Not Quite Normal: Consequences of Violating the Assumption of Normality in Regression Mixture Models
ERIC Educational Resources Information Center
Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George
2012-01-01
Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…
NASA Astrophysics Data System (ADS)
Jawad, Enas A.
2018-05-01
In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.
ERIC Educational Resources Information Center
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo
2012-01-01
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
NASA Astrophysics Data System (ADS)
Iwata, Takaki; Yamazaki, Yoshihiro; Kuninaka, Hiroto
2013-08-01
In this study, we examine the validity of the transition of the human height distribution from the log-normal distribution to the normal distribution during puberty, as suggested in an earlier study [Kuninaka et al.: J. Phys. Soc. Jpn. 78 (2009) 125001]. Our data analysis reveals that, in late puberty, the variation in height decreases as children grow. Thus, the classification of a height dataset by age at this stage leads us to analyze a mixture of distributions with larger means and smaller variations. This mixture distribution has a negative skewness and is consequently closer to the normal distribution than to the log-normal distribution. The opposite case occurs in early puberty and the mixture distribution is positively skewed, which resembles the log-normal distribution rather than the normal distribution. Thus, this scenario mimics the transition during puberty. Additionally, our scenario is realized through a numerical simulation based on a statistical model. The present study does not support the transition suggested by the earlier study.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor)
1999-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under micro- gravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. The medium used for culturing the cells, especially a mixture of epithelial and mesenchymal cells contains a mixture of Mem-alpha and Leibovits L15 supplemented with glucose, galactose and fructose.
Lo, Kenneth
2011-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375
Lo, Kenneth; Gottardo, Raphael
2012-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.
Hong, Chuan; Chen, Yong; Ning, Yang; Wang, Shuang; Wu, Hao; Carroll, Raymond J
2017-01-01
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and non-identifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real data set to identify differentially methylated sites between ovarian cancer subjects and normal subjects.
Weibull mixture regression for marginal inference in zero-heavy continuous outcomes.
Gebregziabher, Mulugeta; Voronca, Delia; Teklehaimanot, Abeba; Santa Ana, Elizabeth J
2017-06-01
Continuous outcomes with preponderance of zero values are ubiquitous in data that arise from biomedical studies, for example studies of addictive disorders. This is known to lead to violation of standard assumptions in parametric inference and enhances the risk of misleading conclusions unless managed properly. Two-part models are commonly used to deal with this problem. However, standard two-part models have limitations with respect to obtaining parameter estimates that have marginal interpretation of covariate effects which are important in many biomedical applications. Recently marginalized two-part models are proposed but their development is limited to log-normal and log-skew-normal distributions. Thus, in this paper, we propose a finite mixture approach, with Weibull mixture regression as a special case, to deal with the problem. We use extensive simulation study to assess the performance of the proposed model in finite samples and to make comparisons with other family of models via statistical information and mean squared error criteria. We demonstrate its application on real data from a randomized controlled trial of addictive disorders. Our results show that a two-component Weibull mixture model is preferred for modeling zero-heavy continuous data when the non-zero part are simulated from Weibull or similar distributions such as Gamma or truncated Gauss.
NASA Technical Reports Server (NTRS)
Palmer, Grant; Prabhu, Dinesh; Brandis, Aaron; McIntyre, Timothy J.
2011-01-01
Thermochemical relaxation behind a normal shock in Mars and Titan gas mixtures is simulated using a CFD solver, DPLR, for a hemisphere of 1 m radius; the thermochemical relaxation along the stagnation streamline is considered equivalent to the flow behind a normal shock. Flow simulations are performed for a Titan gas mixture (98% N2, 2% CH4 by volume) for shock speeds of 5.7 and 7.6 km/s and pressures ranging from 20 to 1000 Pa, and a Mars gas mixture (96% CO2, and 4% N2 by volume) for a shock speed of 8.6 km/s and freestream pressure of 13 Pa. For each case, the temperatures and number densities of chemical species obtained from the CFD flow predictions are used as an input to a line-by-line radiation code, NEQAIR. The NEQAIR code is then used to compute the spatial distribution of volumetric radiance starting from the shock front to the point where thermochemical equilibrium is nominally established. Computations of volumetric spectral radiance assume Boltzmann distributions over radiatively linked electronic states of atoms and molecules. The results of these simulations are compared against experimental data acquired in the X2 facility at the University of Queensland, Australia. The experimental measurements were taken over a spectral range of 310-450 nm where the dominant contributor to radiation is the CN violet band system. In almost all cases, the present approach of computing the spatial variation of post-shock volumetric radiance by applying NEQAIR along a stagnation line computed using a high-fidelity flow solver with good spatial resolution of the relaxation zone is shown to replicate trends in measured relaxation of radiance for both Mars and Titan gas mixtures.
Mapping of quantitative trait loci using the skew-normal distribution.
Fernandes, Elisabete; Pacheco, António; Penha-Gonçalves, Carlos
2007-11-01
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.
NASA Astrophysics Data System (ADS)
Baidillah, Marlin R.; Takei, Masahiro
2017-06-01
A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.
Molecular Simulation of the Vapor-Liquid Phase Behavior of Lennard-Jones Mixtures in Porous Solids
2006-09-01
sur la Catalyse, Centre National de la Recherche Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France...and Group de Chimie Theorique, Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 69364 Lyon, Cedex 07, France 14. ABSTRACT We present vapor...Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France and Group de Chimie Theorique, Ecole Normale
Shear viscosity for a heated granular binary mixture at low density.
Montanero, José María; Garzó, Vicente
2003-02-01
The shear viscosity for a heated granular binary mixture of smooth hard spheres at low density is analyzed. The mixture is heated by the action of an external driving force (Gaussian thermostat) that exactly compensates for cooling effects associated with the dissipation of collisions. The study is made from the Boltzmann kinetic theory, which is solved by using two complementary approaches. First, a normal solution of the Boltzmann equation via the Chapman-Enskog method is obtained up to first order in the spatial gradients. The mass, heat, and momentum fluxes are determined and the corresponding transport coefficients identified. As in the free cooling case [V. Garzó and J. W. Dufty, Phys. Fluids 14, 1476 (2002)], practical evaluation requires a Sonine polynomial approximation, and here it is mainly illustrated in the case of the shear viscosity. Second, to check the accuracy of the Chapman-Enskog results, the Boltzmann equation is numerically solved by means of the direct simulation Monte Carlo method. The simulation is performed for a system under uniform shear flow, using the Gaussian thermostat to control inelastic cooling. The comparison shows an excellent agreement between theory and simulation over a wide range of values of the restitution coefficients and the parameters of the mixture (masses, concentrations, and sizes).
Robust nonlinear system identification: Bayesian mixture of experts using the t-distribution
NASA Astrophysics Data System (ADS)
Baldacchino, Tara; Worden, Keith; Rowson, Jennifer
2017-02-01
A novel variational Bayesian mixture of experts model for robust regression of bifurcating and piece-wise continuous processes is introduced. The mixture of experts model is a powerful model which probabilistically splits the input space allowing different models to operate in the separate regions. However, current methods have no fail-safe against outliers. In this paper, a robust mixture of experts model is proposed which consists of Student-t mixture models at the gates and Student-t distributed experts, trained via Bayesian inference. The Student-t distribution has heavier tails than the Gaussian distribution, and so it is more robust to outliers, noise and non-normality in the data. Using both simulated data and real data obtained from the Z24 bridge this robust mixture of experts performs better than its Gaussian counterpart when outliers are present. In particular, it provides robustness to outliers in two forms: unbiased parameter regression models, and robustness to overfitting/complex models.
Estimation of value at risk and conditional value at risk using normal mixture distributions model
NASA Astrophysics Data System (ADS)
Kamaruzzaman, Zetty Ain; Isa, Zaidi
2013-04-01
Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Malek, H.
1978-01-01
A clustering method, CLASSY, was developed, which alternates maximum likelihood iteration with a procedure for splitting, combining, and eliminating the resulting statistics. The method maximizes the fit of a mixture of normal distributions to the observed first through fourth central moments of the data and produces an estimate of the proportions, means, and covariances in this mixture. The mathematical model which is the basic for CLASSY and the actual operation of the algorithm is described. Data comparing the performances of CLASSY and ISOCLS on simulated and actual LACIE data are presented.
Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number
NASA Astrophysics Data System (ADS)
Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco
2016-11-01
A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.
Estimating Mixture of Gaussian Processes by Kernel Smoothing
Huang, Mian; Li, Runze; Wang, Hansheng; Yao, Weixin
2014-01-01
When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from EM algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset. PMID:24976675
Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B
2003-11-01
The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.
NASA Astrophysics Data System (ADS)
Budi Astuti, Ani; Iriawan, Nur; Irhamah; Kuswanto, Heri; Sasiarini, Laksmi
2017-10-01
Bayesian statistics proposes an approach that is very flexible in the number of samples and distribution of data. Bayesian Mixture Model (BMM) is a Bayesian approach for multimodal models. Diabetes Mellitus (DM) is more commonly known in the Indonesian community as sweet pee. This disease is one type of chronic non-communicable diseases but it is very dangerous to humans because of the effects of other diseases complications caused. WHO reports in 2013 showed DM disease was ranked 6th in the world as the leading causes of human death. In Indonesia, DM disease continues to increase over time. These research would be studied patterns and would be built the BMM models of the DM data through simulation studies where the simulation data built on cases of blood sugar levels of DM patients in RSUD Saiful Anwar Malang. The results have been successfully demonstrated pattern of distribution of the DM data which has a normal mixture distribution. The BMM models have succeed to accommodate the real condition of the DM data based on the data driven concept.
Bellier, Edwige; Grøtan, Vidar; Engen, Steinar; Schartau, Ann Kristin; Diserud, Ola H; Finstad, Anders G
2012-10-01
Obtaining accurate estimates of diversity indices is difficult because the number of species encountered in a sample increases with sampling intensity. We introduce a novel method that requires that the presence of species in a sample to be assessed while the counts of the number of individuals per species are only required for just a small part of the sample. To account for species included as incidence data in the species abundance distribution, we modify the likelihood function of the classical Poisson log-normal distribution. Using simulated community assemblages, we contrast diversity estimates based on a community sample, a subsample randomly extracted from the community sample, and a mixture sample where incidence data are added to a subsample. We show that the mixture sampling approach provides more accurate estimates than the subsample and at little extra cost. Diversity indices estimated from a freshwater zooplankton community sampled using the mixture approach show the same pattern of results as the simulation study. Our method efficiently increases the accuracy of diversity estimates and comprehension of the left tail of the species abundance distribution. We show how to choose the scale of sample size needed for a compromise between information gained, accuracy of the estimates and cost expended when assessing biological diversity. The sample size estimates are obtained from key community characteristics, such as the expected number of species in the community, the expected number of individuals in a sample and the evenness of the community.
Multinomial mixture model with heterogeneous classification probabilities
Holland, M.D.; Gray, B.R.
2011-01-01
Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.
3-D Numerical Simulation for Gas-Liquid Two-Phase Flow in Aeration Tank
NASA Astrophysics Data System (ADS)
Xue, R.; Tian, R.; Yan, S. Y.; Li, S.
In the crafts of activated sludge treatment, oxygen supply and the suspending state of activated sludge are primary factors to keep biochemistry process carrying on normally. However, they are all controlled by aeration. So aeration is crucial. The paper focus on aeration, use CFD software to simulate the field of aeration tank which is designed by sludge load method. The main designed size of aeration tank is: total volume: 20 000 m3; corridor width: 8m; total length of corridors: 139m; number of corridors: 3; length of one single corridor: 48m; effective depth: 4.5m; additional depth: 0.5m. According to the similarity theory, a geometrical model is set up in proportion of 10:1. The way of liquid flow is submerge to avoid liquid flow out directly. The grid is plotted by dividing the whole computational area into two parts. The bottom part which contains gas pipe and gas exit hole and the above part which is the main area are plotted by tetrahedron and hexahedron respectively. In boundary conditions, gas is defined as the primary-phase, and liquid is defined as the secondary-phase. Choosing mixture model, two-phase flow field of aeration tank is simulated by solved the Continuity equation for the mixture, Momentum equation for the mixture, Volume fraction equation for the secondary phases and Relative velocity formula when gas velocity is 10m/s, 20m/s, 30m/s. what figure shows is the contour of velocity magnitude for the mixture phase when gas velocity is 20m/s. Through analysis, the simulation tendency is agreed with actual running of aeration tank. It is feasible to use mixture model to simulate flow field of aeration tank by fluent software. According to the simulation result, the better velocity of liquid or gas (the quantity of inlet air) can be chosen by lower cost, and also the performance of aeration tank can be forecast. It will be helpful for designing and operation.
A comparative study of mixture cure models with covariate
NASA Astrophysics Data System (ADS)
Leng, Oh Yit; Khalid, Zarina Mohd
2017-05-01
In survival analysis, the survival time is assumed to follow a non-negative distribution, such as the exponential, Weibull, and log-normal distributions. In some cases, the survival time is influenced by some observed factors. The absence of these observed factors may cause an inaccurate estimation in the survival function. Therefore, a survival model which incorporates the influences of observed factors is more appropriate to be used in such cases. These observed factors are included in the survival model as covariates. Besides that, there are cases where a group of individuals who are cured, that is, not experiencing the event of interest. Ignoring the cure fraction may lead to overestimate in estimating the survival function. Thus, a mixture cure model is more suitable to be employed in modelling survival data with the presence of a cure fraction. In this study, three mixture cure survival models are used to analyse survival data with a covariate and a cure fraction. The first model includes covariate in the parameterization of the susceptible individuals survival function, the second model allows the cure fraction to depend on covariate, and the third model incorporates covariate in both cure fraction and survival function of susceptible individuals. This study aims to compare the performance of these models via a simulation approach. Therefore, in this study, survival data with varying sample sizes and cure fractions are simulated and the survival time is assumed to follow the Weibull distribution. The simulated data are then modelled using the three mixture cure survival models. The results show that the three mixture cure models are more appropriate to be used in modelling survival data with the presence of cure fraction and an observed factor.
CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity
NASA Technical Reports Server (NTRS)
Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James
2007-01-01
A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.
NASA Astrophysics Data System (ADS)
Gulliver, Eric A.
The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered particle-size distributions or mixture composition. Control charts based on tessellation measurements were used for direct, quantitative comparisons between real and simulated mixtures. Four sets of simulated and real mixtures were examined. Data from real mixture was matched with simulated data when the samples were well mixed and the particle size distributions and volume fractions of the components were identical. Analysis of mixture components that occupied less than approximately 10 vol% of the mixture was not practical unless the particle size of the component was extremely small and excellent quality high-resolution compositional micrographs of the real sample are available. These methods of analysis should allow future researchers to systematically evaluate and predict the impact and importance of variables such as component volume fraction and component particle size distribution as they pertain to the uniformity of powder mixture microstructures.
Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong
2010-01-01
We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.
Dorazio, R.M.; Royle, J. Andrew
2003-01-01
We develop a parameterization of the beta-binomial mixture that provides sensible inferences about the size of a closed population when probabilities of capture or detection vary among individuals. Three classes of mixture models (beta-binomial, logistic-normal, and latent-class) are fitted to recaptures of snowshoe hares for estimating abundance and to counts of bird species for estimating species richness. In both sets of data, rates of detection appear to vary more among individuals (animals or species) than among sampling occasions or locations. The estimates of population size and species richness are sensitive to model-specific assumptions about the latent distribution of individual rates of detection. We demonstrate using simulation experiments that conventional diagnostics for assessing model adequacy, such as deviance, cannot be relied on for selecting classes of mixture models that produce valid inferences about population size. Prior knowledge about sources of individual heterogeneity in detection rates, if available, should be used to help select among classes of mixture models that are to be used for inference.
Quantiles for Finite Mixtures of Normal Distributions
ERIC Educational Resources Information Center
Rahman, Mezbahur; Rahman, Rumanur; Pearson, Larry M.
2006-01-01
Quantiles for finite mixtures of normal distributions are computed. The difference between a linear combination of independent normal random variables and a linear combination of independent normal densities is emphasized. (Contains 3 tables and 1 figure.)
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
A quantitative trait locus mixture model that avoids spurious LOD score peaks.
Feenstra, Bjarke; Skovgaard, Ib M
2004-01-01
In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented. PMID:15238544
A quantitative trait locus mixture model that avoids spurious LOD score peaks.
Feenstra, Bjarke; Skovgaard, Ib M
2004-06-01
In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.
Computerized simulation of color appearance for anomalous trichromats using the multispectral image.
Yaguchi, Hirohisa; Luo, Junyan; Kato, Miharu; Mizokami, Yoko
2018-04-01
Most color simulators for color deficiencies are based on the tristimulus values and are intended to simulate the appearance of an image for dichromats. Statistics show that there are more anomalous trichromats than dichromats. Furthermore, the spectral sensitivities of anomalous cones are different from those of normal cones. Clinically, the types of color defects are characterized through Rayleigh color matching, where the observer matches a spectral yellow to a mixture of spectral red and green. The midpoints of the red/green ratios deviate from a normal trichromat. This means that any simulation based on the tristimulus values defined by a normal trichromat cannot predict the color appearance of anomalous Rayleigh matches. We propose a computerized simulation of the color appearance for anomalous trichromats using multispectral images. First, we assume that anomalous trichromats possess a protanomalous (green shifted) or deuteranomalous (red shifted) pigment instead of a normal (L or M) one. Second, we assume that the luminance will be given by L+M, and red/green and yellow/blue opponent color stimulus values are defined through L-M and (L+M)-S, respectively. Third, equal-energy white will look white for all observers. The spectral sensitivities of the luminance and the two opponent color channels are multiplied by the spectral radiance of each pixel of a multispectral image to give the luminance and opponent color stimulus values of the entire image. In the next stage of color reproduction for normal observers, the luminance and two opponent color channels are transformed into XYZ tristimulus values and then transformed into sRGB to reproduce a final image for anomalous trichromats. The proposed simulation can be used to predict the Rayleigh color matches for anomalous trichromats. We also conducted experiments to evaluate the appearance of simulated images by color deficient observers and verified the reliability of the simulation.
Determining prescription durations based on the parametric waiting time distribution.
Støvring, Henrik; Pottegård, Anton; Hallas, Jesper
2016-12-01
The purpose of the study is to develop a method to estimate the duration of single prescriptions in pharmacoepidemiological studies when the single prescription duration is not available. We developed an estimation algorithm based on maximum likelihood estimation of a parametric two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users in continued treatment. We exploited this to estimate percentiles of the IAD by inversion of the estimated FRD and defined the duration of a prescription as the time within which 80% of current users will have presented themselves again. Statistical properties were examined in simulation studies, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine. Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide, and levothyroxine, respectively. Similar results were found with a Weibull FRD. The algorithm allows valid estimation of single prescription durations, especially when the WTD reliably separates current users from incident users, and may replace ad-hoc decision rules in automated implementations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George
2018-04-01
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George
2018-04-28
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Extracting Spurious Latent Classes in Growth Mixture Modeling with Nonnormal Errors
ERIC Educational Resources Information Center
Guerra-Peña, Kiero; Steinley, Douglas
2016-01-01
Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This…
Comparison Between 2D and 3D Simulations of Rate Dependent Friction Using DEM
NASA Astrophysics Data System (ADS)
Wang, C.; Elsworth, D.
2017-12-01
Rate-state dependent constitutive laws of frictional evolution have been successful in representing many of the first- and second- order components of earthquake rupture. Although this constitutive law has been successfully applied in numerical models, difficulty remains in efficient implementation of this constitutive law in computationally-expensive granular mechanics simulations using discrete element methods (DEM). This study introduces a novel approach in implementing a rate-dependent constitutive relation of contact friction into DEM. This is essentially an implementation of a slip-weakening constitutive law onto local particle contacts without sacrificing computational efficiency. This implementation allows the analysis of slip stability of simulated fault gouge materials. Velocity-stepping experiments are reported on both uniform and textured distributions of quartz and talc as 3D analogs of gouge mixtures. Distinct local slip stability parameters (a-b) are assigned to the quartz and talc, respectively. We separately vary talc content from 0 to 100% in the uniform mixtures and talc layer thickness from 1 to 20 particles in the textured mixtures. Applied shear displacements are cycled through velocities of 1μm/s and 10μm/s. Frictional evolution data are collected and compared to 2D simulation results. We show that dimensionality significantly impacts the evolution of friction. 3D simulation results are more representative of laboratory observed behavior and numerical noise is shown at a magnitude of 0.01 in terms of friction coefficient. Stability parameters (a-b) can be straightforwardly obtained from analyzing velocity steps, and are different from locally assigned (a-b) values. Sensitivity studies on normal stress, shear velocity, particle size, local (a-b) values, and characteristic slip distance (Dc) show that the implementation is sensitive to local (a-b) values and relations between (Dc) and particle size.
2011-02-18
environmental interferents selected for this study included dolomitic limestone (Lime, NIST Standard Reference Materials, Catalog No. SRM 88b) and ovalbumin...emission lines due solely to substrates or interferents can be ignored. As in previous studies by our group, the background-corrected peak ...calculated by adding the intensi- ties of the emission lines at 486 and 656 nm); the summed intensities were normalized to the total peak intensity of the
Simulating urban land cover changes at sub-pixel level in a coastal city
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang
2014-10-01
The simulation of urban expansion or land cover changes is a major theme in both geographic information science and landscape ecology. Yet till now, almost all of previous studies were based on grid computations at pixel level. With the prevalence of spectral mixture analysis in urban land cover research, the simulation of urban land cover at sub-pixel level is being put into agenda. This study provided a new approach of land cover simulation at sub-pixel level. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover data through supervised classification. Then the two classified land cover data were utilized to extract the transformation rule between 2002 and 2007 using logistic regression. The transformation possibility of each land cover type in a certain pixel was taken as its percent in the same pixel after normalization. And cellular automata (CA) based grid computation was carried out to acquire simulated land cover on 2007. The simulated 2007 sub-pixel land cover was testified with a validated sub-pixel land cover achieved by spectral mixture analysis in our previous studies on the same date. And finally the sub-pixel land cover of 2017 was simulated for urban planning and management. The results showed that our method is useful in land cover simulation at sub-pixel level. Although the simulation accuracy is not quite satisfactory for all the land cover types, it provides an important idea and a good start in the CA-based urban land cover simulation.
Using partially labeled data for normal mixture identification with application to class definition
NASA Technical Reports Server (NTRS)
Shahshahani, Behzad M.; Landgrebe, David A.
1992-01-01
The problem of estimating the parameters of a normal mixture density when, in addition to the unlabeled samples, sets of partially labeled samples are available is addressed. The density of the multidimensional feature space is modeled with a normal mixture. It is assumed that the set of components of the mixture can be partitioned into several classes and that training samples are available from each class. Since for any training sample the class of origin is known but the exact component of origin within the corresponding class is unknown, the training samples as considered to be partially labeled. The EM iterative equations are derived for estimating the parameters of the normal mixture in the presence of partially labeled samples. These equations can be used to combine the supervised and nonsupervised learning processes.
Zhan, Tingting; Chevoneva, Inna; Iglewicz, Boris
2010-01-01
The family of weighted likelihood estimators largely overlaps with minimum divergence estimators. They are robust to data contaminations compared to MLE. We define the class of generalized weighted likelihood estimators (GWLE), provide its influence function and discuss the efficiency requirements. We introduce a new truncated cubic-inverse weight, which is both first and second order efficient and more robust than previously reported weights. We also discuss new ways of selecting the smoothing bandwidth and weighted starting values for the iterative algorithm. The advantage of the truncated cubic-inverse weight is illustrated in a simulation study of three-components normal mixtures model with large overlaps and heavy contaminations. A real data example is also provided. PMID:20835375
Internal structure of shock waves in disparate mass mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.
Comparison of next generation sequencing technologies for transcriptome characterization
2009-01-01
Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272
Visible-light OCT to quantify retinal oxygen metabolism (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Hao F.; Yi, Ji; Chen, Siyu; Liu, Wenzhong; Soetikno, Brian T.
2016-03-01
We explored, both numerically and experimentally, whether OCT can be a good candidate to accurately measure retinal oxygen metabolism. We first used statistical methods to numerically simulate photon transport in the retina to mimic OCT working under different spectral ranges. Then we analyze accuracy of OCT oximetry subject to parameter variations such as vessel size, pigmentation, and oxygenation. We further developed an experimental OCT system based on the spectral range identified by our simulation work. We applied the newly developed OCT to measure both retinal hemoglobin oxygen saturation (sO2) and retinal retinal flow. After obtaining the retinal sO2 and blood velocity, we further measured retinal vessel diameter and calculated the retinal oxygen metabolism rate (MRO2). To test the capability of our OCT, we imaged wild-type Long-Evans rats ventilated with both normal air and air mixtures with various oxygen concentrations. Our simulation suggested that OCT working within visible spectral range is able to provide accurate measurement of retinal MRO2 using inverse Fourier transform spectral reconstruction. We called this newly developed technology vis-OCT, and showed that vis-OCT was able to measure the sO2 value in every single major retinal vessel around the optical disk as well as in micro retinal vessels. When breathing normal air, the averaged sO2 in arterial and venous blood in Long-Evans rats was measured to be 95% and 72%, respectively. When we challenge the rats using air mixtures with different oxygen concentrations, vis-OCT measurement followed analytical models of retinal oxygen diffusion and pulse oximeter well.
Intestinal absorption of an arginine-containing peptide in cystinuria
Asatoor, A. M.; Harrison, B. D. W.; Milne, M. D.; Prosser, D. I.
1972-01-01
Separate tolerance tests involving oral intake of the dipeptide, L-arginyl-L-aspartate, and of a corresponding free amino acid mixture, were carried out in a single type 2 cystinuric patient. Absorption of aspartate was within normal limits, whilst that of arginine was normal after the peptide but considerably reduced after the amino acid mixture. The results are compared with the increments of serum arginine found in eight normal subjects after the oral intake of the free amino acid mixture. Analyses of urinary pyrrolidine and of tetramethylenediamine in urine samples obtained after the two tolerance tests in the patient support the view that arginine absorption was subnormal after the amino acid mixture but within normal limits after the dipeptide. PMID:5045711
Axelrod, David E; Vedula, Sudeepti; Obaniyi, James
2017-05-01
The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function. A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function. Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug. An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.
Troitzsch, R Z; Vass, H; Hossack, W J; Martyna, G J; Crain, J
2008-04-10
Free proline amino acid is a natural cryoprotectant expressed by numerous organisms under low-temperature stress. Previous reports have suggested that complex assemblies underlie its functional properties. We investigate here aqueous proline solutions as a function of temperature using combinations of Raman spectroscopy, Rayleigh-Brillouin light scattering, and molecular dynamics simulations with the view to revealing the molecular origins of the mixtures' functionality as a cryoprotectant. The evolution of the Brillouin frequency shifts and line widths with temperature shows that, above a critical proline concentration, the water-like dynamics is suppressed and viscoelastic behavior emerges: Here, the Landau-Placzek ratio also shows a temperature-independent maximum arising from concentration fluctuations. Molecular dynamics simulations reveal that the water-water correlations in the mixtures depend much more weakly on temperature than does bulk water. By contrast, the water OH Raman bands exhibit strong red-shifts on cooling similar to those seen in ices; however, no evidence of ice lattice phonons is observed in the low-frequency spectrum. We attribute this primarily to enhanced proline-water hydrogen bonding. In general, the picture that emerges is that aqueous proline is a heterogeneous mixture on molecular length scales (characterized by significant concentration fluctuations rather than well-defined aggregates). Simulations reveal that proline also appears to suppress the normal dependence of water structure on temperature and preserves the ambient-temperature correlations even in very cold solutions. The water structure in cold proline solutions therefore appears to be similar to that at a higher effective temperature. This, coupled with the emergence of glassy dynamics offers a molecular explanation for the functional properties of proline as a cryoprotectant without the need to invoke previously proposed complex aggregates.
Photoacoustic study on the possible components of total suspended particles
NASA Astrophysics Data System (ADS)
Wang, Xidong; Huang, Zuohua; Tang, Zhilie
2006-02-01
Total suspended particles (TSP) are one of the main atmospheric pollutants. The ingredients are very complex, mainly including black carbon (C),organic compound, inorganic compound and biologic component, which will do great harm to human's health. During environmental monitoring, the airborne suspended particle always is an index for evaluating the quality of atmosphere. In this article, possible mixture of TSP is proposed to determine its ingredients and content by photoacoustic spectroscopy. The normalized photoacoustic (PA) signal of the sulfur powder, mixtures of sulfur and black carbon in different proportions are obtained respectively. Simulation with linear equation says that the PA signal has a certain relationship with the content of sample. The normalized PA spectroscopy of various materials is acquired via examining the sample of the powder of cupric sulfate mixed with nitro compound (2, 5 -methoxybenzoic-4nitro-dehyde), Portland cement, residual particles of automobile exhaust pipe, ash of power plant's stocks. The experimental results have important reference value to the practical analysis of TSP, it also provides new possible methodology to the environmental monitoring.
Continuous plutonium dissolution apparatus
Meyer, F.G.; Tesitor, C.N.
1974-02-26
This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)
NASA Astrophysics Data System (ADS)
Van, Hieu Le; Buczynski, Ryszard; Long, Van Cao; Trippenbach, Marek; Borzycki, Krzysztof; Manh, An Nguyen; Kasztelanic, Rafal
2018-01-01
We present experimental and simulation results of the zero-dispersion shift in photonics crystal fibers infiltrated with water-ethanol mixture. The fiber based on the fused silica glass with a hexagonal lattice consists of seven rings of air-holes filled by liquid. We show that it is possible to shift the zero-dispersion wavelength by 35 ps/nm/km when changing the temperature by 60 °C, and by 42 ps/nm/km when changing the concentration of ethanol from 0 to 100%. The results also show that for the optical fiber filed with pure ethanol the flattened part of the dispersion shifts from anomalous to the normal regime at temperatures below -70 °C.
A Skew-Normal Mixture Regression Model
ERIC Educational Resources Information Center
Liu, Min; Lin, Tsung-I
2014-01-01
A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…
NASA Technical Reports Server (NTRS)
Witte, Larry C.
1994-01-01
The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.
Combining Mixture Components for Clustering*
Baudry, Jean-Patrick; Raftery, Adrian E.; Celeux, Gilles; Lo, Kenneth; Gottardo, Raphaël
2010-01-01
Model-based clustering consists of fitting a mixture model to data and identifying each cluster with one of its components. Multivariate normal distributions are typically used. The number of clusters is usually determined from the data, often using BIC. In practice, however, individual clusters can be poorly fitted by Gaussian distributions, and in that case model-based clustering tends to represent one non-Gaussian cluster by a mixture of two or more Gaussian distributions. If the number of mixture components is interpreted as the number of clusters, this can lead to overestimation of the number of clusters. This is because BIC selects the number of mixture components needed to provide a good approximation to the density, rather than the number of clusters as such. We propose first selecting the total number of Gaussian mixture components, K, using BIC and then combining them hierarchically according to an entropy criterion. This yields a unique soft clustering for each number of clusters less than or equal to K. These clusterings can be compared on substantive grounds, and we also describe an automatic way of selecting the number of clusters via a piecewise linear regression fit to the rescaled entropy plot. We illustrate the method with simulated data and a flow cytometry dataset. Supplemental Materials are available on the journal Web site and described at the end of the paper. PMID:20953302
REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures
National Institute of Standards and Technology Data Gateway
SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase) REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.
Biochar-compost mixtures added to simulated golf greens increase creeping bentgrass growth
USDA-ARS?s Scientific Manuscript database
Mixtures of 85% sand and 15% mixtures of peat (control), a commercial biochar, a commercial biochar-compost product (CarbonizPN), and seven biochar-commercial compost mixtures were tested on the growth of creeping bentgrass (Agrostis stolonifera L. "007") in simulated golf greens. Physical properti...
Empirical Reference Distributions for Networks of Different Size
Smith, Anna; Calder, Catherine A.; Browning, Christopher R.
2016-01-01
Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556
Production Strategies for Production-Quality Parts for Aerospace Applications
NASA Technical Reports Server (NTRS)
Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)
2000-01-01
A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.
New approach in direct-simulation of gas mixtures
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren
1991-01-01
Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.
Lunar dust simulant containing nanophase iron and method for making the same
NASA Technical Reports Server (NTRS)
Hung, Chin-cheh (Inventor); McNatt, Jeremiah (Inventor)
2012-01-01
A lunar dust simulant containing nanophase iron and a method for making the same. Process (1) comprises a mixture of ferric chloride, fluorinated carbon powder, and glass beads, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles, Fe.sub.2O.sub.3, and Fe.sub.3O.sub.4. Process (2) comprises a mixture of a material of mixed-metal oxides that contain iron and carbon black, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles and Fe.sub.3O.sub.4.
Method for simulating paint mixing on computer monitors
NASA Astrophysics Data System (ADS)
Carabott, Ferdinand; Lewis, Garth; Piehl, Simon
2002-06-01
Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.
NASA Technical Reports Server (NTRS)
Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.
1946-01-01
For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin -Yu; Bhagatwala, Ankit; Chen, Jacqueline H.
In this study, the modeling of mixing by molecular diffusion is a central aspect for transported probability density function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model (SPMM) is examined, using a DNS database for a temporally evolving di-methyl ether slot jet flame. Two methods that invoke different levels of approximation are proposed to extract the shadow displacement (equivalent to shadow position) from the DNS database. An approach for a priori analysis of the mixing-model performance is developed. The shadow displacement is highly correlated with both mixture fraction and velocity, and the peak correlation coefficient of themore » shadow displacement and mixture fraction is higher than that of the shadow displacement and velocity. This suggests that the composition-space localness is reasonably well enforced by the model, with appropriate choices of model constants. The conditional diffusion of mixture fraction and major species from DNS and from SPMM are then compared, using mixing rates that are derived by matching the mixture fraction scalar dissipation rates. Good qualitative agreement is found, for the prediction of the locations of zero and maximum/minimum conditional diffusion locations for mixture fraction and individual species. Similar comparisons are performed for DNS and the IECM (interaction by exchange with the conditional mean) model. The agreement between SPMM and DNS is better than that between IECM and DNS, in terms of conditional diffusion iso-contour similarities and global normalized residual levels. It is found that a suitable value for the model constant c that controls the mixing frequency can be derived using the local normalized scalar variance, and that the model constant a controls the localness of the model. A higher-Reynolds-number test case is anticipated to be more appropriate to evaluate the mixing models, and stand-alone transported PDF simulations are required to more fully enforce localness and to assess model performance.« less
An a priori DNS study of the shadow-position mixing model
Zhao, Xin -Yu; Bhagatwala, Ankit; Chen, Jacqueline H.; ...
2016-01-15
In this study, the modeling of mixing by molecular diffusion is a central aspect for transported probability density function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model (SPMM) is examined, using a DNS database for a temporally evolving di-methyl ether slot jet flame. Two methods that invoke different levels of approximation are proposed to extract the shadow displacement (equivalent to shadow position) from the DNS database. An approach for a priori analysis of the mixing-model performance is developed. The shadow displacement is highly correlated with both mixture fraction and velocity, and the peak correlation coefficient of themore » shadow displacement and mixture fraction is higher than that of the shadow displacement and velocity. This suggests that the composition-space localness is reasonably well enforced by the model, with appropriate choices of model constants. The conditional diffusion of mixture fraction and major species from DNS and from SPMM are then compared, using mixing rates that are derived by matching the mixture fraction scalar dissipation rates. Good qualitative agreement is found, for the prediction of the locations of zero and maximum/minimum conditional diffusion locations for mixture fraction and individual species. Similar comparisons are performed for DNS and the IECM (interaction by exchange with the conditional mean) model. The agreement between SPMM and DNS is better than that between IECM and DNS, in terms of conditional diffusion iso-contour similarities and global normalized residual levels. It is found that a suitable value for the model constant c that controls the mixing frequency can be derived using the local normalized scalar variance, and that the model constant a controls the localness of the model. A higher-Reynolds-number test case is anticipated to be more appropriate to evaluate the mixing models, and stand-alone transported PDF simulations are required to more fully enforce localness and to assess model performance.« less
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, B. L.
2007-12-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.
Protanomaly-without-darkened-red is deuteranopia with rods
Shevell, Steven K.; Sun, Yang; Neitz, Maureen
2008-01-01
The Rayleigh match, a color match between a mixture of 545+670 nm lights and 589 nm light in modern instruments, is the definitive measurement for the diagnosis of inherited red/green color defects. All trichromats, whether normal or anomalous, have a limited range of 545+670 nm mixtures they perceive to match 589 nm: a typical color-normal match-range is about 50–55% of 670 nm in the mixture (deutan mode), while deuteranomals have a range that includes mixtures with less 670 nm than normal and protanomals a range that includes mixtures with more 670 nm than normal. Further, the matching luminance of the 589 nm light for deuteranomals is the same as for normals but for protanomals is below normal. An example of an unexpected Rayleigh match, therefore, is a match range above normal (typical of protanomaly) and a normal luminance setting for 589 nm (typical of deuteranomaly), a match that Pickford (1950) called protanomaly “when the red end of the spectrum is not darkened”. In this case, Rayleigh matching does not yield a clear diagnosis. Aside from Pickford, we are aware of only one other report of a similar observer (Pokorny and Smith, 1981); this study predated modern genetic techniques that can reveal the cone photopigment(s) in the red/green range. We recently had the opportunity to conduct genetic and psychophysical tests on such an observer. Genetic results predict he is a deuteranope. His Rayleigh match is consistent with L cones and a contribution from rods. Further, with a rod-suppressing background, his Rayleigh match is characteristic of a single L-cone photopigment (deuteranopia). PMID:18423511
Protanomaly without darkened red is deuteranopia with rods.
Shevell, Steven K; Sun, Yang; Neitz, Maureen
2008-11-01
The Rayleigh match, a color match between a mixture of 545+670 nm lights and 589 nm light in modern instruments, is the definitive measurement for the diagnosis of inherited red-green color defects. All trichromats, whether normal or anomalous, have a limited range of 545+670 nm mixtures they perceive to match 589 nm: a typical color-normal match range is about 50-55% of 670 nm in the mixture (deutan mode), while deuteranomals have a range that includes mixtures with less 670 nm than normal and protanomals a range that includes mixtures with more 670 nm than normal. Further, the matching luminance of the 589 nm light for deuteranomals is the same as for normals but for protanomals is below normal. An example of an unexpected Rayleigh match, therefore, is a match range above normal (typical of protanomaly) and a normal luminance setting for 589 nm (typical of deuteranomaly), a match called protanomaly "when the red end of the spectrum is not darkened" [Pickford, R.W. (1950). Three pedigrees for color blindness. Nature, 165, 182.]. In this case, Rayleigh matching does not yield a clear diagnosis. Aside from Pickford, we are aware of only one other report of a similar observer [Pokorny, J., & Smith, V. C. (1981). A variant of red-green color defect. Vision Research, 21, 311-317]; this study predated modern genetic techniques that can reveal the cone photopigment(s) in the red-green range. We recently had the opportunity to conduct genetic and psychophysical tests on such an observer. Genetic results predict he is a deuteranope. His Rayleigh match is consistent with L cones and a contribution from rods. Further, with a rod-suppressing background, his Rayleigh match is characteristic of a single L-cone photopigment (deuteranopia).
Nebgen, Benjamin Tyler; Magurudeniya, Harsha D.; Kwock, Kevin Wen Chi; ...
2017-07-18
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinatingmore » anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. As a result, thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.« less
Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A
2017-12-14
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.
Using a multinomial tree model for detecting mixtures in perceptual detection
Chechile, Richard A.
2014-01-01
In the area of memory research there have been two rival approaches for memory measurement—signal detection theory (SDT) and multinomial processing trees (MPT). Both approaches provide measures for the quality of the memory representation, and both approaches provide for corrections for response bias. In recent years there has been a strong case advanced for the MPT approach because of the finding of stochastic mixtures on both target-present and target-absent tests. In this paper a case is made that perceptual detection, like memory recognition, involves a mixture of processes that are readily represented as a MPT model. The Chechile (2004) 6P memory measurement model is modified in order to apply to the case of perceptual detection. This new MPT model is called the Perceptual Detection (PD) model. The properties of the PD model are developed, and the model is applied to some existing data of a radiologist examining CT scans. The PD model brings out novel features that were absent from a standard SDT analysis. Also the topic of optimal parameter estimation on an individual-observer basis is explored with Monte Carlo simulations. These simulations reveal that the mean of the Bayesian posterior distribution is a more accurate estimator than the corresponding maximum likelihood estimator (MLE). Monte Carlo simulations also indicate that model estimates based on only the data from an individual observer can be improved upon (in the sense of being more accurate) by an adjustment that takes into account the parameter estimate based on the data pooled across all the observers. The adjustment of the estimate for an individual is discussed as an analogous statistical effect to the improvement over the individual MLE demonstrated by the James–Stein shrinkage estimator in the case of the multiple-group normal model. PMID:25018741
NASA Astrophysics Data System (ADS)
Osiptsov, Andrei A.
2017-06-01
The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.
Statistics of backscatter radar return from vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Chen, K. S.; Fung, A. K.
1992-01-01
The statistical characteristics of radar return from vegetation targets are investigated through a simulation study based upon the first-order scattered field. For simulation purposes, the vegetation targets are modeled as a layer of randomly oriented and spaced finite cylinders, needles, or discs, or a combination of them. The finite cylinder is used to represent a branch or a trunk, the needle for a stem or a coniferous leaf, and the disc for a decidous leaf. For a plane wave illuminating a vegetation canopy, simulation results show that the signal returned from a layer of disc- or needle-shaped leaves follows the Gamma distribution, and that the signal returned from a layer of branches resembles the log normal distribution. The Gamma distribution also represents the signal returned from a layer of a mixture of branches and leaves regardless of the leaf shapes. Results also indicate that the polarization state does not have a significant impact on signal distribution.
Davis, Joe M
2011-10-28
General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.
2009-01-01
A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043
Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne
2010-07-08
Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
14 CFR 23.1147 - Mixture controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mixture controls. 23.1147 Section 23.1147... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate...
14 CFR 23.1147 - Mixture controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mixture controls. 23.1147 Section 23.1147... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate...
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
Scale Mixture Models with Applications to Bayesian Inference
NASA Astrophysics Data System (ADS)
Qin, Zhaohui S.; Damien, Paul; Walker, Stephen
2003-11-01
Scale mixtures of uniform distributions are used to model non-normal data in time series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are also tackled using scale mixture of uniform distributions.
14 CFR 27.1147 - Mixture controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mixture controls. 27.1147 Section 27.1147... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1147 Mixture controls. If there are mixture controls, each engine must have a separate control and the controls must be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgranges, Caroline; Delhommelle, Jerome
2014-03-14
Combining rules, such as the Lorentz-Berthelot rules, are routinely used to calculate the thermodynamic properties of mixtures using molecular simulations. Here we extend the expanded Wang-Landau simulation approach to determine the impact of the combining rules on the value of the partition function of binary systems, and, in turn, on the phase coexistence and thermodynamics of these mixtures. We study various types of mixtures, ranging from systems of rare gases to biologically and technologically relevant mixtures, such as water-urea and water-carbon dioxide. Comparing the simulation results to the experimental data on mixtures of rare gases allows us to rank themore » performance of combining rules. We find that the widely used Lorentz-Berthelot rules exhibit the largest deviations from the experimental data, both for the bulk and at coexistence, while the Kong and Waldman-Hagler provide much better alternatives. In particular, in the case of aqueous solutions of urea, we show that the use of the Lorentz-Berthelot rules has a strong impact on the Gibbs free energy of the solute, overshooting the value predicted by the Waldman-Hagler rules by 7%. This result emphasizes the importance of the combining rule for the determination of hydration free energies using molecular simulations.« less
Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong
2014-06-01
Emission sources of volatile organic compounds (VOCs*) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999-2001) and the National Health and Nutrition Examination Survey (NHANES; 1999-2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1. To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model's goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2. Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture's components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3. Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). Specific Aim 1. Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10(-4), and 13% of all participants had risk levels above 10(-2). Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2. Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual's total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10(-3) for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3. In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence's AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. (ABSTRACT TRUNCATED)
Use of an Amino Acid Mixture in Treatment of Phenylketonuria
Bentovim, A.; Clayton, Barbara E.; Francis, Dorothy E. M.; Shepherd, Jean; Wolff, O. H.
1970-01-01
Twelve children with phenylketonuria diagnosed and treated from the first few weeks of life were grouped into pairs. Before the trial all of them were receiving a commercial preparation containing a protein hydrolysate low in phenylalanine (Cymogran, Allen and Hanburys Ltd.) as a substitute for natural protein. One of each pair was given an amino acid mixture instead of Cymogran for about 6 months. Use of the mixture involved considerable modification of the diet, and in particular the inclusion of greater amounts of phenylalanine-free foods. All six accepted the new mixture without difficulty, food problems were greatly reduced, parents welcomed the new preparation, and the quality of family life improved. Normal growth was maintained and with a mixture of l amino acids the plasma and urinary amino acid levels were normal. Further studies are needed before the mixture can be recommended for children under 20 months of age. PMID:5477678
Theory and simulation of electrolyte mixtures
NASA Astrophysics Data System (ADS)
Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.
Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.
NASA Astrophysics Data System (ADS)
Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2018-05-01
Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.
NASA Astrophysics Data System (ADS)
Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.
2018-04-01
The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.
High altitude cognitive performance and COPD interaction
Kourtidou-Papadeli, C; Papadelis, C; Koutsonikolas, D; Boutzioukas, S; Styliadis, C; Guiba-Tziampiri, O
2008-01-01
Introduction: Thousands of people work and perform everyday in high altitude environment, either as pilots, or shift workers, or mountaineers. The problem is that most of the accidents in this environment have been attributed to human error. The objective of this study was to assess complex cognitive performance as it interacts with respiratory insufficiency at altitudes of 8000 feet and identify the potential effect of hypoxia on safe performance. Methods: Twenty subjects participated in the study, divided in two groups: Group I with mild asymptomatic chronic obstructive pulmonary disease (COPD), and Group II with normal respiratory function. Altitude was simulated at 8000 ft. using gas mixtures. Results: Individuals with mild COPD experienced notable hypoxemia with significant performance decrements and increased number of errors at cabin altitude, compared to normal subjects, whereas their blood pressure significantly increased. PMID:19048098
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture
NASA Astrophysics Data System (ADS)
Hazra, Milan K.; Bagchi, Biman
2018-03-01
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm-1) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
Collective excitations and ultrafast dipolar solvation dynamics in water-ethanol binary mixture.
Hazra, Milan K; Bagchi, Biman
2018-03-21
In order to understand the intermolecular vibrational spectrum and the collective excitations of water-ethanol binary mixture, we investigate the density of states and the power spectrum using computer simulations aided by theory. We investigate in particular the spectra at intermediate to low frequencies (a few hundreds to few tens of cm -1 ) by calculating (i) the density of states from quenched normal modes, (ii) the power spectrum from velocity time correlation function, and (iii) the far infrared and dielectric spectra (that is, the Cole-Cole plot) from the total dipole moment time correlation function. The different spectra are in broad agreement with each other and at the same time reveal unique characteristics of the water-ethanol mixture. Inverse participation ratio reveals several interesting features. Libration of pure ethanol is more localized than that of pure water. With increasing ethanol content, we observe localization of the collective libration mode as well as of the hindered translational and rotational mode. An interesting mixing between the libration of water and ethanol is observed. Solvation dynamics of tryptophan measured by equilibrium energy fluctuation time correlation function show surprisingly strong non-linear dependence on composition that can be tested against experiments.
NASA Astrophysics Data System (ADS)
Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry
2013-09-01
Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.
Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity
NASA Astrophysics Data System (ADS)
Chen, Hsieh; Panagiotopoulos, Athanassios Z.
2018-01-01
We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.
Hamel, Sandra; Yoccoz, Nigel G; Gaillard, Jean-Michel
2017-05-01
Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life-history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users. © 2016 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe
2016-03-01
We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.
Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe
2016-03-14
We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.
The effects of complex chemistry on triple flames
NASA Technical Reports Server (NTRS)
Echekki, T.; Chen, J. H.
1996-01-01
The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species.
Large eddy simulation of hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Bhatt, Mrugank; Mahesh, Krishnan
2017-11-01
Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.
Li, Song; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Liao, Chen; Dai, Sheng; Cummings, Peter T
2012-09-06
An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range. In order to study its capacitive performance in supercapacitors, simulations were performed of the mixture, and the neat RTILs used as electrolytes near an onion-like carbon (OLC) electrode at varying temperatures. The differential capacitance exhibited independence of the electrical potential applied for three electrolytes, which is in agreement with previous work on OLC electrodes in a different RTILs. Positive temperature dependence of the differential capacitance was observed, and it was dominated by the electrical double layer (EDL) thickness, which is for the first time substantiated in MD simulation.
Minami, M; Katsumata, M; Miyake, K; Inagaki, H; Fan, X H; Kubota, H; Yamano, Y; Kimura, O
1992-01-01
A housewife cleaned toilet porcelain connected directly to a sewage storage tank with a mixture of cleaning agents; sodium hypochlorite (NaOCl) and hydrochloric acid (HCl) solutions. She complained of insomnia on the night after cleaning and suffered from severe metabolic acidosis with extremely low blood pH, PCO2 and bicarbonate values. She recovered from the acidosis after bicarbonate transfusion, plasmapheresis and plasma exchange. Permanent blindness ensued, however, from the third day after the event. These clinical symptoms suggested that the toxic substances responsible were chloramine and methyl chloride. Their generation was confirmed by in-vitro experiments, mixing NaOCl, HCl and pooled urine from normal people. In the simulation, the methyl chloride level far exceeded (100,000 ppm) the maximal allowable concentration recommended (ca 400 ppm) by the American Conference of Governmental Industrial Hygienists (ACGIH). Chloramine's toxic actions were confirmed using purified enzyme assay, and the inhibition of carbonic anhydrase and aldehyde dehydrogenase and the enhancement of superoxide dismutase activity were confirmed in neutral pH. The patient's clinical symptoms suggested that insomnia and permanent blindness seemed to be partly ascribable to chronic repetitive exposure to methyl chloride; catching a cold, drug intake and alcohol intake, in addition, precipitated the patient's visual loss. The possibility of this kind of intoxication with such a mixture of agents may lie latent in any situation where sewage or garbage are exposed to the open air.
NASA Astrophysics Data System (ADS)
Magyar, Rudolph
2013-06-01
We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S
2008-08-05
Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.
Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city
NASA Astrophysics Data System (ADS)
Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang
2014-11-01
The sub-pixel urban land cover has been proved to have obvious correlations with land surface temperature (LST). Yet these relationships have seldom been used to simulate LST. In this study we provided a new approach of urban LST simulation based on sub-pixel land cover modeling. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover and then extract the transformation rule using logistic regression. The transformation possibility was taken as its percent in the same pixel after normalization. And cellular automata were used to acquire simulated sub-pixel land cover on 2007 and 2017. On the other hand, the correlations between retrieved LST and sub-pixel land cover achieved by spectral mixture analysis in 2002 were examined and a regression model was built. Then the regression model was used on simulated 2007 land cover to model the LST of 2007. Finally the LST of 2017 was simulated for urban planning and management. The results showed that our method is useful in LST simulation. Although the simulation accuracy is not quite satisfactory, it provides an important idea and a good start in the modeling of urban LST.
NASA Astrophysics Data System (ADS)
Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong
2014-10-01
The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.
Determining inert content in coal dust/rock dust mixture
Sapko, Michael J.; Ward, Jr., Jack A.
1989-01-01
A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.
Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth
2011-01-01
Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial manatee surveys. 5. Overestimation of abundance by binomial mixture models owing to non-independent detections is problematic for ecological studies, but also for conservation. For example, in the case of endangered species, it could lead to inappropriate management decisions, such as downlisting. These issues will be increasingly relevant as more ecologists apply flexible N-mixture models to ecological data.
Batterman, Stuart; Su, Feng-Chiao; Li, Shi; Mukherjee, Bhramar; Jia, Chunrong
2015-01-01
INTRODUCTION Emission sources of volatile organic compounds (VOCs) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999–2001) and the National Health and Nutrition Examination Survey (NHANES; 1999–2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1 To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model’s goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2 Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture’s components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3 Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). RESULTS Specific Aim 1 Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10−4, and 13% of all participants had risk levels above 10−2. Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2 Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual’s total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10−3 for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3 In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence’s AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. A portion of these differences are due to the nature of the convenience (RIOPA) and representative (NHANES) sampling strategies used in the two studies. CONCLUSIONS Accurate models for exposure data, which can feature extreme values, multiple modes, data below the MDL, heterogeneous interpollutant dependency structures, and other complex characteristics, are needed to estimate exposures and risks and to develop control and management guidelines and policies. Conventional and novel statistical methods were applied to data drawn from two large studies to understand the nature and significance of VOC exposures. Both extreme value distributions and mixture models were found to provide excellent fit to single VOC compounds (univariate distributions), and copulas may be the method of choice for VOC mixtures (multivariate distributions), especially for the highest exposures, which fit parametric models poorly and which may represent the greatest health risk. The identification of exposure determinants, including the influence of both certain activities (e.g., pumping gas) and environments (e.g., residences), provides information that can be used to manage and reduce exposures. The results obtained using the RIOPA data set add to our understanding of VOC exposures and further investigations using a more representative population and a wider suite of VOCs are suggested to extend and generalize results. PMID:25145040
Identification of Allelic Imbalance with a Statistical Model for Subtle Genomic Mosaicism
Xia, Rui; Vattathil, Selina; Scheet, Paul
2014-01-01
Genetic heterogeneity in a mixed sample of tumor and normal DNA can confound characterization of the tumor genome. Numerous computational methods have been proposed to detect aberrations in DNA samples from tumor and normal tissue mixtures. Most of these require tumor purities to be at least 10–15%. Here, we present a statistical model to capture information, contained in the individual's germline haplotypes, about expected patterns in the B allele frequencies from SNP microarrays while fully modeling their magnitude, the first such model for SNP microarray data. Our model consists of a pair of hidden Markov models—one for the germline and one for the tumor genome—which, conditional on the observed array data and patterns of population haplotype variation, have a dependence structure induced by the relative imbalance of an individual's inherited haplotypes. Together, these hidden Markov models offer a powerful approach for dealing with mixtures of DNA where the main component represents the germline, thus suggesting natural applications for the characterization of primary clones when stromal contamination is extremely high, and for identifying lesions in rare subclones of a tumor when tumor purity is sufficient to characterize the primary lesions. Our joint model for germline haplotypes and acquired DNA aberration is flexible, allowing a large number of chromosomal alterations, including balanced and imbalanced losses and gains, copy-neutral loss-of-heterozygosity (LOH) and tetraploidy. We found our model (which we term J-LOH) to be superior for localizing rare aberrations in a simulated 3% mixture sample. More generally, our model provides a framework for full integration of the germline and tumor genomes to deal more effectively with missing or uncertain features, and thus extract maximal information from difficult scenarios where existing methods fail. PMID:25166618
Microstructure and hydrogen bonding in water-acetonitrile mixtures.
Mountain, Raymond D
2010-12-16
The connection of hydrogen bonding between water and acetonitrile in determining the microheterogeneity of the liquid mixture is examined using NPT molecular dynamics simulations. Mixtures for six, rigid, three-site models for acetonitrile and one water model (SPC/E) were simulated to determine the amount of water-acetonitrile hydrogen bonding. Only one of the six acetonitrile models (TraPPE-UA) was able to reproduce both the liquid density and the experimental estimates of hydrogen bonding derived from Raman scattering of the CN stretch band or from NMR quadrupole relaxation measurements. A simple modification of the acetonitrile model parameters for the models that provided poor estimates produced hydrogen-bonding results consistent with experiments for two of the models. Of these, only one of the modified models also accurately determined the density of the mixtures. The self-diffusion coefficient of liquid acetonitrile provided a final winnowing of the modified model and the successful, unmodified model. The unmodified model is provisionally recommended for simulations of water-acetonitrile mixtures.
NASA Astrophysics Data System (ADS)
Magyar, R. J.; Root, S.; Haill, T. A.; Schroen, D. G.; Mattsson, T. R.; Flicker, D. G.; Sandia National Laboratories Collaboration
2011-06-01
Mixtures of materials are expected to behave quite differently from their isolated constituents, particularly when the constituents atomic numbers differ significantly. To investigate the mixture behavior, we performed density functional theory (DFT) calculations on xenon/hydrogen, xenon/ethane, and platinum/hydrocarbon mixtures. In addition, we performed shock compression experiments on platinum-doped hydrocarbon foams up to 480 GPa using the Sandia Z-accelerator. Since the DFT simulations treat electrons and nuclei generically, simulations of pure and mix systems are expected to be of comparable accuracy. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. The role of de-mixing and the relative contributions of the enthalpy of mixing are explored. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Kirkwood–Buff integrals for ideal solutions
Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.
2010-01-01
The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.
Less common applications of simulated moving bed chromatography in the pharmaceutical industry.
Huthmann, E; Juza, M
2005-10-21
Simulated moving bed (SMB) chromatography is often perceived in the pharmaceutical industry as chromatographic method for separating binary mixtures, like racemates. However, SMB can also be used for unbalanced separations, i.e. binary mixtures of varying compositions and multi-component mixtures. These less common application modes of isocratic SMB chromatography are exemplified for four different compounds (racemates and diastereomers) and discussed in view of the so-called 'triangle theory' from an industrial perspective.
Toccalino, Patricia L.; Norman, Julia E.; Scott, Jonathon C.
2012-01-01
Chemical mixtures are prevalent in groundwater used for public water supply, but little is known about their potential health effects. As part of a large-scale ambient groundwater study, we evaluated chemical mixtures across multiple chemical classes, and included more chemical contaminants than in previous studies of mixtures in public-supply wells. We (1) assessed the occurrence of chemical mixtures in untreated source-water samples from public-supply wells, (2) determined the composition of the most frequently occurring mixtures, and (3) characterized the potential toxicity of mixtures using a new screening approach. The U.S. Geological Survey collected one untreated water sample from each of 383 public wells distributed across 35 states, and analyzed the samples for as many as 91 chemical contaminants. Concentrations of mixture components were compared to individual human-health benchmarks; the potential toxicity of mixtures was characterized by addition of benchmark-normalized component concentrations. Most samples (84%) contained mixtures of two or more contaminants, each at concentrations greater than one-tenth of individual benchmarks. The chemical mixtures that most frequently occurred and had the greatest potential toxicity primarily were composed of trace elements (including arsenic, strontium, or uranium), radon, or nitrate. Herbicides, disinfection by-products, and solvents were the most common organic contaminants in mixtures. The sum of benchmark-normalized concentrations was greater than 1 for 58% of samples, suggesting that there could be potential for mixtures toxicity in more than half of the public-well samples. Our findings can be used to help set priorities for groundwater monitoring and suggest future research directions for drinking-water treatment studies and for toxicity assessments of chemical mixtures in water resources.
Discrete Velocity Models for Polyatomic Molecules Without Nonphysical Collision Invariants
NASA Astrophysics Data System (ADS)
Bernhoff, Niclas
2018-05-01
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. Unlike for the Boltzmann equation, for DVMs there can appear extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and hence, without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species, but also for binary mixtures and recently extensively for multicomponent mixtures. In this paper, we address ways of constructing normal DVMs for polyatomic molecules (here represented by that each molecule has an internal energy, to account for non-translational energies, which can change during collisions), under the assumption that the set of allowed internal energies are finite. We present general algorithms for constructing such models, but we also give concrete examples of such constructions. This approach can also be combined with similar constructions of multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules, which is also briefly outlined. Then also, chemical reactions can be added.
Measurement and Structural Model Class Separation in Mixture CFA: ML/EM versus MCMC
ERIC Educational Resources Information Center
Depaoli, Sarah
2012-01-01
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
NASA Astrophysics Data System (ADS)
Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel
2012-02-01
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Burt, Jonathan M.
2016-01-01
There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.
NASA Astrophysics Data System (ADS)
Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe
2015-12-01
The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.
Molecular simulation of fluid mixtures in bulk and at solid-liquid interfaces
NASA Astrophysics Data System (ADS)
Kern, Jesse L.
The properties of a diverse range of mixture systems at interfaces are investigated using a variety of computational techniques. Molecular simulation is used to examine the thermodynamic, structural, and transport properties of heterogeneous systems of theoretical and practical importance. The study of binary hard-sphere mixtures at a hard wall demonstrates the high accuracy of recently developed classical-density functionals. The study of aluminum--gallium solid--liquid heterogeneous interfaces predicts a significant amount of prefreezing of the liquid by adopting the structure of the solid surface. The study of ethylene-expanded methanol within model silica mesopores shows the effect of confinement and surface functionalzation on the mixture composition and transport inside of the pores. From our molecular-dynamics study of binary hard-sphere fluid mixtures at a hard wall, we obtained high-precision calculations of the wall-fluid interfacial free energies, gamma. We have considered mixtures of varying diameter ratio, alpha = 0.7,0.8,0.9; mole fraction, x 1 = 0.25,0.50,0.75; and packing fraction, eta < 0.50. Using Gibbs-Cahn Integration, gamma is calculated from the system pressure, chemical potentials, and density profiles. Recent classical density-functional theory predictions agree very well with our results. Structural, thermodynamic, and transport properties of the aluminum--gallium solid--liquid interface at 368 K are obtained for the (100), (110), and (111) orientations using molecular dynamics. Density, potential energy, stress, and diffusion profiles perpendicular to the interface are calculated. The layers of Ga that form on the Al surface are strongly adsorbed and take the in-plane structure of the underlying crystal layers for all orientations, which results in significant compressive stress on the Ga atoms. Bulk methanol--ethylene mixtures under vapor-liquid equilibrium conditions have been characterized using Monte Carlo and molecular dynamics. The simulated vapor-liquid coexistence curves for the pure-component and binary mixtures agree well with experiment, as do the mixture volumetric expansion results. Using chemical potentials obtained from the bulk simulations, the filling of a number of model silica mesopores with ethylene and methanol is simulated. We report the compositions of the confined fluid mixtures over a range of pressures and for three degrees of nominal pore hydrophobicity.
Kulcsár, Gyula
2009-02-01
Despite the substantial decline of the immune system in AIDS, only a few kinds of tumors increase in incidence. This shows that the immune system has no absolute role in the prevention of tumors. Therefore, the fact that tumors do not develop in the majority of the population during their lifetime indicates the existence of other defense system(s). According to our hypothesis, the defense is made by certain substances of the circulatory system. Earlier, on the basis of this hypothesis, we experimentally selected 16 substances of the circulatory system and demonstrated that the mixture of them (called active mixture) had a cytotoxic effect (inducing apoptosis) in vitro and in vivo on different tumor cell lines, but not on normal cells and animals. In this paper, we provide evidence that different cytostatic drugs or irradiation in combination with the active mixture killed significantly more cancer cells, compared with either treatments alone. The active mixture decreased, to a certain extent, the toxicity of cytostatics and irradiation on normal cells, but the most important result was that the active mixture destroyed the multidrug-resistant cells. Our results provide the possibility to improve the efficacy and reduce the side-effects of chemotherapy and radiation therapy and to prevent the relapse by killing the resistant cells.
NASA Astrophysics Data System (ADS)
Khan, F.; Pilz, J.; Spöck, G.
2017-12-01
Spatio-temporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or sub-basin. This further affects the hydrological conditions and consequently will provide misleading results if these structures are not taken into account properly. In this study we modeled the spatial dependence structure between climate variables including maximum, minimum temperature and precipitation in the Monsoon dominated region of Pakistan. For temperature, six, and for precipitation four meteorological stations have been considered. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and Student t-copula models. For temperature, multivariate mixture normal distributions and for precipitation gamma distributions have been used as marginals under the copula models. A comparison was made between C-Vine, D-Vine and Student t-copula by observational and simulated spatial dependence structure to choose an appropriate model for the climate data. The results show that all copula models performed well, however, there are subtle differences in their performances. The copula models captured the patterns of spatial dependence structures between climate variables at multiple meteorological sites, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except of maximum values for temperature and minimum values for minimum temperature. Probability density functions of simulated data closely follow the probability density functions of observational data for all variables. C and D-Vines are better tools when it comes to modelling the dependence between variables, however, Student t-copulas compete closely for precipitation. Keywords: Copula model, C-Vine, D-Vine, Spatial dependence structure, Monsoon dominated region of Pakistan, Mixture models, EM algorithm.
Evaluation of flamelet/progress variable model for laminar pulverized coal combustion
NASA Astrophysics Data System (ADS)
Wen, Xu; Wang, Haiou; Luo, Yujuan; Luo, Kun; Fan, Jianren
2017-08-01
In the present work, the flamelet/progress variable (FPV) approach based on two mixture fractions is formulated for pulverized coal combustion and then evaluated in laminar counterflow coal flames under different operating conditions through both a priori and a posteriori analyses. Two mixture fractions, Zvol and Zchar, are defined to characterize the mixing between the oxidizer and the volatile matter/char reaction products. A coordinate transformation is conducted to map the flamelet solutions from a unit triangle space (Zvol, Zchar) to a unit square space (Z, X) so that a more stable solution can be achieved. To consider the heat transfers between the coal particle phase and the gas phase, the total enthalpy is introduced as an additional manifold. As a result, the thermo-chemical quantities are parameterized as a function of the mixture fraction Z, the mixing parameter X, the normalized total enthalpy Hnorm, and the reaction progress variable YPV. The validity of the flamelet chemtable and the selected trajectory variables is first evaluated in a priori tests by comparing the tabulated quantities with the results obtained from numerical simulations with detailed chemistry. The comparisons show that the major species mass fractions can be predicted by the FPV approach in all combustion regions for all operating conditions, while the CO and H2 mass fractions are over-predicted in the premixed flame reaction zone. The a posteriori study shows that overall good agreement between the FPV results and those obtained from detailed chemistry simulations can be achieved, although the coal particle ignition is predicted to be slightly earlier. Overall, the validity of the FPV approach for laminar pulverized coal combustion is confirmed and its performance in turbulent pulverized coal combustion will be tested in future work.
2012-03-27
pulse- detonation engines ( PDE ), stage separation, supersonic cav- ity oscillations, hypersonic aerodynamics, detonation induced structural...ADAPTIVE UNSTRUCTURED CARTESIAN METHOD FOR LARGE-EDDY SIMULATION OF DETONATION IN MULTI-PHASE TURBULENT REACTIVE MIXTURES 5b. GRANT NUMBER FA9550...CCL Report TR-2012-03-03 Hybrid Solution-Adaptive Unstructured Cartesian Method for Large-Eddy Simulation of Detonation in Multi-Phase Turbulent
A general mixture theory. I. Mixtures of spherical molecules
NASA Astrophysics Data System (ADS)
Hamad, Esam Z.
1996-08-01
We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.
Deterministic annealing for density estimation by multivariate normal mixtures
NASA Astrophysics Data System (ADS)
Kloppenburg, Martin; Tavan, Paul
1997-03-01
An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.
NASA Astrophysics Data System (ADS)
Mazzola, Guglielmo; Helled, Ravit; Sorella, Sandro
2018-01-01
Understanding planetary interiors is directly linked to our ability of simulating exotic quantum mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by planetary scientists, although this method allows only for a qualitative description of the phase diagram. Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other EOS calculations and are very timely given the accurate determination of Jupiter's gravitational field from the NASA Juno mission and the effort to determine its structure.
Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides
NASA Astrophysics Data System (ADS)
Fukuoka, H.; Tsukui, A.
2010-12-01
In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the methane hydrates in laboratories because no explosion protection facility is required. In order to prevent rapid gasification, the specimen was prepared without water. Applied total normal stress was 200 kPa and initial normal stress was maintained at about 70 kPa by slightly opening the drainage valve to vent pressured CO2 gas. When the sample was sheared at 30 cm/s, the stress path reached failure line of friction angle of about 37 degrees immediately. However, excess pore air pressure increased soon after and the stress path moved to the origin along the failure line. This means rapid shearing generates frictional heat and it accelerates the gasification of dry ice quickly. On the other hand, crushing of pellets may contribute to increase the total surface area of dry ice and to acceleration of gasification, to some extent. Authors are conducting to examine the velocity weakening characteristics of the samples and upcoming results will give more detail of the mechanism. But this sliding-surface-liquefaction in the mixture supports the possibility of similar accelerating displacement in the sand-MH mixture or boundaries between MH and sand layer induced by certain strong ground motion under sea floor.
Numerical Simulation of the Detonation of Condensed Explosives
NASA Astrophysics Data System (ADS)
Wang, Cheng; Ye, Ting; Ning, Jianguo
Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.
Gibb-Snyder, Emily; Gullett, Brian; Ryan, Shawn; Oudejans, Lukas; Touati, Abderrahmane
2006-08-01
Size-selective sampling of Bacillus anthracis surrogate spores from realistic, common aerosol mixtures was developed for analysis by laser-induced breakdown spectroscopy (LIBS). A two-stage impactor was found to be the preferential sampling technique for LIBS analysis because it was able to concentrate the spores in the mixtures while decreasing the collection of potentially interfering aerosols. Three common spore/aerosol scenarios were evaluated, diesel truck exhaust (to simulate a truck running outside of a building air intake), urban outdoor aerosol (to simulate common building air), and finally a protein aerosol (to simulate either an agent mixture (ricin/anthrax) or a contaminated anthrax sample). Two statistical methods, linear correlation and principal component analysis, were assessed for differentiation of surrogate spore spectra from other common aerosols. Criteria for determining percentages of false positives and false negatives via correlation analysis were evaluated. A single laser shot analysis of approximately 4 percent of the spores in a mixture of 0.75 m(3) urban outdoor air doped with approximately 1.1 x 10(5) spores resulted in a 0.04 proportion of false negatives. For that same sample volume of urban air without spores, the proportion of false positives was 0.08.
Use of agar/glycerol and agar/glycerol/water as a translucent brain simulant for ballistic testing.
Falland-Cheung, Lisa; Waddell, J Neil; Lazarjan, Milad Soltanipour; Jermy, Mark C; Winter, Taylor; Tong, Darryl; Brunton, Paul A
2017-01-01
The suitability of agar/glycerol/water and agar/glycerol mixtures as brain simulants was investigated. Test specimens (n=15) (50x27×37mm) were fabricated for these different mixtures and conditioned to 12°C, 22°C, and 26°C prior to testing. For comparison, fresh deer brain specimens (n=20) were sourced and prepared to the same dimensions as the agar/glycerol(/water) mixtures and conditioned to 12°C and 37°C. High impact tests were carried out with a 0.22-caliber air rifle pellet and a high-speed camera was used to record the projectile as it passed through the specimens, allowing for energy loss and vertical displacement velocity calculation. Although the agar/glycerol/water mixture presented with similar vertical expansion and contraction of the specimens to the warm and cold deer brains, a two-fold decrease of the vertical expansion and contraction was noticed with the agar/glycerol specimens. Also considerably less extrusion of this mixture out of the exit and entry sides after specimen penetration was observed. Of the simulants tested, agar/glycerol/water was the most suitable brain simulant for ballistic testing and impact studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
heterogeneous mixture distributions for multi-source extreme rainfall
NASA Astrophysics Data System (ADS)
Ouarda, T.; Shin, J.; Lee, T. S.
2013-12-01
Mixture distributions have been used to model hydro-meteorological variables showing mixture distributional characteristics, e.g. bimodality. Homogeneous mixture (HOM) distributions (e.g. Normal-Normal and Gumbel-Gumbel) have been traditionally applied to hydro-meteorological variables. However, there is no reason to restrict the mixture distribution as the combination of one identical type. It might be beneficial to characterize the statistical behavior of hydro-meteorological variables from the application of heterogeneous mixture (HTM) distributions such as Normal-Gamma. In the present work, we focus on assessing the suitability of HTM distributions for the frequency analysis of hydro-meteorological variables. In the present work, in order to estimate the parameters of HTM distributions, the meta-heuristic algorithm (Genetic Algorithm) is employed to maximize the likelihood function. In the present study, a number of distributions are compared, including the Gamma-Extreme value type-one (EV1) HTM distribution, the EV1-EV1 HOM distribution, and EV1 distribution. The proposed distribution models are applied to the annual maximum precipitation data in South Korea. The Akaike Information Criterion (AIC), the root mean squared errors (RMSE) and the log-likelihood are used as measures of goodness-of-fit of the tested distributions. Results indicate that the HTM distribution (Gamma-EV1) presents the best fitness. The HTM distribution shows significant improvement in the estimation of quantiles corresponding to the 20-year return period. It is shown that extreme rainfall in the coastal region of South Korea presents strong heterogeneous mixture distributional characteristics. Results indicate that HTM distributions are a good alternative for the frequency analysis of hydro-meteorological variables when disparate statistical characteristics are presented.
Combustion of Gaseous Mixtures
NASA Technical Reports Server (NTRS)
Duchene, R
1932-01-01
This report not only presents matters of practical importance in the classification of engine fuels, for which other means have proved inadequate, but also makes a few suggestions. It confirms the results of Withrow and Boyd which localize the explosive wave in the last portions of the mixture burned. This being the case, it may be assumed that the greater the normal combustion, the less the energy developed in the explosive form. In order to combat the detonation, it is therefore necessary to try to render the normal combustion swift and complete, as produced in carbureted mixtures containing benzene (benzol), in which the flame propagation, beginning at the spark, yields a progressive and pronounced darkening on the photographic film.
NASA Astrophysics Data System (ADS)
Yang, Peng
The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results of MD simulations of liquid mixture systems car-ried out in this research explain observed experiments and show the details of nanostructural organizations in small solute molecules/IL mixture. Additionally, the research successfully reveals the correct mechanism of graphene exfoliation process in liquid solution. (This will be summarized in Chapter 5.) The research presented in this dissertation enhances our understanding of the microscopic behaviors in complex liquid systems as well as the theoretical method to explore them.
Zhang, Jingyang; Chaloner, Kathryn; McLinden, James H.; Stapleton, Jack T.
2013-01-01
Reconciling two quantitative ELISA tests for an antibody to an RNA virus, in a situation without a gold standard and where false negatives may occur, is the motivation for this work. False negatives occur when access of the antibody to the binding site is blocked. Based on the mechanism of the assay, a mixture of four bivariate normal distributions is proposed with the mixture probabilities depending on a two-stage latent variable model including the prevalence of the antibody in the population and the probabilities of blocking on each test. There is prior information on the prevalence of the antibody, and also on the probability of false negatives, and so a Bayesian analysis is used. The dependence between the two tests is modeled to be consistent with the biological mechanism. Bayesian decision theory is utilized for classification. The proposed method is applied to the motivating data set to classify the data into two groups: those with and those without the antibody. Simulation studies describe the properties of the estimation and the classification. Sensitivity to the choice of the prior distribution is also addressed by simulation. The same model with two levels of latent variables is applicable in other testing procedures such as quantitative polymerase chain reaction tests where false negatives occur when there is a mutation in the primer sequence. PMID:23592433
Mesoscale Modeling of LX-17 Under Isentropic Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Willey, T M; Friedman, G
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...
2015-11-24
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less
Organic synthesis in experimental impact shocks
NASA Technical Reports Server (NTRS)
McKay, C. P.; Borucki, W. J.
1997-01-01
Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.
A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.
Moatti, M; Chevret, S; Zohar, S; Rosenberger, W F
2016-01-01
Response-adaptive randomisation designs have been proposed to improve the efficiency of phase III randomised clinical trials and improve the outcomes of the clinical trial population. In the setting of failure time outcomes, Zhang and Rosenberger (2007) developed a response-adaptive randomisation approach that targets an optimal allocation, based on a fixed sample size. The aim of this research is to propose a response-adaptive randomisation procedure for survival trials with an interim monitoring plan, based on the following optimal criterion: for fixed variance of the estimated log hazard ratio, what allocation minimizes the expected hazard of failure? We demonstrate the utility of the design by redesigning a clinical trial on multiple myeloma. To handle continuous monitoring of data, we propose a Bayesian response-adaptive randomisation procedure, where the log hazard ratio is the effect measure of interest. Combining the prior with the normal likelihood, the mean posterior estimate of the log hazard ratio allows derivation of the optimal target allocation. We perform a simulation study to assess and compare the performance of this proposed Bayesian hybrid adaptive design to those of fixed, sequential or adaptive - either frequentist or fully Bayesian - designs. Non informative normal priors of the log hazard ratio were used, as well as mixture of enthusiastic and skeptical priors. Stopping rules based on the posterior distribution of the log hazard ratio were computed. The method is then illustrated by redesigning a phase III randomised clinical trial of chemotherapy in patients with multiple myeloma, with mixture of normal priors elicited from experts. As expected, there was a reduction in the proportion of observed deaths in the adaptive vs. non-adaptive designs; this reduction was maximized using a Bayes mixture prior, with no clear-cut improvement by using a fully Bayesian procedure. The use of stopping rules allows a slight decrease in the observed proportion of deaths under the alternate hypothesis compared with the adaptive designs with no stopping rules. Such Bayesian hybrid adaptive survival trials may be promising alternatives to traditional designs, reducing the duration of survival trials, as well as optimizing the ethical concerns for patients enrolled in the trial.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.
Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas
2016-04-28
We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that the glycerol force field (FF) has on our results. By comparing MD simulations using two different glycerol models, we find that glycerol conformations indeed depend on the FF employed. Yet, the thermodynamic and microscopic mechanisms accompanying the LDA-HDA transformation and hence, our main results, do not. This work is accompanied by an experimental report where we study the glass polymorphism in glycerol-water mixtures prepared by isobaric cooling at 1 bar.
Glass polymorphism in glycerol–water mixtures: I. A computer simulation study
Jahn, David A.; Wong, Jessina; Bachler, Johannes; Loerting, Thomas
2016-01-01
We perform out-of-equilibrium molecular dynamics (MD) simulations of water–glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA–HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ g = 0–13% and find that, for the present mixture models and rates, the LDA–HDA transformation is detectable up to χ g ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ g ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ g > 5%. We present an analysis of the molecular-level changes underlying the LDA–HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA–HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA–HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that the glycerol force field (FF) has on our results. By comparing MD simulations using two different glycerol models, we find that glycerol conformations indeed depend on the FF employed. Yet, the thermodynamic and microscopic mechanisms accompanying the LDA–HDA transformation and hence, our main results, do not. This work is accompanied by an experimental report where we study the glass polymorphism in glycerol–water mixtures prepared by isobaric cooling at 1 bar. PMID:27063705
Mixture and method for simulating soiling and weathering of surfaces
Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem
2018-01-02
This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.
The effects of temperature on nitrous oxide and oxygen mixture homogeneity and stability.
Litwin, Patrick D
2010-10-15
For many long standing practices, the rationale for them is often lost as time passes. This is the situation with respect to the storage and handling of equimolar 50% nitrous oxide and 50% oxygen volume/volume (v/v) mixtures. A review was undertaken of existing literature to examine the developmental history of nitrous oxide and oxygen mixtures for anesthesia and analgesia and to ascertain if sufficient bibliographic data was available to support the position that the contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage and if justification could be found for the standard instructions given for handling before use. After ranking and removing duplicates, a total of fifteen articles were identified by the various search strategies and formed the basis of this literature review. Several studies were identified that confirmed that 50%/50% v/v mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The effect of temperature on the change of phase of the nitrous oxide in this mixture was further examined by several authors. These studies demonstrated that although it is possible to cause condensation and phase separation by cooling the cylinder, by allowing the cylinder to rewarm to room temperature for at least 48 hours, preferably in a horizontal orientation, and inverting it three times before use, the cylinder consistently delivered the proper proportions of the component gases as a homogenous mixture. The contents of a cylinder of a 50%/50% volume/volume (v/v) mixture of nitrous oxide and oxygen is in a homogenous single gas phase in a filled cylinder under normal conditions of handling and storage. The standard instructions given for handling before are justified based on previously conducted studies.
The Impact of Various Class-Distinction Features on Model Selection in the Mixture Rasch Model
ERIC Educational Resources Information Center
Choi, In-Hee; Paek, Insu; Cho, Sun-Joo
2017-01-01
The purpose of the current study is to examine the performance of four information criteria (Akaike's information criterion [AIC], corrected AIC [AICC] Bayesian information criterion [BIC], sample-size adjusted BIC [SABIC]) for detecting the correct number of latent classes in the mixture Rasch model through simulations. The simulation study…
Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.
Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L
2018-06-25
Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.
Bridges, N.J.; McCammon, R.B.
1980-01-01
DISCRIM is an interactive computer graphics program that dissects mixtures of normal or lognormal distributions. The program was written in an effort to obtain a more satisfactory solution to the dissection problem than that offered by a graphical or numerical approach alone. It combines graphic and analytic techniques using a Tektronix1 terminal in a time-share computing environment. The main program and subroutines were written in the FORTRAN language. ?? 1980.
Cholesterol orientation and tilt modulus in DMPC bilayers
Khelashvili, George; Pabst, Georg; Harries, Daniel
2010-01-01
We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol tilt may be an important factor for inducing membrane ordering. In particular, we find that as cholesterol concentration increases (1%–40% cholesterol) the average cholesterol orientation changes in a manner strongly (anti)correlated with the variation in membrane thickness. Furthermore, cholesterol orientation is found to be determined by the aligning force exerted by other cholesterol molecules. To quantify this aligning field, we analyzed cholesterol orientation using, to our knowledge, the first estimates of the cholesterol tilt modulus χ from MD simulations. Our calculations suggest that the aligning field that determines χ is indeed strongly linked to sterol composition. This empirical parameter (χ) should therefore become a useful quantitative measure to describe cholesterol interaction with other lipids in bilayers, particularly in various coarse-grained force fields. PMID:20518573
Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop
NASA Astrophysics Data System (ADS)
Lamorgese, A.; Mauri, R.
2016-03-01
We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.
Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.
Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G
2014-01-01
The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Yongfei; Feng, Jianfeng; Kang, Lili; Xu, Xin; Zhu, Lin
2018-01-01
The joint toxicity of chemical mixtures has emerged as a popular topic, particularly on the additive and potential synergistic actions of environmental mixtures. We investigated the 24h toxicity of Cu-Zn, Cu-Cd, and Cu-Pb and 96h toxicity of Cd-Pb binary mixtures on the survival of zebrafish larvae. Joint toxicity was predicted and compared using the concentration addition (CA) and independent action (IA) models with different assumptions in the toxic action mode in toxicodynamic processes through single and binary metal mixture tests. Results showed that the CA and IA models presented varying predictive abilities for different metal combinations. For the Cu-Cd and Cd-Pb mixtures, the CA model simulated the observed survival rates better than the IA model. By contrast, the IA model simulated the observed survival rates better than the CA model for the Cu-Zn and Cu-Pb mixtures. These findings revealed that the toxic action mode may depend on the combinations and concentrations of tested metal mixtures. Statistical analysis of the antagonistic or synergistic interactions indicated that synergistic interactions were observed for the Cu-Cd and Cu-Pb mixtures, non-interactions were observed for the Cd-Pb mixtures, and slight antagonistic interactions for the Cu-Zn mixtures. These results illustrated that the CA and IA models are consistent in specifying the interaction patterns of binary metal mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.
2018-05-01
Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurapov, Denis; Reiss, Jennifer; Trinh, David H.
2007-07-15
Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less
Simulation of Unsteady Hypersonic Combustion Around Projectiles in an Expansion Tube
NASA Technical Reports Server (NTRS)
Yungster, S.; Radhakrishnan, K.
1999-01-01
The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we developed recently for solving the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Dario; Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005 Paris
We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900–1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, wemore » present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture’s self-diffusion coefficients, viscosity, and ionic conductivity.« less
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures
NASA Astrophysics Data System (ADS)
Rowley, R. L.; Stoker, J. M.; Giles, N. F.
1991-05-01
The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.
Polarization-modulated FTIR spectroscopy of lipid/gramicidin monolayers at the air/water interface.
Ulrich, W P; Vogel, H
1999-01-01
Monolayers of gramicidin A, pure and in mixtures with dimyristoylphosphatidylcholine (DMPC), were studied in situ at the air/H2O and air/D2O interfaces by polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Simulations of the entire set of amide I absorption modes were also performed, using complete parameter sets for different conformations based on published normal mode calculations. The structure of gramicidin A in the DMPC monolayer could clearly be assigned to a beta6.3 helix. Quantitative analysis of the amide I bands revealed that film pressures of up to 25-30 mN/m the helix tilt angle from the vertical in the pure gramicidin A layer exceeded 60 degrees. A marked dependence of the peptide orientation on the applied surface pressure was observed for the mixed lipid-peptide monolayers. At low pressure the helix lay flat on the surface, whereas at high pressures the helix was oriented almost parallel to the surface normal. PMID:10049344
Contaminant source identification using semi-supervised machine learning
NASA Astrophysics Data System (ADS)
Vesselinov, Velimir V.; Alexandrov, Boian S.; O'Malley, Daniel
2018-05-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).
Contaminant source identification using semi-supervised machine learning
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
2017-11-08
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
Contaminant source identification using semi-supervised machine learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinov, Velimir Valentinov; Alexandrov, Boian S.; O’Malley, Dan
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical types. Numerous different geochemical constituents and processes may needmore » to be simulated in these models which further complicates the analyses. In this paper, we propose a new contaminant source identification approach that performs decomposition of the observation mixtures based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the unknown number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. NMFk is tested on synthetic and real-world site data. Finally, the NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).« less
Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C
2010-01-01
While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.
Differential models of twin correlations in skew for body-mass index (BMI).
Tsang, Siny; Duncan, Glen E; Dinescu, Diana; Turkheimer, Eric
2018-01-01
Body Mass Index (BMI), like most human phenotypes, is substantially heritable. However, BMI is not normally distributed; the skew appears to be structural, and increases as a function of age. Moreover, twin correlations for BMI commonly violate the assumptions of the most common variety of the classical twin model, with the MZ twin correlation greater than twice the DZ correlation. This study aimed to decompose twin correlations for BMI using more general skew-t distributions. Same sex MZ and DZ twin pairs (N = 7,086) from the community-based Washington State Twin Registry were included. We used latent profile analysis (LPA) to decompose twin correlations for BMI into multiple mixture distributions. LPA was performed using the default normal mixture distribution and the skew-t mixture distribution. Similar analyses were performed for height as a comparison. Our analyses are then replicated in an independent dataset. A two-class solution under the skew-t mixture distribution fits the BMI distribution for both genders. The first class consists of a relatively normally distributed, highly heritable BMI with a mean in the normal range. The second class is a positively skewed BMI in the overweight and obese range, with lower twin correlations. In contrast, height is normally distributed, highly heritable, and is well-fit by a single latent class. Results in the replication dataset were highly similar. Our findings suggest that two distinct processes underlie the skew of the BMI distribution. The contrast between height and weight is in accord with subjective psychological experience: both are under obvious genetic influence, but BMI is also subject to behavioral control, whereas height is not.
On an interface of the online system for a stochastic analysis of the varied information flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.
The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.
Haddad, S; Tardif, R; Viau, C; Krishnan, K
1999-09-05
Biological hazard index (BHI) is defined as biological level tolerable for exposure to mixture, and is calculated by an equation similar to the conventional hazard index. The BHI calculation, at the present time, is advocated for use in situations where toxicokinetic interactions do not occur among mixture constituents. The objective of this study was to develop an approach for calculating interactions-based BHI for chemical mixtures. The approach consisted of simulating the concentration of exposure indicator in the biological matrix of choice (e.g. venous blood) for each component of the mixture to which workers are exposed and then comparing these to the established BEI values, for calculating the BHI. The simulation of biomarker concentrations was performed using a physiologically-based toxicokinetic (PBTK) model which accounted for the mechanism of interactions among all mixture components (e.g. competitive inhibition). The usefulness of the present approach is illustrated by calculating BHI for varying ambient concentrations of a mixture of three chemicals (toluene (5-40 ppm), m-xylene (10-50 ppm), and ethylbenzene (10-50 ppm)). The results show that the interactions-based BHI can be greater or smaller than that calculated on the basis of additivity principle, particularly at high exposure concentrations. At lower exposure concentrations (e.g. 20 ppm each of toluene, m-xylene and ethylbenzene), the BHI values obtained using the conventional methodology are similar to the interactions-based methodology, confirming that the consequences of competitive inhibition are negligible at lower concentrations. The advantage of the PBTK model-based methodology developed in this study relates to the fact that, the concentrations of individual chemicals in mixtures that will not result in a significant increase in the BHI (i.e. > 1) can be determined by iterative simulation.
Molecular Approach to the Synergistic Effect on Astringency Elicited by Mixtures of Flavanols.
Ramos-Pineda, Alba María; García-Estévez, Ignacio; Brás, Natércia F; Martín Del Valle, Eva M; Dueñas, Montserrat; Escribano Bailón, María Teresa
2017-08-09
The interactions between salivary proteins and wine flavanols (catechin, epicatechin, and mixtures thereof) have been studied by HPLC-DAD, isothermal titration microcalorimetry, and molecular dynamics simulations. Chromatographic results suggest that the presence of these flavanol mixtures could facilitate the formation of precipitates to the detriment of soluble aggregates. Comparison between the thermodynamic parameters obtained showed remarkably higher negative values of ΔG in the system containing the mixture of both flavanols in comparison to the systems containing individual flavanols, indicating a more favorable scenario in the mixing system. Also, the apparent binding constants were higher in this system. Furthermore, molecular dynamics simulations suggested a faster and greater cooperative binding of catechin and epicatechin to IB7 14 peptides when both types of flavanols are present simultaneously in solution.
McLachlan, G J; Bean, R W; Jones, L Ben-Tovim
2006-07-01
An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
NASA Technical Reports Server (NTRS)
Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven
2012-01-01
Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.
A numerical study of granular dam-break flow
NASA Astrophysics Data System (ADS)
Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.
2017-12-01
Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.
Rasch Mixture Models for DIF Detection
Strobl, Carolin; Zeileis, Achim
2014-01-01
Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest differential item functioning (DIF) tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a new score distribution for the Rasch mixture model is introduced here. It ensures the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study, and its application is illustrated in a study of verbal aggression. PMID:29795819
Peng, H L; Schober, H R; Voigtmann, Th
2016-12-01
Molecular dynamic simulations are performed to reveal the long-time behavior of the velocity autocorrelation function (VAF) by utilizing the finite-size effect in a Lennard-Jones binary mixture. Whereas in normal liquids the classical positive t^{-3/2} long-time tail is observed, we find in supercooled liquids a negative tail. It is strongly influenced by the transfer of the transverse current wave across the period boundary. The t^{-5/2} decay of the negative long-time tail is confirmed in the spectrum of VAF. Modeling the long-time transverse current within a generalized Maxwell model, we reproduce the negative long-time tail of the VAF, but with a slower algebraic t^{-2} decay.
3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures
NASA Astrophysics Data System (ADS)
Teunissen, Jannis; Ebert, Ute
2016-08-01
We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.
Efficient Bayesian mixed model analysis increases association power in large cohorts
Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L
2014-01-01
Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633
Theoretical study of the Hoogsteen-Watson-Crick junctions in DNA.
Cubero, Elena; Luque, F Javier; Orozco, Modesto
2006-02-01
A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.
Theoretical Study of the Hoogsteen–Watson-Crick Junctions in DNA
Cubero, Elena; Luque, F. Javier; Orozco, Modesto
2006-01-01
A series of d (AT)n oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation. PMID:16287814
ERIC Educational Resources Information Center
Li, Ming; Harring, Jeffrey R.
2017-01-01
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
Molecular simulations of a CO2/CO mixture in MIL-127
NASA Astrophysics Data System (ADS)
Chokbunpiam, Tatiya; Fritzsche, Siegfried; Parasuk, Vudhichai; Caro, Jürgen; Assabumrungrat, Suttichai
2018-03-01
Adsorption and diffusion of an equimolar feed mixture of CO2 and CO in MIL-127 at three different temperatures and pressures up to 12 bar were investigated by molecular simulations. The adsorption was simulated using Gibbs-Ensemble Monte Carlo (GEMC). The structure of the adsorbed phase and the diffusion in the MIL were investigated using Molecular Dynamics (MD) simulations. The adsorption selectivity of MIL-127 for CO2 over CO at 233 K was about 15. When combining adsorption and diffusion selectivities, a membrane selectivity of about 12 is predicted. For higher temperatures, both adsorption and diffusion selectivity are found to be smaller.
Buhl, Kevin J.; Hamilton, S.J.
1996-01-01
Two life stages of three federally-listed endangered fishes, Colorado squawfish (Ptychocheilus lucius), bonytail (Gila elegans), and razorback sucker (Xyrauchen texanus) were exposed to copper, selenate, selenite, and zinc individually, and to mixtures of nine inorganics in a reconstituted water that simulated the water quality of the middle Green River, Utah. The mixtures simulated environmental ratios of arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc in two tributaries, Ashley Creek and Stewart Lake outlet, of the middle Green River. The rank order of toxicity of the individual inorganics, from most to least toxic, was: copper > zinc > selenite > selenate. Colorado squawfish larvae were more sensitive to all four inorganics and the two mixtures than the juveniles, whereas there was no consistent response between the two life stages for the other two species. There was no consistent difference in sensitivity to the inorganics among the three endangered fishes. Both mixtures exhibited either additive or greater than additive toxicity to these fishes. The primary toxic components in the mixtures, based on toxic units, were copper and zinc. Acute toxicity values were compared to measured environmental concentrations in the two tributaries to derive margins of uncertainty. Margins of uncertainty were low for both mixtures (9–22 for the Stewart Lake outlet mixture, and 12–32 for the Ashley Creek mixture), indicating that mixtures of inorganics derived from irrigation activities may pose a hazard to endangered fishes in the Green River.
Li, Jia; Xu, Zhenming; Zhou, Yaohe
2008-05-30
Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.
[Use of the Six Sigma methodology for the preparation of parenteral nutrition mixtures].
Silgado Bernal, M F; Basto Benítez, I; Ramírez García, G
2014-04-01
To use the tools of the Six Sigma methodology for the statistical control in the elaboration of parenteral nutrition mixtures at the critical checkpoint of specific density. Between August of 2010 and September of 2013, specific density analysis was performed to 100% of the samples, and the data were divided in two groups, adults and neonates. The percentage of acceptance, the trend graphs, and the sigma level were determined. A normality analysis was carried out by using the Shapiro Wilk test and the total percentage of mixtures within the specification limits was calculated. The specific density data between August of 2010 and September of 2013 comply with the normality test (W = 0.94) and show improvement in sigma level through time, reaching 6/6 in adults and 3.8/6 in neonates. 100% of the mixtures comply with the specification limits for adults and neonates, always within the control limits during the process. The improvement plans together with the Six Sigma methodology allow controlling the process, and warrant the agreement between the medical prescription and the content of the mixture. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Structure of ternary additive hard-sphere fluid mixtures.
Malijevský, Alexander; Malijevský, Anatol; Yuste, Santos B; Santos, Andrés; López de Haro, Mariano
2002-12-01
Monte Carlo simulations on the structural properties of ternary fluid mixtures of additive hard spheres are reported. The results are compared with those obtained from a recent analytical approximation [S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 108, 3683 (1998)] to the radial distribution functions of hard-sphere mixtures and with the results derived from the solution of the Ornstein-Zernike integral equation with both the Martynov-Sarkisov and the Percus-Yevick closures. Very good agreement between the results of the first two approaches and simulation is observed, with a noticeable improvement over the Percus-Yevick predictions especially near contact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushkin, A. N.; Kochetov, I. V.
The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Primemore » {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.« less
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.
2004-03-01
We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.
Karra, Jagadeswara R; Walton, Krista S
2008-08-19
Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.
Ethane-xenon mixtures under shock conditions
NASA Astrophysics Data System (ADS)
Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas
2015-06-01
Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit
2016-03-01
We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.
NASA Astrophysics Data System (ADS)
Arshadi, Amir
Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.
Chemical compatibility screening test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-12-01
A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less
Molecular dynamics simulations of polyethers and a quaternary ammonium ionic liquid as CO2 absorbers
NASA Astrophysics Data System (ADS)
Cardoso, Piercarlo Fortunato; Fernandez, Juan S. L. C.; Lepre, Luiz Fernando; Ando, Rômulo Augusto; Costa Gomes, Margarida F.; Siqueira, Leonardo J. A.
2018-04-01
The properties of mixtures of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N4111][NTf2], with poly(ethyleneglycol) dimethyl ether, PEO, were described as a function of PEO chain size by molecular dynamics simulations. Both PEO chain size and mixture composition revealed to play a significant role in determining the structure and the dynamics of the fluids. The remarkably higher viscosity observed for mixtures composed by 0.25 mole fraction of PEO was attributed to the increase in the gauche population of OCCO dihedral of the polyether of longer chains. The negative solvation enthalpy (ΔsolH < 0) and entropy (ΔsolS < 0) revealed a favorable CO2 absorption by the neat and mixture systems. The CO2 absorption was higher in neat PEO, particularly considering longer chains. The gas solubility in the mixtures presented intermediate values in comparison to the neat PEO and neat ionic liquid. The CO2 solutions had their structures discussed in the light of the calculated radial and spatial distribution functions.
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.; Chapman, Walter G.
2013-09-01
In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.
Poletta, Gisela L; Kleinsorge, Elisa; Paonessa, Adriana; Mudry, Marta D; Larriera, Alejandro; Siroski, Pablo A
2011-05-01
In South America, economic interests in last years have produced a constant increase in transgenic soybean cropping, with the corresponding rise in pesticide formulated products. The aim of this study was to determine the effects of pesticides formulations and mixtures on a South American caiman, Caiman latirostris, after in ovo exposure. We conducted a field-like experiment which simulates the environmental exposure that a caiman nest can receive in neighbouring croplands habitats. Experimental groups were Control group, Treatment 1: sprayed with a glyphosate herbicide formulation, and Treatment 2: sprayed with a pesticide mixture of glyphosate, endosulfan and cypermethrin formulations. Results demonstrated genotoxicity, enzymatic and metabolic alterations, as well as growth delay in caimans exposed in ovo to Treatments 1 and 2, showing a higher toxicity for the mixture. Integral evaluation through biomarkers of different biological meaning is highly informative as early indicators of contamination with pesticides and mixtures in this wildlife species. Copyright © 2010 Elsevier Inc. All rights reserved.
Cardoso, Piercarlo Fortunato; Fernandez, Juan S L C; Lepre, Luiz Fernando; Ando, Rômulo Augusto; Costa Gomes, Margarida F; Siqueira, Leonardo J A
2018-04-07
The properties of mixtures of butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N 4111 ][NTf 2 ], with poly(ethyleneglycol) dimethyl ether, PEO, were described as a function of PEO chain size by molecular dynamics simulations. Both PEO chain size and mixture composition revealed to play a significant role in determining the structure and the dynamics of the fluids. The remarkably higher viscosity observed for mixtures composed by 0.25 mole fraction of PEO was attributed to the increase in the gauche population of OCCO dihedral of the polyether of longer chains. The negative solvation enthalpy (Δ sol H < 0) and entropy (Δ sol S < 0) revealed a favorable CO 2 absorption by the neat and mixture systems. The CO 2 absorption was higher in neat PEO, particularly considering longer chains. The gas solubility in the mixtures presented intermediate values in comparison to the neat PEO and neat ionic liquid. The CO 2 solutions had their structures discussed in the light of the calculated radial and spatial distribution functions.
NASA Astrophysics Data System (ADS)
Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.
2014-07-01
In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission sequences are presented for a variety for fuel and vitiated oxidizer combinations. For all cases considered, auto-ignition occurred at the periphery of the fuel jet, under very "lean" conditions, where the local mixture fraction was less than the stoichiometric mixture fraction ( ξ < ξ s). Furthermore, the ignition kernel formed in regions of low scalar dissipation rate, which agrees with previous results from direct numerical simulations.
Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.
ERIC Educational Resources Information Center
Wang, Yuh-Yin Wu; Schafer, William D.
This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…
ERIC Educational Resources Information Center
Liu, Junhui
2012-01-01
The current study investigated how between-subject and within-subject variance-covariance structures affected the detection of a finite mixture of unobserved subpopulations and parameter recovery of growth mixture models in the context of linear mixed-effects models. A simulation study was conducted to evaluate the impact of variance-covariance…
USDA-ARS?s Scientific Manuscript database
Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures ...
Investigation into the performance of different models for predicting stutter.
Bright, Jo-Anne; Curran, James M; Buckleton, John S
2013-07-01
In this paper we have examined five possible models for the behaviour of the stutter ratio, SR. These were two log-normal models, two gamma models, and a two-component normal mixture model. A two-component normal mixture model was chosen with different behaviours of variance; at each locus SR was described with two distributions, both with the same mean. The distributions have difference variances: one for the majority of the observations and a second for the less well-behaved ones. We apply each model to a set of known single source Identifiler™, NGM SElect™ and PowerPlex(®) 21 DNA profiles to show the applicability of our findings to different data sets. SR determined from the single source profiles were compared to the calculated SR after application of the models. The model performance was tested by calculating the log-likelihoods and comparing the difference in Akaike information criterion (AIC). The two-component normal mixture model systematically outperformed all others, despite the increase in the number of parameters. This model, as well as performing well statistically, has intuitive appeal for forensic biologists and could be implemented in an expert system with a continuous method for DNA interpretation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf
2012-04-01
A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis.
Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian
2016-02-07
The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.
NASA Technical Reports Server (NTRS)
Shahshahani, Behzad M.; Landgrebe, David A.
1992-01-01
The effect of additional unlabeled samples in improving the supervised learning process is studied in this paper. Three learning processes. supervised, unsupervised, and combined supervised-unsupervised, are compared by studying the asymptotic behavior of the estimates obtained under each process. Upper and lower bounds on the asymptotic covariance matrices are derived. It is shown that under a normal mixture density assumption for the probability density function of the feature space, the combined supervised-unsupervised learning is always superior to the supervised learning in achieving better estimates. Experimental results are provided to verify the theoretical concepts.
Activity coefficients from molecular simulations using the OPAS method
NASA Astrophysics Data System (ADS)
Kohns, Maximilian; Horsch, Martin; Hasse, Hans
2017-10-01
A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.
Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG.
Díaz-Hernández, Orlando; Santillán, Moisés
2010-01-01
In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.
NASA Astrophysics Data System (ADS)
Larabi, Mohamed Aziz; Mutschler, Dimitri; Mojtabi, Abdelkader
2016-06-01
Our present work focuses on the coupling between thermal diffusion and convection in order to improve the thermal gravitational separation of mixture components. The separation phenomenon was studied in a porous medium contained in vertical columns. We performed analytical and numerical simulations to corroborate the experimental measurements of the thermal diffusion coefficients of ternary mixture n-dodecane, isobutylbenzene, and tetralin obtained in microgravity in the international space station. Our approach corroborates the existing data published in the literature. The authors show that it is possible to quantify and to optimize the species separation for ternary mixtures. The authors checked, for ternary mixtures, the validity of the "forgotten effect hypothesis" established for binary mixtures by Furry, Jones, and Onsager. Two complete and different analytical resolution methods were used in order to describe the separation in terms of Lewis numbers, the separation ratios, the cross-diffusion coefficients, and the Rayleigh number. The analytical model is based on the parallel flow approximation. In order to validate this model, a numerical simulation was performed using the finite element method. From our new approach to vertical separation columns, new relations for mass fraction gradients and the optimal Rayleigh number for each component of the ternary mixture were obtained.
Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji
2016-11-14
Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C 2 C 1 Im][Tf 2 N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C 2 C 1 Im][BF 4 ]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf 2 N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf 2 N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.
NASA Astrophysics Data System (ADS)
Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji
2016-11-01
Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1Im][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2C1Im][BF4]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf2N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf2N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.
Molecular simulation of water removal from simple gases with zeolite NaA.
Csányi, Eva; Ható, Zoltán; Kristóf, Tamás
2012-06-01
Water vapor removal from some simple gases using zeolite NaA was studied by molecular simulation. The equilibrium adsorption properties of H(2)O, CO, H(2), CH(4) and their mixtures in dehydrated zeolite NaA were computed by grand canonical Monte Carlo simulations. The simulations employed Lennard-Jones + Coulomb type effective pair potential models, which are suitable for the reproduction of thermodynamic properties of pure substances. Based on the comparison of the simulation results with experimental data for single-component adsorption at different temperatures and pressures, a modified interaction potential model for the zeolite is proposed. In the adsorption simulations with mixtures presented here, zeolite exhibits extremely high selectivity of water to the investigated weakly polar/non-polar gases demonstrating the excellent dehydration ability of zeolite NaA in engineering applications.
Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading
NASA Technical Reports Server (NTRS)
Cheng, Ron-Bin; Hsu, Su-Yuen
2012-01-01
Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.
Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.
Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira
2012-07-15
Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions
NASA Astrophysics Data System (ADS)
Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein
2017-11-01
We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.
NASA Astrophysics Data System (ADS)
Thompson, Aidan P.; Shan, Tzu-Ray
2014-05-01
Ammonium nitrate mixed with fuel oil (ANFO) is a commonly used blasting agent. In this paper we investigated the shock properties of pure ammonium nitrate (AN) and two different mixtures of ammonium nitrate and n-dodecane by characterizing their Hugoniot states. We simulated shock compression of pure AN and ANFO mixtures using the Multi-scale Shock Technique, and observed differences in chemical reaction. We also performed a large-scale explicit sub-threshold shock of AN crystal with a 10 nm void filled with 4.4 wt% of n-dodecane. We observed the formation of hotspots and enhanced reactivity at the interface region between AN and n-dodecane molecules.
Gutiérrez-Sevillano, Juan José; Caro-Pérez, Alejandro; Dubbeldam, David; Calero, Sofía
2011-12-07
We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.
Structure of turbulent non-premixed flames modeled with two-step chemistry
NASA Technical Reports Server (NTRS)
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.
PT-IP-759, channel caulking tests: C Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, J.P.; Russell, A.
1965-03-19
The graphite movement which has occurred at the various reactors has been characterized by two problems: (1) Crooked channels and (2) cracks and miscellaneous voids where pieces of blocks are missing. Of these problems, the cracks and voids have been the most serious in the case of ball drops. Alleviation of the crooked channels can sometimes be accomplished by graphite removal methods such as broaching, but unless some method is found to prevent the balls from entering cracks, the total effect of a ball drop would still be intolerable. Of the two methods of closing the cracks, a paste caulkingmore » procedure is anticipated to be less expensive than sleeving, both in terms of cost of the operation and the number of process tube channels which might be lost. If the VSR channel does not require drastic straightening or entry of large tooling, satisfactory caulking can be done without removal of the step plug. ``Poison`` chain may be considered as an alternative to caulking or sleeving for those outer VSR channels where the sole use of balls is for ``total control`` rather than ``speed of control.`` The objectives of this test are (1) to authorize the experimental crack filling of one or two of the VSR channels at C Reactor with a wet mixture of graphite and sugar, (2) to demonstrate the durability of this mixture in subsequent normal reactor operation, and (3) to demonstrate by testing (actual or simulated ball drops) and borescoping, that the channels are or are not again acceptable for use with the normal charge of balls.« less
An amorphous mixture of PDMS and multi-cellular fragments of ZSM-5 is brought together to approximate the properties of a mixed matrix membrane of PDMS with ZSM-5. The permeability coefficient of the amorphous mixture for pure water is the product of the diffusion coefficient of...
The electroluminescence of Xe-Ne gas mixtures: A Monte Carol simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, F.P.; Dias, T.H.V.T.; Rachinhas, P.J.B.M.
1998-04-01
The authors have performed a Monte Carlo simulation of the drift of electrons through a mixture of gaseous xenon with the lighter noble gas neon at a total pressure of 1 atm. The electroluminescence characteristics and other transport parameters are investigated as a function of the reduced electric field and composition of the mixture. For Xe-Ne mixtures with 5, 10, 20, 40, 70, 90, and 100% of Xe, they present results for electroluminescence yield and excitation efficiency, average electron energy, electron drift velocity, reduced mobility, reduced diffusion coefficients, and characteristic energies over a range of reduced electric fields which excludemore » electron multiplication. For the 5% Xe mixture, they also assess the influence of electron multiplication on the electroluminescence yield. The present study of Xe-Ne mixtures was motivated by an interest in using them as a filling for gas proportional scintillation counters in low-energy X-ray applications. In this energy range, the X rays will penetrate further into the detector due to the presence of Ne, and this will lead to an improvement in the collection of primary electrons originating near the detector window and may represent an advantage over the use of pure Xe.« less
DOT National Transportation Integrated Search
2001-07-01
This work pertains to preparation of concrete drying shrinkage data for proposed concrete mixtures during normal concrete : trial batch verification. Selected concrete mixtures will include PennDOT Classes AAA and AA and will also include the use of ...
Survival and growth of trees and shrubs on different lignite minesoils in Louisiana
James D. Haywood; Allan E. Tiarks; James P. Barnett
1993-01-01
In 1980, an experimental opencast lignite mine was developed to compare redistributed A horizon with three minesoil mixtures as growth media for woody plants. The three minesoil mixtures contained different amounts and types of overburden materials, and normal reclamation practices were followed. Loblolly pine (Pinus taeda, L.), sawtooth oak (
Inferring network structure in non-normal and mixed discrete-continuous genomic data.
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2018-03-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.
Inferring network structure in non-normal and mixed discrete-continuous genomic data
Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran
2017-01-01
Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. PMID:28437848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chun S
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C. S.; Richardson, E.; Sankaran, R.
2011-01-01
Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals themore » passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.« less
Simulation of uranium and plutonium oxides compounds obtained in plasma
NASA Astrophysics Data System (ADS)
Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.
2018-03-01
The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.
The calculation of the phase equilibrium of the multicomponent hydrocarbon systems
NASA Astrophysics Data System (ADS)
Molchanov, D. A.
2018-01-01
Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.
Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.
Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H
2018-07-15
Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.
Diffusion of neon in white dwarf stars.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2010-12-01
Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, Bradley
2007-06-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.
Audet, T. L.; Hansson, M.; Lee, P.; ...
2016-02-16
Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H 2+1%N 2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. Lastly, we discuss the interest of this regimemore » for optimizing the bunch charge in a selected energy window.« less
Analysis of Spin Financial Market by GARCH Model
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2013-08-01
A spin model is used for simulations of financial markets. To determine return volatility in the spin financial market we use the GARCH model often used for volatility estimation in empirical finance. We apply the Bayesian inference performed by the Markov Chain Monte Carlo method to the parameter estimation of the GARCH model. It is found that volatility determined by the GARCH model exhibits "volatility clustering" also observed in the real financial markets. Using volatility determined by the GARCH model we examine the mixture-of-distribution hypothesis (MDH) suggested for the asset return dynamics. We find that the returns standardized by volatility are approximately standard normal random variables. Moreover we find that the absolute standardized returns show no significant autocorrelation. These findings are consistent with the view of the MDH for the return dynamics.
Electrophoretic purification of cells in space - Evaluation of results from STS-3
NASA Technical Reports Server (NTRS)
Sarnoff, B. E.; Kunze, M. E.; Todd, P.
1983-01-01
The procedure and results of Electrophoresis Equipment Verification Test, designed to examine electrophoretic behavior of animal cells is suspension more concentrated than possible on earth and flown on the Shuttle flight STS-3, were discussed. Ground-based laboratory values of electrophoretic mobilities of a mixture of human and rabbit aldehyde-fixed red blood cells (RBC) were compared with those recorded at 11 minute intervals on the Shuttle STS-3. RBC migration and separation observed through photographic records were not as expected. However, cell mobilities and migrating band profiles were consistent with the results of laboratory simulation experiments. It was concluded that zero G electrophoresis of very high concentrations (1 x 10 to the 9th) is possible and similar to electrophoresis of normal cell concentrations on earth.
Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia; Gasco, Manuel
2013-09-01
We investigated the effect of two extracts from Peruvian plants given alone or in a mixture on sperm count and glycemia in streptozotocin-diabetic mice. Normal or diabetic mice were divided in groups receiving vehicle, black maca (Lepidium meyenii), yacon (Smallanthus sonchifolius) or three mixtures of extracts black maca/yacon (90/10, 50/50 and 10/90%). Normal or diabetic mice were treated for 7 d with each extract, mixture or vehicle. Glycemia, daily sperm production (DSP), epididymal and vas deferens sperm counts in mice and polyphenol content, and antioxidant activity in each extract were assessed. Black maca (BM), yacon and the mixture of extracts reduced glucose levels in diabetic mice. Non-diabetic mice treated with BM and yacon showed higher DSP than those treated with vehicle (p < 0.05). Diabetic mice treated with BM, yacon and the mixture maca/yacon increased DSP, and sperm count in vas deferens and epididymis with respect to non-diabetic and diabetic mice treated with vehicle (p < 0.05). Yacon has 3.05 times higher polyphenol content than in maca, and this was associated with higher antioxidant activity. The combination of two extracts improved glycemic levels and male reproductive function in diabetic mice. Streptozotocin increased 1.43 times the liver weight that was reversed with the assessed plants extracts. In summary, streptozotocin-induced diabetes resulted in reduction in sperm counts and liver damage. These effects could be reduced with BM, yacon and the BM+yacon mixture.
Turbulent flame spreading mechanisms after spark ignition
NASA Astrophysics Data System (ADS)
Subramanian, V.; Domingo, Pascale; Vervisch, Luc
2009-12-01
Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.
Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2016-10-28
A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.
NASA Astrophysics Data System (ADS)
Yang, Peng; Voth, Gregory A.; Xiao, Dong; Hines, Larry G.; Bartsch, Richard A.; Quitevis, Edward L.
2011-07-01
In this paper, the nanostructural organization and subpicosecond intermolecular dynamics in the mixtures of CS2 and the room temperature ionic liquid (IL) 1-pentyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ([C5mim][NTf2]) were studied as a function of concentration using molecular dynamics (MD) simulations and optical heterodyne-detected Raman-induced Kerr effect spectroscopy. At low CS2 concentrations (<10 mol.% CS2/IL), the MD simulations indicate that the CS2 molecules are localized in the nonpolar domains. In contrast, at higher concentrations (≥10 mol.% CS2/IL), the MD simulations show aggregation of the CS2 molecules. The optical Kerr effect (OKE) spectra of the mixtures are interpreted in terms of an additivity model with the components arising from the subpicosecond dynamics of CS2 and the IL. Comparison of the CS2-component with the OKE spectra of CS2 in alkane solvents is consistent with CS2 mainly being localized in the nonpolar domains, even at high CS2 concentrations, and the local CS2 concentration being higher than the bulk CS2 concentration.
Borazan, Hale; Sahin, Osman; Kececioglu, Ahmet; Uluer, M Selcuk; Et, Tayfun; Otelcioglu, Seref
2012-01-01
The pain on propofol injection is considered to be a common and difficult to eliminate problem in children. In this study, we aimed to compare the efficacy of pretreatment with tramadol 1 mg.kg(-1)and propofol-lidocaine 20 mg mixture for prevention of propofol induced pain in children. One hundred and twenty ASA I-II patients undergoing orthopedic and otolaryngological surgery were included in this study and were divided into three groups with random table numbers. Group C (n=39) received normal saline placebo and Group T (n=40) received 1 mg.kg(-1) tramadol 60 sec before propofol (180 mg 1% propofol with 2 ml normal saline) whereas Group L (n=40) received normal saline placebo before propofol-lidocaine mixture (180 mg 1% propofol with 2 ml %1 lidocaine). One patient in Group C was dropped out from the study because of difficulty in inserting an iv cannula. Thus, one hundred and nineteen patients were analyzed for the study. After given the calculated dose of propofol, a blinded observer assessed the pain with a four-point behavioral scale. There were no significant differences in patient characteristics and intraoperative variables (p>0.05) except intraoperative fentanyl consumption and analgesic requirement one hr after surgery among the groups (p<0.05). Both tramadol 1 mg.kg(-1) and lidocaine 20 mg mixture significantly reduced propofol pain when compared with control group. Moderate and severe pain were found higher in control group (p<0.05). The incidence of overall pain was 79.4% in the control group, 35% in tramadol group, 25% in lidocaine group respectively (p<0.001). Pretreatment with tramadol 60 sec before propofol injection and propofol-lidocaine mixture were significantly reduced propofol injection pain when compared to placebo in children.
Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.
Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf
2015-04-07
We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.
Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham
2016-03-15
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.
Shock-induced mechanochemistry in heterogeneous reactive powder mixtures
NASA Astrophysics Data System (ADS)
Gonzales, Manny; Gurumurthy, Ashok; Kennedy, Gregory; Neel, Christopher; Gokhale, Arun; Thadhani, Naresh
The bulk response of compacted powder mixtures subjected to high-strain-rate loading conditions in various configurations is manifested from behavior at the meso-scale. Simulations at the meso-scale can provide an additional confirmation of the possible origins of the observed response. This work investigates the bulk dynamic response of Ti +B +Al reactive powder mixtures under two extreme loading configurations - uniaxial stress and strain loading - leveraging highly-resolved in-situ measurements and meso-scale simulations. Modified rod-on-anvil impact tests on a reactive pellet demonstrate an optimized stoichiometry promoting reaction in Ti +B +Al. Encapsulated powders subjected to shock compression via flyer plate tests provide possible evidence of a shock-induced reaction at high pressures. Meso-scale simulations of the direct experimental configurations employing highly-resolved microstructural features of the Ti +B compacted mixture show complex inhomogeneous deformation responses and reveal the importance of meso-scale features such as particle size and morphology and their effects on the measured response. Funding is generously provided by DTRA through Grant No. HDTRA1-10-1-0038 (Dr. Su Peiris - Program Manager) and by the SMART (AFRL Wright Patterson AFB) and NDSEG fellowships (High Performance Computing and Modernization Office).
Heggeseth, Brianna C; Jewell, Nicholas P
2013-07-20
Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.
Low power dc arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1986-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixtures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
Developing model asphalt systems using molecular simulation : final model.
DOT National Transportation Integrated Search
2009-09-01
Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...
Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnell, Sondre K.; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Department of Chemistry, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, 4791 Trondheim
2014-10-14
We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtainedmore » with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.« less
A general mixture model and its application to coastal sandbar migration simulation
NASA Astrophysics Data System (ADS)
Liang, Lixin; Yu, Xiping
2017-04-01
A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that the suspended load will also make great contributions to the topography change in the surf zone, which is usually neglected in some previous researches.
SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures
Chen, Qun
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830
SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.
Chen, Qun; Li, Yuzhi
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability.
Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan
2016-01-01
This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability. PMID:26941699
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves into hydrogen-helium mixtures representative of postulated outer planet atmospheres. These results are presented in four volumes and the volmetric compositions of the mixtures are 0.95H2-0.05He in Volume 1, 0.90H2-0.10He in Volume 2, 0.85H2-0.15He in Volume 3, and 0.75H2-0.25He in Volume 4. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 4 to 70 km/sec for a range of initial pressure of 5 N/sq m to 100 kN/sq m. Results are applicable to shock-tube flows and for determining flow conditions behind the normal portion of the bow shock about a blunt body at high velocities in postulated outer planet atmospheres. The document is a revised version of the original edition of NASA SP-3085 published in 1974.
Development of PBPK Models for Gasoline in Adult and ...
Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to selection of exposure concentrations for in vivo toxicity studies. Sub-models for individual hydrocarbon (HC) constituents were first developed and calibrated with published literature or QSAR-derived data where available. Successfully calibrated sub-models for individual HCs were combined, assuming competitive metabolic inhibition in the liver, and a priori simulations of mixture interactions were performed. Blood HC concentration data were collected from exposed adult non-pregnant (NP) rats (9K ppm total HC vapor, 6h/day) to evaluate performance of the NP mixture model. This model was then converted to a pregnant (PG) rat mixture model using gestational growth equations that enabled a priori estimation of life-stage specific kinetic differences. To address the impact of changing relevant physiological parameters from NP to PG, the PG mixture model was first calibrated against the NP data. The PG mixture model was then evaluated against data from PG rats that were subsequently exposed (9K ppm/6.33h gestation days (GD) 9-20). Overall, the mixture models adequately simulated concentrations of HCs in blood from single (NP) or repeated (PG) exposures (within ~2-3 fold of measured values of
2013-01-01
W L. Physical properties of concentrated nitric acid . UNT Digital Library. http://digital.library.unt.edu/ark:/67531/metadc56640/.) 23 M. Engelmann... Nitric Acid Mixtures: Insights from Molecular Dynamics Simulations 5a. CONTRACT NUMBER FA9300-11-C-3012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Thermophysical Properties of Energetic Ionic Liquids/ Nitric Acid
Porous Media and Mixture Models for Hygrothermal Behavior of Phenolic Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Stokes, Eric H.
1999-01-01
Theoretical models are proposed to describe the interaction of water with phenolic polymer. The theoretical models involve the study of the flow of a viscous fluid through a porous media and the thermodynamic theory of mixtures. From the theory, a set of mathematical relations are developed to simulate the effect of water on the thermostructural response of phenolic composites. The expressions are applied to simulate the measured effect of water in a series of experiments conducted on carbon phenolic composites.
Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions
Latino, Diogo A. R. S.; Aires-de-Sousa, João
2014-01-01
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures. PMID:24551112
Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.
Latino, Diogo A R S; Aires-de-Sousa, João
2014-01-01
The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the molecules in the mixtures.
Composition of Irradiation Residue from Jupiter Trojan Laboratory Simulations
NASA Astrophysics Data System (ADS)
Poston, Michael; Mahjoub, Ahmed; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Ehlmann, Bethany; Eiler, John; Hand, Kevin P.; Hodyss, Robert; Wong, Ian
2016-10-01
Today's Jupiter Trojan asteroids may have originated in the Kuiper Belt (eg. Morbidelli et al. Nature 2005, Nesvorny et al. ApJ 2013) and migrated to capture at their present locations. If this is the case, it is expected that their surfaces will contain chemical traces of this history. Our work broadly considers laboratory simulations of this history. In this work we report on the refractory residue left behind when irradiated mixed ice samples were brought to Earth-normal conditions and removed from the vacuum system. Ices that will be discussed include a 3:3:3:1 mixture of H2S:NH3:CH3OH:H2O and a 3:3:1 mixture of NH3:CH3OH:H2O. After deposition at 50K, the ices were irradiated with a beam of 10 keV electrons to form a processed crust mixed with unreacted ices. The films were then warmed to 142K under irradiation over several days. After stopping irradiation, the mixtures were slowly heated through the desorption temperatures of the unreacted ices (about 150-180K), leaving only more-stable compounds behind, and up to room temperature. Some of the reaction products were seen to desorb during heating to room temperature, while a significant amount remained as a refractory residue. After backfilling the vacuum system with nitrogen gas, residues were analyzed by Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry, and Gas Chromatograph Mass Spectrometry. Results indicate a complex chemistry including aliphatic and aromatic hydrocarbons, and nitrogen and sulfur-containing organics. Notably, when sulfur is not present, a number of nitrogen-containing organic candidates are identified, however, in the mixtures containing sulfur, sulfur-containing compounds appear to dominate the chemistry. While these experiments were conducted with Trojan asteroids in mind, the results are also relevant to comets and other cold locations in the solar system that have experienced large swings in temperature.This work has been supported by the Keck Institute for Space Studies (KISS). The research described here was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with the National Aeronautics and Space Administration (NASA) and at the Caltech Division of Geological and Planetary Sciences.
Ruggles, Dorea; Shinn-Cunningham, Barbara
2011-06-01
Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
DOT National Transportation Integrated Search
2012-04-01
This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...
NASA Astrophysics Data System (ADS)
Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya
2015-10-01
Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.
Coarse-Grained Molecular Monte Carlo Simulations of Liquid Crystal-Nanoparticle Mixtures
NASA Astrophysics Data System (ADS)
Neufeld, Ryan; Kimaev, Grigoriy; Fu, Fred; Abukhdeir, Nasser M.
Coarse-grained intermolecular potentials have proven capable of capturing essential details of interactions between complex molecules, while substantially reducing the number of degrees of freedom of the system under study. In the domain of liquid crystals, the Gay-Berne (GB) potential has been successfully used to model the behavior of rod-like and disk-like mesogens. However, only ellipsoid-like interaction potentials can be described with GB, making it a poor fit for many real-world mesogens. In this work, the results of Monte Carlo simulations of liquid crystal domains using the Zewdie-Corner (ZC) potential are presented. The ZC potential is constructed from an orthogonal series of basis functions, allowing for potentials of essentially arbitrary shapes to be modeled. We also present simulations of mixtures of liquid crystalline mesogens with nanoparticles. Experimentally these mixtures have been observed to exhibit microphase separation and formation of long-range networks under some conditions. This highlights the need for a coarse-grained approach which can capture salient details on the molecular scale while simulating sufficiently large domains to observe these phenomena. We compare the phase behavior of our simulations with that of a recently presented continuum theory. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.
NASA Astrophysics Data System (ADS)
Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul
2017-11-01
We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.
Bistable Behavior of the Lac Operon in E. Coli When Induced with a Mixture of Lactose and TMG
Díaz-Hernández, Orlando; Santillán, Moisés
2010-01-01
In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions. PMID:21423364
Ab initio study of the structural properties of acetonitrile-water mixtures
NASA Astrophysics Data System (ADS)
Chen, Jinfan; Sit, Patrick H.-L.
2015-08-01
Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.
Finite mixture modeling for vehicle crash data with application to hotspot identification.
Park, Byung-Jung; Lord, Dominique; Lee, Chungwon
2014-10-01
The application of finite mixture regression models has recently gained an interest from highway safety researchers because of its considerable potential for addressing unobserved heterogeneity. Finite mixture models assume that the observations of a sample arise from two or more unobserved components with unknown proportions. Both fixed and varying weight parameter models have been shown to be useful for explaining the heterogeneity and the nature of the dispersion in crash data. Given the superior performance of the finite mixture model, this study, using observed and simulated data, investigated the relative performance of the finite mixture model and the traditional negative binomial (NB) model in terms of hotspot identification. For the observed data, rural multilane segment crash data for divided highways in California and Texas were used. The results showed that the difference measured by the percentage deviation in ranking orders was relatively small for this dataset. Nevertheless, the ranking results from the finite mixture model were considered more reliable than the NB model because of the better model specification. This finding was also supported by the simulation study which produced a high number of false positives and negatives when a mis-specified model was used for hotspot identification. Regarding an optimal threshold value for identifying hotspots, another simulation analysis indicated that there is a discrepancy between false discovery (increasing) and false negative rates (decreasing). Since the costs associated with false positives and false negatives are different, it is suggested that the selected optimal threshold value should be decided by considering the trade-offs between these two costs so that unnecessary expenses are minimized. Copyright © 2014 Elsevier Ltd. All rights reserved.
Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan F.
The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILsmore » and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.« less
High-Throughput Analysis of Ovarian Cycle Disruption by Mixtures of Aromatase Inhibitors
Golbamaki-Bakhtyari, Nazanin; Kovarich, Simona; Tebby, Cleo; Gabb, Henry A.; Lemazurier, Emmanuel
2017-01-01
Background: Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of human health risks stemming from exposures to chemical mixtures. Objectives: We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors on the dynamics of women's menstrual cycles. Methods: We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposition of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration–inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus–pituitary–ovarian control of ovulation in women. Results: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted. Exposures to individual chemicals never led to such effects. In our best estimate, ∼10% of the combined exposures simulated had mild to catastrophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%. Conclusions: These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742 PMID:28886606
An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra.
Liu, Yi; Ma, Bin; Zhang, Kaizhong; Lajoie, Gilles
2017-01-01
Mixture spectra occur quite frequently in a typical wet-lab mass spectrometry experiment, which result from the concurrent fragmentation of multiple precursors. The ability to efficiently and confidently identify mixture spectra is essential to alleviate the existent bottleneck of low mass spectra identification rate. However, most of the traditional computational methods are not suitable for interpreting mixture spectra, because they still take the assumption that the acquired spectra come from the fragmentation of a single precursor. In this manuscript, we formulate the mixture spectra de novo sequencing problem mathematically, and propose a dynamic programming algorithm for the problem. Additionally, we use both simulated and real mixture spectra data sets to verify the merits of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Rahman, A.; Aung, K. M.
2018-01-01
A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.
Maximum likelihood estimation of finite mixture model for economic data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
NASA Astrophysics Data System (ADS)
Bradley, P. A.; Loomis, E. N.; Merritt, E. C.; Guzik, J. A.; Denne, P. H.; Clark, T. T.
2018-01-01
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (˜1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. This paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ˜3 TPa (˜30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamics code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. The comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.
Experimental validation of thermodynamic mixture rules at extreme pressures and densities
Bradley, Paul Andrew; Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; ...
2018-01-19
Accurate modeling of a mixed material Equation of State (EOS) at high pressures (~1 to 100 Mbar) is critical for simulating inertial confinement fusion and high energy density systems. Here, this paper presents a comparison of two mixing rule models to the experiment to assess their applicability in this regime. The shock velocities of polystyrene, aluminum, and nickel aluminide (NiAl) were measured at a shock pressure of ~3 TPa (~30 Mbar) on the Omega EP laser facility (Laboratory for Laser Energetics, University of Rochester, New York). The resultant shock velocities were compared to those derived from the RAGE (Eulerian) hydrodynamicsmore » code to validate various mixing rules used to construct an EOS for NiAl. The simulated shock transit time through the sample (Al or NiAl) matched the measurements to within the ±45ps measurement uncertainty. The law of partial volume (Amagat) and the law of partial pressure (Dalton) mixture rules provided equally good matches to the NiAl shock data. Other studies showed that the Amagat mixing rule is superior, and we recommend it since our results also show a satisfactory match. In conclusion, the comparable quality of the simulation to data for the Al and NiAl samples implies that a mixture rule can supply an EOS for plasma mixtures with adequate fidelity for simulations where mixing takes place, such as advective mix in an Eulerian code or when two materials are mixed together via diffusion, turbulence, or other physical processes.« less
NASA Astrophysics Data System (ADS)
Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian
2018-04-01
Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.
Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering
2005-08-04
describe a four-band magnetic resonance image (MRI) consisting of 23,712 pixels of a brain with a tumor 2. Because of the size of the dataset, it is not...the Royal Statistical Society, Series B 56, 363–375. Figueiredo, M. A. T. and A. K. Jain (2002). Unsupervised learning of finite mixture models. IEEE...20 5.4 Brain MRI
New views of granular mass flows
Iverson, R.M.; Vallance, J.W.
2001-01-01
Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.
Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R
2017-11-22
A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.
Ethane-xenon mixtures under shock conditions
Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...
2015-04-22
Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2017-07-01
A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Aurélien; Mazighi, Redha
Computer simulation studies of aqueous dimethyl sulfoxyde (DMSO) mixtures show micro-heterogeneous structures, just like aqueous alcohol mixtures. However, there is a marked difference in the aggregate structure of water between the two types of systems. While water molecules form multiconnected globular clusters in alcohols, we report herein that the typical water aggregates in aqueous DMSO mixtures are linear, favouring a 2 hydrogen bond structure per water molecule, and for all DMSO mole fractions ranging from 0.1 to 0.9. This linear-aggregate structure produces a particular signature in the water site-site structure factors, in the form of a pre-peak at k ≈more » 0.2–0.8 Å{sup −1}, depending on DMSO concentration. This pre-peak is either absent in other aqueous mixtures, such as aqueous methanol mixtures, or very difficult to see through computer simulations, such as in aqueous-t-butanol mixtures. This difference in the topology of the aggregates explains why the Kirkwood-Buff integrals of aqueous-DMSO mixture look nearly ideal, in contrast with those of aqueous alcohol mixtures, suggesting a connection between the shape of the water aggregates, its fluctuations, and the concentration fluctuations. In order to further study this discrepancy between aqueous DMSO and aqueous alcohol mixture, two models of pseudo-DMSO are introduced, where the size of the sulfur atom is increased by a factor 1.6 and 1.7, respectively, hence increasing the hydrophobicity of the molecule. The study shows that these mixtures become closer to the emulsion type seen in aqueous alcohol mixtures, with more globular clustering of the water molecules, long range domain oscillations in the water-water correlations and increased water-water Kirkwood-Buff integrals. It demonstrates that the local ordering of the water molecules is influenced by the nature of the solute molecules, with very different consequences for structural properties and related thermodynamic quantities. This study illustrates the unique plasticity of water in presence of different types of solutes.« less
Application of Biologically-Based Lumping To Investigate the ...
People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
Li, Guoqing; Du, Yang; Wang, Shimao; Qi, Sheng; Zhang, Peili; Chen, Wenzhuo
2017-10-05
In this work, LES simulation coupled with a TFC sub-grid combustion model has been performed in a semi-confined pipe (L/D=10, V=10L) in the presence of four hollow-square obstacles (BR=49.8%) with circular hollow cross-section, in order to study the premixed gasoline-air mixture explosions. The comparisons between simulated results and experimental results have been conducted. It was found that the simulated results were in good agreement with experimental data in terms of flame structures, flame locations and overpressure time histories. Moreover, the interaction between flame propagation process and obstacles, overpressure dynamics were analyzed. In addition, the effects of initial gasoline vapor concentration (lean (ϕ=1.3%), stoichiometric (ϕ=1.7%) and rich (ϕ=2.1%)), and the number of obstacles (from 1 to 4) were also investigated by experiments. Some of the experimental results have been compared with the literature data. It is found that the explosion parameters of gasoline-air mixtures (e.g. the maximum overpressure peaks, average overpressure growth rates, etc.) are different from some other fuels such as hydrogen, methane and LPG, etc. Copyright © 2017. Published by Elsevier B.V.
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Excess protons in water-acetone mixtures. II. A conductivity study.
Semino, Rocío; Longinotti, M Paula
2013-10-28
In the present work we complement a previous simulation study [R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)] on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at xw ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ(0)(HCl).Λ(0)(LiCl)(-1), is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li(+). At xw ∼ 0.25, proton mobility starts to differ from that of Li(+) indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu
Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, Joel David; Ticknor, Christopher; Collins, Lee A.
2015-09-16
Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm 3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.
NASA Astrophysics Data System (ADS)
Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn
2018-03-01
Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.
Gontscharuk, Veronika; Landwehr, Sandra; Finner, Helmut
2015-01-01
The higher criticism (HC) statistic, which can be seen as a normalized version of the famous Kolmogorov-Smirnov statistic, has a long history, dating back to the mid seventies. Originally, HC statistics were used in connection with goodness of fit (GOF) tests but they recently gained some attention in the context of testing the global null hypothesis in high dimensional data. The continuing interest for HC seems to be inspired by a series of nice asymptotic properties related to this statistic. For example, unlike Kolmogorov-Smirnov tests, GOF tests based on the HC statistic are known to be asymptotically sensitive in the moderate tails, hence it is favorably applied for detecting the presence of signals in sparse mixture models. However, some questions around the asymptotic behavior of the HC statistic are still open. We focus on two of them, namely, why a specific intermediate range is crucial for GOF tests based on the HC statistic and why the convergence of the HC distribution to the limiting one is extremely slow. Moreover, the inconsistency in the asymptotic and finite behavior of the HC statistic prompts us to provide a new HC test that has better finite properties than the original HC test while showing the same asymptotics. This test is motivated by the asymptotic behavior of the so-called local levels related to the original HC test. By means of numerical calculations and simulations we show that the new HC test is typically more powerful than the original HC test in normal mixture models. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Berchebru, Laurent; Rameil, Pascal; Gaudin, Jean-Christophe; Gausson, Sabrina; Larigauderie, Guilhem; Pujol, Céline; Morel, Yannick; Ramisse, Vincent
2014-10-01
Test and evaluation of engineered biothreat agent detection systems ("biodetectors") are a challenging task for government agencies and industries involved in biosecurity and biodefense programs. In addition to user friendly features, biodetectors need to perform both highly sensitive and specific detection, and must not produce excessive false alerts. In fact, the atmosphere displays a number of variables such as airborne bacterial content that can interfere with the detection process, thus impeding comparative tests when carried out at different times or places. To overcome these bacterial air content fluctuations, a standardized reagent bacterial mixture (SRBM), consisting in a collection of selected cultivable environmental species that are prevalent in temperate climate bioaerosols, was designed to generate a stable, reproducible, and easy to use surrogate of bioaerosol sample. The rationale, design, and production process are reported. The results showed that 8.59; CI 95%: 8.46-8.72 log cfu distributed into vials underwent a 0.95; CI 95%: 0.65-1.26 log viability decay after dehydration and subsequent reconstitution, thus advantageously mimicking a natural bioaerosol sample which is typically composed of cultivable and uncultivable particles. Dehydrated SRBM was stable for more than 12months at 4°C and allowed the reconstitution of a dead/live cells aqueous suspension that is stable for 96h at +4°C, according to plate counts. Specific detection of a simulating biothreat agent (e.g. Bacillus atrophaeus) by immuno-magnetic or PCR assays did not display any significant loss of sensitivity, false negative or positive results in the presence of SRBM. This work provides guidance on testing and evaluating detection devices, and may contribute to the establishment of suitable standards and normalized procedures. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical simulation of a turbulent flame stabilized behind a rearward-facing step
NASA Technical Reports Server (NTRS)
Hsiao, C. C.; Oppenheim, A. K.; Chorin, A. J.; Ghoniem, A. F.
1985-01-01
Flow of combustible mixtures in a plane channel past a smooth contraction followed by an abrupt expansion, in a typical dump combustor configuration, is modeled by a two-dimensional numerical technique based on the random vortex method. Both the inert and the reacting case are considered. In the latter, the flame is treated as an interface, self-advancing at a prescribed normal burning speed, while the dynamic effects of expansion due to the exothermicity of combustion are expressed by volumetric source lines delineated by its front. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and the reattachment length. The stochastic turbulent velocity components manifest interesting differences, especially near the walls where three-dimensional effects of turbulence are expected to be of importance.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
NASA Astrophysics Data System (ADS)
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-01
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-07
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Mohamed, Ekram H; Lotfy, Hayam M; Hegazy, Maha A; Mowaka, Shereen
2017-05-25
Analysis of complex mixture containing three or more components represented a challenge for analysts. New smart spectrophotometric methods have been recently evolved with no limitation. A study of different novel and smart spectrophotometric techniques for resolution of severely overlapping spectra were presented in this work utilizing isosbestic points present in different absorption spectra, normalized spectra as a divisor and dual wavelengths. A quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PCT) and para-aminophenol (PAP) was taken as an example for application of the proposed techniques without any separation steps. The adopted techniques adopted of successive and progressive steps manipulating zero /or ratio /or derivative spectra. The proposed techniques includes eight novel and simple methods namely direct spectrophotometry after applying derivative transformation (DT) via multiplying by a decoding spectrum, spectrum subtraction (SS), advanced absorbance subtraction (AAS), advanced amplitude modulation (AAM), simultaneous derivative ratio (S 1 DD), advanced ratio difference (ARD), induced ratio difference (IRD) and finally double divisor-ratio difference-dual wavelength (DD-RD-DW) methods. The proposed methods were assessed by analyzing synthetic mixtures of the studied drugs. They were also successfully applied to commercial pharmaceutical formulations without interference from other dosage form additives. The methods were validated according to the ICH guidelines, accuracy, precision, repeatability, were found to be within the acceptable limits. The proposed procedures are accurate, simple and reproducible and yet economic. They are also sensitive and selective and could be used for routine analysis of complex most of the binary, ternary and quaternary mixtures and even more complex mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Tapan; Das, B. P.; Pai, Ramesh V.
We present a scenario where a supersolid is induced in one of the components of a mixture of two species bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson mixture with only the former possessing long-range interactions. We consider three cases: the first where the total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the charge density wave and the supersolid orders can be induced inmore » the hard-core species as a result of the competing interatomic interactions.« less
Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-07-01
What is the "best" model? The answer to this question lies in part in the eyes of the beholder, nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate models, Mk; k=>(1,…,K>), and help identify which model is most supported by the observed data, Y>˜=>(y˜1,…,y˜n>). Here, we introduce a new and robust estimator of the model evidence, p>(Y>˜|Mk>), which acts as normalizing constant in the denominator of Bayes' theorem and provides a single quantitative measure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity. However, p>(Y>˜|Mk>) is analytically intractable for most practical modeling problems. Our method, coined GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions (up to 100 dimensions) with known values of p>(Y>˜|Mk>) and to hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies demonstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small computational cost outperforming commonly used estimators. The GAME sampler is implemented in the MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and model selection.
Addressing potential prior-data conflict when using informative priors in proof-of-concept studies.
Mutsvari, Timothy; Tytgat, Dominique; Walley, Rosalind
2016-01-01
Bayesian methods are increasingly used in proof-of-concept studies. An important benefit of these methods is the potential to use informative priors, thereby reducing sample size. This is particularly relevant for treatment arms where there is a substantial amount of historical information such as placebo and active comparators. One issue with using an informative prior is the possibility of a mismatch between the informative prior and the observed data, referred to as prior-data conflict. We focus on two methods for dealing with this: a testing approach and a mixture prior approach. The testing approach assesses prior-data conflict by comparing the observed data to the prior predictive distribution and resorting to a non-informative prior if prior-data conflict is declared. The mixture prior approach uses a prior with a precise and diffuse component. We assess these approaches for the normal case via simulation and show they have some attractive features as compared with the standard one-component informative prior. For example, when the discrepancy between the prior and the data is sufficiently marked, and intuitively, one feels less certain about the results, both the testing and mixture approaches typically yield wider posterior-credible intervals than when there is no discrepancy. In contrast, when there is no discrepancy, the results of these approaches are typically similar to the standard approach. Whilst for any specific study, the operating characteristics of any selected approach should be assessed and agreed at the design stage; we believe these two approaches are each worthy of consideration. Copyright © 2015 John Wiley & Sons, Ltd.
Zhang, Xia; Hu, Changqin
2017-09-08
Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1974-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves into helium-hydrogen mixtures representative of proposed outer planet atmospheres. The volumetric compositions of these mixtures are 0.35He-0.65H2, 0.20He-0.80H2, and 0.05He-0.95H2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 4 to 70 km/sec for a range of initial pressure of 5 N/sq m to 100 kN/sq m. The present results are applicable to shock-tube flows and to free-flight conditions for a blunt body at high velocities. A working chart illustrating idealized shock-tube performance with a 0.20He-0.80H2 test gas and heated helium driver gas is also presented.
Gharred, Tahar; Jebali, Jamel; Belgacem, Mariem; Mannai, Rabeb; Achour, Sami
2016-09-01
Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.
Initiation of Gaseous Detonation by Conical Projectiles
NASA Astrophysics Data System (ADS)
Verreault, Jimmy
Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed qualitatively well with the experimental results for relatively blunt projectiles (cone half-angle larger than 35°) and low mixture pressures (lower than 100 kPa). The trend of the critical Damköhler number calculated along the projectile cone surface was similar to that of the experimental results for slender cones (cone half-angles lower 35°) and high mixture pressures (higher than 100 kPa). Steady 2D simulations of reacting flows over finite wedges using the method of characteristics with a one-step Arrhenius chemical reaction model reproduced the three regimes observed for direct initiation of a detonation: the subcritical, critical and supercritical regimes. It is shown that in order for a 2D wedge to be equivalent to the problem of blast initiation of a detonation (which is the essence of the Lee-Vasiljev model), the Mach number normal to the oblique shock needs to be greater than 50 and the wedge angle has to be smaller than 30°. Simulations of reacting flows over semi-infinite wedges and cones were validated with CFD results. Excellent agreement was reached between the angle of overdriven oblique detonations obtained from the simulations and those from a polar analysis. For wedge or cone angles equal or lower than the minimum angle for which an oblique detonation is attached (according to the polar analysis), a Chapman-Jouguet oblique detonation was initiated. In the conical configuration, the curvature around the cone axis allowed an oblique detonation to be self-sustained at an angle less than without the curvature effect. At larger activation energies, the initiation process of an oblique detonation wave at the tip of a semi-infinite wedge or cone was identified. Unsteady 2D computational simulations were also conducted and showed the cellular structure of an oblique detonation wave. Instabilities in the form of transverse shock waves along the oblique detonation front arise for large activation energies.
Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep
2005-01-01
Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.
Anomaly detection of microstructural defects in continuous fiber reinforced composites
NASA Astrophysics Data System (ADS)
Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell
2015-03-01
Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.
ACTIVE SUPPRESSION OF IMMUNOGLOBULIN ALLOTYPE SYNTHESIS
Herzenberg, Leonore A.; Chan, Eva L.; Ravitch, Myrnice M.; Riblet, Roy J.; Herzenberg, Leonard A.
1973-01-01
Thymus-derived cells (T cells) that actively suppress production of IgG2a immunoglobulins carrying the Ig-1b allotype have been found in adult (SJL x BALB/c)F1 mice exposed to anti-Ig-1b early in life. The suppression is specific for Ig-1b. The allelic product, Ig-1a, is unaffected. Spleen, lymph node, bone marrow, or thymus cells from suppressed mice suppress production of Ig-1b by syngeneic spleen cells from normal F1 mice. When a mixture of suppressed and normal cells is transferred into lethally irradiated BALB/c mice, there is a short burst of Ig-1b production after which Ig-1b levels in the recipient fall rapidly below detectability. Pretreatment of the cells from the suppressed mice with antiserum specific for T cells (anti-Thy-1b) plus complement before mixture destroys the suppressing activity. Similar results with suppressor cells were obtained in vitro using Mishell-Dutton cultures. Mixture of spleen cells from suppressed animals with sheep erythrocyte (SRBC)-primed syngeneic normal spleen before culture suppresses Ig-1b plaque-forming cell (PFC) formation while leaving Ig-1a PFC unaffected. Treatment of the suppressed spleen with anti-Thy-1b before transfer removes the suppressing activity. PMID:4541122
Efficiency of a modified backwater wetland in trapping a pesticide mixture
USDA-ARS?s Scientific Manuscript database
The pesticide trapping efficiency of a modified backwater wetland amended with a mixture of three pesticides, atrazine, S-metolachlor, and fipronil, using a simulated runoff event, was examined. The 700 m long, 25 m wide wetland, located along the Coldwater River in Tunica County, Mississippi, USA,...
Mobile Smog Simulator: New Capabilities to Study Urban Mixtures
A smog simulator developed by EPA scientists and engineers has unique capabilities that will provide information for assessing the health impacts of relevant multipollutant atmospheres and identify contributions of specific sources.
Numerical simulation of detonation reignition in H 2-O 2 mixtures in area expansions
NASA Astrophysics Data System (ADS)
Jones, D. A.; Kemister, G.; Tonello, N. A.; Oran, E. S.; Sichel, M.
Time-dependent, two-dimensional, numerical simulations of a transmitted detonation show reignition occuring by one of two mechanisms. The first mechanism involves the collision of triple points as they expand along a decaying shock front. In the second mechanism ignition results from the coalescence of a number of small, relatively high pressure regions left over from the decay of weakened transverse waves. The simulations were performed using an improved chemical kinetic model for stoichiometric H 2-O 2 mixtures. The initial conditions were a propagating, two-dimensional detonation resolved enough to show transverse wave structure. The calculations provide clarification of the reignition mechanism seen in previous H 2-O 2-Ar simulations, and again demonstrate that the transverse wave structure of the detonation front is critical to the reignition process.
NASA Technical Reports Server (NTRS)
Heck, W. W.
1980-01-01
The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.
Mitchell, Martha C; Gallo, Marco; Nenoff, Tina M
2004-07-22
Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.
NASA Astrophysics Data System (ADS)
Mitchell, Martha C.; Gallo, Marco; Nenoff, Tina M.
2004-07-01
Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.
Extending the Distributed Lag Model framework to handle chemical mixtures.
Bello, Ghalib A; Arora, Manish; Austin, Christine; Horton, Megan K; Wright, Robert O; Gennings, Chris
2017-07-01
Distributed Lag Models (DLMs) are used in environmental health studies to analyze the time-delayed effect of an exposure on an outcome of interest. Given the increasing need for analytical tools for evaluation of the effects of exposure to multi-pollutant mixtures, this study attempts to extend the classical DLM framework to accommodate and evaluate multiple longitudinally observed exposures. We introduce 2 techniques for quantifying the time-varying mixture effect of multiple exposures on an outcome of interest. Lagged WQS, the first technique, is based on Weighted Quantile Sum (WQS) regression, a penalized regression method that estimates mixture effects using a weighted index. We also introduce Tree-based DLMs, a nonparametric alternative for assessment of lagged mixture effects. This technique is based on the Random Forest (RF) algorithm, a nonparametric, tree-based estimation technique that has shown excellent performance in a wide variety of domains. In a simulation study, we tested the feasibility of these techniques and evaluated their performance in comparison to standard methodology. Both methods exhibited relatively robust performance, accurately capturing pre-defined non-linear functional relationships in different simulation settings. Further, we applied these techniques to data on perinatal exposure to environmental metal toxicants, with the goal of evaluating the effects of exposure on neurodevelopment. Our methods identified critical neurodevelopmental windows showing significant sensitivity to metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.
Study of decolorisation of binary dye mixture by response surface methodology.
Khamparia, Shraddha; Jaspal, Dipika
2017-10-01
Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6 M DR81, 12 × 10 -6 M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine
NASA Astrophysics Data System (ADS)
Guo, T. H.; Musgrave, J.
1992-11-01
In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.
A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Guo, T. H.; Musgrave, J.
1992-01-01
In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.
Cunningham, C E; Siegel, L S
1987-06-01
Groups of 30 ADD-H boys and 90 normal boys were divided into 30 mixed dyads composed of a normal and an ADD-H boy, and 30 normal dyads composed of 2 normal boys. Dyads were videotaped interacting in 15-minute free-play, 15-minute cooperative task, and 15-minute simulated classroom settings. Mixed dyads engaged in more controlling interaction than normal dyads in both free-play and simulated classroom settings. In the simulated classroom, mixed dyads completed fewer math problems and were less compliant with the commands of peers. ADD-H children spent less simulated classroom time on task and scored lower on drawing tasks than normal peers. Older dyads proved less controlling, more compliant with peer commands, more inclined to play and work independently, less active, and more likely to remain on task during the cooperative task and simulated classroom settings. Results suggest that the ADD-H child prompts a more controlling, less cooperative pattern of responses from normal peers.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.
Mixture modelling for cluster analysis.
McLachlan, G J; Chang, S U
2004-10-01
Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the data can be partitioned into a specified number of clusters g by first fitting a mixture model with g components. An outright clustering of the data is then obtained by assigning an observation to the component to which it has the highest estimated posterior probability of belonging; that is, the ith cluster consists of those observations assigned to the ith component (i = 1,..., g). The focus is on the use of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous. But attention is also given to the case of mixed data, where the observations consist of both continuous and discrete variables.
Li, Xue; Zhao, Shuying; Zhang, Shuxiang; Kim, Dong Ha; Knoll, Wolfgang
2007-06-19
Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.
Flame Speeds and Energy Considerations for Explosions in a Spherical Bomb
NASA Technical Reports Server (NTRS)
Fiock, Ernest F; Marvin, Charles F , Jr; Caldwell, Frank R; Roeder, Carl H
1940-01-01
Simultaneous measurements were made of the speed of flame and the rise in pressure during explosions of mixtures of carbon monoxide, normal heptane, iso-octane, and benzene in a 10-inch spherical bomb with central ignition. From these records, fundamental properties of the explosive mixtures, which are independent of the apparatus, were computed. The transformation velocity, or speed at which flame advances into and transforms the explosive mixture, increases with both the temperature and the pressure of the unburned gas. The rise in pressure was correlated with the mass of charge inflamed to show the course of the energy developed.
The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model
NASA Astrophysics Data System (ADS)
Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid
2017-10-01
Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus, 289, 214 (2017)[3] Raymond, A. et al., submitted
NASA Astrophysics Data System (ADS)
Errington, Jeffrey Richard
This work focuses on the development of intermolecular potential models for real fluids. United-atom models have been developed for both non-polar and polar fluids. The models have been optimized to the vapor-liquid coexistence properties. Histogram reweighting techniques were used to calculate phase behavior. The Hamiltonian scaling grand canonical Monte Carlo method was developed to enable the determination of thermodynamic properties of several related Hamiltonians from a single simulation. With this method, the phase behavior of variations of the Buckingham exponential-6 potential was determined. Reservoir grand canonical Monte Carlo simulations were developed to simulate molecules with complex architectures and/or stiff intramolecular constraints. The scheme is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation. New intermolecular potential models have been developed for water, the n-alkane homologous series, benzene, cyclohexane, carbon dioxide, ammonia and methanol. The models utilize the Buckingham exponential-6 potential to model non-polar interactions and point charges to describe polar interactions. With the exception of water, the new models reproduce experimental saturated densities, vapor pressures and critical parameters to within a few percent. In the case of water, we found a set of parameters that describes the phase behavior better than other available point charge models while giving a reasonable description of the liquid structure. The mixture behavior of water-hydrocarbon mixtures has also been examined. The Henry's law constants of methane, ethane, benzene and cyclohexane in water were determined using Widom insertion and expanded ensemble techniques. In addition the high-pressure phase behavior of water-methane and water-ethane systems was studied using the Gibbs ensemble method. The results from this study indicate that it is possible to obtain a good description of the phase behavior of pure components using united-atom models. The mixture behavior of non-polar systems, including highly asymmetric components, was in good agreement with experiment. The calculations for the highly non-ideal water-hydrocarbon mixtures reproduced experimental behavior with varying degrees of success. The results indicate that multibody effects, such as polarizability, must be taken into account when modeling mixtures of polar and non-polar components.
NASA Astrophysics Data System (ADS)
Sowers, Susanne Lynn
1997-11-01
Microporous sorbents such as carbons, silicas and aluminas are used commercially in a variety of separation, purification and selective reaction applications. A detailed study of the effects of the porous material characteristics on the adsorption equilibrium properties such as selectivity and phase equilibria of fluid mixtures can enhance our understanding of adsorption on a molecular level. Such knowledge will improve our utilization of such adsorbents and provide a tool for directing the future of tailoring sorbents for particular separation processes. The effect of pore size, shape and pressure on the selective adsorption of trace pollutants from an inert gas was studied using prototype mixtures of Lennard-Tones (LJ) N2/CCl4, CF4, and SO2. Both nonlocal density functional theory (DFT) and grand canonical Monte Carlo (GCMC) molecular simulations were used in order to investigate the validity of the theory, which is much quicker and easier to use. Our results indicate that there is an optimal pore size and shape for which the pollutant selectivity is greatly enhanced. In many industrial adsorption processes relative humidity can greatly affect the life of an adsorbent bed, as seen in breakthrough curves. Therefore, the influence of water vapor on the selective adsorption of CCl4 from a mixture of N2/CCl4/H20 in activated carbon was studied using GCMC simulations. The equilibrium adsorption properties are found to be dependent upon both the density of active sites on the pore walls and the relative humidity. Liquid-liquid transitions in porous materials are of interest in connection with oil recovery, lubrication, coating technology and pollution control. The results of a study on the effect of confinement on the liquid-liquid equilibrium of binary LJ mixtures using DFT are compared with those of molecular simulation and experiments. Our findings show that the phase coexistence for the confined mixture is in general decreased and shifted toward the component which is more attracted to the pore walls. The data obtained from DFT, simulations, and experiment are in qualitative agreement and have aided in the understanding of this phenomenon.
NASA Astrophysics Data System (ADS)
Astuti, Ani Budi; Iriawan, Nur; Irhamah, Kuswanto, Heri
2017-12-01
In the Bayesian mixture modeling requires stages the identification number of the most appropriate mixture components thus obtained mixture models fit the data through data driven concept. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a combination of the reversible jump (RJ) concept and the Markov Chain Monte Carlo (MCMC) concept used by some researchers to solve the problem of identifying the number of mixture components which are not known with certainty number. In its application, RJMCMC using the concept of the birth/death and the split-merge with six types of movement, that are w updating, θ updating, z updating, hyperparameter β updating, split-merge for components and birth/death from blank components. The development of the RJMCMC algorithm needs to be done according to the observed case. The purpose of this study is to know the performance of RJMCMC algorithm development in identifying the number of mixture components which are not known with certainty number in the Bayesian mixture modeling for microarray data in Indonesia. The results of this study represent that the concept RJMCMC algorithm development able to properly identify the number of mixture components in the Bayesian normal mixture model wherein the component mixture in the case of microarray data in Indonesia is not known for certain number.
NASA Astrophysics Data System (ADS)
Nascimento, Luis Alberto Herrmann do
This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with the asphalt mixtures' fatigue performance. In the second step, the S-VECD test protocol was used to characterize the asphalt mixtures used in the 27 selected Fundao project test sections and subjected to real traffic loading. Thus, the asphalt mixture properties, pavement structure data, traffic loading, and climate were input into the LVECD program for pavement fatigue cracking performance simulations. The simulation results showed good agreement with the field-observed distresses. Then, a damage shift approach, based on the initial simulated damage growth rate, was introduced in order to obtain a unique relationship between the LVECD-simulated shifted damage and the pavement-observed fatigue cracked areas. This correlation was fitted to a power form function and defined as the averaged reduced damage-to-cracked area transfer function. The last step consisted of using the averaged reduced damage-to-cracked area transfer function that was developed in the Fundao project to predict pavement fatigue cracking in 17 National MEPDG project test sections. The procedures for the material characterization and pavement data gathering adopted in this step are similar to those used for the Fundao project simulations. This research verified that the transfer function defined for the Fundao project sections can be used for the fatigue performance predictions of a wide range of pavements all over Brazil, as the predicted and observed cracked areas for the National MEPDG pavements presented good agreement, following the same trends found for the Fundao project pavement sites. Based on the prediction errors determined for all 44 pavement test sections (Fundao and National MEPDG test sections), the proposed framework's prediction capability was determined so that reliability-based solutions can be applied for flexible pavement design. It was concluded that the proposed LVECD program framework has very good fatigue cracking prediction capability.
Borazan, Hale; Sahin, Osman; Kececioglu, Ahmet; Uluer, M.Selcuk; Et, Tayfun; Otelcioglu, Seref
2012-01-01
Background: The pain on propofol injection is considered to be a common and difficult to eliminate problem in children. In this study, we aimed to compare the efficacy of pretreatment with tramadol 1 mg.kg-1and propofol-lidocaine 20 mg mixture for prevention of propofol induced pain in children. Methods: One hundred and twenty ASA I-II patients undergoing orthopedic and otolaryngological surgery were included in this study and were divided into three groups with random table numbers. Group C (n=39) received normal saline placebo and Group T (n=40) received 1 mg.kg-1 tramadol 60 sec before propofol (180 mg 1% propofol with 2 ml normal saline) whereas Group L (n=40) received normal saline placebo before propofol-lidocaine mixture (180 mg 1% propofol with 2 ml %1 lidocaine). One patient in Group C was dropped out from the study because of difficulty in inserting an iv cannula. Thus, one hundred and nineteen patients were analyzed for the study. After given the calculated dose of propofol, a blinded observer assessed the pain with a four-point behavioral scale. Results: There were no significant differences in patient characteristics and intraoperative variables (p>0.05) except intraoperative fentanyl consumption and analgesic requirement one hr after surgery among the groups (p<0.05). Both tramadol 1 mg.kg-1 and lidocaine 20 mg mixture significantly reduced propofol pain when compared with control group. Moderate and severe pain were found higher in control group (p<0.05). The incidence of overall pain was 79.4% in the control group, 35% in tramadol group, 25% in lidocaine group respectively (p<0.001). Conclusions: Pretreatment with tramadol 60 sec before propofol injection and propofol-lidocaine mixture were significantly reduced propofol injection pain when compared to placebo in children. PMID:22927775
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D; Cox, Kenneth R; Chapman, Walter G
2017-04-28
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
NASA Astrophysics Data System (ADS)
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.
2017-04-01
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
NASA Astrophysics Data System (ADS)
Calderisi, Marco; Ulrici, Alessandro; Pigani, Laura; Secchi, Alberto; Seeber, Renato
2012-09-01
The EU FP7 project CUSTOM (Drugs and Precursor Sensing by Complementing Low Cost Multiple Techniques) aims at developing a new sensing system for the detection of drug precursors in gaseous samples, which includes an External Cavity-Quantum Cascade Laser Photo-Acoustic Sensor (EC-QCLPAS) that is in the final step of realisation. Thus, a simulation based on FT-IR literature spectra has been accomplished, where the development of a proper strategy for the design of the composition of the environment, as much as possible realistic and representative of different scenarios, is of key importance. To this aim, an approach based on the combination of signal processing and experimental design techniques has been developed. The gaseous mixtures were built by adding the considered 4 drug precursor (target) species to the gases typically found in atmosphere, taking also into account possible interfering species. These last chemicals were selected considering custom environments (20 interfering chemical species), whose concentrations have been inferred from literature data. The spectra were first denoised by means of a Fast Wavelet Transform-based algorithm; then, a procedure based on a sigmoidal transfer function was developed to multiply the pure components spectra by the respective concentration values, in a way to correctly preserve background intensity and shape, and to operate only on the absorption bands. The noise structure of the EC-QCLPAS was studied using sample spectra measured with a prototype instrument, and added to the simulated mixtures. Finally a matrix containing 5000 simulated spectra of gaseous mixtures was built up.
Geophysics and Nanosciences: Nano to Micro to Meso to Macro Scale Swelling Soils
NASA Astrophysics Data System (ADS)
Cushman, J.
2003-04-01
We use statistical mechanical simulations of nanoporous materials to motivate a choice of independent constitutive variables for a multiscale mixture theory of swelling soils. A video will illustrate the structural behavior of fluids in nanopores when they are adsorbed from a bulk phase vapor to form capillaries on the nanoscale. These simulations suggest that when a swelling soil is very dry, the full strain tensor for the liquid phase should be included in the list of independent variables in any mixture theory. We use this information to develop a three-scale (micro, meso, macro) mixture theory for swelling soils. For a simplified case, we present the underlying multiscale field equations and constitutive theory, solve the resultant well posed system numerically, and present some graphical results for a drying and shrinking body.
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome...
Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-04-01
Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.
NASA Astrophysics Data System (ADS)
Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian
2017-06-01
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.
Metal-polysiloxane shields for radiation therapy of maxillo-facial tumors.
Farahani, M; Eichmiller, F C; McLaughlin, W L
1991-01-01
In the treatment of some head and neck lesions with high-intensity radiation (teletherapy), an essential procedure is the application of an individually customized shielding appliance, which is designed, modeled, and formed into a working extra- or intraoral stent for the purpose of sparing healthy tissues. The present state of the art is slow and technique intensive, which can add to patient discomfort and inconvenience during molding and fabrication. A new formulation is described, which offers speed and ease of forming a moldable composite stent especially for intraoral use. Interleaved stacks of calibrated thin radiochromic film strips and soft-tissue-simulating plastic (polystyrene) layers gave a means of mapping one- or two-dimensional profiles of dose distributions adjacent to the high-density shielding materials using a spectrophotometer equipped with a gel scanner or a scanning laser-beam microdensitometer. Tests using collimated gamma-ray beams from a 60Co teletherapy unit were made in order to measure the dose distribution near interfaces of tissue-simulating polymer and the composite stent material with and without mixtures of metals (Ag-Cu and Sn-Sb). These results show that quickly formed composites made of a flexible resin with high concentrations of powdered spherical metal alloys provide effective custom-designed shielding, and, with a thin overlayer of the resin without metal, a diminished back-scattered radiation dose to normal tissues. An example of a successful formulation is a mixture of 90% by weight Ag-Cu alloy powder in a vinyl polysiloxane resin. This material is a moldable putty which, upon polymerization, forms a rigid elastomeric material, providing a half-value layer of approximately 2.5 to 2.8 cm for a gamma-ray beam from a 60Co source.
Martin, Andrew R; Katz, Ira M; Jenöfi, Katharina; Caillibotte, Georges; Brochard, Laurent; Texereau, Joëlle
2012-10-03
Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated.
Numerical simulation of turbulent gas flames in tubes.
Salzano, E; Marra, F S; Russo, G; Lee, J H S
2002-12-02
Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.
A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastea, Sorin, E-mail: sbastea@llnl.gov
Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation,more » simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts.« less
Population annealing simulations of a binary hard-sphere mixture
NASA Astrophysics Data System (ADS)
Callaham, Jared; Machta, Jonathan
2017-06-01
Population annealing is a sequential Monte Carlo scheme well suited to simulating equilibrium states of systems with rough free energy landscapes. Here we use population annealing to study a binary mixture of hard spheres. Population annealing is a parallel version of simulated annealing with an extra resampling step that ensures that a population of replicas of the system represents the equilibrium ensemble at every packing fraction in an annealing schedule. The algorithm and its equilibration properties are described, and results are presented for a glass-forming fluid composed of a 50/50 mixture of hard spheres with diameter ratio of 1.4:1. For this system, we obtain precise results for the equation of state in the glassy regime up to packing fractions φ ≈0.60 and study deviations from the Boublik-Mansoori-Carnahan-Starling-Leland equation of state. For higher packing fractions, the algorithm falls out of equilibrium and a free volume fit predicts jamming at packing fraction φ ≈0.667 . We conclude that population annealing is an effective tool for studying equilibrium glassy fluids and the jamming transition.
Process to create simulated lunar agglutinate particles
NASA Technical Reports Server (NTRS)
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
Effect of the addition of rocuronium to 2% lignocaine in peribulbar block for cataract surgery.
Patil, Vishalakshi; Farooqy, Allauddin; Chaluvadi, Balaraju Thayappa; Rajashekhar, Vinayak; Malshetty, Ashwini
2017-01-01
Peribulbar anesthesia is associated with delayed orbital akinesia compared with retrobulbar anesthesia. To test the hypothesis that rocuronium added to a mixture of local anesthetics (LAs) could improve speed of onset of akinesia in peribulbar block (PB), we designed this study. This study examined the effects of adding rocuronium 5 mg to 2% lignocaine with adrenaline to note orbital and eyelid akinesia in patients undergoing cataract surgery. In a prospective, randomized, double-blind study, 100 patients were equally randomized to receive a mixture of 0.5 ml normal saline, 6 ml lidocaine 2% with adrenaline and hyaluronidase 50 IU/ml (Group I), a mixture of rocuronium 0.5 ml (5 mg), 6 ml lidocaine 2% with adrenaline and hyaluronidase 50 IU/ml (Group II). Orbital akinesia was assessed on a 0-8 score (0 = no movement, 8 = normal) at 2 min intervals for 10 min. Time to adequate anesthesia was also recorded. Results are presented as mean ± standard deviation. Rocuronium group demonstrated significantly better akinesia scores than control group at 2 min intervals post-PB (significant P value obtained). No significant complications were recorded. Rocuronium added to a mixture of LA improved the quality of akinesia in PB and reduced the need for supplementary injections. The addition of rocuronium 5 mg to a mixture of lidocaine 2% with adrenaline and hyaluronidase 50 IU/ml shortened the onset time of peribulbar anesthesia in patients undergoing cataract surgery without causing adverse effects.
Silo discharge of binary granular mixtures.
Madrid, M; Asencio, K; Maza, D
2017-08-01
We present numerical and experimental results on the mass flow rate during the discharge of three-dimensional silos filled with a bidisperse mixture of grains of different sizes. We analyzed the influence of the ratio between coarse and fine particles on the profile of volume fraction and velocity across the orifice. By using numerical simulations, we have shown that the velocity profile has the same shape as that in the monodisperse case and is insensitive to the composition of the mixture. On the contrary, the volume fraction profile is strongly affected by the composition of the mixture. Assuming that an effective particle size can be introduced to characterize the mixture, we have shown that previous expression for the mass flow rate of monodisperse particles can be used for binary mixtures. A comparison with Beverloo's correlation is also presented.
The non-trusty clown attack on model-based speaker recognition systems
NASA Astrophysics Data System (ADS)
Farrokh Baroughi, Alireza; Craver, Scott
2015-03-01
Biometric detectors for speaker identification commonly employ a statistical model for a subject's voice, such as a Gaussian Mixture Model, that combines multiple means to improve detector performance. This allows a malicious insider to amend or append a component of a subject's statistical model so that a detector behaves normally except under a carefully engineered circumstance. This allows an attacker to force a misclassification of his or her voice only when desired, by smuggling data into a database far in advance of an attack. Note that the attack is possible if attacker has access to database even for a limited time to modify victim's model. We exhibit such an attack on a speaker identification, in which an attacker can force a misclassification by speaking in an unusual voice, and replacing the least weighted component of victim's model by the most weighted competent of the unusual voice of the attacker's model. The reason attacker make his or her voice unusual during the attack is because his or her normal voice model can be in database, and by attacking with unusual voice, the attacker has the option to be recognized as himself or herself when talking normally or as the victim when talking in the unusual manner. By attaching an appropriately weighted vector to a victim's model, we can impersonate all users in our simulations, while avoiding unwanted false rejections.
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin
2016-01-01
Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
Large eddy simulation of forced ignition of an annular bluff-body burner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, V.; Domingo, P.; Vervisch, L.
2010-03-15
The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less
NASA Astrophysics Data System (ADS)
Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam Mahmoud; Omran, Yasmin Rostom
2018-07-01
A novel, simple, rapid, accurate, and economical spectrophotometric method, namely absorptivity centering (a-Centering) has been developed and validated for the simultaneous determination of mixtures with partially and completely overlapping spectra in different matrices using either normalized or factorized spectrum using built-in spectrophotometer software without a need of special purchased program. Mixture I (Mix I) composed of Simvastatin (SM) and Ezetimibe (EZ) is the one with partial overlapping spectra formulated as tablets, while mixture II (Mix II) formed by Chloramphenicol (CPL) and Prednisolone acetate (PA) is that with complete overlapping spectra formulated as eye drops. These procedures do not require any separation steps. Resolution of spectrally overlapping binary mixtures has been achieved getting recovered zero-order (D0) spectrum of each drug, then absorbance was recorded at their maxima 238, 233.5, 273 and 242.5 nm for SM, EZ, CPL and PA, respectively. Calibration graphs were established with good correlation coefficients. The method shows significant advantages as simplicity, minimal data manipulation besides maximum reproducibility and robustness. Moreover, it was validated according to ICH guidelines. Selectivity was tested using laboratory-prepared mixtures. Accuracy, precision and repeatability were found to be within the acceptable limits. The proposed method is good enough to be applied to an assay of drugs in their combined formulations without any interference from excipients. The obtained results were statistically compared with those of the reported and official methods by applying t-test and F-test at 95% confidence level concluding that there is no significant difference with regard to accuracy and precision. Generally, this method could be used successfully for the routine quality control testing.
Lotfy, Hayam Mahmoud; Omran, Yasmin Rostom
2018-07-05
A novel, simple, rapid, accurate, and economical spectrophotometric method, namely absorptivity centering (a-Centering) has been developed and validated for the simultaneous determination of mixtures with partially and completely overlapping spectra in different matrices using either normalized or factorized spectrum using built-in spectrophotometer software without a need of special purchased program. Mixture I (Mix I) composed of Simvastatin (SM) and Ezetimibe (EZ) is the one with partial overlapping spectra formulated as tablets, while mixture II (Mix II) formed by Chloramphenicol (CPL) and Prednisolone acetate (PA) is that with complete overlapping spectra formulated as eye drops. These procedures do not require any separation steps. Resolution of spectrally overlapping binary mixtures has been achieved getting recovered zero-order (D 0 ) spectrum of each drug, then absorbance was recorded at their maxima 238, 233.5, 273 and 242.5 nm for SM, EZ, CPL and PA, respectively. Calibration graphs were established with good correlation coefficients. The method shows significant advantages as simplicity, minimal data manipulation besides maximum reproducibility and robustness. Moreover, it was validated according to ICH guidelines. Selectivity was tested using laboratory-prepared mixtures. Accuracy, precision and repeatability were found to be within the acceptable limits. The proposed method is good enough to be applied to an assay of drugs in their combined formulations without any interference from excipients. The obtained results were statistically compared with those of the reported and official methods by applying t-test and F-test at 95% confidence level concluding that there is no significant difference with regard to accuracy and precision. Generally, this method could be used successfully for the routine quality control testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling
2017-10-01
The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.
A Mixture Rasch Model-Based Computerized Adaptive Test for Latent Class Identification
ERIC Educational Resources Information Center
Jiao, Hong; Macready, George; Liu, Junhui; Cho, Youngmi
2012-01-01
This study explored a computerized adaptive test delivery algorithm for latent class identification based on the mixture Rasch model. Four item selection methods based on the Kullback-Leibler (KL) information were proposed and compared with the reversed and the adaptive KL information under simulated testing conditions. When item separation was…
The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...
NASA Astrophysics Data System (ADS)
Gámez, Francisco; Acemel, Rafael D.; Cuetos, Alejandro
2013-10-01
Parsons-Lee approach is formulated for the isotropic-nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.
Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.
Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy
2014-04-01
A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures.
Low power DC arcjet operation with hydrogen/nitrogen/ammonia mixtures
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Curran, Francis M.
1987-01-01
The effect of gas composition and ambient pressure on arcjet operation was determined. Arcjet operation in different facilities was also compared to determine the validity of tests in small facilities. Volt-ampere characteristics were determined for an arcjet using hydrogen/nitrogen mixtures (simulating both ammonia and hydrazine), hydrogen/nitrogen/ammonia mixtures, and pure ammonia as propellants at various flow rates. The arcjet had a typical performance of 450 sec specific impulse at 1 kW with hydrogen/nitrogen mixures. It was determined that the amount of ammonia present in the gas stream had a significant effect on the arcjet volt-ampere characteristics. Also, hydrogen/nitrogen mixtures simulating ammonia gave arc characteristics approximately the same as those of pure ammonia. Finally, no differences in arc volt-ampere characteristics were seen between low and high ambient pressure operation in the same facility. A 3 to 5 V difference was seen when different facilities were compared, but this difference was probably due to differences in the voltage drops across the current connections, and not due to arcjet operational differences in the two facilities.
Separating Iso-Propanol-Toluene mixture by azeotropic distillation
NASA Astrophysics Data System (ADS)
Iqbal, Asma; Ahmad, Syed Akhlaq
2018-05-01
The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.
Automated isotope identification algorithm using artificial neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Automated isotope identification algorithm using artificial neural networks
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
2017-04-12
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Near-infrared reflectance spectra of mixtures of kaolin-group minerals: Use in clay mineral studies
Crowley, James K.; Vergo, Norma
1988-01-01
Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the sample spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. The ordered kaolinite and dickite samples used in the reference mixtures were carefully selected to avoid undesirable particle size effects that could bias the spectral results.NIR spectra were also recorded for laboratory mixtures of ordered kaolinite and halloysite to assess whether the spectra could be potentially useful for determining mineral proportions in natural physical mixtures of these two clays. Although the kaolinite-halloysite proportions could only be roughly estimated from the mixture spectra, the halloysite component was evident even when halloysite was present in only minor amounts. A similar approach using NIR spectra for laboratory mixtures may have applications in other studies of natural clay mixtures.
Viscosity minima in binary mixtures of ionic liquids + molecular solvents.
Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N
2015-05-28
The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.
Lawson, Andrew B; Choi, Jungsoon; Cai, Bo; Hossain, Monir; Kirby, Russell S; Liu, Jihong
2012-09-01
We develop a new Bayesian two-stage space-time mixture model to investigate the effects of air pollution on asthma. The two-stage mixture model proposed allows for the identification of temporal latent structure as well as the estimation of the effects of covariates on health outcomes. In the paper, we also consider spatial misalignment of exposure and health data. A simulation study is conducted to assess the performance of the 2-stage mixture model. We apply our statistical framework to a county-level ambulatory care asthma data set in the US state of Georgia for the years 1999-2008.
NASA Astrophysics Data System (ADS)
Schumaker, Merit; Stewart, Sarah T.; Borg, John P.
2015-06-01
Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, these particle interactions during a shock event are not easily observed in planar shock experiments; it is with the utilization of mesoscale simulations that these granular particle interactions can be unraveled. Unlike homogenous materials, the overall averaged hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments on dry and wet sand mixtures, simulations were constructed using CTH. A baseline dry sand simulation was also setup to be compared to sand grains that possessed water particles between grains. It is from these simulations that the distributions of stress and temperatures for individual sand and water particles are presented and compared in this document.
The prospect of life on Jupiter.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.; Molton, P.
1973-01-01
We have simulated electrical discharges in the Jovian atmosphere, using anhydrous methane-ammonia mixtures, and shown the formation of simple aliphatic nitriles, amino-nitriles, and their oligomers. Including hydrogen sulfide in the gas mixture, it appears that sulfur-containing amino-nitriles are not formed, since the hydrolysate of the products did not contain the corresponding amino-acids. There is a strong analogy between these reactions and the classical spark reactions simulating the primitive earth's atmosphere. We are attempting a closer simulation of Jupiter's atmosphere by using appropriate temperature and pressure conditions. It seems that prebiotic synthesis on Jupiter may have reached an advanced state. As an alternative approach we have tested the survival ability of common terrestrial microorganisms in aqueous media at 102 atmospheres pressure and at 20 C in a simulated Jovian atmosphere. E. coli, S. marcescens, A. aerogenes, and B. subtilis will all tolerate 24 hr under these conditions with little death.
Ping, Lifang; Huang, Lihong; Cardinali, Barbara; Profumo, Aldo; Gorkun, Oleg V.; Lord, Susan T.
2011-01-01
Fibrin polymerization occurs in two steps: the assembly of fibrin monomers into protofibrils and the lateral aggregation of protofibrils into fibers. Here we describe a novel fibrinogen that apparently impairs only lateral aggregation. This variant is a hybrid, where the human αC region has been replaced with the homologous chicken region. Several experiments indicate this hybrid human-chicken (HC) fibrinogen has an overall structure similar to normal. Thrombin-catalyzed fibrinopeptide release from HC fibrinogen was normal. Plasmin digests of HC fibrinogen produced fragments that were similar to normal D and E; further, as with normal fibrinogen, the knob ‘A’ peptide, GPRP, reversed the plasmin cleavage associated with addition of EDTA. Dynamic light scattering and turbidity studies with HC fibrinogen showed polymerization was not normal. Whereas early small increases in hydrodynamic radius and absorbance paralleled the increases seen during the assembly of normal protofibrils, HC fibrinogen showed no dramatic increase in scattering as observed with normal lateral aggregation. To determine whether HC and normal fibrinogen could form a copolymer, we examined mixtures of these. Polymerization of normal fibrinogen was markedly changed by HC fibrinogen, as expected for mixed polymers. When the mixture contained 0.45 μM normal and 0.15 M HC fibrinogen, the initiation of lateral aggregation was delayed and the final fiber size was reduced relative to normal fibrinogen at 0.45 μM. Considered altogether our data suggest that HC fibrin monomers can assemble into protofibrils or protofibril-like structures but these either cannot assemble into fibers or assemble into very thin fibers. PMID:21932842
Simulations of a binary-sized mixture of inelastic grains in rapid shear flow.
Clelland, R; Hrenya, C M
2002-03-01
In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.
NASA Astrophysics Data System (ADS)
Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek
2017-10-01
Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.
Wright, Aidan G C; Hallquist, Michael N
2014-01-01
Studying personality and its pathology as it changes, develops, or remains stable over time offers exciting insight into the nature of individual differences. Researchers interested in examining personal characteristics over time have a number of time-honored analytic approaches at their disposal. In recent years there have also been considerable advances in person-oriented analytic approaches, particularly longitudinal mixture models. In this methodological primer we focus on mixture modeling approaches to the study of normative and individual change in the form of growth mixture models and ipsative change in the form of latent transition analysis. We describe the conceptual underpinnings of each of these models, outline approaches for their implementation, and provide accessible examples for researchers studying personality and its assessment.
Tolerable hearing aid delays. V. Estimation of limits for open canal fittings.
Stone, Michael A; Moore, Brian C J; Meisenbacher, Katrin; Derleth, Ralph P
2008-08-01
Open canal fittings are a popular alternative to close-fitting earmolds for use with patients whose low-frequency hearing is near normal. Open canal fittings reduce the occlusion effect but also provide little attenuation of external air-borne sounds. The wearer therefore receives a mixture of air-borne sound and amplified but delayed sound through the hearing aid. To explore systematically the effect of the mixing, we simulated with varying degrees of complexity the effects of both a hearing loss and a high-quality hearing aid programmed to compensate for that loss, and used normal-hearing participants to assess the processing. The off-line processing was intended to simulate the percept of listening to the speech of a single (external) talker. The effect of introducing a delay on a subjective measure of speech quality (disturbance rating on a scale from 1 to 7, 7 being maximal disturbance) was assessed using both a constant gain and a gain that varied across frequency. In three experiments we assessed the effects of different amounts of delay, maximum aid gain and rate of change of gain with frequency. The simulated hearing aids were chosen to be appropriate for typical mild to moderate high-frequency losses starting at 1 or 2 kHz. Two of the experiments used simulations of linear hearing aids, whereas the third used fast-acting multichannel wide-dynamic-range compression and a simulation of loudness recruitment. In one experiment, a condition was included in which spectral ripples produced by comb-filtering were partially removed using a digital filter. For linear hearing aids, disturbance increased progressively with increasing delay and with decreasing rate of change of gain; the effect of amount of gain was small when the gain varied across frequency. The effect of reducing spectral ripples was also small. When the simulation of dynamic processes was included (experiment 3), the pattern with delay remained similar, but disturbance increased with increasing gain. It is argued that this is mainly due to disturbance increasing with increasing simulated hearing loss, probably because of the dynamic processing involved in the hearing aid and recruitment simulation. A disturbance rating of 3 may be considered as just acceptable. This rating was reached for delays of about 5 and 6 msec, for simulated hearing losses starting at 2 and 1 kHz, respectively. The perceptual effect of reducing the spectral ripples produced by comb-filtering was small; the effect was greatest when the hearing aid gain was small and when the hearing loss started at a low frequency.
Effects of simulant mixed waste on EPDM and butyl rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-11-01
The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less
Li, Jun-De
2013-02-01
This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.
Li, Jun-De
2013-01-01
This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953
Characterizing Dissolved Gases in Cryogenic Liquid Fuels
NASA Astrophysics Data System (ADS)
Richardson, Ian A.
Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine to explore the depths of Titan's methane-ethane seas to study the evolution of hydrocarbons in the universe and provide a pathfinder for future submersible designs. In addition, effervescence and freezing liquid line measurements on various liquid methane-ethane compositions with dissolved gaseous nitrogen are presented from 1.5 bar to 4.5 bar and temperatures from 92 K to 96 K to improve simulations of the conditions of the seas. These measurements will be used to validate sea property and bubble incipience models for the Titan Submarine design.
Discrete meso-element simulation of chemical reactions in shear bands
NASA Astrophysics Data System (ADS)
Tamura, S.; Horie, Y.
1998-07-01
A meso-dynamic simulation technique is used to investigate the chemical reactions in high speed shearing of reactive porous mixtures. The reaction speed is assumed to be a function of temperature, pressure and mixing of materials. To gain a theoretical insight into the experiments reported by Nesterenko et al., a parametric study of material flow and local temperature was carried out using a Nb and Si mixture. In the model calculation, a heterogeneous shear region of 5 μm width, consisting of alternating layers of Nb and Si, was created first in a mixture and then sheared at the rate of 8.0×107s-1. Results show that the material flow is mostly homogeneous, but contains a local agglomeration and circulatory flow. This behavior accelerates mass mixing and causes a significant temperature increase. To evaluate the mixing of material, average minimum distance of materials separation was calculated. Voids effect were also investigated.
Structural and energetic properties of La3+ in water/DMSO mixtures
NASA Astrophysics Data System (ADS)
Montagna, Maria; Spezia, Riccardo; Bodo, Enrico
2017-11-01
By using molecular dynamics based on a custom polarizable force field, we have studied the solvation of La3+ in an equimolar mixture of dimethylsulfoxide (DMSO) with water. An extended structural analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of La3+ with both solvents. Through our simulations we found that, very likely, the first solvation shell in the mixture is not unlike the one found in pure water or pure DMSO and contains 9 solvent molecules. We have also found that the solvation is preferentially due to DMSO molecules with the water initially present in first shell quickly leaving to the bulk. The dehydration process of the first shell has been analyzed by both plain MD simulations and a constrained dynamics approach; the free energy profiles for the extraction of water from first shell have also been computed.
Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption
Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt
2014-01-01
Water and alcohol, such as methanol or ethanol, are miscible and, individually, good solvents for poly(N-isopropylacrylamide) (PNIPAm), but this polymer precipitates in water–alcohol mixtures. The intriguing behaviour of solvent mixtures that cannot dissolve a given polymer or a given protein, while the same macromolecule dissolves well in each of the cosolvents, is called cononsolvency. It is a widespread phenomenon, relevant for many formulation steps in the physicochemical and pharmaceutical industry, that is usually explained by invoking specific chemical details of the mixtures: as such, it has so far eluded any generic explanation. Here, by using a combination of simulations and theory, we present a simple and universal treatment that requires only the preferential interaction of one of the cosolvents with the polymer. The results show striking quantitative agreement with experiments and chemically specific simulations, opening a new perspective towards an operational understanding of macromolecular solubility. PMID:25216245
Strain distribution in hot rolled aluminum by photoplastic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyinlola, Adeyinka Kofoworola
1974-10-01
A previously developed photomechanic material, Larninac, which excellently simulates the behavior of aluminum in tension has been investigated intensively as a possible modeling material for hot-rolled aluminum billets. Photoplasticity techniques combined with the Moire method have been used to study the behavior of the Laminac mixture in compression. Photoplastic analysis revealed that a Laminac mixture of 60% flexible and 40% rigid resins, compressed or rolled at 40°C, showed the phenomenon of double bulging which has been observed in hot-rolled aluminum billets. The potentiality of the 60:40 Laminac mixture as a possible Simulating material at 40°C is further enhanced by themore » fact that the true stress-true strain curves of cylindrical samples compressed at 40°C correlated very well with true stresstrue strain of identical cylindrical samples of aluminum compressed. at 300°C, 425PC and 500°c.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.S.; Miao, H.; Chen, T.
2009-07-01
H{sub 2}S poisoning is an important issue for solid oxide fuel cells (SOFCs) operated with syngas. The effect of simulated coal-derived gas composition on H{sub 2}S poisoning behavior was evaluated using a disaggregation scheme where the influence of H{sub 2} content was determined separately using a typical anode-supported SOFC operated with a N2/H{sub 2} mixture gas, while the effect of other compositions (CO, CO{sub 2}, and H{sub 2}O) was investigated with simulated coal-derived gas having constant H{sub 2} and CO flow rates balanced by a H{sub 2}/N2 mixture gas (83% H{sub 2} and 17% N2). The results indicated that themore » extent of H{sub 2}S poisoning was not pertinent to H{sub 2} content when the cell was tested galvanostatically with a current density of 0.3 A/cm{sup 2} at 800{sup o}C using a N2/H{sub 2} mixture gas containing 10 ppm H{sub 2}S, and the H{sub 2}S poisoning impact can be completely removed by switching to sulfur-free gas. The CO, CO{sub 2}, and high water vapor content aggravated the H{sub 2}S poisoning effect, and the performance was almost irrecoverable when the cell was tested with a 35% H{sub 2}-46% CO-16% N2-3% H{sub 2}O mixture gas containing 12.5 ppm H{sub 2}S. However, the introduction of 10% CO{sub 2} and an increase in H{sub 2}O content from 3 to 10% in the mixture gas can promote the performance recoverability to a larger extent.« less
Muwamba, A; Nkedi-Kizza, P; Morgan, K T
2016-09-01
Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less
Leong, Siow Hoo; Ong, Seng Huat
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.
Leong, Siow Hoo
2017-01-01
This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634
Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur
NASA Astrophysics Data System (ADS)
Jetté, F. X.; Goroshin, S.; Higgins, A. J.
2007-12-01
Equimolar mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2-3.0 GPa (pressures were estimated using LS-DYNA simulations of samples with 100% TMD).
NASA Astrophysics Data System (ADS)
Narayanan, Vineed; Venkatarathnam, G.
2018-03-01
Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.
Multi-Species Fluxes for the Parallel Quiet Direct Simulation (QDS) Method
NASA Astrophysics Data System (ADS)
Cave, H. M.; Lim, C.-W.; Jermy, M. C.; Krumdieck, S. P.; Smith, M. R.; Lin, Y.-J.; Wu, J.-S.
2011-05-01
Fluxes of multiple species are implemented in the Quiet Direct Simulation (QDS) scheme for gas flows. Each molecular species streams independently. All species are brought to local equilibrium at the end of each time step. The multi species scheme is compared to DSMC simulation, on a test case of a Mach 20 flow of a xenon/helium mixture over a forward facing step. Depletion of the heavier species in the bow shock and the near-wall layer are seen. The multi-species QDS code is then used to model the flow in a pulsed-pressure chemical vapour deposition reactor set up for carbon film deposition. The injected gas is a mixture of methane and hydrogen. The temporal development of the spatial distribution of methane over the substrate is tracked.
Ticknor, Christopher; Collins, Lee A.; Kress, Joel D.
2015-08-04
We present simulations of a four component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5–200 eV with densities ranging between 0.184 and 36.8 g/cm 3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. In addition, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models basedmore » on the Coulomb coupling parameter and one-component plasmas.« less
A Step Towards CO2-Neutral Aviation
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Ryder, Robert C.; Hendricks, Robert C.; Huber, Marcia L.
2007-01-01
An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1978-01-01
This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1976-01-01
The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.
Nebulisation of corticosteroid suspensions and solutions with a beta(2) agonist.
O'Callaghan, Christopher L; White, Judy A; Jackson, Judith M; Barry, Peter W; Kantar, Ahmad
2008-05-01
The aim of this study was to determine the output of salbutamol nebulised in combination with either flunisolide or beclometasone dipropionate (BDP) from two different nebulisers under simulated breathing conditions. The BimboNeb and Nebula nebulisers were used to nebulise 3.0 mL of the two drug mixtures (salbutamol, 5000 microg plus either flunisolide, 600 microg, or BDP, 800 microg). Particle size was determined by inertial impaction. Total outputs of all drugs from both nebulisers were measured using a sinus flow pump under simulated paediatric and adult breathing patterns. The mass median aerodynamic diameter (MMAD) of BDP particles from the mixture was 6.34 mum using the BimboNeb and 5.34 mum using the Nebula. Values for salbutamol in this mixture were 3.93 and 3.32 microm, respectively. The MMAD of flunisolide particles from the BimboNeb and Nebula were 3.74 and 3.65 microm, respectively, while for salbutamol were 3.79 and 3.74 microm, respectively. With the simulated adult breathing pattern, all drug outputs from both mixtures were greater from the BimboNeb than from the Nebula after 5 and 10 min' nebulisation. Drug delivery from the BimboNeb, but not the Nebula, was affected by the simulated breathing pattern. Outputs with the BimboNeb were lower with the paediatric breathing pattern than with the adult pattern. In the majority of cases, nebulising for 10 min produced significantly greater drug output than after 5 min. For the Nebula, outputs were generally similar at 5 and 10 min, irrespective of the breathing pattern. These results highlight the need to assess the amount of aerosolised drug available when drugs are combined, when different nebulisers are used and when they are used with patients of different ages.
Application of nuclear pumped laser to an optical self-powered neutron detector
NASA Astrophysics Data System (ADS)
Yamanaka, N.; Takahashi, H.; Iguchi, T.; Nakazawa, M.; Kakuta, T.; Yamagishi, H.; Katagiri, M.
1996-05-01
A Nuclear Pumped Laser (NPL) using 3He/Ne/Ar gas mixture is investigated for a purpose of applying to an optical self-powered neutron detector. Reactor experiments and simulations on lasing mechanism have been made to estimate the best gas pressure and mixture ratios on the threshold input power density (or thermal neutron flux) in 3He/Ne/Ar mixture. Calculational results show that the best mixture pressure is 3He/Ne/Ar=2280/60/100 Torr and thermal neutron flux threshold 5×1012 n/cm2 sec, while the reactor experiments made in the research reactor ``YAYOI'' of the University of Tokyo and ``JRR-4'' of JAERI also demonstrate that excitational efficiency is maximized in a similar gas mixture predicted by the calculation.
The effect of water on thermal stresses in polymer composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
1994-01-01
The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.
NASA Astrophysics Data System (ADS)
Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika
2017-06-01
Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.
2017-12-01
Identification of the original groundwater types present in geochemical mixtures observed in an aquifer is a challenging but very important task. Frequently, some of the groundwater types are related to different infiltration and/or contamination sources associated with various geochemical signatures and origins. The characterization of groundwater mixing processes typically requires solving complex inverse models representing groundwater flow and geochemical transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is calibrated against the available data characterizing the spatial and temporal distribution of the observed geochemical species. Numerous geochemical constituents and processes may need to be simulated in these models which further complicates the analyses. As a result, these types of model analyses are typically extremely challenging. Here, we demonstrate a new contaminant source identification approach that performs decomposition of the observation mixtures based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS), coupled with a custom semi-supervised clustering algorithm. Our methodology, called NMFk, is capable of identifying (a) the number of groundwater types and (b) the original geochemical concentration of the contaminant sources from measured geochemical mixtures with unknown mixing ratios without any additional site information. We also demonstrate how NMFk can be extended to perform uncertainty quantification and experimental design related to real-world site characterization. The NMFk algorithm works with geochemical data represented in the form of concentrations, ratios (of two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios). The NMFk algorithm has been extensively tested on synthetic datasets; NMFk analyses have been actively performed on real-world data collected at the Los Alamos National Laboratory (LANL) groundwater sites related to Chromium and RDX contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D. E.; Ehlmann, B. L.; Forni, O.
Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less
Anderson, D. E.; Ehlmann, B. L.; Forni, O.; ...
2017-04-24
Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less
ERIC Educational Resources Information Center
Dai, Yunyun
2013-01-01
Mixtures of item response theory (IRT) models have been proposed as a technique to explore response patterns in test data related to cognitive strategies, instructional sensitivity, and differential item functioning (DIF). Estimation proves challenging due to difficulties in identification and questions of effect size needed to recover underlying…
Altered mechano-chemical environment in hip articular cartilage: effect of obesity.
Travascio, Francesco; Eltoukhy, Moataz; Cami, Sonila; Asfour, Shihab
2014-10-01
The production of extracellular matrix (ECM) components of articular cartilage is regulated, among other factors, by an intercellular signaling mechanism mediated by the interaction of cell surface receptors (CSR) with insulin-like growth factor-1 (IGF-1). In ECM, the presence of binding proteins (IGFBP) hinders IGF-1 delivery to CSR. It has been reported that levels of IGF-1 and IGFBP in obese population are, respectively, lower and higher than those found in normal population. In this study, an experimental-numerical approach was adopted to quantify the effect of this metabolic alteration found in obese population on the homeostasis of femoral hip cartilage. A new computational model, based on the mechano-electrochemical mixture theory, was developed to describe competitive binding kinetics of IGF-1 with IGFBP and CSR, and associated glycosaminoglycan (GAG) biosynthesis. Moreover, a gait analysis was carried out on obese and normal subjects to experimentally characterize mechanical loads on hip cartilage during walking. This information was deployed into the model to account for effects of physiologically relevant tissue deformation on GAG production in ECM. Numerical simulations were performed to compare GAG biosynthesis in femoral hip cartilage of normal and obese subjects. Results indicated that the lower ratio of IGF-1 to IGFBP found in obese population reduces cartilage GAG concentration up to 18 % when compared to normal population. Moreover, moderate physical activity, such as walking, has a modest beneficial effect on GAG production. The findings of this study suggest that IGF-1/IGFBP metabolic unbalance should be accounted for when considering the association of obesity with hip osteoarthritis.
González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E
2018-05-15
The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrogen isotope separation utilizing bulk getters
Knize, R.J.; Cecchi, J.L.
1991-08-20
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1991-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
Hydrogen isotope separation utilizing bulk getters
Knize, Randall J.; Cecchi, Joseph L.
1990-01-01
Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
DSMC Shock Simulation of Saturn Entry Probe Conditions
NASA Technical Reports Server (NTRS)
Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.
2016-01-01
This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.
Method for removing sulfur oxide from waste gases and recovering elemental sulfur
Moore, Raymond H.
1977-01-01
A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.
Off-line real-time FTIR analysis of a process step in imipenem production
NASA Astrophysics Data System (ADS)
Boaz, Jhansi R.; Thomas, Scott M.; Meyerhoffer, Steven M.; Staskiewicz, Steven J.; Lynch, Joseph E.; Egan, Richard S.; Ellison, Dean K.
1992-08-01
We have developed an FT-IR method, using a Spectra-Tech Monit-IR 400 systems, to monitor off-line the completion of a reaction in real-time. The reaction is moisture-sensitive and analysis by more conventional methods (normal-phase HPLC) is difficult to reproduce. The FT-IR method is based on the shift of a diazo band when a conjugated beta-diketone is transformed into a silyl enol ether during the reaction. The reaction mixture is examined directly by IR and does not require sample workup. Data acquisition time is less than one minute. The method has been validated for specificity, precision and accuracy. The results obtained by the FT-IR method for known mixtures and in-process samples compare favorably with those from a normal-phase HPLC method.
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Monte Carlo study of four dimensional binary hard hypersphere mixtures
NASA Astrophysics Data System (ADS)
Bishop, Marvin; Whitlock, Paula A.
2012-01-01
A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.
Mixtures of amino-acid based ionic liquids and water.
Chaban, Vitaly V; Fileti, Eudes Eterno
2015-09-01
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
NASA Astrophysics Data System (ADS)
Price, D. J.; Laibe, G.
2015-10-01
Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.
NASA Astrophysics Data System (ADS)
Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.
2018-04-01
For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.
Wavelength and energy dependent absorption of unconventional fuel mixtures
NASA Astrophysics Data System (ADS)
Khan, N.; Saleem, Z.; Mirza, A. A.
2005-11-01
Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.
Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges
2013-03-01
The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.
Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Chae, Kyungchan; Violi, Angela
2011-01-01
The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.
Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W; Gontrani, Lorenzo
2018-04-07
In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1 H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO 3 - vibrations, with a splitting of about 88 cm -1 in the ν 3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.
Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio
2016-01-01
To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.
NASA Astrophysics Data System (ADS)
Campetella, Marco; Mariani, Alessandro; Sadun, Claudia; Wu, Boning; Castner, Edward W.; Gontrani, Lorenzo
2018-04-01
In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO3 - vibrations, with a splitting of about 88 cm-1 in the ν3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.
NASA Astrophysics Data System (ADS)
Alizadeh Behjani, Mohammadreza; Hassanpour, Ali; Ghadiri, Mojtaba; Bayly, Andrew
2017-06-01
Segregation of granules is an undesired phenomenon in which particles in a mixture separate from each other based on the differences in their physical and chemical properties. It is, therefore, crucial to control the homogeneity of the system by applying appropriate techniques. This requires a fundamental understanding of the underlying mechanisms. In this study, the effect of particle shape and cohesion has been analysed. As a model system prone to segregation, a ternary mixture of particles representing the common ingredients of home washing powders, namely, spray dried detergent powders, tetraacetylethylenediamine, and enzyme placebo (as the minor ingredient) during heap formation is modelled numerically by the Discrete Element Method (DEM) with an aim to investigate the effect of cohesion/adhesion of the minor components on segregation quality. Non-spherical particle shapes are created in DEM using the clumped-sphere method based on their X-ray tomograms. Experimentally, inter particle adhesion is generated by coating the minor ingredient (enzyme placebo) with Polyethylene Glycol 400 (PEG 400). The JKR theory is used to model the cohesion/adhesion of coated enzyme placebo particles in the simulation. Tests are carried out experimentally and simulated numerically by mixing the placebo particles (uncoated and coated) with the other ingredients and pouring them in a test box. The simulation and experimental results are compared qualitatively and quantitatively. It is found that coating the minor ingredient in the mixture reduces segregation significantly while the change in flowability of the system is negligible.
NASA Astrophysics Data System (ADS)
Agaoglu, B.; Scheytt, T. J.; Copty, N. K.
2011-12-01
This study examines the mechanistic processes governing multiphase flow of a water-cosolvent-NAPL system in saturated porous media. Laboratory batch and column flushing experiments were conducted to determine the equilibrium properties of pure NAPL and synthetically prepared NAPL mixtures as well as NAPL recovery mechanisms for different water-ethanol contents. The effect of contact time was investigated by considering different steady and intermittent flow velocities. A modified version of multiphase flow simulator (UTCHEM) was used to compare the multiphase model simulations with the column experiment results. The effect of employing different grid geometries (1D, 2D, 3D), heterogeneity and different initial NAPL saturation configurations were also examined in the model. It is shown that the change in velocity affects the mass transfer rate between phases as well as the ultimate NAPL recovery percentage. The experiments with slow flow rate flushing of pure NAPL and the 3D UTCHEM simulations gave similar effluent concentrations and NAPL cumulative recoveries. The results were less consistent for fast non-equilibrium flow conditions. The dissolution process from the NAPL mixture into the water-ethanol flushing solutions was found to be more complex than dissolution expressions incorporated in the numerical model. The dissolution rate of individual organic compounds (namely Toluene and Benzene) from a mixture NAPL into the ethanol-water flushing solution is found not to correlate with their equilibrium solubility values.The implications of this controlled experimental and modeling study on field cosolvent remediation applications are discussed.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
Validation of hydrogen gas stratification and mixing models
Wu, Hsingtzu; Zhao, Haihua
2015-05-26
Two validation benchmarks confirm that the BMIX++ code is capable of simulating unintended hydrogen release scenarios efficiently. The BMIX++ (UC Berkeley mechanistic MIXing code in C++) code has been developed to accurately and efficiently predict the fluid mixture distribution and heat transfer in large stratified enclosures for accident analyses and design optimizations. The BMIX++ code uses a scaling based one-dimensional method to achieve large reduction in computational effort compared to a 3-D computational fluid dynamics (CFD) simulation. Two BMIX++ benchmark models have been developed. One is for a single buoyant jet in an open space and another is for amore » large sealed enclosure with both a jet source and a vent near the floor. Both of them have been validated by comparisons with experimental data. Excellent agreements are observed. The entrainment coefficients of 0.09 and 0.08 are found to fit the experimental data for hydrogen leaks with the Froude number of 99 and 268 best, respectively. In addition, the BIX++ simulation results of the average helium concentration for an enclosure with a vent and a single jet agree with the experimental data within a margin of about 10% for jet flow rates ranging from 1.21 × 10⁻⁴ to 3.29 × 10⁻⁴ m³/s. In conclusion, computing time for each BMIX++ model with a normal desktop computer is less than 5 min.« less
NASA Astrophysics Data System (ADS)
Baumketner, Andriy; Shea, Joan-Emma
2006-03-01
We report a replica-exchange molecular dynamics study of the 10-35 fragment of Alzheimer's disease amyloid β peptide, Aβ10-35, in aqueous solution. This fragment was previously seen [J. Str. Biol. 130 (2000) 130] to possess all the most important amyloidogenic properties characteristic of full-length Aβ peptides. Our simulations attempted to fold Aβ10-35 from first principles. The peptide was modeled using all-atom OPLS/AA force field in conjunction with the TIP3P explicit solvent model. A total of 72 replicas were considered and simulated over 40 ns of total time, including 5 ns of initial equilibration. We find that Aβ10-35 does not possess any unique folded state, a 3D structure of predominant population, under normal temperature and pressure. Rather, this peptide exists as a mixture of collapsed globular states that remain in rapid dynamic equilibrium with each other. This conformational ensemble is seen to be dominated by random coil and bend structures with insignificant presence of α-helical or β-sheet structure. We find that, overall, the 3D structure of Aβ10-35 is shaped by salt bridges formed between oppositely charged residues.Of all possible salt bridges, K28-D23 was seen to have the highest formation probability, totaling more than 60% of the time.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.
1995-01-01
Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.
NASA Astrophysics Data System (ADS)
Kacar, Gokhan
2017-12-01
We report the results of dissipative particle dynamics (DPD) parameterization and simulations of a mixture of hydrophilic polymer, PEG 400, and water which are known to exhibit negative volume excess property upon mixing. The addition of a Morse potential to the conventional DPD potential mimics the hydrogen bond attraction, where the parameterization takes the internal chemistry of the beads into account. The results indicate that the mixing of PEG and water are maintained by the influence of hydrogen bonds, and the mesoscopic structure is characterized by the trade-off of enthalpic and entropic effects.
Towards establishing the rheology of a sediment bed
NASA Astrophysics Data System (ADS)
Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart
2017-11-01
In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.
2010-05-01
Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.
Efficient SRAM yield optimization with mixture surrogate modeling
NASA Astrophysics Data System (ADS)
Zhongjian, Jiang; Zuochang, Ye; Yan, Wang
2016-12-01
Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-10-01
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.
Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar
2008-09-15
Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...
2016-08-15
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Williams, Steven P.
1993-01-01
To provide stereopsis, binocular helmet-mounted display (HMD) systems must trade some of the total field of view available from their two monocular fields to obtain a partial overlap region. The visual field then provides a mixture of cues, with monocular regions on both peripheries and a binoptic (the same image in both eyes) region or, if lateral disparity is introduced to produce two images, a stereoscopic region in the overlapped center. This paper reports on in-simulator assessment of the trade-offs arising from the mixture of color cueing and monocular, binoptic, and stereoscopic cueing information in peripheral monitoring displays as utilized in HMD systems. The accompanying effect of stereoscopic cueing in the tracking information in the central region of the display is also assessed. The pilot's task for the study was to fly at a prescribed height above an undulating pathway in the sky while monitoring a dynamic bar chart displayed in the periphery of their field of view. Control of the simulated rotorcraft was limited to the longitudinal and vertical degrees of freedom to ensure the lateral separation of the viewing conditions of the concurrent tasks.
The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model
NASA Astrophysics Data System (ADS)
Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid
2017-06-01
In Titan’s atmosphere, a complex organic chemistry occurs between its main constituents, N2 and CH4, and leads to the production of larger molecules and solid aerosols.Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed on the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s atmospheric chemistry at Titan-like temperature (200K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to monitor the first and intermediate steps of the chemistry as well as specific chemical pathways when adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan[1].We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus, in press (2017)
Widom Lines in Binary Mixtures of Supercritical Fluids.
Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias
2017-06-08
Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Normal 0.51 7.0 7.0 7.0 1012 Butylene 8.0 Allowed Normal 0.53 7.0 7.0 7.0 1017 Chlorine 19.0 Not § 178... tanks— Not Allowed § 178.276(e)(3) 0.78 1041 Ethylene oxide and carbon dioxide mixture with more than 9...(a) Allowed Normal See § 173.32(f) 1079 Sulphur dioxide 11.6 Not Allowed § 178.276(e)(3) 1.23 10.3 8...
49 CFR 173.313 - UN Portable Tank Table for Liquefied Compressed Gases.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Normal 0.51 7.0 7.0 7.0 1012 Butylene 8.0 Allowed Normal 0.53 7.0 7.0 7.0 1017 Chlorine 19.0 Not § 178... tanks— Not Allowed § 178.276(e)(3) 0.78 1041 Ethylene oxide and carbon dioxide mixture with more than 9...(a) Allowed Normal See § 173.32(f) 1079 Sulphur dioxide 11.6 Not Allowed § 178.276(e)(3) 1.23 10.3 8...
Learning about Fossil Formation by Classroom Simulation.
ERIC Educational Resources Information Center
Schlenker, Richard M.; Yoshida, Sarah J.
1991-01-01
Activities in which students build their own simulations of fossils, using seashells, chicken bones, toy dinosaurs, or leaves as models and plaster of paris, sand, mud, clay, or a mixture of gravel and clay as a matrix are presented. Curriculum extensions are included. (KR)
Odourant dominance in olfactory mixture processing: what makes a strong odourant?
Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin
2015-01-01
The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system. PMID:25652840
USDA-ARS?s Scientific Manuscript database
Imidacloprid is the most widely used insecticide in agricultural. In this study, we used both feeding and spraying methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equa...
The forensic value of X-linked markers in mixed-male DNA analysis.
He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian
2018-05-04
Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.
Skelsey, P; Rossing, W A H; Kessel, G J T; Powell, J; van der Werf, W
2005-04-01
ABSTRACT A spatiotemporal/integro-difference equation model was developed and utilized to study the progress of epidemics in spatially heterogeneous mixtures of susceptible and resistant host plants. The effects of different scales and patterns of host genotypes on the development of focal and general epidemics were investigated using potato late blight as a case study. Two different radial Laplace kernels and a two-dimensional Gaussian kernel were used for modeling the dispersal of spores. An analytical expression for the apparent infection rate, r, in general epidemics was tested by comparison with dynamic simulations. A genotype connectivity parameter, q, was introduced into the formula for r. This parameter quantifies the probability of pathogen inoculum produced on a certain host genotype unit reaching the same or another unit of the same genotype. The analytical expression for the apparent infection rate provided accurate predictions of realized r in the simulations of general epidemics. The relationship between r and the radial velocity of focus expansion, c, in focal epidemics, was linear in accordance with theory for homogeneous genotype mixtures. The findings suggest that genotype mixtures that are effective in reducing general epidemics of Phytophthora infestans will likewise curtail focal epidemics and vice versa.
NASA Astrophysics Data System (ADS)
Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.
2015-11-01
We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.
Modeling of diesel/CNG mixing in a pre-injection chamber
NASA Astrophysics Data System (ADS)
Abdul-Wahhab, H. A.; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.
2015-12-01
Diesel engines performance can be improved by adding combustible gases to the liquid diesel. In this paper, the propagation of a two phase flow liquid-gas fuel mixture into a pre-mixer is investigated numerically by computational fluid dynamics simulation. CNG was injected into the diesel within a cylindrical conduit operates as pre-mixer. Four injection models of Diesel-CNG were simulated using ANSYS-FLUENT commercial software. Two CNG jet diameters were used of 1 and 2 mm and the diesel pipe diameter was 9 mm. Two configurations were considered for the gas injection. In the first the gas was injected from one side while for the second two side entries were used. The CNG to Diesel pressure ratio was varied between 1.5 and 3. The CNG to Diesel mass flow ratios were varied between 0.7 and 0.9. The results demonstrate that using double-sided injection increased the homogeneity of the mixture due to the swirl and acceleration of the mixture. Mass fraction, in both cases, was found to increase as the mixture flows towards the exit. As a result, this enhanced mixing is likely to lead to improvement in the combustion performance.
Extensions of D-optimal Minimal Designs for Symmetric Mixture Models.
Li, Yanyan; Raghavarao, Damaraju; Chervoneva, Inna
2017-01-01
The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations.
Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties
Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan
2013-01-01
Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523
NASA Astrophysics Data System (ADS)
Bourasseau, Emeric; Dubois, Vincent; Desbiens, Nicolas; Maillet, Jean-Bernard
2007-06-01
The simultaneous use of the Reaction Ensemble Monte Carlo (ReMC) method and the Adaptative Erpenbeck EOS (AE-EOS) method allows us to calculate direclty the thermodynamical and chemical equilibrium of a mixture on the hugoniot curve. The ReMC method allow to reach chemical equilibrium of detonation products and the AE-EOS method constraints ths system to satisfy the Hugoniot relation. Once the Crussard curve of detonation products has been established, CJ state properties may be calculated. An additional NPT simulation is performed at CJ conditions in order to compute derivative thermodynamic quantities like Cp, Cv, Gruneisen gama, sound velocity, and compressibility factor. Several explosives has been studied, of which PETN, nitromethane, tetranitromethane, and hexanitroethane. In these first simulations, solid carbon is eventually treated using an EOS.
Numerical analysis of wet separation of particles by density differences
NASA Astrophysics Data System (ADS)
Markauskas, D.; Kruggel-Emden, H.
2017-07-01
Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.
Simulation of a hydrocarbon fueled scramjet exhaust
NASA Technical Reports Server (NTRS)
Leng, J.
1982-01-01
Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.
2012-01-01
Background Inhalation of helium-oxygen (He/O2) mixtures has been explored as a means to lower the work of breathing of patients with obstructive lung disease. Non-invasive ventilation (NIV) with positive pressure support is also used for this purpose. The bench experiments presented herein were conducted in order to compare simulated patient inspiratory effort breathing He/O2 with that breathing medical air, with or without pressure support, across a range of adult, obstructive disease patterns. Methods Patient breathing was simulated using a dual-chamber mechanical test lung, with the breathing compartment connected to an ICU ventilator operated in NIV mode with medical air or He/O2 (78/22 or 65/35%). Parabolic or linear resistances were inserted at the inlet to the breathing chamber. Breathing chamber compliance was also varied. The inspiratory effort was assessed for the different gas mixtures, for three breathing patterns, with zero pressure support (simulating unassisted spontaneous breathing), and with varying levels of pressure support. Results Inspiratory effort increased with increasing resistance and decreasing compliance. At a fixed resistance and compliance, inspiratory effort increased with increasing minute ventilation, and decreased with increasing pressure support. For parabolic resistors, inspiratory effort was lower for He/O2 mixtures than for air, whereas little difference was measured for nominally linear resistance. Relatively small differences in inspiratory effort were measured between the two He/O2 mixtures. Used in combination, reductions in inspiratory effort provided by He/O2 and pressure support were additive. Conclusions The reduction in inspiratory effort afforded by breathing He/O2 is strongly dependent on the severity and type of airway obstruction. Varying helium concentration between 78% and 65% has small impact on inspiratory effort, while combining He/O2 with pressure support provides an additive reduction in inspiratory effort. In addition, breathing He/O2 alone may provide an alternative to pressure support in circumstances where NIV is not available or poorly tolerated. PMID:23031537
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2012-08-01
The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.
NASA Astrophysics Data System (ADS)
Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.
2017-06-01
We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.
Two-component mixture model: Application to palm oil and exchange rate
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-12-01
Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.
Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.
2008-01-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850
Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.; Veltin, Jeremy
2010-01-01
Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.
Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J
2008-12-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.
NASA Astrophysics Data System (ADS)
Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe
2017-08-01
Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.
Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam
2014-02-07
The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level of interference from other MIP synthesis components. The effect on PFS-1 interaction by MeOH was significantly lower and thus this system was not adversely affected.
Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent
2012-01-01
molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water
Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo'o, Nora; Bellan, Josette
2008-01-01
A computational-simulation study has been presented of effects of perturbation wavelengths and initial Reynolds numbers on the transition to turbulence of a heptane/nitrogen mixing layer at supercritical pressure. The governing equations for the simulations were the same as those of related prior studies reported in NASA Tech Briefs. Two-dimensional (2D) simulations were performed with initially im posed span wise perturbations whereas three-dimensional (3D) simulations had both streamwise and spanwise initial perturbations. The 2D simulations were undertaken to ascertain whether perturbations having the shortest unstable wavelength obtained from a linear stability analysis for inviscid flow are unstable in viscous nonlinear flows. The goal of the 3D simulations was to ascertain whether perturbing the mixing layer at different wavelengths affects the transition to turbulence. It was found that transitions to turbulence can be obtained at different perturbation wavelengths, provided that they are longer than the shortest unstable wavelength as determined by 2D linear stability analysis for the inviscid case and that the initial Reynolds number is proportionally increased as the wavelength is decreased. The transitional states thus obtained display different dynamic and mixture characteristics, departing strongly from the behaviors of perfect gases and ideal mixtures.
Cosolvent effect on the dynamics of water in aqueous binary mixtures
NASA Astrophysics Data System (ADS)
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
Simultaneous calibration of ensemble river flow predictions over an entire range of lead times
NASA Astrophysics Data System (ADS)
Hemri, S.; Fundel, F.; Zappa, M.
2013-10-01
Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.
Regnault, Antoine; Hamel, Jean-François; Patrick, Donald L
2015-02-01
Cultural differences and/or poor linguistic validation of patient-reported outcome (PRO) instruments may result in differences in the assessment of the targeted concept across languages. In the context of multinational clinical trials, these measurement differences may add noise and potentially measurement bias to treatment effect estimation. Our objective was to explore the potential effect on treatment effect estimation of the "contamination" of a cultural subgroup by a flawed PRO measurement. We ran a simulation exercise in which the distribution of the score in the overall sample was considered a mixture of two normal distributions: a standard normal distribution was assumed in a "main" subgroup and a normal distribution which differed either in mean (bias) or in variance (noise) in a "contaminated" subgroup (the subgroup with potential flaws in the PRO measurement). The observed power was compared to the expected power (i.e., the power that would have been observed if the subgroup had not been contaminated). Even if differences between the expected and observed power were small, some substantial differences were obtained (up to a 0.375 point drop in power). No situation was systematically protected against loss of power. The impact of poor PRO measurement in a cultural subgroup may induce a notable drop in the study power and consequently reduce the chance of showing an actual treatment effect. These results illustrate the importance of the efforts to optimize conceptual and linguistic equivalence of PRO measures when pooling data in international clinical trials.
Schmitt, Thomas; Gupta, Rakesh; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Hauß, Thomas; Rai, Beena; Neubert, Reinhard H H
2018-05-30
For this study mixtures based on the ceramides [NS] (NS = non-hydroxy-sphingosine) and [AP] (AP = α-hydroxy-phytosphingosine) in a 2:1 and 1:2 ratio, together with cholesterol and lignoceric acid, were investigated. These mixtures are modelling the uppermost skin layer, the stratum corneum. Neutron diffraction, utilizing specifically deuterated ceramide molecules, was used to obtain a maximum amount of experimental detail. Highly detailed molecular dynamics simulations were used to generate even more information from the experimental data. It was possible to observe a single lamellar phase for both systems. They had a lamellar repeat distance of 5.43 ± 0.05 nm for the [NS]/[AP] 2:1 and a slightly shorter one of 5.34 ± 0.05 nm for the 1:2 system. The structure and water content was uninfluenced by excess humidity. Both the experimental and simulation data indicated slightly tilted ceramides, with their C24 chains overlapping in the lamellar mid-plane. This arrangement is well comparable to systems investigated before. The structure of both systems, except for the differing repeat distance, looks similar at first. However, on a smaller scale there were various distinct differences, demonstrating only low redundancy between the different ceramide species, despite only minor chemical differences. The mainly ceramide [AP] determined 1:2 system has a slightly smaller repeat distance. This is a result of a tighter arrangement of the lipids chain along the bilayer normal and increased overlapping of the long chains in the lamellar middle. For the CER[NS] some novel features could be shown, despite it being the overall most investigated ceramide. These include the low adaptability to changed lateral interactions, leading to an increased chain opening. This effect could explain its low miscibility with other lipids. The investigated model systems allows it to directly compare results from the literature which have used ceramide [NS] to the most recent studies using the phytosphingosine ceramides such as ceramide [AP]. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boichenko, A. M.; Klenovskii, M. S.
2015-12-01
By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity.
NASA Astrophysics Data System (ADS)
Rappleye, Devin Spencer
The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin
2011-08-01
In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.
1988-05-01
represented name Emitted Organics Included in All Models CO Carbon Monoxide C:C, Ethene HCHO Formaldehyde CCHO Acetaldehyde RCHO Propionaldehyde and other...of species in the mixture, and for proper use of this program, these files should be "normalized," i.e., the number of carbons in the mixture should...scenario in memory. Valid parmtypes are SCEN, PHYS, CHEM, VP, NSP, OUTP, SCHEDS. LIST ALLCOMP Lists all available composition filenames. LIST ALLSCE
An assessment of the information content of likelihood ratios derived from complex mixtures.
Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E
2016-05-01
With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to layer the effects of additional factors, such as drop-out, peak height, and other variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Potential Prebiotic Oligosaccharide Mixtures from Acidic Hydrolysis of Rice Bran and Cassava Pulp.
Hansawasdi, Chanida; Kurdi, Peter
2017-12-01
Two agricultural wastes, rice bran and cassava pulp were subjected to acidic hydrolysis by 2 M sulfuric acid which resulted in hemicellulosic oligosaccharide mixtures. Monosaccharide component analysis of these mixtures revealed that the oligosaccharides of rice bran acid hydrolysate (RAHF) composed of glucose and arabinose while cassava pulp acid hydrolysate (CAHF) was found to be comprised of glucose, galactose and arabinose. Both RAHF and CAHF were able to fuel all of the tested three Lactobacillus, five Bifidobacterium and three Bacteroides strains indicating the prebiotic potential of these oligosaccharide mixtures. Moreover, Lb. gasseri grew significantly better on RAHF than on inulin, a benchmark prebiotic oligo- and polysaccharide mixture. When the digestibility of RAHF and CAHF were tested it was found that these oligosaccharide mixtures were only slightly hydrolyzed upon exposure to simulated human gastric (by less than 8%) and pancreatic juices (by less than 3%). Additionally, most sensory attributes of the above obtained oligosaccharide mixtures supplemented two model cereal drink formulations were generally not different from those of the control, while the overall acceptance was not affected significantly in one cereal drink formulation.
Lifshitz phase: the microscopic structure of aqueous and ethanol mixtures of 1,n-diols.
Požar, Martina; Perera, Aurélien
2017-06-14
We study binary mixtures of ethylene glycol and 1,3-propandiol with water or ethanol using computer simulations. Despite strong hydrogen bonding tendencies between all these molecules, we find that these mixtures are surprisingly homogeneous, in contrast to the strong micro-heterogeneity found in aqueous ethanol mixtures. The aqueous diol mixtures are found to be close to ideal mixtures, with near-ideal Kirkwood-Buff integrals. Ethanol-diol mixtures show weak non-ideality. The origin of this unexpected randomness is due to the fact that the two hydrogen bonding hydroxyl groups of the 1,n-diol are bound by the neutral alkyl bond, which prevents the micro-segregation of the different types of hydroxyl groups. These findings suggest that random disorder can arise in the presence of strong interactions - in contrast to the usual picture of random disorder due to weak interactions between the components. They point to the important role of molecular topology in tuning concentration fluctuations in complex liquids. We propose and justify herein the name of Lifshitz phases to designate such types of disordered systems.
Solvent effects on the polar network of ionic liquid solutions
NASA Astrophysics Data System (ADS)
Bernardes, Carlos E. S.; Shimizu, Karina; Canongia Lopes, José N.
2015-05-01
Molecular dynamics simulations were used to probe mixtures of ionic liquids (ILs) with common molecular solvents. Four types of systems were considered: (i) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide plus benzene, hexafluorobenzene or 1,2-difluorobenzene mixtures; (ii) choline-based ILs plus ether mixtures (iii) choline-based ILs plus n-alkanol mixtures; and (iv) 1-butyl-3-methylimidazolium nitrate and 1-ethyl-3-methylimidazolium ethyl sulfate aqueous mixtures. The results produced a wealth of structural and aggregation information that highlight the resilience of the polar network of the ILs (formed by clusters of alternating ions and counter-ions) to the addition of different types of molecular solvent. The analysis of the MD data also shows that the intricate balance between different types of interaction (electrostatic, van der Waals, H-bond-like) between the different species present in the mixtures has a profound effect on the morphology of the mixtures at a mesoscopic scale. In the case of the IL aqueous solutions, the present results suggest an alternative interpretation for very recently published x-ray and neutron diffraction data on similar systems.
Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid-Vapor Interfaces.
Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku
2015-10-15
The self-diffusion coefficient and molecular-scale structure of several binary n-alkane liquid mixtures in the liquid-vapor interface regions have been examined using molecular dynamics simulations. It was observed that in hexane-tetracosane mixture hexane molecules are accumulated in the liquid-vapor interface region and the accumulation intensity decreases with increase in a molar fraction of hexane in the examined range. Molecular alignment and configuration in the interface region of the liquid mixture change with a molar fraction of hexane. The self-diffusion coefficient in the direction parallel to the interface of both tetracosane and hexane in their binary mixture increases in the interface region. It was found that the self-diffusion coefficient of both tetracosane and hexane in their binary mixture is considerably higher in the vapor side of the interface region as the molar fraction of hexane goes lower, which is mostly due to the increase in local free volume caused by the local structure of the liquid in the interface region.
Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.
Reisetter, Anna C; Muehlbauer, Michael J; Bain, James R; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L; Scholtens, Denise M
2017-02-02
Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.
Experimental setup for investigation of two-phase (water-air) flows in a tube
NASA Astrophysics Data System (ADS)
Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.
2018-05-01
A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, Thomas; Sadus, Richard J., E-mail: rsadus@swin.edu.au
General methods for combining interactions between particles characterised by non-identical intermolecular potentials are investigated. The combination methods are tested by performing molecular dynamics simulations to determine the pressure, energy, isochoric and isobaric heat capacities, thermal expansion coefficient, isothermal compressibility, Joule-Thomson coefficient, and speed of sound of 10-5 + 12-6 Mie potential binary mixtures. In addition to the two non-identical Mie potentials, mixtures are also studied with non-identical intermolecular parameters. The combination methods are compared with results obtained by simply averaging the Mie exponents. When either the energy or size parameters are non-identical, very significant differences emerge in the thermodynamic propertiesmore » predicted by the alternative combination methods. The isobaric heat capacity is the thermodynamic property that is most affected by the relative magnitude of the intermolecular potential parameters and the method for combining non-identical potentials. Either the arithmetic or geometric combination of potentials provides a simple and effective way of performing simulations involving mixtures of components characterised by non-identical intermolecular potentials, which is independent of their functional form.« less
NASA Astrophysics Data System (ADS)
Khezripour, S.; Negarestani, A.; Rezaie, M. R.
2017-08-01
Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.
Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
NASA Astrophysics Data System (ADS)
Potoff, Jeffrey J.; Panagiotopoulos, Athanassios Z.
1998-12-01
Monte Carlo simulations in the grand canonical ensemble were used to obtain liquid-vapor coexistence curves and critical points of the pure fluid and a binary mixture of Lennard-Jones particles. Critical parameters were obtained from mixed-field finite-size scaling analysis and subcritical coexistence data from histogram reweighting methods. The critical parameters of the untruncated Lennard-Jones potential were obtained as Tc*=1.3120±0.0007, ρc*=0.316±0.001 and pc*=0.1279±0.0006. Our results for the critical temperature and pressure are not in agreement with the recent study of Caillol [J. Chem. Phys. 109, 4885 (1998)] on a four-dimensional hypersphere. Mixture parameters were ɛ1=2ɛ2 and σ1=σ2, with Lorentz-Berthelot combining rules for the unlike-pair interactions. We determined the critical point at T*=1.0 and pressure-composition diagrams at three temperatures. Our results have much smaller statistical uncertainties relative to comparable Gibbs ensemble simulations.
Large-eddy simulation of turbulent cavitating flow in a micro channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.
2014-08-15
Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data ofmore » the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.« less
Structure, thermodynamics, and solubility in tetromino fluids.
Barnes, Brian C; Siderius, Daniel W; Gelb, Lev D
2009-06-16
To better understand the self-assembly of small molecules and nanoparticles adsorbed at interfaces, we have performed extensive Monte Carlo simulations of a simple lattice model based on the seven hard "tetrominoes", connected shapes that occupy four lattice sites. The equations of state of the pure fluids and all of the binary mixtures are determined over a wide range of density, and a large selection of multicomponent mixtures are also studied at selected conditions. Calculations are performed in the grand canonical ensemble and are analogous to real systems in which molecules or nanoparticles reversibly adsorb to a surface or interface from a bulk reservoir. The model studied is athermal; objects in these simulations avoid overlap but otherwise do not interact. As a result, all of the behavior observed is entropically driven. The one-component fluids all exhibit marked self-ordering tendencies at higher densities, with quite complex structures formed in some cases. Significant clustering of objects with the same rotational state (orientation) is also observed in some of the pure fluids. In all of the binary mixtures, the two species are fully miscible at large scales, but exhibit strong species-specific clustering (segregation) at small scales. This behavior persists in multicomponent mixtures; even in seven-component mixtures of all the shapes there is significant association between objects of the same shape. To better understand these phenomena, we calculate the second virial coefficients of the tetrominoes and related quantities, extract thermodynamic volume of mixing data from the simulations of binary mixtures, and determine Henry's law solubilities for each shape in a variety of solvents. The overall picture obtained is one in which complementarity of both the shapes of individual objects and the characteristic structures of different fluids are important in determining the overall behavior of a fluid of a given composition, with sometimes counterintuitive results. Finally, we note that no sharp phase transitions are observed but that this appears to be due to the small size of the objects considered. It is likely that complex phase behavior may be found in systems of larger polyominoes.
Metillo, Ephrime B; Ritz, David A
2003-02-01
Three mysid species showed differences in chemosensory feeding as judged from stereotyped food capturing responses to dissolved mixtures of feeding stimulant (either betaine-HCl or glycine) and suppressant (ammonium). The strongest responses were to 50:50 mixtures of both betaine-ammonium and glycine-ammonium solutions. In general, the response curve to the different mixtures tested was bell-shaped. Anisomysis mixta australis only showed the normal curve in response to the glycine-ammonium mixture. The platykurtic curve for Tenagomysis tasmaniae suggests a less optimal response to the betaine-HCl-ammonium solution. Paramesopodopsis rufa reacted more strongly to the betaine-ammonium than to the glycine-ammonium solutions, and more individuals of this species responded to both solutions than the other two species. It is suggested that these contrasting chemosensitivities of the three coexisting mysid species serve as a means of partitioning the feeding niche.
Microwave Determination of Water Mole Fraction in Humid Gas Mixtures
NASA Astrophysics Data System (ADS)
Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.
2012-09-01
A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.
NASA Astrophysics Data System (ADS)
Nadalini, R.; Extase Team
The thermal properties of the constituent materials of the upper meters of planets and planetary bodies are of extreme interest. During the design and the verification of various planetary missions, the need to model and test appropriate simulants in laboratory is often raised. To verify the thermal properties of deployed laboratory simulants, the EXTASE thermal probe is a fast, precise, and easy-to-use tool. EXTASE is a thermal profile probe, able to measure the temperature and inject heat into the selected material at 16 different locations along its 45cm long slender cylindrical body. It has been developed following the experience of MUPUS, with the purpose of observing such properties on Earth, in situ and in a short time. We have used EXTASE, under laboratory cold and standard conditions, on several sand mixtures, soils, granular and compact ices, under vacuum and at normal pressure levels, to collect a great number of time- and depth-dependent temperature curves that represent the thermal dynamical response of the material. At the same time, two independent models have been developed to verify the experimental results by reaching the same results with a simulation of the same process. The models, analytical and numerical, which account for all material parameters (conductivity, density, capacity), have been developed and fine tuned until their results are superposed to the experimental curves, thus allowing the determination of the distinct thermal properties. In addition, a test campaign is under planning to use EXTASE to determine, rapidly and efficiently, the thermal properties of various regolith simulants to be used in the simulation of planetary subsurface processes.
Toribo, S.G.; Gray, B.R.; Liang, S.
2011-01-01
The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.
Equations of state and transport properties of mixtures in the warm dense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yong; Dai, Jiayu; Kang, Dongdong
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less
Lower power dc arcjet operations with hydrogen hydrogen/nitrogen propellant mixtures
NASA Technical Reports Server (NTRS)
Curran, F. M.; Nakanishi, S.
1986-01-01
The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.
Segregation of liquid crystal mixtures in topological defects
Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...
2017-04-28
The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less
Best, Virginia; Mason, Christine R.; Swaminathan, Jayaganesh; Roverud, Elin; Kidd, Gerald
2017-01-01
In many situations, listeners with sensorineural hearing loss demonstrate reduced spatial release from masking compared to listeners with normal hearing. This deficit is particularly evident in the “symmetric masker” paradigm in which competing talkers are located to either side of a central target talker. However, there is some evidence that reduced target audibility (rather than a spatial deficit per se) under conditions of spatial separation may contribute to the observed deficit. In this study a simple “glimpsing” model (applied separately to each ear) was used to isolate the target information that is potentially available in binaural speech mixtures. Intelligibility of these glimpsed stimuli was then measured directly. Differences between normally hearing and hearing-impaired listeners observed in the natural binaural condition persisted for the glimpsed condition, despite the fact that the task no longer required segregation or spatial processing. This result is consistent with the idea that the performance of listeners with hearing loss in the spatialized mixture was limited by their ability to identify the target speech based on sparse glimpses, possibly as a result of some of those glimpses being inaudible. PMID:28147587
[Effect of different nutritional support on pancreatic secretion in acute pancreatitis].
Achkasov, E E; Pugaev, A V; Nabiyeva, Zh G; Kalachev, S V
To develop and justify optimal nutritional support in early phase of acute pancreatitis (AP). 140 AP patients were enrolled. They were divided into groups depending on nutritional support: group I (n=70) - early enteral tube feeding (ETF) with balanced mixtures, group II (n=30) - early ETF with oligopeptide mixture, group III (n=40) - total parenteral nutrition (TPN). The subgroups were also isolated depending on medication: A - Octreotide, B - Quamatel, C - Octreotide + Quamatel. Pancreatic secretion was evaluated by using of course of disease, instrumental methods, APUD-system hormone levels (secretin, cholecystokinin, somatostatin, vasointestinal peptide). ETF was followed by pancreas enlargement despite ongoing therapy, while TPN led to gradual reduction of pancreatic size up to normal values. α-amylase level progressively decreased in all groups, however in patients who underwent ETF (I and II) mean values of the enzyme were significantly higher compared with TPN (group III). Secretin, cholecystokinin and vasointestinal peptide were increasing in most cases, while the level of somatostatin was below normal in all groups. Enteral tube feeding (balanced and oligopeptide mixtures) contributes to pancreatic secretion compared with TPN, but this negative impact is eliminated by antisecretory therapy. Dual medication (Octreotide + Quamatel) is more preferable than monotherapy (Octreotide or Quamatel).
Li, Li; Yang, Deshuai; Fisher, Trevor R; Qiao, Qi; Yang, Zhen; Hu, Na; Chen, Xiangshu; Huang, Liangliang
2017-10-24
The loading-dependent diffusion behavior of CH 4 , CO 2 , SO 2 , and their binary mixtures in ZIF-10 has been investigated in detail by using classical molecular dynamics simulations. Our simulation results demonstrate that the self-diffusion coefficient D i of CH 4 molecules decreases sharply and monotonically with the loading while those of both CO 2 and SO 2 molecules initially display a slight increase at low uptakes and follow a slow decrease at high uptakes. Accordingly, the interaction energies between CH 4 molecules and ZIF-10 remain nearly constant regardless of the loading due to the absence of hydrogen bonds (HBs), while the interaction energies between CO 2 (or SO 2 ) and ZIF-10 decease rapidly with the loading, especially at small amounts of gas molecules. Such different loading-dependent diffusion and interaction mechanisms can be attributed to the relevant HB behavior between gas molecules and ZIF-10. At low loadings, both the number and strength of HBs between CO 2 (or SO 2 ) molecules and ZIF-10 decrease obviously as the loading increases, which is responsible for the slight increase of their diffusion coefficients. However, at high loadings, their HB strength increases with the loading. Similar loading-dependent phenomena of diffusion, interaction, and HB behavior can be observed for CH 4, CO 2 , and SO 2 binary mixtures in ZIF-10, only associated with some HB competition between CO 2 and SO 2 molecules in the case of the CO 2 /SO 2 mixture.
NASA Astrophysics Data System (ADS)
Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.
2016-06-01
Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.
Stability of faults with heterogeneous friction properties and effective normal stress
NASA Astrophysics Data System (ADS)
Luo, Yingdi; Ampuero, Jean-Paul
2018-05-01
Abundant geological, seismological and experimental evidence of the heterogeneous structure of natural faults motivates the theoretical and computational study of the mechanical behavior of heterogeneous frictional fault interfaces. Fault zones are composed of a mixture of materials with contrasting strength, which may affect the spatial variability of seismic coupling, the location of high-frequency radiation and the diversity of slip behavior observed in natural faults. To develop a quantitative understanding of the effect of strength heterogeneity on the mechanical behavior of faults, here we investigate a fault model with spatially variable frictional properties and pore pressure. Conceptually, this model may correspond to two rough surfaces in contact along discrete asperities, the space in between being filled by compressed gouge. The asperities have different permeability than the gouge matrix and may be hydraulically sealed, resulting in different pore pressure. We consider faults governed by rate-and-state friction, with mixtures of velocity-weakening and velocity-strengthening materials and contrasts of effective normal stress. We systematically study the diversity of slip behaviors generated by this model through multi-cycle simulations and linear stability analysis. The fault can be either stable without spontaneous slip transients, or unstable with spontaneous rupture. When the fault is unstable, slip can rupture either part or the entire fault. In some cases the fault alternates between these behaviors throughout multiple cycles. We determine how the fault behavior is controlled by the proportion of velocity-weakening and velocity-strengthening materials, their relative strength and other frictional properties. We also develop, through heuristic approximations, closed-form equations to predict the stability of slip on heterogeneous faults. Our study shows that a fault model with heterogeneous materials and pore pressure contrasts is a viable framework to reproduce the full spectrum of fault behaviors observed in natural faults: from fast earthquakes, to slow transients, to stable sliding. In particular, this model constitutes a building block for models of episodic tremor and slow slip events.
Aldega, L.; Eberl, D.D.
2005-01-01
Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.
Structure of Cometary Dust Particles
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.
2004-11-01
The recent encounter of Stardust with comet 81P/Wild 2 has provided highly spatially resolved data about dust particles in the coma. They show intense swarms and bursts of particles, suggest the existence of fragmenting low-density particles formed of higher density sub-micrometer components [1], and definitely confirm previous results (inferred from Giotto encounter with comet Grigg-Skjellerup [2] and remote light scattering observations [3]). The light scattering properties (mostly polarization, which does not depend upon disputable normalizations) of dust in cometary comae will be summarized, with emphasis on the spatial changes and on the wavelength and phase angle dependence. Experimental and numerical simulations are needed to translate these observed light scattering properties in terms of physical properties of the dust particles (e.g. size, morphology, albedo, porosity). New experimental simulations (with fluffy mixtures of sub-micron sized silica and carbon grains) and new numerical simulations (with fractal aggregates of homogeneous or core-mantled silicate and organic grains) will be presented. The results are in favor of highly porous particles built up (by ballistic-cluster-cluster agglomeration) from grains of interstellar origin. The perspectives offered by laboratory simulations with aggregates built under conditions representative of the early solar system on board the International Space Station will be presented, together with the perspectives offered by future experiments on board the Rosetta cometary probe. Supports from CNES and ESA are acknowledged [1] Tuzzolino et al., Science, 304, 1776, 2004, [2] N. McBride et al., Mon. Not. R. Astron. Soc., 289, p. 535-553, 1997, [3] Levasseur-Regourd and Hadamcik, J. Quant. Spectros. Radiat. Transfer, 79-80, 903-910, 2003.
Costas, Luciana; Pera, Licia M; López, Azucena Gómez; Mechetti, Magdalena; Castro, Guillermo R
2012-07-01
Sulfasalazine (SLZ) is a synthetic nonsteroidal anti-inflammatory drug used mainly for the treatment of an inflammatory bowel and other diseases. Two pectins with different methylation degrees were blended to synthesized gel microspheres by ionotropic gelation for SLZ encapsulation. The encapsulation efficiency was found to be around of 99% in all formulations tested. However, different SLZ release profiles related to the methylation degrees of pectin were observed. Mixture of low methylated (LM) and high methylated (HM) pectins in the presence of calcium(II) displayed the best microsphere morphologies among the formulations tested determined by optical and electronic microscopies. The percentage of drug release using a mixture of LM and HM pectins after 255 min in simulated gastric fluid (pH = 1.2), simulated intestinal fluid (pH = 6.8), and phosphate buffer (pH = 7.4) were 15.0%, 47.0%, and 52.2%, respectively.
NASA Astrophysics Data System (ADS)
Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.
2017-08-01
We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.
NASA Astrophysics Data System (ADS)
Guo, Feng; Zhang, Hong; Hu, Hai-Quan; Cheng, Xin-Lu; Zhang, Li-Yan
2015-11-01
We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition. Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).
A simulation study on terahertz absorption of liquid crystal mixture E7
NASA Astrophysics Data System (ADS)
Dong, Jian-qi; Cheng, Wen-qi; Li, Meng-ge; Wang, Kai-li; Chen, Ze-zhang; Ma, Heng
2017-09-01
A simulation work on a broad THz absorption of liquid crystal mixture E7 consisting of 5CB, 7CB, 8OCB and 5CT is reported. Based on the density functional theory, the molecular structures of the monomers were optimized and calculated using the Gaussian package with base set B3LYP and 6-311g. The results indicate that the simulation of the characteristic absorption spectra is accurate compared to the experimental and literature report in the infrared band. By analyzing contribution of the benzene ring, C-O and alkyl bonds on THz absorption, it is found that there are no significant effects from the cyano group and the alkyl radical. The addition of a benzene ring leads to an increase in absorption intensity and redshift. By discussing the atomic mass distribution and the structural symmetry of the monomers, a reason for the strong THz absorption of 8OCB is proposed.