly documented in the scientific literature. Insurance companies are declining payments for reconstructive surgical procedures for facial deformities caused by congenital disabilities and after cancer or trauma operations that do not affect mechanical facial activity. The purpose of this study was to establish a large, sample-based evaluation of the perceived social functioning, interpersonal characteristics, and employability indices for a range of facial appearances (normal and abnormal). Adult volunteer evaluators (n = 210) provided their subjective perceptions based on facial physical appearance, and an analysis of the consequences of facial deformity on parameters of preferential treatment was performed. A two-group comparative research design rated the differences among 10 examples of digitally altered facial photographs of actual patients among various age and ethnic groups with "normal" and "abnormal" congenital deformities or posttrauma scars. Photographs of adult patients with observable congenital and posttraumatic deformities (abnormal) were digitally retouched to eliminate the stigmatic defects (normal). The normal and abnormal photographs of identical patients were evaluated by the large sample study group on nine parameters of social functioning, such as honesty, employability, attractiveness, and effectiveness, using a visual analogue rating scale. Patients with abnormal facial characteristics were rated as significantly less honest (p = 0.007), less employable (p = 0.001), less trustworthy (p = 0.01), less optimistic (p = 0.001), less effective (p = 0.02), less capable (p = 0.002), less intelligent (p = 0.03), less popular (p = 0.001), and less attractive (p = 0.001) than were the same patients with normal facial appearances. Facial deformity caused by trauma, congenital disabilities, and postsurgical sequelae present with significant adverse functional consequences. Facial deformities have a significant negative effect on perceptions of social functionality, including employability, honesty, and trustworthiness. Adverse perceptions of patients with facial deformities occur regardless of sex, educational level, and age of evaluator.

  11. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  12. Slow deformation of intervertebral discs.

    PubMed

    Broberg, K B

    1993-01-01

    Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.

  13. Urgency: the cornerstone symptom of overactive bladder.

    PubMed

    Brubaker, Linda

    2004-12-01

    Urgency, defined as the compelling feeling of impending incontinence that is difficult to defer, is the cornerstone symptom of overactive bladder. Unfortunately, controversy continues to surround this term and its definition, a fact that has constrained the performance of clinical research in this field. It is important to note that the definition assumes an abnormal sensation that is distinguishable from the normal feeling of "urge to void," which occurs during a normal bladder-filling cycle. The cause of urgency is not fully understood and may vary from patient to patient. Urgency may be controlled by central nervous system mechanisms, lower urinary tract mechanisms, including detrusor myogenic functions (ie, overt detrusor contractions, micromotions, myofibroblast abnormalities), or afferent neural factors. Recently, a number of articles that attempt to quantify urgency have appeared in the literature. Attempts to measure urgency are confounded by difficulties in understanding its definition, the context of normal urge to void, and the power of suggestion in most clinical environments.

  14. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  15. Differential effects of power training versus functional task practice on compensation and restoration of arm function after stroke.

    PubMed

    Corti, Manuela; McGuirk, Theresa E; Wu, Samuel S; Patten, Carolynn

    2012-09-01

    Improved upper-extremity (UE) movement with stroke rehabilitation may involve restoration of more normal or development of compensatory movement patterns. The authors investigated the differential effects of functional task practice (FTP) and dynamic resistance training (POWER) on clinical function and reaching kinematics in an effort to distinguish between mechanisms of gains. A total of 14 hemiparetic individuals were randomly assigned to 10 weeks of either FTP or POWER and then crossed over to 10 weeks of the alternate treatment. Treatment order A was FTP followed by POWER, whereas treatment order B was POWER followed by FTP. Evaluation before and after each treatment block included a battery of clinical evaluations and kinematics of paretic UE functional reach to grasp. Both FTP and POWER improved movement accuracy, as revealed by a shift toward normal, including fewer submovements and reduced reach-path ratio. However, active range of motion revealed differential treatment effects. Shoulder flexion and elbow extension decreased with FTP and were associated with increased trunk displacement. In contrast, shoulder flexion and elbow extension excursion increased with POWER and were associated with significantly reduced trunk displacement. Treatment order B (POWER followed by FTP) revealed greater overall improvements. FTP increases compensatory movement patterns to improve UE function. POWER leads to more normal movement patterns. POWER prior to FTP may enhance the benefits of repetitive task practice.

  16. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  17. Discriminative analysis of non-linear brain connectivity for leukoaraiosis with resting-state fMRI

    NASA Astrophysics Data System (ADS)

    Lai, Youzhi; Xu, Lele; Yao, Li; Wu, Xia

    2015-03-01

    Leukoaraiosis (LA) describes diffuse white matter abnormalities on CT or MR brain scans, often seen in the normal elderly and in association with vascular risk factors such as hypertension, or in the context of cognitive impairment. The mechanism of cognitive dysfunction is still unclear. The recent clinical studies have revealed that the severity of LA was not corresponding to the cognitive level, and functional connectivity analysis is an appropriate method to detect the relation between LA and cognitive decline. However, existing functional connectivity analyses of LA have been mostly limited to linear associations. In this investigation, a novel measure utilizing the extended maximal information coefficient (eMIC) was applied to construct non-linear functional connectivity in 44 LA subjects (9 dementia, 25 mild cognitive impairment (MCI) and 10 cognitively normal (CN)). The strength of non-linear functional connections for the first 1% of discriminative power increased in MCI compared with CN and dementia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. In the multivariate pattern analysis with multiple classifiers, the non-linear functional connectivity mostly identified dementia, MCI and CN from LA with a relatively higher accuracy rate than the linear measure. Our findings revealed the non-linear functional connectivity provided useful discriminative power in classification of LA, and the spatial distributed changes between the non-linear and linear measure may indicate the underlying mechanism of cognitive dysfunction in LA.

  18. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    NASA Astrophysics Data System (ADS)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  19. Diagnostic electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  20. Anatomy and Physiology of the Blood-Brain Barrier

    PubMed Central

    Serlin, Yonatan; Shelef, Ilan; Knyazer, Boris; Friedman, Alon

    2015-01-01

    Essential requisite for the preservation of normal brain activity is to maintain a narrow and stable homeostatic control in the neuronal environment of the CNS. Blood flow alterations and altered vessel permeability are considered key determinants in the pathophysiology of brain injuries. We will review the present-day literature on the anatomy, development and physiological mechanisms of the blood-brain barrier, a distinctive and tightly regulated interface between the CNS and the peripheral circulation, playing a crucial role in the maintenance of the strict environment required for normal brain function. PMID:25681530

  1. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  2. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate's Role2

    PubMed Central

    Yang, Thomas P.; Berry, Robert J; Bailey, Lynn B.

    2012-01-01

    ABSTRACT DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes. PMID:22332098

  3. In Vitro Study of Flow Regulation for Pulmonary Insufficiency

    PubMed Central

    Camp, T. A.; Stewart, K. C.; Figliola, R. S.; McQuinn, T.

    2007-01-01

    Given the tolerance of the right heart circulation to mild regurgitation and gradient, we study the potential of using motionless devices to regulate the pulmonary circulation. In addition, we document the flow performance of two mechanical valves. A motionless diode, a nozzle, a mechanical bileaflet valve, and a tilting disk valve were tested in a pulmonary mock circulatory system over the normal human range of pulmonary vascular resistance (PVR). For the mechanical valves, regurgitant fractions (RFs) and transvalvular pressure gradients were found to be weak functions of PVR. On the low end of normal PVR, the bileaflet and tilting disk valves fluttered and would not fully close. Despite this anomaly, the regurgitant fraction of either valve did not change significantly. The values for RF and transvalvular gradient measured varied from 4 to 7% and 4 to 7 mm Hg, respectively, at 5 lpm for all tests. The diode valve was able to regulate flow with mild regurgitant fraction and trivial gradient but with values higher than either mechanical valve tested. Regurgitant fraction ranged from 2 to 17% in tests extending from PVR values of 1 to 4.5 mm Hg/lpm at 5 lpm and with concomitant increases in gradient up to 17 mm Hg. The regurgitant fraction for the nozzle increased from 2 to 23% over the range of PVR with gradients increasing to 18 mm Hg. The significant findings were: (1) the mechanical valves controlled regurgitation at normal physiological cardiac output and PVR even though they failed to close at some normal values of PVR and showed leaflet flutter; and (2) it may be possible to regulate the pulmonary circulation to tolerable levels using a motionless pulmonary valve device. PMID:17408334

  4. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  5. Effects of alendronate on restoration of biomechanical properties of periodontium in replanted rat molars.

    PubMed

    Shibata, T; Komatsu, K; Shimada, A; Shimoda, S; Oida, S; Kawasaki, K; Chiba, M

    2004-12-01

    We examined the effect of the pretreatment of roots with alendronate on the restoration of the support function of the healing periodontal ligament in replanted rat molars. The left maxillary first molars were extracted, placed in 0.9% NaCl containing 1 mm alendronate (alendronate group) or 0.9% NaCl (control group) for 5 min, and were replanted into their sockets. Groups of animals were killed at 7, 14, and 21 days after replantation. Normal control rats were also killed on the same days. The force required to extract the replanted or normal tooth from its socket was measured, and a load-deformation curve was developed and analyzed. Micro-computed tomography and histologic analyses were also made. The mechanical properties of the healing periodontal ligament in the alendronate group were gradually restored from 7 to 21 days. However, fractures of the roots and bones during mechanical testing occurred in most of the replanted teeth in the control group at 21 days. The rates of restoration of the mechanical strength, extensibility, stiffness, and toughness for the alendronate group at 21 days were 67, 98, 74, and 68% of the normal controls, respectively. Micro-computed tomography and histologic observations revealed that bone-like structures within the pulp and ankylosis between the roots and socket bones occurred commonly in the control group, but were uncommon in the alendronate group. Our findings suggest that the pretreatment with alendronate inhibits the formation of abnormal mineralized tissues and results in better restoration of the support function of the healing periodontal ligament in replanted teeth. (c)Blackwell Munksgaard 2004

  6. Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics

    PubMed Central

    Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.

    2000-01-01

    Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628

  7. Live dynamic analysis of mouse embryonic cardiogenesis with functional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larina, Irina V.

    2018-02-01

    Hemodynamic load, contractile forces, and tissue elasticity are regulators of cardiac development and contribute to the mechanical homeostasis of the developing vertebrate heart. Congenital heart disease (CHD) is a prevalent condition in the United States that affects 8 in 1000 live births[1], and has been linked to disrupted cardiac biomechanics[2-4]. Therefore, it is important to understand how these forces integrate and regulate vertebrate cardiac development to inform clinical strategies to treat CHD early on by reintroducing proper mechanical load or modulating downstream factors that rely on mechanical signalling. Toward investigation of biomechanical regulation of mammalian cardiovascular dynamics and development, our methodology combines live mouse embryo culture protocols, state-of-the-art structural and functional Optical Coherence Tomography (OCT), second harmonic generation (SHG) microscopy, and computational analysis. Using these approaches, we assess functional aspects of the developing heart and characterize how they coincide with a determinant of tissue stiffness and main constituent of the extracellular matrix (ECM)—type I collagen. This work is bringing us closer to understanding how cardiac biomechanics change temporally and spatially during normal development, and how it regulates ECM to maintain mechanical homeostasis for proper function.

  8. Friction Reduction through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation.

    PubMed

    Sednaoui, Thomas; Vezzoli, Eric; Dzidek, Brygida; Lemaire-Semail, Betty; Chappaz, Cedrick; Adams, Michael

    2017-01-01

    In part 1 of the current study of haptic displays, a finite element (FE) model of a finger exploring a plate vibrating out-of-plane at ultrasonic frequencies was developed as well as a spring-frictional slider model. It was concluded that the reduction in friction induced by the vibrations could be ascribed to ratchet mechanism as a result of intermittent contact. The relative reduction in friction calculated using the FE model could be superimposed onto an exponential function of a dimensionless group defined from relevant parameters. The current paper presents measurements of the reduction in friction, involving real and artificial fingertips, as a function of the vibrational amplitude and frequency, the applied normal force and the exploration velocity. The results are reasonably similar to the calculated FE values and also could be superimposed using the exponential function provided that the intermittent contact was sufficiently well developed, which for the frequencies examined correspond to a minimum vibrational amplitude of  ∼ 1 µm P-P. It was observed that the reduction in friction depends on the exploration velocity and is independent of the applied normal force and ambient air pressure, which is not consistent with the squeeze film mechanism. However, the modelling did not incorporate the influence of air and the effect of ambient pressure was measured under a limited range of conditions, Thus squeeze film levitation may be synergistic with the mechanical interaction.

  9. Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.

    PubMed

    Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan

    2018-02-05

    Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung.

    PubMed

    McGee, Kiaran P; Mariappan, Yogesh K; Hubmayr, Rolf D; Carter, Rickey E; Bao, Zhonghao; Levin, David L; Manduca, Armando; Ehman, Richard L

    2012-08-15

    Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ≈ 30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.

  11. Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease

    PubMed Central

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-01-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981

  12. Stem cells for brain repair in neonatal hypoxia-ischemia.

    PubMed

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  13. Pac-man motility of kinetochores unleashed by laser microsurgery

    PubMed Central

    LaFountain, James R.; Cohan, Christopher S.; Oldenbourg, Rudolf

    2012-01-01

    We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. PMID:22740625

  14. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells

    PubMed Central

    Singh, Satyendra; Klarmann, Kimberly D.; Coppola, Vincenzo; Keller, Jonathan R.; Tessarollo, Lino

    2016-01-01

    c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies. PMID:27835883

  15. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells.

    PubMed

    Puverel, Sandrine; Kiris, Erkan; Singh, Satyendra; Klarmann, Kimberly D; Coppola, Vincenzo; Keller, Jonathan R; Tessarollo, Lino

    2016-12-20

    c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.

  16. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle.

    PubMed

    Li, Mei; Andersson-Lendahl, Monika; Sejersen, Thomas; Arner, Anders

    2013-03-01

    Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4-6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light-based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ~50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.

  17. Cancer prevention, the need to preserve the integrity of the genome at all cost.

    PubMed

    Okafor, M T; Nwagha, T U; Anusiem, C; Okoli, U A; Nubila, N I; Al-Alloosh, F; Udenyia, I J

    2018-05-01

    The entire genetic information carried by an organism makes up its genome. Genes have a diverse number of functions. They code different proteins for normal proliferation of cells. However, changes in the base sequence of genes affect their protein by-products which act as messengers for normal cellular functions such as proliferation and repairs. Salient processes for maintaining the integrity of the genome are hinged on intricate mechanisms put in place for the evolution to tackle genomic stresses. To discuss how cells sense and repair damage to their deoxyribonucleic acid (DNA) as well as to highlight how defects in the genes involved in DNA repair contribute to cancer development. Methodology: Online searches on the following databases such as Google Scholar, PubMed, Biomed Central, and SciELO were done. Attempt was made to review articles with keywords such as cancer, cell cycle, tumor suppressor genes, and DNA repair. The cell cycle, tumor suppression genes, DNA repair mechanism, as well as their contribution to cancer development, were discussed and reviewed. Knowledge on how cells detect and repair DNA damage through an array of mechanisms should allay our anxiety as regards cancer development. More studies on DNA damage detection and repair processes are important toward a holistic approach to cancer treatment.

  18. Mechanisms of intracellular defense and activity of free radical oxidation in rat myocardium in the dynamics of chronic fluorine intoxication.

    PubMed

    Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N

    2013-12-01

    The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.

  19. Genomic imprinting—an epigenetic gene-regulatory model

    PubMed Central

    Koerner, Martha V; Barlow, Denise P

    2010-01-01

    Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression. PMID:20153958

  20. Appropriate Objective Functions for Quantifying Iris Mechanical Properties Using Inverse Finite Element Modeling.

    PubMed

    Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh

    2018-07-01

    Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.

  1. Teacher Burnout: Is It Real? Can We Prevent It?

    ERIC Educational Resources Information Center

    Terry, Paul M.

    Excessive, prolonged stress can alter the body's normal physiologic function. If adequate coping mechanisms are not instituted, this extreme state can lead to burnout. Burnout can be experienced with physical, intellectual, social, psycho-emotional, and spiritual adaptations. It has been estimated that up to 40 percent of U.S. teachers will not be…

  2. Suppression and Narrative Time Shifts in Adults with Right-Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Scharp, Victoria L.; Tompkins, Connie A.

    2013-01-01

    Purpose: This study examined the functioning of a central comprehension mechanism, suppression, in adults with right-hemisphere damage (RHD) while they processed narratives that cued a shift in time frame. In normal language comprehension, mental activation of concepts from a prior time frame is suppressed. The (re)activation of information…

  3. A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry-Perot cavity with moving boundary condition

    NASA Astrophysics Data System (ADS)

    Bahrampour, A. R.; Vahedi, M.; Abdi, M.; Ghobadi, R.; Golshani, M.; Tofighi, S.; Parvin, B.

    2011-09-01

    The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained.

  4. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  5. NF-κB Signaling Pathway and its Potential as a Target for Therapy in Lymphoid Neoplasms

    PubMed Central

    Yu, Li; Li, Ling; Medeiros, L. Jeffrey; Young, Ken H.

    2016-01-01

    The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells. PMID:27773462

  6. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2016-11-01

    Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.

  7. Biophysics of the Senses

    NASA Astrophysics Data System (ADS)

    Presley, Tennille D.

    2016-12-01

    Biophysics of the Senses connects fundamental properties of physics to biological systems, relating them directly to the human body. It includes discussions of the role of charges and free radicals in disease and homeostasis, how aspects of mechanics impact normal body functions, human bioelectricity and circuitry, forces within the body, and biophysical sensory mechanisms. This is an exciting view of how sensory aspects of biophysics are utilized in everyday life for students who are curious but struggle with the connection between biology and physics.

  8. Khat a drug of abuse: roles of free radicals and antioxidants.

    PubMed

    Aleryani, Samir L; Aleryani, Rowaida A; Al-Akwa, Ahmed A

    2011-09-01

    Many articles have reviewed the health impact of Khat consumption; however the role of free radicals in the pathogenesis associated with short- and long-term consumption of Khat is absent in the literature. As free radicals and antioxidants converge across various mechanisms in normal physiological function and in disease, this review attempts to uncover the role of endogenous free radicals and the mechanism of cellular injury associated with Khat consumption. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Tissue-Engineering for the Study of Cardiac Biomechanics

    PubMed Central

    Ma, Stephen P.; Vunjak-Novakovic, Gordana

    2016-01-01

    The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease. PMID:26720588

  10. Prospective longitudinal evaluation of lung function during the first year of life after extracorporeal membrane oxygenation.

    PubMed

    Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M

    2011-03-01

    To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p < .001) at 6 mos and 12 mos: -1.1 (0.1) and -1.2 (0.1), respectively. At 12 mos, infants with diaphragmatic hernia had a functional residual capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.

  11. Design and Integration for High Performance Robotic Systems Based on Decomposition and Hybridization Approaches

    PubMed Central

    Zhang, Dan; Wei, Bin

    2017-01-01

    Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360

  12. Analysis of inflammation-induced depression of home cage wheel running in rats reveals the difference between opioid antinociception and restoration of function.

    PubMed

    Kandasamy, Ram; Calsbeek, Jonas J; Morgan, Michael M

    2017-01-15

    Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund's Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED 50 dose of morphine (3.2mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.

    PubMed

    Wang, Jinan; Shao, Qiang; Xu, Zhijian; Liu, Yingtao; Yang, Zhuo; Cossins, Benjamin P; Jiang, Hualiang; Chen, Kaixian; Shi, Jiye; Zhu, Weiliang

    2014-01-09

    Large-scale conformational changes of proteins are usually associated with the binding of ligands. Because the conformational changes are often related to the biological functions of proteins, understanding the molecular mechanisms of these motions and the effects of ligand binding becomes very necessary. In the present study, we use the combination of normal-mode analysis and umbrella sampling molecular dynamics simulation to delineate the atomically detailed conformational transition pathways and the associated free-energy landscapes for three well-known protein systems, viz., adenylate kinase (AdK), calmodulin (CaM), and p38α kinase in the absence and presence of respective ligands. For each protein under study, the transient conformations along the conformational transition pathway and thermodynamic observables are in agreement with experimentally and computationally determined ones. The calculated free-energy profiles reveal that AdK and CaM are intrinsically flexible in structures without obvious energy barrier, and their ligand binding shifts the equilibrium from the ligand-free to ligand-bound conformation (population shift mechanism). In contrast, the ligand binding to p38α leads to a large change in free-energy barrier (ΔΔG ≈ 7 kcal/mol), promoting the transition from DFG-in to DFG-out conformation (induced fit mechanism). Moreover, the effect of the protonation of D168 on the conformational change of p38α is also studied, which reduces the free-energy difference between the two functional states of p38α and thus further facilitates the conformational interconversion. Therefore, the present study suggests that the detailed mechanism of ligand binding and the associated conformational transition is not uniform for all kinds of proteins but correlated to their respective biological functions.

  14. Analysis of inflammation-induced depression of home cage wheel running in rats reveals the difference between opioid antinociception and restoration of function

    PubMed Central

    Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.

    2016-01-01

    Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED50 dose of morphine (3.2 mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0 mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients. PMID:27746208

  15. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    PubMed

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  16. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    PubMed Central

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-01-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting. PMID:26068810

  17. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  18. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Shawn M.; Lockhart, Samuel N.; Baker, Suzanne L.

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turnmore » associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.« less

  19. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells.

    PubMed

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-12

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  20. A new paradigm in respiratory hygiene: modulating respiratory secretions to contain cough bioaerosol without affecting mucus clearance.

    PubMed

    Zayas, Gustavo; Valle, Juan C; Alonso, Mauricio; Alfaro, Henry; Vega, Daniel; Bonilla, Gloria; Reyes, Miguel; King, Malcolm

    2007-08-13

    Several strategies and devices have been designed to protect health care providers from acquiring transmissible respiratory diseases while providing care. In modulating the physical characteristics of the respiratory secretions to minimize the aerosolization that facilitates transmission of airborne diseases, a fundamental premise is that the prototype drugs have no adverse effect on the first line of respiratory defense, clearance of mucus by ciliary action. To assess and demonstrate the primary mechanism of our mucomodulators (XLs), we have built our evidence moving from basic laboratory studies to an ex-vivo model and then to an in-vivo large animal model. We exposed anesthetized dogs without hypersecretion to different dose concentrations of aerosolized XL "B", XL "D" and XL "S". We assessed: cardio-respiratory pattern, tracheal mucus clearance, airway patency, and mucus viscoelastic changes. Exposure of frog palate mucus to XLs did not affect the clearance of mucus by ciliary action. Dogs maintained normal cardio-respiratory pattern with XL administration. Tracheal mucociliary clearance in anesthetized dogs indicated a sustained 40% mean increase. Tracheal mucus showed increased filance, and there was no mucus retention in the airways. The ex-vivo frog palate and the in-vivo mammalian models used in this study, appear to be appropriate and complement each other to better assess the effects that our mucomodulators exert on the mucociliary clearance defence mechanism. The physiological function of the mucociliary apparatus was not negatively affected in any of the two epithelial models. Airway mucus crosslinked by mucomodulators is better cleared from an intact airway and normally functioning respiratory system, either due to enhanced interaction with cilia or airflow-dependent mechanisms. Data obtained in this study allow us to assure that we have complied with the fundamental requirement criteria established in the initial phase of developing the concept of mucomodulation: Can we modulate the physical characteristics of the respiratory secretions to reduce aerosolization without affecting normal mucociliary clearance function, or even better improving it?

  1. Validation of the plain chest radiograph for epidemiologic studies of airflow obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, A.W.

    The chest radiographs of 125 industrial workers from rural New South Wales were examined for overinflated lungs, with and without attenuated midzonal vessels. Although the mean values of a comprehensive range of pulmonary function tests in the whole group were within normal limits, the nine subjects whose radiographs showed overinflated lungs and attenuated vessels had significantly impaired pulmonary function in comparison with 85 subjects with normal radiographs. The mean values for these nine subjects, expressed as a percentage of the mean value for subjects with normal radiographs, were: forced expiratory volume in 1 second, 75%; total lung capacity, 107%; residualmore » volume, 143%; transpulmonary pressure at maximum inspiration, 60%; static deflation compliance, 158%; lung volume at transpulmonary pressure 10 cm H/sub 2/O, 132%; transfer factor, 79%; and transfer factor/alveolar volume, 77%. Similar results were obtained by a second observer. Those subjects with overinflation but no vascular attenuation had significantly larger mean values for vital capacity and alveolar volume but no significant difference in total lung capacity or other tests of the mechanical properties of the lungs. Agreement on the presence of a positive sign between the two observers expressed as a percentage of those considered positive by either was 81% for overinflation and 62% for attenuated midzonal vessels. The results indicate that in groups of subjects with normal-average values of pulmonary function, the plain chest radiograph may provide information concerning pulmonary structure that is reflected in tests of function.« less

  2. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities

    PubMed Central

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2015-01-01

    Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal–occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention. PMID:26419418

  3. Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease.

    PubMed

    Raththagala, Madushi; Brewer, M Kathryn; Parker, Matthew W; Sherwood, Amanda R; Wong, Brian K; Hsu, Simon; Bridges, Travis M; Paasch, Bradley C; Hellman, Lance M; Husodo, Satrio; Meekins, David A; Taylor, Adam O; Turner, Benjamin D; Auger, Kyle D; Dukhande, Vikas V; Chakravarthy, Srinivas; Sanz, Pascual; Woods, Virgil L; Li, Sheng; Vander Kooi, Craig W; Gentry, Matthew S

    2015-01-22

    Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol.

    PubMed

    Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael

    2012-02-03

    Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18.

  5. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells.

    PubMed

    Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y

    2013-05-01

    Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.

  6. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  7. Intestinal absorption of water-soluble vitamins in health and disease.

    PubMed

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. © The Authors Journal compilation © 2011 Biochemical Society

  8. Comprehensive Analysis of Genome Rearrangements in Eight Human Malignant Tumor Tissues

    PubMed Central

    Wang, Chong

    2016-01-01

    Carcinogenesis is a complex multifactorial, multistage process, but the precise mechanisms are not well understood. In this study, we performed a genome-wide analysis of the copy number variation (CNV), breakpoint region (BPR) and fragile sites in 2,737 tumor samples from eight tumor entities and in 432 normal samples. CNV detection and BPR identification revealed that BPRs tended to accumulate in specific genomic regions in tumor samples whereas being dispersed genome-wide in the normal samples. Hotspots were observed, at which segments with similar alteration in copy number were overlapped along with BPRs adjacently clustered. Evaluation of BPR occurrence frequency showed that at least one was detected in about and more than 15% of samples for each tumor entity while BPRs were maximal in 12% of the normal samples. 127 of 2,716 tumor-relevant BPRs (termed ‘common BPRs’) exhibited also a noticeable occurrence frequency in the normal samples. Colocalization assessment identified 20,077 CNV-affecting genes and 169 of these being known tumor-related genes. The most noteworthy genes are KIAA0513 important for immunologic, synaptic and apoptotic signal pathways, intergenic non-coding RNA RP11-115C21.2 possibly acting as oncogene or tumor suppressor by changing the structure of chromatin, and ADAM32 likely importance in cancer cell proliferation and progression by ectodomain-shedding of diverse growth factors, and the well-known tumor suppressor gene p53. The BPR distributions indicate that CNV mutations are likely non-random in tumor genomes. The marked recurrence of BPRs at specific regions supports common progression mechanisms in tumors. The presence of hotspots together with common BPRs, despite its small group size, imply a relation between fragile sites and cancer-gene alteration. Our data further suggest that both protein-coding and non-coding genes possessing a range of biological functions might play a causative or functional role in tumor biology. This research enhances our understanding of the mechanisms for tumorigenesis and progression. PMID:27391163

  9. Intestinal absorption of water-soluble vitamins in health and disease

    PubMed Central

    Said, Hamid M.

    2014-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current understanding of the mechanisms involved in intestinal absorption of water-soluble vitamins, their regulation, the cell biology of the carriers involved and the factors that negatively affect these absorptive events. PMID:21749321

  10. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  11. Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function.

    PubMed

    Wang, Vicky Y; Lam, H I; Ennis, Daniel B; Cowan, Brett R; Young, Alistair A; Nash, Martyn P

    2009-10-01

    The majority of patients with clinically diagnosed heart failure have normal systolic pump function and are commonly categorized as suffering from diastolic heart failure. The left ventricle (LV) remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions, which in turn can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element (FE) model was customized to geometric data segmented from in vivo tagged magnetic resonance images (MRI) data and myofibre orientation derived from ex vivo diffusion tensor MRI (DTMRI) of a canine heart using nonlinear finite element fitting techniques. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion in each voxel of a DTMRI directly corresponds to the local myocardial fibre orientation. Due to differences in myocardial geometry between in vivo and ex vivo imaging, myofibre orientations were mapped into the geometric FE model using host mesh fitting (a free form deformation technique). Pressure recordings, temporally synchronized to the tagging data, were used as the loading constraints to simulate the LV deformation during diastole. Simulation of diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. Integrated physiological modelling of this kind will allow more insight into mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction under pathological conditions.

  12. Mechanical model of suture joints with fibrous connective layer

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning

    2018-02-01

    A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.

  13. The desmoplakin–intermediate filament linkage regulates cell mechanics

    PubMed Central

    Broussard, Joshua A.; Yang, Ruiguo; Huang, Changjin; Nathamgari, S. Shiva P.; Beese, Allison M.; Godsel, Lisa M.; Hegazy, Marihan H.; Lee, Sherry; Zhou, Fan; Sniadecki, Nathan J.; Green, Kathleen J.; Espinosa, Horacio D.

    2017-01-01

    The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems. PMID:28495795

  14. Lipid-glass adhesion in giga-sealed patch-clamped membranes.

    PubMed

    Opsahl, L R; Webb, W W

    1994-01-01

    Adhesion between patch-clamped lipid membranes and glass micropipettes is measured by high contrast video imaging of the mechanical response to the application of suction pressure across the patch. The free patch of membrane reversibly alters both its contact angle and radius of curvature on pressure changes. The assumption that an adhesive force between the membrane and the pipette can sustain normal tension up to a maximum Ta at the edge of the free patch accounts for the observed mechanical responses. When the normal component of the pressure-induced membrane tension exceeds Ta membrane at the contact point between the free patch and the lipid-glass interface is pulled away from the pipette wall, resulting in a decreased radius of curvature for the patch and an increased contact angle. Measurements of the membrane radius of curvature as a function of the suction pressure and pipette radius determine line adhesion tensions Ta which range from 0.5 to 4.0 dyn/cm. Similar behavior of patch-clamped cell membranes implies similar adhesion mechanics.

  15. Blue Again: Perturbational Effects of Antidepressants Suggest Monoaminergic Homeostasis in Major Depression

    PubMed Central

    Andrews, Paul W.; Kornstein, Susan G.; Halberstadt, Lisa J.; Gardner, Charles O.; Neale, Michael C.

    2011-01-01

    Some evolutionary researchers have argued that current diagnostic criteria for major depressive disorder (MDD) may not accurately distinguish true instances of disorder from a normal, adaptive stress response. According to disorder advocates, neurochemicals like the monoamine neurotransmitters (serotonin, norepinephrine, and dopamine) are dysregulated in major depression. Monoamines are normally under homeostatic control, so the monoamine disorder hypothesis implies a breakdown in homeostatic mechanisms. In contrast, adaptationist hypotheses propose that homeostatic mechanisms are properly functioning in most patients meeting current criteria for MDD. If the homeostatic mechanisms regulating monoamines are functioning properly in these patients, then oppositional tolerance should develop with prolonged antidepressant medication (ADM) therapy. Oppositional tolerance refers to the forces that develop when a homeostatic mechanism has been subject to prolonged pharmacological perturbation that attempt to bring the system back to equilibrium. When pharmacological intervention is discontinued, the oppositional forces cause monoamine levels to overshoot their equilibrium levels. Since depressive symptoms are under monoaminergic control, this overshoot should cause a resurgence of depressive symptoms that is proportional to the perturbational effect of the ADM. We test this prediction by conducting a meta-analysis of ADM discontinuation studies. We find that the risk of relapse after ADM discontinuation is positively associated with the degree to which ADMs enhance serotonin and norepinephrine in prefrontal cortex, after controlling for covariates. The results are consistent with oppositional tolerance, and provide no evidence of malfunction in the monoaminergic regulatory mechanisms in patients meeting current diagnostic criteria for MDD. We discuss the evolutionary and clinical implications of our findings. PMID:21779273

  16. A mechanical design principle for tissue structure and function in the airway tree.

    PubMed

    LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.

  17. A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree

    PubMed Central

    LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla

    2013-01-01

    With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742

  18. Heart failure: when form fails to follow function.

    PubMed

    Katz, Arnold M; Rolett, Ellis L

    2016-02-01

    Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Approximation of a Brittle Fracture Energy with a Constraint of Non-interpenetration

    NASA Astrophysics Data System (ADS)

    Chambolle, Antonin; Conti, Sergio; Francfort, Gilles A.

    2018-06-01

    Linear fracture mechanics (or at least the initiation part of that theory) can be framed in a variational context as a minimization problem over an SBD type space. The corresponding functional can in turn be approximated in the sense of {Γ}-convergence by a sequence of functionals involving a phase field as well as the displacement field. We show that a similar approximation persists if additionally imposing a non-interpenetration constraint in the minimization, namely that only nonnegative normal jumps should be permissible.

  20. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  1. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Tactile functions after cerebral hemispherectomy.

    PubMed

    Backlund, H; Morin, C; Ptito, A; Bushnell, M C; Olausson, H

    2005-01-01

    Patients that were hemispherectomized due to brain lesions early in life sometimes have remarkably well-preserved tactile functions on their paretic body half. This has been attributed to developmental neuroplasticity. However, the tactile examinations generally have been fairly crude, and subtle deficits may not have been revealed. We investigated monofilament detection and three types of tactile directional sensibility in four hemispherectomized patients and six healthy controls. Patients were examined bilaterally on the face, forearm and lower leg. Normal subjects were examined unilaterally. Following each test of directional sensibility, subjects were asked to rate the intensity of the stimulation. On the nonparetic side, results were almost always in the normal range. On the paretic side, the patients' capacity for monofilament detection was less impaired than their directional sensibility. Despite the disturbed directional sensibility on their paretic side the patients rated tactile sensations evoked by the stimuli, on both their paretic and nonparetic body halves, as more intense than normals. Thus, mechanisms of plasticity seem adequate for tactile detection and intensity coding but not for more complex tactile functions such as directional sensibility. The reason for the high vulnerability of tactile directional sensibility may be that it depends on spatially and temporally precise afferent information processed in a distributed cortical network.

  3. Biological Perspectives of Delayed Fracture Healing

    PubMed Central

    Hankenson, KD; Zmmerman, G; Marcucio, R

    2015-01-01

    Fracture healing is a complex biological process that requires interaction among a series of different cell types. Maintaining the appropriate temporal progression and spatial pattern is essential to achieve robust healing. We can temporally assess the biological phases via gene expression, protein analysis, histologically, or non-invasively using biomarkers as well as imaging techniques. However, determining what leads to normal verses abnormal healing is more challenging. Since the ultimate outcome of the process of fracture healing is to restore the original functions of bone, assessment of fracture healing should include not only monitoring the restoration of structure and mechanical function, but also an evaluation of the restoration of normal bone biology. Currently very few non-invasive measures of the biology of healing exist; however, recent studies that have correlated non-invasive measures with fracture healing outcome in humans have shown that serum TGFbeta1 levels appear to be an indicator of healing vs non-healing. In the future, developing additional serum measures to assess biological healing will improve the reliability and permit us to assess stages of fracture healing. Additionally, new functional imaging technologies could prove useful for better understanding both normal fracture healing and predicting dysfunctional healing in human patients. PMID:24857030

  4. Influence of fluids on the abrasion of silicon by diamond

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    Silicon wafers ((100)-p-type) were abraded at room temperature in acetone, absolute ethanol and water by a pyramid diamond and the resulting groove depth was measured as a function of normal force on the diamond and the absorbed fluids, while all other experimental conditions were held constant. The groove depth rates are in the ratio of 1:2:3 for water, absolute ethanol, and acetone, respectively, for a constant normal force. The groove depth rate is lower when the normal force is decreased. The silicon abraded in the presence of water was chipped as expected for a classical brittle material while the surfaces abraded in the other two fluids showed ductile ploughing as the main mechanism for silicon removal.

  5. Functional buckling behavior of silicone rubber shells for biomedical use.

    PubMed

    van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J

    2013-12-01

    The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Urban STEM Education: A Unique Summer Experience

    ERIC Educational Resources Information Center

    White, David W.

    2013-01-01

    In April of 2010, the author was approached to write a proposal that would provide grant money for a summer program to take place at the Florida Agricultural and Mechanical University's Developmental Research School (FAMU DRS). The FAMU DRS functions as a normal K-12 school; however, it is administered by the Florida A&M University College of…

  7. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?

    PubMed Central

    Saunders, Norman R.; Habgood, Mark D.; Møllgård, Kjeld; Dziegielewska, Katarzyna M.

    2016-01-01

    Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary. PMID:26998242

  8. Suicide Inhibition of Cytochrome P450 Enzymes by Cyclopropylamines via a Ring-opening Mechanism: Proton-Coupled Electron Transfer Makes a Difference

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Li, Xiao-Xi; Liu, Yufang; Wang, Yong

    2017-01-01

    N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening mechanism besides acting as a role of normal substrates. Understanding the mechanism of such partial inactivation is vital to the clinical drug design. Thus, density functional theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical results demonstrated that, in the metabolic pathway, besides the normal carbinolamine, an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process, in which the competition between rotation of the H-abstracted substrate radical and the rotation of hydroxyl group of the protonated Cpd II moiety plays a significant role in product branch; In the inactivation pathway, the well-noted single electron transfer (SET) mechanism-involved process was invalidated for its high energy barrier, a proton-coupled electron transfer (PCET(ET)) mechanism plays a role. Our results are consistent with other related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed new features. The revealed mechanisms will play a positive role in relative drug design.

  9. Gradual Crossover from Subdiffusion to Normal Diffusion: A Many-Body Effect in Protein Surface Water

    NASA Astrophysics Data System (ADS)

    Tan, Pan; Liang, Yihao; Xu, Qin; Mamontov, Eugene; Li, Jinglai; Xing, Xiangjun; Hong, Liang

    2018-06-01

    Dynamics of hydration water is essential for the function of biomacromolecules. Previous studies have demonstrated that water molecules exhibit subdiffusion on the surface of biomacromolecules; yet the microscopic mechanism remains vague. Here, by performing neutron scattering, molecular dynamics simulations, and analytic modeling on hydrated perdeuterated protein powders, we found water molecules jump randomly between trapping sites on protein surfaces, whose waiting times obey a broad distribution, resulting in subdiffusion. Moreover, the subdiffusive exponent gradually increases with observation time towards normal diffusion due to a many-body volume-exclusion effect.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hechang; Petrovic, C.

    The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).

  11. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.

    PubMed

    Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea

    2017-11-01

    Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency ( f c ) and amplitude. Both vessel populations displayed a sigmoidal relationship between f c and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the f c change of hindpaw vessels was 2.3°C·cycles -1 ·min -1 , a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles -1 ·min -1 , suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on f c data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition. NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible functional misbehavior should lymphatic vessels be exposed to a chronically different temperature. Copyright © 2017 the American Physiological Society.

  12. Renal Autoregulation: New Perspectives Regarding the Protective and Regulatory Roles of the Underlying Mechanisms

    PubMed Central

    Loutzenhiser, Rodger; Griffin, Karen; Williamson, Geoffrey; Bidani, Anil

    2006-01-01

    When the kidney is subjected to acute increases in blood pressure (BP), renal blood flow (RBF) and glomerular filtration rate (GFR) are observed to remain relatively constant. Two mechanisms, tubuloglomerular feedback (TGF) and the myogenic response, are thought to act in concert to achieve a precise moment-by-moment regulation of GFR and distal salt delivery. The current view is that this mechanism insulates renal excretory function from fluctuations in BP. Indeed, the concept that renal autoregulation is necessary for normal renal function and volume homeostasis has long been a cornerstone of renal physiology. This article presents a very different view, at least in regard to the myogenic component of this response. We suggest that its primary purpose is to protect the kidney against the damaging effects of hypertension. The arguments advanced take into consideration the unique properties of the afferent arteriolar myogenic response that allow it to protect against the oscillating systolic pressure, and the accruing evidence that when this response is impaired the primary consequence is not a disturbed volume homeostasis, but rather an increased susceptibility to hypertensive injury. It is suggested that redundant and compensatory mechanisms are capable of achieving volume regulation despite considerable fluctuations in distal delivery and the assumed moment-by-moment regulation of renal hemodynamics is questioned. Evidence is presented suggesting that additional mechanisms may exist to maintain ambient levels of RBF and GFR within normal range despite chronic alterations in BP and severely impaired acute responses to pressure. Finally the implications of this new perspective on the divergent roles of the renal myogenic response to pressure versus the TGF response to changes in distal delivery are considered and it is proposed that, in addition to TGF-induced vasoconstrictor responses, vasodepressor responses to reduced distal delivery may play a more critical role in modulating afferent arteriolar reactivity, in order to integrate the regulatory and protective functions of the renal microvasculature. PMID:16603656

  13. Comparison of interphase models for a crack in fiber reinforced composite

    NASA Astrophysics Data System (ADS)

    Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.

    1992-07-01

    The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.

  14. Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma.

    PubMed

    Lehmann, Kjong-Van; Kahles, André; Kandoth, Cyriac; Lee, William; Schultz, Nikolaus; Stegle, Oliver; Rätsch, Gunnar

    2015-01-01

    We present a genome-wide analysis of splicing patterns of 282 kidney renal clear cell carcinoma patients in which we integrate data from whole-exome sequencing of tumor and normal samples, RNA-seq and copy number variation. We proposed a scoring mechanism to compare splicing patterns in tumor samples to normal samples in order to rank and detect tumor-specific isoforms that have a potential for new biomarkers. We identified a subset of genes that show introns only observable in tumor but not in normal samples, ENCODE and GEUVADIS samples. In order to improve our understanding of the underlying genetic mechanisms of splicing variation we performed a large-scale association analysis to find links between somatic or germline variants with alternative splicing events. We identified 915 cis- and trans-splicing quantitative trait loci (sQTL) associated with changes in splicing patterns. Some of these sQTL have previously been associated with being susceptibility loci for cancer and other diseases. Our analysis also allowed us to identify the function of several COSMIC variants showing significant association with changes in alternative splicing. This demonstrates the potential significance of variants affecting alternative splicing events and yields insights into the mechanisms related to an array of disease phenotypes.

  15. Sleep and Human Aging

    PubMed Central

    Mander, Bryce A.; Winer, Joseph R.; Walker, Matthew P.

    2017-01-01

    Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need? PMID:28384471

  16. Sleep and Human Aging.

    PubMed

    Mander, Bryce A; Winer, Joseph R; Walker, Matthew P

    2017-04-05

    Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need? Copyright © 2017. Published by Elsevier Inc.

  17. Pharmacology of Antisense Drugs.

    PubMed

    Bennett, C Frank; Baker, Brenda F; Pham, Nguyen; Swayze, Eric; Geary, Richard S

    2017-01-06

    Recent studies have led to a greater appreciation of the diverse roles RNAs play in maintaining normal cellular function and how they contribute to disease pathology, broadening the number of potential therapeutic targets. Antisense oligonucleotides are the most direct means to target RNA in a selective manner and have become an established platform technology for drug discovery. There are multiple molecular mechanisms by which antisense oligonucleotides can be used to modulate RNAs in cells, including promoting the degradation of the targeted RNA or modulating RNA function without degradation. Antisense drugs utilizing various antisense mechanisms are demonstrating therapeutic potential for the treatment of a broad variety of diseases. This review focuses on some of the advances that have taken place in translating antisense technology from the bench to the clinic.

  18. Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging.

    PubMed

    Sturla, Francesco; Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto

    2017-04-01

    Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow's disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment.

  19. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  20. Failure mechanisms of uni-ply composite plates with a circular hole under static compressive loading

    NASA Technical Reports Server (NTRS)

    Khamseh, A. R.; Waas, A. M.

    1992-01-01

    The objective of the study was to identify and study the failure mechanisms associated with compressive-loaded uniply graphite/epoxy square plates with a central circular hole. It is found that the type of compressive failure depends on the hole size. For large holes with the diameter/width ratio exceeding 0.062, fiber buckling/kinking initiated at the hole is found to be the dominant failure mechanism. In plates with smaller hole sizes, failure initiates away from the hole edge or complete global failure occurs. Critical buckle wavelengths at failure are presented as a function of the normalized hole diameter.

  1. Postinjury biomechanics of Achilles tendon vary by sex and hormone status

    PubMed Central

    Fryhofer, George W.; Freedman, Benjamin R.; Hillin, Cody D.; Salka, Nabeel S.; Pardes, Adam M.; Weiss, Stephanie N.; Farber, Daniel C.

    2016-01-01

    Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing. PMID:27633741

  2. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series)

    PubMed Central

    Kropski, Jonathan A.; Richmond, Bradley W.; Gaskill, Christa F.; Foronjy, Robert F.

    2017-01-01

    Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis. PMID:29040010

  3. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases?

    PubMed

    Oppermann, Udo

    2013-04-03

    In its widest sense, the term epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. These mechanisms comprise DNA and chromatin modifications and their associated systems, as well as the noncoding RNA machinery. The epigenetic apparatus is essential for controlling normal development and homeostasis, and also provides a means for the organism to integrate and react upon environmental cues. A multitude of functional studies as well as systematic genome-wide mapping of epigenetic marks and chromatin modifiers reveal the importance of epigenomic mechanisms in human pathologies, including inflammatory conditions and musculoskeletal disease such as rheumatoid arthritis. Collectively, these studies pave the way to identify possible novel therapeutic intervention points and to investigate the utility of drugs that interfere with epigenetic signalling not only in cancer, but possibly also in inflammatory and autoimmune diseases.

  4. Why is epigenetics important in understanding the pathogenesis of inflammatory musculoskeletal diseases?

    PubMed Central

    2013-01-01

    In its widest sense, the term epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. These mechanisms comprise DNA and chromatin modifications and their associated systems, as well as the noncoding RNA machinery. The epigenetic apparatus is essential for controlling normal development and homeostasis, and also provides a means for the organism to integrate and react upon environmental cues. A multitude of functional studies as well as systematic genome-wide mapping of epigenetic marks and chromatin modifiers reveal the importance of epigenomic mechanisms in human pathologies, including inflammatory conditions and musculoskeletal disease such as rheumatoid arthritis. Collectively, these studies pave the way to identify possible novel therapeutic intervention points and to investigate the utility of drugs that interfere with epigenetic signalling not only in cancer, but possibly also in inflammatory and autoimmune diseases. PMID:23566317

  5. Intercellular Ca2+ Waves: Mechanisms and Function

    PubMed Central

    Sanderson, Michael J.

    2012-01-01

    Intercellular calcium (Ca2+) waves (ICWs) represent the propagation of increases in intracellular Ca2+ through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca2+ from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs. PMID:22811430

  6. [Experimental research on the effective mechanism of jianweiling].

    PubMed

    Li, Y Y

    1992-01-01

    The purpose of this study is to find out the effective mechanism of Jianweiling (JWL) in treating some gastrointestinal (GI) diseases. The functions of GI movement, bile and pancreatic secretion and intestinal absorption were measured after giving JWL to the experimental rats. The results showed that JWL could adjust GI movement once it was in abnormal conditions. When the gastrointestine was in paralysis under the influence of abdominal operation, JWL could make GI myoelectric activity return to normal; and JWL could relax it when the gastrointestine was in a cramp state resulted from Neostigmini Methylsulfurici injection. In addition, the pancreatic secretion, the amylase activity in pancreatic juice and the intestinal absorption for D-xylose in JWL group were obviously better than those of the control groups. These results suggested that the effective mechanism of JWL on some GI diseases can be realized by adjusting and promoting GI functions in various ways.

  7. Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate

    PubMed Central

    Falcone, Mary; Cao, Wen; Bernardo, Leah; Tyndale, Rachel F; Loughead, James; Lerman, Caryn

    2017-01-01

    Background Inherited differences in the rate of metabolism of nicotine, the addictive chemical in tobacco, affect smoking behavior and quitting success. The nicotine metabolite ratio (NMR, 3′-hydroxycotinine/cotinine) is a reliable measure of nicotine clearance, and a well validated predictive biomarker of response to pharmacotherapy. To clarify the mechanisms underlying these associations, we investigated the neural responses to smoking cues in normal and slow nicotine metabolizers. Methods Sixty-nine treatment-seeking smokers (30 slow, 39 normal metabolizers) completed a visual cue reactivity task during functional magnetic resonance imaging on two separate occasions: once during smoking satiety and once following 24 hours of smoking abstinence. Results In whole brain analysis, normal (compared to slow) metabolizers exhibited heightened abstinence-induced neural responses to smoking cues in the left caudate, left inferior frontal gyrus, and left frontal pole. These effects were even more pronounced when extreme groups of slow and normal metabolizers were examined. Greater activation in the left caudate and left frontal pole was associated with abstinence-induced subjective cravings to smoke. Conclusion Inherited differences in rate of nicotine elimination may drive neural responses to smoking cues during early abstinence, providing a plausible mechanism to explain differences in smoking behaviors and response to cessation treatment. Normal metabolizers may benefit from adjunctive behavioral smoking cessation treatments, such as cue exposure therapy. PMID:26805583

  8. Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate.

    PubMed

    Falcone, Mary; Cao, Wen; Bernardo, Leah; Tyndale, Rachel F; Loughead, James; Lerman, Caryn

    2016-08-01

    Inherited differences in the rate of metabolism of nicotine, the addictive chemical in tobacco, affect smoking behavior and quitting success. The nicotine metabolite ratio (3'-hydroxycotinine/cotinine) is a reliable measure of nicotine clearance and a well-validated predictive biomarker of response to pharmacotherapy. To clarify the mechanisms underlying these associations, we investigated the neural responses to smoking cues in normal and slow nicotine metabolizers. Treatment-seeking smokers (N = 69; 30 slow metabolizers and 39 normal metabolizers) completed a visual cue reactivity task during functional magnetic resonance imaging on two separate occasions: once during smoking satiety and once after 24 hours of smoking abstinence. In whole-brain analysis, normal (compared with slow) metabolizers exhibited heightened abstinence-induced neural responses to smoking cues in the left caudate, left inferior frontal gyrus, and left frontal pole. These effects were more pronounced when extreme groups of slow and normal metabolizers were examined. Greater activation in the left caudate and left frontal pole was associated with abstinence-induced subjective cravings to smoke. Inherited differences in rate of nicotine elimination may drive neural responses to smoking cues during early abstinence, providing a plausible mechanism to explain differences in smoking behaviors and response to cessation treatment. Normal metabolizers may benefit from adjunctive behavioral smoking cessation treatments, such as cue exposure therapy. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Oxidative phosphorylation is essential for felid sperm function, but is substantially lower in cheetah (Acinonyx jubatus) compared to domestic cat (Felis catus) ejaculate.

    PubMed

    Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, S P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E

    2011-09-01

    Compared with the normospermic domestic cat, sperm metabolic function is compromised in the teratospermic cat and cheetah, but the pathway(s) involved in this deficiency are unknown. Glycolysis is essential for sperm motility, yet it appears to function normally in spermatozoa of either species regardless of structural morphology. We conducted a comparative study to further understand the mechanisms of energy production in felid spermatozoa, with the hypothesis that oxidative phosphorylation is required for normal sperm function and is impaired in teratospermic ejaculates. Electroejaculates from both species were stained with MitoTracker to quantify mitochondrial membrane potential (MMP) or were incubated to assess changes in sperm function (motility, acrosomal integrity, and lactate production) after mitochondrial inhibition with myxothiazol. Sperm midpiece dimensions also were quantified. Sperm mitochondrial fluorescence (directly proportional to MMP) was ~95% lower in the cheetah compared with the normospermic and teratospermic cat, despite the cheetah having a 10% longer midpiece. In both species, MMP was increased 5-fold in spermatozoa with retained cytoplasm compared with structurally normal cells. Inhibition of oxidative phosphorylation impaired sperm function in both species, but a 100-fold higher inhibitor concentration was required in the cat compared with the cheetah. Collectively, findings revealed that oxidative phosphorylation was required for sperm function in the domestic cat and cheetah. This pathway of energy production appeared markedly less active in the cheetah, indicating a species-specific vulnerability to mitochondrial dysfunction. The unexpected, cross-species linkage between retained cytoplasmic droplets and elevated MMP may reflect increased concentrations of metabolic enzymes or substrates in these structures.

  11. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  12. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  13. Cigarette smoke–induced induction of antioxidant enzyme activities in airway leukocytes is absent in active smokers with COPD

    PubMed Central

    Dove, Rosamund E.; Leong-Smith, Pheneatia; Roos-Engstrand, Ester; Pourazar, Jamshid; Shah, Mittal; Behndig, Annelie F.; Mudway, Ian S.; Blomberg, Anders

    2015-01-01

    Background Oxidative injury to the airway has been proposed as an important underlying mechanism in the pathogenesis of chronic obstructive pulmonary disease (COPD). As the extent of oxidant-mediated damage is dependent on the endogenous antioxidant defences within the airways, we examined whether COPD was associated with deficiencies in the antioxidant network within the respiratory tract lining fluids (RTLFs) and resident airway leukocytes. We hypothesised that COPD would be associated with both basal depression of antioxidant defences and impaired adaptive antioxidant responses to cigarette smoke. Methods Low molecular weight and enzymatic antioxidants together with metal-handling proteins were quantified in bronchoalveolar lavage fluid and airway leukocytes, derived from current (n=9) and ex-smoking COPD patients (n=15), as well as from smokers with normal lung function (n=16) and healthy never smokers (n=13). Results Current cigarette smoking was associated with an increase in ascorbate and glutathione within peripheral RTLFs in both smokers with normal lung function compared with healthy never smokers and in COPD smokers compared with COPD ex-smokers. In contrast, intra-cellular antioxidant enzyme activities (glutathione peroxidase, glutathione reductase, and catalase) were only up-regulated in smokers with normal lung function compared with healthy never smokers and not in actively smoking COPD patients relative to COPD ex-smokers. Conclusions We found no evidence of impaired basal antioxidant defences, within either the RTLFs or airway leukocytes in stable ex-smoking COPD patients compared with healthy never smoking controls. Current cigarette smoking induced an up-regulation of low molecular weight antioxidants in the RTLFs of both control subjects with normal lung function and patients with COPD. Importantly, the present data demonstrated a cigarette smoke–induced increase in intra-cellular antioxidant enzyme activities only within the smokers with normal lung function, implying that patients with COPD who continue to smoke will experience enhanced oxidative stress, prompting disease progression. PMID:26557249

  14. Study of vitamin A distribution in rats by laser induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Akhmeteli, K. T.; Ekaladze, E. N.; Jaliashvli, Z. V.; Medoidze, T. D.; Melikishvili, Z. G.; Merkviladze, N. Z.; Papava, M. B.; Tushurashvili, P. R.

    2008-06-01

    We applied the laser induced fluorescence spectroscopy (LIFS) to investigate intestinal and liver tissues of normal male Wistar rats fed with vitamin A. The special procedure based on intensity spectral functions fitting was developed for the recognition of vitamin A in different tissues. Based on this procedure it is demonstrated that the LIFS can be used to monitor vitamin A deposition and distribution in the body of rat, which is essential for understanding the mechanism of formation of the vitamin A rich droplets, as the mechanism of vitamin A mobilization.

  15. The Role of Striatal-Enriched Protein Tyrosine Phosphatase (STEP) in Cognition

    PubMed Central

    Fitzpatrick, Christopher James; Lombroso, Paul J.

    2011-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) has recently been implicated in several neuropsychiatric disorders with significant cognitive impairments, including Alzheimer’s disease, schizophrenia, and fragile X syndrome. A model has emerged by which STEP normally opposes the development of synaptic strengthening and that disruption in STEP activity leads to aberrant synaptic function. We review the mechanisms by which STEP contributes to the etiology of these and other neuropsychiatric disorders. These findings suggest that disruptions in STEP activity may be a common mechanism for cognitive impairments in diverse illnesses. PMID:21863137

  16. Childhood visual impairment: normal and abnormal visual function in the context of developmental disability.

    PubMed

    Nyong'o, Omondi L; Del Monte, Monte A

    2008-12-01

    Abnormal or failed development of vision in children may give rise to varying degrees of visual impairment and disability. Disease and organ-specific mechanisms by which visual impairments arise are presented. The presentation of these mechanisms, along with an explanation of established pathologic processes and correlative up-to-date clinical and social research in the field of pediatrics, ophthalmology, and rehabilitation medicine are discussed. The goal of this article is to enhance the practitioner's recognition and care for children with developmental disability associated with visual impairment.

  17. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.

  18. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2013-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  19. Protective effect of cilazapril on the cerebral circulation.

    PubMed

    Véniant, M; Clozel, J P; Kuhn, H; Clozel, M

    1992-01-01

    The goal of an antihypertensive treatment is to prevent "end-organ" damage. Cerebral vascular complications are among the most important because they are life threatening and can occur even at an early stage of the disease. Recently, it has been shown that cilazapril can decrease the mortality of stroke-prone rats, suggesting a decrease in the incidence of strokes, which occur spontaneously in these animals. The present article reviews the different functional and morphological changes that may explain the cerebral protective effects of cilazapril, such as the normalization of cerebral vascular reserve, decrease in the media, increase in the external diameter, and normalization of the mechanics and endothelial function of cerebral arterioles. In addition, the inhibition by cilazapril of injury-induced proliferation of smooth muscle cells and the infiltration of the endothelium by macrophages could prevent the development of atherosclerosis.

  20. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-04-30

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms.

  1. Sleep and Development in Genetically Tractable Model Organisms

    PubMed Central

    Kayser, Matthew S.; Biron, David

    2016-01-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  2. Muscle function in Turner syndrome: normal force but decreased power.

    PubMed

    Soucek, Ondrej; Lebl, Jan; Matyskova, Jana; Snajderova, Marta; Kolouskova, Stanislava; Pruhova, Stepanka; Hlavka, Zdenek; Sumnik, Zdenek

    2015-02-01

    Although hypogonadism and SHOX gene haploinsufficiency likely cause the decreased bone mineral density and increased fracture rate associated with Turner syndrome (TS), the exact mechanism remains unclear. We tested the hypothesis that muscle dysfunction in patients with TS contributes to increased fracture risk. The secondary aim was to determine whether menarche, hormone therapy duration, positive fracture history and genotype influence muscle function parameters in patients with TS. A cross-sectional study was conducted in a single university hospital referral centre between March 2012 and October 2013. Sixty patients with TS (mean age of 13·7 ± 4·5 years) were compared to the control group of 432 healthy girls. A Leonardo Mechanograph(®) Ground Reaction Force Platform was used to assess muscle force (Fmax ) by the multiple one-legged hopping test and muscle power (Pmax ) by the single two-legged jump test. While the Fmax was normal (mean weight-specific Z-score of 0·11 ± 0·77, P = 0·27), the Pmax was decreased in patients with TS (Z-score of -0·93 ± 1·5, P < 0·001) compared with healthy controls. The muscle function parameters were not significantly influenced by menarcheal stage, hormone therapy duration, fracture history or genotype (linear regression adjusted for age, weight and height; P > 0·05 for all). Fmax , a principal determinant of bone strength, is normal in patients with TS. Previously described changes in bone quality and structure in TS are thus not likely related to inadequate mechanical loading but rather represent a primary bone deficit. A decreased Pmax indicates impaired muscle coordination in patients with TS. © 2014 John Wiley & Sons Ltd.

  3. TRPV2 KNOCKOUT MICE ARE SUSCEPTIBLE TO PERINATAL LETHALITY BUT DISPLAY NORMAL THERMAL AND MECHANICAL NOCICEPTION

    PubMed Central

    Park, Una; Vastani, Nisha; Guan, Yun; Raja, Srinivasa N.; Koltzenburg, Martin; Caterina, Michael J.

    2011-01-01

    TRPV2 is a nonselective cation channel expressed prominently in medium- to large-diameter sensory neurons that can be activated by extreme heat (>52°C). These features suggest that TRPV2 might be a transducer of noxious heat in vivo. TRPV2 can also be activated by hypoosmolarity or cell stretch, suggesting potential roles in mechanotransduction. To address the physiological functions of TRPV2 in somatosensation, we generated TRPV2 knockout mice and examined their behavioral and electrophysiological responses to heat and mechanical stimuli. TRPV2 knockout mice showed reduced embryonic weight and perinatal viability. As adults, surviving knockout mice also exhibited a slightly reduced body weight. TRPV2 knockout mice showed normal behavioral responses to noxious heat over a broad range of temperatures and normal responses to punctate mechanical stimuli, both in the basal state and under hyperalgesic conditions such as peripheral inflammation and L5 spinal nerve ligation. Moreover, behavioral assays of TRPV1/TRPV2 double knockout mice or of TRPV2 knockout mice treated with resiniferatoxin to desensitize TRPV1-expressing afferents revealed no thermosensory consequences of TRPV2 absence. In line with behavioral findings, electrophysiological recordings from skin afferents showed that C-fiber responses to heat and C- and Aδ-fiber responses to noxious mechanical stimuli were unimpaired in the absence of TRPV2. The prevalence of thermosensitive Aδ-fibers was too low to permit comparison between genotypes. Thus, TRPV2 is important for perinatal viability but is not essential for heat or mechanical nociception or hypersensitivity in the adult mouse. PMID:21832173

  4. Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.; Jeka, J.; Horak, F.; Krebs, D.; Rabin, E.

    1999-01-01

    Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (approximately 100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.

  5. Diminished brain resilience syndrome: A modern day neurological pathology of increased susceptibility to mild brain trauma, concussion, and downstream neurodegeneration.

    PubMed

    Morley, Wendy A; Seneff, Stephanie

    2014-01-01

    The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.

  6. Energy metabolism and inflammation in brain aging and Alzheimer's disease.

    PubMed

    Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique

    2016-11-01

    The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse.

    PubMed

    Wang, Sumei; Lü, Dongyuan; Zhang, Zhenyu; Jia, Xingyuan; Yang, Lei

    2018-01-01

    To determine the effect of mechanical stretching load and the efficacy of postmenopausal estrogen therapy (ET) on pelvic organ prolapse (POP), vaginal fibroblasts isolated from postmenopausal women with or without POP were subjected to 0.1-Hz uniaxial cyclic mechanical stretching (CS) with 10% elongation and 10-8 M 17-β-estradiol (E2) treatment. We investigated the morphological characteristics of extracellular polymers using scanning electron microscopy (SEM) and monitored the mRNA expression of type I collagen (COL I) and type III collagen (COL III) as well as the small leucine-rich proteoglycan (SLRP) family members decorin (DCN), biglycan (BGN), fibromodulin (FMO), and lumican (LUM), using real-time quantitative polymerase chain reaction (RT-PCR). Using SEM, certain viscoelastic polymers were found to be randomly distributed among fibroblasts, which for normal fibroblasts formed clusters of plum flower-like patterns under static-culture conditions and resembled stretched strips when stretched in culture, whereas polymers among POP fibroblasts resembled stretched strips under static-cultured conditions and presented broken networks when stretched in culture. RT-PCR revealed that COL I, DCN, BGN, FMO, and LUM mRNA expression was significantly higher in POP than in normal fibroblasts under static-culture condition. Following CS, COL I and BGN mRNA expression was significantly up-regulated in normal fibroblasts, and DCN and FMO mRNA expression was down-regulated in POP fibroblasts. Following concomitant CS and E2 treatment, significantly elevated COL I and DCN mRNA expression was observed in normal fibroblasts, and significantly elevated COL I and BGN mRNA expression was observed in POP fibroblasts. COL III mRNA expression was not significantly different between the POP and normal group, and CS did not significantly affect expression in either group, though COL III was down-regulated in normal fibroblasts concomitantly treated with E2 and CS. We conclude that the morphological distribution of extracellular polymers in POP fibroblasts exhibited higher sensitivity and lower tolerance to stretching loads than do normal fibroblasts. These mechanical properties were further reflected in the transcription of COL I. Defects in the compensatory function of BGN for DCN and LUM for FMO exist in POP fibroblasts, which further affect the structure and function of COL I in response to stretching load, ultimately resulting in abnormal reconstruction of pelvic supportive connective tissues and the occurrence of POP. ET can maintain stretching-induced elevations in COL I and DCN transcription in healthy women and improve stretching-induced COL I, DCN, BGN, and FMO transcriptional changes in POP women to prevent and improve POP. Only down-regulated COL III transcription was observed upon concomitant CS and E2 treatment in normal fibroblasts, which suggests that the tensile strength, not the elasticity, of the supportive connective tissues is damaged in POP and that the higher tensile strength induced by ET in healthy fibroblasts prevents POP. These findings confirm the role of higher sensitivity and lower tolerance to mechanical stretching in the pathogenesis of POP and further provide evidence supporting the use of ET to prevent and inhibit POP in postmenopausal women.

  8. Effect of steroid replacement on thyroid function and thyroid autoimmunity in Addison's disease with primary hypothyroidism

    PubMed Central

    Sahoo, Jaya Prakash; Selviambigapathy, Jayakumar; Kamalanathan, Sadishkumar; Nagarajan, K.; Vivekanandan, Muthupillai

    2016-01-01

    Background: Steroid replacement without thyroxine supplementation normalizes thyroid function test (TFT) in some but not all Addison's disease patients with primary hypothyroidism. Both autoimmune and nonautoimmune mechanisms contribute to this improvement in TFT. However, the documentation of the change in thyroid autoimmunity after cortisol replacement is very limited in the literature. The aim of this study was to determine the effect of steroid replacement on TFT and anti-thyroid peroxidase antibody (anti-TPO-Ab) titer in Addison's disease with primary hypothyroidism. Materials and Methods: This observational study was conducted in a tertiary care center in South India. Six Addison's disease patients with primary hypothyroidism, who were only on steroid replacement, were included in the study. Low serum cortisol (<83 nmol/L) with high plasma adrenocorticotropic hormone (>22 pmol/L) and/or hyperpigmentation of skin/mucous membranes was considered as the diagnostic criteria for Addison's disease. Primary hypothyroidism (both overt and subclinical) was defined as high thyroid stimulating hormone (TSH) with/without low free thyroxine (fT4). TFT and anti-TPO-Ab were performed before and after steroid replacement in all of them. Results: Poststeroid replacement, there was a normalization of TSH in all but one subjects. In overt hypothyroidism patients, fT4 also normalized. The improvement in TFT was not associated with decreasing titer of the anti-TPO-Ab in all six patients. However, there was a significant difference in TSH after steroid replacement compared to the baseline status. Conclusions: The concept of normalization of primary hypothyroidism with cortisol replacement in patients with Addison's disease should be recognized to avoid iatrogenic thyrotoxicosis caused by thyroxine replacement. Both autoimmune and nonautoimmune mechanisms contribute to these alterations. PMID:27042409

  9. Effect of steroid replacement on thyroid function and thyroid autoimmunity in Addison's disease with primary hypothyroidism.

    PubMed

    Sahoo, Jaya Prakash; Selviambigapathy, Jayakumar; Kamalanathan, Sadishkumar; Nagarajan, K; Vivekanandan, Muthupillai

    2016-01-01

    Steroid replacement without thyroxine supplementation normalizes thyroid function test (TFT) in some but not all Addison's disease patients with primary hypothyroidism. Both autoimmune and nonautoimmune mechanisms contribute to this improvement in TFT. However, the documentation of the change in thyroid autoimmunity after cortisol replacement is very limited in the literature. The aim of this study was to determine the effect of steroid replacement on TFT and anti-thyroid peroxidase antibody (anti-TPO-Ab) titer in Addison's disease with primary hypothyroidism. This observational study was conducted in a tertiary care center in South India. Six Addison's disease patients with primary hypothyroidism, who were only on steroid replacement, were included in the study. Low serum cortisol (<83 nmol/L) with high plasma adrenocorticotropic hormone (>22 pmol/L) and/or hyperpigmentation of skin/mucous membranes was considered as the diagnostic criteria for Addison's disease. Primary hypothyroidism (both overt and subclinical) was defined as high thyroid stimulating hormone (TSH) with/without low free thyroxine (fT4). TFT and anti-TPO-Ab were performed before and after steroid replacement in all of them. Poststeroid replacement, there was a normalization of TSH in all but one subjects. In overt hypothyroidism patients, fT4 also normalized. The improvement in TFT was not associated with decreasing titer of the anti-TPO-Ab in all six patients. However, there was a significant difference in TSH after steroid replacement compared to the baseline status. The concept of normalization of primary hypothyroidism with cortisol replacement in patients with Addison's disease should be recognized to avoid iatrogenic thyrotoxicosis caused by thyroxine replacement. Both autoimmune and nonautoimmune mechanisms contribute to these alterations.

  10. The effect of heart failure and left ventricular assist device treatment on right ventricular mechanics: a computational study.

    PubMed

    Park, Jun I K; Heikhmakhtiar, Aulia Khamas; Kim, Chang Hyun; Kim, Yoo Seok; Choi, Seong Wook; Song, Kwang Soup; Lim, Ki Moo

    2018-05-22

    Although it is important to analyze the hemodynamic factors related to the right ventricle (RV) after left ventricular assist device (LVAD) implantation, previous studies have focused only on the alteration of the ventricular shape and lack quantitative analysis of the various hemodynamic parameters. Therefore, we quantitatively analyzed various hemodynamic parameters related to the RV under normal, heart failure (HF), and HF incorporated with continuous flow LVAD therapy by using a computational model. In this study, we combined a three-dimensional finite element electromechanical model of ventricles, which is based on human ventricular morphology captured by magnetic resonance imaging (MRI) with a lumped model of the circulatory system and continuous flow LVAD function in order to construct an integrated model of an LVAD implanted-cardiovascular system. To induce systolic dysfunction, the magnitude of the calcium transient function under HF condition was reduced to 70% of the normal value, and the time constant was reduced by 30% of the normal value. Under the HF condition, the left ventricular end systolic pressure decreased, the left ventricular end diastolic pressure increased, and the pressure in the right atrium (RA), RV, and pulmonary artery (PA) increased compared with the normal condition. The LVAD therapy decreased the end-systolic pressure of the LV by 41%, RA by 29%, RV by 53%, and PA by 71%, but increased the right ventricular ejection fraction by 52% and cardiac output by 40%, while the stroke work was reduced by 67% compared with the HF condition without LVAD. The end-systolic ventricular tension and strain decreased with the LVAD treatment. LVAD enhances CO and mechanical unloading of the LV as well as those of the RV and prevents pulmonary hypertension which can be induced by HF.

  11. Thyroid Function in Human Obesity: Underlying Mechanisms.

    PubMed

    Fontenelle, L C; Feitosa, M M; Severo, J S; Freitas, T E C; Morais, J B S; Torres-Leal, F L; Henriques, G S; do Nascimento Marreiro, D

    2016-12-01

    Obesity is associated with several metabolic and endocrine disorders; and changes in plasma concentrations, secretion patterns, and clearance of various hormones are observed in obese patients. In this context, recent research has shown that overweight can influence the function of the thyroid gland, usually leading to increased thyrotropin concentrations and changes in the ratio between the hormones triiodothyronine and thyroxine, though within the normal range. The etiology of these changes is still unclear; however, several mechanisms have been proposed including the adaptive process to increase energy expenditure, hyperleptinemia, changes in the activity of deiodinases, the presence of thyroid hormones resistance, chronic low-grade inflammation, and insulin resistance. Although the clinical implications have not been clarified, studies suggest that these changes in the thyroid function of obese individuals may contribute to the worsening of metabolic complications and the development of diseases in the thyroid gland. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.

    PubMed

    Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J

    2016-06-01

    The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.

  13. Limits on rock strength under high confinement

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Schulson, Erland M.

    2007-06-01

    Understanding of deep earthquake source mechanisms requires knowledge of failure processes active under high confinement. Under low confinement the compressive strength of rock is well known to be limited by frictional sliding along stress-concentrating flaws. Under higher confinement strength is usually assumed limited by power-law creep associated with the movement of dislocations. In a review of existing experimental data, we find that when the confinement is high enough to suppress frictional sliding, rock strength increases as a power-law function only up to a critical normalized strain rate. Within the regime where frictional sliding is suppressed and the normalized strain rate is below the critical rate, both globally distributed ductile flow and localized brittle-like failure are observed. When frictional sliding is suppressed and the normalized strain rate is above the critical rate, failure is always localized in a brittle-like manner at a stress that is independent of the degree of confinement. Within the high-confinement, high-strain rate regime, the similarity in normalized failure strengths across a variety of rock types and minerals precludes both transformational faulting and dehydration embrittlement as strength-limiting mechanisms. The magnitude of the normalized failure strength corresponding to the transition to the high-confinement, high-strain rate regime and the observed weak dependence of failure strength on strain rate within this regime are consistent with a localized Peierls-type strength-limiting mechanism. At the highest strain rates the normalized strengths approach the theoretical limit for crystalline materials. Near-theoretical strengths have previously been observed only in nano- and micro-scale regions of materials that are effectively defect-free. Results are summarized in a new deformation mechanism map revealing that when confinement and strain rate are sufficient, strengths approaching the theoretical limit can be achieved in cm-scale sized samples of rocks rich in defects. Thus, non-frictional failure processes must be considered when interpreting rock deformation data collected under high confinement and low temperature. Further, even at higher temperatures the load-bearing ability of crustal rocks under high confinement may not be limited by a frictional process under typical geologic strain rates.

  14. The Strategy for Time Dependent Quantum Mechanical Calculations Using a Gaussian Wave Packet Representation of the Wave Function.

    DTIC Science & Technology

    1985-01-01

    a number of problems chosen so that the risk of SHM break-down wa.s minimized. A beautiful example is the absorption coefficient of a...the aporo~ cimation We consider here the case of one normalized Gaussian, to isolate the effects of LilA from those of the neglect of the *Interaction

  15. Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?

    PubMed

    Dinning, Phil G

    To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.

  16. Crosstalk between metabolic and neuropsychiatric disorders

    PubMed Central

    Cha, Danielle S.

    2012-01-01

    Evidence supporting the concurrence of metabolic disturbances (e.g. insulin resistance, diabetes and obesity) and neuropsychiatric disorders has been demonstrated in both human and animal studies, suggesting the possibility that they have shared pathophysiological mechanisms. During the past decade, our understanding for the role of insulin in both normal and abnormal central nervous system (CNS) processes has become increasingly refined. Evidence indicates that insulin is a pleiotropic peptide, critical to neurotrophism, neuroplasticity, and neuromodulation. Moreover, the role of insulin underscores its importance in the development of several neuropsychiatric disorders, including, but not limited to, mechanisms involved in the pathogenesis and progression towards diabetes, obesity, and neurodegenerative disorders, such as Alzheimer's disease. This review focuses on the insulin-mediated effects on normal and abnormal brain function and discusses why targeting insulin-related pathways in the brain may emerge as a new approach for refining treatment of neurological and psychiatric disorders. PMID:22802875

  17. Crosstalk between metabolic and neuropsychiatric disorders.

    PubMed

    Kaidanovich-Beilin, Oksana; Cha, Danielle S; McIntyre, Roger S

    2012-01-01

    Evidence supporting the concurrence of metabolic disturbances (e.g. insulin resistance, diabetes and obesity) and neuropsychiatric disorders has been demonstrated in both human and animal studies, suggesting the possibility that they have shared pathophysiological mechanisms. During the past decade, our understanding for the role of insulin in both normal and abnormal central nervous system (CNS) processes has become increasingly refined. Evidence indicates that insulin is a pleiotropic peptide, critical to neurotrophism, neuroplasticity, and neuromodulation. Moreover, the role of insulin underscores its importance in the development of several neuropsychiatric disorders, including, but not limited to, mechanisms involved in the pathogenesis and progression towards diabetes, obesity, and neurodegenerative disorders, such as Alzheimer's disease. This review focuses on the insulin-mediated effects on normal and abnormal brain function and discusses why targeting insulin-related pathways in the brain may emerge as a new approach for refining treatment of neurological and psychiatric disorders.

  18. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    PubMed Central

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-01-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes. PMID:25367288

  19. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  20. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    PubMed

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  1. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    PubMed

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  2. Thyroid function and obesity.

    PubMed

    Laurberg, Peter; Knudsen, Nils; Andersen, Stig; Carlé, Allan; Pedersen, Inge Bülow; Karmisholt, Jesper

    2012-10-01

    Important interaction exists between thyroid function, weight control, and obesity. Several mechanisms seem to be involved, and in studies of groups of people the pattern of thyroid function tests depends on the balance of obesity and underlying thyroid disease in the cohort studied. Obese people with a normal thyroid gland tend to have activation of the hypothalamic-pituitary-thyroid axis with higher serum TSH and thyroid hormones in serum. On the other hand, small differences in thyroid function are associated with up to 5 kg difference in body weight. The weight loss after therapy of overt hypothyroidism is caused by excretion of water bound in tissues (myxoedema). Many patients treated for hyperthyroidism experience a gain of more weight than they lost during the active phase of the disease. The mechanism for this excessive weight gain has not been fully elucidated. New studies on the relation between L-T3 therapy and weight control are discussed. The interaction between weight control and therapy of thyroid disease is important to many patients and it should be studied in more detail.

  3. Déjà vu: possible parahippocampal mechanisms.

    PubMed

    Spatt, Josef

    2002-01-01

    Déjà vu experiences are common in normal subjects. In addition, they are established symptoms of temporal lobe seizures. The author argues that the phenomenon is the result of faulty and isolated activity of a recognition memory system that consists of the parahippocampal gyrus and its neocortical connections. This memory system is responsible for judgments of familiarity. The result is that a momentary perceived scene is given the characteristics of familiarity that normally accompany a conscious recollection. The normal functioning of other brain structures involved in memory retrieval--the prefrontal cortex and the hippocampus proper--leads to the perplexing phenomenological quality of déjà vu. The hypothesis accounts for many characteristics of déjà vu in healthy subjects and is well fitting with experimental findings in patients with epilepsy.

  4. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.

    PubMed

    Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L

    2017-07-01

    Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and facilitate transport of molecules and cells during tissue genesis within tissue defects (surgical membranes). External and internal biomaterial membranes prescribe boundary conditions for treatment of medical disorders, from oedema to tissue defects. Studies are needed to guide the design of next generation biomaterials and devices that incorporate gradient engineering approaches, which offer great potential to enhance function in a dynamic and physiological context. Mechanical gradients intrinsic to currently implemented biomaterials such as medical textiles and surgical interface membranes are poorly understood. Here we characterise quantitatively the mechanics of textile and nonwoven biomaterial membranes for external and internal use. The lack of seamless gradients in compression medical textiles contrasts with the graded mechanical effects achieved by elastomeric exercise bands, which are designed to deliver controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. Engineering textiles with a prescient choice of fibre composition/size, type of knit/weave and inlay fibres, and weave density/anisotropy will enable creation of fabrics that can deliver spatially and temporally controlled mechanical gradients to maintain force balances at tissue boundaries, e.g. to treat oedema or tissue defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cellsmore » in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.« less

  7. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  8. Evaluation of respiratory muscles activity by means of cross mutual information function at different levels of ventilatory effort.

    PubMed

    Alonso, Joan Francesc; Mañanas, Miguel A; Hoyer, Dirk; Topor, Zbigniew L; Bruce, Eugene N

    2007-09-01

    Analysis of respiratory muscles activity is an effective technique for the study of pulmonary diseases such as obstructive sleep apnea syndrome (OSAS). Respiratory diseases, especially those associated with changes in the mechanical properties of the respiratory apparatus, are often associated with disruptions of the normally highly coordinated contractions of respiratory muscles. Due to the complexity of the respiratory control, the assessment of OSAS related dysfunctions by linear methods are not sufficient. Therefore, the objective of this study was the detection of diagnostically relevant nonlinear complex respiratory mechanisms. Two aims of this work were: (1) to assess coordination of respiratory muscles contractions through evaluation of interactions between respiratory signals and myographic signals through nonlinear analysis by means of cross mutual information function (CMIF); (2) to differentiate between functioning of respiratory muscles in patients with OSAS and in normal subjects. Electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from three respiratory muscles: genioglossus, sternomastoid and diaphragm. Inspiratory pressure and flow were also acquired. All signals were measured in eight patients with OSAS and eight healthy subjects during an increased respiratory effort while awake. Several variables were defined and calculated from CMIF in order to describe correlation between signals. The results indicate different nonlinear couplings of respiratory muscles in both populations. This effect is progressively more evident at higher levels of respiratory effort.

  9. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration

    PubMed Central

    2013-01-01

    Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673

  11. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  12. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function.

    PubMed

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J; He, Wei; Voss, Oliver H; Gonzalez-Mejia, M Elba; Guttridge, Denis C; Grotewold, Erich; Doseff, Andrea I

    2016-03-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.

  13. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  14. Exercise training improves functional sympatholysis in spontaneously hypertensive rats through a nitric oxide-dependent mechanism

    PubMed Central

    Mizuno, Masaki; Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.

    2014-01-01

    Functional sympatholysis is impaired in hypertensive animals and patients. Exercise training (ET) improves functional sympatholysis through a nitric oxide (NO)-dependent mechanism in normotensive rats. However, whether ET has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the impairment in functional sympatholysis in hypertension is reversed by ET through a NO-dependent mechanism. In untrained normotensive Wistar-Kyoto rats (WKYUT; n = 13), untrained spontaneously hypertensive rats (SHRUT; n = 13), and exercise-trained SHR (SHRET; n = 6), changes in femoral vascular conductance (FVC) were examined during lumbar sympathetic nerve stimulation (1, 2.5, and 5 Hz) at rest and during muscle contraction. The magnitude of functional sympatholysis (Δ%FVC = Δ%FVC muscle contraction − Δ%FVC rest) in SHRUT was significantly lower than WKYUT (1 Hz: −2 ± 4 vs. 13 ± 3%; 2.5 Hz: 9 ± 3 vs. 21 ± 3%; and 5 Hz: 12 ± 3 vs. 26 ± 3%, respectively; P < 0.05). Three months of voluntary wheel running significantly increased maximal oxygen uptake in SHRET compared with nontrained SHRUT (78 ± 6 vs. 62 ± 4 ml·kg−1·min−1, respectively; P < 0.05) and restored the magnitude of functional sympatholysis in SHRET (1 Hz: 9 ± 2%; 2.5 Hz: 20 ± 4%; and 5 Hz: 34 ± 5%). Blockade of NO synthase (NOS) by NG-nitro-l-arginine methyl ester attenuated functional sympatholysis in WKYUT but not SHRUT. Furthermore, NOS inhibition significantly diminished the improvements in functional sympatholysis in SHRET. These data demonstrate that impairments in functional sympatholysis are normalized via a NO mechanism by voluntary wheel running in hypertensive rats. PMID:24816260

  15. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles.

    PubMed

    Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya

    2010-05-01

    Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.

  16. To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease.

    PubMed

    Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Pinkhardt, Elmar H; Ludolph, Albert C; Kassubek, Jan

    2015-04-01

    Cognitive decline is a burdensome extra-motor symptom associated with Parkinson's disease (PD). This study aimed at investigating intrinsic functional connectivity (iFC) of the brain in cognitively unimpaired (PD-CU) and impaired PD patients (PD-CI) compared with age-matched healthy controls. "Resting-state" functional magnetic resonance imaging was acquired in 53 subjects, that is, 14 PD-CU patients, 17 PD-CI patients, and 22 control subjects. Cognition and cognitive status for patient classification were assessed using detailed neuropsychological testing. In PD-CU patients versus controls, we demonstrated significantly increased iFC (hyperconnectivity) presenting as network expansions in cortical, limbic, and basal ganglia-thalamic areas. Significantly, decreased iFC in PD-CI patients compared with control subjects was observed, predominantly between major nodes of the default mode network. In conclusion, the increased iFC might be the initial manifestation of altered brain function preceding cognitive deficits. Hyperconnectivity could be an adaptive (compensatory) mechanism by recruiting additional resources to maintain normal cognitive performance. As PD-related pathology progresses, functional disruptions within the default mode networks seem to be considerably associated with cognitive decline. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  18. Detecting activity-evoked pH changes in human brain

    PubMed Central

    Magnotta, Vincent A.; Heo, Hye-Young; Dlouhy, Brian J.; Dahdaleh, Nader S.; Follmer, Robin L.; Thedens, Daniel R.; Welsh, Michael J.; Wemmie, John A.

    2012-01-01

    Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T1 relaxation in the rotating frame (T1ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T1ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive 31P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T1ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T1ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms. PMID:22566645

  19. Recent advances in Tourette syndrome research.

    PubMed

    Albin, Roger L; Mink, Jonathan W

    2006-03-01

    Tourette syndrome (TS) is a developmentally regulated neurobehavioral disorder characterized by involuntary, stereotyped, repetitive movements. Recent anatomical and neuroimaging studies have provided evidence for abnormal basal ganglia and dopaminergic function in TS. Basic research on striatal inhibitory mechanisms and dopaminergic function complements the recent neuroimaging and anatomical data. Parallel studies of basal ganglia participation in the normal performance and learning of stereotyped repetitive behaviors or habits has provided additional insight. These lines of research have provided new pieces to the TS puzzle, and their increasing convergence is showing how those pieces can be put together.

  20. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  1. The vestibulo-ocular reflex and its possible roles in space motion sickness

    NASA Technical Reports Server (NTRS)

    Watt, Douglas G. D.

    1987-01-01

    Prolonged exposure to an inappropriate vestibulo-ocular reflex (VOR) will usually lead to motion sickness, and it has been predicted on theoretical grounds that VOR gain may be decreased in weightlessness. While experiments during parabolic flight in aircraft tend to confirm this prediction, experiments during orbital spaceflight have led to apparently contradictory results. It is suggested that VOR gain is reduced initially, but that rapid compensatory mechanisms restore it to normal within minutes of reaching weightlessness. However, even though this process may lead to the rapid return of functionally normal gaze stability, it may not protect against the development of motion sickness.

  2. Brain-Derived Neurotrophic Factor in the Airways

    PubMed Central

    Prakash, Y.S.; Martin, Richard J.

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseases including neonatal and adult asthma, sinusitis, influenza, and lung cancer. The current review focuses on 1) the importance of BDNF expression and signaling mechanisms in early airway and lung development, critical to both normal neonatal lung function and also its disruption in prematurity and insults such as inflammation and infection; 2) how BDNF, potentially derived from airway nerves modulate neurogenic control of airway tone, a key aspect of airway reflexes as well as dysfunctional responses to allergic inflammation; 3) the emerging idea that local BDNF production by resident airway cells such as epithelium and airway smooth muscle can contribute to normal airway structure and function, and to airway hyperreactivity and remodeling in diseases such as asthma. Furthermore, given its pleiotropic effects in the airway, BDNF may be a novel and appealing therapeutic target. PMID:24560686

  3. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery.

    PubMed

    Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J

    2012-09-01

    Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (P<0.001). Interleukin-6 and malondialdehyde increased over time in both groups (P<0.05); however, the magnitudes of increase were not different between the groups. Postoperatively there were no differences in the number of patients with PaO2/FiO2<300 mmHg or abnormalities on chest radiography. Protective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.

  4. Understanding chronic neutropenia: life is short.

    PubMed

    Bartels, Marije; Murphy, Kate; Rieter, Ester; Bruin, Marrie

    2016-01-01

    The pathophysiological mechanisms underlying chronic neutropenia are extensive, varying from haematopoietic stem cell disorders resulting in defective neutrophil production, to accelerated apoptosis of neutrophil progenitors or circulating mature neutrophils. While the knowledge concerning genetic defects associated with congenital neutropenia or bone marrow failure is increasing rapidly, the functional role and consequences of these genetic alterations is often not well understood. In addition, there is a large group of diseases, including primary immunodeficiencies and metabolic diseases, in which chronic neutropenia is one of the symptoms, while there is no clear bone marrow pathology or haematopoietic stem cell dysfunction. Altogether, these disease entities illustrate the complexity of normal neutrophil development, the functional role of the (bone marrow) microenvironment and the increased propensity to undergo apoptosis, which is typical for neutrophils. The large variety of disorders associated with chronic neutropenia makes classification almost impossible and possibly not desirable, based on the clinical phenotypes. However, a better understanding of the regulation of normal myeloid differentiation and neutrophil development is of great importance in the diagnostic evaluation of unexplained chronic neutropenia. In this review we propose insights in the pathophysiology of chronic neutropenia in the context of the functional role of key players during normal neutrophil development, neutrophil release and neutrophil survival. © 2015 John Wiley & Sons Ltd.

  5. Theory of psychological adaptive modes.

    PubMed

    Lehti, Juha

    2016-05-01

    When an individual is facing a stressor and normal stress-response mechanism cannot guarantee sufficient adaptation, special emotional states, adaptive modes, are activated (for example a depressive reaction). Adaptive modes are involuntary states of mind, they are of comprehensive nature, they interfere with normal functioning, and they cannot be repressed or controlled the same way as many emotions. Their transformational nature differentiates them from other emotional states. The object of the adaptive mode is to optimize the problem-solving abilities according to the situation that has provoked the mode. Cognitions and emotions during the adaptive mode are different than in a normal mental state. These altered cognitions and emotional reactions guide the individual to use the correct coping skills in order to deal with the stressor. Successful adaptation will cause the adaptive mode to fade off since the adaptive mode is no longer necessary, and the process as a whole will lead to raised well-being. However, if the adaptation process is inadequate, then the transformation period is prolonged, and the adaptive mode will turn into a dysfunctional state. Many psychiatric disorders are such maladaptive processes. The maladaptive processes can be turned into functional ones by using adaptive skills that are used in functional adaptive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*

    PubMed Central

    Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.

    2014-01-01

    Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474

  7. Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function.

    PubMed

    Ryan, Scott D; Ferrier, Andrew; Sato, Tadasu; O'Meara, Ryan W; De Repentigny, Yves; Jiang, Susan X; Hou, Sheng T; Kothary, Rashmi

    2012-02-01

    Dystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins. ER stress subsequently leads to sensory neurodegeneration through induction of a proapoptotic caspase cascade. dt sensory neurons display neurodegenerative pathologies, including Ca(2+) dyshomeostasis, unfolded protein response (UPR) induction, caspase activation, and apoptosis. Isoform-specific loss-of-function analysis attributes these neurodegenerative pathologies to specific loss of dystonin-a2. Inhibition of either UPR or caspase signaling promotes the viability of cells deficient in dystonin. This study provides insight into the mechanism of dt neuropathology and proposes a role for dystonin-a2 as a mediator of normal ER structure and function.

  8. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres

    PubMed Central

    Song, Shufei

    2018-01-01

    Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres. PMID:29642537

  9. Advances in cardiovascular fluid mechanics: bench to bedside.

    PubMed

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  10. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  11. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    PubMed

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  12. Complete inhibition of creatine kinase in isolated perfused rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less

  13. Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.

    PubMed Central

    Rubinstein, M; Mogil, J S; Japón, M; Chan, E C; Allen, R G; Low, M J

    1996-01-01

    A physiological role for beta-endorphin in endogenous pain inhibition was investigated by targeted mutagenesis of the proopiomelanocortin gene in mouse embryonic stem cells. The tyrosine codon at position 179 of the proopiomelanocortin gene was converted to a premature translational stop codon. The resulting transgenic mice display no overt developmental or behavioral alterations and have a normally functioning hypothalamic-pituitary-adrenal axis. Homozygous transgenic mice with a selective deficiency of beta-endorphin exhibit normal analgesia in response to morphine, indicating the presence of functional mu-opiate receptors. However, these mice lack the opioid (naloxone reversible) analgesia induced by mild swim stress. Mutant mice also display significantly greater nonopioid analgesia in response to cold water swim stress compared with controls and display paradoxical naloxone-induced analgesia. These changes may reflect compensatory upregulation of alternative pain inhibitory mechanisms. Images Fig. 1 Fig. 2 PMID:8633004

  14. Cardiovascular Adjustments to Gravitational Stress

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. Gunnar; Stone, H. Lowell

    1991-01-01

    The effects of gravity on the cardiovascular system must be taken into account whenever a hemodynamic assessment is made. All intravascular pressure have a gravity-dependent hydrostatic component. The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn this distribution largely determines cardiac pump function. Multiple control mechanisms are activated to preserve optimal tissue perfusion when the magnitude of the gravitational field or its direction relative to the body changes. Humans are particularly sensitive to such changes because of the combination of their normally erect posture and the large body mass and blood volume below the level of the heart. Current aerospace technology also exposes human subjects to extreme variations in the gravitational forces that range from zero during space travel to as much an nine-times normal during operation of high-performance military aircraft. This chapter therefore emphasizes human physiology.

  15. MECHANISMS IN ENDOCRINOLOGY: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women.

    PubMed

    Diamanti-Kandarakis, Evanthia; Papalou, Olga; Kandaraki, Eleni A; Kassi, Georgia

    2017-02-01

    Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders. © 2017 European Society of Endocrinology.

  16. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  17. MicroRNA-200a is up-regulated in aged rats with erectile dysfunction and could attenuate endothelial function via SIRT1 inhibition

    PubMed Central

    Pan, Feng; Qiu, Xue-Feng; Yu, Wen; Zhang, Qi-Peng; Chen, Qun; Zhang, Chen-Yu; Chen, Yun; Pan, Lian-Jun; Zhang, Ai-Xia; Dai, Yu-Tian

    2016-01-01

    MiR-200a was shown to be upregulated in the corpus cavernosum (CC) of rats with aging-related erectile dysfunction (A-ED) in our previous study. Among its target genes, SIRT1 was also reported as a protective factor in erectile function by our groups previously. Thus, miR-200a might attenuate the erectile function in A-ED via SIRT1 inhibition. In the present study, three animal groups were included: aged rats with ED (group AE, n = 8), aged rats with normal erectile function (group AN, n = 8), and young rats as normal controls (group YN, n = 8). CCs from each group were collected for histological and molecular measurements to validate the dysregulation of miR-200a and SIRT1. After that, the cavernous endothelial cells (CECs) from CC of aged rats with normal erectile function were transfected with miR-200a in vitro. Then the expression of SIRT1 and molecules within the eNOS/NO/PKG pathway were measured to investigate whether the transfection could imitate the attenuated process of erectile function in the aged. As a result, miR-200a was upregulated while the SIRT1, the levels of eNOS and cGMP were all downregulated in the CCs from AE group. After transfection in vitro, the miR-200a was upregulated while the SIRT1 and levels of eNOS and cGMP were obviously downregulated. Finally, based on the results of our previous study, we further verify that up-regulation of miR-200a could participate in the mechanisms of A-ED via SIRT1 inhibition, and mainly attenuate endothelial function via influencing the eNOS/NO/PKGpathway. PMID:25966629

  18. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  19. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

    PubMed

    Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A

    2015-09-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.

  20. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients.

    PubMed

    Tu, Chengjian; Mojica, Wilfrido; Straubinger, Robert M; Li, Jun; Shen, Shichen; Qu, Miao; Nie, Lei; Roberts, Rick; An, Bo; Qu, Jun

    2017-05-01

    The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  2. Defenders and Challengers of Endothelial Barrier Function

    PubMed Central

    Rahimi, Nader

    2017-01-01

    Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721

  3. RNA Interference: A New Mechanism by Which FMRP Acts in the Normal Brain? What Can Drosophila Teach Us?

    ERIC Educational Resources Information Center

    Siomi, Haruhiko; Ishizuka, Akira; Siomi, Mikiko C.

    2004-01-01

    Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the "FMR1" gene. The "FMR1" gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in "Drosophila melanogaster" has shown that the fly homolog of…

  4. Good news–bad news: the Yin and Yang of immune privilege in the eye

    PubMed Central

    Forrester, John V.; Xu, Heping

    2012-01-01

    The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood–ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host. PMID:23230433

  5. High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans.

    PubMed

    Li, Yiping; Li, Yinxia; Wu, Qiuli; Ye, Huayue; Sun, Lingmei; Ye, Boping; Wang, Dayong

    2013-01-01

    α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.

  6. A kinetic model to study the regulation of β-catenin, APC, and Axin in the human colonic crypt.

    PubMed

    Emerick, Brooks; Schleiniger, Gilberto; Boman, Bruce M

    2017-11-01

    The Wnt/[Formula: see text]-catenin pathway plays a crucial role in stem cell renewal and differentiation in the normal human colonic crypt. The balance between [Formula: see text]-catenin and APC along the crypt axis determines its normal functionality. The mechanism that deregulates this balance may give insight into the initiation of colorectal cancer. This is significant because the spatial dysregulation of [Formula: see text]-catenin by the mutated tumor suppressor gene/protein APC in human colonic crypts is responsible for the initiation and growth of colorectal cancer. We consider a regulatory function that promotes APC synthesis within the cell and its effect on the accumulation of the Wnt target protein, [Formula: see text]-catenin. It is evident that an APC gradient exists along the crypt axis; however, the mechanism by which APC expression is regulated within the cell is not well known. We investigate the dynamics of an APC regulatory mechanism with an increased level of Axin at the subcellular level. Model output shows an increase of APC for a diminished Wnt signal, which explains the APC gradient along the crypt. We find that the dynamic interplay between [Formula: see text]-catenin, APC, and Axin produces oscillatory behavior, which is controlled by the Wnt stimulus. In the presence of reduced functional APC, the oscillations are amplified, which suggests that the cell remains in a more proliferative state for longer periods of time. Increased Axin levels (typical of mammalian cells) reduce oscillatory behavior and minimize the levels of [Formula: see text]-catenin within the cell while raising the levels of APC.

  7. Lack of X inactivation associated with maternal X isodisomy: evidence for a counting mechanism prior to X inactivation during human embryogenesis.

    PubMed

    Migeon, B R; Jeppesen, P; Torchia, B S; Fu, S; Dunn, M A; Axelman, J; Schmeckpeper, B J; Fantes, J; Zori, R T; Driscoll, D J

    1996-01-01

    We have previously reported functional disomy for X-linked genes in females with tiny ring X chromosomes and a phenotype significantly more abnormal than Turner syndrome. In such cases the disomy results from failure of these X chromosomes to inactivate because they lack DNA sequences essential for cis X inactivation. Here we describe a novel molecular mechanism for functional X disomy that is associated with maternal isodisomy. In this case, the severe mental retardation and multiple congenital abnormalities in a female with a mosaic 45,X/ 46,X,del(X)(q21.3-qter)/ 46X,r(X) karyotype are associated with overexpression of the genes within Xpter to Xq21.31 in many of her cells. Her normal X, ring X, and deleted linear X chromosomes originate from the same maternal X chromosome, and all are transcriptionally active. None expresses X inactive specific transcript (XIST), although the locus and region of the putative X inactivation center (XIC) are present on both normal and linear deleted X chromosomes. To our knowledge, this is the first report of a functional maternal X isodisomy, and the largest X chromosome to escape inactivation. In addition, these results (1) show that cis inactivation does not invariably occur in human females with two X chromosomes, even when the XIC region is present on both of them; (2) provide evidence for a critical time prior to the visible onset of X inactivation in the embryo when decisions about X inactivation are made; and (3) support the hypothesis that the X chromosome counting mechanism involves chromosomal imprinting, occurs prior to the onset of random inactivation, and is required for subsequent inactivation of the chromosome.

  8. A new paradigm in respiratory hygiene: modulating respiratory secretions to contain cough bioaerosol without affecting mucus clearance

    PubMed Central

    Zayas, Gustavo; Valle, Juan C; Alonso, Mauricio; Alfaro, Henry; Vega, Daniel; Bonilla, Gloria; Reyes, Miguel; King, Malcolm

    2007-01-01

    Background Several strategies and devices have been designed to protect health care providers from acquiring transmissible respiratory diseases while providing care. In modulating the physical characteristics of the respiratory secretions to minimize the aerosolization that facilitates transmission of airborne diseases, a fundamental premise is that the prototype drugs have no adverse effect on the first line of respiratory defense, clearance of mucus by ciliary action. Methods To assess and demonstrate the primary mechanism of our mucomodulators (XLs), we have built our evidence moving from basic laboratory studies to an ex-vivo model and then to an in-vivo large animal model. We exposed anesthetized dogs without hypersecretion to different dose concentrations of aerosolized XL "B", XL "D" and XL "S". We assessed: cardio-respiratory pattern, tracheal mucus clearance, airway patency, and mucus viscoelastic changes. Results Exposure of frog palate mucus to XLs did not affect the clearance of mucus by ciliary action. Dogs maintained normal cardio-respiratory pattern with XL administration. Tracheal mucociliary clearance in anesthetized dogs indicated a sustained 40% mean increase. Tracheal mucus showed increased filance, and there was no mucus retention in the airways. Conclusion The ex-vivo frog palate and the in-vivo mammalian models used in this study, appear to be appropriate and complement each other to better assess the effects that our mucomodulators exert on the mucociliary clearance defence mechanism. The physiological function of the mucociliary apparatus was not negatively affected in any of the two epithelial models. Airway mucus crosslinked by mucomodulators is better cleared from an intact airway and normally functioning respiratory system, either due to enhanced interaction with cilia or airflow-dependent mechanisms. Data obtained in this study allow us to assure that we have complied with the fundamental requirement criteria established in the initial phase of developing the concept of mucomodulation: Can we modulate the physical characteristics of the respiratory secretions to reduce aerosolization without affecting normal mucociliary clearance function, or even better improving it? PMID:17697323

  9. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol

    PubMed Central

    2012-01-01

    Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Trial registration Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18. PMID:22305183

  10. The Relationship Between Fusion, Suppression, and Diplopia in Normal and Amblyopic Vision.

    PubMed

    Spiegel, Daniel P; Baldwin, Alex S; Hess, Robert F

    2016-10-01

    Single vision occurs through a combination of fusion and suppression. When neither mechanism takes place, we experience diplopia. Under normal viewing conditions, the perceptual state depends on the spatial scale and interocular disparity. The purpose of this study was to examine the three perceptual states in human participants with normal and amblyopic vision. Participants viewed two dichoptically separated horizontal blurred edges with an opposite tilt (2.35°) and indicated their binocular percept: "one flat edge," "one tilted edge," or "two edges." The edges varied with scale (fine 4 min arc and coarse 32 min arc), disparity, and interocular contrast. We investigated how the binocular interactions vary in amblyopic (visual acuity [VA] > 0.2 logMAR, n = 4) and normal vision (VA ≤ 0 logMAR, n = 4) under interocular variations in stimulus contrast and luminance. In amblyopia, despite the established sensory dominance of the fellow eye, fusion prevails at the coarse scale and small disparities (75%). We also show that increasing the relative contrast to the amblyopic eye enhances the probability of fusion at the fine scale (from 18% to 38%), and leads to a reversal of the sensory dominance at coarse scale. In normal vision we found that interocular luminance imbalances disturbed binocular combination only at the fine scale in a way similar to that seen in amblyopia. Our results build upon the growing evidence that the amblyopic visual system is binocular and further show that the suppressive mechanisms rendering the amblyopic system functionally monocular are scale dependent.

  11. Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins

    PubMed Central

    Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.

    2017-01-01

    Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism. PMID:29030434

  12. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder

    NASA Astrophysics Data System (ADS)

    Ahmed, Zaghloul

    2017-10-01

    Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.

  13. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function

    PubMed Central

    Ciaccio, Edward J; Hiatt, Mark; Hegyi, Thomas; Drzewiecki, Gary M

    2007-01-01

    Background Monitoring of the electrocardiogram (ECG) in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. Method The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g–90 g) was determined. Results The mechanical response to a step input was second order (fn = 401 Hz, ζ = 0.08). The relationship between applied tension and output voltage was linear in the range 25–225 gm of applied tension (r2 = 0.99). Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. Conclusion The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force. PMID:17445262

  14. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function.

    PubMed

    Ciaccio, Edward J; Hiatt, Mark; Hegyi, Thomas; Drzewiecki, Gary M

    2007-04-19

    Monitoring of the electrocardiogram (ECG) in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g-90 g) was determined. The mechanical response to a step input was second order (fn = 401 Hz, zeta = 0.08). The relationship between applied tension and output voltage was linear in the range 25-225 gm of applied tension (r2 = 0.99). Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force.

  15. ZNF9 Activation of IRES-Mediated Translation of the Human ODC mRNA Is Decreased in Myotonic Dystrophy Type 2

    PubMed Central

    Sammons, Morgan A.; Antons, Amanda K.; Bendjennat, Mourad; Udd, Bjarne; Krahe, Ralf; Link, Andrew J.

    2010-01-01

    Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype. PMID:20174632

  16. Papillary Muscle Repositioning as a Subvalvular Apparatus Preservation Technique in Mitral Stenosis Patients with Normal Left Ventricular Systolic Function

    PubMed Central

    Lafci, Gokhan; Cagli, Kerim; Korkmaz, Kemal; Turak, Osman; Uzun, Alper; Yalcinkaya, Adnan; Diken, Adem; Gunertem, Eren; Cagli, Kumral

    2014-01-01

    Subvalvular apparatus preservation is an important concept in mitral valve replacement (MVR) surgery that is performed to remedy mitral regurgitation. In this study, we sought to determine the effects of papillary muscle repositioning (PMR) on clinical outcomes and echocardiographic left ventricular function in rheumatic mitral stenosis patients who had normal left ventricular systolic function. We prospectively assigned 115 patients who were scheduled for MVR surgery with mechanical prosthesis to either PMR or MVR-only groups. Functional class and echocardiographic variables were evaluated at baseline and at early and late postoperative follow-up examinations. All values were compared between the 2 groups. The PMR group consisted of 48 patients and the MVR-only group of 67 patients. The 2 groups’ baseline characteristics and surgery-related factors (including perioperative mortality) were similar. During the 18-month follow-up, all echocardiographic variables showed a consistent improvement in the PMR group; the mean left ventricular ejection fraction deteriorated significantly in the MVR-only group. Comparison during follow-up of the magnitude of longitudinal changes revealed that decreases in left ventricular end-diastolic and end-systolic diameters and in left ventricular sphericity indices, and increases in left ventricular ejection fractions, were significantly higher in the PMR group than in the MVR-only group. This study suggests that, in patients with rheumatic mitral stenosis and preserved left ventricular systolic function, the addition of papillary muscle repositioning to valve replacement with a mechanical prosthesis improves left ventricular dimensions, ejection fraction, and sphericity index at the 18-month follow-up with no substantial undesirable effect on the surgery-related factors. PMID:24512397

  17. Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.

    2014-01-01

    The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821

  18. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function

    PubMed Central

    Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.

    2015-01-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469

  19. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    PubMed

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  20. Extensor Mechanism Disruption after Total Knee Arthroplasty: A Case Series and Review of Literature.

    PubMed

    Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul

    2016-02-04

    Extensor mechanism disruption following total knee arthroplasty (TKA) is a rare but devastating complication. These patients may require revision of the implants, but even then, it may not be possible to restore the normal function of the knee after the disruption. The patterns of extensor mechanism disruption can broadly be classified into three types: suprapatellar (quadriceps tendon rupture), transpatellar (patellar fracture), or infrapatellar (patellar tendon rupture). Infrapatellar tendon ruptures are the worst injuries, as they carry maximum morbidity and are challenging to manage. The disruption of the extensor mechanism may occur either intra-operatively or in the immediate postoperative period due to an injury. The treatment of extensor mechanism complications after TKA may include either nonsurgical management or surgical intervention in the form of primary repair or reconstruction with autogenous, allogeneic, or synthetic substitutes. We have provided an algorithm for the management of extensor mechanism disruption after TKA.

  1. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.

    PubMed

    Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong

    2016-09-20

    Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans. © 2016 American Heart Association, Inc.

  2. Central Arterial Function Measured by Non-invasive Pulse Wave Analysis is Abnormal in Patients with Duchenne Muscular Dystrophy.

    PubMed

    Ryan, Thomas D; Parent, John J; Gao, Zhiqian; Khoury, Philip R; Dupont, Elizabeth; Smith, Jennifer N; Wong, Brenda; Urbina, Elaine M; Jefferies, John L

    2017-08-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutation of dystrophin. Cardiovascular involvement includes dilated cardiomyopathy. Non-invasive assessment of vascular function has not been evaluated in DMD. We hypothesize arterial wave reflection is abnormal in patients with DMD. Pulse wave analysis was performed on DMD patients with a SphygmoCor SCOR-PVx System to determine central blood pressure and augmentation index (AIx) as an assessment of arterial wave reflection. Results were compared to a control group. A total of 43 patients with DMD were enrolled, and compared to 43 normal controls. Central systolic blood pressure was lower, while both AIx-75 (7.8 ± 9.6% vs. 2.1 ± 10.4%, p 0.01, DMD vs. normal) and AIx-not corrected (16.8 ± 10.1% vs. -3.6 ± 10.9, p < 0.001, DMD vs. normal) were higher in the DMD compared to control. Using multivariable linear regression model, the variables found to have a significant effect on AIx-not corrected included diagnosis of DMD, height, and heart rate (r 2  = 0.257). The current data suggest that, despite lower central systolic blood pressure, patients with DMD have higher wave reflection when compared to normal controls, which may represent increased arterial stiffness. Overall there appears to be no effect on ventricular systolic function, however the long-term consequence in this group is unknown. Further study is required to determine the mechanism of these differences, which may be related to the effects of systemic steroids or the role of dystrophin in vascular function.

  3. The Esophagiome: concept, status, and future perspectives.

    PubMed

    Gregersen, Hans; Liao, Donghua; Brasseur, James G

    2016-09-01

    The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.

  4. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    PubMed

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  5. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    PubMed

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.

  6. Evidence of isometric function of the flexor hallucis longus muscle in normal gait.

    PubMed

    Kirane, Y M; Michelson, J D; Sharkey, N A

    2008-01-01

    Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.

  7. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.

    PubMed

    Wang, Zhenglong; Jin, Kai; Xia, Yuxian

    2016-08-09

    Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients.

  8. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  9. Type II single umbilical artery (persistent vitelline artery) in an otherwise normal fetus.

    PubMed

    Gamzu, Ronni; Zalel, Yaron; Jacobson, Jeffrey M; Screiber, Leticia; Achiron, Reuven

    2002-11-01

    A single umbilical artery resulting from absence of the umbilical arteries and persistence of the vitelline artery that arises directly from the abdominal aorta has been described only in malformed fetuses with sirenomelia or caudal regression. Such an aberrant artery was suggested to be the etiology of sirenomelia caused by a 'steal' mechanism of blood flow from the caudal end of the embryo. We present a case in which prenatal ultrasound showed a similar aberrant single artery arising from the abdominal aorta in an otherwise normal fetus with a normal course of pregnancy. This vessel, a continuation of the superior mesenteric artery (SMA), corresponds to a persistent vitelline artery assuming the function of the umbilical arteries. The etiology of such a finding and its possible consequences are discussed. Copyright 2002 John Wiley & Sons, Ltd.

  10. Normalization regulates competition for visual awareness

    PubMed Central

    Ling, Sam; Blake, Randolph

    2012-01-01

    Summary Signals in our brain are in a constant state of competition, including those that vie for motor control, sensory dominance and awareness. To shed light on the mechanisms underlying neural competition, we exploit binocular rivalry, a phenomenon that allows us to probe the competitive process that ordinarily transpires outside of our awareness. By measuring psychometric functions under different states of rivalry, we discovered a pattern of gain changes that are consistent with a model of competition in which attention interacts with normalization processes, thereby driving the ebb and flow between states of awareness. Moreover, we reveal that attention plays a crucial role in modulating competition; without attention, rivalry suppression for high-contrast stimuli is negligible. We propose a framework whereby our visual awareness of competing sensory representations is governed by a common neural computation: normalization. PMID:22884335

  11. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing.

    PubMed

    Kuo, Anderson H; Li, Cun; Li, Jinqi; Huber, Hillary F; Nathanielsz, Peter W; Clarke, Geoffrey D

    2017-02-15

    Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group and sex (with P < 0.05) indicated ejection fraction, 3D sphericity indices, cardiac index, normalized systolic volume, normalized LV wall thickness, and average filling rate differed by group. Group and sex differences were found for normalized LV wall thickening and normalized myocardial mass, without interactions. Normalized peak LV filling rate and diastolic sphericity index were not correlated in control but strongly correlated in OLD and IUGR baboons. IUGR programming in baboons produces myocardial remodelling, reduces systolic and diastolic function, and results in the emergence of a premature ageing phenotype in the heart. To our knowledge, this is the first demonstration of the specific characteristics of cardiac programming and early life functional decline with ageing in an IUGR non-human primate model. Further studies across the life span will determine progression of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Electromechanical heterogeneity in the heart : A key to long QT syndrome?

    PubMed

    Dressler, F F; Brado, J; Odening, K E

    2018-03-01

    In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.

  13. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  14. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-11-01

    The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.

  15. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine.

    PubMed

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.

  16. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development.

    PubMed

    Metzler, Veronika M; de Brot, Simone; Robinson, Robert S; Jeyapalan, Jennie N; Rakha, Emad; Walton, Thomas; Gardner, David S; Lund, Emma F; Whitchurch, Jonathan; Haigh, Daisy; Lochray, Jack M; Robinson, Brian D; Allegrucci, Cinzia; Fray, Rupert G; Persson, Jenny L; Ødum, Niels; Miftakhova, Regina R; Rizvanov, Albert A; Hughes, Ieuan A; Tadokoro-Cuccaro, Rieko; Heery, David M; Rutland, Catrin S; Mongan, Nigel P

    2017-08-01

    The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  18. Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass

    PubMed Central

    Ellman, Rachel; Spatz, Jordan; Cloutier, Alison; Palme, Rupert; Christiansen, Blaine A; Bouxsein, Mary L

    2014-01-01

    Although the musculoskeletal system is known to be sensitive to changes in its mechanical environment, the relationship between functional adaptation and below-normal mechanical stimuli is not well defined. We investigated bone and muscle adaptation to a range of reduced loading using the partial weight suspension (PWS) system, in which a two-point harness is used to offload a tunable amount of body weight while maintaining quadrupedal locomotion. Skeletally mature female C57Bl/6 mice were exposed to partial weight bearing at 20%, 40%, 70%, or 100% of body weight for 21 days. A hindlimb unloaded (HLU) group was included for comparison in addition to age-matched controls in normal housing. Gait kinematics was measured across the full range of weight bearing, and some minor alterations in gait from PWS were identified. With PWS, bone and muscle changes were generally proportional to the degree of unloading. Specifically, total body and hindlimb bone mineral density, calf muscle mass, trabecular bone volume of the distal femur, and cortical area of the femur midshaft were all linearly related to the degree of unloading. Even a load reduction to 70% of normal weight bearing was associated with significant bone deterioration and muscle atrophy. Weight bearing at 20% did not lead to better bone outcomes than HLU despite less muscle atrophy and presumably greater mechanical stimulus, requiring further investigation. These data confirm that the PWS model is highly effective in applying controllable, reduced, long-term loading that produces predictable, discrete adaptive changes in muscle and bone of the hindlimb. PMID:23165526

  19. Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression

    PubMed Central

    Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.

    2016-01-01

    Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036

  20. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

  1. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  2. Active transport of vesicles in neurons is modulated by mechanical tension

    PubMed Central

    Ahmed, Wylie W.; Saif, Taher A.

    2014-01-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics. PMID:24670781

  3. Novel scanning electron microscope bulge test technique integrated with loading function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuanwei; Xie, Huimin, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei, E-mail: liuzw@bit.edu.cn, E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplifiedmore » Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.« less

  4. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed

    White, André O; Wood, Marcelo A

    2014-07-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Does stress remove the HDAC brakes for the formation and persistence of long-term memory?

    PubMed Central

    White, André O.; Wood, Marcelo A.

    2013-01-01

    It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059

  6. Respiratory complications in the postanesthesia care unit: A review of pathophysiological mechanisms

    PubMed Central

    Karcz, Marcin; Papadakos, Peter J

    2013-01-01

    General anesthesia and mechanical ventilation impair pulmonary function, even in normal individuals, and result in decreased oxygenation in the postanesthesia period. They also cause a reduction in functional residual capacity of up to 50% of the preanesthesia value. It has been shown that pulmonary atelectasis is a common finding in anesthetized individuals because it occurs in 85% to 90% of healthy adults. Furthermore, there is substantial evidence that atelectasis, in combination with alveolar hypoventilation and ventilation-perfusion mismatch, is the core mechanism responsible for postoperative hypoxemic events in the majority of patients in the postanesthesia care unit (PACU). Many concomitant factors also must be considered, such as respiratory depression from the type and anatomical site of surgery altering lung mechanics, the consequences of hemodynamic impairment and the residual effects of anesthetic drugs, most notably residual neuromuscular blockade. The appropriate use of anesthetic and analgesic techniques, when combined with meticulous postoperative care, clearly influences pulmonary outcomes in the PACU. The present review emphasizes the major pathophysiological mechanisms and treatment strategies of critical respiratory events in the PACU to provide health care workers with the knowledge needed to prevent such potentially adverse outcomes from occurring. PMID:26078599

  7. Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip

    NASA Astrophysics Data System (ADS)

    Tatard, L.; Grasso, J. R.

    2013-06-01

    compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.

  8. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies

    PubMed Central

    Warburton, E.; Price, C.; Swinburn, K.; Wise, R.

    1999-01-01

    OBJECTIVES—Language functions comprise a distributed neural system, largely lateralised to the left cerebral hemisphere. Late recovery from aphasia after a focal lesion, other than by behavioural strategies, has been attributed to one of two changes at a systems level: a laterality shift, with mirror region cortex in the contralateral cortex assuming the function(s) of the damaged region; or a partial lesion effect, with recovery of perilesional tissue to support impaired language functions. Functional neuroimaging with PET allows direct observations of brain functions at systems level. This study used PET to compare regional brain activations in response to a word retrieval task in normal subjects and in aphasic patients who had shown at least some recovery and were able to attempt the task. Emphasis has been placed on single subject analysis of the results as there is no reason to assume that the mechanisms of recovery are necessarily uniform among aphasic patients.
METHODS—Six right handed aphasic patients, each with a left cerebral hemispheric lesion (five strokes and one glioma), were studied. Criteria for inclusion were symptomatic or formal test evidence of at least some recovery and an ability to attempt word retrieval in response to heard word cues. Each patient underwent 12 PET scans using oxygen-15 labelled water (H215O) as tracer to index regional cerebral blood flow (rCBF). The task, repeated six times, required the patient to think of verbs appropriate to different lists of heard noun cues. The six scans obtained during word retrieval were contrasted with six made while the subject was "at rest". The patients' individual results were compared with those of nine right handed normal volunteers undergoing the same activation study. The data were analysed using statistical parametric mapping (SPM96, Wellcome Department of Cognitive Neurology, London, UK).
RESULTS—Perception of the noun cues would be expected to result in bilateral dorsolateral temporal cortical activations, but as the rate of presentation was only four per minute the auditory perceptual activations were not evident in all people. Anterior cingulate, medial premotor (supplementary speech area) and dorsolateral frontal activations were evident in all normal subjects and patients. There were limited right dorsolateral frontal activations in three of the six patients, but a similar pattern was also found in four of the nine normal subjects. In the left inferolateral temporal cortex, activation was found for the normal subjects and five of the six patients, including two of the three subjects with lesions involving the left temporal lobe. The only patient who showed subthreshold activation in the left inferolateral temporal activation had a very high error rate when performing the verb retrieval task.
CONCLUSIONS—The normal subjects showed a left lateralised inferolateral temporal activation, reflecting retrieval of words appropriate in meaning to the cue from the semantic system. Lateralisation of frontal activations to the left was only relative, with right prefrontal involvement in half of the normal subjects. Frontal activations are associated with parallel psychological processes involved in word retrieval, including task initiation, short term (working) memory for the cue and responses, and prearticulatory processes (even though no overt articulation was required). There was little evidence of a laterality shift of word retrieval functions to the right temporal lobe after a left hemispheric lesion. In particular, left inferolateral temporal activation was seen in all patients except one, and he proved to be very inefficient at the task. The results provide indirect evidence that even limited salvage of peri-infarct tissue with acute stroke treatments will have an important impact on the rehabilitation of cognitive functions.

 PMID:10071093

  9. Primary cortical folding in the human newborn: an early marker of later functional development.

    PubMed

    Dubois, J; Benders, M; Borradori-Tolsa, C; Cachia, A; Lazeyras, F; Ha-Vinh Leuchter, R; Sizonenko, S V; Warfield, S K; Mangin, J F; Hüppi, P S

    2008-08-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26-36 weeks of gestational age), and defined early 'endophenotypes' of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants' outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB).

  10. Murine colon proteome and characterization of the protein pathways

    PubMed Central

    2012-01-01

    Background Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer) rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue- colon proteome. Results We report here a detailed murine (mouse) whole tissue- colon protein reference dataset composed of 1237 confident protein (FDR < 2) with comprehensive insight on its peptide properties, cellular and subcellular localization, functional network GO annotation analysis, and its relative abundances. The presented dataset includes wide spectra of pI and Mw ranged from 3–12 and 4–600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen- activated protein kinase (Mapk8, 9) in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2), Glutathione S-transferase (Gstp1) in prostate cancer, and Cell division control protein (Cdc42), Ras-related protein (Rac1,2) in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI) provide a relative quantification under normal condition as guidance. Conclusions This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well. PMID:22929016

  11. Input clustering in the normal and learned circuits of adult barn owls.

    PubMed

    McBride, Thomas J; DeBello, William M

    2015-05-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Attention-related changes in correlated neuronal activity arise from normalization mechanisms

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John H.R.

    2017-01-01

    Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943

  13. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  14. Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.

    1981-01-01

    In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.

  15. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles

    PubMed Central

    Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat

    2015-01-01

    A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254

  16. Shortness of breath in clinical practice: A case for left atrial function and exercise stress testing for a comprehensive diastolic heart failure workup

    PubMed Central

    Iyngkaran, Pupalan; Anavekar, Nagesh S; Neil, Christopher; Thomas, Liza; Hare, David L

    2017-01-01

    The symptom cluster of shortness of breath (SOB) contributes significantly to the outpatient workload of cardiology services. The workup of these patients includes blood chemistry and biomarkers, imaging and functional testing of the heart and lungs. A diagnosis of diastolic heart failure is inferred through the exclusion of systolic abnormalities, a normal pulmonary function test and normal hemoglobin, coupled with diastolic abnormalities on echocardiography. Differentiating confounders such as obesity or deconditioning in a patient with diastolic abnormalities is difficult. While the most recent guidelines provide more avenues for diagnosis, such as incorporating the left atrial size, little emphasis is given to understanding left atrial function, which contributes to at least 25% of diastolic left ventricular filling; additionally, exercise stress testing to elicit symptoms and test the dynamics of diastolic parameters, especially when access to the “gold standard” invasive tests is lacking, presents clinical translational gaps. It is thus important in diastolic heart failure work up to understand left atrial mechanics and the role of exercise testing to build a comprehensive argument for the diagnosis of diastolic heart failure in a patient presenting with SOB. PMID:29354484

  17. Big-conductance Ca2+-activated K+ channels in physiological and pathophysiological urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao

    2016-01-01

    ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440

  18. Motor-symptom laterality affects acquisition in Parkinson's disease: A cognitive and functional magnetic resonance imaging study.

    PubMed

    Huang, Pei; Tan, Yu-Yan; Liu, Dong-Qiang; Herzallah, Mohammad M; Lapidow, Elizabeth; Wang, Ying; Zang, Yu-Feng; Gluck, Mark A; Chen, Sheng-Di

    2017-07-01

    Asymmetric onset of motor symptoms in PD can affect cognitive function. We examined whether motor-symptom laterality could affect feedback-based associative learning and explored its underlying neural mechanism by functional magnetic resonance imaging in PD patients. We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention, and generalization) and resting-state functional magnetic resonance imaging scans. Learning accuracy and response time in each phase of the task were recorded for behavioral measures. Regional homogeneity was used to analyze resting-state functional magnetic resonance imaging data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum. Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, whereas right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition errors and regional homogeneity in the right dorsal rostral putamen. There were no significant regional homogeneity changes in either the left or the right dorsal rostral putamen in right-onset patients when compared to controls. Motor-symptom laterality could affect feedback-based associative learning in PD, with left-onset medication-naïve patients being selectively impaired. Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in associative learning in patients with left-sided onset.© 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  19. Pulmonary function in space

    NASA Technical Reports Server (NTRS)

    West, J. B.; Elliott, A. R.; Guy, H. J.; Prisk, G. K.

    1997-01-01

    The lung is exquisitely sensitive to gravity, and so it is of interest to know how its function is altered in the weightlessness of space. Studies on National Aeronautics and Space Administration (NASA) Spacelabs during the last 4 years have provided the first comprehensive data on the extensive changes in pulmonary function that occur in sustained microgravity. Measurements of pulmonary function were made on astronauts during space shuttle flights lasting 9 and 14 days and were compared with extensive ground-based measurements before and after the flights. Compared with preflight measurements, cardiac output increased by 18% during space flight, and stroke volume increased by 46%. Paradoxically, the increase in stroke volume occurred in the face of reductions in central venous pressure and circulating blood volume. Diffusing capacity increased by 28%, and the increase in the diffusing capacity of the alveolar membrane was unexpectedly large based on findings in normal gravity. The change in the alveolar membrane may reflect the effects of uniform filling of the pulmonary capillary bed. Distributions of blood flow and ventilation throughout the lung were more uniform in space, but some unevenness remained, indicating the importance of nongravitational factors. A surprising finding was that airway closing volume was approximately the same in microgravity and in normal gravity, emphasizing the importance of mechanical properties of the airways in determining whether they close. Residual volume was unexpectedly reduced by 18% in microgravity, possibly because of uniform alveolar expansion. The findings indicate that pulmonary function is greatly altered in microgravity, but none of the changes observed so far will apparently limit long-term space flight. In addition, the data help to clarify how gravity affects pulmonary function in the normal gravity environment on Earth.

  20. Control of body temperature and immune function in patients undergoing open surgery for gastric cancer.

    PubMed

    Shao, Li; Pang, Nannan; Yan, Ping; Jia, Fengju; Sun, Qi; Ma, Wenjuan; Yang, Yi

    2018-04-09

    The influence of mild perioperative hypothermia on the immune function and incidence of postoperative wound infections has been suggested, but the specific mechanism is unclear. This study aimed to analyze the body temperature, immune function, and wound infection rates in patients receiving open surgery for gastric cancer. Body temperature was controlled in each patient using one of four different methods: wrapping limbs, head and neck; insulated blankets; warming infusion fluids and insulated blankets; and warming fluids without insulated blankets. One hundred patients were randomly divided into four groups of 25 patients each, and every group received a different intraoperative treatment for maintaining normal body temperature. Nasopharyngeal and rectal temperatures, transforming growth factor beta (TGF-β), interleukin 10 (IL-10) levels, and cluster of differentiation (CD)3+ and CD4+/CD25+ regulatory T cell (Treg) counts were measured before surgery and at 2 and 4 hours postoperatively. Patients were evaluated at one week after surgery for signs of infection. Intraoperative body temperature and measures of immune function varied significantly between the four groups, with the largest temperature changes observed in the group in which only the limbs were wrapped in cotton pads to control the body temperature. The group in which infusion fluids and transfused blood (if needed) were heated to 37℃, peritoneal irrigation fluid was heated to 37℃, and an insulation blanket was heated to 39℃ and placed under the patient, showed the lowest temperature change (i.e., close to normal temperature) and cytokine response after surgery. No intergroup differences were found in the infection rates at one week after surgery. In conclusion, body temperature variation during surgery affects the immune function of patients, and maintaining body temperature close to normal results in the least variation of immune function.

  1. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis.

    PubMed

    Li, Yang; Wang, Saiying; Ran, Ke; Hu, Zhonghua; Liu, Zhaoqian; Duan, Kaiming

    2015-08-01

    The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.

  2. Dynamic and quantitative evaluation of degenerative mitral valve disease: a dedicated framework based on cardiac magnetic resonance imaging

    PubMed Central

    Onorati, Francesco; Puppini, Giovanni; Pappalardo, Omar A.; Selmi, Matteo; Votta, Emiliano; Faggian, Giuseppe; Redaelli, Alberto

    2017-01-01

    Background Accurate quantification of mitral valve (MV) morphology and dynamic behavior over the cardiac cycle is crucial to understand the mechanisms of degenerative MV dysfunction and to guide the surgical intervention. Cardiac magnetic resonance (CMR) imaging has progressively been adopted to evaluate MV pathophysiology, although a dedicated framework is required to perform a quantitative assessment of the functional MV anatomy. Methods We investigated MV dynamic behavior in subjects with normal MV anatomy (n=10) and patients referred to surgery due to degenerative MV prolapse, classified as fibro-elastic deficiency (FED, n=9) and Barlow’s disease (BD, n=10). A CMR-dedicated framework was adopted to evaluate prolapse height and volume and quantitatively assess valvular morphology and papillary muscles (PAPs) function over the cardiac cycle. Multiple comparison was used to investigate the hallmarks associated to MV degenerative prolapse and evaluate the feasibility of anatomical and functional distinction between FED and BD phenotypes. Results On average, annular dimensions were significantly (P<0.05) larger in BD than in FED and normal subjects while no significant differences were noticed between FED and normal. MV eccentricity progressively decreased passing from normal to FED and BD, with the latter exhibiting a rounder annulus shape. Over the cardiac cycle, we noticed significant differences for BD during systole with an abnormal annular enlargement between mid and late systole (LS) (P<0.001 vs. normal); the PAPs dynamics remained comparable in the three groups. Prolapse height and volume highlighted significant differences among normal, FED and BD valves. Conclusions Our CMR-dedicated framework allows for the quantitative and dynamic evaluation of MV apparatus, with quantifiable annular alterations representing the primary hallmark of severe MV degeneration. This may aid surgeons in the evaluation of the severity of MV dysfunction and the selection of the appropriate MV treatment. PMID:28540065

  3. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis.

    PubMed

    Amit, Ido; Winter, Deborah R; Jung, Steffen

    2016-01-01

    Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.

  4. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    PubMed

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

  5. Ventral pallidum roles in reward and motivation.

    PubMed

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  6. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons

    PubMed Central

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  7. Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.

    PubMed

    Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki

    2017-03-21

    Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.

  8. Simple display system of mechanical properties of cells and their dispersion.

    PubMed

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  9. Simple Display System of Mechanical Properties of Cells and Their Dispersion

    PubMed Central

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595

  10. Chromatin replication: TRANSmitting the histone code

    PubMed Central

    Chang, Han-Wen; Studitsky, Vasily M.

    2017-01-01

    Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during replication. These studies suggest new possible mechanisms for transmitting the histone code to next generations of cells. PMID:28393112

  11. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates

    PubMed Central

    Varlamov, Oleg; White, Ashley E.; Carroll, Julie M.; Bethea, Cynthia L.; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W.

    2012-01-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue. PMID:22547568

  12. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    PubMed

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  13. Transcriptome of Cultured Lung Fibroblasts in Idiopathic Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and Immunity Pathways.

    PubMed

    Plantier, Laurent; Renaud, Hélène; Respaud, Renaud; Marchand-Adam, Sylvain; Crestani, Bruno

    2016-12-13

    Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor ( CTGF ) and serum response factor ( SRF ), supporting their role as drivers of IPF. The full data table is available as a supplement.

  14. Central neuropeptide Y plays an important role in mediating the adaptation mechanism against chronic stress in male rats.

    PubMed

    Yang, Yu; Babygirija, Reji; Zheng, Jun; Shi, Bei; Sun, Weinan; Zheng, Xiaojiao; Zhang, Fan; Cao, Yu

    2018-02-07

    Exposure to continuous life stress often causes gastrointestinal (GI) symptoms. Studies have shown that neuropeptide Y (NPY) counteracts the biological actions of corticotrophin-releasing factor (CRF), and is involved in the termination of the stress response. However, in chronic repeated restraint stress (CRS) conditions, the actions of NPY on GI motility remain controversial. To evaluate the role of NPY in mediation of the adaptation mechanism and GI motility in CRS conditions, a CRS rat model was set up. Central CRF and NPY expression levels were analyzed, serum corticosterone and NPY concentrations were measured, and GI motor function was evaluated. The NPY Y1 receptor antagonist BIBP-3226 was centrally administered before stress loading, and on days, 1-5, of repeated stress, the central CRF and the serum corticosterone concentrations were measured. In addition, gastric and colonic motor functions were evaluated. The elevated central CRF expression and corticosterone concentration caused by acute stress began to fall after 3 days of stress loading, while central NPY expression and serum NPY began to increase. GI dysmotility also returned to a normal level. Pretreatment with BIBP-3226 abolished the adaptation mechanism, and significantly increased CRF expression and the corticosterone concentration, which resulted in delayed gastric emptying and accelerated fecal pellet output. Inhibited gastric motility and enhanced distal colonic motility were also recorded. CRS-produced adaptation, over-expressed central CRF, and GI dysmotility observed in acute restraint stress were restored to normal levels. Central NPY via the Y1 receptor plays an important role in mediating the adaptation mechanism against chronic stress. Copyright © 2018 Endocrine Society.

  15. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging

    PubMed Central

    Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus

    2015-01-01

    Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740

  16. Dopamine-Secreting Paraganglioma in the Retroperitoneum.

    PubMed

    Matsuda, Yusuke; Kimura, Noriko; Yoshimoto, Takanobu; Sekiguchi, Yoshihiro; Tomoishi, Junzo; Kasahara, Ichiro; Hara, Yoshihito; Ogawa, Yoshihiro

    2017-03-01

    Pheochromocytomas and paragangliomas, which exclusively produce dopamine, are very rare. Herein, we report for the first time a Japanese case of an exclusively dopamine-producing paraganglioma accompanied by detailed immunohistochemical analyses. A 70-year-old Japanese woman was referred to our hospital for functional examination of her left retroperitoneal mass. Her adrenal functions were normal, except for excessive dopamine secretion. After the tumorectomy, her dopamine level normalized. The histopathological diagnosis of the tumor was paraganglioma; this was confirmed by positive immunostaining of chromogranin A (CgA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and succinate dehydrogenase gene subunit B (SDHB). However, the immunostaining of CgA in the tumor cells showed peculiar dot-like staining located corresponding to Golgi complex in the perinuclear area, rather than the diffuse cytoplasmic staining usually observed in epinephrine- or norepinephrine-producing functional pheochromocytomas and paragangliomas. The immunohistochemical results suggested that the tumor cells had sparse neuroendocrine granules in the cytoplasm, resulting in inhibition of catecholamine synthesis from dopamine to norepinephrine in neurosecretory granules. This may be the mechanism responsible for exclusive dopamine secretion in the present case.

  17. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control.

    PubMed

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin

    2009-08-01

    A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Serum Uric Acid, Kidney Function and Acute Ischemic Stroke Outcomes in Elderly Patients: A Single-Cohort, Perspective Study

    PubMed Central

    Falsetti, Lorenzo; Capeci, William; Tarquinio, Nicola; Viticchi, Giovanna; Silvestrini, Mauro; Catozzo, Vania; Fioranelli, Agnese; Buratti, Laura; Pellegrini, Francesco

    2017-01-01

    Chronic kidney disease and hyperuricemia have been associated to an increased risk and a worse prognosis in acute ischemic stroke. Several mechanisms, including platelet dysfunction, coagulation disorders, endothelial dysfunction, inflammation, and an increased risk of atrial fibrillation could be implicated. The role of serum uric acid in this setting is still object of debate. We enrolled all the consecutive patients admitted to our department for acute ischemic stroke. Cox regression analysis was used to evaluate the risk of in-hospital death considering serum uric acid levels and all the comorbidities. In the overall sample, hyperuricemia was independently associated to an increased risk of in-hospital mortality. This effect was stronger in patients with chronic kidney disease while, in the group of patients with normal renal function, the relationship between hyperuricemia and increased stroke mortality was not confirmed. Hyperuricemia could be associated to higher in-hospital mortality for ischemic stroke among elderly patients when affected by kidney disease. Survival does not seem to be affected by hyperuricemia in patients with normal kidney function. PMID:28461885

  19. Renal cell carcinoma: new insights and challenges for a clinician scientist.

    PubMed

    Shingarev, Roman; Jaimes, Edgar A

    2017-08-01

    There is a growing recognition of the complex interplay between renal cell cancer (RCC), kidney function, mechanical reduction of nephron mass, and systemic agents targeting the cancer. Earlier detection of RCC and rising life expectancy of cancer survivors places a greater emphasis on preservation of renal function after cancer resection and during systemic therapy. Unique adverse effects associated with RCC drugs not only help reveal cancer pathophysiology but also expand our knowledge of normal cell signaling and metabolism. In this review, we outline our current understanding of RCC biology and treatment, their bidirectional relationship with kidney function, and unmet research needs in this field. Copyright © 2017 the American Physiological Society.

  20. The cell cycle.

    PubMed

    Singh, N; Lim, R B; Sawyer, M A

    2000-07-01

    The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.

  1. Deregulated expression of connective tissue growth factor (CTGF/CCN2) is linked to poor outcome in human cancer.

    PubMed

    Wells, Julia E; Howlett, Meegan; Cole, Catherine H; Kees, Ursula R

    2015-08-01

    Connective tissue growth factor (CTGF/CCN2) has long been associated with human cancers. The role it plays in these neoplasms is diverse and tumour specific. Recurring patterns in clinical outcome, histological desmoplasia and mechanisms of action have been found. When CTGF is overexpressed compared to low-expressing normal tissue or is underexpressed compared to high-expressing normal tissue, the functional outcome favours tumour survival and disease progression. CTGF acts by altering proliferation, drug resistance, angiogenesis, adhesion and migration contributing to metastasis. The pattern of CTGF expression and tumour response helps to clarify the role of this matricellular protein across a multitude of human cancers. © 2014 UICC.

  2. Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage

    NASA Astrophysics Data System (ADS)

    Han, Weimin; Shillor, Meir; Sofonea, Mircea

    2001-12-01

    We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.

  3. [Results from biomedical aging research. Trends and current examples from immunology].

    PubMed

    Pfister, G; Herndler-Brandstetter, D; Grubeck-Loebenstein, B

    2006-06-01

    The public health of our society is challenged by a continuous increase in life expectancy. Hence, biomedical aging research is enjoying a steadily increasing popularity but also enlightens our understanding of age-related diseases by a number of striking results from basic research. One of the most striking changes that occurs during normal human aging is an overall diminution of immune functions, a phenomenon often termed immunosenescence. Starting from some highly exciting examples from basic immunological research, this article sheds light on which impact normal human aging has on several immune defence mechanisms. In addition, clinical consequences in view of Alzheimer's disease, immunogenicity of vaccines and autoimmune diseases are discussed.

  4. Giant increase in critical current density of K xFe 2-ySe₂ single crystals

    DOE PAGES

    Lei, Hechang; Petrovic, C.

    2011-12-28

    The critical current density Jabc of K xFe 2-ySe₂ single crystals can be enhanced by more than one order of magnitude, up to ~2.1×10⁴ A/cm² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature T c (“δT c pinning”).

  5. Current state of cartilage tissue engineering

    PubMed Central

    Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S

    2003-01-01

    Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283

  6. FUNCTIONS OF VATA (BASED ON CHARAKA) A Passage from Vaatkalaakaleeyam.

    PubMed

    Trivedi, A R

    1982-04-01

    The author has chosen 12(th) Chapter from the Sutra Sthana of this great epic containing 12,000 verses and passages which is replete with materials to revive the whole art of healing even if the whole medical literatures is lost. The passage puts in a nutshell the key role played by Vayu / Vata in the working of the tantra and yantra of the body. Though exploration of the humours is yet to be done by modern physiologists to explain the Ayurvedic Vata which is responsible to no less than 18 functions of the normal body mechanism.

  7. Normative aging of the respiratory system.

    PubMed

    Zeleznik, Jomarie

    2003-02-01

    An absolute quantified normal rate of change and normal range of functions of the respiratory system applicable to all older adults as they age is elusive. Like life expectancy, which is dependent on a cohort effect, the norms of respiratory system function are related to the birth cohort to which a given individual belongs and the age at which the parameter is assessed. No single rate of change can express normal across all age ranges even for those individuals in apparently good health [29]. Analogous to defining risk factors for a disease, determining that a change in anatomy or physiology is not disease requires stringent prospective evaluation for the absence of occult disease and known risk factors for disease prior to concluding that the alteration is inevitable with the normal aging process [19,31]. Additional limitations in quantifying the norms of respiratory function with age are the lack of participation of the oldest adults in studies and the lack of precision and accuracy in these performance-based measurements. The data, although limited, do support a qualitative emphysematous change in lung histology and lung-thorax mechanics. This change plus altered lung volumes influence oxygenation and oxygen consumption. There is no evidence that the changes in the respiratory system with aging impact day-to-day function of older adults, but they may become evident under circumstances when physiologic demand reaches the limits of supply. Despite changes in cholinergic and adrenergic receptor functioning, there is no evidence to suggest altering prescribing these classes of medications for older people. Pioneer physiologists asked the original question "Is there a difference in this measurement for older people?" Researchers in pulmonary medicine, pathology, radiology, epidemiology, and public health have continued to revise the question toward the clinical implications while studying the aging process from their respective viewpoints. Clinicians who need to develop an integrated care plan should neither rely on formulas to "normalize" a measurement for age nor assume that a established predictive value of a diagnostic test done in young adults can be automatically applied to geriatric patients [4]. Rather, the clinical situation should consider that the variability in normal is greater with older age and that all diagnostic tests and care plans should be considered in the context of the patient's symptoms [5].

  8. The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

    PubMed Central

    Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.

    2013-01-01

    ➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204

  9. The concept of the mechanically active guideway as a novel approach to maglev

    NASA Technical Reports Server (NTRS)

    Horwath, T. G.

    1992-01-01

    A maglev system that is suitable for operation in the United States will have to meet unique requirements which determine the major systems characteristics. Maglev configurations presently developed in Germany and Japan are based on conventional maglev concepts and as such do not meet all of the requirements. A novel maglev guideway concept is introduced as a solution. This concept, the mechanically active guideway, is articulated in three degrees of freedom and assumes system functions which normally reside in the maglev vehicle. The mechanically active guideway contains spatially distributed actuators which are energized under computer control at the time of vehicle passage to achieve bank angle adjustment and ride quality control. A typical realization of the concept is outlined.

  10. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain

    PubMed Central

    Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.

    2014-01-01

    The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349

  11. Principle of maximum entropy for reliability analysis in the design of machine components

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  12. Cerebrospinal Fluid Concentration of Key Autophagy Protein Lamp2 Changes Little During Normal Aging

    PubMed Central

    Loeffler, David A.; Klaver, Andrea C.; Coffey, Mary P.; Aasly, Jan O.

    2018-01-01

    Autophagy removes both functional and damaged intracellular macromolecules from cells via lysosomal degradation. Three autophagic mechanisms, namely macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, have been described in mammals. Studies in experimental systems have found macroautophagy and CMA to decrease with normal aging, despite the fact that oxidative stress, which can activate both processes, increases with normal aging. Whether autophagic mechanisms decrease in the human brain during normal aging is unclear. The primary objective of this study was to examine the association of a major autophagy protein, lysosome-associated membrane glycoprotein (lamp2), with age in cerebrospinal fluid (CSF) samples from healthy subjects. Lamp2 consists of three isoforms, lamp2a, 2b and 2c, all of which participate in autophagy. Lamp2’s CSF concentration decreases in Parkinson’s disease (PD) and increases in Alzheimer’s disease (AD), but whether its CSF concentration changes during normal aging has not been investigated. Our secondary objectives were to examine the associations of lamp2’s CSF concentration with CSF levels of the molecular chaperone heat shock 70-kDa protein (HSPA8), which interacts with lamp2a in CMA, and oxidative stress markers 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-isoprostane (8-ISO) and Total Antioxidant Capacity (TAC) in healthy subjects. We found lamp2’s observed associations with these variables to be weak, with all Kendall’s tau-b absolute values ≤0.20. These results suggest that CSF lamp2 concentration changes little during normal aging and does not appear to be associated with HSPA8 or oxidative stress. Further studies are indicated to determine the relationship between CSF lamp2 concentration and brain autophagic processes.

  13. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    PubMed Central

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  14. Right ventricular performance and mass by use of cine MRI late after atrial repair of transposition of the great arteries.

    PubMed

    Lorenz, C H; Walker, E S; Graham, T P; Powers, T A

    1995-11-01

    The long-term adaptation of the right ventricle after atrial repair of transposition of the great arteries (TGA) remains a subject of major concern. Cine magnetic resonance imaging (MRI), with its tomographic capabilities, allows unique quantitative evaluation of both right and left ventricular function and mass. Our purpose was to use MRI and an age-matched normal population to examine the typical late adaptation of the right and left ventricles after atrial repair of TGA. Cine MRI was used to study ventricular function and mass in 22 patients after atrial repair of TGA. Images were obtained in short-axis sections from base to apex to derive normalized right and left ventricular mass (RVM and LVM, g/m2), interventricular septal mass (IVSM, g/m2), RV and LV end-diastolic volumes (EDV, mL/m2), and ejection fractions (EF). Results 8 to 23 years after repair were compared with analysis of 24 age- and sex-matched normal volunteers and revealed markedly elevated RVM, decreased LVM and IVSM, normal RV size, and only mildly depressed RVEF. Only 1 of 22 patients had clinical RV dysfunction, and this patient had increased RVM. Cine MRI allows quantitative evaluation of both RV and LV mass and function late after atrial repair of TGA. Longitudinal studies that include these measurements should prove useful in determining the mechanism of late RV failure in these patients. On the basis of these early data, inadequate hypertrophy does not appear to be the cause of late dysfunction in this patient group.

  15. The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density

    PubMed Central

    Rubin, Clinton T.; Seeherman, Howard; Qin, Yi-Xian; Gross, Ted S.

    2013-01-01

    Distributions of normal strain, shear strain, and strain energy density (SED) were determined across the midshaft of the third metacarpal (MCIII, or cannon bone) of 3 adult thoroughbred horses as a function of speed and gait. A complete characterization of the mechanical demands of the bone made through the stride and from mild through the extremes of locomotion was possible by using three 3-element rosette strain gauges bonded at the diaphyseal midshaft of the MCIII and evaluating the strain output with beam theory and finite element analysis. Mean ± sd values of normal strain, shear strain, and SED increased with speed and peaked during a canter (−3560±380 microstrain, 1760±470 microstrain, and 119±23 kPa, respectively). While the location of these peaks was similar across animals and gaits, the resulting strain distributions across the cortex were consistently nonuniform, establishing between a 73-fold (slow trot) to a 330-fold (canter) disparity between the sites of maximum and minimum SED for each gait cycle. Using strain power density as an estimate of strain history across the bone revealed a 154-fold disparity between peak and minimum at the walk but fell to ∼32-fold at the canter. The nonuniform, minimally varying, strain environment suggests either that bone homeostasis is mediated by magnitude-independent mechanical signals or that the duration of stimuli necessary to establish and maintain tissue integrity is relatively brief, and thus the vast majority of strain information is disregarded.—Rubin, C. T., Seeherman, H., Qin, Y.-X., Gross, T. S., The mechanical consequences of load bearing in the equine third metacarpal across speed and gait: the nonuniform distributions of normal strain, shear strain, and strain energy density. PMID:23355269

  16. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    PubMed

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Oxidative stress, protein modification and Alzheimer disease.

    PubMed

    Tramutola, A; Lanzillotta, C; Perluigi, M; Butterfield, D Allan

    2017-07-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease that affects the elderly population with complex etiology. Many hypotheses have been proposed to explain different causes of AD, but the exact mechanisms remain unclear. In this review, we focus attention on the oxidative-stress hypothesis of neurodegeneration and we discuss redox proteomics approaches to analyze post-mortem human brain from AD brain. Collectively, these studies have provided valuable insights into the molecular mechanisms involved both in the pathogenesis and progression of AD, demonstrating the impairment of numerous cellular processes such as energy production, cellular structure, signal transduction, synaptic function, mitochondrial function, cell cycle progression, and degradative systems. Each of these cellular functions normally contributes to maintain healthy neuronal homeostasis, so the deregulation of one or more of these functions could contribute to the pathology and clinical presentation of AD. In particular, we discuss the evidence demonstrating the oxidation/dysfunction of a number of enzymes specifically involved in energy metabolism that support the view that reduced glucose metabolism and loss of ATP are crucial events triggering neurodegeneration and progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thyroid Function and Obesity

    PubMed Central

    Laurberg, Peter; Knudsen, Nils; Andersen, Stig; Carlé, Allan; Pedersen, Inge Bülow; Karmisholt, Jesper

    2012-01-01

    Important interaction exists between thyroid function, weight control, and obesity. Several mechanisms seem to be involved, and in studies of groups of people the pattern of thyroid function tests depends on the balance of obesity and underlying thyroid disease in the cohort studied. Obese people with a normal thyroid gland tend to have activation of the hypothalamic-pituitary-thyroid axis with higher serum TSH and thyroid hormones in serum. On the other hand, small differences in thyroid function are associated with up to 5 kg difference in body weight. The weight loss after therapy of overt hypothyroidism is caused by excretion of water bound in tissues (myxoedema). Many patients treated for hyperthyroidism experience a gain of more weight than they lost during the active phase of the disease. The mechanism for this excessive weight gain has not been fully elucidated. New studies on the relation between L-T3 therapy and weight control are discussed. The interaction between weight control and therapy of thyroid disease is important to many patients and it should be studied in more detail. PMID:24783015

  19. Musical hallucinations: a brief review of functional neuroimaging findings.

    PubMed

    Bernardini, Francesco; Attademo, Luigi; Blackmon, Karen; Devinsky, Orrin

    2017-10-01

    Musical hallucinations are uncommon phenomena characterized by intrusive and frequently distressful auditory musical percepts without an external source, often associated with hypoacusis, psychiatric illness, focal brain lesion, epilepsy, and intoxication/pharmacology. Their physiological basis is thought to involve diverse mechanisms, including "release" from normal sensory or inhibitory inputs as well as stimulation during seizures, or they can be produced by functional or structural disorders in diverse cortical and subcortical areas. The aim of this review is to further explore their pathophysiology, describing the functional neuroimaging findings regarding musical hallucinations. A literature search of the PubMed electronic database was conducted through to 29 December 2015. Search terms included "musical hallucinations" combined with the names of specific functional neuroimaging techniques. A total of 18 articles, all clinical case reports, providing data on 23 patients, comprised the set we reviewed. Diverse pathological processes and patient populations with musical hallucinations were included in the studies. Converging data from multiple studies suggest that the superior temporal sulcus is the most common site and that activation is the most common mechanism. Further neurobiological research is needed to clarify the pathophysiology of musical hallucinations.

  20. The Impact of Sleep Deprivation on the Brain

    PubMed

    Trošt Bobić, Tatjana; Šečić, Ana; Zavoreo, Iris; Matijević, Valentina; Filipović, Branimir; Kolak, Željka; Bašić Kes, Vanja; Ciliga, Dubravka; Sajković, Dubravka

    2016-09-01

    Each sleep phase is characterized by specific chemical, cellular and anatomic events of vital importance for normal neural functioning. Different forms of sleep deprivation may lead to a decline of cognitive functions in individuals. Studies in this field make a distinction between total sleep deprivation, chronic sleep restriction, and the situation of sleep disruption. Investigations covering the acute effects of sleep deprivation on the brain show that the discovered behavioral deficits in most cases regenerate after two nights of complete sleep. However, some studies done on mice emphasize the possible chronic effects of long-term sleep deprivation or chronic restriction on the occurrence of neurodegenerative diseases such as Alzheimer’s disease and dementia. In order to better understand the acute and chronic effects of sleep loss, the mechanisms of neural adaptation in the situations of insufficient sleep need to be further investigated. Future integrative research on the impact of sleep deprivation on neural functioning measured through the macro level of cognitive functions and the micro molecular and cell level could contribute to more accurate conclusions about the basic cellular mechanisms responsible for the detected behavioral deficits occurring due to sleep deprivation.

  1. Improving executive function using transcranial infrared laser stimulation

    PubMed Central

    Blanco, Nathaniel J.; Maddox, W. Todd; Gonzalez-Lima, F.

    2015-01-01

    Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett & Gonzalez-Lima (2013) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task (WCST) that is considered the gold-standard of executive function and is compromised in normal aging and a number of neuropsychological disorders. We used a laser of a specific wavelength (1064 nm) that photostimulates cytochrome oxidase—the enzyme catalyzing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal aging. PMID:26017772

  2. Improving executive function using transcranial infrared laser stimulation.

    PubMed

    Blanco, Nathaniel J; Maddox, W Todd; Gonzalez-Lima, Francisco

    2017-03-01

    Transcranial infrared laser stimulation is a new non-invasive form of low-level light therapy that may have a wide range of neuropsychological applications. It entails using low-power and high-energy-density infrared light from lasers to increase metabolic energy. Preclinical work showed that this intervention can increase cortical metabolic energy, thereby improving frontal cortex-based memory function in rats. Barrett and Gonzalez-Lima (2013, Neuroscience, 230, 13) discovered that transcranial laser stimulation can enhance sustained attention and short-term memory in humans. We extend this line of work to executive function. Specifically, we ask whether transcranial laser stimulation enhances performance in the Wisconsin Card Sorting Task that is considered the gold standard of executive function and is compromised in normal ageing and a number of neuropsychological disorders. We used a laser of a specific wavelength (1,064 nm) that photostimulates cytochrome oxidase - the enzyme catalysing oxygen consumption for metabolic energy production. Increased cytochrome oxidase activity is considered the primary mechanism of action of this intervention. Participants who received laser treatment made fewer errors and showed improved set-shifting ability relative to placebo controls. These results suggest that transcranial laser stimulation improves executive function and may have exciting potential for treating or preventing deficits resulting from neuropsychological disorders or normal ageing. © 2015 The British Psychological Society.

  3. Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line.

    PubMed

    Chappell, Patrick E; White, Rachel S; Mellon, Pamela L

    2003-12-03

    Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.

  4. A novel Fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells

    PubMed Central

    Kuang, Chaoyuan; Golden, Krista L.; Simon, Claudio R.; Damrath, John; Buttitta, Laura; Gamble, Caitlin E.; Lee, Cheng-Yu

    2014-01-01

    Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis. PMID:24598157

  5. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans

    PubMed Central

    Liedtke, Wolfgang; Tobin, David M.; Bargmann, Cornelia I.; Friedman, Jeffrey M.

    2003-01-01

    All animals detect osmotic and mechanical stimuli, but the molecular basis for these responses is incompletely understood. The vertebrate transient receptor potential channel vanilloid subfamily 4 (TRPV4) (VR-OAC) cation channel has been suggested to be an osmo/mechanosensory channel. To assess its function in vivo, we expressed TRPV4 in Caenorhabditis elegans sensory neurons and examined its ability to generate behavioral responses to sensory stimuli. C. elegans ASH neurons function as polymodal sensory neurons that generate a characteristic escape behavior in response to mechanical, osmotic, or olfactory stimuli. These behaviors require the TRPV channel OSM-9 because osm-9 mutants do not avoid nose touch, high osmolarity, or noxious odors. Expression of mammalian TRPV4 in ASH neurons of osm-9 worms restored avoidance responses to hypertonicity and nose touch, but not the response to odorant repellents. Mutations known to reduce TRPV4 channel activity also reduced its ability to direct nematode avoidance behavior. TRPV4 function in ASH required the endogenous C. elegans osmotic and nose touch avoidance genes ocr-2, odr-3, osm-10, and glr-1, indicating that TRPV4 is integrated into the normal ASH sensory apparatus. The osmotic and mechanical avoidance responses of TRPV4-expressing animals were different in their sensitivity and temperature dependence from the responses of wild-type animals, suggesting that the TRPV4 channel confers its characteristic properties on the transgenic animals' behavior. These results provide evidence that TRPV4 can function as a component of an osmotic/mechanical sensor in vivo. PMID:14581619

  6. Knee functional recovery and limb-to-limb symmetry restoration after anterior cruciate ligament (ACL) rupture and ACL reconstruction

    NASA Astrophysics Data System (ADS)

    Nawasreh, Zakariya Hussein

    Anterior cruciate ligament (ACL) rupture is a common sport injury of young athletes who participate in jumping, cutting, and pivoting activities. Although ACL reconstruction (ACLR) surgery has the goal of enabling athletes to return to preinjury activity levels, treatment results often fall short of this goal. The outcomes after ACLR are variable and less than optimal with low rate of return to preinjury activity level and high risk for second ACL injury. Factors related to the knee functional limitations, strength deficits, and limb-to-limb movement asymmetry may be associated with poor outcomes after ACLR. Additionally, the criteria that are used to determine a patient's readiness to return to the preinjury activity level are undefined which may also be associated with poor outcomes after ACLR. The clinical decision-making to clear patients' for safe and successful return to high physical activities should be based on a universal comprehensive set of objective criteria that ensure normal knee function and limb-to-limb symmetry. A battery of return to activity criteria (RTAC) that emphases normal knee function and limb-to-limb movement symmetry has been constituted to better ensure safe and successful return to preinjury activity level. Yet, only variables related to patients' demographics, concomitant injuries, and treatment measures have been used to predict return to preinjury activity levels after ACLR. However, the ability of RTAC variables that ensure normal knee function and limb movement symmetry to predict the return to participate in the same preinjury activity level after ACLR has not been investigated. In light of this background, the first aim of the present study was to compare functional knee performance-based and patient-reported measures of those who PASS and who FAIL on RTAC at 6 months (6-M) following ACLR with those at 12 months (12-M) and 24 months (24-M) following ACLR and to determine how performance-based and patient-reported measures change over time. Further to investigate whether RTAC variables at 6-M following ACLR predict return to the same preinjury activity level at 12 and 24 months following ACLR. The findings of this work revealed that patients who fail on RTAC 6-M after ACLR are more likely to demonstrate impaired knee function and limb-to-limb movement asymmetry at 12-M and 24-M after ACLR. Additionally, RTAC variables can predict the return to participate in the same preinjury activity level at 12-M and 24-M after ACLR. The combination of RTAC variables explain more than one-fourth to one-third of returning to participate in the same preinjury activity level 12-M and 24-M respectively after ACLR. For athletes choosing non-surgical management, the physical therapy recommendation is to administrate progressive strength training augmented with manual perturbation training. Manual perturbation training is a type of specialized neuromuscular training that includes purposeful manipulations of support surfaces by a therapist. While manual perturbation promotes dynamic knee stability, enhances dynamic knee function, mitigates abnormal movement pattern and normalizes the muscle co-contraction, perturbation training is not widely used as part of the ACL rehabilitation program in the United States. Further, the perturbation training requires extensive physical labor and one-on-one time from the treating therapist. The effect of administering perturbation training using mechanical device as part of the ACL rehabilitation program has not investigated. An automated "Reactive Agility System" device provides perturbation stimuli including multidirectional translations similar to those of manual perturbation training. Administrating the perturbation training using a mechanical device may facilitate the use of controlled and standardized training in a wide range of the rehabilitation clinics and allow administering controlled and standardized training. However, it is unknown whether administering perturbation training using mechanical device provides effects similar to manual perturbation training on knee mechanics, knee functional performance, and neuromuscular activation pattern in patients with ACL rupture. The second aim of this study was to measure whether the mechanical perturbation training provides an effect similar to that of manual perturbation training on gait mechanics, knee functional performance, muscle co-contraction, and neuromuscular activation pattern in athletes with an acute ACL rupture who are managed non-surgically. The findings of this work revealed that mechanical perturbation training provides effects similar to the manual perturbation training on knee kinematics and kinetics during walking and performance-based and patient-reported measures. Gait limb-to-limb asymmetries continue persist after the training regardless of the treatment group which may indicate that patients require participating in an extended rehabilitation program. Additionally, Perturbation training attempts to resolve the neuromuscular deficits and restore a balance in muscle activation and strength between knee flexors and extensors to enhance the dynamic stability of the knee joint. There are moderate to strong relationships between time duration of muscles' activities and the muscle co-contraction that may reflect neuromuscular adaptations to provide dynamic knee stability.

  7. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development.

    PubMed

    Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien; Aarnio-Peterson, Megan; Sanman, Laura; Archer-Hartmann, Stephanie; Azadi, Parastoo; Bogyo, Matthew; Steet, Richard A

    2018-03-13

    Cysteine cathepsins play roles during development and disease beyond their function in lysosomal protein turnover. Here, we leverage a fluorescent activity-based probe (ABP), BMV109, to track cysteine cathepsins in normal and diseased zebrafish embryos. Using this probe in a model of mucolipidosis II, we show that loss of carbohydrate-dependent lysosomal sorting alters the activity of several cathepsin proteases. The data support a pathogenic mechanism where TGF-ß signals enhance the proteolytic processing of pro-Ctsk by modulating the expression of chondroitin 4-sulfate (C4-S). In MLII, elevated C4-S corresponds with TGF-ß-mediated increases in chst11 expression. Inhibiting chst11 impairs the proteolytic activation of Ctsk and alleviates the MLII phenotypes. These findings uncover a regulatory loop between TGF-ß signaling and Ctsk activation that is altered in the context of lysosomal disease. This work highlights the power of ABPs to identify mechanisms underlying pathogenic development in living animals. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Disrupted cortical function underlies behavior dysfunction due to social isolation

    PubMed Central

    Miyazaki, Tomoyuki; Takase, Kenkichi; Nakajima, Waki; Tada, Hirobumi; Ohya, Daisuke; Sano, Akane; Goto, Takahisa; Hirase, Hajime; Malinow, Roberto; Takahashi, Takuya

    2012-01-01

    Stressful events during early childhood can have a profound lifelong influence on emotional and cognitive behaviors. However, the mechanisms by which stress affects neonatal brain circuit formation are poorly understood. Here, we show that neonatal social isolation disrupts molecular, cellular, and circuit developmental processes, leading to behavioral dysfunction. Neonatal isolation prevented long-term potentiation and experience-dependent synaptic trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors normally occurring during circuit formation in the rodent barrel cortex. This inhibition of AMPA receptor trafficking was mediated by an increase of the stress glucocorticoid hormone and was associated with reduced calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling, resulting in attenuated whisker sensitivity at the cortex. These effects led to defects in whisker-dependent behavior in juvenile animals. These results indicate that neonatal social isolation alters neuronal plasticity mechanisms and perturbs the initial establishment of a normal cortical circuit, which potentially explains the long-lasting behavioral effects of neonatal stress. PMID:22706303

  9. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique

    NASA Astrophysics Data System (ADS)

    Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan

    2014-06-01

    Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.

  10. Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 Mw 7.0 normal-fault and 2013 Santa Cruz Mw 8.0 megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Mohammad; Harada, Tomoya; Satake, Kenji; Ishibe, Takeo; Gusman, Aditya Riadi

    2016-05-01

    The July 2015 Mw 7.0 Solomon Islands tsunamigenic earthquake occurred ~40 km north of the February 2013 Mw 8.0 Santa Cruz earthquake. The proximity of the two epicenters provided unique opportunities for a comparative study of their source mechanisms and tsunami generation. The 2013 earthquake was an interplate event having a thrust focal mechanism at a depth of 30 km while the 2015 event was a normal-fault earthquake occurring at a shallow depth of 10 km in the overriding Pacific Plate. A combined use of tsunami and teleseismic data from the 2015 event revealed the north dipping fault plane and a rupture velocity of 3.6 km/s. Stress transfer analysis revealed that the 2015 earthquake occurred in a region with increased Coulomb stress following the 2013 earthquake. Spectral deconvolution, assuming the 2015 tsunami as empirical Green's function, indicated the source periods of the 2013 Santa Cruz tsunami as 10 and 22 min.

  11. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  12. Computational approaches to understand cardiac electrophysiology and arrhythmias

    PubMed Central

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.

    2012-01-01

    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  13. Reduced noise susceptibility in littermate offspring from heterozygous animals of the German waltzing guinea pig.

    PubMed

    Skjönsberg, Åsa; Mannström, Paula

    2015-07-08

    The German waltzing guinea pig is a spontaneously mutated strain with severe auditory and vestibular impairment caused by a so far unknown genetic mutation. The animals are born deaf and show a circling behavior. The heterozygote animals of this guinea pig strain have functionally normal hearing and balance. However, these animals have, in earlier studies, shown an increased resistance to noise compared with normal wild-type guinea pigs. In the present study, we explored the functional hearing with auditory brainstem response thresholds before and at different time points after noise exposure. Symptom-free littermates from heterozygote couples of the German waltzing guinea pigs were exclusively used for the study, which, after the hearing test, were sent back for breeding to confirm their genotype (i.e. heterozygote or normal). The aim of this paper was to ascertain that the previously shown reduced susceptibility to noise trauma in the heterozygote animals of the German waltzing guinea pig was also evident when littermates were used as control animals. The findings are important for further analysis of the heterozygote animals of this strain and for future investigations of the underlying mechanisms behind the diverse susceptibility to exposures of loud sound.

  14. Functional neuroimaging of normal aging: Declining brain, adapting brain.

    PubMed

    Sugiura, Motoaki

    2016-09-01

    Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function

    PubMed Central

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J.; He, Wei; Voss, Oliver H.; Gonzalez-Mejia, M. Elba; Guttridge, Denis C.; Grotewold, Erich; Doseff, Andrea I.

    2016-01-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo. PMID:26938530

  16. Successful outcome of transplant of kidneys recovered from a brain-dead liver transplant recipient: case report.

    PubMed

    Domagała, Piotr; Kwiatkowski, Artur; Drozdowski, Jakub; Ostrowski, Krzysztof; Wszola, Michal; Diuwe, Piotr; Durlik, Magdalena; Paczek, Leszek; Chmura, Andrzej

    2012-12-01

    Few reports describing the use of organs donated by transplant recipients have been published. In this case report, kidneys procured from a brain-dead liver recipient were transplanted successfully. A 21-year-old man was referred for liver transplant after an overdose of acetaminophen. The patient's kidney function was initially normal, with proper urine production and normal kidney laboratory parameters. On the third day after admission, the patient's kidney laboratory parameters became elevated and hepatic encephalopathy requiring mechanical ventilation developed. An orthotopic liver transplant was performed the next day. The patient did not recover consciousness, and brain death was diagnosed on the third day after the liver transplant surgery. The maximum serum concentration of creatinine was 5.8 mg/dL (513 μmol/L) before kidney recovery, and urine production was normal. The kidneys were recovered with organ-perfusion support and were preserved by using machine perfusion. The kidneys were transplanted into 2 male recipients. Twelve months after transplant, the recipients remained in good health with satisfactory kidney function. This case demonstrates that transplanting kidneys recovered from liver transplant recipients is possible and beneficial, thus expanding the pool of potential donors.

  17. Alveolar ridge reduction after tooth extraction in adolescents: an animal study

    PubMed Central

    Sun, Zongyang; Herring, Susan W.; Tee, Boon Ching; Gales, Jordan

    2013-01-01

    Objective The mechanism for tooth extraction induced residual alveolar ridge reduction (RRR) during adolescence is poorly understood. This study investigated the alveolar bone morphology, growth, resorption and functional loading at normal and extraction sites using an adolescent pig model. Design Sixteen 3-month-old pigs were divided into two groups – immediate post-extraction (IE) and 6-week post-extraction (SE). The IE group received an extraction of one deciduous mandibular molar, immediately followed by a final experiment to record masseter muscle EMGs and strains from the buccal surface of the extraction and contralateral non-extraction sites during function (mastication). The SE group was given the same tooth extraction, then kept for 6 weeks before the same final functional recording as the IE group. Both groups also received baseline (pre-extraction) EMGs and fluorescent vital stains 10 and 3 days before the final functional recording. Immediately after the final functional recording, animals were euthanized and alveolar bone specimens from extraction and contralateral non-extraction sites were collected and used to analyze alveolar bone morphology, apposition and resorption based on fluorescent and hematoxylin and eosin stained histological sections. Results At control sites (IE-extraction, IE-non-extraction and SE-non-extraction), the alveolar ridges grew gingivally and buccally. Bone formation characterized the buccal surface and lingual bundle bone, whereas resorption characterized the lingual surface and buccal bundle bone. The SE-extraction sites showed three major alterations: convergence of the buccal and lingual gingival crests, loss of apposition on the lingual bundle bone, and decelerated growth at the entire buccal surface. These alterations likely resulted from redirected crestal growth as part of the socket healing process, loss of tongue pressure to the lingual side of the teeth which normally provides mechanical stimulation for dental arch expansion, and masticatory underloading during the initial post-extraction period, respectively. Conclusions These data indicate that the initial phase of RRR in adolescents is a product of modified growth, not resorption, possibly because of decreased mechanical stimulation at the extraction site. PMID:23380583

  18. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.

    PubMed

    Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne

    2017-10-01

    The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Normal force and drag force in magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.

    2009-08-01

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.

  20. Normal Force and Drag Force in Magnetorheological Finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.

    2010-01-13

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less

  1. A comparative study on the mechanical energy of the normal, ACL, osteoarthritis, and Parkinson subjects.

    PubMed

    Bahreinizad, Hossein; Salimi Bani, Milad; Hasani, Mojtaba; Karimi, Mohammad Taghi; Sharifmoradi, Keyvan; Karimi, Alireza

    2017-08-09

    The influence of various musculoskeletal disorders has been evaluated using different kinetic and kinematic parameters. But the efficiency of walking can be evaluated by measuring the effort of the subject, or by other words the energy that is required to walk. The aim of this study was to identify mechanical energy differences between the normal and pathological groups. Four groups of 15 healthy subjects, 13 Parkinson subjects, 4 osteoarthritis subjects, and 4 ACL reconstructed subjects have participated in this study. The motions of foot, shank and thigh were recorded using a three dimensional motion analysis system. The kinetic, potential and total mechanical energy of each segment was calculated using 3D markers positions and anthropometric measurements. Maximum value and sample entropy of energies was compared between the normal and abnormal subjects. Maximum value of potential energy of OA subjects was lower than the normal subjects. Furthermore, sample entropy of mechanical energy for Parkinson subjects was low in comparison to the normal subjects while sample entropy of mechanical energy for the ACL subjects was higher than that of the normal subjects. Findings of this study suggested that the subjects with different abilities show different mechanical energy during walking.

  2. Intrinsic disorder in scaffold proteins: Getting more from less

    PubMed Central

    Cortese, Marc S.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Regulation, recognition and cell signaling involve the coordinated actions of many players. Signaling scaffolds, with their ability to bring together proteins belonging to common and/or interlinked pathways, play crucial roles in orchestrating numerous events by coordinating specific interactions among signaling proteins. This review examines the roles of intrinsic disorder (ID) in signaling scaffold protein function. Several well-characterized scaffold proteins with structurally and functionally characterized ID regions are used here to illustrate the importance of ID for scaffolding function. These examples include scaffolds that are mostly disordered, only partially disordered or those in which the ID resides in a scaffold partner. Specific scaffolds discussed include RNase, voltage-activated potassium channels, axin, BRCA1, GSK-3β, p53, Ste5, titin, Fus3, BRCA1, Titin, MAP2, D-AKAP2 and AKAP250. Among the mechanisms discussed are: molecular recognition features, fly-casting, ease of encounter complex formation, structural isolation of partners, modulation of interactions between bound partners, masking of intramolecular interaction sites, maximized interaction surface per residue, toleration of high evolutionary rates, binding site overlap, allosteric modification, palindromic binding, reduced constraints for alternative splicing, efficient regulation via posttranslational modification, efficient regulation via rapid degradation, protection of normally solvent-exposed sites, enhancing the plasticity of interaction and molecular crowding. We conclude that ID can enhance scaffold function by a diverse array of mechanisms. In other words, scaffold proteins utilize several ID-facilitated mechanisms to enhance function, and by doing so, get more functionality from less structure. PMID:18619997

  3. ΔΔPT: a comprehensive toolbox for the analysis of protein motion

    PubMed Central

    2013-01-01

    Background Normal Mode Analysis is one of the most successful techniques for studying motions in proteins and macromolecules. It can provide information on the mechanism of protein functions, used to aid crystallography and NMR data reconstruction, and calculate protein free energies. Results ΔΔPT is a toolbox allowing calculation of elastic network models and principle component analysis. It allows the analysis of pdb files or trajectories taken from; Gromacs, Amber, and DL_POLY. As well as calculation of the normal modes it also allows comparison of the modes with experimental protein motion, variation of modes with mutation or ligand binding, and calculation of molecular dynamic entropies. Conclusions This toolbox makes the respective tools available to a wide community of potential NMA users, and allows them unrivalled ability to analyse normal modes using a variety of techniques and current software. PMID:23758746

  4. Pathophysiology of immobilization osteoporosis

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; DiCarlo, E. F.

    1995-01-01

    The reduction of gravity-related forces on the skeleton creates a type of osteoporosis that is unique because its severity is dependent on the mechanical stress bearing function of the skeleton as well as the length of time that the forces are absent or reduced. Bones that bear weight under normal conditions are more affected than bones that normally do not bear weight. The cytokine environment and the cells in the affected bones are altered in time so that stem cells produce fewer new cells and the differentiated cells tend to be less active. These alterations in the local environment of the affected parts appear to resemble those of age- and disease-associated systemic forms of osteoporosis. The osteoporosis produced as a result of the loss of normal activity however, appears to be at least partially reversible through remobilization, strenuous exercise, and--possibly in the future--cytokine therapy.

  5. Increased anti-Mullerian hormone levels and ovarian size in a subgroup of women with functional hypothalamic amenorrhea: further identification of the link between polycystic ovary syndrome and functional hypothalamic amenorrhea.

    PubMed

    Carmina, Enrico; Fruzzetti, Franca; Lobo, Roger A

    2016-06-01

    Functional hypothalamic amenorrhea is a disorder characterized by cessation of menstrual cycles in the absence of organic disease. In most patients, it occurs in adult life after a stressful event and may be related to a condition of mild chronic energy deprivation. The endocrine pattern is characterized by low estrogen levels with an absent response to a progestogen challenge test and low-normal gonadotropin levels. A few studies have shown that some of these women may have some features of polycystic ovary syndrome; these features include an increased androgen response to gonadotropins, increased anti-Mullerian hormone levels, and altered ovarian morphology or increased ovarian size. These findings suggest a link between these 2 completely different disorders: functional hypothalamic amenorrhea and polycystic ovary syndrome. The importance of the possible coexistence of these disorders in some women is important for follow-up of these women and in their treatment if they desire to become pregnant. To determine whether a subgroup of well-characterized women with functional hypothalamic amenorrhea may have the coexistence of polycystic ovary syndrome. Retrospective analysis of women with functional hypothalamic amenorrhea. Forty consecutive patients and 28 normal age-matched control patients were studied. Blood was obtained for serum anti-Mullerian hormone, androgens, and other hormone levels and all women had ovarian ultrasonographic measurements. In the entire group of women with functional hypothalamic amenorrhea, anti-Mullerian hormone and ovarian volume were greater than in control patients. In 13 patients (32.5%), anti-Mullerian hormone was elevated (>4.7 ng/mL, levels consistent with polycystic ovary syndrome) and in this group, ovarian volume was significantly greater than in the remaining patients with functional hypothalamic amenorrhea. Four of the 13 women with functional hypothalamic amenorrhea who had elevated anti-Mullerian hormone levels (10%), also had ovarian volume ≥10 cc (consistent with polycystic ovarian syndrome). In these patients all studied androgens were in the upper normal range or slightly elevated despite low-normal gonadotropins; mean total testosterone was significantly greater than in the other patients with increased anti-Mullerian hormone values with normal ovarian size (P<.05.) Six other women with functional hypothalamic amenorrhea who had increased anti-Mullerian hormone also had isolated elevations of some androgen levels, but mean testosterone and ovarian size were normal. As many as 10% of women with functional hypothalamic amenorrhea may have the coexistence of polycystic ovary syndrome. Because no signs or symptoms of this disorder were reported by these women before the appearance of the amenorrhea, it does not seem to be a coincidental relationship. The possibility that functional hypothalamic amenorrhea favors the appearance of polycystic ovary syndrome or more likely, that a mild (ovulatory) phenotype of polycystic ovary syndrome predisposes to the development of functional hypothalamic amenorrhea should be considered. Possible mechanisms are unclear and need to be investigated but may involve common vulnerabilities such as psychologic and mood disturbances. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Reflex epileptic mechanisms in humans: Lessons about natural ictogenesis.

    PubMed

    Wolf, Peter

    2017-06-01

    The definition of reflex epileptic seizures is that specific seizure types can be triggered by certain sensory or cognitive stimuli. Simple triggers are sensory (most often visual, more rarely tactile or proprioceptive; simple audiogenic triggers in humans are practically nonexistent) and act within seconds, whereas complex triggers like praxis, reading and talking, and music are mostly cognitive and work within minutes. The constant relation between a qualitatively, often even quantitatively, well-defined stimulus and a specific epileptic response provides unique possibilities to investigate seizure generation in natural human epilepsies. For several reflex epileptic mechanisms (REMs), this has been done. Reflex epileptic mechanisms have been reported less often in focal lesional epilepsies than in idiopathic "generalized" epilepsies (IGEs) which are primarily genetically determined. The key syndrome of IGE is juvenile myoclonic epilepsy (JME), where more than half of the patients present reflex epileptic traits (photosensitivity, eye closure sensitivity, praxis induction, and language-induced orofacial reflex myocloni). Findings with multimodal investigations of cerebral function concur to indicate that ictogenic mechanisms in IGEs largely (ab)use preexisting functional anatomic networks (CNS subsystems) normally serving highly complex physiological functions (e.g., deliberate complex actions and linguistic communication) which supports the concept of system epilepsy. Whereas REMs in IGEs, thus, are primarily function-related, in focal epilepsies, they are primarily localization-related. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling

    NASA Astrophysics Data System (ADS)

    Fanelli, Francesca; De Benedetti, Pier G.

    2006-08-01

    Herein we make an overview of the results of our computational experiments aimed at gaining insight into the molecular mechanisms of GPCR functioning either in their normal conditions or when hit by gain-of-function or loss-of-function mutations. Molecular simulations of a number of GPCRs in their wild type and mutated as well as free and ligand-bound forms were instrumental in inferring the structural features, which differentiate the mutation- and ligand-induced active from the inactive states. These features essentially reside in the interaction pattern of the E/DRY arginine and in the degree of solvent exposure of selected cytosolic domains. Indeed, the active states differ from the inactive ones in the weakening of the interactions made by the highly conserved arginine and in the increase in solvent accessibility of the cytosolic interface between helices 3 and 6. Where possible, the structural hallmarks of the active and inactive receptor states are translated into molecular descriptors useful for in silico functional screening of novel receptor mutants or ligands. Computational modeling of the supramolecular organization of GPCRs and their intracellular partners is the current challenge toward a deep understanding of their functioning mechanisms.

  8. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  9. Torque sensor

    NASA Astrophysics Data System (ADS)

    Fgeppert, E.

    1984-09-01

    Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.

  10. Innate T cell responses in human gut.

    PubMed

    Meresse, Bertrand; Cerf-Bensussan, Nadine

    2009-06-01

    One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.

  11. The problem of chondromalacia patellae.

    PubMed

    Outerbridge, R E; Dunlop, J A

    1975-01-01

    Daily activity subjects the human patella to forces often several times the individual's body weight. Healthy cartilage can adjust to these forces if they are not too excessive, concentrated, or repetitive. Such abnormal stresses most frequently occur with the disturbance of normal patellar mechanical function. Chondromalacia patellae is the result common to a wide variety of unusual traumata. Treatment must be directed primarily not toward the damaged patellar cartilage but toward a correction of the mechanical abnormality causing it. Until proven otherwise, a young female complaining of knee joint pain, particularly if bilateral, should be considered as suffering from a subluxating patella, with or without chondromalacia patellae.

  12. [Sodium ferulate treatment and interventional mechanism reverse erectile dysfunction in streptozotocin-induced diabetic rats].

    PubMed

    Xu, Xiao-Hong; Tan, Fu-Qing; Zhao, Tong-Feng; Hu, Hua; Xiao, Kun; Gu, Wei

    2009-06-23

    To investigate the effect and mechanism of sodium ferulate (SF) on reversing erectile dysfunction in diabetes mellitus (DM) rats. Forty-four male adult Sprague-Dawley rats were induced for diabetes by an intraperitoneal injection of streptozotocin. Then the successful models were randomly divided into DM + SF group and DM group (22 rats each respectively). The rats in DM +SF group were treated with sodium ferulate (100 mg x kg(-1) x d(-1)) through a daily gastric lavage. At Week 12, the erectile function of all rats was evaluated and serum samples were harvested. The SOD, CAT, NOS, MDA and NO levels in corpus cavernosum and serum were all measured. The pathologic change in penile cavernous body was observed microscopically. The diabetic rat models were successfully established. The erectile function was much better in normal control group and DM + SF group than that in DM group. And the penile erection rates in three groups were 100%, 66% and 22% respectively. The activity levels of SOD, CAT and NOS were markedly decreased in DM group as compared to those in normal control group and DM + SF group (P < 0.01). The NO content was approximately equal in normal control group and DM + SF group (112 +/- 28) nmol/ml vs (137 +/- 25) nmol/ml. But both were much higher than that in DM group (56 +/- 10) nmol/ml, both P < 0.01. The MDA content was markedly increased in DM group as compared to those in normal control group and DM + SF group (both P < 0.01). Microscopically, muscle fibers in penile cavernous body arranged disorderly, muscular mantle damaged and desmoplasia scattered among muscle fibers in DM group. Sodium ferulate may play interventional roles in reversing diabetic erectile dysfunction through metabolic regulation of free radicals, antagonism of oxidative insults and enhancement of NO production.

  13. Transcriptome analysis of duck liver and identification of differentially expressed transcripts in response to duck hepatitis A virus genotype C infection.

    PubMed

    Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua

    2013-01-01

    Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.

  14. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    PubMed

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  15. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated through distinct biochemical mechanisms

    PubMed Central

    Huang, Chuanxin; Hatzi, Katerina; Melnick, Ari

    2013-01-01

    The transcription factor Bcl-6 orchestrates the germinal center reaction through its actions in B and T cells, and regulates inflammatory signaling in macrophages. We report that genetic replacement by mutant Bcl-6, which cannot bind corepressors to its BTB domain, disrupted germinal center formation and immunoglobulin affinity maturation, due to a defect in B cell proliferation and survival. In contrast, BTB loss of function had no effect on T follicular helper cell differentiation and function, nor other T helper subsets. Bcl6 null mice displayed a lethal inflammatory phenotype, whereas BTB mutant mice experienced normal healthy lives with no inflammation. Bcl-6 repression of inflammatory responses in macrophages was accordingly independent of the BTB domain repressor function. Bcl-6 thus mediates its actions through lineage-specific biochemical functions. PMID:23455674

  16. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task.

    PubMed

    Becker, Suzanna; Lim, Jean

    2003-08-15

    Several decades of research into the function of the frontal lobes in brain-damaged patients, and more recently in intact individuals using function brain imaging, has delineated the complex executive functions of the frontal cortex. And yet, the mechanisms by which the brain achieves these functions remain poorly understood. Here, we present a computational model of the role of the prefrontal cortex (PFC) in controlled memory use that may help to shed light on the mechanisms underlying one aspect of frontal control: the development and deployment of recall strategies. The model accounts for interactions between the PFC and medial temporal lobe in strategic memory use. The PFC self-organizes its own mnemonic codes using internally derived performance measures. These mnemonic codes serve as retrieval cues by biasing retrieval in the medial temporal lobe memory system. We present data from three simulation experiments that demonstrate strategic encoding and retrieval in the free recall of categorized lists of words. Experiment 1 compares the performance of the model with two control networks to evaluate the contribution of various components of the model. Experiment 2 compares the performance of normal and frontally lesioned models to data from several studies using frontally intact and frontally lesioned individuals, as well as normal, healthy individuals under conditions of divided attention. Experiment 3 compares the model's performance on the recall of blocked and unblocked categorized lists of words to data from Stuss et al. (1994) for individuals with control and frontal lobe lesions. Overall, our model captures a number of aspects of human performance on free recall tasks: an increase in total words recalled and in semantic clustering scores across trials, superiority on blocked lists of related items compared to unblocked lists of related items, and similar patterns of performance across trials in the normal and frontally lesioned models, with poorer overall performance of the lesioned models on all measures. The model also has a number of shortcomings, in light of which we suggest extensions to the model that would enable more sophisticated forms of strategic control.

  17. MeCP2 Deficiency Leads to Loss of Glial Kir4.1

    PubMed Central

    Cuddapah, Vishnu A.; Pacheco, Natasha L.; Holt, Leanne M.; Percy, Alan K.

    2018-01-01

    Abstract Rett syndrome (RTT) is an X-linked neurodevelopmental disorder usually caused by mutations in methyl-CpG-binding protein 2 (MeCP2). RTT is typified by apparently normal development until 6–18 mo of age, when motor and communicative skills regress and hand stereotypies, autonomic symptoms, and seizures present. Restoration of MeCP2 function selectively to astrocytes reversed several deficits in a murine model of RTT, but the mechanism of this rescue is unknown. Astrocytes carry out many essential functions required for normal brain functioning, including extracellular K+ buffering. Kir4.1, an inwardly rectifying K+ channel, is largely responsible for the channel-mediated K+ regulation by astrocytes. Loss-of-function mutations in Kir4.1 in human patients result in a severe neurodevelopmental disorder termed EAST or SESAME syndrome. Here, we evaluated astrocytic Kir4.1 expression in a murine model of Rett syndrome. We demonstrate by chromatin immunoprecipitation analysis that Kir4.1 is a direct molecular target of MeCP2. Astrocytes from Mecp2-deficient mice express significantly less Kir4.1 mRNA and protein, which translates into a >50% deficiency in Ba2+-sensitive Kir4.1-mediated currents, and impaired extracellular potassium dynamics. By examining astrocytes in isolation, we demonstrate that loss of Kir4.1 is cell autonomous. Assessment through postnatal development revealed that Kir4.1 expression in Mecp2-deficient animals never reaches adult, wild-type levels, consistent with a neurodevelopmental disorder. These are the first data implicating a direct MeCP2 molecular target in astrocytes and provide novel mechanistic insight explaining a potential mechanism by which astrocytic dysfunction may contribute to RTT. PMID:29464197

  18. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing

    PubMed Central

    Seals, Douglas R.

    2016-01-01

    Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062

  19. Endoreplication and polyploidy: insights into development and disease

    PubMed Central

    Fox, Donald T.; Duronio, Robert J.

    2013-01-01

    Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer. PMID:23222436

  20. Pleural effusions and diseases of the pleura.

    PubMed

    Noone, K E

    1985-09-01

    There are four factors that govern fluid movement to or from the pleural space: hydrostatic pressure, colloid osmotic pressure, filtration coefficient, and lymphatic function. When any of these factors are altered, fluid accumulates within the pleural space. Congestive heart failure, pancreatitis, neoplasia, hypoalbuminemia, and pulmonary thromboembolism can evoke pleural effusions by altering normal fluid transport mechanisms. This approach to pleural effusion helps to explain fluid accumulation. Chylothorax, hemothorax, and empyema are also covered in the article.

  1. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  2. Characteristics of single Ca(2+) channel kinetics in feline hypertrophied ventricular myocytes.

    PubMed

    Yang, Xiangjun; Hui, Jie; Jiang, Tingbo; Song, Jianping; Liu, Zhihua; Jiang, Wenping

    2002-04-01

    To explore the mechanism underlying the prolongation of action potential and delayed inactivation of the L-type Ca(2+) (I(Ca, L)) current in a feline model of left ventricular system hypertension and concomitant hypertrophy. Single Ca(2+) channel properties in myocytes isolated from normal and pressure overloaded cat left ventricles were studied, using patch-clamp techniques. Left ventricular pressure overload was induced by partial ligation of the ascending aorta for 4 - 6 weeks. The amplitude of single Ca(2+) channel current evoked by depolarizing pulses from -40 mV to 0 mV was 1.02 +/- 0.03 pA in normal cells and 1.05 +/- 0.03 pA in hypertrophied cells, and there was no difference in single channel current-voltage relationships between the groups since slope conductance was 26.2 +/- 1.0 pS in normal and hypertrophied cells, respectively. Peak amplitudes of the ensemble-averaged single Ca(2+) channel currents were not different between the two groups of cells. However, the amplitude of this averaged current at the end of the clamp pulse was significantly larger in hypertrophied cells than in normal cells. Open-time histograms revealed that open-time distribution was fitted by a single exponential function in channels of normal cells and by a two exponential function in channels of hypertrophied cells. The number of long-lasting openings was increased in channels of hypertrophied cells, and therefore the calculated mean open time of the channel was significantly longer compared to normal controls. Kinetic changes in the Ca(2+) channel may underlie both hypertrophy-associated delayed inactivation of the Ca(2+) current and, in part, the pressure overload-induced action potential lengthening in this cat model of ventricular left systolic hypertension and hypertrophy.

  3. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

    PubMed

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-11-10

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  4. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    PubMed Central

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-01-01

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902

  5. Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

    PubMed Central

    2011-01-01

    Background Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. Methods A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. Results Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for Err, Ecc, and Ell, respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for Erc, Erl, and Ecl, respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. Conclusions Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour. PMID:22208954

  6. [The mechanism of phenoptosis: 2. Hayflick limit is caused by the programmed attenuation of bioenergetics].

    PubMed

    Trubitsin, A G

    2010-01-01

    This article continues earlier started theme on a substantiation of the programmed aging mechanism (phenoptosis). The concept underlying this mechanism is that the life represents a lot of the interconnected physical and chemical processes moving by the bioenergetics. The gradual programmed decrease of the level of bioenergetics causes the slow and coordinated attenuation of all physiological functions, i.e. aging. For a convincing substantiation of such mechanism it is necessary to show, how attenuation of bioenergetics causes the basic nocuous processes accompanying aging. It is shown earlier that the age dependent decrease in level of bioenergetics causes increase in production of reactive oxygen species by mitochondria and decrease in overall level of protein synthesis. The proof that Hayflick limit is also caused by the decrease in level of bioenergetics is presented in this article. Decrease in level of bioenergetics below certain critical level deprives a cell the ability to pass the restriction point of G1-phase of proliferative cycle. The inhibitor of cyclin-dependent kinase, p27, prevents the passage through this critical point in all normal cells. During division of normal somatic cells p27 is removed by cyclin E-Cdk2 complex. Interaction p27 with cyclin E-Cdk2 complex can have two consequences. At the normal physiological level of bioenergetics the cyclin E-Cdk2 phosphorylates p27, then the latter is destroyed by proteolytic enzymes--the cell enters in S-phase. When the programme decreases the bioenergetics level below certain value the cyclin E-Cdk2 becomes the target for p27. As a result the inhibitor evacuation stops and restriction point becomes closed--a cell enters irreversible proliferative rest.

  7. Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction[C][W][OA

    PubMed Central

    Clair, Bruno; Alméras, Tancrède; Pilate, Gilles; Jullien, Delphine; Sugiyama, Junji; Riekel, Christian

    2011-01-01

    Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring the long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa ‘I45-51’). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 layer and the outer part of the S2 layer. Subsequent layers were found with a lower microfibril angle (MFA), corresponding to the inner part of the S2 layer of normal wood (MFA approximately 10°) and the G layer of tension wood (MFA approximately 0°). In tension wood only, this steep decrease in MFA occurred together with an increase in cellulose lattice spacing. The relative increase in lattice spacing was found close to the usual value of maturation strains. Analysis showed that this increase in lattice spacing is at least partly due to mechanical stress induced in cellulose microfibrils soon after their deposition, suggesting that the G layer directly generates and supports the tensile maturation stress in poplar tension wood. PMID:21068364

  8. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model

    PubMed Central

    Diehl, Peter U.; Schaette, Roland

    2015-01-01

    Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277

  9. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.

    PubMed

    Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L

    2010-06-01

    Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. [Combined pulmonary fibrosis and emphysema (CPFE)--limitation of usual lung function test and challenge at practice].

    PubMed

    Takai, Daiya

    2014-12-01

    Spirometry and the flow-volume curve test are commonly performed lung function tests. However, a unique clinical entity occasionally shows almost normal data in these tests, and is therefore missed on screening tests. The clinical entity of combined pulmonary emphysema and pulmdoary fibrosis was recognized and documented in the 90's in Japan, the USA, and Europe. Typical emphysema shows obstructive disorders, and pulmonary fibrosis shows restrictive disorders. Thus, the combination of both should lead to a combined disorder pattern in lung function tests, but this is not the case. In 2005, Cottin reported and redefined this combination of emphysema and fibrosis of the lung as "Combined Pulmonary Fibrosis and Emphysema" (CPFE). The patients are typically heavily smoking males who show an almost normal lung function. The upper lobe of these patients usually shows severe emphysema, which contributes to a static volume and a late phase in the forced volume test. On the other hand their lower lobe shows fibrotic change. The fibrotic portion contributes to early phase flow in the flow-volume curve. These mechanisms are a reason for the normal pattern appearance in lung function tests in CPFE patients. As a matter of course, these patients have damaged upper and lower lobes: their diffusing capacity of the lung shows a low performance, their saturation of blood hemoglobin decreases soon after light exercise, and their KL-6 (a blood marker of pulmonary fibrosis) usually shows a high value. They are considered a high risk group regarding complications of post-surgical treatment. Thus, when medical technologists identify suspicious cases, they should advise doctors to add diffusing capacity and KL-6 tests. (Review).

  11. Ventral Pallidum Roles in Reward and Motivation

    PubMed Central

    Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.

    2008-01-01

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic processing of many rewards. PMID:18955088

  12. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    PubMed

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  14. Functional dynamics within the human ribosome regulate the rate of active protein synthesis

    PubMed Central

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.

    2015-01-01

    SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721

  15. Nuclear Mechanics in Disease

    PubMed Central

    Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan

    2015-01-01

    Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143

  16. Redox signaling in cardiovascular health and disease

    PubMed Central

    Madamanchi, Nageswara R.; Runge, Marschall S.

    2013-01-01

    Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyper-activation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia–reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD. PMID:23583330

  17. Epigenetics in prostate cancer.

    PubMed

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  18. A Novel Imaging Analysis Method for Capturing Pharyngeal Constriction During Swallowing.

    PubMed

    Schwertner, Ryan W; Garand, Kendrea L; Pearson, William G

    2016-01-01

    Videofluoroscopic imaging of swallowing known as the Modified Barium Study (MBS) is the standard of care for assessing swallowing difficulty. While the clinical purpose of this radiographic imaging is to primarily assess aspiration risk, valuable biomechanical data is embedded in these studies. Computational analysis of swallowing mechanics (CASM) is an established research methodology for assessing multiple interactions of swallowing mechanics based on coordinates mapping muscle function including hyolaryngeal movement, pharyngeal shortening, tongue base retraction, and extension of the head and neck, however coordinates characterizing pharyngeal constriction is undeveloped. The aim of this study was to establish a method for locating the superior and middle pharyngeal constrictors using hard landmarks as guides on MBS videofluoroscopic imaging, and to test the reliability of this new method. Twenty de-identified, normal, MBS videos were randomly selected from a database. Two raters annotated landmarks for the superior and middle pharyngeal constrictors frame-by-frame using a semi-automated MATLAB tracker tool at two time points. Intraclass correlation coefficients were used to assess test-retest reliability between two raters with an ICC = 0.99 or greater for all coordinates for the retest measurement. MorphoJ integrated software was used to perform a discriminate function analysis to visualize how all 12 coordinates interact with each other in normal swallowing. The addition of the superior and middle pharyngeal constrictor coordinates to CASM allows for a robust analysis of the multiple components of swallowing mechanics interacting with a wide range of variables in both patient specific and cohort studies derived from common use imaging data.

  19. A Novel Imaging Analysis Method for Capturing Pharyngeal Constriction During Swallowing

    PubMed Central

    Schwertner, Ryan W.; Garand, Kendrea L.; Pearson, William G.

    2016-01-01

    Videofluoroscopic imaging of swallowing known as the Modified Barium Study (MBS) is the standard of care for assessing swallowing difficulty. While the clinical purpose of this radiographic imaging is to primarily assess aspiration risk, valuable biomechanical data is embedded in these studies. Computational analysis of swallowing mechanics (CASM) is an established research methodology for assessing multiple interactions of swallowing mechanics based on coordinates mapping muscle function including hyolaryngeal movement, pharyngeal shortening, tongue base retraction, and extension of the head and neck, however coordinates characterizing pharyngeal constriction is undeveloped. The aim of this study was to establish a method for locating the superior and middle pharyngeal constrictors using hard landmarks as guides on MBS videofluoroscopic imaging, and to test the reliability of this new method. Twenty de-identified, normal, MBS videos were randomly selected from a database. Two raters annotated landmarks for the superior and middle pharyngeal constrictors frame-by-frame using a semi-automated MATLAB tracker tool at two time points. Intraclass correlation coefficients were used to assess test-retest reliability between two raters with an ICC = 0.99 or greater for all coordinates for the retest measurement. MorphoJ integrated software was used to perform a discriminate function analysis to visualize how all 12 coordinates interact with each other in normal swallowing. The addition of the superior and middle pharyngeal constrictor coordinates to CASM allows for a robust analysis of the multiple components of swallowing mechanics interacting with a wide range of variables in both patient specific and cohort studies derived from common use imaging data. PMID:28239682

  20. Interdependency between mechanical parameters and afferent nerve discharge in remodeled diabetic Goto-Kakizaki rat intestine

    PubMed Central

    Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans

    2017-01-01

    Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211

Top