Sample records for normal mouse liver

  1. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  2. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  3. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    NASA Astrophysics Data System (ADS)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  4. Induction, immunochemical identity and immunofluorescence localization of an 80 000-molecular-weight peroxisome-proliferation-associated polypeptide (polypeptide PPA-80) and peroxisomal enoyl-CoA hydratase of mouse liver and renal cortex.

    PubMed

    Lalwani, N D; Reddy, M K; Mangkornkanok-Mark, M; Reddy, J K

    1981-07-15

    The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6-12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30-50-fold and in the kidney cortex 3-5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively of normal and hypolipidaemic-drug-treated mice. In the kidney, the distribution of these two proteins is identical and limited exclusively to the cytoplasm of proximal-convoluted-tubular epithelium. The immunofluorescence studies clearly complement the biochemical and ultrastructural observations of peroxisome induction in the liver and kidney cortex of mice fed on hypolipidaemic drugs. In addition, preliminary ultrastructural studies with the protein-A-gold-complex technique demonstrate that the heat-labile hepatic enoyl-CoA hydratase is localized in the peroxisome matrix.

  5. Polyethylene Glycol (PEG) Linked to Near Infrared (NIR) Dyes Conjugated to Chimeric Anti-Carcinoembryonic Antigen (CEA) Antibody Enhances Imaging of Liver Metastases in a Nude-Mouse Model of Human Colon Cancer

    PubMed Central

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases. PMID:24859320

  6. Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers.

    PubMed

    Chen, Zhenzhen; Jia, Shi; Li, Danhua; Cai, Junyan; Tu, Jian; Geng, Bin; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2013-01-01

    Recently, increasing evidences had suggested that long noncoding RNAs (LncRNAs) are involved in a wide range of physiological and pathophysiological processes. Here we determined the LncRNA expression profile using microarray technology in mouse livers after ischemia/reperfusion treatment. Seventy one LncRNAs were upregulated, and 27 LncRNAs were downregulated in ischemia/reperfusion-treated mouse livers. Eleven of the most significantly deregulated LncRNAs were further validated by quantitative PCR assays. Among the upregulated LncRNAs confirmed by quantitative PCR assays, AK139328 exhibited the highest expression level in normal mouse livers. siRNA-mediated knockdown of hepatic AK139328 decreased plasma aminotransferase activities, and reduced necrosis area in the livers with a decrease in caspase-3 activation after ischemia/reperfusion treatment. In ischemia/reperfusion liver, knockdown of AK139328 increased survival signaling proteins including phosphorylated Akt (pAkt), glycogen synthase kinase 3 (pGSK3) and endothelial nitric oxide synthase (peNOS). Furthermore, knockdown of AK139328 also reduced macrophage infitration and inhibited NF-κB activity and inflammatory cytokines expression. In conclusion, these findings revealed that deregulated LncRNAs are involved in liver ischemia/reperfusion injury. Silencing of AK139328 ameliorated ischemia/reperfusion injury in the liver with the activation of Akt signaling pathway and inhibition of NF-κB activity. LncRNA AK139328 might be a novel target for diagnosis and treatment of liver surgery or transplantation.

  7. Hepatic progenitor cells of biliary origin with liver repopulation capacity

    PubMed Central

    Boulter, Luke; Tsuchiya, Atsunori; Cole, Alicia M; Hay, Trevor; Guest, Rachel V; Wojtacha, Davina; Man, Tak Yung; Mackinnon, Alison; Ridgway, Rachel A; Kendall, Timothy; Williams, Michael J; Jamieson, Thomas; Raven, Alex; Hay, David C; Iredale, John P; Clarke, Alan R; Sansom, Owen J; Forbes, Stuart J

    2015-01-01

    Summary Hepatocytes and cholangiocytes self renew following liver injury. Following severe injury hepatocytes are increasingly senescent, whether Hepatic Progenitor Cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where Mdm2 is inducibly deleted in over 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease. PMID:26192438

  8. Protein Degradation in Normal and Beige (Chediak-Higashi) Mice

    PubMed Central

    Lyons, Robert T.; Pitot, Henry C.

    1978-01-01

    The beige mouse, C57BL/6 (bg/bg), is an animal model for the Chediak-Higashi syndrome in man, a disease characterized morphologically by giant lysosomes in most cell types. Half-lives for the turnover of [14C]bicarbonate-labeled total soluble liver protein were determined in normal and beige mice. No significant differences were observed between the normal and mutant strain for both rapidly and slowly turning-over classes of proteins. Glucagon treatment during the time-course of protein degradation had similar effects on both normal and mutant strains and led to the conclusion that the rate of turnover of endogenous intracellular protein in the beige mouse liver does not differ from normal. The rates of uptake and degradation of an exogenous protein were determined in normal and beige mice by intravenously injecting 125I-bovine serum albumin and following, in peripheral blood, the loss with time of phosphotungstic acid-insoluble bovine serum albumin and the parallel appearance of phosphotungstic acid-soluble (degraded) material. No significant differences were observed between beige and normal mice in the uptake by liver lysosomes of 125I-bovine serum albumin (t½ = 3.9 and 2.8 h, respectively). However, it was found that lysosomes from livers of beige mice released phosphotungstic acid-soluble radioactivity at a rate significantly slower than normal (t½ = 6.8 and 3.1 h, respectively). This defect in beige mice could be corrected by chronic administration of carbamyl choline (t½ = 3.5 h), a cholinergic agonist which raises intracellular cyclic GMP levels. However, no significant differences between normal and beige mice were observed either in the ability of soluble extracts of liver and kidney to bind [3H]cyclic GMP in vitro or in the basal levels of cyclic AMP in both tissues. The relevance of these observations to the presumed biochemical defect underlying the Chediak-Higashi syndrome is discussed. PMID:202611

  9. Vitamin B5 and N-acetylcysteine in nonalcoholic steatohepatitis: a pre-clinical study in a dietary mouse model

    PubMed Central

    Machado, Mariana Verdelho; Kruger, Leandi; Jewell, Mark L.; Michelotti, Gregory Alexander; de Almeida Pereira, Thiago; Xie, Guanhua; Moylan, Cynthia A.; Diehl, Anna Mae

    2015-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free Coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation. Objectives We aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH. Methods CoA metabolism was evaluated in methionine-choline deficient (MCD) and Western diet mouse models of NASH. MCD-diet fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH. Results Liver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity, and correlated with worse liver cell apoptosis, inflammation and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice. Conclusion In mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH. PMID:26403427

  10. Quantification of tissue texture with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Meng, Zhuo-Xian; Lin, Jiandie; Carson, Paul

    2014-05-01

    Photoacoustic (PA) imaging is an emerging technology that could map the functional contrasts in deep biological tissues in high resolution by "listening" to the laser induced thermoelastic waves. Almost all of the current studies in PA imaging are focused on the intensity of the PA signals as an indication of the optical absorbance of the biological tissues. Our group has for the first time demonstrated that the frequency domain power distribution of the broadband PA signals encode the texture information within the regions-of-interest (ROI). Following the similar method of ultrasound spectral analysis (USSA), photoacoustic spectrum analysis (PASA) could evaluate the relative concentrations and, more importantly, the dimensions of microstructures of the optically absorbing materials in biological tissues, including lipid, collagen, water and hemoglobin. By providing valuable insights into tissue pathology, PASA should benefit basic research and clinical management of many diseases, and may help achieve eventual "noninvasive biopsy". In this work, taking advantage of the optical absorption contrasts contributed by lipid and hemoglobin at 1200-nm and 532-nm wavelengths respectively, we investigated the capability of PASA in identifying histological changes corresponding to fat accumulation livers through the study on ex vivo and in situ mouse models. The PA signals from the mouse livers were acquired using our PA and US dual-modality imaging system, and analyzed in the frequency domain. After quantifying the power spectrum by fitting it to a first order model, three spectral parameters, including the intercept, the midband fit and the slope, were extracted and used to differentiate fatty livers from normal livers. The comparison between the PASA parameters from the normal and the fatty livers supports our hypotheses that PASA can quantitatively identify the microstructure changes in liver tissues for differentiating normal and fatty livers.

  11. Mouse Model for Human Arginase Deficiency

    PubMed Central

    Iyer, Ramaswamy K.; Yoo, Paul K.; Kern, Rita M.; Rozengurt, Nora; Tsoa, Rosemarie; O'Brien, William E.; Yu, Hong; Grody, Wayne W.; Cederbaum, Stephen D.

    2002-01-01

    Deficiency of liver arginase (AI) causes hyperargininemia (OMIM 207800), a disorder characterized by progressive mental impairment, growth retardation, and spasticity and punctuated by sometimes fatal episodes of hyperammonemia. We constructed a knockout mouse strain carrying a nonfunctional AI gene by homologous recombination. Arginase AI knockout mice completely lacked liver arginase (AI) activity, exhibited severe symptoms of hyperammonemia, and died between postnatal days 10 and 14. During hyperammonemic crisis, plasma ammonia levels of these mice increased >10-fold compared to those for normal animals. Livers of AI-deficient animals showed hepatocyte abnormalities, including cell swelling and inclusions. Plasma amino acid analysis showed the mean arginine level in knockouts to be approximately fourfold greater than that for the wild type and threefold greater than that for heterozygotes; the mean proline level was approximately one-third and the ornithine level was one-half of the proline and ornithine levels, respectively, for wild-type or heterozygote mice—understandable biochemical consequences of arginase deficiency. Glutamic acid, citrulline, and histidine levels were about 1.5-fold higher than those seen in the phenotypically normal animals. Concentrations of the branched-chain amino acids valine, isoleucine, and leucine were 0.4 to 0.5 times the concentrations seen in phenotypically normal animals. In summary, the AI-deficient mouse duplicates several pathobiological aspects of the human condition and should prove to be a useful model for further study of the disease mechanism(s) and to explore treatment options, such as pharmaceutical administration of sodium phenylbutyrate and/or ornithine and development of gene therapy protocols. PMID:12052859

  12. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

  13. Role of YAP activation in nuclear receptor CAR-mediated proliferation of mouse hepatocytes.

    PubMed

    Abe, Taiki; Amaike, Yuto; Shizu, Ryota; Takahashi, Miki; Kano, Makoto; Hosaka, Takuomi; Sasaki, Takamitsu; Kodama, Susumu; Matsuzawa, Atsushi; Yoshinari, Kouichi

    2018-06-08

    Constitutive androstane receptor (CAR) is a xenobiotic-responsive nuclear receptor that is highly expressed in the liver. CAR activation induces hepatocyte proliferation and hepatocarcinogenesis in rodents, but the mechanisms remain unclear. In this study, we investigated the association of CAR-dependent cell proliferation with Yes-associated protein (YAP), which is a transcriptional cofactor controlling organ size and cell growth through the interaction with various transcriptional factors including TEAD. In mouse livers, TCPOBOP (a mouse CAR activator) treatment increased the nuclear YAP accumulation and mRNA levels of YAP target genes as well as cell-cycle related genes along with liver hypertrophy and verteporfin (an inhibitor of YAP/TEAD interaction) cotreatment tended to attenuate them. Furthermore, in cell-based reporter gene assays, CAR activation enhanced the YAP/TEAD-dependent transcription. To investigate the role of YAP/TEAD activation in the CAR-dependent hepatocyte proliferation, we sought to establish an in vitro system completely reproducing CAR-dependent cell proliferation. Since CAR was only slightly expressed in cultured mouse primary hepatocytes compared to mouse livers and no proliferation was observed after treatment with TCPOBOP, we overexpressed CAR using mouse CAR expressing adenovirus (Ad-mCAR-V5) in mouse primary hepatocytes. Ad-mCAR-V5 infection and TCPOBOP treatment induced hepatocyte proliferation. Similar results were obtained with immortalized normal mouse hepatocytes as well. In the established in vitro system, CAR-dependent proliferation was strongly inhibited by Yap knockdown and completely abolished by verteporfin treatment. Our present results obtained in in vivo and in vitro experiments suggest that YAP/TEAD activation plays key roles in CAR-dependent proliferation of murine hepatocytes.

  14. Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release.

    PubMed

    Besford, Quinn Alexander; Zeng, Xiao-Yi; Ye, Ji-Ming; Gray-Weale, Angus

    2016-02-01

    Glycogen is a vital highly branched polymer of glucose that is essential for blood glucose homeostasis. In this article, the structure of liver glycogen from mice is investigated with respect to size distributions, degradation kinetics, and branching structure, complemented by a comparison of normal and diabetic liver glycogen. This is done to screen for differences that may result from disease. Glycogen α-particle (diameter ∼ 150 nm) and β-particle (diameter ∼ 25 nm) size distributions are reported, along with in vitro γ-amylase degradation experiments, and a small angle X-ray scattering analysis of mouse β-particles. Type 2 diabetic liver glycogen upon extraction was found to be present as large loosely bound, aggregates, not present in normal livers. Liver glycogen was found to aggregate in vitro over a period of 20 h, and particle size is shown to be related to rate of glucose release, allowing a structure-function relationship to be inferred for the tissue specific distribution of particle types. Application of branching theories to small angle X-ray scattering data for mouse β-particles revealed these particles to be randomly branched polymers, not fractal polymers. Together, this article shows that type 2 diabetic liver glycogen is present as large aggregates in mice, which may contribute to the inflexibility of interconversion between glucose and glycogen in type 2 diabetes, and further that glycogen particles are randomly branched with a size that is related to the rate of glucose release.

  15. CD4+RORγt++ and Tregs in a Mouse Model of Diet-Induced Nonalcoholic Steatohepatitis

    PubMed Central

    Vonghia, Luisa; Ruyssers, Nathalie; Schrijvers, Dorien; Pelckmans, Paul; Michielsen, Peter; De Clerck, Luc; Ramon, Albert; Jirillo, Emilio; Ebo, Didier; De Winter, Benedicte; Bridts, Chris; Francque, Sven

    2015-01-01

    Background and Aims. Inflammatory mediators that cross-talk in different metabolically active organs are thought to play a crucial role in the pathogenesis of Nonalcoholic Steatohepatitis (NASH). This study was aimed at investigating the CD4+RORγt+ T-helper cells and their counterpart, the CD4+CD25+FOXP3+ regulatory T cells in the liver, subcutaneous adipose tissue (SAT), and abdominal adipose tissue (AAT) in a high fat diet (HFD) mouse model. Methods. C57BL6 mice were fed a HFD or a normal diet (ND). Liver enzymes, metabolic parameters, and liver histology were assessed. The expression of CD4+RORγt+ cells and regulatory T cells in different organs (blood, liver, AAT, and SAT) were analyzed by flow cytometry. Cytokine and adipokine tissue expression were studied by RT-PCR. Results. Mice fed a HFD developed NASH and metabolic alterations compared to normal diet. CD4+RORγt++ cells were significantly increased in the liver and the AAT while an increase of regulatory T cells was observed in the SAT of mice fed HFD compared to ND. Inflammatory cytokines were also upregulated. Conclusions. CD4+RORγt++ cells and regulatory T cells are altered in NASH with a site-specific pattern and correlate with the severity of the disease. These site-specific differences are associated with increased cytokine expression. PMID:26229237

  16. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1

    PubMed Central

    Dutta, Chaitali; Avitahl-Curtis, Nicole; Pursell, Natalie; Larsson Cohen, Marita; Holmes, Benjamin; Diwanji, Rohan; Zhou, Wei; Apponi, Luciano; Koser, Martin; Ying, Bo; Chen, Dongyu; Shui, Xue; Saxena, Utsav; Cyr, Wendy A; Shah, Anee; Nazef, Naim; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Salido, Eduardo; Brown, Bob D; Lai, Chengjung

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1. PMID:26758691

  17. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  18. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter.

    PubMed

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-03-17

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    PubMed

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.

  20. Zhx2 and Zbtb20: Novel regulators of postnatal alpha-fetoprotein repression and their potential role in gene reactivation during liver cancer

    PubMed Central

    Peterson, Martha L.; Ma, Chunhong; Spear, Brett T.

    2012-01-01

    The mouse alpha-fetoprotein (AFP) gene is abundantly expressed in the fetal liver, normally silent in the adult liver but is frequently reactivated in hepatocellular carcinoma. The basis for AFP expression in the fetal liver has been studied extensively. However, the basis for AFP reactivation during hepatocarcinogenesis is not well understood. Two novel factors that control postnatal AFP repression, Zhx2 and Zbtb20, were recently identified. Here, we review the transcription factors that regulate AFP in the fetal liver, as well as Zhx2 and Zbtb20, and raise the possibility that the loss of these postnatal repressors may be involved in AFP reactivation in liver cancer. PMID:21216289

  1. Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease

    PubMed Central

    Mancinelli, Romina; Franchitto, Antonio; Glaser, Shannon; Vetuschi, Antonella; Venter, Julie; Sferra, Roberta; Pannarale, Luigi; Olivero, Francesca; Carpino, Guido; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2017-01-01

    The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium. PMID:27571215

  2. Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease.

    PubMed

    Mancinelli, Romina; Franchitto, Antonio; Glaser, Shannon; Vetuschi, Antonella; Venter, Julie; Sferra, Roberta; Pannarale, Luigi; Olivero, Francesca; Carpino, Guido; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2016-11-01

    The neurohypophysial hormone arginine vasopressin (AVP) acts by three distinct receptor subtypes: V1a, V1b, and V2. In the liver, AVP is involved in ureogenesis, glycogenolysis, neoglucogenesis and regeneration. No data exist about the presence of AVP in the biliary epithelium. Cholangiocytes are the target cells in a number of animal models of cholestasis, including bile duct ligation (BDL), and in several human pathologies, such as polycystic liver disease characterized by the presence of cysts that bud from the biliary epithelium. In vivo, liver fragments from normal and BDL mice and rats as well as liver samples from normal and ADPKD patients were collected to evaluate: (i) intrahepatic bile duct mass by immunohistochemistry for cytokeratin-19; and (ii) expression of V1a, V1b and V2 by immunohistochemistry, immunofluorescence and real-time PCR. In vitro, small and large mouse cholangiocytes, H69 (non-malignant human cholangiocytes) and LCDE (human cholangiocytes from the cystic epithelium) were stimulated with vasopressin in the absence/presence of AVP antagonists such as OPC-31260 and Tolvaptan, before assessing cellular growth by MTT assay and cAMP levels. Cholangiocytes express V2 receptor that was upregulated following BDL and in ADPKD liver samples. Administration of AVP increased proliferation and cAMP levels of small cholangiocytes and LCDE cells. We found no effect in the proliferation of large mouse cholangiocytes and H69 cells. Increases were blocked by preincubation with the AVP antagonists. These results showed that AVP and its receptors may be important in the modulation of the proliferation rate of the biliary epithelium.

  3. Placental stem cell correction of murine intermediate maple syrup urine disease.

    PubMed

    Skvorak, Kristen J; Dorko, Kenneth; Marongiu, Fabio; Tahan, Veysel; Hansel, Marc C; Gramignoli, Roberto; Gibson, K Michael; Strom, Stephen C

    2013-03-01

    There is improved survival and partial metabolic correction of a mouse intermediate maple syrup urine disease (iMSUD) model after allogenic hepatocyte transplantation, confirming that a small number of enzyme-proficient liver-engrafted cells can improve phenotype. However, clinical shortages of suitable livers for hepatocyte isolation indicate a need for alternative cell sources. Human amnion epithelial cells (hAECs) share stem cell characteristics without the latter's safety and ethical concerns and differentiate to hepatocyte-like cells. Eight direct hepatic hAEC transplantations were performed in iMSUD mice over the first 35 days beginning at birth; animals were provided a normal protein diet and sacrificed at 35 and 100 days. Treatment at the neonatal stage is clinically relevant for MSUD and may offer a donor cell engraftment advantage. Survival was significantly extended and body weight was normalized in iMSUD mice receiving hAEC transplantations compared with untreated iMSUD mice, which were severely cachectic and died ≤28 days after birth. Branched chain α-keto acid dehydrogenase enzyme activity was significantly increased in transplanted livers. The branched chain amino acids leucine, isoleucine, valine, and alloisoleucine were significantly improved in serum and brain, as were other large neutral amino acids. Placental-derived stem cell transplantation lengthened survival and corrected many amino acid imbalances in a mouse model of iMSUD. This highlights the potential for their use as a viable alternative clinical therapy for MSUD and other liver-based metabolic diseases. Copyright © 2012 American Association for the Study of Liver Diseases.

  4. Long Noncoding RNA lncSHGL Recruits hnRNPA1 to Suppress Hepatic Gluconeogenesis and Lipogenesis.

    PubMed

    Wang, Junpei; Yang, Weili; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Feng, Biaoqi; Sun, Libo; Dou, Lin; Li, Jian; Cui, Qinghua; Yang, Jichun

    2018-04-01

    Mammalian genomes encode a huge number of long noncoding RNAs (lncRNAs) with unknown functions. This study determined the role and mechanism of a new lncRNA, lncRNA suppressor of hepatic gluconeogenesis and lipogenesis (lncSHGL), in regulating hepatic glucose/lipid metabolism. In the livers of obese mice and patients with nonalcoholic fatty liver disease, the expression levels of mouse lncSHGL and its human homologous lncRNA B4GALT1-AS1 were reduced. Hepatic lncSHGL restoration improved hyperglycemia, insulin resistance, and steatosis in obese diabetic mice, whereas hepatic lncSHGL inhibition promoted fasting hyperglycemia and lipid deposition in normal mice. lncSHGL overexpression increased Akt phosphorylation and repressed gluconeogenic and lipogenic gene expression in obese mouse livers, whereas lncSHGL inhibition exerted the opposite effects in normal mouse livers. Mechanistically, lncSHGL recruited heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) to enhance the translation efficiency of CALM mRNAs to increase calmodulin (CaM) protein level without affecting their transcription, leading to the activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway and repression of the mTOR/SREBP-1C pathway independent of insulin and calcium in hepatocytes. Hepatic hnRNPA1 overexpression also activated the CaM/Akt pathway and repressed the mTOR/SREBP-1C pathway to ameliorate hyperglycemia and steatosis in obese mice. In conclusion, lncSHGL is a novel insulin-independent suppressor of hepatic gluconeogenesis and lipogenesis. Activating the lncSHGL/hnRNPA1 axis represents a potential strategy for the treatment of type 2 diabetes and steatosis. © 2018 by the American Diabetes Association.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de; Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. Themore » aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.« less

  6. Composite fatty acid ether amides suppress growth of liver cancer cells in vitro and in an in vivo allograft mouse model.

    PubMed

    Cao, Mengde; Prima, Victor; Nelson, David; Svetlov, Stanislav

    2013-06-01

    The heterogeneity of liver cancer, in particular hepatocellular carcinoma (HCC), portrays the requirement of multiple targets for both its treatment and prevention. Multifaceted agents, minimally or non-toxic for normal hepatocytes, are required to address the molecular diversity of HCC, including the resistance of putative liver cancer stem cells to chemotherapy. We designed and synthesized two fatty acid ethers of isopropylamino propanol, C16:0-AIP-1 and C18:1-AIP-2 (jointly named AIPs), and evaluated their anti-proliferative effects on the human HCC cell line Huh7 and the murine hepatoma cell line BNL 1MEA.7R.1, both in vitro and in an in vivo allograft mouse model. We found that AIP-1 and AIP-2 inhibited proliferation and caused cell death in both Huh7 and BNL 1MEA.7R.1 cells. Importantly, AIP-1 and AIP-2 were found to block the activation of putative liver cancer stem cells as manifested by suppression of clonal 'carcinosphere' development in growth factor-free and anchorage-free medium. The AIPs exhibited a relatively low toxicity against normal human or rat hepatocytes in primary cultures. In addition, we found that the AIPs utilized multifaceted pathways that mediate both autophagy and apoptosis in HCC, including the inhibition of AKTs and CAMK-1. In immune-competent mice, the AIPs significantly reduced BNL 1MEA.7R.1 cell-driven tumor allograft development, with a higher efficiency than sorafenib. A combination of AIP-1 + AIP-2 was most effective in reducing the tumor allograft incidence. AIPs represent a novel class of simple fatty acid derivatives that are effective against liver tumors via diverse pathways. They show a low toxicity towards normal hepatocytes. The addition of AIPs may represent a new avenue towards the management of chronic liver injury and, ultimately, the prevention and treatment of HCC.

  7. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    PubMed

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis.

    PubMed

    Poussin, Carinne; Ibberson, Mark; Hall, Diana; Ding, Jun; Soto, Jamie; Abel, E Dale; Thorens, Bernard

    2011-09-01

    To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.

  9. Flux balance analysis predicts Warburg-like effects of mouse hepatocyte deficient in miR-122a

    PubMed Central

    Wu, Hsuan-Hui; Chen, Meng-Chun; Liu, Wen-Huan; Wu, Wu-Hsiung; Chang, Peter Mu-Hsin; Huang, Chi-Ying F.; Tsou, Ann-Ping; Shiao, Ming-Shi

    2017-01-01

    The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a–/–) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a–/–mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells. PMID:28686599

  10. A composite mouse model of aplastic anemia complicated with iron overload

    PubMed Central

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-01-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits. PMID:29434729

  11. A composite mouse model of aplastic anemia complicated with iron overload.

    PubMed

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-02-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.

  12. EGFR-specific nanoprobe biodistribution in mouse models

    NASA Astrophysics Data System (ADS)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  13. Mouse models to study the interaction of risk factors for human liver cancer.

    PubMed

    Sell, Stewart

    2003-11-15

    Each of the risk factors for human liver cancer (aflatoxin exposure, hepatitis B virus-associated liver injury, p53 loss, p53ser249 mutation, and male sex) also increases the incidence of hepatocellular carcinoma (HCC) in mouse models of hepatocarcinogenesis. Neonatal mice, partially hepatectomized adult mice, and p53-deficient mice each have a higher hepatocyte proliferation rate, are less able to detoxify AFB1, and form more DNA adducts than do normal wild-type controls. However, transgenic hepatitis B surface antigen mice, expressing hepatitis B surface antigen under control of the albumin promoter (alb/psx), are able to detoxify AFB1 at the same level as do wild-type mice. Thus, AFB1-induced HCC development in neonatal mice and p53+/- mice may be due to "immature" carcinogen metabolism, whereas increased HCC in transgenic hepatitis B virus mice may be due to promotion effects of increased proliferation. Future studies will explore the effects of modifying factors on the development of HCC.

  14. Augmenter of liver regeneration protects against carbon tetrachloride-induced liver injury by promoting autophagy in mice

    PubMed Central

    Shi, Hongbo; Han, Weijia; Shi, Honglin; Ren, Feng; Chen, Dexi; Chen, Yu; Duan, Zhongping

    2017-01-01

    Background Augmenter of liver regeneration (ALR) exerts strong hepatoprotective properties in various animal models of liver injury, but its protective mechanisms have not yet been explored. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of this study was to test the hypothesis that ALR may protect against acute liver injury through the autophagic pathway. Methods The level and role of ALR in liver injury were studied in a mouse model of acute liver injury induced by carbon tetrachloride (CCl4). The effect of ALR on autophagy was analyzed in vitro and in vivo. After autophagy was inhibited by 3-methyladenine (3-MA), apoptosis and proliferation were detected in the mouse model with acute liver injury. The ALR and autophagic levels were measured in patients with liver cirrhosis (LC) and acute liver failure (ALF), respectively. Results During the progression of acute liver injury, the ALR levels increased slightly in early stage and significantly decreased in late stage in mice Treatment with an ALR plasmid via tail vein injection protected mice against acute liver injury. The protective effect of ALR relied on the induction of autophagy, which was supported by the following evidence: (1) ALR overexpression directly induced autophagy flux in vitro and in vivo; and (2) ALR treatment suppressed apoptosis and promoted proliferation in mice exposed to CCl4, but the inhibition of autophagy reversed these effects. More importantly, the ALR levels decreased in patients with LC and ALF compared with normal controls. Conclusion We demonstrated that ALR ameliorated liver injury via an autophagic mechanism, which indicates a potential therapeutic application for liver injury. PMID:28061452

  15. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    PubMed

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Placental Stem Cell Correction of Murine Intermediate Maple Syrup Urine Disease

    PubMed Central

    Skvorak, Kristen J.; Dorko, Kenneth; Marongiu, Fabio; Tahan, Veysel; Hansel, Marc C.; Gramignoli, Roberto; Gibson, K. Michael; Strom, Stephen C.

    2012-01-01

    We previously reported improved survival and partial metabolic correction of a mouse intermediate maple syrup urine disease (iMSUD) model post allogenic hepatocyte transplant, confirming that a small number of enzyme proficient liver-engrafted cells can improve phenotype. However, clinical shortages of suitable livers for hepatocyte isolation indicate a need for alternative cell sources. Human amnion epithelial cells (hAEC) share stem cell characteristics while lacking many safety and ethical concerns, and differentiate to hepatocyte-like cells. Eight direct hepatic hAEC transplants were administered to iMSUD mice over the first 35 days beginning at birth; animals were provided a normal protein diet and sacrificed at days 35 and 100. Treatment at the neonatal stage is clinically relevant for MSUD, and may offer a donor cell engraftment advantage. Survival was significantly extended and body weight was normalized in iMSUD mice receiving hAEC transplants compared to iMSUD (severely cachectic; dead ≤28 days). Branched chain α-keto acid dehydrogenase enzyme activity was significantly increased in transplanted livers. Branched chain amino acids leucine, isoleucine, valine, and alloisoleucine were significantly improved in the sera and brain, as were other large neutral amino acids. Conclusion: Placental-derived stem cell transplantation lengthened survival and corrected many amino acid imbalances in a mouse model of iMSUD. This highlights the potential for their use as a viable alternative clinical therapy for MSUD and other liver-based metabolic diseases. PMID:23175463

  17. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  18. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  19. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  20. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    PubMed

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. © 2014 UICC.

  1. Curcuma longa L. as a therapeutic agent in intestinal motility disorders. 2: Safety profile in mouse.

    PubMed

    Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta

    2013-01-01

    Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K(+) induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered.

  2. Simulation of human plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Chijiwa, Hiroyuki; Okuzono, Takeshi; Ishiguro, Tomohiro; Yamamoto, Yosuke; Nishinoaki, Sho; Ninomiya, Shin-Ichi; Mitsui, Marina; Kalgutkar, Amit S; Yamazaki, Hiroshi; Suemizu, Hiroshi

    2017-05-01

    1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.

  3. Curcuma longa L. as a Therapeutic Agent in Intestinal Motility Disorders. 2: Safety Profile in Mouse

    PubMed Central

    Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta

    2013-01-01

    Background Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Methods Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. Results In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K+ induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Conclusions Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered. PMID:24260512

  4. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  5. Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration

    PubMed Central

    Jiao, Yang; Ye, Diana Z.; Li, Zhaoyu; Teta-Bissett, Monica; Peng, Yong; Taub, Rebecca; Greenbaum, Linda E.

    2014-01-01

    Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 mutant mice (Prl-1loxP/loxP;AlfpCre) appeared normal and fertile. Liver size and metabolic function in Prl-1 mutants were comparable to controls, indicating that Prl-1 is dispensable for liver development, postnatal growth, and hepatocyte differentiation. Mutant mice demonstrated a delay in DNA synthesis after 70% partial hepatectomy, although ultimate liver mass restoration was not affected. At 40 h posthepatectomy, reduced protein levels of the cell cycle regulators cyclin E, cyclin A2, cyclin B1, and cyclin-dependent kinase 1 were observed in Prl-1 mutant liver. Investigation of the major signaling pathways involved in liver regeneration demonstrated that phosphorylation of protein kinase B (AKT) and signal transducer and activator of transcription (STAT) 3 were significantly reduced at 40 h posthepatectomy in Prl-1 mutants. Taken together, this study provides evidence that Prl-1 is required for proper timing of liver regeneration after partial hepatectomy. Prl-1 promotes G1/S progression via modulating expression of several cell cycle regulators through activation of the AKT and STAT3 signaling pathway. PMID:25377314

  6. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases.

    PubMed

    Neo, Jaclyn H; Ager, Eleanor I; Angus, Peter W; Zhu, Jin; Herath, Chandana B; Christophi, Christopher

    2010-04-10

    Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade.

  7. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases

    PubMed Central

    2010-01-01

    Background Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Methods Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Results Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. Conclusions These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade. PMID:20380732

  8. Genomic analysis of wig-1 pathways.

    PubMed

    Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P

    2012-01-01

    Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.

  9. Genomic Analysis of wig-1 Pathways

    PubMed Central

    Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P.

    2012-01-01

    Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer. PMID:22347364

  10. MOUSE LIVER TUMOR DATA: ASSESSMENT OF CARCINOGENIC ACTIVITY

    EPA Science Inventory

    A significant number of chemicals have been shown to be carcinogenic in mouse liver while lacking carcinogenic activity in other organs or tissues of mice or rats. The review focus on the reasons for the unique susceptibility of the mouse liver to these carcinogens, and the exten...

  11. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.**

    EPA Science Inventory

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  12. Quantitative changes in endogenous DNA adducts correlate with conazole mutagenicity and tumorigenicity in mouse liver.

    EPA Science Inventory

    We have previously shown that the conazole fungicides triadimefon and propiconazole, which are tumorigenic in mouse liver, are in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses. The nontumorigenic conazole myclo...

  13. Activation of farnesoid X receptor induces RECK expression in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiaomin; Wu, Weibin; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found thatmore » FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.« less

  14. [Study on the liver-protective and choleretic effect of zhizi baipi soup and its disassembled prescription].

    PubMed

    Xiao, Xu; Zhu, Ji-Xiao; Luo, Guang-Ming; Li, Lei; Zhu, Yu-Ye; Zeng, Jin-Xiang; Wang, Xiao-Yun; Wu, Bo

    2013-07-01

    To investigate the effect of Zhizi Baipi soup and its disassembled prescription on protecting liver and improving choleresis and explore the regularity of Zhizi Baipi soup composition. The model of mouse liver injury induced by carbon tetraehlofide (CCl4) was used to observe the effects of Zhizi Baipi soup and its disassembled prescription by oral adminstration, the bile volume was determinied by common bile duct drainage. Zhizi Baipi soup and each treatment group with gardenia could significantly inhibit the increased serum ATL and AST activities, reduce liver MDA level, and significantly promote the bile flow and bilirubin in bile in normal rats. Zhizi Baipi soup has effects on protecting liver and increasing bile secretion, its monarch drug, gardenia plays an important role in the decoction, the effect of eliminating dampness and heat are mainly ascribed to the synergic effect of gardenia and phellodendron.

  15. EFFECTS OF VARIOUS IMMUNE RABBIT SERUMS ON THE CELLS OF SEVERAL TRANSPLANTED MOUSE LYMPHOMAS IN VITRO AND IN VIVO

    PubMed Central

    Mohos, Steven C.; Kidd, John G.

    1957-01-01

    Immune serums prepared in rabbits with antigens made from normal mouse organs and tissues that were presumably devoid of large numbers of lymphocytic cells (notably kidney, liver, brain, whole embryos, and erythrocytes) proved lethal for the cells of several transplanted mouse lymphomas in vitro in the presence of complement; but these immune serums, when given intraperitoneally in large amounts to susceptible mice that had been implanted subcutaneously with lymphoma cells of one or another of several types, failed entirely to inhibit growth of the lymphoma cells in vivo. In contrast, immune serums made with cells procured from transplanted mouse lymphomas as antigens, and those made with cells from normal mouse thymus or lymph nodes, acted even more powerfully upon the several types of lymphoma cells in vitro than did the immune serums prepared with normal mouse organs, and when given intraperitoneally to implanted mice they brought about death of the lymphoma cells in vivo, the effect being to a considerable extent specific and referable to an antibody that reacts with neoplastic and non-neoplastic lymphocytic cells of mice, as absorption experiments disclosed. In comparative tests, furthermore, the anti-lymphoma serums acted more powerfully upon the lymphoma cells in vivo than did such chemotherapeutic agents as amethopterin, azaguanine, ethionine, azaserine, and 6-mercaptopurine, given singly or in various combinations in maximal tolerated amounts, though their effects were not so powerful as those exerted by normal guinea pig serum on lymphoma cells of two types that are susceptible to its action in vivo. The significance of the findings was briefly discussed. PMID:13406182

  16. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet.

    PubMed

    Ikawa-Yoshida, Ayae; Matsuo, Saori; Kato, Atsuhiko; Ohmori, Yusuke; Higashida, Atsuko; Kaneko, Eiji; Matsumoto, Masahiko

    2017-08-01

    Hepatocellular carcinoma (HCC) is a common cancer worldwide and represents the outcome of the natural history of chronic liver disease. The growing rates of HCC may be partially attributable to increased numbers of people with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). However, details of the liver-specific molecular mechanisms responsible for the NAFLD-NASH-HCC progression remain unclear, and mouse models that can be used to explore the exact factors that influence the progression of NAFLD/NASH to the more chronic stages of liver disease and subsequent HCC are not yet fully established. We have previously reported a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) as a dietary NASH model with rapidly progressive liver fibrosis in mice. The current study in C57BL/6J mice fed CDAHFD provided evidence for the chronic persistence of advanced hepatic fibrosis in NASH and disease progression towards HCC in a period of 36 weeks. When mice fed CDAHFD were switched back to a standard diet, hepatic steatosis was normalized and NAFLD activity score improved, but HCC incidence increased and the phenotype of fibrosis-associated HCC development was observed. Moreover, when mice continued to be fed CDAHFD for 60 weeks, HCC further developed without severe body weight loss or carcinogenesis in other organs. The autochthonous tumours showed a variety of histological features and architectural patterns including trabecular, pseudoglandular and solid growth. The CDAHFD mouse model might be a useful tool for studying the development of HCC from NAFLD/NASH, and potentially useful for better understanding pathological changes during hepatocarcinogenesis. © 2017 The Authors. International Journal of Experimental Pathology published by John Wiley & Sons Ltd on behalf of Company of the International Journal of Experimental Pathology (CIJEP).

  17. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    PubMed Central

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  18. Mapping of Heavy Chain Genes for Mouse Immunoglobulins M and D

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Ping; Tucker, Philip W.; Mushinski, J. Frederic; Blattner, Frederick R.

    1980-09-01

    A single DNA fragment containing both μ and δ immunoglobulin heavy chain genes has been cloned from normal BALB/c mouse liver DNA with a new λ phage vector Charon 28. The physical distance between the membrane terminal exon of μ and the first domain of δ is 2466 base pairs, with δ on the 3' side of μ . A single transcript could contain a variable region and both μ and δ constant regions. The dual expression of immunoglobulins M and D on spleen B cells may be due to alternate splicing of this transcript.

  19. Mass spectrometry-based metabolite profiling in the mouse liver following exposure to ultraviolet B radiation.

    PubMed

    Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan

    2014-01-01

    Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light.

  20. Histology Atlas of the Developing Mouse Hepatobiliary System with Emphasis on Embryonic Days 9.5-18.5

    PubMed Central

    Crawford, Laura Wilding; Foley, Julie F.; Elmore, Susan A.

    2012-01-01

    Animal model phenotyping, in utero exposure toxiciy studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. PMID:20805319

  1. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter

    PubMed Central

    Gjymishka, Altin; Salido, Eduardo C.; Allison, Milton J.; Freel, Robert W.

    2011-01-01

    Oxalobacter colonization of rat intestine was previously shown to promote enteric oxalate secretion and elimination, leading to significant reductions in urinary oxalate excretion (Hatch et al. Kidney Int 69: 691–698, 2006). The main goal of the present study, using a mouse model of primary hyperoxaluria type 1 (PH1), was to test the hypothesis that colonization of the mouse gut by Oxalobacter formigenes could enhance enteric oxalate secretion and effectively reduce the hyperoxaluria associated with this genetic disease. Wild-type (WT) mice and mice deficient in liver alanine-glyoxylate aminotransferase (Agxt) exhibiting hyperoxalemia and hyperoxaluria were used in these studies. We compared the unidirectional and net fluxes of oxalate across isolated, short-circuited large intestine of artificially colonized and noncolonized mice. In addition, plasma and urinary oxalate was determined. Our results demonstrate that the cecum and distal colon contribute significantly to enteric oxalate excretion in Oxalobacter-colonized Agxt and WT mice. In colonized Agxt mice, urinary oxalate excretion was reduced 50% (to within the normal range observed for WT mice). Moreover, plasma oxalate concentrations in Agxt mice were also normalized (reduced 50%). Colonization of WT mice was also associated with marked (up to 95%) reductions in urinary oxalate excretion. We conclude that segment-specific effects of Oxalobacter on intestinal oxalate transport in the PH1 mouse model are associated with a normalization of plasma oxalate and urinary oxalate excretion in otherwise hyperoxalemic and hyperoxaluric animals. PMID:21163900

  2. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor.

    PubMed Central

    Jefferies, W A; Brandon, M R; Williams, A F; Hunt, S V

    1985-01-01

    A mouse monoclonal IgG2a antibody, designated MRC OX-26, is shown to be specific for the rat transferrin receptor, but does not block transferrin binding. The antibody labelled a myeloma, three leukaemia cell lines and normal dividing cells of various types, but also bound to a number of nondividing normal tissues. No labelling of lymphopoietic stem cells could be detected, even though approximately 25% of bone marrow and over 95% of fetal liver cells were clearly labelled. Images Figure 1 Figure 3 PMID:2981766

  3. A novel ENU-induced mutation, peewee, causes dwarfism in the mouse

    PubMed Central

    Bon-Ryon, Lee; Kano, Kiyoshi; Young, Jay; John, Simon; Nishina, Patsy M; Naggert, Jurgen K; Naito, Kunihiko

    2010-01-01

    We identified a novel fertile, autosomal recessive mutation, called peewee and that results in dwarfing, in a region-specific ENU-induced mutagenesis. These mice at litter size were smaller those of other strains. Histological analysis revealed that the major organs appear normal, but abnormalities in cellular proliferation were observed in bone, liver and testis. Haplotype analysis localized the peewee gene to a 3.3-Mb region between D5Mit83 and D5Mit356.3. There are 18 genes in this linkage area, and we also performed in silico mapping using the PosMed℠ program, which searches for connections among keywords and genes in an interval, but no similar phenotype descriptions were found for these genes. In the peewee mutant compared to the normal, C57BL/6J mouse, only Slc10a4 expression was lower. Our preliminary mutation analysis examining the nucleotide sequence of three exons, two introns and an untranslated region of Slc10a4 did not find any sequence difference between the peewee mouse and the C57BL/6J mouse. Detailed analysis of peewee mice might provide novel molecular insights into the complex mechanisms regulating body growth. PMID:19513787

  4. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response

    PubMed Central

    Raat, Nicolaas J.H.; Noguchi, Audrey C.; Liu, Virginia B.; Raghavachari, Nalini; Liu, Delong; Xu, Xiuli; Shiva, Sruti; Munson, Peter J.; Gladwin, Mark T.

    2009-01-01

    Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion, and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the post-translational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet. PMID:19464364

  5. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    PubMed Central

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  6. Using X-Ray In-Line Phase-Contrast Imaging for the Investigation of Nude Mouse Hepatic Tumors

    PubMed Central

    Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors. PMID:22761929

  7. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver.

    PubMed

    Guo, Dongsheng; Sarkar, Joy; Ahmed, Mohamed R; Viswakarma, Navin; Jia, Yuzhi; Yu, Songtao; Sambasiva Rao, M; Reddy, Janardan K

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  8. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis

    PubMed Central

    Méndez-Lucas, Andrés; Duarte, João; Sunny, Nishanth E.; Satapati, Santhosh; He, TianTeng; Fu, Xiaorong; Bermúdez, Jordi; Burgess, Shawn C.; Perales, Jose C.

    2013-01-01

    Background & Aims Hepatic gluconeogenesis helps maintain systemic energy homeostasis by compensating for discontinuities in nutrient supply. Liver specific deletion of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) abolishes gluconeogenesis from mitochondrial substrates, deregulates lipid metabolism and affects TCA cycle. While, mouse liver almost exclusively expresses PEPCK-C, humans equally present a mitochondrial isozyme (PEPCK-M). Despite clear relevance to human physiology, the role of PEPCK-M and its gluconeogenic potential remain unknown. Here, we test the significance of PEPCK-M in gluconeogenesis and TCA cycle function in liver-specific PEPCK-C knockout and WT mice. Methods The effects of the overexpression of PEPCK-M were examined by a combination of tracer studies and molecular biology techniques. Partial PEPCK-C re-expression was used as a positive control. Metabolic fluxes were evaluated in isolated livers by NMR using 2H and 13C tracers. Gluconeogenic potential, together with metabolic profiling, were investigated in vivo and in primary hepatocytes. Results PEPCK-M expression partially rescued defects in lipid metabolism, gluconeogenesis and TCA cycle function impaired by PEPCK-C deletion, while ~10% re-expression of PEPCK-C normalized most parameters. When PEPCK-M was expressed in the presence of PEPCK-C, the mitochondrial isozyme amplified total gluconeogenic capacity, suggesting autonomous regulation of oxaloacetate to phosphoenolpyruvate fluxes by the individual isoforms. Conclusions We conclude that PEPCK-M has gluconeogenic potential per se, and cooperates with PEPCK-C to adjust gluconeogenic/TCA flux to changes in substrate or energy availability, hinting at a role in the regulation of glucose and lipid metabolism in human liver. PMID:23466304

  9. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis

    PubMed Central

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2017-01-01

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis. PMID:27273788

  10. Acute hepatotoxicity induced by hepatotoxins in Suncus murinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.; Saito, H.; Yohro, T.

    A comparative study was conducted to contrast the hepatotoxicity of several chemicals in the musk shrew (Suncus murinus) versus other common laboratory species (mouse or rat), and the following results were obtained from serum enzymes (SGOT and SGPT) and histopathological findings of liver specimens. (1) The sensitivity of Suncus liver to CCl/sub 4/ was different from that of mouse liver. (2) The sensitivity of Suncus liver to ..beta..-D-galactosamine was weaker than that of rat liver. (3) The sensitivity of Suncus liver to ethanol was stronger than that of mouse liver. After a single oral administration of ethanol (99.5% v/v, 0.1more » ml/50 g body weight), the gallbladder of Suncus became enlarged and dark blue in color. (4) A striking fatty degeneration was seen 24 h after a single ip administration of amethopterin at 50 mg/kg in Suncus liver.« less

  11. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  12. Two new rodent models for actinide toxicity studies. [/sup 237/Pu, /sup 241/Am

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G.N.; Jones, C.W.; Gardner, P.A.

    1981-04-01

    Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus), have tenacious and high retention in the liver and skeleton of plutonium and americium following intraperitoneal injection of Pu and Am in citrate solution. Liver retention of Pu and Am in the grasshopper mouse is higher than liver retention in the deer mouse. Both of these rodents are relatively long-lived, breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium retention is high and prolonged in both the skeleton and liver, as itmore » is in man, may be useful animal models for actinide toxicity studies.« less

  13. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. PPARÁ-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  15. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing twodimensional...

  16. Effects of rutin supplementation on antioxidant status and iron, copper, and zinc contents in mouse liver and brain.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Huang, Kaixun

    2002-09-01

    The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.

  17. Proteomic Analysis of Propiconazole Responses in Mouse Liver-Comparison of Genomic and Proteomic Profiles

    EPA Science Inventory

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this commonly used fungicide. Utilizing t...

  18. Neighbor of Punc E 11: expression pattern of the new hepatic stem/progenitor cell marker during murine liver development.

    PubMed

    Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk

    2012-09-20

    We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.

  19. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    PubMed Central

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449

  20. A mouse radiation-induced liver disease model for stereotactic body radiation therapy validated in patients with hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhi-Feng, E-mail: wuzhifeng2@126.com, E-mail:

    Purpose: Lower radiation tolerance of the whole liver hinders dose escalations of stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma (HCC) treatment. This study was conducted to define the exact doses that result in radiation-induced liver disease (RILD) as well as to determine dose constraints for the critical organs at risk (OARs) in mice; these parameters are still undefined in HCC SBRT. Methods: This study consisted of two phases. In the primary phase, mice treated with helical tomotherapy-based SBRT were stratified according to escalating radiation doses to the livers. The pathological differences, signs [such as mouse performance status (MPS)], andmore » serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT)/albumin levels were observed. Radiation-induced disease severities of the OARs were scored using systematic evaluation standards. In the validation phase in humans, 13 patients with HCC who had undergone radiotherapy before hepatectomy were enrolled to validate RILD pathological changes in a mouse study. Results: The evaluation criteria of the mouse liver radiotherapy-related signs were as follows: MPS ≥ 2.0 ± 0.52, AST/ALT ≥ 589.2 ± 118.5/137.4 ± 15.3 U/L, serum albumin ≤ 16.8 ± 2.29 g/L. The preliminary dose constraints of the OARs were also obtained, such as those for the liver (average dose ≤ 26.36 ± 1.71 Gy) and gastrointestinal tract (maximum dose ≤ 22.63 Gy). Mouse RILD models were able to be developed when the livers were irradiated with average doses of ≥31.76 ± 1.94 Gy (single fraction). RILD pathological changes in mice have also been validated in HCC patients. Conclusions: Mouse RILD models could be developed with SBRT based on the dose constraints for the OARs and evaluation criteria of mouse liver radiotherapy-related signs, and the authors’ results favor the study of further approaches to treat HCC with SBRT.« less

  1. Cholesterol uptake in the mouse aorta increases during Chlamydia pneumoniae infection.

    PubMed

    Edvinsson, Marie; Tallkvist, Jonas; Nyström-Rosander, Christina; Ilbäck, Nils-Gunnar

    2017-01-01

    Chlamydia pneumoniae has been suggested as a stimulator of the atherosclerotic process. Mice fed a normal diet were infected intranasally with C. pneumoniae and given one intraperitoneal injection of 14C-cholesterol tracer per day for 12 days. Bacteria were demonstrated in the aorta in the early phase of infection and in lungs and liver throughout the study period of 20 days. 14C-cholesterol was not affected in the heart but increased in the blood, liver and aorta on day 4 when the infection was clinically most severe. Furthermore, on day 20 14C-cholesterol tended to be increased in the aorta. Accordingly, copper- and zinc levels and expressions of the infection biomarkers Cxcl2 and Ifng increased in the liver on day 4 with a tendency of increased of copper, zinc and Ifng on day 20. In mice where bacteria could be cultivated from the lungs, expressions of cholesterol transporters Abca1 and Idol were both increased in the liver on day 4. The increased levels of 14C-cholesterol in blood and aorta together with increased Abca1 and Idol in the liver during C. pneumoniae infection in mice fed a normal diet suggest that this pathogen may have a role in the initiation of the atherosclerotic process. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy

    PubMed Central

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M.

    2017-01-01

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2−/-IL2Rg-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair. PMID:27657746

  3. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or {alpha}-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells becamemore » mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.« less

  4. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...

  5. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for Involvement of the Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects related to liver carcinogenesis through the nucle...

  6. Evaluation of the Role of Peroxisome Proliferator-Activated Receptor α (PPARα) in Mouse Liver Tumor Induction by Trichloroethylene and Metabolites

    EPA Science Inventory

    Trichloroethylene (TCE) is an industrial solvent and a widespread environmental contaminant. Induction of liver cancer in mice by TCE is thought to be mediated by two metabolites, dichloroacetate (DCA) and trichloroacetate (TCA), both of which are themselves mouse liver carcinoge...

  7. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse.

    PubMed

    Liu, Benny; Turley, Stephen D; Burns, Dennis K; Miller, Anna M; Repa, Joyce J; Dietschy, John M

    2009-02-17

    Niemann-Pick type C disease is largely attributable to an inactivating mutation of NPC1 protein, which normally aids movement of unesterified cholesterol (C) from the endosomal/lysosomal (E/L) compartment to the cytosolic compartment of cells throughout the body. This defect results in activation of macrophages in many tissues, progressive liver disease, and neurodegeneration. In the npc1(-/-) mouse, a model of this disease, the whole-animal C pool expands from 2,082 to 4,925 mg/kg body weight (bw) and the hepatic C pool increases from 132 to 1,485 mg/kg bw between birth and 49 days of age. A single dose of 2-hydroxypropyl-beta-cyclodextrin (CYCLO) administered at 7 days of age immediately caused this sequestered C to flow from the lysosomes to the cytosolic pool in many organs, resulting in a marked increase in cholesteryl esters, suppression of C but not fatty acid synthesis, down-regulation of genes controlled by sterol regulatory element 2, and up-regulation of many liver X receptor target genes. There was also decreased expression of proinflammatory proteins in the liver and brain. In the liver, where the rate of C sequestration equaled 79 mg x d(-1) x kg(-1), treatment with CYCLO within 24 h increased C movement out of the E/L compartment from near 0 to 233 mg x d(-1) x kg(-1). By 49 days of age, this single injection of CYCLO resulted in a reduction in whole-body C burden of >900 mg/kg, marked improvement in liver function tests, much less neurodegeneration, and, ultimately, significant prolongation of life. These findings suggest that CYCLO acutely reverses the lysosomal transport defect seen in NPC disease.

  8. Hepatic glucose sensing is required to preserve β cell glucose competence

    PubMed Central

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schütz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori; Foretz, Marc; Thorens, Bernard

    2013-01-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr–/– mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link. PMID:23549084

  9. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    PubMed

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  10. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  11. High homocysteine induces betaine depletion

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.

    2015-01-01

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429

  12. High homocysteine induces betaine depletion.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. © 2015 Author(s).

  13. Murine precision-cut liver slices (PCLS): a new tool for studying tumor microenvironments and cell signaling ex vivo.

    PubMed

    Koch, Alexandra; Saran, Shashank; Tran, Doan Duy Hai; Klebba-Färber, Sabine; Thiesler, Hauke; Sewald, Katherina; Schindler, Susann; Braun, Armin; Klopfleisch, Robert; Tamura, Teruko

    2014-11-07

    One of the most insidious characteristics of cancer is its spread to and ability to compromise distant organs via the complex process of metastasis. Communication between cancer cells and organ-resident cells via cytokines/chemokines and direct cell-cell contacts are key steps for survival, proliferation and invasion of metastasized cancer cells in organs. Precision-cut liver slices (PCLS) are considered to closely reflect the in vivo situation and are potentially useful for studying the interaction of cancer cells with liver-resident cells as well as being a potentially useful tool for screening anti-cancer reagents. Application of the PCLS technique in the field of cancer research however, has not yet been well developed. We established the mouse PCLS system using perfluorodecalin (PFD) as an artificial oxygen carrier. Using this system we show that the adherence of green fluorescent protein (GFP) labeled MDA-MB-231 (highly invasive) cells to liver tissue in the PCLS was 5-fold greater than that of SK-BR-3 (less invasive) cells. In addition, we generated PCLS from THOC5, a member of transcription/export complex (TREX), knockout (KO) mice. The PCLS still expressed Gapdh or Albumin mRNAs at normal levels, while several chemokine/growth factor or metalloprotease genes, such as Cxcl12, Pdgfa, Tgfb, Wnt11, and Mmp1a genes were downregulated more than 2-fold. Interestingly, adhesion of cancer cells to THOC5 KO liver slices was far less (greater than 80% reduction) than to wild-type liver slices. Mouse PCLS cultures in the presence of PFD may serve as a useful tool for screening local adherence and invasiveness of individual cancer cells, since single cells can be observed. This method may also prove useful for identification of genes in liver-resident cells that support cancer invasion by using PCLS from transgenic liver.

  14. Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo

    PubMed Central

    Hermant, Pascale; Demarez, Céline; Mahlakõiv, Tanel; Staeheli, Peter; Meuleman, Philip; Michiels, Thomas

    2014-01-01

    The type III interferon (IFN) receptor is preferentially expressed by epithelial cells. It is made of two subunits: IFNLR1, which is specific to IFN-lambda (IFN-λ) and IL10RB, which is shared by other cytokine receptors. Human hepatocytes express IFNLR1 and respond to IFN-λ. In contrast, the IFN-λ response of the mouse liver is very weak and IFNLR1 expression is hardly detectable in this organ. Here we investigated the IFN-λ response at the cellular level in the mouse liver and we tested whether human and mouse hepatocytes truly differ in responsiveness to IFN-λ. When monitoring expression of the IFN-responsive Mx genes by immunohistofluorescence, we observed that the IFN-λ response in mouse livers was restricted to cholangiocytes, which form the bile ducts, and that mouse hepatocytes were indeed not responsive to IFN-λ. The lack of mouse hepatocyte response to IFN-λ was observed in different experimental settings, including the infection with a hepatotropic strain of influenza A virus which triggered a strong local production of IFN-λ. With the help of chimeric mice containing transplanted human hepatocytes, we show that hepatocytes of human origin readily responded to IFN-λ in a murine environment. Thus, our data suggest that human but not mouse hepatocytes are responsive to IFN-λ in vivo. The non-responsiveness is an intrinsic property of mouse hepatocytes and is not due to the mouse liver micro-environment. PMID:24498220

  15. Metabolic Profiling of Liver Tissue in Diabetic Mice Treated with Artemisia Capillaris and Alisma Rhizome Using LC-MS and CE-MS.

    PubMed

    Kim, Yumi; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Lee, Ji-Hyun; Bang, Eunjung; Jang, Hyeung-Jin; Na, Yun-Cheol

    2016-01-01

    Artemisia Capillaris (AC) and Alisma Rhizome (AR) are natural products for the treatment of liver disorders in oriental medicine clinics. Here, we report metabolomic changes in the evaluation of the treatment effects of AC and AR on fatty livers in diabetic mice, along with a proposition of the underlying metabolic pathway. Hydrophobic and hydrophilic metabolites extracted from mouse livers were analyzed using HPLC-QTOF and CE-QTOF, respectively, to generate metabolic profiles. Statistical analysis of the metabolites by PLS-DA and OPLA-DA fairly discriminated between the diabetic, and the AC- and AR-treated mice groups. Various PEs mostly contributed to the discrimination of the diabetic mice from the normal mice, and besides, DG (18:1/16:0), TG (16:1/16:1/20:1), PE (21:0/20:5), and PA (18:0/21:0) were also associated with discrimination by s-plot. Nevertheless, the effects of AC and AR treatment were indistinct with respect to lipid metabolites. Of the 97 polar metabolites extracted from the CE-MS data, 40 compounds related to amino acid, central carbon, lipid, purine, and pyrimidine metabolism, with [Formula: see text] values less than 0.05, were shown to contribute to liver dysregulation. Following treatment with AC and AR, the metabolites belonging to purine metabolism preferentially recovered to the metabolic state of the normal mice. The AMP/ATP ratio of cellular energy homeostasis in AR-treated mice was more apparently increased ([Formula: see text]) than that of AC-treated mice. On the other hand, amino acids, which showed the main alterations in diabetic mice, did not return to the normal levels upon treatment with AR or AC. In terms of metabolomics, AR was a more effective natural product in the treatment of liver dysfunction than AC. These results may provide putative biomarkers for the prognosis of fatty liver disorder following treatment with AC and AR extracts.

  16. Serine 302 Phosphorylation of Mouse Insulin Receptor Substrate 1 (IRS1) Is Dispensable for Normal Insulin Signaling and Feedback Regulation by Hepatic S6 Kinase*

    PubMed Central

    Copps, Kyle D.; Hançer, Nancy J.; Qiu, Wei; White, Morris F.

    2016-01-01

    Constitutive activation of the mammalian target of rapamycin complex 1 and S6 kinase (mTORC1→ S6K) attenuates insulin-stimulated Akt activity in certain tumors in part through “feedback” phosphorylation of the upstream insulin receptor substrate 1 (IRS1). However, the significance of this mechanism for regulating insulin sensitivity in normal tissue remains unclear. We investigated the function of Ser-302 in mouse IRS1, the major site of its phosphorylation by S6K in vitro, through genetic knock-in of a serine-to-alanine mutation (A302). Although insulin rapidly stimulated feedback phosphorylation of Ser-302 in mouse liver and muscle, homozygous A302 mice (A/A) and their knock-in controls (S/S) exhibited similar glucose homeostasis and muscle insulin signaling. Furthermore, both A302 and control primary hepatocytes from which Irs2 was deleted showed marked inhibition of insulin-stimulated IRS1 tyrosine phosphorylation and PI3K binding after emetine treatment to raise intracellular amino acids and activate mTORC1 → S6K signaling. To specifically activate mTORC1 in mouse tissue, we deleted hepatic Tsc1 using Cre adenovirus. Although it moderately decreased IRS1/PI3K association and Akt phosphorylation in liver, Tsc1 deletion failed to cause glucose intolerance or promote hyperinsulinemia in mixed background A/A or S/S mice. Moreover, Tsc1 deletion failed to stimulate phospho-Ser-302 or other putative S6K sites within IRS1, whereas ribosomal S6 protein was constitutively phosphorylated. Following acute Tsc1 deletion from hepatocytes, Akt phosphorylation, but not IRS1/PI3K association, was rapidly restored by treatment with the mTORC1 inhibitor rapamycin. Thus, within the hepatic compartment, mTORC1 → S6K signaling regulates Akt largely through IRS-independent means with little effect upon physiologic insulin sensitivity. PMID:26846849

  17. The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature.

    PubMed

    Kim, Il-Man; Ramakrishna, Sneha; Gusarova, Galina A; Yoder, Helena M; Costa, Robert H; Kalinichenko, Vladimir V

    2005-06-10

    Transgenic and gene knock-out studies demonstrated that the mouse Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is essential for hepatocyte entry into mitosis during liver development, regeneration, and liver cancer. Targeted deletion of Foxm1 gene in mice produces an embryonic lethal phenotype due to severe abnormalities in the development of liver and heart. In this study, we show for the first time that Foxm1(-/-) lungs exhibit severe hypertrophy of arteriolar smooth muscle cells and defects in the formation of peripheral pulmonary capillaries as evidenced by significant reduction in platelet endothelial cell adhesion molecule 1 staining of the distal lung. Consistent with these findings, significant reduction in proliferation of the embryonic Foxm1(-/-) lung mesenchyme was found, yet proliferation levels were normal in the Foxm1-deficient epithelial cells. Severe abnormalities of the lung vasculature in Foxm1(-/-) embryos were associated with diminished expression of the transforming growth factor beta receptor II, a disintegrin and metalloprotease domain 17 (ADAM-17), vascular endothelial growth factor receptors, Polo-like kinase 1, Aurora B kinase, laminin alpha4 (Lama4), and the Forkhead Box f1 transcription factor. Cotransfection studies demonstrated that Foxm1 stimulates transcription of the Lama4 promoter, and this stimulation requires the Foxm1 binding sites located between -1174 and -1145 bp of the mouse Lama4 promoter. In summary, development of mouse lungs depends on the Foxm1 transcription factor, which regulates expression of genes essential for mesenchyme proliferation, extracellular matrix remodeling, and vasculogenesis.

  18. Evaluation of [18F]Mefway biodistribution and dosimetry based on whole-body PET imaging of mice.

    PubMed

    Constantinescu, Cristian C; Sevrioukov, Evgueni; Garcia, Adriana; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-04-01

    [(18)F]Mefway is a novel radiotracer specific to the serotonin 5-HT1A receptor class. In preparation for using this tracer in humans, we have performed whole-body PET studies in mice to evaluate the biodistribution and dosimetry of [(18)F]Mefway. Six mice (three females and three males) received IV injections of [(18)F]Mefway and were scanned for 2 h in an Inveon-dedicated PET scanner. Each animal also received a high-resolution CT scan using an Inveon CT. The CT images were used to draw volume of interest on the following organs: the brain, large intestine, stomach, heart, kidneys, liver, lungs, pancreas, bone, spleen, testes, thymus, gallbladder, uterus, and urinary bladder. All organ time-activity curves without decay correction were normalized to the injected activity. The area under the normalized curves was then used to compute the residence times in each organ. Data were analyzed using PMOD and Matlab software. The absorbed doses in mouse organs were computed using the RAdiation Dose Assessment Resource animal models for dose assessment. The residence times in mouse organs were converted to human values using scale factors based on differences between organ and body weights. OLINDA/EXM 1.1 software was used to compute the absorbed human doses in multiple organs for both female and male phantoms. The highest mouse residence times were found in the liver, urinary bladder, and kidneys. The largest doses in mice were found in the urinary bladder (critical organ), kidney, and liver for both females and males, indicating primary elimination via urinary system. The projected human effective doses were 1.21E - 02 mSv/MBq for the adult female model and 1.13E - 02 mSv/MBq for the adult male model. The estimated human biodistribution of [(18)F]Mefway was similar to that of [(11)C]WAY 100,635, a 5-HT1A tracer for which dosimetry has been evaluated in humans. The elimination of radiotracer was primarily via the kidney and urinary bladder with the urinary bladder being the critical organ. Whole-body mouse imaging can be used as a preclinical tool to provide initial estimates of the absorbed doses of [(18)F]Mefway in humans.

  19. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    PubMed

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    PubMed

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Abnormal Chloride Homeostasis in the Substancia Nigra Pars Reticulata Contributes to Locomotor Deficiency in a Model of Acute Liver Injury

    PubMed Central

    Wei, Yan-Yan; Chen, Jing; Dou, Ke-Feng; Wang, Ya-Yun

    2013-01-01

    Background Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr) in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. Methods Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE). The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. Results In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. Conclusion Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure. PMID:23741482

  2. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Xu, Huihui; Li, Ping; Xu, Yong

    2017-12-01

    Liver fibrosis is widely perceived as a host defense mechanism that aids tissue repair following liver injury. Excessive fibrogenesis, however, serves to disrupt normal liver structure and precedes such irrevocable human pathologies as cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrosis. In the present study we investigated the mechanism by which the lysine deacetylase SIRT1 regulates HSC activation. We report here that SIRT1 levels were decreased in the liver in different mouse models and in cultured HSCs undergoing activation. SIRT1 down-regulation paralleled HDAC4 up-regulation. HDAC4 was recruited to the SIRT1 promoter during HSC activation and removed acetylated histones H3 and H4 from the SIRT1 promoter leading to SIRT1 trans-repression. HDAC4 silencing restored SIRT1 expression and attenuated HSC activation in SIRT1-dependent manner. More important, selective deletion of SIRT1 in HSCs exacerbated CCl 4 -induced liver fibrosis in mice. Mechanistically, SIRT1 deacetylated PPARγ to block HSC activation. Together, our data reveal an HDAC4-SIRT1-PPARγ axis that contributes to the regulation of HSC activation and liver fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A systematic survey of lipids across mouse tissues

    PubMed Central

    Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.

    2014-01-01

    Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676

  4. Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer

    PubMed Central

    Hamblin, M R; Governatore, M Del; Rizvi, I; Hasan, T

    2000-01-01

    Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17.1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11076666

  5. A microRNA signature for tumorigenic conazoles in mouse liver.

    EPA Science Inventory

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants o...

  6. Altered microRNA expression induced by tumorigenic conazoles in mouse liver.

    EPA Science Inventory

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural and therapeutic fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants ...

  7. Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Özcan, Umut; Yilmaz, Erkan; Özcan, Lale; Furuhashi, Masato; Vaillancourt, Eric; Smith, Ross O.; Görgün, Cem Z.; Hotamisligil, Gökhan S.

    2006-08-01

    Endoplasmic reticulum (ER) stress is a key link between obesity, insulin resistance, and type 2 diabetes. Here, we provide evidence that this mechanistic link can be exploited for therapeutic purposes with orally active chemical chaperones. 4-Phenyl butyric acid and taurine-conjugated ursodeoxycholic acid alleviated ER stress in cells and whole animals. Treatment of obese and diabetic mice with these compounds resulted in normalization of hyperglycemia, restoration of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of insulin action in liver, muscle, and adipose tissues. Our results demonstrate that chemical chaperones enhance the adaptive capacity of the ER and act as potent antidiabetic modalities with potential application in the treatment of type 2 diabetes.

  8. Development of Hepatocellular Carcinoma in a Murine Model of Nonalcoholic Steatohepatitis Induced by Use of a High-Fat/Fructose Diet and Sedentary Lifestyle

    PubMed Central

    Dowman, Joanna K.; Hopkins, Laurence J.; Reynolds, Gary M.; Nikolaou, Nikolaos; Armstrong, Matthew J.; Shaw, Jean C.; Houlihan, Diarmaid D.; Lalor, Patricia F.; Tomlinson, Jeremy W.; Hübscher, Stefan G.; Newsome, Philip N.

    2014-01-01

    Obesity is increasingly prevalent, strongly associated with nonalcoholic liver disease, and a risk factor for numerous cancers. Here, we describe the liver-related consequences of long-term diet-induced obesity. Mice were exposed to an extended obesity model comprising a diet high in trans-fats and fructose corn syrup concurrent with a sedentary lifestyle. Livers were assessed histologically using the nonalcoholic fatty liver disease (NAFLD) activity score (Kleiner system). Mice in the American Lifestyle-Induced Obesity Syndrome (ALIOS) model developed features of early nonalcoholic steatohepatitis at 6 months (mean NAFLD activity score = 2.4) and features of more advanced nonalcoholic steatohepatitis at 12 months, including liver inflammation and bridging fibrosis (mean NAFLD activity score = 5.0). Hepatic expression of lipid metabolism and insulin signaling genes were increased in ALIOS mice compared with normal chow-fed mice. Progressive activation of the mouse hepatic stem cell niche in response to ALIOS correlated with steatosis, fibrosis, and inflammation. Hepatocellular neoplasms were observed in 6 of 10 ALIOS mice after 12 months. Tumors displayed cytological atypia, absence of biliary epithelia, loss of reticulin, alteration of normal perivenular glutamine synthetase staining (absent or diffuse), and variable α-fetoprotein expression. Notably, perivascular tumor cells expressed hepatic stem cell markers. These studies indicate an adipogenic lifestyle alone is sufficient for the development of nonalcoholic steatohepatitis, hepatic stem cell activation, and hepatocarcinogenesis in wild-type mice. PMID:24650559

  9. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis.

    PubMed

    Matsumoto, Kotaro; Ichimura, Mayuko; Tsuneyama, Koichi; Moritoki, Yuki; Tsunashima, Hiromichi; Omagari, Katsuhisa; Hara, Masumi; Yasuda, Ichiro; Miyakawa, Hiroshi; Kikuchi, Kentaro

    2017-01-01

    Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine-choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine-choline-deficient diet, a methionine-choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine-choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine-choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine-choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine-choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine-choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.

  10. Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer

    PubMed Central

    Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta

    2006-01-01

    Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  11. A potential microRNA signature for tumorigenic conazoles in mouse liver

    EPA Science Inventory

    Triadimefon, propiconazole and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumor...

  12. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  13. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model.

    PubMed

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/-) mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/-) mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.

  14. A Screen in Mice Uncovers Repression of Lipoprotein Lipase by MicroRNA-29a as a Mechanism for Lipid Distribution Away From the Liver

    PubMed Central

    Mattis, Aras N.; Song, Guisheng; Hitchner, Kelly; Kim, Roy Y.; Lee, Andrew Y.; Sharma, Amar D.; Malato, Yann; McManus, Michael T.; Esau, Christine C.; Koller, Erich; Koliwad, Suneil; Lim, Lee P.; Maher, Jacquelyn J.; Raffai, Robert L.; Willenbring, Holger

    2015-01-01

    Identification of microRNAs (miRNAs) that regulate lipid metabolism is important to advance the understanding and treatment of some of the most common human diseases. In the liver, a few key miRNAs have been reported that regulate lipid metabolism, but since many genes contribute to hepatic lipid metabolism, we hypothesized that other such miRNAs exist. To identify genes repressed by miRNAs in mature hepatocytes in vivo, we injected adult mice carrying floxed Dicer1 alleles with an adenoassociated viral vector expressing Cre recombinase specifically in hepatocytes. By inactivating Dicer in adult quiescent hepatocytes we avoided the hepatocyte injury and regeneration observed in previous mouse models of global miRNA deficiency in hepatocytes. Next, we combined gene and miRNA expression profiling to identify candidate gene/miRNA interactions involved in hepatic lipid metabolism, and validated their function in vivo using antisense oligonucleotides. A candidate gene that emerged from our screen was lipoprotein lipase (Lpl), which encodes an enzyme that facilitates cellular uptake of lipids from the circulation. Unlike in energy-dependent cells like myocytes, Lpl is normally repressed in adult hepatocytes. We identified miR-29a as the miRNA responsible for repressing Lpl in hepatocytes, and found that decreasing hepatic miR-29a levels causes lipids to accumulate in mouse livers. Conclusion Our screen suggests several new miRNAs are regulators of hepatic lipid metabolism. We show that one of these, miR-29a, contributes to physiological lipid distribution away from the liver and protects hepatocytes from steatosis. Our results, together with miR-29a’s known anti-fibrotic effect, suggest miR-29a is a therapeutic target in fatty liver disease. PMID:25131933

  15. Anti-fibrotic potential of human umbilical cord mononuclear cells and mouse bone marrow cells in CCl4- induced liver fibrosis in mice.

    PubMed

    Elmahdy, Nageh Ahmed; Sokar, Samia Salem; Salem, Mohamed Labib; Sarhan, Naglaa Ibrahim; Abou-Elela, Sherin Hamed

    2017-05-01

    Liver fibrosis is the consequence of hepatocyte injury that leads to the activation of hepatic stellate cells (HSC). The treatment of choice is Liver transplantation; however, it has many problems such as surgery-related complications, immunological rejection and high costs associated with the procedure. Stem cell-based therapy would be a potential alternative, so the aim of this study is to investigate the therapeutic potential of human umbilical cord mononuclear cells (MNC) and mouse bone marrow cells (BMC) against carbon tetrachloride (CCl 4 ) induced liver fibrosis in mice and compare it with that of silymarin. In the present study, male albino mice (N=60) were divided into six groups (10 mice each), the first group served as the normal control group while the remaining five groups were rendered fibrotic by intraperitoneal injections of CCl 4 and being left for 6 weeks to develop hepatic fibrosis. Thereafter, the mice were divided into CCl 4 group, CCl 4 group receiving MNC or BMC or silymarin or MNC and silymarin combination. After the specified treatment period, animals were then euthanized, blood and tissue samples were collected for measurement of alanine aminotransferase(ALT), aspartate aminotransferase(AST), malondialdehyde(MDA), reduced glutathione(GSH), collagen, Laminin, transforming growth factor β1(TGFβ1), tumor necrosis factor alpha(TNFα). MNC, BMC, and the combination therapy showed a significant decrease in ALT, AST, MDA, collagen, Laminin, TGFβ1, and TNFα and a significant increase in GSH. The data displayed a similar regression of fibrosis with the histological and immunohistological parameters. In conclusion, MNC, BMC and the combination therapy showed a potential therapeutic effect against liver fibrosis via reducing oxidative stress, inflammatory mediators, and fibrogenic markers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Quantitative changes in endogenous DNA damage correlate with conazole mutagenicity and tumorigenicity.

    EPA Science Inventory

    The mouse liver tumorigenic conazolefungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil w...

  17. Vitamin C restores healthy aging in a mouse model for Werner syndrome

    PubMed Central

    Massip, Laurent; Garand, Chantal; Paquet, Eric R.; Cogger, Victoria C.; O’Reilly, Jennifer N.; Tworek, Leslee; Hatherell, Avril; Taylor, Carla G.; Thorin, Eric; Zahradka, Peter; Le Couteur, David G.; Lebel, Michel

    2013-01-01

    Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN homologue exhibit many phenotypic features of WS, including a prooxidant status and a shorter mean life span compared to wild-type animals. Here, we show that Wrn mutant mice also develop premature liver sinusoidal endothelial defenestration along with inflammation and metabolic syndrome. Vitamin C supplementation rescued the shorter mean life span of Wrn mutant mice and reversed several age-related abnormalities in adipose tissues and liver endothelial defenestration, genomic integrity, and inflammatory status. At the molecular level, phosphorylation of age-related stress markers like Akt kinase-specific substrates and the transcription factor NF-κB, as well as protein kinase Cδ and Hif-1α transcription factor levels, which are increased in the liver of Wrn mutants, were normalized by vitamin C. Vitamin C also increased the transcriptional regulator of lipid metabolism PPARα. Finally, microarray and gene set enrichment analyses on liver tissues revealed that vitamin C decreased genes normally up-regulated in human WS fibroblasts and cancers, and it increased genes involved in tissue injury response and adipocyte dedifferentiation in obese mice. Vitamin C did not have such effect on wild-type mice. These results indicate that vitamin C supplementation could be beneficial for patients with WS. PMID:19741171

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibroticmore » livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.« less

  19. Regulation of hepatic bile acid transporters Ntcp and Bsep expression.

    PubMed

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D

    2007-12-03

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid (CDCA) increased Bsep mRNA expression. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers.

  20. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome

    PubMed Central

    Oshida, Keiyu; Waxman, David J.; Corton, J. Christopher

    2016-01-01

    The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97%) accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize) or suppress (feminize) STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93%) of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARα). Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg) but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver. PMID:26959237

  1. Color-Coded Imaging of Breast Cancer Metastatic Niche Formation in Nude Mice.

    PubMed

    Suetsugu, Atsushi; Momiyama, Masashi; Hiroshima, Yukihiko; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M

    2015-12-01

    We report here a color-coded imaging model in which metastatic niches in the lung and liver of breast cancer can be identified. The transgenic green fluorescent protein (GFP)-expressing nude mouse was used as the host. The GFP nude mouse expresses GFP in all organs. However, GFP expression is dim in the liver parenchymal cells. Mouse mammary tumor cells (MMT 060562) (MMT), expressing red fluorescent protein (RFP), were injected in the tail vein of GFP nude mice to produce experimental lung metastasis and in the spleen of GFP nude mice to establish a liver metastasis model. Niche formation in the lung and liver metastasis was observed using very high resolution imaging systems. In the lung, GFP host-mouse cells accumulated around as few as a single MMT-RFP cell. In addition, GFP host cells were observed to form circle-shaped niches in the lung even without RFP cancer cells, which was possibly a niche in which future metastasis could be formed. In the liver, as with the lung, GFP host cells could form circle-shaped niches. Liver and lung metastases were removed surgically and cultured in vitro. MMT-RFP cells and GFP host cells resembling cancer-associated fibroblasts (CAFs) were observed interacting, suggesting that CAFs could serve as a metastatic niche. © 2015 Wiley Periodicals, Inc.

  2. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  3. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    PubMed

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  4. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.

    PubMed

    Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S

    2004-08-01

    An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.

  5. Liver natural killer cells: subsets and roles in liver immunity

    PubMed Central

    Peng, Hui; Wisse, Eddie; Tian, Zhigang

    2016-01-01

    The liver represents a frontline immune organ that is constantly exposed to a variety of gut-derived antigens as a result of its unique location and blood supply. With a predominant role in innate immunity, the liver is enriched with various innate immune cells, among which natural killer (NK) cells play important roles in host defense and in maintaining immune balance. Hepatic NK cells were first described as ‘pit cells' in the rat liver in the 1970s. Recent studies of NK cells in mouse and human livers have shown that two distinct NK cell subsets, liver-resident NK cells and conventional NK (cNK) cells, are present in this organ. Here, we review liver NK cell subsets in different species, revisiting rat hepatic pit cells and highlighting recent progress related to resident NK cells in mouse and human livers, and also discuss the dual roles of NK cells in liver immunity. PMID:26639736

  6. Reduction of PTP1B induces differential expression of PI3-kinase (p85alpha) isoforms.

    PubMed

    Rondinone, Cristina M; Clampit, Jill; Gum, Rebecca J; Zinker, Bradley A; Jirousek, Michael R; Trevillyan, James M

    2004-10-15

    Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states. Copyright 2004 Elsevier Inc.

  7. Subcellular localization and cytoplasmic complex status of endogenous Keap1.

    PubMed

    Watai, Yoriko; Kobayashi, Akira; Nagase, Hiroko; Mizukami, Mio; McEvoy, Justina; Singer, Jeffrey D; Itoh, Ken; Yamamoto, Masayuki

    2007-10-01

    Keap1 acts as a sensor for oxidative/electrophilic stress, an adaptor for Cullin-3-based ubiquitin ligase, and a regulator of Nrf2 activity through the interaction with Nrf2 Neh2 domain. However, the mechanism(s) of Nrf2 migration into the nucleus in response to stress remains largely unknown due to the lack of a reliable antibody for the detection of endogenous Keap1 molecule. Here, we report the generation of a new monoclonal antibody for the detection of endogenous Keap1 molecules. Immunocytochemical analysis of mouse embryonic fibroblasts with the antibody revealed that under normal, unstressed condition, Keap1 is localized primarily in the cytoplasm with minimal amount in the nucleus and endoplasmic reticulum. This subcellular localization profile of Keap1 appears unchanged after treatment of cells with diethyl maleate, an electrophile, and/or Leptomycin B, a nuclear export inhibitor. Subcellular fractionation analysis of mouse liver cells showed similar results. No substantial change in the subcellular distribution profile could be observed in cells isolated from butylated hydroxyanisole-treated mice. Analyses of sucrose density gradient centrifugation of mouse liver cells indicated that Keap1 appears to form multiprotein complexes in the cytoplasm. These results demonstrate that endogenous Keap1 remains mostly in the cytoplasm, and electrophiles promote nuclear accumulation of Nrf2 without altering the subcellular localization of Keap1.

  8. Constitutive androstane receptor activation evokes the expression of glycolytic genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarushkin, Andrei A.; Kazantseva, Yuliya A.; Prokopyeva, Elena A.

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in amore » mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation. - Highlights: • CAR-mediated liver growth is correlated with increased expression of cMyc. • CAR activation increased the expression of glycolytic genes in mouse livers. • CAR activation increased the level of Pkm2 in mouse livers.« less

  9. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  10. Bisphenol A sulfonation is impaired in metabolic and liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results:more » In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.« less

  11. Importance of circulating IGF-1 for normal cardiac morphology, function and post infarction remodeling.

    PubMed

    Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E

    2012-12-01

    IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.

    PubMed

    Bowen, David G; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W; Bertolino, Patrick

    2004-09-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for primary activation of CD8+ T cells between the liver and secondary lymphoid tissues, with the immune outcome determined by the initial site of activation. Using a transgenic mouse model in which antigen is expressed within both liver and lymph nodes, we show that while naive CD8+ T cells activated within the lymph nodes were capable of mediating hepatitis, cells undergoing primary activation within the liver exhibited defective cytotoxic function and shortened half-life and did not mediate hepatocellular injury. The implications of these novel findings may pertain not only to the normal maintenance of peripheral tolerance, but also to hepatic allograft tolerance and the immunopathogenesis of chronic viral hepatitis.

  13. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  14. Identification of a differentially-expressed gene in fatty liver of overfeeding geese.

    PubMed

    Zhao, Ayong; Tang, Huachun; Lu, Sufang; He, Ruiguo

    2007-09-01

    In response to overfeeding, geese develop fatty liver. To understand the fattening mechanism, mRNA differential display reverse transcription PCR was used to study the gene expression differences between French Landes grey geese and Xupu white geese in conditions of overfeeding and normal feeding. One gene was found to be up-regulated in the fatty liver in both breeds, and it has a 1797 bp cDNA with 83% identity to chicken SELENBP1. The sequence analysis revealed that its open reading frame of 1413 bp encodes a protein of 471 amino acids, which contains a putative conserved domain of 56 kDa selenium binding protein with high homology to its homologues of chicken (95%), rat (86%), mouse (84%), human (86%), monkey (86%), dog (86%), and cattle (86%). The function of this protein has been briefly reviewed based on published information. In tissue expression analysis, the expression of geese SELENBP1 mRNA was found to be higher in liver or kidney than in other tested tissues. The results showed that overfeeding could increase the mRNA expression level of geese SELENBP1.

  15. Optimized Mouse Models for Liver Fibrosis.

    PubMed

    Kim, Yong Ook; Popov, Yury; Schuppan, Detlef

    2017-01-01

    Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.

  16. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  17. ASSESSING MOLECULAR MECHANISMS OF THREE TOXICOLOGICALLY DIFFERENT CONAZOLES BASED ON PATHWAY ANALYSIS OF MOUSE LIVER TRANSCRIPTOMES

    EPA Science Inventory

    The present study was designed to identify the underlying molecular mechanism for the induction of mouse liver tumors by structurally-related conazoles. CD-1 mice were treated with the tumor producing conazoles, triadimefon (1800, 500, or 100 ppm), or propiconazole (2500, 500, or...

  18. Clinical data and characterization of the liver conditional mouse model exclude neoplasia as a non-neurological manifestation associated with Friedreich’s ataxia

    PubMed Central

    Martelli, Alain; Friedman, Lisa S.; Reutenauer, Laurence; Messaddeq, Nadia; Perlman, Susan L.; Lynch, David R.; Fedosov, Kathrin; Schulz, Jörg B.; Pandolfo, Massimo; Puccio, Hélène

    2012-01-01

    SUMMARY Friedreich’s ataxia (FRDA) is the most common hereditary ataxia in the caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia, hypertrophic cardiomyopathy and increased incidence of diabetes. FRDA is caused by impaired expression of the FXN gene coding for the mitochondrial protein frataxin. During the past ten years, the development of mouse models of FRDA has allowed better understanding of the pathophysiology of the disease. Among the mouse models of FRDA, the liver conditional mouse model pointed to a tumor suppressor activity of frataxin leading to the hypothesis that individuals with FRDA might be predisposed to cancer. In the present work, we investigated the presence and the incidence of neoplasia in the largest FRDA patient cohorts from the USA, Australia and Europe. As no predisposition to cancer could be observed in both cohorts, we revisited the phenotype of the liver conditional mouse model. Our results show that frataxin-deficient livers developed early mitochondriopathy, iron-sulfur cluster deficits and intramitochondrial dense deposits, classical hallmarks observed in frataxin-deficient tissues and cells. With age, a minority of mice developed structures similar to the ones previously associated with tumor formation. However, these peripheral structures contained dying, frataxin-deficient hepatocytes, whereas the inner liver structure was composed of a pool of frataxin-positive cells, due to inefficient Cre-mediated recombination of the Fxn gene, that contributed to regeneration of a functional liver. Together, our data demonstrate that frataxin deficiency and tumorigenesis are not associated. PMID:22736457

  19. Alterations in specific gene expression and focal neoplastic growth during spontaneous hepatocarcinogenesis in albumin-SV40 T antigen transgenic rats.

    PubMed

    Dragan, Yvonne P; Sargent, Linda M; Babcock, Karlee; Kinunen, Nina; Pitot, Henry C

    2004-07-01

    Transgenic rats containing the mouse albumin promoter and enhancer directing the expression of simian virus (SV40) T antigen (T Ag) exhibited a 100% incidence of hepatic neoplasms by 24-36 wk of age. These transgenic rats exhibited expression of large T Ag and c-myc protein within focal basophilic lesions and nodules, but not in surrounding hepatocytes. At 24 wk of age, female TG+ rats exhibited a significantly greater number of lesions and a much greater percentage of the liver occupied by TG+ focal hepatic lesions than did their male TG+ littermates. Previous studies on these animals [Sargent et al., Cancer Res 1997;57:3451-3456] demonstrate that at 12 wk of age approximately one-third of metaphases in hepatocytes exhibit a duplication of the 1q3.7-1q4.1 region of rat chromosome 1, with the smallest common region of duplication being that of 1q4.1. Duplication of the 1q3.7-1q4.3 region is also noted in many primary hepatic neoplasms resulting from the multistage model of Initiation-Promotion-Progression (IPP) [Sargent et al., Cancer Res 1996;56:2985-2991]. This region is syntenic with human 11p15.5 and mouse 7ter, which have been implicated in the development of specific neoplasms. Within the syntenic region was a cluster of imprinted genes whose expression we investigated in livers and neoplasms of TG+ rats. H19 was expressed in almost all of the neoplasms, but not in normal adult liver cells. Igf2 expression was detected in the majority of hepatic neoplasms of female TG+ rats, but in a relatively smaller number of neoplasms of TG+ males. The expression of p57Kip2 (Kip2), a cyclin-dependent kinase inhibitor that was also in the imprinted region, exhibited some variable increased expression predominantly in hepatic neoplasms from livers of female TG+ rats. Other imprinted genes within the imprinted gene cluster-insulin II (Ins2), Mash2 (which codes for a basic helix-loop-helix transcription factor), and Kvlqt1 (coding for a component of a potassium transport channel)-showed no consistently different expression from that seen in normal hepatocytes. Another gene, also located on the long arm of chromosome 1, that showed changes was the ribonucleotide reductase M1 subunit (Rrm1), in which an increase in its expression was found. This was seen in hepatic neoplasms of TG+ rats of both sexes compared with surrounding normal-appearing liver. Because hepatic neoplasms developing in livers of rats treated with chemical carcinogens commonly exhibit an increased expression of c-myc mRNA, expression of this gene was investigated in focal lesions and livers of TG+ rats, although c-myc was not located on chromosome 1. c-myc mRNA was increased in focal lesions, nodules, and neoplasms in both male and female TG+ rats compared with adult and surrounding liver. Immunostaining for c-myc protein demonstrated detectable levels in isolated single cells as well as focal lesions and neoplasms. Thus, the enhanced c-myc expression, common to all hepatic neoplasms in this system, coupled with enhanced expression of Igf2 in female TG+ rats, may be responsible for the increase in growth rate in hepatic neoplasms of female TG+ rats compared with that in livers of male TG+ rats and may contribute to neoplastic progression in the liver of this transgenic model.

  20. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    PubMed

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  1. Type II iodothyronine deiodinase provides intracellular 3,5,3'-triiodothyronine to normal and regenerating mouse skeletal muscle.

    PubMed

    Marsili, Alessandro; Tang, Dan; Harney, John W; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico; Larsen, P Reed

    2011-11-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T(3) under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T(4)-to-T(3) conversion increases during differentiation in C(2)C(12) myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given (125)I-T(4) and (131)I-T(3), the intracellular (125)I-T(3)/(131)I-T(3) ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the (125)I-T(3)/(131)I-T(3) ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in (125)I-T(3)/(131)I-T(3) ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of (125)I-T(3) is doubled after skeletal muscle injury. Thus, D2-mediated T(4)-to-T(3) conversion generates significant intracellular T(3) in normal mouse skeletal muscle, with the increased T(3) required for muscle regeneration being provided by increased D2 synthesis, not by T(3) from the circulation.

  2. Type II iodothyronine deiodinase provides intracellular 3,5,3′-triiodothyronine to normal and regenerating mouse skeletal muscle

    PubMed Central

    Marsili, Alessandro; Tang, Dan; Harney, John W.; Singh, Prabhat; Zavacki, Ann Marie; Dentice, Monica; Salvatore, Domenico

    2011-01-01

    The FoxO3-dependent increase in type II deiodinase (D2), which converts the prohormone thyroxine (T4) to 3,5,3′-triiodothyronine (T3), is required for normal mouse skeletal muscle differentiation and regeneration. This implies a requirement for an increase in D2-generated intracellular T3 under these conditions, which has not been directly demonstrated despite the presence of D2 activity in skeletal muscle. We directly show that D2-mediated T4-to-T3 conversion increases during differentiation in C2C12 myoblast and primary cultures of mouse neonatal skeletal muscle precursor cells, and that blockade of D2 eliminates this. In adult mice given 125I-T4 and 131I-T3, the intracellular 125I-T3/131I-T3 ratio is significantly higher than in serum in both the D2-expressing cerebral cortex and the skeletal muscle of wild-type, but not D2KO, mice. In D1-expressing liver and kidney, the 125I-T3/131I-T3 ratio does not differ from that in serum. Hypothyroidism increases D2 activity, and in agreement with this, the difference in 125I-T3/131I-T3 ratio is increased further in hypothyroid wild-type mice but not altered in the D2KO. Notably, in wild-type but not in D2KO mice, the muscle production of 125I-T3 is doubled after skeletal muscle injury. Thus, D2-mediated T4-to-T3 conversion generates significant intracellular T3 in normal mouse skeletal muscle, with the increased T3 required for muscle regeneration being provided by increased D2 synthesis, not by T3 from the circulation. PMID:21771965

  3. Development of hepatocellular carcinoma in a murine model of nonalcoholic steatohepatitis induced by use of a high-fat/fructose diet and sedentary lifestyle.

    PubMed

    Dowman, Joanna K; Hopkins, Laurence J; Reynolds, Gary M; Nikolaou, Nikolaos; Armstrong, Matthew J; Shaw, Jean C; Houlihan, Diarmaid D; Lalor, Patricia F; Tomlinson, Jeremy W; Hübscher, Stefan G; Newsome, Philip N

    2014-05-01

    Obesity is increasingly prevalent, strongly associated with nonalcoholic liver disease, and a risk factor for numerous cancers. Here, we describe the liver-related consequences of long-term diet-induced obesity. Mice were exposed to an extended obesity model comprising a diet high in trans-fats and fructose corn syrup concurrent with a sedentary lifestyle. Livers were assessed histologically using the nonalcoholic fatty liver disease (NAFLD) activity score (Kleiner system). Mice in the American Lifestyle-Induced Obesity Syndrome (ALIOS) model developed features of early nonalcoholic steatohepatitis at 6 months (mean NAFLD activity score = 2.4) and features of more advanced nonalcoholic steatohepatitis at 12 months, including liver inflammation and bridging fibrosis (mean NAFLD activity score = 5.0). Hepatic expression of lipid metabolism and insulin signaling genes were increased in ALIOS mice compared with normal chow-fed mice. Progressive activation of the mouse hepatic stem cell niche in response to ALIOS correlated with steatosis, fibrosis, and inflammation. Hepatocellular neoplasms were observed in 6 of 10 ALIOS mice after 12 months. Tumors displayed cytological atypia, absence of biliary epithelia, loss of reticulin, alteration of normal perivenular glutamine synthetase staining (absent or diffuse), and variable α-fetoprotein expression. Notably, perivascular tumor cells expressed hepatic stem cell markers. These studies indicate an adipogenic lifestyle alone is sufficient for the development of nonalcoholic steatohepatitis, hepatic stem cell activation, and hepatocarcinogenesis in wild-type mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Liver alpha-amylase gene expression as an early obesity biomarker.

    PubMed

    Mojbafan, Marzieh; Afsartala, Zohreh; Amoli, Mahsa M; Mahmoudi, Mahdi; Yaghmaei, Parichehreh; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2017-04-01

    Obesity is a major health problem worldwide, for which preventive and therapeutic means are still needed. Alpha-amylase is a digestive enzyme whose inhibition has been targeted as a potential anti-obesity strategy. However, alpha-amylase gene expression has not been particularly attended to, and in contrast with pancreatic and salivary amylases, fewer studies have focused on liver alpha-amylase. The present study aimed at investigating the expression of alpha-amylase gene in obese and normal mice at RNA and protein level as well as acarbose effect on this gene expression in hepatocyte cell culture. Control and case groups were fed by normal mouse pellet and high-fat diet respectively, during 8 weeks. After this period, serum biochemical parameters including glucose, cholesterol, triglycerides, AST, ALT and alpha-amylase were assayed. Liver alpha-amylase gene was analyzed by real time PCR, and liver enzyme was assayed with Bernfeld and ELISA methods Hepatocyte cell culture derived from both group were also treated by acarbose and alpha-amylase activity and gene expression was analyzed by above mentioned methods. All biochemical factors showed an increase in obese mice, but the increase in ALT and AST were not statistically significant. Alpha-amylase levels were also increased in obese mice, both at RNA and protein level, while a decrease was seen in obese mice derived hepatocytes after acarbose treatment. Elevated liver alpha-amylase levels may be indicative of initial stages of obesity and the use of acarbose could be considered as a treatment of obesity which could be potentially effective at multiple levels. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  5. Characterization of rodent liver and kidney AVP receptors: pharmacologic evidence for species differences.

    PubMed

    Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A

    1999-10-22

    Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.

  6. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice.

    PubMed

    Ko, Kwang Suk; Tomasi, Maria Lauda; Iglesias-Ara, Ainhoa; French, Barbara A; French, Samuel W; Ramani, Komal; Lozano, Juan José; Oh, Pilsoo; He, Lina; Stiles, Bangyan L; Li, Tony W H; Yang, Heping; Martínez-Chantar, M Luz; Mato, José M; Lu, Shelly C

    2010-12-01

    Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver-specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up-regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh-7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh-7 cells did not affect proliferation significantly or sensitize cells to sorafenib-induced apoptosis. Hepatocyte-specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in hepatocytes. Copyright © 2010 American Association for the Study of Liver Diseases.

  7. GW501516 acts as an efficient PPARα activator in the mouse liver.

    PubMed

    Terada, M; Araki, M; Ashibe, B; Motojima, K

    2011-08-01

    The peroxisome proliferator-activated receptor (PPAR) subtype specificity of GW501516, a well-known PPARδ-specific agonist, was studied by examining its effects on the expression of endogenous genes in primary hepatocytes and the liver of wild-type and PPARα-null mice. GW501516, like the PPARα-specific agonist Wy14,643, induced the expression of several PPAR target genes in a dose-dependent manner but this action was mostly absent in the cells and liver of PPARα-null mice. Results indicated that GW501516 acts as an efficient PPARα activator in the mouse liver.

  8. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice.

    PubMed

    Grimm, Christian; Holdt, Lesca M; Chen, Cheng-Chang; Hassan, Sami; Müller, Christoph; Jörs, Simone; Cuny, Hartmut; Kissing, Sandra; Schröder, Bernd; Butz, Elisabeth; Northoff, Bernd; Castonguay, Jan; Luber, Christian A; Moser, Markus; Spahn, Saskia; Lüllmann-Rauch, Renate; Fendel, Christina; Klugbauer, Norbert; Griesbeck, Oliver; Haas, Albert; Mann, Matthias; Bracher, Franz; Teupser, Daniel; Saftig, Paul; Biel, Martin; Wahl-Schott, Christian

    2014-08-21

    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.

  9. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    PubMed

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  10. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case Study

    EPA Science Inventory

    Short-term molecular profiles are a central component of strategies to model health effects of environmental chemicals. In this study, a 7 day mouse assay was used to evaluate transcriptomic and proliferative responses in the liver for a hepatocarcinogenic phthalate, di (2-ethylh...

  11. Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process

    EPA Science Inventory

    Propiconazole induces hepatocarcinomas and hepatoadenomas in mice and is a rat liver tumor promoter. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicate that ...

  12. Radiographic liver size in Pekingese dogs versus other dog breeds.

    PubMed

    Choi, Jihye; Keh, Seoyeon; Kim, Hyunwook; Kim, Junyoung; Yoon, Junghee

    2013-01-01

    Differential diagnoses for canine liver disease are commonly based on radiographic estimates of liver size, however little has been published on breed variations. Aims of this study were to describe normal radiographic liver size in Pekingese dogs and to compare normal measurements for this breed with other dog breeds and Pekingese dogs with liver disease. Liver measurements were compared for clinically normal Pekingese (n = 61), normal non-Pekingese brachycephalic (n = 45), normal nonbrachycephalic (n = 71), and Pekingese breed dogs with liver disease (n = 22). For each dog, body weight, liver length, T11 vertebral length, thoracic depth, and thoracic width were measured on right lateral and ventrodorsal abdominal radiographs. Liver volume was calculated using a formula and ratios of liver length/T11 vertebral length and liver volume/body weight ratio were determined. Normal Pekingese dogs had a significantly smaller liver volume/body weight ratio (16.73 ± 5.67, P < 0.05) than normal non-Pekingese brachycephalic breed dogs (19.54 ± 5.03) and normal nonbrachycephalic breed dogs (18.72 ± 6.52). The liver length/T11 vertebral length ratio in normal Pekingese (4.64 ± 0.65) was significantly smaller than normal non-Pekingese brachycephalic breed dogs (5.16 ± 0.74) and normal nonbrachycephalic breed dogs (5.40 ± 0.74). Ratios of liver volume/body weight and liver length/T11 vertebral length in normal Pekingese were significantly different from Pekingese with liver diseases (P < 0.05). Findings supported our hypothesis that Pekingese dogs have a smaller normal radiographic liver size than other breeds. We recommend using 4.64× the length of the T11 vertebra as a radiographic criterion for normal liver length in Pekingese dogs. © 2012 Veterinary Radiology & Ultrasound.

  13. Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration.

    PubMed

    Vaquero, Javier; Campbell, Jean S; Haque, Jamil; McMahan, Ryan S; Riehle, Kimberly J; Bauer, Renay L; Fausto, Nelson

    2011-08-01

    Partial hepatectomy (PH) consistently results in an early increase of circulating interleukin-6 (IL-6), which is thought to play a major role in liver regeneration. Activation of this cytokine after PH requires the adaptor protein, MyD88, but the specific MyD88-related receptors involved remain unidentified. It is also unknown whether the magnitude of IL-6 elevation determines the extent of subsequent hepatocyte proliferation. Here, we uncovered artifacts in the assessment of circulating IL-6 levels when using cardiac puncture in mice after PH. By using retro-orbital bleed sampling, we show that the circulating levels of IL-6 after PH were not directly correlated with the extent of hepatocyte DNA synthesis in individual mice. The IL-6 increase after PH was attenuated in all lipopolysaccharide-hyporesponsive mouse strains studied (e.g., C3H/HeJ, Tlr4 null, Cd14 null, Tlr2,4,9 null, and Tlr2,4-Caspase1 null) and was severely abrogated in Myd88 null mice. Despite attenuated IL-6 levels, Tlr4 null mice showed normal signaling downstream of IL-6 and normal hepatocyte proliferation. In contrast, Myd88 null mice showed severe impairments in signal transducer and activator of transcription 3 phosphorylation and Socs3 induction, but had enhanced and prolonged extracellular signal-related kinase 1 and 2 phosphorylation in the first 6 hours after PH. Unexpectedly, these changes were associated with accelerated initiation of hepatocyte proliferation, as assessed by hepatocyte bromodeoxyuridine incorporation, phospho-histone H3 immunostaining, and cyclin E and A protein expression. TLR-4 signaling contributes to IL-6 activation after PH, but the Tlr4-independent component appears sufficient for ensuring intact signaling downstream of IL-6. The lack of correlation between IL-6 levels and hepatocyte proliferation after PH, and the accelerated start of hepatocyte proliferation in Myd88 null mice despite abrogated cytokine activation, may highlight relevant antiproliferative effects of IL-6 signaling, possibly via Socs3, in the regulation of liver regeneration. Copyright © 2011 American Association for the Study of Liver Diseases.

  14. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    PubMed

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  15. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    PubMed

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  16. Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.

    PubMed

    Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H

    1993-01-01

    The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.

  17. Glycolytic and gluconeogenic enzyme activities in parenchymal and non-parenchymal cells from mouse liver

    PubMed Central

    Crisp, D. M.; Pogson, C. I.

    1972-01-01

    1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver `M-' and `L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. `L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of `M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed. PMID:4262895

  18. Propagation of Human Hepatocytes in uPA/SCID Mice: Producing Chimeric Mice with Humanized Liver.

    PubMed

    Ohshita, Hiroki; Tateno, Chise

    2017-01-01

    Primary or cryopreserved human hepatocytes (h-heps) have been used as the gold standard for in vitro metabolism and hepatotoxicity studies; however, the supply of h-heps is limited and they cannot grow in vitro. We achieved approximately 1000-fold propagation of h-heps in the liver of albumin promoter/enhancer-driven urokinase-type plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) mice with genetically induced liver disease and immunodeficiency. When h-heps are transplanted into the uPA/SCID mouse liver via the spleen, the h-heps engraft in the mouse liver, resulting in its repopulation with h-heps. We have named this model "chimeric mouse with humanized liver, PXB-mouse ® ." Fresh h-heps can be isolated from the chimeric mice (PXB-cells ® ) and have been used for in vitro studies.The efficacy and safety of chemical entities for use in humans are estimated using experimental animals such as rats and mice. The drug development of many chemical entities has been halted because of metabolic differences between humans and animals during clinical studies. Therefore, chimeric mice with humanized liver have been used to predict human-type metabolism and safety conditions for h-heps. In addition, until recently there were no suitable hepatitis B or C virus (HBV or HCV) susceptible animal models aside from chimpanzees. Chimeric mice are the sole persistent infectious small animal model for HBV and HCV and they have been used to investigate the efficacy of new anti-HBV or HCV agents.In this chapter, we describe a method for producing chimeric mice with humanized liver using uPA/SCID mice.

  19. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    PubMed

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  20. Mutational landscape of a chemically-induced mouse model of liver cancer.

    PubMed

    Connor, Frances; Rayner, Tim F; Aitken, Sarah J; Feig, Christine; Lukk, Margus; Santoyo-Lopez, Javier; Odom, Duncan T

    2018-06-26

    Carcinogen-induced mouse models of liver cancer are used extensively to study pathogenesis of the disease and have a critical role in validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Here, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. Our study provides detailed insight into the mutational landscape of tumours arising in a commonly-used carcinogen model of HCC, facilitating the future use of this model to understand the human disease. Mouse models are widely used to study the biology of cancer and to test potential therapies. Here, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  2. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  3. Reducing the background fluorescence in mice receiving fluorophore/inhibitor DNA duplexes.

    PubMed

    Liang, Minmin; Liu, Xinrong; Liu, Guozheng; Dou, Shuping; Cheng, Dengfeng; Liu, Yuxia; Rusckowski, Mary; Hnatowich, Donald J

    2011-02-07

    In principle, a DNA duplex consisting of an antisense fluorophore-conjugated major strand hybridized to a shorter complementary inhibitor-conjugated minor strand should provide fluorescence only in the tumor after intravenous administration if designed to remain intact except in the presence in tumor of its mRNA target. While we have obtained impressive tumor images in mice using this approach, there remains some background fluorescence. In this study, tissue homogenates of selected mouse organs were incubated with a test duplex and the kinetics of duplex dissociation in normal tissues were measured. In this manner we were able to identify the liver as the likely major source responsible for the duplex dissociation providing this fluorescence background. Thereafter liver homogenates were used to screen a series of duplex candidates with variable-length minor strands, and dissociation was measured by gel electrophoresis. The selected fluorophore/inhibitor duplex with improved stability displayed an insignificant (P > 0.05) background fluorescence after administration to SKH-1 normal mice and apparently without affecting target mRNA binding in vitro in cell culture or in vivo in tumor bearing mice.

  4. TWEAK induces liver progenitor cell proliferation

    PubMed Central

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  5. Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver.

    PubMed

    Sanoh, Seigo; Yamachika, Yuto; Tamura, Yuka; Kotake, Yaichiro; Yoshizane, Yasumi; Ishida, Yuji; Tateno, Chise; Ohta, Shigeru

    2017-01-01

    It is important to consider susceptibility to drug-induced toxicity between animals and humans. Chimeric mice with a humanized liver are expected to predict hepatotoxicity in humans. Drug-induced phospholipidosis (DIPL), in which phospholipids accumulate, is a known entity. In this study, we examined whether chimeric mice can reveal species differences in DIPL. Changes in various phosphatidylcholine (PhC) molecules were investigated in the liver of chimeric mice after administering amiodarone, which induces phospholipidosis. Liquid chromatography-tandem mass spectrometry revealed that levels of PhCs tended to increase in the liver after administration of amiodarone. The liver of chimeric mice consists of human hepatocytes and residual mouse hepatocytes. We used imaging mass spectrometry (IMS) to evaluate the increase of PhCs in human and mouse hepatocytes after administration of amiodarone. IMS visualizes localization of endogenous and exogenous molecules in tissues. The IMS analysis suggested that the localized levels of several PhCs tended to be higher in the human hepatocytes than those in mouse hepatocytes, and PhC levels changed in response to amiodarone. Chimeric mice with a humanized liver will be useful to evaluate species differences in DIPL between mice and humans.

  6. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis

    PubMed Central

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L.; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J.; Rafii, Shahin; Ding, Bi-Sen

    2017-01-01

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. Here, we show that targeting both the vascular niche and perivascular fibroblasts establishes “hospitable soil” to foster incorporation of “seed”, in this case the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NADPH Oxidase 4 (NOX4) synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly upregulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially-inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse fibrotic livers and lungs. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. PMID:28855398

  7. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues.

    PubMed

    Wei, Yuan; Zhou, Xin; Fang, Cheng; Li, Lei; Kluetzman, Kerri; Yang, Weizhu; Zhang, Qing-Yu; Ding, Xinxin

    2010-07-01

    A mouse model termed Cpr-low (CL) was recently generated, in which the expression of the cytochrome P450 reductase (Cpr) gene was globally down-regulated. The decreased CPR expression was accompanied by phenotypical changes, including reduced embryonic survival, decreases in circulating cholesterol, increases in hepatic P450 expression, and female infertility (accompanied by elevated serum testosterone and progesterone levels). In the present study, a complementary mouse model [named reversible-CL (r-CL)] was generated, in which the reduced CPR expression can be reversed in an organ-specific fashion. The neo cassette, which was inserted into the last Cpr intron in r-CL mice, can be deleted by Cre recombinase, thus returning the structure of the Cpr gene (and hence CPR expression) to normal in Cre-expressing cells. All previously identified phenotypes of the CL mice were preserved in the r-CL mice. As a first application of the r-CL model, we have generated an extrahepatic-CL (xh-CL) mouse for testing of the functions of CPR-dependent enzymes in all extrahepatic tissues. The xh-CL mice, generated by mating of r-CL mice with albumin-Cre mice, had normal CPR expression in hepatocytes but down-regulated CPR expression elsewhere. They were indistinguishable from wild-type mice in body and liver weights, circulating cholesterol levels, and hepatic microsomal P450 expression and activities; however, they still showed elevated serum testosterone and progesterone levels and sterility in females. Embryonic lethality was prevented in males, but apparently not in females, indicating a critical role for fetal hepatic CPR-dependent enzymes in embryonic development, at least in males.

  8. Beneficial Effect of Bis(Hinokitiolato)Zn Complex on High-fat Diet-induced Lipid Accumulation in Mouse Liver and Kidney.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Yoshizawa, Katsuhiko; Takenouchi, Akiko; Yasui, Hiroyuki

    2017-01-01

    Metabolic syndrome-induced lifestyle-related diseases include diabetes mellitus (DM) and hypertension, and Zn-based compounds have effects on DM. We aimed to investigate the ameliorating effects of bis(hinokitiolato)Zn, [Zn(hkt) 2 ] on lipid metabolism in the liver and kidney, histopathologically. We used a high-fat diet (HFD)-fed C57BL/6J mouse model and administered a diet containing 10-20 mg Zn/kg body weight (BW) or 20 mg pioglitazone/kg BW as the positive control. After the treatments, we collected blood, liver, and kidney samples and morphologically evaluated the mouse organs for fat accumulation. After a 4-month HFD administration, ectopic fat deposition was detected in the liver and kidney. Furthermore, Zn accumulation in the liver and kidney increased following [Zn(hkt) 2 ] treatment, that reduced lipid accumulations and lipid toxicity in these tissues. The results of this study suggest that [Zn(hkt) 2 ] could be a novel anti-dyslipidaemia compound for treating diet-induced obesity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Cystathionine γ-Lyase Deficiency Exacerbates CCl4-Induced Acute Hepatitis and Fibrosis in the Mouse Liver.

    PubMed

    Ci, Lei; Yang, Xingyu; Gu, Xiaowen; Li, Qing; Guo, Yang; Zhou, Ziping; Zhang, Mengjie; Shi, Jiahao; Yang, Hua; Wang, Zhugang; Fei, Jian

    2017-07-20

    The present study examined the role of cystathionine γ-lyase (CSE) in carbon tetrachloride (CCl 4 )-induced liver damage. A CSE gene knock-out and luciferase gene knock-in (KI) mouse model was constructed to study the function of CSE and to trace its expression in living status. CCl 4 or lipopolysaccharide markedly downregulated CSE expression in the liver of mice. CSE-deficient mice showed increased serum alanine aminotransferase and aspartate aminotransferase levels, and liver damage after CCl 4 challenge, whereas albumin and endogenous hydrogen sulfide (H 2 S) levels decreased significantly. CSE knockout mice showed increased serum homocysteine levels, upregulation of inflammatory cytokines, and increased autophagy and IκB-α degradation in the liver in response to CCl 4 treatment. The increase in pro-inflammatory cytokines, including tumor necrosis factor-alpha in CSE-deficient mice after CCl 4 challenge, was accompanied by a significant increase in liver tissue hydroxyproline and α-smooth muscle actin and histopathologic changes in the liver. However, H 2 S donor pretreatment effectively attenuated most of these imbalances. Here, a CSE knock-out and luciferase KI mouse model was established for the first time to study the transcriptional regulation of CSE expression in real time in a non-invasive manner, providing information on the effects and potential mechanisms of CSE on CCl 4 -induced liver injury. CSE deficiency increases pro-inflammatory cytokines in the liver and exacerbates acute hepatitis and liver fibrosis by reducing H 2 S production from L-cysteine in the liver. The present data suggest the potential of an H 2 S donor for the treatment of liver diseases such as toxic hepatitis and fibrosis. Antioxid. Redox Signal. 27, 133-149.

  10. DNA methylation markers for diagnosis and prognosis of common cancers

    PubMed Central

    Hao, Xiaoke; Luo, Huiyan; Krawczyk, Michal; Wei, Wei; Wang, Wenqiu; Wang, Juan; Flagg, Ken; Hou, Jiayi; Zhang, Heng; Yi, Shaohua; Jafari, Maryam; Lin, Danni; Chung, Christopher; Caughey, Bennett A.; Li, Gen; Dhar, Debanjan; Shi, William; Zheng, Lianghong; Hou, Rui; Zhu, Jie; Zhao, Liang; Fu, Xin; Zhang, Edward; Zhang, Charlotte; Zhu, Jian-Kang; Karin, Michael; Xu, Rui-Hua; Zhang, Kang

    2017-01-01

    The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis. PMID:28652331

  11. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  12. An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle.

    PubMed

    Niemann, Jan; Johne, Cindy; Schröder, Susanne; Koch, Franziska; Ibrahim, Saleh M; Schultz, Julia; Tiedge, Markus; Baltrusch, Simone

    2017-01-01

    Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gamma-glutamylcysteinylethyl ester attenuates progression of carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Nishida, K; Ohta, Y; Ishiguro, I

    1998-02-20

    We examined the effect of gamma-glutamylcysteinylethyl ester (gamma-GCE), which is readily transported into hepatocytes and increases hepatocellular reduced glutathione (GSH) levels, on the progression of carbon tetrachloride (CCl4)-induced liver injury in mice in comparison with that of GSH. Administration of more than 160 micromol/kg of gamma-GCE, but not GSH, to mice at 3 h after intraperitoneal injection of CCl4 (1 ml/kg) significantly attenuated increases in serum aspartate aminotransferase and alanine aminotransferase activities at 24 h after the CCl4 injection. Increases in hepatic lipid peroxide (LPO) concentrations and decreases in hepatic GSH concentrations after the CCl4 injection were significantly diminished by the gamma-GCE (160 micromol/kg) administration, but not by the same dose of GSH. Gamma-GCE, gamma-glutamylcysteine, and cysteine acted as substrates for glutathione peroxidases much less efficiently than GSH in the post-mitochondrial fraction of normal mouse liver cells. These results indicate that gamma-GCE attenuates the progression of CCl4-induced acute liver injury in mice through the maintenance of hepatic GSH levels, leading to inhibition of hepatic LPO formation, which could be due to an efficient utilization of GSH converted from gamma-GCE in the liver cells.

  14. Phosphatase of Regenerating Liver-3 Promotes Motility and Metastasis of Mouse Melanoma Cells

    PubMed Central

    Wu, Xiaopeng; Zeng, Hu; Zhang, Xianming; Zhao, Ying; Sha, Haibo; Ge, Xiaomei; Zhang, Minyue; Gao, Xiang; Xu, Qiang

    2004-01-01

    Recent reports suggested that phosphatase of regenerating liver (PRL)-3 might be involved in colorectal carcinoma metastasis with an unknown mechanism. Here we demonstrated that PRL-3 expression was up-regulated in human liver carcinoma compared with normal liver. PRL-3 was also highly expressed in metastatic melanoma B16-BL6 cells but not in its lowly metastatic parental cell line, B16 cells. B16 cells transfected with PRL-3 cDNA displayed morphological transformation from epithelial-like shape to fibroblast-like shape. PRL-3-overexpressed cells showed much higher migratory ability, which could be reversed by specific anti-sense oligodeoxynucleotide and the phosphatase inhibitors sodium orthovanadate or potassium bisperoxo oxovanadate V. Meanwhile, the expression of the catalytically inactive PRL-3 mutations (D72A or C104S) significantly reduced the cell migratory capability. In addition, PRL-3 transfectants demonstrated altered extracellular matrix adhesive property and up-regulated integrin-mediated cell spreading efficiency. Furthermore, we confirmed that PRL-3 could facilitate lung and liver metastasis of B16 cells in an experimental metastasis model in mice, consistent with accelerated proliferation and growth rate both in vitro and in vivo. Together, these observations provide convincing evidence that PRL-3 truly plays a causal role in tumor metastasis. PMID:15161639

  15. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations.

    PubMed

    Maue, Robert A; Burgess, Robert W; Wang, Bing; Wooley, Christine M; Seburn, Kevin L; Vanier, Marie T; Rogers, Maximillian A; Chang, Catherine C; Chang, Ta-Yuan; Harris, Brent T; Graber, David J; Penatti, Carlos A A; Porter, Donna M; Szwergold, Benjamin S; Henderson, Leslie P; Totenhagen, John W; Trouard, Theodore P; Borbon, Ivan A; Erickson, Robert P

    2012-02-15

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.

  16. A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations

    PubMed Central

    Maue, Robert A.; Burgess, Robert W.; Wang, Bing; Wooley, Christine M.; Seburn, Kevin L.; Vanier, Marie T.; Rogers, Maximillian A.; Chang, Catherine C.; Chang, Ta-Yuan; Harris, Brent T.; Graber, David J.; Penatti, Carlos A.A.; Porter, Donna M.; Szwergold, Benjamin S.; Henderson, Leslie P.; Totenhagen, John W.; Trouard, Theodore P.; Borbon, Ivan A.; Erickson, Robert P.

    2012-01-01

    We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1nmf164) of Niemann–Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1spm allele and identifying a truncating mutation, confirm that the mutation in Npc1nmf164 mice is distinct from those in other existing mouse models of NPC disease (Npc1nih, Npc1spm). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1nmf164 mutant mice than in mice with the null mutations (Npc1nih, Npc1spm). Although Npc1 mRNA levels appear relatively normal, Npc1nmf164 brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1nih mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1nmf164 mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases. PMID:22048958

  17. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    USDA-ARS?s Scientific Manuscript database

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  18. The Peptide Near the C Terminus Regulates Receptor CAR Nuclear Translocation Induced by Xenochemicals in Mouse Liver

    PubMed Central

    Zelko, Igor; Sueyoshi, Tatsuya; Kawamoto, Takeshi; Moore, Rick; Negishi, Masahiko

    2001-01-01

    In response to phenobarbital (PB) and other PB-type inducers, the nuclear receptor CAR translocates to the mouse liver nucleus (T. Kawamoto et al., Mol. Cell. Biol. 19:6318–6322, 1999). To define the translocation mechanism, fluorescent protein-tagged human CAR (hCAR) was expressed in the mouse livers using the in situ DNA injection and gene delivery systems. As in the wild-type hCAR, the truncated receptor lacking the C-terminal 10 residues (i.e., AF2 domain) translocated to the nucleus, indicating that the PB-inducible translocation is AF2 independent. Deletion of the 30 C-terminal residues abolished the receptor translocation, and subsequent site-directed mutagenesis delineated the PB-inducible translocation activity of the receptor to the peptide L313GLL316AEL319. Ala mutations of Leu313, Leu316, or Leu319 abrogated the translocation of CAR in the livers, while those of Leu312 or Leu315 did not affect the nuclear translocation. The leucine-rich peptide dictates the nuclear translocation of hCAR in response to various PB-type inducers and appears to be conserved in the mouse and rat receptors. PMID:11283262

  19. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis.

    PubMed

    Ananieva, Elitsa A; Van Horn, Cynthia G; Jones, Meghan R; Hutson, Susan M

    2017-02-01

    Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis

    PubMed Central

    Ananieva, Elitsa A.; Van Horn, Cynthia G.; Jones, Meghan R.; Hutson, Susan M.

    2016-01-01

    Unlike other amino acids, the branched chain amino acids (BCAAs) largely bypass first pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart, and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected and no growth rate or body composition differences were observed in the transgenic animals as compared to wild type (WT) mice. Feeding the transgenic animals a high fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism nor did the high fat diet cause elevation in plasma BCAAs. However, the high fat diet fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity. PMID:27886623

  1. Sleeping Beauty Transposon Vectors in Liver-directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hypercholesterolemia

    PubMed Central

    Turunen, Tytteli A K; Kurkipuro, Jere; Heikura, Tommi; Vuorio, Taina; Hytönen, Elisa; Izsvák, Zsuzsanna; Ylä-Herttuala, Seppo

    2016-01-01

    Plasmid-based Sleeping Beauty (SB) transposon vectors were developed and used to deliver genes for low-density lipoprotein and very-low-density lipoprotein receptors (LDLR and VLDLR, respectively) or lacZ reporter into liver of an LDLR-deficient mouse model of familial hypercholesterolemia (FH). SB transposase, SB100x, was used to integrate the therapeutic transposons into mice livers for evaluating the feasibility of the vectors in reducing high blood cholesterol and the progression of atherosclerosis. Hydrodynamic gene delivery of transposon-VLDLR into the livers of the mice resulted in initial 17–19% reductions in plasma cholesterol, and at the later time points, in a significant stabilization of the cholesterol level for the 6.5-month duration of the study compared to the control mice. Transposon-LDLR-treated animals also demonstrated a trend of stabilization in the cholesterol levels in the long term. Vector-treated mice had slightly less lipid accumulation in the liver and reduced aortic atherosclerosis. Clinical chemistry and histological analyses revealed normal liver function and morphology comparable to that of the controls during the follow-up with no safety issues regarding the vector type, transgenes, or the gene transfer method. The study demonstrates the safety and potential benefits of the SB transposon vectors in the treatment of FH. PMID:26670130

  2. Determination of species-difference in microsomal metabolism of amitriptyline using a predictive MRM-IDA-EPI method.

    PubMed

    Lee, Ji-Yoon; Lee, Sang Yoon; Lee, KiHo; Oh, Soo Jin; Kim, Sang Kyum

    2015-03-05

    We investigated to compare species differences in amitriptyline (AMI) metabolism among mouse, rat, dog, and human liver microsomes. We developed a method for simultaneous determination of metabolic stability and metabolite profiling using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scanning. In the cofactor-dependent microsomal metabolism study, AMI was metabolized more rapidly in rat and human liver microsomes incubated with NADPH than UDPGA. AMI incubated with NADPH+UDPGA in rat, dog, or mouse liver microsomes disappeared rapidly with a half-life of 3.5, 8.4, or 9.2 min, respectively, but slowly in human liver microsomes with a half-life of 96 min. In total, 9, 10, 11, and 6 putative metabolites of AMI were detected in mouse, rat, dog, and human liver microsomes, respectively, based on mass spectrometric analyses. Kinetic analysis of metabolites in liver microsomes from each species over 120 min showed common metabolic routes of AMI, such as N-demethylation, hydroxylation, and glucuronidation, and subtle interspecies differences in AMI metabolism. The main metabolic routes in mouse, rat, dog, and human liver microsomes were hydroxylation followed by glucuronide conjugation, methyl hydroxylation, and N-demethylation, respectively. The MRM-IDA-EPI method can provide quantitative and qualitative information about metabolic stability and metabolite profiling simultaneously. Moreover, time course analysis of metabolites can not only eliminate false identification of metabolites, but also provide a rationale for proposed metabolic pathways. The MRM-IDA-EPI method combined with time course analysis of metabolites is useful for investigating drug metabolism at the early drug discovery stage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    PubMed Central

    Yan, Yaping; Wang, Junfeng; Duan, Yanchao; Li, Shanshan; Yan, Li; Wang, Hong; Chen, Bingbing; Sang, Xiongbo; Ji, Weizhi

    2018-01-01

    Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma). Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs) have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP). The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells) were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the paracrine effects of MSCs may play an important role in the improvement of liver fibrosis. PMID:29456886

  4. CITED1 Expression in Liver Development and Hepatoblastoma12

    PubMed Central

    Murphy, Andrew J; de Caestecker, Christian; Pierce, Janene; Boyle, Scott C; Ayers, Gregory D; Zhao, Zhiguo; Libes, Jaime M; Correa, Hernan; Walter, Teagan; Huppert, Stacey S; Perantoni, Alan O; de Caestecker, Mark P; Lovvorn, Harold N

    2012-01-01

    Hepatoblastoma, the most common pediatric liver cancer, consists of epithelial mixed embryonal/fetal (EMEF) and pure fetal histologic subtypes, with the latter exhibiting a more favorable prognosis. Few embryonal histology markers that yield insight into the biologic basis for this prognostic discrepancy exist. CBP/P-300 interacting transactivator 1 (CITED1), a transcriptional co-activator, is expressed in the self-renewing nephron progenitor population of the developing kidney and broadly in its malignant analog, Wilms tumor (WT). In this current study, CITED1 expression is detected in mouse embryonic liver initially on post-coitum day 10.5 (e10.5), begins to taper by e14.5, and is undetectable in e18.5 and adult livers. CITED1 expression is detected in regenerating murine hepatocytes following liver injury by partial hepatectomy and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Importantly, while CITED1 is undetectable in normal human adult livers, 36 of 41 (87.8%) hepatoblastoma specimens express CITED1, where it is enriched in EMEF specimens compared to specimens of pure fetal histology. CITED1 overexpression in Hep293TT human hepatoblastoma cells induces cellular proliferation and upregulates the Wnt inhibitors Kringle containing transmembrane protein 1 (KREMEN1) and CXXC finger protein 4 (CXXC4). CITED1 mRNA expression correlates with expression of CXXC4 and KREMEN1 in clinical hepatoblastoma specimens. These data show that CITED1 is expressed during a defined time course of liver development and is no longer expressed in the adult liver but is upregulated in regenerating hepatocytes following liver injury. Moreover, as in WT, this embryonic marker is reexpressed in hepatoblastoma and correlates with embryonal histology. These findings identify CITED1 as a novel marker of hepatic progenitor cells that is re-expressed following liver injury and in embryonic liver tumors. PMID:23308048

  5. Effect of Immunosuppressive Agents on Hepatocyte Apoptosis Post-Liver Transplantation

    PubMed Central

    Lim, Eu Jin; Chin, Ruth; Nachbur, Ueli; Silke, John; Jia, Zhiyuan; Angus, Peter W.; Torresi, Joseph

    2015-01-01

    Introduction Immunosuppressants are used ubiquitously post-liver transplantation to prevent allograft rejection. However their effects on hepatocytes are unknown. Experimental data from non-liver cells indicate that immunosuppressants may promote cell death thereby driving an inflammatory response that promotes fibrosis and raises concerns that a similar effect may occur within the liver. We evaluated apoptosis within the liver tissue of post-liver transplant patients and correlated these findings with in vitro experiments investigating the effects of immunosuppressants on apoptosis in primary hepatocytes. Methods Hepatocyte apoptosis was assessed using immunohistochemistry for M30 CytoDEATH and cleaved PARP in human liver tissue. Primary mouse hepatocytes were treated with various combinations of cyclosporine, tacrolimus, sirolimus, or MMF. Cell viability and apoptosis were evaluated using crystal violet assays and Western immunoblots probed for cleaved PARP and cleaved caspase 3. Results Post-liver transplant patients had a 4.9-fold and 1.7-fold increase in M30 CytoDEATH and cleaved PARP compared to normal subjects. Cyclosporine and tacrolimus at therapeutic concentrations did not affect hepatocyte apoptosis, however when they were combined with MMF, cell death was significantly enhanced. Cell viability was reduced by 46% and 41%, cleaved PARP was increased 2.6-fold and 2.2-fold, and cleaved caspase 3 increased 2.2-fold and 1.8-fold following treatment with Cyclosporine/MMF and Tacrolimus/MMF respectively. By contrast, the sirolimus/MMF combination did not significantly reduce hepatocyte viability or promote apoptosis. Conclusion Commonly used immunosuppressive drug regimens employed after liver transplantation enhance hepatocyte cell death and may thus contribute to the increased liver fibrosis that occurs in a proportion of liver transplant recipients. PMID:26390404

  6. Characterization of the liver tissue interstitial fluid (TIF) proteome indicates potential for application in liver disease biomarker discovery.

    PubMed

    Sun, Wei; Ma, Jie; Wu, Songfeng; Yang, Dong; Yan, Yujuan; Liu, Kehui; Wang, Jinglan; Sun, Longqin; Chen, Ning; Wei, Handong; Zhu, Yunping; Xing, Baocai; Zhao, Xiaohang; Qian, Xiaohong; Jiang, Ying; He, Fuchu

    2010-02-05

    Tissue interstitial fluid (TIF) forms the interface between circulating body fluids and intracellular fluid. Pathological alterations of liver cells could be reflected in TIF, making it a promising source of liver disease biomarkers. Mouse liver TIF was extracted, separated by SDS-PAGE, analyzed by linear ion trap mass spectrometer, and 1450 proteins were identified. These proteins may be secreted, shed from membrane vesicles, or represent cellular breakdown products. They show different profiling patterns, quantities, and possibly modification/cleavage of intracellular proteins. The high solubility and even distribution of liver TIF supports its suitability for proteome analysis. Comparison of mouse liver TIF data with liver tissue and plasma proteome data identified major proteins that might be released from liver to plasma and serve as blood biomarkers of liver origin. This result was partially supported by comparison of human liver TIF data with human liver and plasma proteome data. Paired TIFs from tumor and nontumor liver tissues of a hepatocellular carcinoma patient were analyzed and the profile of subtracted differential proteins supports the potential for biomarker discovery in TIF. This study is the first analysis of the liver TIF proteome and provides a foundation for further application of TIF in liver disease biomarker discovery.

  7. Bacterial microflora of normal and telangiectatic livers in cattle.

    PubMed

    Stotland, E I; Edwards, J F; Roussel, A J; Simpson, R B

    2001-07-01

    To identify potential bacterial pathogens in normal and telangiectatic livers of mature cattle at slaughter and to identify consumer risk associated with hepatic telangiectasia. 50 normal livers and 50 severely telangiectatic livers. Normal and telangiectatic livers were collected at slaughter for aerobic and anaerobic bacterial culture. Isolates were identified, and patterns of isolation were analyzed. Histologic examination of all livers was performed. Human pathogens isolated from normal and telangiectatic livers included Escherichia coli O157:H7 and group-D streptococci. Most livers in both groups contained bacteria in low numbers; however, more normal livers yielded negative culture results. More group-D streptococci were isolated from the right lobes of telangiectatic livers than from the left lobes, and more gram-negative anaerobic bacteria were isolated from left lobes of telangiectatic livers than from right lobes. All telangiectatic lesions were free of fibrosis, active necrotizing processes, and inflammation. The USDA regulation condemning telangiectatic livers is justified insofar as these livers contain more bacteria than normal livers do; however, normal livers contain similar species of microflora. Development of telangiectasia could not be linked to an infectious process. The finding of E coli O157:H7 in bovine livers suggests that information regarding bacterial content of other offal and muscle may identify sources of this and other potential foodborne pathogens and assist in establishing critical control points for the meat industry.

  8. Inactivating hepatic follistatin alleviates hyperglycemia.

    PubMed

    Tao, Rongya; Wang, Caixia; Stöhr, Oliver; Qiu, Wei; Hu, Yue; Miao, Ji; Dong, X Charlie; Leng, Sining; Stefater, Margaret; Stylopoulos, Nicholas; Lin, Lin; Copps, Kyle D; White, Morris F

    2018-06-04

    Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)-even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines-including excess follistatin (Fst)-that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.

  9. Effective Hepatocyte Transplantation Using Rat Hepatocytes with Low Asialoglycoprotein Receptor Expression

    PubMed Central

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-01-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 × 105 cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied ∼76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for ∼12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes. PMID:15277224

  10. Effective hepatocyte transplantation using rat hepatocytes with low asialoglycoprotein receptor expression.

    PubMed

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-08-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 x 10(5) cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied approximately 76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for approximately 12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes.

  11. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome.

    PubMed

    Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric

    2010-11-01

    Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu; Vispute, Saurabh G.; Liu, Jie

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) ofmore » Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.« less

  13. Mouse decellularised liver scaffold improves human embryonic and induced pluripotent stem cells differentiation into hepatocyte-like cells

    PubMed Central

    Scottoni, Federico; Crowley, Claire; Fiadeiro, Rebeca; Maghsoudlou, Panagiotis; Pellegata, Alessandro Filippo; Mazzacuva, Francesca; Gjinovci, Asllan; Lyne, Anne-Marie; Zulini, Justine; Little, Daniel; Mosaku, Olukunbi; Kelly, Deirdre; De Coppi, Paolo; Gissen, Paul

    2017-01-01

    Liver transplantation is the definitive treatment of liver failure but donor organ shortage limits its availability. Stem cells are highly expandable and have the potential to differentiate into any specialist cell. Use of patient-derived induced Pluripotent Stem Cells (hiPSCs) has the additional advantage for organ regeneration therapies by removing the need for immunosuppression. We compared hepatocyte differentiation of human embryonic stem cells (hESCs) and hiPSCs in a mouse decellularised liver scaffold (3D) with standard in vitro protocol (2D). Mouse livers were decellularised preserving micro-architecture, blood vessel network and extracellular matrix. hESCs and hiPSCs were primed towards the definitive endoderm. Cells were then seeded either in 3D or 2D cultures and the hepatocyte differentiation was continued. Both hESCs and hiPSCs differentiated more efficiently in 3D than in 2D, with higher and earlier expression of mature hepatocyte marker albumin, lipid and glycogen synthesis associated with a decrease in expression of fetal hepatocyte marker alpha-fetoprotein. Thus we conclude that stem cell hepatocyte differentiation in 3D culture promotes faster cell maturation. This finding suggests that optimised 3D protocols could allow generation of mature liver cells not achieved so far in standard 2D conditions and lead to improvement in cell models of liver disease and regenerative medicine applications. PMID:29261712

  14. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    PubMed Central

    Öztürk Akcora, Büsra; Storm, Gert; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for idiopathic pulmonary fibrosis and advanced Hepatocellular carcinoma, but has not been explored for liver fibrosis yet. In this study, we aimed to investigate the therapeutic effects and mechanism of BIBF1120 in liver fibrogenesis. The effects of BIBF1120 were evaluated in TGFβ-activated mouse 3T3 fibroblasts, LX2 cells, primary human hepatic stellate cells (HSCs) and CCl4-induced liver fibrogenesis mouse model. Fibroblasts-conditioned medium studies were performed to assess the paracrine effects on macrophages and endothelial cells. In-vitro in TGFβ-activated fibroblasts, BIBF1120 significantly inhibited expression of major fibrotic parameters, wound-healing and contractility. In vivo in CCl4-induced acute liver injury model, post-disease BIBF1120 administration significantly attenuated collagen accumulation and HSC activation. Interestingly, BIBF1120 drastically inhibited intrahepatic inflammation and angiogenesis. To further elucidate the mechanism of action, 3T3-conditioned medium studies demonstrated increased 3T3-mediated macrophage chemotaxis and endothelial cells tube formation and activation, which was significantly decreased by BIBF1120. These results suggests that BIBF1120 can be a potential therapeutic approach for the treatment of liver fibrosis. PMID:28291245

  15. Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model.

    PubMed

    Wang, Huan; Wu, Xia; Lezmi, Stephane; Li, Qian; Helferich, William G; Xu, Yueqing; Chen, Hong

    2017-12-02

    Metastasis refers to the spread of a primary tumor cell from the primary site to other locations in the body and it is generally associated with the severity of a tumor. Extract of Ginkgo biloba (EGb) contains various bioactive compounds and it exerts beneficial effects including improvements in brain function and reduced risk of cardiovascular diseases. On the other hand, increased risk of thyroid and liver cancers by EGb have been reported in animals. A colon cancer metastasis model was established using intrasplenic injection of a human colon cancer cell line, SW620-luc in athymic mice to investigate the potential impact of EGb on colon cancer progression. After tumor establishment, EGb was intraperitonically injected daily for 5 wks. EGb significantly increased the rate of metastasis in mouse liver and decreased the number of necrotic and apoptotic cells in the metastatic liver when compared to the control. Meanwhile, EGb significantly induced proliferation of tumor cells in the metastatic liver, indicated by increased staining of Ki67 and H3S10p. mRNA expression of genes involved in cell cycle, metastasis, apoptosis, and oxidative stress were altered by EGb treatment in livers with tumors. Moreover, EGb activated the stress-responsive MAPK pathways in the liver with metastatic tumors. EGb exacerbated liver metastasis in a mouse colon cancer metastasis model. This is potentially due to the increased tumor cell proliferation involving stimulated MAPK pathways.

  16. Obstructive Sleep Apnea and Non-Alcoholic Fatty Liver Disease: Is the Liver Another Target?

    PubMed Central

    Mirrakhimov, Aibek E.; Polotsky, Vsevolod Y.

    2012-01-01

    Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH). OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD). NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH), liver fibrosis, and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1) IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA) flux into the liver; (2) IH up-regulates lipid biosynthetic pathways in the liver; (3) IH induces oxidative stress in the liver; (4) IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done. PMID:23087670

  17. Peptidyl-prolyl Cis/Trans Isomerase NIMA-interacting 1 Associates with Insulin Receptor Substrate-1 and Enhances Insulin Actions and Adipogenesis

    PubMed Central

    Nakatsu, Yusuke; Sakoda, Hideyuki; Kushiyama, Akifumi; Zhang, Jun; Ono, Hiraku; Fujishiro, Midori; Kikuchi, Takako; Fukushima, Toshiaki; Yoneda, Masayasu; Ohno, Haruya; Horike, Nanao; Kanna, Machi; Tsuchiya, Yoshihiro; Kamata, Hideaki; Nishimura, Fusanori; Isobe, Toshiaki; Ogihara, Takehide; Katagiri, Hideki; Oka, Yoshitomo; Takahashi, Shin-ichiro; Kurihara, Hiroki; Uchida, Takafumi; Asano, Tomoichiro

    2011-01-01

    Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is a unique enzyme that associates with the pSer/Thr-Pro motif and catalyzes cis-trans isomerization. We identified Pin1 in the immunoprecipitates of overexpressed IRS-1 with myc and FLAG tags in mouse livers and confirmed the association between IRS-1 and Pin1 by not only overexpression experiments but also endogenously in the mouse liver. The analysis using deletion- and point-mutated Pin1 and IRS-1 constructs revealed the WW domain located in the N terminus of Pin1 and Ser-434 in the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 to be involved in their association. Subsequently, we investigated the role of Pin1 in IRS-1 mediation of insulin signaling. The overexpression of Pin1 in HepG2 cells markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events: phosphatidylinositol 3-kinase binding with IRS-1 and Akt phosphorylation. In contrast, the treatment of HepG2 cells with Pin1 siRNA or the Pin1 inhibitor Juglone suppressed these events. In good agreement with these in vitro data, Pin1 knock-out mice exhibited impaired insulin signaling with glucose intolerance, whereas adenoviral gene transfer of Pin1 into the ob/ob mouse liver mostly normalized insulin signaling and restored glucose tolerance. In addition, it was also demonstrated that Pin1 plays a critical role in adipose differentiation, making Pin1 knock-out mice resistant to diet-induced obesity. Importantly, Pin1 expression was shown to be up-regulated in accordance with nutrient conditions such as food intake or a high-fat diet. Taken together, these observations indicate that Pin1 binds to IRS-1 and thereby markedly enhances insulin action, essential for adipogenesis. PMID:21454638

  18. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains amore » highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.« less

  19. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers.

    PubMed

    Li, Bo; Guo, Kenan; Zeng, Li; Zeng, Benhua; Huo, Ran; Luo, Yuanyuan; Wang, Haiyang; Dong, Meixue; Zheng, Peng; Zhou, Chanjuan; Chen, Jianjun; Liu, Yiyun; Liu, Zhao; Fang, Liang; Wei, Hong; Xie, Peng

    2018-01-31

    Major depressive disorder (MDD) is a common mood disorder. Gut microbiota may be involved in the pathogenesis of depression via the microbe-gut-brain axis. Liver is vulnerable to exposure of bacterial products translocated from the gut via the portal vein and may be involved in the axis. In this study, germ-free mice underwent fecal microbiota transplantation from MDD patients and healthy controls. Behavioral tests verified the depression model. Metabolomics using gas chromatography-mass spectrometry, nuclear magnetic resonance, and liquid chromatography-mass spectrometry determined the influence of microbes on liver metabolism. With multivariate statistical analysis, 191 metabolites were distinguishable in MDD mice from control (CON) mice. Compared with CON mice, MDD mice showed lower levels for 106 metabolites and higher levels for 85 metabolites. These metabolites are associated with lipid and energy metabolism and oxidative stress. Combined analyses of significantly changed proteins in livers from another depression model induced by chronic unpredictive mild stress returned a high score for the Lipid Metabolism, Free Radical Scavenging, and Molecule Transports network, and canonical pathways were involved in energy metabolism and tryptophan degradation. The two mouse models of depression suggest that changes in liver metabolism might be involved in the pathogenesis of MDD. Conjoint analyses of fecal, serum, liver, and hippocampal metabolites from fecal microbiota transplantation mice suggested that aminoacyl-tRNA biosynthesis significantly changed and fecal metabolites showed a close relationship with the liver. These findings may help determine the biological mechanisms of depression and provide evidence about "depression microbes" impacting on liver metabolism.

  20. Mice with hepatocyte-specific deficiency of type 3 deiodinase have intact liver regeneration and accelerated recovery from nonthyroidal illness after toxin-induced hepatonecrosis.

    PubMed

    Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A

    2014-10-01

    Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.

  1. Mice With Hepatocyte-Specific Deficiency of Type 3 Deiodinase Have Intact Liver Regeneration and Accelerated Recovery From Nonthyroidal Illness After Toxin-Induced Hepatonecrosis

    PubMed Central

    Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica

    2014-01-01

    Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090

  2. Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital.

    PubMed

    Loeppen, Sandra; Schneider, Daniela; Gaunitz, Frank; Gebhardt, Rolf; Kurek, Raffael; Buchmann, Albrecht; Schwarz, Michael

    2002-10-15

    Phenobarbital (PB) is an antiepileptic drug that promotes hepatocarcinogenesis in rodents when administered subsequent to an initiating carcinogen like N-nitrosodiethylamine (DEN). In the mouse, the promotional effect of PB on liver tumor development results from a selective stimulation of clonal outgrowth of hepatocytes harboring activating mutations in the beta-catenin gene. Because glutamine synthetase (GS) has recently been shown to be a putative transcriptional target of beta-catenin, expression of GS during PB-mediated promotion of mouse hepatocarcinogenesis was investigated. Preneoplastic and neoplastic liver lesions were induced in 6-week-old male mice by a single injection of 90 micro g/g body weight of DEN, and groups of mice were subsequently kept on PB-containing (0.05%) or control diet for 39 weeks. In PB-treated mice, 46 of 51 lesions ( approximately 90%) were GS-positive in contrast to only 16 of 46 ( approximately 35%) in mice not treated with PB. Approximately 33% of liver was occupied by neoplastic tissue in PB-treated mice, of which >80% was GS positive. By contrast, only approximately 3.5% of liver consisted of neoplastic tissue in mice treated with DEN only, and approximately 25% of this was GS positive. We have previously shown that beta-catenin mutations are present in approximately 80% of liver tumors from PB-treated mice but are absent in liver tumors from mice treated with DEN only. By analyzing a panel of larger liver tumors, we now observed that tumors harboring beta-catenin mutations were GS positive, whereas tumors without beta-catenin mutations were GS negative. Similarly, tumors from an additional mouse carcinogenicity experiment where PB inhibited rather than promoted hepatocarcinogenesis were mostly GS negative. These data suggest that promotion of hepatocarcinogenesis by PB confers beta-catenin-mutated tumor cells with a selective advantage by up-regulation of GS expression.

  3. Expression of genes encoding IGFBPs, SNARK, CD36, and PECAM1 in the liver of mice treated with chromium disilicide and titanium nitride nanoparticles.

    PubMed

    Minchenko, Dmytro O; Tsymbal, D O; Yavorovsky, O P; Solokha, N V; Minchenko, O H

    2017-04-25

    The aim of the present study was to examine the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory factors (IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK/NUAK2, CD36, and PECAM1/CD31) in mouse liver for evaluation of possible toxic effects of these nanoparticles. Male mice received 20 mg chromium disilicide nanoparticles (45 nm) and titanium nitride nanoparticles (20 nm) with food every working day for 2 months. The expression of IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver was studied by quantitative polymerase chain reaction. Treatment of mice with chromium disilicide nanoparticles led to down-regulation of the expression of IGFBP2, IGFBP5, PECAM1, and SNARK genes in the liver in comparison with control mice, with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3 and CD36 genes was increased in mouse liver upon treatment with chromium disilicide nanoparticles. We have also shown that treatment with titanium nitride nanoparticles resulted in down-regulation of the expression of IGFBP2 and SNARK genes in the liver with more prominent changes for SNARK gene. At the same time, the expression of IGFBP3, IGFBP4, and CD36 genes was increased in the liver of mice treated with titanium nitride nanoparticles. Furthermore, the effect of chromium disilicide nanoparticles on IGFBP2 and CD36 genes expression was significantly stronger as compared to titanium nitride nanoparticles. The results of this study demonstrate that chromium disilicide and titanium nitride nanoparticles have variable effects on the expression of IGFBP2, IGFBP3, IGFBP4, IGFBP5, SNARK, CD36, and PECAM1 genes in mouse liver, which may reflect the genotoxic activities of the studied nanoparticles.

  4. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver

    PubMed Central

    Canella, Donatella; Bernasconi, David; Gilardi, Federica; LeMartelot, Gwendal; Migliavacca, Eugenia; Praz, Viviane; Cousin, Pascal; Delorenzi, Mauro; Hernandez, Nouria; Hernandez, Nouria; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Le Martelot, Gwendal; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Ross, Frederick; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Le Martelot, Gwendal; Lammers, Fabienne; Raghav, Sunil

    2012-01-01

    The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes. PMID:22287103

  5. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice

    PubMed Central

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543

  6. Mutagenic activation reduces carcinogenic activity of ortho-aminoazotoluene for mouse liver.

    PubMed

    Ovchinnikova, L P; Bogdanova, L A; Kaledin, V I

    2013-03-01

    Pentachlorophenol (aromatic amine and azo stain metabolic stimulation inhibitor) reduced the hepatocarcinogenic activity of 4-aminoazobenzene and reduced that of ortho-aminoazotoluene in suckling mice. Both 4-aminoazobenzene and ortho-aminoazotoluene exhibited mutagenic activity in Ames' test in vitro on S. typhimurium TA 98 strain with activation with liver enzymes; this mutagenic activity was similarly suppressed by adding pentachlorophenol into activation medium. Induction of xenobiotic metabolism enzymes, stimulating the mutagenic activity of ortho-aminoazotoluene, suppressed its carcinogenic effect on mouse liver. Hence, ortho-aminotoluene (the initial compound), but not its mutagenic metabolites, was the direct active hepatocarcinogen for mice.

  7. IL-6 modulates hepatocyte proliferation via induction of HGF/p21{sup cip1}: Regulation by SOCS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin

    2005-12-30

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21{sup cip1} protein expression in primary mouse hepatocytes. Disruption of the p21{sup cip1} gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21{sup cip1} protein expression and a slightly strongermore » inhibition of cell proliferation in SOCS3{sup +/-} mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3{sup +/-} mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21{sup cip1}-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.« less

  8. USP10 Is an Essential Deubiquitinase for Hematopoiesis and Inhibits Apoptosis of Long-Term Hematopoietic Stem Cells.

    PubMed

    Higuchi, Masaya; Kawamura, Hiroki; Matsuki, Hideaki; Hara, Toshifumi; Takahashi, Masahiko; Saito, Suguru; Saito, Kousuke; Jiang, Shuying; Naito, Makoto; Kiyonari, Hiroshi; Fujii, Masahiro

    2016-12-13

    Self-renewal, replication, and differentiation of hematopoietic stem cells (HSCs) are regulated by cytokines produced by niche cells in fetal liver and bone marrow. HSCs must overcome stresses induced by cytokine deprivation during normal development. In this study, we found that ubiquitin-specific peptidase 10 (USP10) is a crucial deubiquitinase for mouse hematopoiesis. All USP10 knockout (KO) mice died within 1 year because of bone marrow failure with pancytopenia. Bone marrow failure in these USP10-KO mice was associated with remarkable reductions of long-term HSCs (LT-HSCs) in bone marrow and fetal liver. Such USP10-KO fetal liver exhibited enhanced apoptosis of hematopoietic stem/progenitor cells (HSPCs) including LT-HSCs but not of lineage-committed progenitor cells. Transplantation of USP10-competent bone marrow cells into USP10-KO mice reconstituted multilineage hematopoiesis. These results suggest that USP10 is an essential deubiquitinase in hematopoiesis and functions by inhibiting apoptosis of HSPCs including LT-HSCs. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. The activity of mouse Kupffer cells following intravenous injection of T4 bacteriophage

    PubMed Central

    Inchley, C. J.

    1969-01-01

    The response of macrophages from the livers and spleens of mice given a single immunizing dose of T4 bacteriophage has been studied. Following their rapid removal from the circulation, phage particles were found to be concentrated in the liver to a level twelve times that for the spleen. Investigation of the fate of ingested phage showed that it was disposed of more rapidly in the liver than in the spleen, as measured by the disappearance of viable T4 particles and by the loss of radioactive label following injection of [131I]T4. It was also found that antigen-containing Kupffer cells could elicit little or no antibody synthesis on transfer into normal syngeneic recipients, or on incubation with lymphoid cells in vitro. It is suggested that these macrophages differ from other components of the reticulo-endothelial system in their treatment of T4 antigen, and may be concerned mainly with its breakdown and disposal rather than with providing a stimulus for the initiation of antibody synthesis. PMID:5370053

  10. Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

    PubMed Central

    Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922

  11. Clonal tracing of Sox9+ liver progenitors in oval cell injury

    PubMed Central

    Tarlow, Branden D.; Finegold, Milton J.; Grompe, Markus

    2014-01-01

    Proliferating ducts, termed “oval cells”, have long thought to be bipotential, i.e. produce both biliary ducts and hepatocytes during chronic liver injury. The precursor to oval cells is considered to be a facultative liver stem cell (LSC). Recent lineage tracing experiments indicated that the LSC is Sox9+ and can replace the bulk of hepatocyte mass in several settings. However, no clonal relationship between Sox9+ cells and the two epithelial liver lineages was established. We labeled Sox9+ mouse liver cells at low density with a multicolor fluorescent confetti reporter. Organoid formation validated the progenitor activity of the labeled population. Sox9+ cells were traced in multiple oval cell injury models using both histology and FACS. Surprisingly, only rare clones containing both hepatocytes and oval cells were found in any experiment. Quantitative analysis showed that Sox9+ cells contributed only minimally (<1%) to the hepatocyte pool, even in classic oval cell injury models. In contrast, clonally marked mature hepatocytes demonstrated the ability to self-renew in all classic mouse oval cell activation injuries. A hepatocyte chimera model to trace hepatocytes and non-parenchymal cells also demonstrated the prevalence of hepatocyte-driven regeneration in mouse oval cell injury models. Conclusion Sox9+ ductal progenitor cells give rise to clonal oval cell proliferation and bipotential organoids but rarely produce hepatocytes in vivo. Hepatocytes themselves are the predominant source of new parenchyma cells in prototypical mouse models of oval cell activation. PMID:24700457

  12. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization.

    PubMed

    Alger, Heather M; Brown, J Mark; Sawyer, Janet K; Kelley, Kathryn L; Shah, Ramesh; Wilson, Martha D; Willingham, Mark C; Rudel, Lawrence L

    2010-05-07

    Acyl-CoA:cholesterol O-acyl transferase 2 (ACAT2) promotes cholesterol absorption by the intestine and the secretion of cholesteryl ester-enriched very low density lipoproteins by the liver. Paradoxically, mice lacking ACAT2 also exhibit mild hypertriglyceridemia. The present study addresses the unexpected role of ACAT2 in regulation of hepatic triglyceride (TG) metabolism. Mouse models of either complete genetic deficiency or pharmacological inhibition of ACAT2 were fed low fat diets containing various amounts of cholesterol to induce hepatic steatosis. Mice genetically lacking ACAT2 in both the intestine and the liver were dramatically protected against hepatic neutral lipid (TG and cholesteryl ester) accumulation, with the greatest differences occurring in situations where dietary cholesterol was elevated. Further studies demonstrated that liver-specific depletion of ACAT2 with antisense oligonucleotides prevents dietary cholesterol-associated hepatic steatosis both in an inbred mouse model of non-alcoholic fatty liver disease (SJL/J) and in a humanized hyperlipidemic mouse model (LDLr(-/-), apoB(100/100)). All mouse models of diminished ACAT2 function showed lowered hepatic triglyceride concentrations and higher plasma triglycerides secondary to increased hepatic secretion of TG into nascent very low density lipoproteins. This work demonstrates that inhibition of hepatic ACAT2 can prevent dietary cholesterol-driven hepatic steatosis in mice. These data provide the first evidence to suggest that ACAT2-specific inhibitors may hold unexpected therapeutic potential to treat both atherosclerosis and non-alcoholic fatty liver disease.

  13. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CARmore » and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell cycle and apoptosis target genes. • DDT produced increases in cell cycle and anti-apoptosis proteins and decrease in p53. • DDT mixture was unable to stimulate the β-catenin signalling pathway in mouse livers.« less

  14. Study of in vivo exposure of single-walled carbon nanotubes in mouse liver

    NASA Astrophysics Data System (ADS)

    Lyons, Lyndon L.

    Currently, few studies are available that have explored the role of carbon nanoparticles in liver toxicity. The susceptibility of the liver to nanoparticles rises from the inhalation exposure route often encountered during manufacturing and occupational exposure. Persons occupying these types of environmental setting are exposed to airborne nanoparticles less than 100nm, which have unobstructed access to most area of the lungs due to their size. Several reports have shown that single walled carbon nanotubes (SWCNTs) induce oxidative stress and pose the greatest cytotoxicity potential do to their size. Also, studies in mice indicate nanoparticles tend to accumulate in organs such as the spleen, kidney and liver, which is a major concern due to a lack of knowledge as to their fate. Single Wall Carbon Nanotubes (SWCNT's) are able to more easily penetrate through the cell membrane and display higher cell toxicity than Multi walled carbon nanotubes (MWCTs), opening the possibility for crossing various biological barriers within the body. Therefore effective occupational and environmental health risk assessments are significant in controlling the manufacture process of carbon nanotubes (CNTs). The present study was undertaken to determine the toxicity exhibited by SWCNT in mouse liver tissue as a model system. Mouse exposure during inhalation with and without SWCNT and reactive oxygen species (ROS) products were measured by change in fluorescence using dichloro fluorescein (DCF). The result showed no increase ROS on exposure of SWCNT in a dose and time dependent manner. Also, there is no reduction levels of glutathione (GSH) and super oxide dismutase (SOD), the antioxidant protective mechanism present in mouse liver cells upon SWCNT exposure. Lipid Peroxidation (LPO) and Lactate Dehydrogenase (LDH) assays indicated no tissue or protein damage. Additionally, Caspases --8 and --3 assays were conducted in order to understand the apoptotic signaling pathways initiated by oxidative stress. PEPCK and Hexokinase activity in mouse liver measured no hepatic glucokinase activity within the sensitivity of the assays. Based on the assays performed, the liver tolerated the SWCNT's 5mug dosage for 7 days, with no acute toxic effect. Although current tests and procedures may be appropriate to detect many risks associated with the use of these nanoparticles, it cannot be assumed that these assays will detect all potential risks. Given their limitations, specific emphasis should be on investigation in term of distribution in vivo both at the organ and cellular level using proteomics.

  15. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII.

    PubMed

    Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon

    2014-09-01

    A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.

  16. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    PubMed

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis.

    PubMed

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen

    2017-08-30

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Monoclonal antibodies against the rat liver glucocorticoid receptor.

    PubMed Central

    Okret, S; Wikström, A C; Wrange, O; Andersson, B; Gustafsson, J A

    1984-01-01

    Splenic cells from one BALB/c mouse and one C57/BL mouse, immunized with purified rat liver glucocorticoid receptor (GR), were fused with the mouse myeloma cell line Sp 2/0-Ag 14. Screening for production of anti-GR-antibodies by the hybridomas was carried out with an enzyme-linked immunosorbent assay, using partially purified rat liver GR as antigen. Further screening was by a second-antibody immunoprecipitation assay using [3H]triamcinolone acetonide-GR complex from rat liver cytosol as tracer. Hybridomas from 10 different microplate wells, positive in both assays, were successfully cloned by the limiting dilution method to monoclonality. The different origins of the monoclonal antibodies were confirmed by their various isoelectric points when analyzed by isoelectric focusing. Four of the monoclonal hybridoma cell lines secreted IgM antibodies; two, IgG1; three, IgG2a; and one, IgG2b. The GR-antibody complex was identified in glycerol density gradients by a shift of the 4S GR to an 8.5S or 19S GR-antibody complex when incubated with monoclonal IgG or IgM antibody, respectively. The 10 monoclonal antibodies recognized different determinants on the GR, all situated on that domain of the receptor that is separate from the ligand and DNA-binding domains. Also, the cross-reactivity to the mouse liver GR varied among the monoclonal antibodies. No cross-reactivity was observed to the human lymphocytic GR. NaDodSO4 electrophoresis of a 0.5% pure GR preparation followed by immunoblotting using one of the monoclonal antibodies identified a single peptide with a molecular weight of 94,000, identical to the purified rat liver GR. Images PMID:6200880

  19. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice.

    PubMed

    Huang, Chun; Li, Runqin; Zhang, Yinglin; Gong, Jianping

    2017-10-01

    Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.

  20. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    PubMed Central

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  1. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model.

    PubMed

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet-Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru; Miyajima, Atsushi

    2018-06-01

    Tribbles pseudokinase 1 ( Trib1 ) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1 -deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl 4 -induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases ( Mmp ) 8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1 . These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1 -deficient liver. Consistently, transplantation of Trib1 -deficient bone marrow cells into wild-type mice alleviated CCl 4 -induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 ( Cxcl1 ) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl 4 -induced fibrosis; infusion of wild-type neutrophils in CCl 4 -treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl 4 -induced fibrosis. Conclusion : While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. ( Hepatology Communications 2018;2:703-717).

  2. Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model

    PubMed Central

    Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet‐Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru

    2018-01-01

    Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2‐like macrophage reduction. Because M2 macrophages are anti‐inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1‐deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4‐induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1‐deficient liver. Consistently, transplantation of Trib1‐deficient bone marrow cells into wild‐type mice alleviated CCl4‐induced fibrosis. Furthermore, expression of chemokine (C‐X‐C motif) ligand 1 (Cxcl1) by adeno‐associated viral vector in the normal liver recruited neutrophils and suppressed CCl4‐induced fibrosis; infusion of wild‐type neutrophils in CCl4‐treated mice also ameliorated fibrosis. Using recombinant adeno‐associated virus‐mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4‐induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703‐717) PMID:29881822

  3. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl4-Induced Liver Injury through Antioxidant Effect.

    PubMed

    Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin

    2018-01-01

    Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.

  4. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    PubMed

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  5. Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice.

    PubMed

    Schultz, C J; Blanchette-Mackie, E J; Scow, R O

    2000-02-01

    Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, <8% of that in normal newborn mice, indicating that HL synthesized and secreted by cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, <9% of that in normal liver. Immunofluorescence studies showed that LPL was present intracellularly in liver of cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.

  6. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma

    PubMed Central

    Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian

    2016-01-01

    ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748

  7. Combinatorial Therapy Approaches for NF2-Deficient Meningiomas

    DTIC Science & Technology

    2013-06-01

    led to the formation of hepatocellular carcinoma and bile duct hamartoma, strongly suggesting a role for theHippo pathway in carcinogenesis. The core...CNS Oncology, Vol. 1, No. 2, Pages 113-115, 2012 mouse liver , Zhang and colleagues defined a functional role between Merlin/NF2 tumor...suppressor and the Hippo pathway. The inactivation of Nf2 in the mouse liver led to YAP1 activation and to the formation of hepatocellular carcinoma [6

  8. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis

    PubMed Central

    Smagris, Eriks; BasuRay, Soumik; Li, John; Huang, Yongcheng; Lai, Ka-man V; Gromada, Jesper; Cohen, Jonathan C; Hobbs, Helen H

    2015-01-01

    A sequence polymorphism (rs738409, I148M) in patatin-like phospholipid domain containing protein 3 (PNPLA3) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild-type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high-sucrose diet their liver fat levels increased 2 to 3-fold compared to wild-type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40-fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). Conclusion: These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver. (Hepatology 2015;61:108–118) PMID:24917523

  9. Tumour necrosis factor α (TNF)–TNF receptor 1-inducible cytoprotective proteins in the mouse liver: relevance of suppressors of cytokine signalling

    PubMed Central

    Sass, Gabriele; Shembade, Noula D.; Tiegs, Gisa

    2004-01-01

    TNF (tumour necrosis factor α) induces tolerance towards itself in experimental liver injury. Tolerance induction has been shown to be dependent on TNFR1 (TNF receptor 1) signalling, but mechanisms and mediators of TNF-induced hepatic tolerance are unknown. We investigated the TNF-inducible gene-expression profile in livers of TNFR2−/− mice, using cDNA array technology. We found that, out of 793 investigated genes involved in inflammation, cell cycle and signal transduction, 282 were expressed in the mouse liver in response to TNF via TNFR1. Among those, expression of 78 genes was induced, while expression of 60 genes was reduced. We investigated further the cellular expression of the 27 most prominently induced genes, and found that 20 of these genes were up-regulated directly in parenchymal liver cells, representing potentially protective proteins and possible mediators of TNF tolerance. In vitro experiments revealed that overexpression of SOCS1 (silencer of cytokine signalling 1), a member of the SOCS family of proteins, as well as of HO-1 (haem oxygenase-1), but not of SOCS2 or SOCS3, protected isolated primary mouse hepatocytes from TNF-induced apoptosis. The identification of protective genes in hepatocytes is the prerequisite for future development of gene therapies for immune-mediated liver diseases. PMID:15554901

  10. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.

    PubMed

    Kim, KyeongJin; Ryu, Dongryeol; Dongiovanni, Paola; Ozcan, Lale; Nayak, Shruti; Ueberheide, Beatrix; Valenti, Luca; Auwerx, Johan; Pajvani, Utpal B

    2017-12-01

    Obesity-induced nonalcoholic fatty liver disease (NAFLD) develops, in part, via excess insulin-stimulated hepatic de novo lipogenesis, which increases, paradoxically, in patients with obesity-induced insulin resistance. Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) terminates insulin signaling by dephosphorylating Akt; levels of PHLPP2 are reduced in livers from obese mice. We investigated whether loss of hepatic PHLPP2 is sufficient to induce fatty liver in mice, mechanisms of PHLPP2 degradation in fatty liver, and expression of genes that regulate PHLPP2 in livers of patients with NAFLD. C57BL/6J mice (controls), obese db/db mice, and mice with liver-specific deletion of PHLPP2 (L-PHLPP2) fed either normal chow or high-fat diet (HFD) were analyzed for metabolic phenotypes, including glucose tolerance and hepatic steatosis. PHLPP2-deficient primary hepatocytes or CRISPR/Cas9-mediated PHLPP2-knockout hepatoma cells were analyzed for insulin signaling and gene expression. We performed mass spectrometry analyses of liver tissues from C57BL/6J mice transduced with Ad-HA-Flag-PHLPP2 to identify posttranslational modifications to PHLPP2 and proteins that interact with PHLPP2. We measured levels of mRNAs by quantitative reverse transcription polymerase chain reaction in liver biopsies from patients with varying degrees of hepatic steatosis. PHLPP2-knockout hepatoma cells and hepatocytes from L-PHLPP2 mice showed normal initiation of insulin signaling, but prolonged insulin action. Chow-fed L-PHLPP2 mice had normal glucose tolerance but hepatic steatosis. In HFD-fed C57BL/6J or db/db obese mice, endogenous PHLPP2 was degraded by glucagon and PKA-dependent phosphorylation of PHLPP2 (at Ser1119 and Ser1210), which led to PHLPP2 binding to potassium channel tetramerization domain containing 17 (KCTD17), a substrate-adaptor for Cul3-RING ubiquitin ligases. Levels of KCTD17 mRNA were increased in livers of HFD-fed C57BL/6J or db/db obese mice and in liver biopsies patients with NAFLD, compared with liver tissues from healthy control mice or patients without steatosis. Knockdown of KCTD17 with small hairpin RNA in primary hepatocytes increased PHLPP2 protein but not Phlpp2 mRNA, indicating that KCTD17 mediates PHLPP2 degradation. KCTD17 knockdown in obese mice prevented PHLPP2 degradation and decreased expression of lipogenic genes. In mouse models of obesity, we found that PHLPP2 degradation induced lipogenesis without affecting gluconeogenesis. KCTD17, which is up-regulated in liver tissues of obese mice and patients with NAFLD, binds to phosphorylated PHLPP2 to target it for ubiquitin-mediated degradation; this increases expression of genes that regulate lipogenesis to promote hepatic steatosis. Inhibitors of this pathway might be developed for treatment of patients with NAFLD. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

    PubMed Central

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-01-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069

  12. In Vivo and In Vitro Characterization of a Plasmodium Liver Stage-Specific Promoter

    PubMed Central

    Horstmann, Sebastian; Annoura, Takeshi; del Portillo, Hernando A.; Khan, Shahid M.; Heussler, Volker T.

    2015-01-01

    Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems. PMID:25874388

  13. Isolation of the constitutive heterochromatin from mouse liver nuclei.

    PubMed

    Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N

    2008-01-01

    A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.

  14. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3' untranslated region of CCND2 and CCNE2.

    PubMed

    Zhou, Jian; Ju, Wei-Qiang; Yuan, Xiao-Peng; Zhu, Xiao-Feng; Wang, Dong-Ping; He, Xiao-Shun

    2016-02-01

    The deficiency of liver regeneration needs to be addressed in the fields of liver surgery, split liver transplantation and living donor liver transplantation. Researches of microRNAs would broaden our understandings on the mechanisms of various diseases. Our previous research confirmed that miR-26a regulated liver regeneration in mice; however, the relationship between miR-26a and its target, directly or indirectly, remains unclear. Therefore, the present study further investigated the mechanism of miR-26a in regulating mouse hepatocyte proliferation. An established mouse liver cell line, Nctc-1469, was transfected with Ad5-miR-26a-EGFP, Ad5-anti-miR-26a-EGFP or Ad5-EGFP vector. Cell proliferation was assessed by MTS, cell apoptosis and cell cycle by flow cytometry, and gene expression by Western blotting and quantitative real-time PCR. Dual-luciferase reporter assays were used to test targets of miR-26a. Compared with the Ad5-EGFP group, Ad5-anti-miR-26a-EGFP down-regulated miR-26a and increased proliferation of hepatocytes, with more cells entering the G1 phase of cell cycle (82.70%+/-1.45% vs 75.80%+/-3.92%), and decreased apoptosis (5.50%+/-0.35% vs 6.73%+/-0.42%). CCND2 and CCNE2 were the direct targeted genes of miR-26a. miR-26a down-regulation up-regulated CCND2 and CCNE2 expressions and down-regulated p53 expression in Nctc-1469 cells. On the contrary, miR-26a over-expression showed the opposite results. miR-26a regulated mouse hepatocyte proliferation by directly targeting the 3' untranslated regions of cyclin D2/cyclin E2; miR-26a also regulated p53-mediated apoptosis. Our data suggested that miR-26a may be a promising regulator in liver regeneration.

  15. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Targeted Induction of Interferon-λ in Humanized Chimeric Mouse Liver Abrogates Hepatotropic Virus Infection

    PubMed Central

    Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    Background & Aims The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). Methods This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Results Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. Conclusions These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection. PMID:23555725

  17. Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.

    PubMed

    Ijssennagger, Noortje; Janssen, Aafke W F; Milona, Alexandra; Ramos Pittol, José M; Hollman, Danielle A A; Mokry, Michal; Betzel, Bark; Berends, Frits J; Janssen, Ignace M; van Mil, Saskia W C; Kersten, Sander

    2016-05-01

    The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA alters hepatic expression of many genes. However, no data are available on the effects of OCA in the human liver. Here we generated gene expression profiles in human precision cut liver slices (hPCLS) after treatment with OCA. hPCLS were incubated with OCA for 24 h. Wild-type or FXR(-/-) mice received OCA or vehicle by oral gavage for 7 days. Transcriptomic analysis showed that well-known FXR target genes, including NR0B2 (SHP), ABCB11 (BSEP), SLC51A (OSTα) and SLC51B (OSTβ), and ABCB4 (MDR3) are regulated by OCA in hPCLS. Ingenuity pathway analysis confirmed that 'FXR/RXR activation' is the most significantly changed pathway upon OCA treatment. Comparison of gene expression profiles in hPCLS and mouse livers identified 18 common potential FXR targets. ChIP-sequencing in mouse liver confirmed FXR binding to IR1 sequences of Akap13, Cgnl1, Dyrk3, Pdia5, Ppp1r3b and Tbx6. Our study shows that hPCLS respond to OCA treatment by upregulating well-known FXR target genes, demonstrating its suitability to study FXR-mediated gene regulation. We identified six novel bona-fide FXR target genes in both mouse and human liver. Finally, we discuss a possible explanation for changes in high or low density lipoprotein observed in NASH and primary biliary cholangitis patients treated with OCA based on the genomic expression profile in hPCLS. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    PubMed

    Nakagawa, Shin-ichiro; Hirata, Yuichi; Kameyama, Takeshi; Tokunaga, Yuko; Nishito, Yasumasa; Hirabayashi, Kazuko; Yano, Junichi; Ochiya, Takahiro; Tateno, Chise; Tanaka, Yasuhito; Mizokami, Masashi; Tsukiyama-Kohara, Kyoko; Inoue, Kazuaki; Yoshiba, Makoto; Takaoka, Akinori; Kohara, Michinori

    2013-01-01

    The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV). This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice. Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  19. Tumor-associated autoantibodies are useful biomarkers in immunodiagnosis of α-fetoprotein-negative hepatocellular carcinoma.

    PubMed

    Wang, Ting; Liu, Mei; Zheng, Su-Jun; Bian, Dan-Dan; Zhang, Jin-Yan; Yao, Jia; Zheng, Qing-Fen; Shi, A-Meng; Li, Wen-Han; Li, Lu; Chen, Yu; Wang, Jin-Hai; Duan, Zhong-Ping; Dong, Lei

    2017-05-21

    To determine the prevalence and diagnostic value of autoantibodies in α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC). Fifty-six serum samples from AFP-negative HCC cases, 86 from AFP-positive HCC cases, 168 from chronic liver disease cases, and 59 from normal human controls were included in this study. Autoantibodies to nucleophosmin (NPM)1, 14-3-3zeta and mouse double minute 2 homolog (MDM2) proteins in AFP-negative HCC serum were evaluated by enzyme-linked immunosorbent assay. Partially positive sera were further evaluated by western blotting. Immunohistochemistry was used to detect the expression of three tumor-associated antigens (TAAs) in AFP-negative HCC and normal control tissues. The frequency of autoantibodies to the three TAAs in AFP-negative HCC sera was 21.4%, 19.6% and 19.6%, which was significantly higher than in the chronic liver disease cases and normal human controls ( P < 0.01) as well as AFP-positive HCC cases. The sensitivity of the three autoantibodies for diagnosis of AFP-negative HCC ranged from 19.6% to 21.4%, and the specificity was approximately 95%. When the three autoantibodies were combined, the sensitivity reached 30.4% and the specificity reached 91.6%. Autoantibodies to NPM1, 14-3-3zeta and MDM2 may be useful biomarkers for immunodiagnosis of AFP-negative HCC.

  20. Tumor-associated autoantibodies are useful biomarkers in immunodiagnosis of α-fetoprotein-negative hepatocellular carcinoma

    PubMed Central

    Wang, Ting; Liu, Mei; Zheng, Su-Jun; Bian, Dan-Dan; Zhang, Jin-Yan; Yao, Jia; Zheng, Qing-Fen; Shi, A-Meng; Li, Wen-Han; Li, Lu; Chen, Yu; Wang, Jin-Hai; Duan, Zhong-Ping; Dong, Lei

    2017-01-01

    AIM To determine the prevalence and diagnostic value of autoantibodies in α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC). METHODS Fifty-six serum samples from AFP-negative HCC cases, 86 from AFP-positive HCC cases, 168 from chronic liver disease cases, and 59 from normal human controls were included in this study. Autoantibodies to nucleophosmin (NPM)1, 14-3-3zeta and mouse double minute 2 homolog (MDM2) proteins in AFP-negative HCC serum were evaluated by enzyme-linked immunosorbent assay. Partially positive sera were further evaluated by western blotting. Immunohistochemistry was used to detect the expression of three tumor-associated antigens (TAAs) in AFP-negative HCC and normal control tissues. RESULTS The frequency of autoantibodies to the three TAAs in AFP-negative HCC sera was 21.4%, 19.6% and 19.6%, which was significantly higher than in the chronic liver disease cases and normal human controls (P < 0.01) as well as AFP-positive HCC cases. The sensitivity of the three autoantibodies for diagnosis of AFP-negative HCC ranged from 19.6% to 21.4%, and the specificity was approximately 95%. When the three autoantibodies were combined, the sensitivity reached 30.4% and the specificity reached 91.6%. CONCLUSION Autoantibodies to NPM1, 14-3-3zeta and MDM2 may be useful biomarkers for immunodiagnosis of AFP-negative HCC. PMID:28596685

  1. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels.

    PubMed

    Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2017-03-31

    Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Plasma disappearance of exogenous erythropoietin in mice under different experimental conditions.

    PubMed

    Lezón, C E; Martínez, M P; Conti, M I; Bozzini, C E

    1998-06-01

    Erythropoietin (EPO) is a glycoprotein hormone produced primarily in the kidneys and to a lesser extent in the liver that regulates red cell production. Most of the studies conducted in experimental animals to assess the role of EPO in the regulation of erythropoiesis were performed in mouse models. However, little is known about the in vivo metabolism of the hormone in this species. The present study was thus undertaken to measure the plasma tl/2 of radiolabeled recombinant human EPO (rh-EPO) in normal mice as well as in mice with altered erythrocyte production rates (EPR), plasma EPO (pEPO) titer, marrow responsiveness, red cell volume, or liver function. Adult CF-1 mice of both sexes were used throughout. For the EPO life-span studies, 30 mice in each experiment were intravenously injected with 600,000 cpm of 125l-rh-EPO and bled by cardiac puncture in groups of five every hour for 6 h. Trichloroacetic acid (TCA) was added to each plasma sample and the radioactivity in the precipitate measured in a gamma-counter. EPO, pEPO, marrow responsiveness, or red cell volume were altered by either injections of rh-EPO, 5-fluorouracil, or phenylhydrazine, or by bleeding, or red cell transfusion. Liver function was altered by CI4C administration. In the normal groups of mice, the estimated tl/2 was 182.75+/-14.4 (SEM) min. The estimated tl/2 of the other experimental groups was not significantly different from normal. These results, therefore, strongly suggest that the clearance rate of EPO in mice is not subjected to physiologic regulation and that pEPO titer can be really taken as the reflection of the EPO production rate, at least in the experimental conditions reported here.

  3. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    PubMed Central

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  4. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  5. Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II.

    PubMed

    Markmann, Sandra; Krambeck, Svenja; Hughes, Christopher J; Mirzaian, Mina; Aerts, Johannes M F G; Saftig, Paul; Schweizer, Michaela; Vissers, Johannes P C; Braulke, Thomas; Damme, Markus

    2017-03-01

    The efficient receptor-mediated targeting of soluble lysosomal proteins to lysosomes requires the modification with mannose 6-phosphate (M6P) residues. Although the absence of M6P results in misrouting and hypersecretion of lysosomal enzymes in many cells, normal levels of lysosomal enzymes have been reported in liver of patients lacking the M6P-generating phosphotransferase (PT). The identity of lysosomal proteins depending on M6P has not yet been comprehensively analyzed. In this study we purified lysosomes from liver of PT-defective mice and 67 known soluble lysosomal proteins were identified that illustrated quantitative changes using an ion mobility-assisted data-independent label-free LC-MS approach. After validation of various differentially expressed lysosomal components by Western blotting and enzyme activity assays, the data revealed a small number of lysosomal proteins depending on M6P, including neuraminidase 1, cathepsin F, Npc2, and cathepsin L, whereas the majority reach lysosomes by alternative pathways. These data were compared with findings on cultured hepatocytes and liver sinusoid endothelial cells isolated from the liver of wild-type and PT-defective mice. Our findings show that the relative expression, targeting efficiency and lysosomal localization of lysosomal proteins tested in cultured hepatic cells resemble their proportion in isolated liver lysosomes. Hypersecretion of newly synthesized nonphosphorylated lysosomal proteins suggest that secretion-recapture mechanisms contribute to maintain major lysosomal functions in liver. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis.

    PubMed

    Smagris, Eriks; BasuRay, Soumik; Li, John; Huang, Yongcheng; Lai, Ka-man V; Gromada, Jesper; Cohen, Jonathan C; Hobbs, Helen H

    2015-01-01

    A sequence polymorphism (rs738409, I148M) in patatin-like phospholipid domain containing protein 3 (PNPLA3) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild-type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high-sucrose diet their liver fat levels increased 2 to 3-fold compared to wild-type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40-fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver. © 2014 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  7. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases. Published by Elsevier B.V.

  8. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    NASA Astrophysics Data System (ADS)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  9. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation

    PubMed Central

    Matsuda, Morihiro; Korn, Bobby S.; Hammer, Robert E.; Moon, Young-Ah; Komuro, Ryutaro; Horton, Jay D.; Goldstein, Joseph L.; Brown, Michael S.; Shimomura, Iichiro

    2001-01-01

    In liver, the synthesis of cholesterol and fatty acids increases in response to cholesterol deprivation and insulin elevation, respectively. This regulatory mechanism underlies the adaptation to cholesterol synthesis inhibitors (statins) and high calorie diets (insulin). In nonhepatic cells, lipid synthesis is controlled by sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors whose active domains are released proteolytically to enter the nucleus and activate genes involved in the synthesis and uptake of cholesterol and fatty acids. SCAP (SREBP cleavage-activating protein) is a sterol-regulated escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of cleavage in the Golgi. Here, we produced a conditional deficiency of SCAP in mouse liver by genomic recombination mediated by inducible Cre recombinase. SCAP-deficient mice showed an 80% reduction in basal rates of cholesterol and fatty acid synthesis in liver, owing to decreases in mRNAs encoding multiple biosynthetic enzymes. Moreover, these mRNAs failed to increase normally in response to cholesterol deprivation produced by a cholesterol synthesis inhibitor and to insulin elevation produced by a fasting–refeeding protocol. These data provide in vivo evidence that SCAP and the SREBPs are required for hepatic lipid synthesis under basal and adaptive conditions. PMID:11358865

  10. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  11. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    PubMed

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  12. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect β-Oxidation

    PubMed Central

    von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2−/−) that progressively loses its mtDNA. The TK2−/− mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2−/− mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2−/− mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2−/− mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2−/− mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies. PMID:23505564

  13. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency

    PubMed Central

    Rajendran, Jayasimman; Tomašić, Nikica; Kotarsky, Heike; Hansson, Eva; Velagapudi, Vidya; Kallijärvi, Jukka; Fellman, Vineta

    2016-01-01

    Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders. PMID:27809283

  14. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    PubMed

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  15. NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway.

    PubMed

    Yang, Weili; Wang, Junpei; Chen, Zhenzhen; Chen, Ji; Meng, Yuhong; Chen, Liming; Chang, Yongsheng; Geng, Bin; Sun, Libo; Dou, Lin; Li, Jian; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2017-07-01

    Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway. © 2017 by the American Diabetes Association.

  16. Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis.

    PubMed

    Zheng, Fang; Sparkes, Amanda; De Baetselier, Patrick; Schoonooghe, Steve; Stijlemans, Benoit; Muyldermans, Serge; Flamand, Véronique; Van Ginderachter, Jo A; Devoogdt, Nick; Raes, Geert; Beschin, Alain

    2017-02-01

    Kupffer cells (KCs), the liver resident macrophages, are important mediators of tissue homeostasis and pathogen clearance. However, depending on the inflammatory stimuli, KCs have been involved in divergent hepato-protective or hepato-destructive immune responses. The versatility of KCs in response to environmental triggers, in combination with the specific biomarkers they express, make these macrophages attractive in vivo targets for non-invasive monitoring of liver inflammation or pathogenicity. This study aims to determine whether V-set and Ig domain-containing 4 (Vsig4) and C-type lectin domain family (Clec) 4, member F (Clec4F) can be used as imaging biomarkers for non-invasive monitoring of KCs during distinct liver inflammation models. Flow cytometry (FACS), immuno-histochemistry (IHC), and single-photon emission computed tomography (SPECT) with Tc-99m labeled anti-Vsig4 or anti-Clec4F nanobodies (Nbs) was performed to evaluate in mice KC dynamics in concanavalin A (ConA)-induced hepatitis and in non-alcoholic steatohepatitis induced via methionine choline deficiency (MCD). In homeostatic mice, Nbs targeting Clec4F were found to accumulate and co-localize with Vsig4-targeting Nbs only in the liver. Upon induction of acute hepatitis using ConA, down-regulation of the in vivo Nb imaging signal was observed, reflecting reduction in KC numbers as confirmed by FACS and IHC. On the other hand, induction of steatohepatitis resulted in higher signals in the liver corresponding to higher density of KCs. The Nb-imaging signals returned to normal levels after resolution of the investigated liver diseases. Anti-Clec4F and anti-Vsig4 Nbs targeting KCs as molecular imaging biomarkers could allow non-invasive monitoring/staging of liver pathogenesis.

  17. Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling

    PubMed Central

    Fang, H; Tong, W; Perkins, R; Shi, L; Hong, H; Cao, X; Xie, Q; Yim, SH; Ward, JM; Pitot, HC; Dragan, YP

    2005-01-01

    Background The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. Results In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. Conclusion The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation. PMID:16026603

  18. Toll-Like Receptor 4 and Myeloid Differentiation Factor 88 Provide Mechanistic Insights Into the Cause and Effects of Interleukin-6 Activation in Mouse Liver Regeneration

    PubMed Central

    Vaquero, Javier; Campbell, Jean S.; Haque, Jamil; McMahan, Ryan S.; Riehle, Kimberly J.; Bauer, Renay L.; Fausto, Nelson

    2014-01-01

    Partial hepatectomy (PH) consistently results in an early increase of circulating interleukin- 6 (IL-6), which is thought to play a major role in liver regeneration. Activation of this cytokine after PH requires the adaptor protein, MyD88, but the specific MyD88-related receptors involved remain unidentified. It is also unknown whether the magnitude of IL-6 elevation determines the extent of subsequent hepatocyte proliferation. Here, we uncovered artifacts in the assessment of circulating IL-6 levels when using cardiac puncture in mice after PH. By using retro-orbital bleed sampling, we show that the circulating levels of IL-6 after PH were not directly correlated with the extent of hepatocyte DNA synthesis in individual mice. The IL-6 increase after PH was attenuated in all lipopolysaccharide-hyporesponsive mouse strains studied (e.g., C3H/HeJ, Tlr4 null, Cd14 null, Tlr2,4,9 null, and Tlr2,4-Caspase1 null) and was severely abrogated in Myd88 null mice. Despite attenuated IL-6 levels, Tlr4 null mice showed normal signaling downstream of IL-6 and normal hepatocyte proliferation. In contrast, Myd88 null mice showed severe impairments in signal transducer and activator of transcription 3 phosphorylation and Socs3 induction, but had enhanced and prolonged extracellular signal-related kinase 1 and 2 phosphorylation in the first 6 hours after PH. Unexpectedly, these changes were associated with accelerated initiation of hepatocyte proliferation, as assessed by hepatocyte bromodeoxyuridine incorporation, phospho-histone H3 immunostaining, and cyclin E and A protein expression. Conclusion TLR-4 signaling contributes to IL-6 activation after PH, but the Tlr4-independent component appears sufficient for ensuring intact signaling downstream of IL-6. The lack of correlation between IL-6 levels and hepatocyte proliferation after PH, and the accelerated start of hepatocyte proliferation in Myd88 null mice despite abrogated cytokine activation, may highlight relevant antiproliferative effects of IL-6 signaling, possibly via Socs3, in the regulation of liver regeneration. PMID:21574169

  19. The changes of serum proteome and tissular pathology in mouse induced by botulinum toxin E injection.

    PubMed

    Wang, J F; Mao, X Y; Zhao, C

    2014-01-01

    The experiment were performed to investigate the poisoning-related proteins and main pathological changes after mouse suffered from injection of botulinum toxin serotype E. Dose of 0.75 LD50 botulinum toxin serotype E per mice were administrated by intraperitoneal injection. Survival mouse were picked as experimental group. The blood were collected from orbital blood and serum sample was separated by centrifugation. The heart, liver, spleen, lung, kidney were fixed in 10 % neutral buffered formalin and then developed paraffin sections. Serum protein components were analyzed by SDS-PAGE gel electrophoresis coupled with 2-DE SDS-PAGE gel electrophoresis. Differentially expressed proteins were analyzed by PDQUest8.0 software and subjected to ion trap mass spectrometry equipped with a high performance liquid chromatography system. The observation of pathological section showed that heart, liver, spleen, lung, kidney exhibited pathological changes in different degree, especially in heart, liver and lung tissues. Heart muscle tissue display serious inflammatory response, heart muscle fiber compulsively expanded and filled with erythrocyte and inflammatory exudates, some heart muscle fiber ruptured, even necrosis; hepatic cell in edge of liver occur apoptosis and some hepatic cell have disintegrated, and even died; pulmonary alveoli broken and partial vein filled with blood. Serum proteins component present a significant changes between control serum and botulism in 24 h by SDS-PAGE gel electrophoresis and 2-DE-SDS-PAGE gel electrophoresis. Twenty differentially expressed protein spots were observed in 2-DE profiles, in which 14 protein spots were undetectable in serum proteome under botulism, 3 protein spots exclusively expressed in state of botulism, 3 protein spots were low-expressed in serum proteome under botulism. Fourteen proteins have been identified among 20 spots elected on two-dimensional electrophoresis gels. Crystal proteins family exclusively expressed in control group serum. Haptoglobin were low-expressed under botulism in serum protein components, however, serum amyloid A only expressed in serum sample under botulism in 24 h, which were verified by Western-blot. Identified proteins involved in energy metabolism, cellular stress response, transcription, body defense and cell proliferation. These findings represent the first report of BoNT-induced changes in serum proteome and histopathology, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and botulism.

  20. Function of GATA Factors in the Adult Mouse Liver

    PubMed Central

    Zheng, Rena; Rebolledo-Jaramillo, Boris; Zong, Yiwei; Wang, Liqing; Russo, Pierre; Hancock, Wayne; Stanger, Ben Z.; Hardison, Ross C.; Blobel, Gerd A.

    2013-01-01

    GATA transcription factors and their Friend of Gata (FOG) cofactors control the development of diverse tissues. GATA4 and GATA6 are essential for the expansion of the embryonic liver bud, but their expression patterns and functions in the adult liver are unclear. We characterized the expression of GATA and FOG factors in whole mouse liver and purified hepatocytes. GATA4, GATA6, and FOG1 are the most prominently expressed family members in whole liver and hepatocytes. GATA4 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) identified 4409 occupied sites, associated with genes enriched in ontologies related to liver function, including lipid and glucose metabolism. However, hepatocyte-specific excision of Gata4 had little impact on gross liver architecture and function, even under conditions of regenerative stress, and, despite the large number of GATA4 occupied genes, resulted in relatively few changes in gene expression. To address possible redundancy between GATA4 and GATA6, both factors were conditionally excised. Surprisingly, combined Gata4,6 loss did not exacerbate the phenotype resulting from Gata4 loss alone. This points to the presence of an unusually robust transcriptional network in adult hepatocytes that ensures the maintenance of liver function. PMID:24367609

  1. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-07-20

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis.

  2. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor α(PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPARα but do...

  3. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.more » Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis • Decreased gene expression associated with protein ubiquitination in sensitive mice • Altered protein ubiquitination may cause oxidized protein accumulation in the liver.« less

  4. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis.

    PubMed

    Furuhashi, Hirotaka; Tomita, Kengo; Teratani, Toshiaki; Shimizu, Motonori; Nishikawa, Makoto; Higashiyama, Masaaki; Takajo, Takeshi; Shirakabe, Kazuhiko; Maruta, Koji; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Aosasa, Suefumi; Nagao, Shigeaki; Yamamoto, Junji; Miura, Soichiro; Hokari, Ryota

    2018-04-01

    Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-β (TGFβ)-induced activation in a "vicious cycle" of liver fibrosis. Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFβ-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis. © 2017 The Japan Society of Hepatology.

  5. Molecular regulation of urea cycle function by the liver glucocorticoid receptor.

    PubMed

    Okun, Jürgen G; Conway, Sean; Schmidt, Kathrin V; Schumacher, Jonas; Wang, Xiaoyue; de Guia, Roldan; Zota, Annika; Klement, Johanna; Seibert, Oksana; Peters, Achim; Maida, Adriano; Herzig, Stephan; Rose, Adam J

    2015-10-01

    One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼-30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression.

  6. Kinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers

    PubMed Central

    Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg

    2011-01-01

    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163

  7. Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers

    PubMed Central

    Cheng, Xingguo; Klaassen, Curtis D.

    2008-01-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na+-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-α), constitutive androstane receptor, pregnane-X receptor, NF-E2–related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-α was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-α. PMID:18703564

  8. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    PubMed

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  9. Failure to obtain an autoimmune response following cryosurgery to the normal rat liver.

    PubMed Central

    Townell, N H; Tsantoulas, D; Holborow, E J; Hobbs, K E

    1980-01-01

    Smooth muscle antibody (SMA) and anti-liver-specific lipoprotein (anti-LSP) responses were investigated following five different freeze thaw regimes to the normal rat liver. The livers were examined histologically for evidence of autoimmune liver disease. No SMA or anti-LSP was found in any animal and on histological examination the unfrozen part of all livers was normal. It is concluded that cryosurgical damage to the liver is unlikely to provoke an autoimmune response. PMID:7460392

  10. Shared liver-like transcriptional characteristics in liver metastases and corresponding primary colorectal tumors.

    PubMed

    Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong

    2018-01-01

    Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P < 0.05). Genes co-expressed with ANGPTL3 and CFHR5 were significantly enriched in metabolism pathways characterizing liver tissues, including "starch and sucrose metabolism" and "drug metabolism-cytochrome P450". Conclusions: For primary CRC with liver metastasis, both the liver metastases and corresponding primary colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.

  11. Heparanase and macrophage interplay in the onset of liver fibrosis.

    PubMed

    Secchi, Maria Francesca; Crescenzi, Marika; Masola, Valentina; Russo, Francesco Paolo; Floreani, Annarosa; Onisto, Maurizio

    2017-11-02

    The heparan sulfate endoglycosidase heparanase (HPSE) is involved in tumor growth, chronic inflammation and fibrosis. Since a role for HPSE in chronic liver disease has not been demonstrated to date, the current study was aimed at investigating the involvement of HPSE in the pathogenesis of chronic liver injury. Herein, we revealed that HPSE expression increased in mouse livers after carbon tetrachloride (CCl 4 )-mediated chronic induction of fibrosis, but with a trend to decline during progression of the disease. In mouse fibrotic liver tissues HPSE immunostaining was restricted in necro-inflammatory areas, co-localizing with F4/80 macrophage marker and TNF-α. TNF-α treatment induced HPSE expression as well as HPSE secretion in U937 macrophages. Moreover, macrophage-secreted HPSE regulated the expression of α-SMA and fibronectin in hepatic stellate LX-2 cells. Finally, HPSE activity increased in the plasma of patients with liver fibrosis but it inversely correlated with liver stiffness. Our results suggest the involvement of HPSE in early phases of reaction to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis.

  12. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of sublethal tubular cell injury. PMID:26752420

  13. Total Flavonoid Extract from Abelmoschus manihot (L.) Medic Flowers Attenuates d-Galactose-Induced Oxidative Stress in Mouse Liver Through the Nrf2 Pathway.

    PubMed

    Qiu, Yan; Ai, Peng-Fei; Song, Jian-Jun; Liu, Chang; Li, Zhi-Wei

    2017-06-01

    Abelmoschus manihot (L.) Medic is an edible hibiscus that is rich in flavonoids, and its use as Chinese herbal medicine for the treatment of diseases and health maintenance dates back to ancient times. The chemical compositions of total flavonoid of A. manihot (L.) Medic flower extract (TFAE) were identified and determined by high performance liquid chromatography (HPLC). The effects of TFAE on antioxidative activities in a d-galactose (d-gal)-induced mouse model and Nrf2-mediated antioxidant responses were evaluated. Male Kunming mice were randomly divided into normal control group, d-gal aging model group, d-gal+ascorbic acid group that served as a positive control, and d-gal+TFAE (40, 80, and 160 mg TFAE/kg) group. After 42 days, the antioxidant effects of these treatments were determined by biochemical studies, Western blotting, quantitative real-time polymerase chain reaction, and histological analysis. The results showed that the groups administered TFAE exhibited significant elevation in liver activities of antioxidant enzymes, including catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and decreased malondialdehyde (MDA) production in a dose-dependent manner compared with the d-gal-induced model group. Expression of Nrf2 and its target antioxidants (HO-1 and NQO1) was manifestly increased by TFAE treatment. TFAE also increased mRNA expression of GPx, SOD, and CAT and decreased tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Furthermore, the microstructure of livers in TFAE-administered mice was obviously improved as compared with the d-gal model group. These results suggest that TFAE protects mice against d-gal-induced oxidative stress, and the effect is related to the activation of Nrf2 signaling.

  14. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  15. Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen

    PubMed Central

    Gordon, Francesca K.; Vallaster, Caroline S.; Westerling, Thomas; Iyer, Lakshmanan K.; Brown, Myles

    2014-01-01

    Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. PMID:24992180

  16. Hepatic F-Box Protein FBXW7 Maintains Glucose Homeostasis Through Degradation of Fetuin-A.

    PubMed

    Zhao, Jiejie; Xiong, Xuelian; Li, Yao; Liu, Xing; Wang, Tao; Zhang, Hong; Jiao, Yang; Jiang, Jingjing; Zhang, Huijie; Tang, Qiqun; Gao, Xin; Li, Xuejun; Lu, Yan; Liu, Bin; Hu, Cheng; Li, Xiaoying

    2018-05-01

    Type 2 diabetes mellitus (T2DM) has become one of the most serious and long-term threats to human health. However, the molecular mechanism that links obesity to insulin resistance remains largely unknown. Here, we show that F-box and WD repeat domain-containing 7 (FBXW7), an E3 ubiquitin protein ligase, is markedly downregulated in the liver of two obese mouse models and obese human subjects. We further identify a functional low-frequency human FBXW7 coding variant (p.Ala204Thr) in the Chinese population, which is associated with elevated blood glucose and T2DM risk. Notably, mice with liver-specific knockout of FBXW7 develop hyperglycemia, glucose intolerance, and insulin resistance even on a normal chow diet. Conversely, overexpression of FBXW7 in the liver not only prevents the development of high-fat diet-induced insulin resistance but also attenuates the disease signature of obese mice. Mechanistically, FBXW7 directly binds to hepatokine fetuin-A to induce its ubiquitination and subsequent proteasomal degradation, comprising an important mechanism maintaining glucose homeostasis. Thus, we provide evidence showing a beneficial role of FBXW7 in glucose homeostasis. © 2018 by the American Diabetes Association.

  17. Systemic myostatin inhibition via liver-targeted gene transfer in normal and dystrophic mice.

    PubMed

    Morine, Kevin J; Bish, Lawrence T; Pendrak, Klara; Sleeper, Meg M; Barton, Elisabeth R; Sweeney, H Lee

    2010-02-11

    Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies. Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose-dependent manner. Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.

  18. Genistein Ameliorates Non-alcoholic Fatty Liver Disease by Targeting the Thromboxane A2 Pathway.

    PubMed

    Wang, Wenzhe; Chen, Junliang; Mao, Jinyan; Li, Hongling; Wang, Mingfu; Zhang, Hao; Li, Haitao; Chen, Wei

    2018-06-13

    Non-alcoholic fatty liver disease (NAFLD) is now a public health issue worldwide, but no drug has yet received approval. Genistein, an isoflavonoid derived from soybean, ameliorates high-fat-diet-induced NAFLD in mice, but the molecular underpinnings remain largely elusive. Arachidonic acid (AA) is a major ingredient of animal fats, and the AA cascade has been implicated in chronic inflammation. In this study, we investigated whether genistein was against NAFLD by targeting the AA cascade. Using a mouse model, we showed that genistein supplementation improved high-fat-diet-induced NAFLD by normalizing hepatomegaly, liver steatosis, aminotransferase abnormalities, and glucose tolerance. The thromboxane A 2 (TXA 2 ) pathway was aberrantly active in NAFLD, evidenced by an elevation of circulating TXA 2 and hepatic thromboxane A 2 receptor expression. Mechanistically, we found that genistein directly targeted cyclooxygenase-1 activity as well as its downstream TXA 2 biosynthesis, while the TXA 2 pathway might mediate NAFLD progression by impairing insulin sensitivity. Taken together, our study revealed a crucial pathophysiological role of the TXA 2 pathway in NAFLD and provided an explanation as to how genistein was against NAFLD progression.

  19. A MULTISTAGE BIOLOGICALLY BASED MATHEMATICAL MODEL FOR MOUSE LIVER TUMORS INDUCED BY DICHLOROACETIC ACID (DCA) - EXPLORATION OF THE MODEL

    EPA Science Inventory

    A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...

  20. Hepatocyte polyploidization and its association with pathophysiological processes.

    PubMed

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-05-18

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered.

  1. Hepatocyte polyploidization and its association with pathophysiological processes

    PubMed Central

    Wang, Min-Jun; Chen, Fei; Lau, Joseph T Y; Hu, Yi-Ping

    2017-01-01

    A characteristic cellular feature of the mammalian liver is the progressive polyploidization of the hepatocytes, where individual cells acquire more than two sets of chromosomes. Polyploidization results from cytokinesis failure that takes place progressively during the course of postnatal development. The proportion of polyploidy also increases with the aging process or with cellular stress such as surgical resection, toxic stimulation, metabolic overload, or oxidative damage, to involve as much as 90% of the hepatocytes in mice and 40% in humans. Hepatocyte polyploidization is generally considered an indicator of terminal differentiation and cellular senescence, and related to the dysfunction of insulin and p53/p21 signaling pathways. Interestingly, the high prevalence of hepatocyte polyploidization in the aged mouse liver can be reversed when the senescent hepatocytes are serially transplanted into young mouse livers. Here we review the current knowledge on the mechanism of hepatocytes polyploidization during postnatal growth, aging, and liver diseases. The biologic significance of polyploidization in senescent reversal, within the context of new ways to think of liver aging and liver diseases is considered. PMID:28518148

  2. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

    PubMed Central

    Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix

    2018-01-01

    The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155

  3. Soluble asialoglycoprotein receptors reflect the apoptosis of hepatocytes.

    PubMed

    Kakegawa, Tetsuji; Ise, Hirohiko; Sugihara, Nobuhiro; Nikaido, Toshio; Negishi, Naoki; Akaike, Toshihiro; Tanaka, Eiji

    2002-01-01

    Cell death is thought to take place through at least two distinct processes: apoptosis and necrosis. There is increasing evidence that dysregulation of the apoptotic program is involved in liver diseases. However, there is no method to simply evaluate apoptosis in the liver tissue at present. It has been reported that the expression of asialoglycoprotein receptors (AGPRs) increases with apoptosis, but there is no report until now that investigates the influence of soluble AGPRs on apoptosis of hepatocytes. Soluble AGPRs have been reported to be present in human serum under physiological conditions. In the present study, in order to investigate the correlation between apoptosis of hepatocytes and soluble AGPR, mouse soluble AGPRs were detected using SDS-PAGE and Western blot analysis was conducted using anti-extracellular mouse hepatic lectin-1 (Ex-MHL-1) antiserum (polyclonal rabbit serum). The mouse soluble AGPRs were present in culture medium and mouse serum when hepatocytes were damaged. The soluble AGPRs increased proportionately, as the number of dead hepatocytes increased. In addition, soluble AGPRs existed more when apoptotic cell death was observed in in vitro and in vivo than when necrotic cell death was observed. The extracellular moiety of MHL-1 exists in the culture medium and mouse serum as a soluble AGPR, but the detailed mechanism of releasing soluble AGPR from hepatocytes has not been revealed yet. We described the first evidence for the relation between quantity of soluble AGPRs with two kinds of cell death: necrosis and apoptosis. Based on the results of our study, soluble AGPRs might become a new marker of apoptosis in the liver tissue and be useful for clinical diagnosis and treatment for liver diseases.

  4. The sites of catabolism of murine monomeric IgA.

    PubMed

    Moldoveanu, Z; Epps, J M; Thorpe, S R; Mestecky, J

    1988-07-01

    The tissue sites of monomeric IgA (mIgA) catabolism were determined in a BALB/c mouse model. Mouse mIgA myeloma proteins were labeled either by direct iodination or by coupling the residualizing label, dilactitol-125I-tyramine (125I-DLT) to the proteins; catabolites from protein labeled with 125I-DLT accumulate at the site of protein degradation, allowing identification of the tissue and cellular sites involved in catabolism of the protein. The circulating half-lives of 125I- and 125I-DLT-mIgA were the same. The distribution of radioactivity in tissues was measured at 1, 3, 24, and 96 h after iv. injection of 125I-DLT-labeled mIgA, dimeric IgA (dIgA), IgG, or mouse serum albumin. The greatest uptake of 125I-DLT-mIgA was attributable to the liver. This organ accounted for more internal catabolism of mIgA than all other tissues combined. In contrast, 125I-DLT-IgG was catabolized equally in skin, muscle, and liver. These data indicate that, in mice, the liver is the major site of mIgA catabolism. To determine the cell types involved, collagenase digestion was used to isolate parenchymal and non-parenchymal cells from perfused liver of animals injected with 125-DLT-mIgA. Most of the radioactivity was associated with the hepatocyte fraction, even though both cell types showed uptake of 125I-DLT-mIgA. Inhibition studies, with asialofetuin and mouse IgA demonstrated that the uptake of mIgA by liver cells was mediated primarily by the asialoglycoprotein receptor.

  5. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis.

    PubMed

    Zou, An; Magee, Nancy; Deng, Fengyan; Lehn, Sarah; Zhong, Cuncong; Zhang, Yuxia

    2018-06-01

    Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide, ranging from nonalcoholic fatty liver (NAFL, steatosis without hepatocellular injury) to the more aggressive nonalcoholic steatohepatitis (NASH, steatosis with ballooning, inflammation, or fibrosis). Although many studies have greatly contributed to the elucidation of NAFLD pathogenesis, the disease progression from NAFL to NASH remains incompletely understood. Nuclear receptor small heterodimer partner (Nr0b2, SHP ) is a transcriptional regulator critical for the regulation of bile acid, glucose, and lipid metabolism. Here, we show that SHP levels are decreased in the livers of patients with NASH and in diet-induced mouse NASH. Exposing primary mouse hepatocytes to palmitic acid and lipopolysaccharide in vitro , we demonstrated that the suppression of Shp expression in hepatocytes is due to c-Jun N-terminal kinase (JNK) activation, which stimulates c-Jun-mediated transcriptional repression of Shp Interestingly, in vivo induction of hepatocyte-specific SHP in steatotic mouse liver ameliorated NASH progression by attenuating liver inflammation and fibrosis, but not steatosis. Moreover, a key mechanism linking the anti-inflammatory role of hepatocyte-specific SHP expression to inflammation involved SHP-induced suppression of NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2), which activates macrophage proinflammatory polarization and migration. In summary, our results indicate that a JNK/SHP/NF-κB/CCL2 regulatory network controls communications between hepatocytes and macrophages and contributes to the disease progression from NAFL to NASH. Our findings may benefit the development of new management or prevention strategies for NASH. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver.

    PubMed

    Suzuki, A; Zheng, Y; Kondo, R; Kusakabe, M; Takada, Y; Fukao, K; Nakauchi, H; Taniguchi, H

    2000-12-01

    Stem cells responsible for tissue maintenance and repair are found in a number of organs. However, hepatic stem cells assumed to play a key role in liver development and regeneration remain to be well characterized. To address this issue, we set up a culture system in which primitive hepatic progenitor cells formed colonies. By combining this culture system with fluorescence-activated cell sorting (FACS), cells forming colonies containing distinct hepatocytes and cholangiocytes were identified in the fetal mouse liver. These cells express both CD49f and CD29 (alpha6 and beta1 integrin subunits), but do not mark for hematopoietic antigens such as CD45, TER119, and c-Kit. When transplanted into the spleen, these cells migrated to the recipient liver and differentiated into liver parenchymal cells. Our data demonstrate that hepatic progenitor cells are enriched by FACS and suggest approaches to supplanting organ allografting and improving artificial-organ hepatic support.

  7. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  8. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.

    PubMed

    Akie, Thomas E; Liu, Lijun; Nam, Minwoo; Lei, Shi; Cooper, Marcus P

    2015-01-01

    OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.

  9. Inducing a visceral organ to protect a peripheral capillary bed: stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy.

    PubMed

    Hoppe, George; Lee, Tamara J; Yoon, Suzy; Yu, Minzhong; Peachey, Neal S; Rayborn, Mary; Zutel, M Julieta; Trichonas, George; Au, John; Sears, Jonathan E

    2014-06-01

    Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Voluntary physical activity prevents insulin resistance in a tissue specific manner.

    PubMed

    Sarvas, Jessica L; Otis, Jeffrey S; Khaper, Neelam; Lees, Simon J

    2015-02-01

    Physical inactivity and a sedentary lifestyle are risk factors for the development of type 2 diabetes. Here, we identified the effects 8 weeks of voluntary physical activity had on the prevention of insulin resistance in mouse skeletal muscles and liver (a hallmark of T2D). To do this, 8 week old C57BL/6J mice with (RUN) and without (SED) voluntary access to running wheels were fed a standard rodent chow ad libitum for 8 weeks. In the liver, there was a 2.5-fold increase in insulin stimulated Akt(SER) (473) phosphorylation, and a threefold increase in insulin-stimulated (0.5 U/kg) GSK3β(SER) (9) phosphorylation in RUN compared to SED mice. Although not induced in skeletal muscles, there was a twofold increase in SOCS3 expression in SED compared to RUN mice in the liver. There was no difference in the glucose tolerance test between groups. This study was the first to show differences in liver insulin sensitivity after 8 weeks of voluntary physical activity, and increased SOCS3 expression in the liver of sedentary mice compared to active mice. These findings demonstrate that even in young mice that would normally be considered healthy, the lack of physical activity leads to insulin resistance representing the initial pathogenesis of impaired glucose metabolism leading to type 2 diabetes. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Vismodegib Suppresses TRAIL-mediated Liver Injury in a Mouse Model of Nonalcoholic Steatohepatitis

    PubMed Central

    Hirsova, Petra; Ibrahim, Samar H.; Bronk, Steven F.; Yagita, Hideo; Gores, Gregory J.

    2013-01-01

    Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH. PMID:23894677

  12. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractionsmore » from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.« less

  13. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.

    PubMed

    Sugo, Tsukasa; Terada, Michiko; Oikawa, Tatsuo; Miyata, Kenichi; Nishimura, Satoshi; Kenjo, Eriya; Ogasawara-Shimizu, Mari; Makita, Yukimasa; Imaichi, Sachiko; Murata, Shumpei; Otake, Kentaro; Kikuchi, Kuniko; Teratani, Mika; Masuda, Yasushi; Kamei, Takayuki; Takagahara, Shuichi; Ikeda, Shota; Ohtaki, Tetsuya; Matsumoto, Hirokazu

    2016-09-10

    Despite considerable efforts to develop efficient carriers, the major target organ of short-interfering RNAs (siRNAs) remains limited to the liver. Expanding the application outside the liver is required to increase the value of siRNAs. Here we report on a novel platform targeted to muscular organs by conjugation of siRNAs with anti-CD71 Fab' fragment. This conjugate showed durable gene-silencing in the heart and skeletal muscle for one month after intravenous administration in normal mice. In particular, 1μg siRNA conjugate showed significant gene-silencing in the gastrocnemius when injected intramuscularly. In a mouse model of peripheral artery disease, the treatment with myostatin-targeting siRNA conjugate by intramuscular injection resulted in significant silencing of myostatin and hypertrophy of the gastrocnemius, which was translated into the recovery of running performance. These data demonstrate the utility of antibody conjugation for siRNA delivery and the therapeutic potential for muscular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects.

    PubMed

    Hashidume, Tsutomu; Kato, Asuka; Tanaka, Tomohiro; Miyoshi, Shoko; Itoh, Nobuyuki; Nakata, Rieko; Inoue, Hiroyasu; Oikawa, Akira; Nakai, Yuji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-06-17

    Soy protein β-conglycinin has serum lipid-lowering and anti-obesity effects. We showed that single ingestion of β-conglycinin after fasting alters gene expression in mouse liver. A sharp increase in fibroblast growth factor 21 (FGF21) gene expression, which is depressed by normal feeding, resulted in increased postprandial circulating FGF21 levels along with a significant decrease in adipose tissue weights. Most increases in gene expressions, including FGF21, were targets for the activating transcription factor 4 (ATF4), but not for peroxisome proliferator-activated receptor α. Overexpression of a dominant-negative form of ATF4 significantly reduced β-conglycinin-induced increases in hepatic FGF21 gene expression. In FGF21-deficient mice, β-conglycinin effects were partially abolished. Methionine supplementation to the diet or primary hepatocyte culture medium demonstrated its importance for activating liver or hepatocyte ATF4-FGF21 signaling. Thus, dietary β-conglycinin intake can impact hepatic and systemic metabolism by increasing the postprandial circulating FGF21 levels.

  15. Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a.

    PubMed

    Bellnier, D A; Henderson, B W; Pandey, R K; Potter, W R; Dougherty, T J

    1993-09-01

    The combination of the new photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) and laser light of wavelength 665 nm showed antitumor activity against two s.c.-implanted murine tumors. HPPH also sensitized normal mouse foot tissue to light but photosensitivity decreased rapidly with time after HPPH administration. Mechanistic studies revealed that HPPH induced little direct tumor cell toxicity but was an effective mediator of vascular photodamage. Pharmacokinetic studies following intravenous injection of 1 mg [14C]HPPH per kilogram revealed a biexponential decay with time, with plasma alpha and beta half-lives of 0.69 and 21 h respectively. Fecal excretion was the primary route of elimination. The highest levels of [14C]HPPH were found in the liver, which also showed the greatest long-term retention. The sequence of decreasing uptake levels was the liver, adrenals, lung, spleen, kidney, urinary bladder, heart, eye, skin, pancreas, muscle, testes, fat and brain. This distribution correlated with the relative blood perfusion rates in the tissues.

  16. Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver

    PubMed Central

    Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2011-01-01

    How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468

  17. Cytoprotective effect of polysaccharide isolated from different mushrooms against 7-ketocholesterol induced damage in mouse liver cell line (BNL CL. 2).

    PubMed

    Kim, Joo-Shin; Chung, Hau Yin; Na, Keun

    2007-01-01

    Cytoprotective ability of polysaccharides isolated from different edible mushrooms was investigated on the 7-ketocholesterol-induced damaged cell line. Polysaccharide extracts from six different edible mushrooms-Flammulina velutipes, Peurotus ostreatus, Lentinus edodes, Agrocybe aegerita, Agaricus blazei, and Cordyceps militaris- were prepared by hot water extraction and alcohol precipitation. Cytoprotective ability was evaluated by measuring the viable cells of the normal embryonic liver cell line (BNL CL. 2) in the presence of 7-ketocholesterol. At 80 microg/mL of 7-ketocholesterol, cytotoxicity was very high with a loss of 98% of viable cells after 20 h of incubation. With the addition of 200 microg/mL of each polysaccharide isolate to the cell line containing 80 microg/mL of 7-ketocholesterol, polysaccharide isolates from both Flammulina velutipes and Peurotus ostreatus could significantly inhibit the 7-ketochoelsterol-induced cytotoxicity in the cells. But other polysaccharide isolates were not effective in inhibiting cell damage caused by the oxLDL-induced cytotoxicity.

  18. Cytoprotective effect of polysaccharide isolated from different mushrooms against 7-ketocholesterol induced damage in mouse liver cell line (BNL CL. 2)

    PubMed Central

    Chung, Hau Yin; Na, Keun

    2007-01-01

    Cytoprotective ability of polysaccharides isolated from different edible mushrooms was investigated on the 7-ketocholesterol-induced damaged cell line. Polysaccharide extracts from six different edible mushrooms-Flammulina velutipes, Peurotus ostreatus, Lentinus edodes, Agrocybe aegerita, Agaricus blazei, and Cordyceps militaris- were prepared by hot water extraction and alcohol precipitation. Cytoprotective ability was evaluated by measuring the viable cells of the normal embryonic liver cell line (BNL CL. 2) in the presence of 7-ketocholesterol. At 80 µg/mL of 7-ketocholesterol, cytotoxicity was very high with a loss of 98% of viable cells after 20 h of incubation. With the addition of 200 µg/mL of each polysaccharide isolate to the cell line containing 80 µg/mL of 7-ketocholesterol, polysaccharide isolates from both Flammulina velutipes and Peurotus ostreatus could significantly inhibit the 7-ketochoelsterol-induced cytotoxicity in the cells. But other polysaccharide isolates were not effective in inhibiting cell damage caused by the oxLDL-induced cytotoxicity. PMID:20368935

  19. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    PubMed

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities

    PubMed Central

    Kang, Minkyung; Ryu, Jihye; Lee, Doohyung; Lee, Mi-Sook; Kim, Hye-Jin; Nam, Seo Hee; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Tai Young; Lee, Hansoo; Kim, Sang Jick; Ye, Sang-Kyu; Kim, Semi; Lee, Jung Weon

    2014-01-01

    Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies. PMID:25033048

  1. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression.

    PubMed

    Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P

    2007-09-01

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.

  2. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular development are observed in AHR-KO mouse, but not rat. • Renal pathology is observed in AHR-KO rat, but not mouse.« less

  3. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver-bone axis.

    PubMed

    Nussler, Andreas K; Wildemann, Britt; Freude, Thomas; Litzka, Christian; Soldo, Petra; Friess, Helmut; Hammad, Seddik; Hengstler, Jan G; Braun, Karl F; Trak-Smayra, Viviane; Godoy, Patricio; Ehnert, Sabrina

    2014-04-01

    Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

  4. The significance of mouse liver tumor formation for carcinogenic risk assessment: results and conclusions from a survey of ten years of testing by the agrochemical industry.

    PubMed Central

    Carmichael, N G; Enzmann, H; Pate, I; Waechter, F

    1997-01-01

    A survey was performed on the results of 138 carcinogenicity studies conducted in various mouse strains by the agrochemical industry over the period 1983-1993. Data for liver tumor incidence, liver weight, and histopathology were collected along with data on genotoxicity. Studies were judged positive or negative for liver tumor formation on the basis of apparent dose response, malignancy, and difference from historical control values using a weight of evidence approach. Thirty-seven studies were judged to be positive for liver tumorigenicity in one or both sexes. There was no evidence showing an influence of the mouse strain and the duration of the study on the proportion of positive studies. Although 8 of the chemicals tested in the 138 studies were positive in the Ames test, only one of these was judged positive for carcinogenicity. Only 6 of the 37 positive chemicals had any other reported positive genotoxicity findings. A clear relationship between hepatomegaly at 1 year after exposure and a positive tumorigenic outcome at 18 months or 2 years after exposure was demonstrated. Whereas the average relative liver weight of top dose animals was 110% of control in negative studies, it was 150% in positive studies. Likewise, very few negative studies demonstrated significant pathological findings after 1 year, whereas the majority of positive studies had significant liver pathology. The implications of these findings for extrapolation to humans are discussed. Images p1196-a Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. Figure 3. Figure 4. Figure 4. PMID:9370513

  5. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore,more » a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were also mildly increased in ADH{sup −} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup −} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ► Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ► A NMR-based lipidomic approach with histology and dry lipid weights was used. ► We used principal component analysis (PCA) to analyze the NMR lipidomic data. ► Dose-dependent clustering patterns by PCA were compared among the groups.« less

  6. Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model.

    PubMed

    Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of the roles of exosomes in colorectal cancer liver metastasis.

    PubMed

    Wang, Xia; Ding, Xiaoling; Nan, Lijuan; Wang, Yiting; Wang, Jing; Yan, Zhiqiang; Zhang, Wei; Sun, Jihong; Zhu, Wei; Ni, Bing; Dong, Suzhen; Yu, Lei

    2015-05-01

    The leading cause of death among cancer patients is tumor metastasis. Tumor-derived exosomes are emerging as mediators of metastasis. In the present study, we demonstrated that exosomes play a pivotal role in the metastatic progression of colorectal cancer. First, a nude mouse model of colorectal cancer liver metastasis was established and characterized. Then, we demonstrated that exosomes from a highly liver metastatic colorectal cancer cell line (HT-29) could significantly increase the metastatic tumor burden and distribution in the mouse liver of Caco-2 colorectal cancer cells, which ordinarily exhibit poor liver metastatic potential. We further investigated the mechanisms by which HT-29-derived-exosomes influence the liver metastasis of colorectal cancer and found that mice treated with HT-29-derived exosomes had a relatively higher level of CXCR4 in the metastatic microenvironment, indicating that exosomes may promote colorectal cancer metastasis by recruiting CXCR4-expressing stromal cells to develop a permissive metastatic microenvironment. Finally, the migration of Caco-2 cells was significantly increased following treatment with HT-29-derived exosomes in vitro, further supporting a role for exosomes in modulating colorectal tumor-derived liver metastasis. The data from the present study may facilitate further translational medicine research into the prevention and treatment of colorectal cancer liver metastasis.

  8. Transcriptional profiling of mouse and human livers at different life stages

    EPA Science Inventory

    In the presence offoreign compounds,metabolichomeostasis oftheorganismismaintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression ofxenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and det...

  9. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation inmore » ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.« less

  10. Digimouse: a 3D whole body mouse atlas from CT and cryosection data

    PubMed Central

    Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M

    2010-01-01

    We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106

  11. Screening for the protective effect target of deproteinized extract of calf blood and its mechanisms in mice with CCl4-induced acute liver injury.

    PubMed

    Xu, Guangyu; Han, Xiao; Yuan, Guangxin; An, Liping; Du, Peige

    2017-01-01

    Liver injury is a common pathological basis of various liver diseases, and long-term liver injury is often an important initiation factor leading to liver fibrosis and even liver cirrhosis and hepatocellular carcinoma (HCC). It has been reported that deproteinized extract of calf blood (DECB) can inhibit the replication of hepatitis B virus and confers a protective effect on the liver after traumatic liver injury. However, few studies on the regulatory factors and mechanisms of DECB have been reported. In this current study, an acute mouse liver injury model was established with carbon tetrachloride (CCl4). The differentially expressed genes and related cell signal transduction pathways were screened using mRNA expression microarray. STEM software V1.3.6 was used for clustering gene functions, and the DAVID and KEGG databases were applied for the analysis. A total of 1355 differentially expressed genes were selected, among which nine were validated by RT-qPCR. The results showed that the Fas, IL1b, Pik3r1, Pik3r5, Traf2, Traf2, Csf2rb2, Map3k14, Pik3cd and Ppp3cc genes were involved in the regulation of DECB in an acute mouse liver injury model. Targets of the protective effects of DECB and its related mechanisms were found in mice with acute liver injury induced by carbon tetrachloride, which may provide an important theoretical basis for further DECB research.

  12. Different Efficiency of Liposomal Forms with Hydrophilic and Hydrophobic Antitumor Agents in Relation to Solid Transplants of Mouse Tumor and Its Metastases in the Liver.

    PubMed

    Popova, N A; Kaledin, V I; Nikolin, V P; Bogdanova, L A; Morozkova, T S; Tornuev, Yu V

    2016-10-01

    Experiments were performed on the model of transplanted mouse tumor with high incidence of liver metastases. Hydrophilic drug cycloplatam (injected intravenously in liposomes) was more potent than "free cycloplatam" (injected intravenously or intraperitoneally in physiological saline) in inhibiting the growth of natural and experimental metastases in the liver. By contrast, liposomal cycloplatam had lower efficiency than free cycloplatam in suppressing the growth of solid tumor. Liposomal and free cortifen (hydrophobic hormonal cytostatic) produced nearly the same effects on solid tumor growth. Our results suggest that liposomal forms of hydrophobic compounds producing nonselective effect on tumor cells (e.g., actinomycin D or Cosmegen), should not have advantages over free forms.

  13. The absence of obstructive sleep apnea may protect against non-alcoholic fatty liver in patients undergoing bariatric surgery.

    PubMed

    Corey, Kathleen E; Misdraji, Joseph; Zheng, Hui; Malecki, Kyle M; Kneeman, Jacob; Gelrud, Louis; Chung, Raymond T

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide and its progressive form, steatohepatitis, will be the leading indication for liver transplant by 2020. While risk factors for steatohepatitis have been identified, little work has been performed to identify factors protective against NAFLD development. This study sought to identify factors predictive of normal liver histology in a bariatric cohort. Patients undergoing weight loss surgery with liver biopsies at the time of surgery were included. Patients with other causes of chronic liver disease were excluded. One hundred fifty-nine patients were included. Forty-nine patients had normal liver histology and 110 patients had NAFLD. Several previously identified factors associated with normal liver histology were found. Black race was the strongest predictor of the absence of NAFLD with an odds ratio (OR) of 6.8, 95% confidence interval (CI) 2.4-18.9. Low HOMA-IR was also associated with normal histology (OR 1.4, 95% CI 1.03-1.9). In contrast, low HDL was associated with a decreased chance of normal histology (OR 0.38, 95% CI 0.05-0.83). Interestingly, a novel protective factor, the absence of obstructive sleep apnea (OSA) was strongly associated with normal histology (OR 5.6, 95% CI 2.0-16.1). In multivariate regression controlling for BMI, black race, absence of OSA, low HOMA-IR and low ALT independently predicted normal liver histology with an area under the ROC curve of 0.85. Our study confirmed several factors associated with normal liver histology, including black race and identified a novel factor, absence of OSA. Further evaluation of these factors will allow for improved understanding of the pathogenesis of NAFLD.

  14. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffett, Kristine; Burris, Thomas P., E-mail: burristp@slu.edu

    The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inversemore » agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. - Highlights: • The LXR antagonist GSK2033 suppresses the expression of lipogenic genes FASN and SREBF1 in HepG2 cells. • GSK2033 exhibits sufficient exposure to perform animal experiments targeting the liver. • GSK2033 has fails to suppress hepatic Fasn and Srebf1 expression in an animal model of non-alcoholic fatty liver disease. • GSK2033 may regulate the activity of several nuclear receptors.« less

  15. Analysis of normal and diseased liver tissue using auto-fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Jia, Chunde; Lin, Junxiu; Kang, Youping

    2003-12-01

    In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver cancer patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5 nm is higher than that excited by 488.0 nm. However, for the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. These results have important reference values to explore the method of laser spectrum diagnosis.

  16. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    PubMed

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    PubMed

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    PubMed Central

    2012-01-01

    Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005

  19. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation.

    PubMed

    Schrumpf, Elisabeth; Kummen, Martin; Valestrand, Laura; Greiner, Thomas U; Holm, Kristian; Arulampalam, Velmurugesan; Reims, Henrik M; Baines, John; Bäckhed, Fredrik; Karlsen, Tom H; Blumberg, Richard S; Hov, Johannes R; Melum, Espen

    2017-02-01

    A strong association between human inflammatory biliary diseases and gut inflammation has led to the hypothesis that gut microbes and lymphocytes activated in the intestine play a role in biliary inflammation. The NOD.c3c4 mouse model develops spontaneous biliary inflammation in extra- and intrahepatic bile ducts. We aimed to clarify the role of the gut microbiota in the biliary disease of NOD.c3c4 mice. We sampled cecal content and mucosa from conventionally raised (CONV-R) NOD.c3c4 and NOD control mice, extracted DNA and performed 16S rRNA sequencing. NOD.c3c4 mice were rederived into a germ free (GF) facility and compared with CONV-R NOD.c3c4 mice. NOD.c3c4 mice were also co-housed with NOD mice and received antibiotics from weaning. The gut microbial profiles of mice with and without biliary disease were different both before and after rederivation (unweighted UniFrac-distance). GF NOD.c3c4 mice had less distended extra-hepatic bile ducts than CONV-R NOD.c3c4 mice, while antibiotic treated mice showed reduction of biliary infarcts. GF animals also showed a reduction in liver weight compared with CONV-R NOD.c3c4 mice, and this was also observed in antibiotic treated NOD.c3c4 mice. Co-housing of NOD and NOD.c3c4 mice indicated that the biliary phenotype was neither transmissible nor treatable by co-housing with healthy mice. NOD.c3c4 and NOD control mice show marked differences in the gut microbiota. GF NOD.c3c4 mice develop a milder biliary affection compared with conventionally raised NOD.c3c4 mice. Our findings suggest that the intestinal microbiota contributes to disease in this murine model of biliary inflammation. Mice with liver disease have a gut microflora (microbiota) that differs substantially from normal mice. In a normal environment, these mice spontaneously develop disease in their bile ducts. However, when these mice, are raised in an environment devoid of bacteria, the disease in the bile ducts diminishes. Overall this clearly indicates that the bacteria in the gut (the gut microbiota) influences the liver disease in these mice. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. A Chimeric Humanized Mouse Model by Engrafting the Human Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cell for the Chronic Hepatitis B Virus Infection

    PubMed Central

    Yuan, Lunzhi; Liu, Xuan; Zhang, Liang; Li, Xiaoling; Zhang, Yali; Wu, Kun; Chen, Yao; Cao, Jiali; Hou, Wangheng; Zhang, Jun; Zhu, Hua; Yuan, Quan; Tang, Qiyi; Cheng, Tong; Xia, Ningshao

    2018-01-01

    Humanized mouse model generated by grafting primary human hepatocytes (PHHs) to immunodeficient mouse has contributed invaluably to understanding the pathogenesis of hepatitis B virus (HBV). However, the source of PHHs is limited, which necessitates the search for alternatives. Recently, hepatocyte-like cells (HLCs) generated from human induced pluripotent stem cells (hiPSCs) have been used for in vitro HBV infection. Herein, we developed a robust human liver chimeric animal model to study in vivo HBV infection by engrafting the hiPSC-HLCs to Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice. After being optimized by a small molecule, XMU-MP-1, the hiPSC-HLCs engrafted FRGS (hHLC-FRGS) mice displayed approximately 40% liver chimerism at week 6 after engraftment and maintained at this level for at least 14 weeks. Viremia and HBV infection markers include antigens, RNA, DNA, and covalently closed circular DNA were detectable in HBV infected hHLC-FRGS mice. Furthermore, hiPSC-HLCs and hHLC-FRGS mice were successfully used to evaluate different antivirals. Therefore, we established a humanized mouse model for not only investigating HBV pathogenesis but also testing the effects of the anti-HBV drugs. Highlights:    (1) The implanted hiPSC-HLCs established a long-term chimerism in FRGS mice liver.    (2) hHLC-FRGS mice are adequate to support chronic HBV infection with a full viral life cycle.    (3) hiPSC-HLCs and hHLC-FRGS mice are useful tools for evaluation of antivirals against HBV infection in vitro and in vivo. Research in Context  To overcome the disadvantages of using primary human hepatocytes, we induced human pluripotent stem cells to hepatocyte-like cells (hiPSC-HLCs) that developed the capability to express important liver functional markers and critical host factors for HBV infection. The hiPSC-HLCs were permissive for the HBV infection and supported a full HBV replication. The hiPSC-HLCs were then engrafted to immunodeficient mouse to establish a chimeric liver mouse model, which was capable of supporting HBV infection in vivo and evaluating the effects of antiviral drugs. Our results shed light into improving the cellular and animal models for studying HBV and other hepatotropic viruses. PMID:29867819

  1. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants*

    PubMed Central

    G. Lavoie, Elise; Dranoff, Jonathan A.

    2017-01-01

    Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression. PMID:28898276

  2. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  3. Aromatic amine metabolism: immunochemical relationships of N-acetyltransferase and N,O-acyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, S.; Allaben, W.T.; King, C.M.

    1986-05-01

    Mutagenic and carcinogenic aromatic amines are acetylated in most organisms. Acetyl CoA and arylhydroxamic acids can serve as acetyl donors for N-Acetylation of amines to yield stable amides, or by O-acetylation of hydroxylamine derivatives to produce reactive metabolites that can react covalently with nucleic acid. Polyclonal antibodies against rat arylhydroxamic acid, N,O-acyltransferase (AHAT) have been compared for their abilities to react with this enzyme and the acetyl CoA-dependent N-acetyltransferase (NAT) of the rat, rabbit, hamster, mouse and human. Liver cytosols were treated with increasing quantities of antibodies from immune or control rabbits. Immune complexes were removed by treatment with proteinmore » A-Sepharose before assay of nucleic acid adduct formation by AHAT activation of N-hydroxy-2-acetylaminofluorene and the acetylation of 2-aminofluorene by NAT. Both rat activities, the AHAT of the hamster and the NAT of the mouse and human were removed by this treatment. No decrease in NAT activity of hamster, or of either rabbit cytosol activity was observed. Neither mouse nor human liver has appreciable AHAT activity. These data support the idea that AHAT and NAT of rat, AHAT of hamster and NAT of mouse and human liver are immunochemically related, but that NAT of the hamster is an immunochemically distinct peptide.« less

  4. Physiological characterization of a mouse model of cachexia in colorectal liver metastases.

    PubMed

    Murphy, Kate T; Struk, Adam; Malcontenti-Wilson, Cathy; Christophi, Christopher; Lynch, Gordon S

    2013-05-15

    Loss of skeletal muscle mass and function (cachexia) is severe in patients with colorectal liver metastases because of the large increase in resting energy expenditure but remains understudied because of a lack of suitable preclinical models. Our aim was to characterize a novel preclinical model of cachexia in colorectal liver metastases. We tested the hypothesis that mice with colorectal liver metastases would exhibit cachexia, as evidenced by a reduction in liver-free body mass, muscle mass, and physiological impairment. Twelve-week-old male CBA mice received an intrasplenic injection of Ringer solution (sham) or murine colorectal cancer cells (MoCR) to induce colorectal liver metastases. At end-point (20-29 days), the livers of MoCR mice were infiltrated completely with metastases, and MoCR mice had reduced liver-free body mass, muscle mass, and epididymal fat mass compared with sham controls (P < 0.03). MoCR mice exhibited impaired rotarod performance and grip strength (P < 0.03). Histochemical analyses of tibialis anterior muscles from MoCR mice revealed muscle fiber atrophy and reduced oxidative enzyme activity (P < 0.001). Adipose tissue remodeling was evident in MoCR mice, with reduced adipocyte diameter and greater infiltration of nonadipocyte tissue (P < 0.05). These findings reveal the MoCR mouse model exhibits significant cachexia and is a suitable preclinical model of cachexia in colorectal liver metastases. This model should be used for identifying effective treatments for cachexia to improve quality of life and reduce mortality in patients with colorectal liver metastases.

  5. CD4+ Foxp3+ T cells promote aberrant immunoglobulin G production and maintain CD8+ T-cell suppression during chronic liver disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash

    2017-02-01

    Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.

  6. Blockade of CCN4 attenuates CCl4-induced liver fibrosis.

    PubMed

    Li, Xiaofei; Chen, Yongxin; Ye, Weiwei; Tao, Xingfei; Zhu, Jinhong; Wu, Shuang; Lou, Lianqing

    2015-06-19

    CCN4, also termed WNT-inducible signaling pathway protein-1 (WISP-1), has important roles in inflammation and tissue injury. This study aimed to investigate the effect of CCN4 inhibition using monoclonal anti-CCN4 antibody (CCN4mAb) on the liver injury and fibrosis in a mouse model of liver fibrosis. The mouse liver fibrosis model was induced by carbon tetrachloride (CCl4). Mice received vehicle (saline/olive oil) by subcutaneous injection, CCl4 by subcutaneous injection or CCl4 (subcutaneous) plus CCN4mAb by subcutaneous injection. The pro-inflammatory and pro-fibrotic factors were determined by Western blot. The biochemistry and histopathology, collagen deposition and nuclear factor (NF)-κB activity were also assessed. Chronic CCl4 treatment caused liver injury and collagen accumulation. The expression levels of CCN4, pro-inflammatory and pro-fibrotic mediators as well as the activity of NF-κB were markedly increased. Treatment with CCN4mAb significantly inhibited CCl4-induced CCN4 expression, leading to attenuated CCl4-induced liver injury and the inflammatory response. CCN4 blockade also significantly reduced the formation of collagen in the liver and the expression of α-smooth muscle actin and transforming growth factor β1. CCN4 inhibition by CCN4mAb in vivo significantly attenuated the CCl4-induced liver injury and the progression of liver fibrosis. CCN4 may represent a novel therapeutic target for liver injury and fibrosis.

  7. Systemic delivery of shRNA by AAV9 provides highly efficient knockdown of ubiquitously expressed GFP in mouse heart, but not liver.

    PubMed

    Piras, Bryan A; O'Connor, Daniel M; French, Brent A

    2013-01-01

    AAV9 is a powerful gene delivery vehicle capable of providing long-term gene expression in a variety of cell types, particularly cardiomyocytes. The use of AAV-delivery for RNA interference is an intense area of research, but a comprehensive analysis of knockdown in cardiac and liver tissues after systemic delivery of AAV9 has yet to be reported. We sought to address this question by using AAV9 to deliver a short-hairpin RNA targeting the enhanced green fluorescent protein (GFP) in transgenic mice that constitutively overexpress GFP in all tissues. The expression cassette was initially tested in vitro and we demonstrated a 61% reduction in mRNA and a 90% reduction in GFP protein in dual-transfected 293 cells. Next, the expression cassette was packaged as single-stranded genomes in AAV9 capsids to test cardiac GFP knockdown with several doses ranging from 1.8×10(10) to 1.8×10(11) viral genomes per mouse and a dose-dependent response was obtained. We then analyzed GFP expression in both heart and liver after delivery of 4.4×10(11) viral genomes per mouse. We found that while cardiac knockdown was highly efficient, with a 77% reduction in GFP mRNA and a 71% reduction in protein versus control-treated mice, there was no change in liver expression. This was despite a 4.5-fold greater number of viral genomes in the liver than in the heart. This study demonstrates that single-stranded AAV9 vectors expressing shRNA can be used to achieve highly efficient cardiac-selective knockdown of GFP expression that is sustained for at least 7 weeks after the systemic injection of 8 day old mice, with no change in liver expression and no evidence of liver damage despite high viral genome presence in the liver.

  8. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    PubMed

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  9. [The Correlation Between MicroRNAs in Serum and the Extent of Liver Injury].

    PubMed

    Zuo, Yi-Nan; He, Xue-Ling; Shi, Xue-Ni; Wei, Shi-Hang; Yin, Hai-Lin

    2017-05-01

    To investigate the correlation between the absolute quantification of the microRNAs (miR-122, miR-451, miR-92a, miR-192) in serum during acute liver injury and the extent of liver injury on rat models of CCl 4 induced acute liver injury and mice models of acetaminophen (APAP) induced acute liver injury. Furthermore, to investigate the correlation between the absolute quantification of microRNAs in serum and the drug induced liver injury pathological scoring system (DILI-PSS). The acute liver injury model in rat by CCl 4 (1.5 mL/kg), and the acute liver injury model in mice by APAP (160 mg/kg) were established. The serum at different time points on both models were collected respectively. The absolute quantification of microRNAs in serum were detected by using MiRbay TM SV miRNA Assay kit. Meanwhile, the pathological sections of liver tissue of the mice at each time point were collected to analyze the correlation between microRNAs and the degree of liver injury. In CCl 4 -induced rat acute liver injury model and APAP induced mouse acute liver injury, miR-122 and miR-192 appeared to be rising significantly, which remained the highest level at 24 h after treatment, and declined to the normal level after 72 h. In CCl 4 -induced rat acute liver injury model, the change of miR-92a was fluctuated and had no apparent rules, miR-451 declined gradually, but not obviously. In mice acute liver injury model induced by APAP, miR-92a and miR-451 in the progress of liver injury declined gradually, reached the lowest point at 48 h, and then recovered. The result of correlation analysis indicated that miR-122 and miR-192 presented a good positive correlation with the DILI-PSS ( r =0.741 3, P <0.05; r =0.788 3, P <0.01). The absolute quantification of miR-122 and miR-192 in serum has the highest level in 24 h, then decrease in 72 h, in both drug-induced and chemical liver injury. In addition, both the two microRNAs have good correlation with DILI-PSS in APAP-induced liver injury models.

  10. Effect of diphenyl ether herbicides and oxadiazon on porphyrin biosynthesis in mouse liver, rat primary hepatocyte culture and HepG2 cells.

    PubMed

    Krijt, J; van Holsteijn, I; Hassing, I; Vokurka, M; Blaauboer, B J

    1993-01-01

    The effects of the herbicides fomesafen, oxyfluorfen, oxadiazon and fluazifop-butyl on porphyrin accumulation in mouse liver, rat primary hepatocyte culture and HepG2 cells were investigated. Ten days of herbicide feeding (0.25% in the diet) increased the liver porphyrins in male C57B1/6J mice from 1.4 +/- 0.6 to 4.8 +/- 2.1 (fomesafen) 16.9 +2- 2.9 (oxyfluorfen) and 25.9 +/- 3.1 (oxadiazon) nmol/g wet weight, respectively. Fluazifop-butyl had no effect on liver porphyrin metabolism. Fomesafen, oxyfluorfen and oxadiazon increased the cellular porphyrin content of rat hepatocytes after 24 h of incubation (control, 3.2 pmol/mg protein, fomesafen, oxyfluorfen and oxadiazon at 0.125 mM concentration 51.5, 54.3 and 44.0 pmol/mg protein, respectively). The porphyrin content of HepG2 cells increased from 1.6 to 18.2, 10.6 and 9.2 pmol/mg protein after 24 h incubation with the three herbicides. Fluazifop-butyl increased hepatic cytochrome P450 levels and ethoxy- and pentoxyresorufin O-dealkylase (EROD and PROD) activity, oxyfluorfen increased PROD activity. Peroxisomal palmitoyl CoA oxidation increased after fomesafen and fluazifop treatment to about 500% of control values both in mouse liver and rat hepatocytes. Both rat hepatocytes and HepG2 cells can be used as a test system for the porphyrogenic potential of photobleaching herbicides.

  11. 2'-Deoxyguanosine as a surrogate trapping agent for DNA reactive drug metabolites.

    PubMed

    Häkkinen, Merja R; Laine, Jaana E; Juvonen, Risto O; Auriola, Seppo; Häyrinen, Jukka; Pasanen, Markku

    2011-11-10

    Drug metabolism can result in the production of highly reactive metabolites that may form adducts with cellular macromolecules, and thus initiate adverse drug reactions, cause toxicity, and even require the withdrawal of drug from the market. In this study, a 2'-deoxyguanosine (dG)-based chemical trapping test system was developed for use as a fast screening tool for DNA adducting metabolites of new drug candidates. Reactive metabolites were generated from parent compounds in in vitro incubations with phenobarbital-induced mouse liver microsomes, human liver microsomes and different recombinant human CYP enzymes in the presence of dG. The formed dG-adducts were separated, characterized and their stability was studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was evaluated with six test compounds, aflatoxin B1, estrone, clozapine, tolcapone, ticlopidine and imipramine. Estrone and aflatoxin B1 formed dG adducts with phenobarbital-induced mouse liver microsomes, human liver microsomes and human recombinant CYP enzymes. Adduct formation was also observed with tolcapone when phenobarbital-induced mouse liver microsomes were used as the enzyme source. The stability of each formed adduct was independent of the different enzyme sources. No dG-adducts were identified with ticlopidine, clozapine and imipramine. Compared to other classical DNA reactivity tests, e.g. Ames test, the present surrogate endpoint, the dG adduct, is faster, enables the characterization of the formed compounds, and also permits the investigation of more unstable adducts. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Expression of human factors CD81, claudin-1, scavenger receptor, and occludin in mouse hepatocytes does not confer susceptibility to HCV entry.

    PubMed

    Hikosaka, Keisuke; Noritake, Hidenao; Kimura, Wataru; Sultana, Nishat; Sharkar, Mohammad T K; Tagawa, Yoh-Ichi; Uezato, Tadayoshi; Kobayashi, Yoshimasa; Wakita, Takaji; Miura, Naoyuki

    2011-04-01

    No suitable mouse model is available for studying chronic liver disease caused by hepatitis C virus (HCV). CD81, claudin-1, scavenger receptor class B type I, and occludin were recently reported to be the important factors in HCV entry into hepatocytes. We made transgenic mice (Alb-CCSO) expressing the four human proteins and examined whether HCV from a patient serum or HCV pseudoparticles (HCVpp) were capable of infecting them. HCV was not detected in the mouse serum after injecting the mice with HCV from a patient serum. We also found no indications of HCVpp entry into primary hepatocytes from Alb-CCSO mice. In addition, HCV-infectible Hep3B cells were fused with HCV-resistant primary mouse hepatocytes and the fused cells showed 35-fold lower infectivity compared to wild-type Hep3B cells, indicating that primary mouse hepatocytes have the inhibitory factor(s) in HCVpp entry. Our results suggest that the expression of the human factors does not confer susceptibility to HCV entry into the liver.

  13. Lineage fate of ductular reactions in liver injury and carcinogenesis.

    PubMed

    Jörs, Simone; Jeliazkova, Petia; Ringelhan, Marc; Thalhammer, Julian; Dürl, Stephanie; Ferrer, Jorge; Sander, Maike; Heikenwalder, Mathias; Schmid, Roland M; Siveke, Jens T; Geisler, Fabian

    2015-06-01

    Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.

  14. A potential microRNA signature for tumorigenic conazoles in mouse liver.

    PubMed

    Ross, Jeffrey A; Blackman, Carl F; Thai, Sheau-Fung; Li, Zhiguang; Kohan, Michael; Jones, Carlton P; Chen, Tao

    2010-04-01

    Triadimefon, propiconazole, and myclobutanil are conazoles, an important class of agricultural fungicides. Triadimefon and propiconazole are mouse liver tumorigens, while myclobutanil is not. As part of a coordinated study to understand the molecular determinants of conazole tumorigenicity, we analyzed the microRNA expression levels in control and conazole-treated mice after 90 d of administration in feed. MicroRNAs (miRNAs) are small noncoding RNAs composed of approximately 19-24 nucleotides in length, and have been shown to interact with mRNA (usually 3' UTR) to suppress its expression. MicroRNAs play a key role in diverse biological processes, including development, cell proliferation, differentiation, and apoptosis. Groups of mice were fed either control diet or diet containing 1800 ppm triadimefon, 2500 ppm propiconazole, or 2000 ppm myclobutanil. MicroRNA was isolated from livers and analyzed using Superarray whole mouse genome miRNA PCR arrays from SABioscience. Data were analyzed using the significance analysis of microarrays (SAM) procedure. We identified those miRNAs whose expression was either increased or decreased relative to untreated controls with q < or = 0.01. The tumorigenic conazoles induced many more changes in miRNA expression than the nontumorigenic conazole. A group of 19 miRNAs was identified whose expression was significantly altered in both triadimefon- and propiconazole-treated animals but not in myclobutanil-treated animals. All but one of the altered miRNAs were downregulated compared to controls. This pattern of altered miRNA expression may represent a signature for tumorigenic conazole exposure in mouse liver after 90 d of treatment.

  15. Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.

    PubMed

    Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M

    1999-04-01

    Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P <.01). Accordingly, fasting and fatty degeneration had a synergistic effect in exacerbating liver injury. Mitochondrial damage was a predominant feature of ultrastructural hepatocyte injury in fasted fatty livers. Glucose supplementation partially prevented the fasting-induced depletion of glycogen and improved the 7-day rat survival to 45%. These data indicate that rat fatty livers exposed to normothermic ischemia-reperfusion injury are much more sensitive to fasting than histologically normal livers. Because glucose supplementation improves both the hepatic glycogen stores and the rat survival, a nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.

  16. Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse

    PubMed Central

    Uthus, Eric O.; Brown-Borg, Holly M.

    2007-01-01

    Long-lived Ames dwarf mice lack growth hormone, prolactin, and thyroid stimulating hormone. Additionally the dwarf mice have enzyme activities and levels that combat oxidative stress more efficiently than those of normal mice. We have shown that methionine metabolism in Ames mice is markedly different than in their wild type littermates. In our previous work we hypothesized that the flux of methionine to the transsulfuration pathway is enhanced in the dwarf mice. The current study was designed to determine whether the flux of methionine to the transsulfuration pathway is increased. We did this by injecting either l-[methyl-3H]-methionine or l-[35S]-methionine into dwarf or normal mice and then determined retained label (in form of S-adenosylmethionine) 45 min later. The amount of retained hepatic 3H and 35S label was significantly reduced in the dwarf mice; at 45 min the specific radioactivity of SAM (pCi/nmol SAM) was 56% lower (p < 0.05) for 3H-label and 64% lower (p < 0.005) for 35S-label in dwarf than wild type mice. Retention of 35S was significantly lower in the brain (37%, p < 0.04) and kidney (47%, p < 0.02) of the dwarf compared to wild type mice; there was no statistical difference in retained 3H-label in either brain or kidney. This suggests that both the methyl-moiety and the carbon chain of methionine are lost much faster in the dwarf compared to the wild type mouse, implying that both transmethylation in the liver and transsulfuration in the liver, brain, and kidney are increased in the dwarf mice. As further support, we determined by real-time RT PCR the expression of methionine metabolism genes in livers of mice. Compared to wild type, the Ames dwarf had increased expression of methionine adenosyltransferase 1a (2.3-fold, p = 0.013), glycine N-methyltransferase (3.8-fold, p = 0.023), betaine homocysteine methyltransferase (5.5-fold, p = 0.0006), S-adenosylhomocysteine hydrolase (3.8-fold, p = 0.0005), and cystathionase (2.6-fold; tended to be increased, p = 0.055). Methionine synthase expression was significantly decreased in dwarf compared to wild type (0.48-fold, p = 0.023). These results confirm that the flux of methionine to transsulfuration is enhanced in the Ames dwarf. This, along with data from previous studies support the hypothesis that altered methionine metabolism plays a significant role in the oxidative defense of the dwarf mouse and that the mechanism for the enhanced oxidative defense may be through altered GSH metabolism as a result of the distinctive methionine metabolism. PMID:16519922

  17. Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers

    NASA Astrophysics Data System (ADS)

    Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao

    1994-05-01

    Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.

  18. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    PubMed

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  19. Aloe vera gel extract attenuates ethanol-induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yamada, Muneo; Yamauchi, Kouji; Iwatsuki, Keiji

    2012-01-01

    We have previously reported that Aloe vera gel had hypoglycemic activity and anti-obesity effects, although the effect on alcoholic fatty liver was unclear. We examined in this present study the effect of an Aloe vera gel extract (AVGE) on hepatic lipid metabolism by using an ethanol-induced transient fatty liver mouse model. Ethanol (3 g/kg of mouse weight) was orally administered to induce an accumulation of triglyceride (TG) and increase the mRNA expression of such lipogenic genes as sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in the liver. Although ethanol ingestion caused a 5.4-fold increase in liver TG, pre-treating with AVGE (1 mg/kg/d) for 1 week significantly suppressed this elevation of the ethanol-induced liver TG level. The expression of lipogenic genes was also lower in the AVGE pre-treatment group than in the control group. This inhibitory effect on the ethanol-induced accumulation of TG was attributed to a reduction in the expression of lipogenic genes that were increased by ethanol.

  20. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis.

    PubMed

    Kondo, S; Kamei, A; Xiao, J Z; Iwatsuki, K; Abe, K

    2013-09-01

    We previously reported that supplementation with Bifidobacterium breve B-3 reduced body weight gain and accumulation of visceral fat in a dose-dependent manner, and improved serum levels of total cholesterol, glucose and insulin in a mouse model of diet-induced obesity. In this study, we investigated the expression of genes in the liver using DNA microarray analysis and q-PCR to reveal the mechanism of these anti-obesity effects in this mouse model. Administration of B. breve B-3 led to regulated gene expression of pathways involved in lipid metabolism and response to stress. The results indicate that these regulations in the liver are related to the anti-metabolic syndrome effects of B. breve B-3.

  1. Liver-Directed Lentiviral Gene Therapy in a Dog Model of Hemophilia B

    PubMed Central

    Bartholomae, Cynthia C.; Volpin, Monica; Della Valle, Patrizia; Sanvito, Francesca; Sergi Sergi, Lucia; Gallina, Pierangela; Benedicenti, Fabrizio; Bellinger, Dwight; Raymer, Robin; Merricks, Elizabeth; Bellintani, Francesca; Martin, Samia; Doglioni, Claudio; D’Angelo, Armando; VandenDriessche, Thierry; Chuah, Marinee K.; Schmidt, Manfred; Nichols, Timothy; Montini, Eugenio; Naldini, Luigi

    2017-01-01

    We investigated the safety and efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B, and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We show that gene therapy using lentiviral vectors targeting expression of a canine factor IX transgene to hepatocytes was well-tolerated and provided stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we show that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be useful for the treatment of hemophilia. PMID:25739762

  2. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  3. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5☆

    PubMed Central

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203

  4. [The role of metabolic activation of promutagens in the genome destabilization under pheromonal stress in the house mouse (Mus musculus)].

    PubMed

    Zhuk, A S; Stepchenkova, E I; Dukel'skaia, A V; Daev, E V; Inge-Vechtomov, S G

    2011-10-01

    The hypothesis on a relationship between the high frequency of mitotic disturbances in bone marrow cells and the change in the activity of the S9 liver fraction containing promutagen-activating enzymes under olfactory stress in the house mouse Mus musculus has been tested. For this purpose, the effect of the pheromone 2,5-dimethylpyrazine on the frequency of mitotic disturbances in mouse bone marrow cells has been measured by the anaphase-telophase assay. The Ames test using Salmonella typhimurium has been employed to compare the capacities of the S9 liver fractions from stressed and intact mice for activating the promutagen 2-aminofluorene. It has been demonstrated that the increased frequency of mitotic disturbances in bone marrow cells induced by the pheromonal stressor in male house mice is accompanied by an increased promutagen-activating capacity of the S9 liver fraction. The model system used in the study allowed the genetic consequences of the exposure to the olfactory stressor to be estimated and the possible mechanisms of genome destabilization to be assumed.

  5. Trichloroethylene: Metabolism and Other Biological Determinants of Mouse Liver Tumors

    DTIC Science & Technology

    1994-09-01

    mineral oil, corn oil, and Tween-80 vehicle. The vehicle in which the chemical was administered affected the magnitude of liver injury in fasted rats...With mineral oil or corn oil, injury was massive, whereas with aqueous Tween-80 vehicle, injury was moderate. In contrast, liver injury in all fed...605. Comporti, M. 1985. Lipid peroxidation and cellular damage in toxic liver injury . Lab Invest. 53:599-623. Conway, J.G., K.E. Tomaszewski, K.E

  6. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection

    PubMed Central

    Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos

    2013-01-01

    Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2−/− Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2−/− mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer–hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite. PMID:24218563

  8. TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection.

    PubMed

    Gonçalves, Lígia Antunes; Rodrigues-Duarte, Lurdes; Rodo, Joana; Vieira de Moraes, Luciana; Marques, Isabel; Penha-Gonçalves, Carlos

    2013-11-26

    Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2(-/-) Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2(-/-) mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer-hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite.

  9. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice

    PubMed Central

    Williams, Jessica A.; Ni, Hong-Min; Ding, Yifeng

    2015-01-01

    Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. PMID:26159696

  10. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency.

    PubMed

    Collin de l'Hortet, A; Zerrad-Saadi, A; Prip-Buus, C; Fauveau, V; Helmy, N; Ziol, M; Vons, C; Billot, K; Baud, V; Gilgenkrantz, Hélène; Guidotti, Jacques-Emmanuel

    2014-07-01

    GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.

  11. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    PubMed

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  12. Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers.

    PubMed

    Shanehsazzadeh, Saeed; Oghabian, Mohammad A; Lahooti, Afsaneh; Abdollahi, Mohammad; Abolghasem Haeri, Seyed; Amanlou, Massoud; Daha, Fariba J; Allen, Barry J

    2013-09-01

    The aim of this study was to evaluate the biodistribution of dextran-coated iron oxide nanoparticles labeled with gallium-67 (Ga) in various organs by intravenous injection in Balb/c mice. Ultrasmall superparamagnetic iron oxide (USPIO) was successively labeled with Ga-chloride after chelation with freshly prepared cyclic DTPA-dianhydride. The labeling efficiency of USPIOs labeled with Ga is above 98%. Sixty-five mice were killed at 13 different time points. The percentage of injected dose per gram of each organ was measured by direct counting for 19 harvested organs of the mice. The medical internal radiation dose formula was applied to extrapolate data from mouse to human and to predict the absorbed radiation dose for various organs in the human body. The biodistribution of Ga-USPIO in Balb/c mice showed that 75% of the injected dose accumulated in the spleen and liver 15 min after injection. These nanoparticles remained in the liver for more than 7 days after injection, whereas their clearance was very fast from other organs. Extrapolating these data to the intravenous injection of Ga-USPIO in humans gave an estimated absorbed dose of 36.38 mSv/MBq for the total body, and the highest effective absorbed dose was seen in the liver (32.9 mSv/MBq). High uptakes of USPIO nanoparticles in the liver and spleen and their fast clearance from other tissues suggest that these nanoparticles labeled with a β-emitter radioisotope could be suitable as treatment agents for spleen and liver malignancies only if the organ tolerance dose is not exceeded.

  13. Carbamoyl phosphate synthetase-1 is a rapid turnover biomarker in mouse and human acute liver injury.

    PubMed

    Weerasinghe, Sujith V W; Jang, You-Jin; Fontana, Robert J; Omary, M Bishr

    2014-08-01

    Several serum markers are used to assess hepatocyte damage, but they have limitations related to etiology specificity and prognostication. Identification of novel hepatocyte-specific biomarkers could provide important prognostic information and better pathogenesis classification. We tested the hypothesis that hepatocyte-selective biomarkers are released after subjecting isolated mouse hepatocytes to Fas-ligand-mediated apoptosis. Proteomic analysis of hepatocyte culture medium identified the mitochondrial matrix protein carbamoyl phosphate synthetase-1 (CPS1) among the most readily detected proteins that are released by apoptotic hepatocytes. CPS1 was also detected in mouse serum upon acute challenge with Fas-ligand or acetaminophen and in hepatocytes upon hypoosmotic stress, independent of hepatocyte caspase activation. Furthermore, CPS1 was observed in sera of mice chronically fed the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mouse CPS1 detectability was similar in serum and plasma, and its half-life was 126 ± 9 min. Immune staining showed that CPS1 localized to mouse hepatocytes but not ductal cells. Analysis of a few serum samples from patients with acute liver failure (ALF) due to acetaminophen, Wilson disease, or ischemia showed readily detectable CPS1 that was not observed in several patients with chronic viral hepatitis or in control donors. Notably, CPS1 rapidly decreased to undetectable levels in sera of patients with acetaminophen-related ALF who ultimately recovered, while alanine aminotransferase levels remained elevated. Therefore, CPS1 becomes readily detectable upon hepatocyte apoptotic and necrotic death in culture or in vivo. Its abundance and short serum half-life, compared with alanine aminotransferase, suggest that it may be a useful prognostic biomarker in human and mouse liver injury. Copyright © 2014 the American Physiological Society.

  14. Nicotinamide N‐methyltransferase expression decreases in iron overload, exacerbating toxicity in mouse hepatocytes

    PubMed Central

    Koppe, Tiago; Patchen, Bonnie; Cheng, Aaron; Bhasin, Manoj; Vulpe, Chris; Schwartz, Robert E.; Moreno‐Navarrete, Jose Maria; Fernandez‐Real, Jose Manuel

    2017-01-01

    Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815) PMID:29404495

  15. Transient elastographic evaluation in adult subjects without overt liver disease: influence of alanine aminotransferase levels.

    PubMed

    Kumar, Manoj; Sharma, Praveen; Garg, Hitendra; Kumar, Ramesh; Bhatia, Vikram; Sarin, Shiv K

    2011-08-01

      Studies on normal values of liver stiffness (LS) in subjects at "low risk" for liver disease are scant. The aim of the present study was to assess liver stiffness values in the subjects without overt liver disease with normal alanine aminotransferases (ALT) and to determine potential factors, which may influence these values with special reference to newly suggested updated upper limits of normal for ALT.   Liver stiffness measurements were performed in 445 subjects without overt liver disease (mean age, 41.1±13.6; male, 73.5%) and normal liver enzymes.   Mean LS value was 5.10±1.19kPa. LS values were higher in men than in women (5.18±1.67 vs 4.86±1.24kPa, respectively, P=0.008); in subjects with higher body mass index (BMI) category (Normal, overweight and obese subjects; 4.10±0.75, 5.08±0.66, and 6.05±1.28kPa, respectively; P<0.001); in subjects with metabolic syndrome than in those without (5.63±1.37 vs 5.01±1.14kPa, P=0.001); and in subjects with ALT levels more than updated limits of normal compared to subjects with ALT levels less than updated limits of normal (5.68±1.21 vs 4.77±1.05kPa, P<0.001). On multiple linear regression, BMI and ALT was found to be significant predictor of LS.   Liver stiffness values in subjects without overt liver disease with normal ALT are influenced by BMI and ALT levels. Subjects with ALT levels less than updated limits of normal have lower LS values as compared to those with higher levels. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  16. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  17. Liver-Directed Human Amniotic Epithelial Cell Transplantation Improves Systemic Disease Phenotype in Hurler Syndrome Mouse Model.

    PubMed

    Rodriguez, Natalie S; Yanuaria, Lisa; Parducho, Kevin Murphy R; Garcia, Irving M; Varghese, Bino A; Grubbs, Brendan H; Miki, Toshio

    2017-07-01

    Mucopolysaccharidosis type 1 (MPS1) is an inherited lysosomal storage disorder caused by a deficiency in the glycosaminoglycan (GAG)-degrading enzyme α-l-iduronidase (IDUA). In affected patients, the systemic accumulation of GAGs results in skeletal dysplasia, neurological degeneration, multiple organ dysfunction, and early death. Current therapies, including enzyme replacement and bone marrow transplant, improve life expectancy but the benefits to skeletal and neurological phenotypes are limited. In this study, we tested the therapeutic efficacy of liver-directed transplantation of a placental stem cell, which possesses multilineage differentiation potential, low immunogenicity, and high lysosomal enzyme activity. Unfractionated human amniotic epithelial cells (hAECs) were transplanted directly into the liver of immunodeficient Idua knockout mouse neonates. The hAECs engraftment was immunohistochemically confirmed with anti-human mitochondria staining. Enzyme activity assays indicated that hAECs transplantation restored IDUA function in the liver and significantly decreased urinary GAG excretion. Histochemical and micro-computed tomography analyses revealed reduced GAG deposition in the phalanges joints and composition/morphology improvement of cranial and facial bones. Neurological assessment in the hAEC treated mice showed significant improvement of sensorimotor coordination in the hAEC treated mice compared to untreated mice. Results confirm that partial liver cell replacement with placental stem cells can provide long-term (>20 weeks) and systemic restoration of enzyme function, and lead to significant phenotypic improvement in the MPS1 mouse model. This preclinical data indicate that liver-directed placental stem cell transplantation may improve skeletal and neurological phenotypes of MPS1 patients. Stem Cells Translational Medicine 2017;6:1583-1594. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition.

    PubMed

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-11-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.

  19. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice

    PubMed Central

    Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo

    2014-01-01

    Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162

  20. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice.

    PubMed

    Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi

    2016-05-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl 4 . The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl 4 -induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl 4 -induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.

  1. Analysis of the function of the agouti gene in obesity and diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, R.L.; Miltenberger, R.J.; Klebig, M.L.

    1996-09-01

    This chapter discusses the agouti gene and dominant mutations in that gene that lead to agouti-induced obesity, and recent work with transgenic mice to elucidate the role of agouti in obesity. Agouti was cloned in 1992 by the lab of Rick Woychik at Oak Ridge National Laboratory, making it the first of many recently cloned mouse obesity genes. Sequence analysis predicted that mouse agouti is a secreted protein of 131 amino acids. The mature protein has a basic central region (lys57-arg85), a proline-rich domain (pro86-pro91) and a C-terminal region (cys 92-cys 13 1) containing 10 cysteine residues which form 5more » disulfide bonds. The human homologue of agouti has also been cloned by the Woychik lab and maps to human chromosome 20q 11.2. Human agouti is 132 amino acids long and is 85% similar to the mouse agouti protein and is normally expressed in adipose tissue. The researchers have been able to recapitulate obesity, hyperinsulinemia, and hyperglycemia with the ubiquitous expression of agouti. Agouti expression in either liver and adipose tissue alone does not cause obesity, and there`s a dose-dependent effect of agouti on body weight, food efficiency, body temperature, and insulin and glucose levels.« less

  2. Ultrastructural study of Rift Valley fever virus in the mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Christopher; Steele, Keith E.; Honko, Anna

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed inmore » the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.« less

  3. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    PubMed Central

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  4. Sexual Dimorphism and Estrogen Action in Mouse Liver.

    PubMed

    Torre, Della; Lolli, Federica; Ciana, Paolo; Maggi, Adriana

    2017-01-01

    Recent studies have demonstrated that in mice, the estrogen receptor alpha (ERα) is expressed in the liver and has a direct effect on the regulation of the hepatic genes relevant for energy metabolism and drug metabolism. The sex-related differential expression of the hepatic ERα raises the questions as to whether this receptor is responsible for the sexual differences observed in the physiopathology of the liver.

  5. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    PubMed

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  6. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury

    PubMed Central

    2014-01-01

    Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci. PMID:24397824

  7. Novel Interventional Management of Hepatic Hydatid Cyst with Nanosecond Pulses on Experimental Mouse Model.

    PubMed

    Chen, Xinhua; Zhang, Ruiqing; Aji, Tuerganaili; Shao, Yingmei; Chen, Yonggang; Wen, Hao

    2017-07-03

    The nanosecond pulsed electric field (nsPEF) is investigated as an alternative plan for benign hepatic hydatid cyst. Altogether 72 C57B6 mice were included. Normal group (n = 12) had no parasite injection and the other 60 mice were used to induce hydatid cyst in liver by injecting protoscolices in portal vein. The liver hydatid cysts were exposed to nsPEF with different doses and then follow up. The standard surgery was performed as positive control. The hydatid cyst growth was monitored by ultrasound; the morphology was checked by gross anatomy and pathology was tested by H&E stain. In nsPEF-treated groups no hepatic failure nor bleeding were observed. As a comparison, in the surgery group, high post-treatment complications occurred (50%). Significant parasite growth inhibition was seen in high nsPEF dose group as compared with control group (P < 0.05). Pathological analysis confirmed destruction of hydatid cyst with sharp demarcation defined by the electrodes. Laboratory analysis showed nsPEF stimulated a time-dependent infection and recoverable liver function. The traumatic reactions defined by white blood count was significant lower than surgery groups (P < 0.05).Preliminary studies demonstrate nsPEF ablation can be applied on hepatic hydatid by inhibiting parasite growth, destructing the cyst and stimulating infections.

  8. Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine

    PubMed Central

    Santamaría, Enrique; Avila, Matías A.; Latasa, M. Ujue; Rubio, Angel; Martín-Duce, Antonio; Lu, Shelly C.; Mato, José M.; Corrales, Fernando J.

    2003-01-01

    Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A−/−) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A−/− expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at ≈8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase β-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in ob/ob mice and obese patients who are at risk for nonalcoholic steatohepatitis. PMID:12631701

  9. Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models.

    PubMed

    Hsu, Feng-Lin; Huang, Chun-Fa; Chen, Ya-Wen; Yen, Yuan-Peng; Wu, Cheng-Tien; Uang, Biing-Jiun; Yang, Rong-Sen; Liu, Shing-Hwa

    2013-02-01

    The therapeutic effect of pterosin A, a small-molecular-weight natural product, on diabetes was investigated. Pterosin A, administered orally for 4 weeks, effectively improved hyperglycemia and glucose intolerance in streptozotocin, high-fat diet-fed, and db/db diabetic mice. There were no adverse effects in normal or diabetic mice treated with pterosin A for 4 weeks. Pterosin A significantly reversed the increased serum insulin and insulin resistance (IR) in dexamethasone-IR mice and in db/db mice. Pterosin A significantly reversed the reduced muscle GLUT-4 translocation and the increased liver phosphoenolpyruvate carboxyl kinase (PEPCK) expression in diabetic mice. Pterosin A also significantly reversed the decreased phosphorylations of AMP-activated protein kinase (AMPK) and Akt in muscles of diabetic mice. The decreased AMPK phosphorylation and increased p38 phosphorylation in livers of db/db mice were effectively reversed by pterosin A. Pterosin A enhanced glucose uptake and AMPK phosphorylation in cultured human muscle cells. In cultured liver cells, pterosin A inhibited inducer-enhanced PEPCK expression, triggered the phosphorylations of AMPK, acetyl CoA carboxylase, and glycogen synthase kinase-3, decreased glycogen synthase phosphorylation, and increased the intracellular glycogen level. These findings indicate that pterosin A may be a potential therapeutic option for diabetes.

  10. Liver enzyme abnormalities in taking traditional herbal medicine in Korea: A retrospective large sample cohort study of musculoskeletal disorder patients.

    PubMed

    Lee, Jinho; Shin, Joon-Shik; Kim, Me-Riong; Byun, Jang-Hoon; Lee, Seung-Yeol; Shin, Ye-Sle; Kim, Hyejin; Byung Park, Ki; Shin, Byung-Cheul; Lee, Myeong Soo; Ha, In-Hyuk

    2015-07-01

    The objective of this study is to report the incidence of liver injury from herbal medicine in musculoskeletal disease patients as large-scale studies are scarce. Considering that herbal medicine is frequently used in patients irrespective of liver function in Korea, we investigated the prevalence of liver injury by liver function test results in musculoskeletal disease patients. Of 32675 inpatients taking herbal medicine at 7 locations of a Korean medicine hospital between 2005 and 2013, we screened for liver injury in 6894 patients with liver function tests (LFTs) at admission and discharge. LFTs included t-bilirubin, AST, ALT, and ALP. Liver injury at discharge was assessed by LFT result classifications at admission (liver injury, liver function abnormality, and normal liver function). In analyses for risk factors of liver injury at discharge, we adjusted for age, sex, length of stay, conventional medicine intake, HBs antigen/antibody, and liver function at admission. A total 354 patients (prevalence 5.1%) had liver injury at admission, and 217 (3.1%) at discharge. Of the 354 patients with liver injury at admission, only 9 showed a clinically significant increase after herbal medicine intake, and 225 returned to within normal range or showed significant liver function recovery. Out of 4769 patients with normal liver function at admission, 27 (0.6%) had liver injury at discharge. In multivariate analyses for risk factors, younger age, liver function abnormality at admission, and HBs antigen positive were associated with injury at discharge. The prevalence of liver injury in patients with normal liver function taking herbal medicine for musculoskeletal disease was low, and herbal medicine did not exacerbate liver injury in most patients with injury prior to intake. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells.

    PubMed

    Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori

    2015-01-01

    It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.

  12. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilic, Zoran, E-mail: zxi01@health.state.ny.u; Crawford, Dana, E-mail: crawfod@mail.amc.ed; Egner, Patricia A., E-mail: pegner@jhsph.ed

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replacedmore » with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.« less

  13. Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease.

    PubMed

    McGettigan, Brett M; McMahan, Rachel H; Luo, Yuhuan; Wang, Xiaoxin X; Orlicky, David J; Porsche, Cara; Levi, Moshe; Rosen, Hugo R

    2016-10-28

    Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The selective peroxisome proliferator–activated receptor‐delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice

    PubMed Central

    Haczeyni, Fahrettin; Wang, Hans; Barn, Vanessa; Mridha, Auvro R.; Yeh, Matthew M.; Haigh, W. Geoffrey; Ioannou, George N.; Choi, Yun‐Jung; McWherter, Charles A.; Teoh, Narcissus C.‐H.

    2017-01-01

    Lipotoxicity associated with insulin resistance is central to nonalcoholic steatohepatitis (NASH) pathogenesis. To date, only weight loss fully reverses NASH pathology, but mixed peroxisome proliferator–activated receptor‐alpha/delta (PPAR‐α/δ) agonists show some efficacy. Seladelpar (MBX‐8025), a selective PPAR‐δ agonist, improves atherogenic dyslipidemia. We therefore used this agent to test whether selective PPAR‐δ activation can reverse hepatic lipotoxicity and NASH in an obese, dyslipidemic, and diabetic mouse model. From weaning, female Alms1 mutant (foz/foz) mice and wild‐type littermates were fed an atherogenic diet for 16 weeks; groups (n = 8‐12) were then randomized to receive MBX‐8025 (10 mg/kg) or vehicle (1% methylcellulose) by gavage for 8 weeks. Despite minimally altering body weight, MBX‐8025 normalized hyperglycemia, hyperinsulinemia, and glucose disposal in foz/foz mice. Serum alanine aminotransferase ranged 300‐600 U/L in vehicle‐treated foz/foz mice; MBX‐8025 reduced alanine aminotransferase by 50%. In addition, MBX‐8025 normalized serum lipids and hepatic levels of free cholesterol and other lipotoxic lipids that were increased in vehicle‐treated foz/foz versus wild‐type mice. This abolished hepatocyte ballooning and apoptosis, substantially reduced steatosis and liver inflammation, and improved liver fibrosis. In vehicle‐treated foz/foz mice, the mean nonalcoholic fatty liver disease activity score was 6.9, indicating NASH; MBX‐8025 reversed NASH in all foz/foz mice (nonalcoholic fatty liver disease activity score 3.13). Conclusion: Seladelpar improves insulin sensitivity and reverses dyslipidemia and hepatic storage of lipotoxic lipids to improve NASH pathology in atherogenic diet–fed obese diabetic mice. Selective PPAR‐δ agonists act independently of weight reduction, but counter lipotoxicity related to insulin resistance, thereby providing a novel therapy for NASH. (Hepatology Communications 2017;1:663–674) PMID:29404484

  15. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Ding, Xuan; Dutta, Debaditya; Singh, Vijay P.; Kim, Kang

    2014-02-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ˜3 s and ˜9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (-0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (-0.124 ± 0.037%). Using histology as a gold standard to classify mouse livers, US-TSI had a sensitivity and specificity of 70% and 90%, respectively. The area under the receiver operating characteristic curve was 0.775. This ex vivo study demonstrates the feasibility of using US-TSI to detect fatty livers and warrants further investigation of US-TSI as a diagnostic tool for hepatic steatosis.

  16. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    PubMed Central

    Mahmoud, Ahmed M.; Ding, Xuan; Dutta, Debaditya; Singh, Vijay P.; Kim, Kang

    2014-01-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer, and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using ultrasound-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n=10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n=10) with low fat content (4.8± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ~3 s and ~9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (−0.065±0.079%) were significantly (p<0.05) higher than those measured in control livers (−0.124±0.037%). Using histology as a gold standard to classify mouse livers, US-TSI had a sensitivity and specificity of 70% and 90%, respectively. The area under the receiver operating characteristic (ROC) curve (AUC) was 0.775. This ex vivo study demonstrates the feasibility of using US-TSI to detect fatty livers and warrants further investigation of US-TSI as a diagnostic tool for hepatic steatosis. PMID:24487698

  17. Cystathionine beta-synthase deficiency alters hepatic phospholipid and choline metabolism: Post-translational repression of phosphatidylethanolamine N-methyltransferase is a consequence rather than a cause of liver injury in homocystinuria.

    PubMed

    Jacobs, René L; Jiang, Hua; Kennelly, John P; Orlicky, David J; Allen, Robert H; Stabler, Sally P; Maclean, Kenneth N

    2017-04-01

    Classical homocystinuria (HCU) due to inactivating mutation of cystathionine β-synthase (CBS) is a poorly understood life-threatening inborn error of sulfur metabolism. A previously described cbs-/- mouse model exhibits a semi-lethal phenotype due to neonatal liver failure. The transgenic HO mouse model of HCU exhibits only mild liver injury and recapitulates multiple aspects of the disease as it occurs in humans. Disruption of the methionine cycle in HCU has the potential to impact multiple aspect of phospholipid (PL) metabolism by disruption of both the Kennedy pathway and phosphatidylethanolamine N-methyltransferase (PEMT) mediated synthesis of phosphatidylcholine (PC). Comparative metabolomic analysis of HO mouse liver revealed decreased levels of choline, and choline phosphate indicating disruption of the Kennedy pathway. Alterations in the relative levels of multiple species of PL included significant increases in PL degradation products consistent with enhanced membrane PL turnover. A significant decrease in PC containing 20:4n6 which primarily formed by the methylation of phosphatidylethanolamine to PC was consistent with decreased flux through PEMT. Hepatic expression of PEMT in both the cbs-/- and HO models is post-translationally repressed with decreased levels of PEMT protein and activity that inversely-correlates with the scale of liver injury. Failure to induce further repression of PEMT in HO mice by increased homocysteine, methionine and S-adenosylhomocysteine or depletion of glutathione combined with examination of multiple homocysteine-independent models of liver injury indicated that repression of PEMT in HCU is a consequence rather than a cause of liver injury. Collectively, our data show significant alteration of a broad range of hepatic PL and choline metabolism in HCU with the potential to contribute to multiple aspects of pathogenesis in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system.

    PubMed

    Cunningham, Sharon C; Siew, Susan M; Hallwirth, Claus V; Bolitho, Christine; Sasaki, Natsuki; Garg, Gagan; Michael, Iacovos P; Hetherington, Nicola A; Carpenter, Kevin; de Alencastro, Gustavo; Nagy, Andras; Alexander, Ian E

    2015-08-01

    Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration. © 2015 by the American Association for the Study of Liver Diseases.

  19. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    PubMed

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  20. Carbon tetrachloride-induced hepatotoxicity and its amelioration by Agaricus blazei Murrill extract in a mouse model.

    PubMed

    Chang, Jin-Biou; Wu, Ming-Fang; Yang, Yi-Yuan; Leu, Sy-Jye; Chen, Yung-Liang; Yu, Chun-Shu; Yu, Chieh-Chih; Chang, Shu-Jen; Lu, Hsu-Feng; Chung, Jing-Gung

    2011-01-01

    This study was conducted to evaluate the hepatoprotective effect of Agaricus blazei Murrill extract (ABM) against experimentally induced carbon tetrachloride (CCl(4)) toxicity in male BALB/c mice. The experiments included a normal group (no induction by CCl(4)), CCl(4-)induction group (with hepatotoxicity by CCl(4) and without treatment) and experimental groups with low dose (200 mg) or high dose (2,000 mg) of ABM extract (per kilogram mouse weight). All groups other than the normal group were treated with intraperitoneal injections of CCl(4) twice a week. Mice were tube-fed with experimental ABM extracts or double-distilled water, accordingly, on the remaining four days each week. The whole experimental protocol lasted 8 weeks; blood and liver samples were collected for biochemical and tissue histochemical analysis. Only administration of a high dose of ABM to treatment groups resulted in a significant abrogation of CCL(4)-induced increase of serum aspartate aminotransferase (AST) and alanine transaminase (ALT). Post-treatment with ABM also did not significantly reverse the alterations of glutathione peroxidase (GSHPx) and catalase. Both high- and low-dose ABM treatment reduced hepatic necrosis and fibrosis caused by CCl(4) in comparison with the CCl(4) control group in the histochemical analyses. Our results suggest that the ABM extract affects the levels of ALT and AST in mice.

  1. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    PubMed

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type‑ІІ diabetes mellitus. The activity of ERK and AMPK, and the function of islet β‑cells were observed to be improved in experimental mice treated with aerobic exercise. Furthermore, blood lipid metabolism and insulin resistance were improved by treatment with aerobic exercise. Body weight and glucose concentration of serology was markedly improved in mouse models of type‑ІІ diabetes mellitus. Furthermore, TLR‑4 inhibition markedly promoted ERK and AMPK expression levels and activity. Thus, these results indicate that aerobic exercise may improve blood lipid metabolism, insulin resistance and glucose plasma concentration in mouse models of type‑ІІ diabetes mellitus. Thus indicating aerobic exercise is beneficial for improvement of blood lipid and insulin resistance via the TLR‑4‑mediated ERK/AMPK signaling pathway in the progression of type‑ІІ diabetes mellitus.

  2. CAR and PXR-dependent transcriptional changes in the mouse liver after exposure to propiconazole

    EPA Science Inventory

    Exposure to the conazoles propiconazole and triadimefon but not myclobutanilled to tumors in mice after 2 years. Transcript profiling studies in the livers ofwild-type mice after short-term exposure to the conazoles revealed signatures indicating the involvement ofthe nuclear rec...

  3. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  4. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES.

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  5. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  6. Liver-directed lentiviral gene therapy in a dog model of hemophilia B.

    PubMed

    Cantore, Alessio; Ranzani, Marco; Bartholomae, Cynthia C; Volpin, Monica; Valle, Patrizia Della; Sanvito, Francesca; Sergi, Lucia Sergi; Gallina, Pierangela; Benedicenti, Fabrizio; Bellinger, Dwight; Raymer, Robin; Merricks, Elizabeth; Bellintani, Francesca; Martin, Samia; Doglioni, Claudio; D'Angelo, Armando; VandenDriessche, Thierry; Chuah, Marinee K; Schmidt, Manfred; Nichols, Timothy; Montini, Eugenio; Naldini, Luigi

    2015-03-04

    We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia. Copyright © 2015, American Association for the Advancement of Science.

  7. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIIImore » inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.« less

  8. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells.

    PubMed

    Fu, Yuhua; Lv, Pin; Yan, Guoquan; Fan, Hui; Cheng, Lu; Zhang, Feng; Dang, Yongjun; Wu, Hao; Wen, Bo

    2015-11-25

    In the interphase nucleus, chromatin is organized into three-dimensional conformation to coordinate genome functions. The lamina-chromatin association is important to facilitate higher-order chromatin in mammalian cells, but its biological significances and molecular mechanisms remain poorly understood. One obstacle is that the list of lamina-associated proteins remains limited, presumably due to the inherent insolubility of lamina proteins. In this report, we identified 182 proteins associated with lamin B1 (a constitutive component of lamina) in mouse hepatocytes, by adopting virus-based proximity-dependent biotin identification. These proteins are functionally related to biological processes such as chromatin organization. As an example, we validated the association between lamin B1 and core histone macroH2A1, a histone associated with repressive chromatin. Furthermore, we mapped Lamina-associated domains (LADs) in mouse liver cells and found that boundaries of LADs are enriched for macroH2A. More interestingly, knocking-down of macroH2A1 resulted in the release of heterochromatin foci marked by histone lysine 9 trimethylation (H3K9me3) and the decondensation of global chromatin structure. However, down-regulation of lamin B1 led to redistribution of macroH2A1. Taken together, our data indicated that macroH2A1 is associated with lamina and is required to maintain chromatin architecture in mouse liver cells.

  9. Localization of peroxisome proliferator-activated receptor in mouse and rat-tissues and demonstration of its nuclear translocation in transfected cv-1 cells.

    PubMed

    Huang, Q; Yeldandi, A; Alvares, K; Ide, H; Reddy, J; Rao, M

    1995-02-01

    Hepatocarcinogenesis in rodents induced by nongenotoxic peroxisome proliferators is postulated to be a receptor-mediated process. The peroxisome proliferator-activated receptors (PPAR) are members of the steroid hormone receptor superfamily, which participate in ligand-dependent transcriptional activation of peroxisomal fatty acid beta oxidation enzyme system genes in liver parenchymal cells of rats and mice. In order to study the tissue distribution and cellular localization of PPAR, we raised polyclonal antibodies against PPAR using a recombinant rat PPAR (rPPAR) expressed as a glutathione-S-transferase-rPPAR fusion protein. On immunoblot analysis the antibodies specifically recognized a 55 kDa PPAR protein in rat, mouse and human liver homogenates. Immunoblotting also showed that in the mouse and rat, PPAR is expressed in liver, kidney and heart, and only weakly in brain and testis. Immunohistochemical localization in the rat and mouse revealed that PPAR is highly expressed in perivenular (i.e., those surrounding hepatic vein) hepatocytes and very weakly in the cytoplasm of remaining hepatocytes. In the kidney, PPAR was visualized predominantly in the p(3) segments of proximal convoluted tubular epithelium. CV-1 cells transiently transfected with rPPAR cDNA construct showed predominant cytoplasmic fluorescence; treatment of these cells with ciprofibrate, a peroxisome proliferator, resulted in the nuclear translocation of PPAR signal.

  10. Differences in betaine-homocysteine methyltransferase expression, ER stress response and liver injury between alcohol-fed mice and rats

    PubMed Central

    Shinohara, Masao; Ji, Cheng; Kaplowitz, Neil

    2009-01-01

    Chronic ethanol infusion resulted in greater serum ALT elevation, lipid accumulation, necroinflammation, and focal hepatic cell death in mice than rats. Mice exhibited a remarkable hyperhomocysteinemia but no increase was seen in rats. Similarly, a high methionine low folate diet (HMLF) induced less steatosis, serum ALT increase, and hyperhomocysteinemia in rats than in mice. Western blot analysis of betaine homocysteine methyltransferase (BHMT) expression showed that rats fed either ethanol or HMLF had significantly increased BHMT expression which did not occur in mice. Nuclear NFκB p65 was increased in mouse in response to alcohol feeding. The human BHMT promoter was repressed by homocysteine in mouse hepatocytes but not rat hepatocytes. BHMT induction was faster and greater in primary rat hepatocytes than mouse hepatocytes in response to exogenous homocysteine exposure. Mice fed ethanol i.g. exhibited an increase in GRP78 and IRE1 which was not seen in the rat and SREBP-1 was increased to a greater extent in mice than rats. Thus, rats are more resistant to ethanol induced steatosis, ER stress and hyperhomocysteinemia and this correlates with induction of BHMT in rats. These findings support the hypothesis that a critical factor in the pathogenesis of alcoholic liver injury is the enhanced ability of rat or impaired ability of mouse to up-regulate BHMT which prevents hyperhomocysteinemia, ER stress and liver injury. PMID:20069651

  11. Murine hepatocellular carcinoma derived stem cells reveal epithelial-to-mesenchymal plasticity.

    PubMed

    Jayachandran, Aparna; Shrestha, Ritu; Dhungel, Bijay; Huang, I-Tao; Vasconcelos, Marianna Yumi Kawashima; Morrison, Brian J; Ramlogan-Steel, Charmaine A; Steel, Jason C

    2017-09-26

    To establish a model to enrich and characterize stem-like cells from murine normal liver and hepatocellular carcinoma (HCC) cell lines and to further investigate stem-like cell association with epithelial-to-mesenchymal transition (EMT). In this study, we utilized a stem cell conditioned serum-free medium to enrich stem-like cells from mouse HCC and normal liver cell lines, Hepa 1-6 and AML12, respectively. We isolated the 3-dimensional spheres and assessed their stemness characteristics by evaluating the RNA levels of stemness genes and a cell surface stem cell marker by quantitative reverse transcriptase-PCR (qRT-PCR). Next, we examined the relationship between stem cells and EMT using qRT-PCR. Three-dimensional spheres were enriched by culturing murine HCC and normal hepatocyte cell lines in stem cell conditioned serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor and heparin sulfate. The 3-dimensional spheres had enhanced stemness markers such as Klf4 and Bmi1 and hepatic cancer stem cell (CSC) marker Cd44 compared to parental cells grown as adherent cultures. We report that epithelial markers E-cadherin and ZO-1 were downregulated, while mesenchymal markers Vimentin and Fibronectin were upregulated in 3-dimensional spheres. The 3-dimensional spheres also exhibited changes in expression of Snai , Zeb and Twist family of EMT transcription factors. Our novel method successfully enriched stem-like cells which possessed an EMT phenotype. The isolation and characterization of murine hepatic CSCs could establish a precise target for the development of more effective therapies for HCC.

  12. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  13. Identification of Noninvasive Biomarkers for Alcohol-Induced Liver Disease Using Urinary Metabolomics and the Ppara-null Mouse

    PubMed Central

    Manna, Soumen K.; Patterson, Andrew D.; Yang, Qian; Krausz, Kristopher W.; Li, Henghong; Idle, Jeffrey R.; Fornace, Albert J.; Gonzalez, Frank J.

    2010-01-01

    Alcohol-induced liver disease (ALD) is a leading cause of non-accident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively non-specific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study the metabolic changes associated with alcohol-induced liver disease were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-β-D-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model. PMID:20540569

  14. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    PubMed Central

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  15. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice.

    PubMed

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Wilson, Elizabeth M; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H I

    2012-10-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase-deficient mouse (Fah-/-, Rag2-/-, Il2rg-/-, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS-to-blood-stage transition of a human malaria parasite.

  16. Breast Milk Jaundice: Effect of 3α 20β-pregnanediol on Bilirubin Conjugation by Human Liver

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    The effect of 3α,20β-pregnanediol and other steroids on bilirubin conjugation was examined using liver tissue from human and four other species. Neither 3α,20β-pregnanediol nor 3α,20β-pregnanediol inhibited conjugation by human liver slices or by solubilized human liver microsomes. 3α,20β-pregnanediol is unlikely to be the inhibitor causing breast milk jaundice. Oestriol inhibited conjugation by human liver slices. A comparison of species indicated that the response of the human liver slice system to steroids resembles that of the rabbit and guinea-pig rather than the rat or mouse. PMID:4246186

  17. Tissue-specific and hormonally regulated expression of a rat alpha 2u globulin gene in transgenic mice.

    PubMed Central

    Soares, V da C; Gubits, R M; Feigelson, P; Costantini, F

    1987-01-01

    To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene. Images PMID:2446121

  18. The Role of miR-182-5p in Hepatocarcinogenesis of Trichloroethylene in Mice.

    PubMed

    Jiang, Yan; Chen, Jiahong; Yue, Cong; Zhang, Hang; Tong, Jian; Li, Jianxiang; Chen, Tao

    2017-03-01

    Trichloroethylene (TCE), commonly used as an industrial solvent, is ubiquitous in our living environment. TCE exposure can induce hepatocellular carcinoma (HCC) in mice, but the underlying mechanisms remain elusive. To understand the role of miRNA in the hepatocarcinogenesis of TCE, we examined the miRNA expression profiles by microarray in the liver of B6C3F1 male mice exposed to TCE at 0 or 1000 mg/kg b.w. Nine differentially expressed miRNAs were identified, out of which miR-182-5p exhibited the highest increase in expression. Moreover, the TCE-induced upregulation of miR182-5p in mouse liver was dose dependent and correlated with promoter DNA hypomethylation. Treatment of mouse liver cell lines (BNL CL.2 and Hepa1-6) with TCE at non-toxic doses (0.1 and/or 0.3 mM) significantly increased the expression level of miR-182-5p accompanied with elevated cell proliferation. The TCE-induced cell proliferation was further found to be mediated by miR-182-5p overexpression. Additionally, tumor suppressor gene Cited2, which was downregulated in TCE exposed mouse liver cells, was proved to be a direct target of miR-182-5p. In conclusion, TCE might up-regulate miR-182-5p expression by DNA hypomethylation, which could suppress Cited2 and improve cell proliferation rate, resulting in liver tumor. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Metabolism of Ginger Component [6]-Shogaol in Liver Microsomes from Mouse, Rat, Dog, Monkey, and Human

    PubMed Central

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-01-01

    Scope There are limited data on the metabolism of [6]-shogaol, a major bioactive component of ginger. This study demonstrates metabolism of [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Methods and results The in vitro metabolism of [6]-shogaol was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with [6]-shogaol, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E, 4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than [6]-shogaol. Conclusion We conclude that [6]-shogaol is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning pre-clinical trials towards [6]-shogaol chemoprevention. PMID:23322474

  20. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice.

    PubMed

    Williams, Jessica A; Ni, Hong-Min; Ding, Yifeng; Ding, Wen-Xing

    2015-09-01

    Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. Copyright © 2015 the American Physiological Society.

  2. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.

    PubMed

    Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu

    2009-07-01

    Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.

  3. Long-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice

    PubMed Central

    Hou, Po-Hsun; Chang, Geng-Ruei; Chen, Chin-Pin; Lin, Yen-Ling; Chao, I-Shuan; Shen, Ting-Ting; Mao, Frank Chiahung

    2018-01-01

    Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet. Materials and Methods: Female C57BL/6J mice orally received olanzapine or normal saline for 7 weeks. The effects of long-term olanzapine exposure on body weight changes, food efficiency, blood glucose, triglyceride (TG), insulin, and leptin levels were observed. Hepatic TG and abdominal fat mass were investigated, and fat cell morphology was analyzed through histopathological methods. The levels of protein markers of fatty acid regulation in the liver, namely fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD-1), were measured. Results: Olanzapine treatment increased the food intake of the mice as well as their body weight. Biochemical analyses showed that olanzapine increased blood TG, insulin, leptin, and hepatic TG. The olanzapine group exhibited increased abdominal fat mass and fat cell enlargement in abdominal fat tissue. Western blotting of the mouse liver revealed significantly higher (1.6-fold) levels of SCD-1 in the olanzapine group relative to the control group; by contrast, FAS levels in the two groups did not differ significantly. Conclusion: Enhanced lipogenesis triggered by increased hepatic SCD-1 activity might be a probable peripheral mechanism of olanzapine-induced dyslipidemia. Some adverse metabolic effects of olanzapine may be related to the disturbance of lipid homeostasis in the liver. PMID:29922430

  4. MitoNEET Deficiency Alleviates Experimental Alcoholic Steatohepatitis in Mice by Stimulating Endocrine Adiponectin-Fgf15 Axis.

    PubMed

    Hu, Xudong; Jogasuria, Alvin; Wang, Jiayou; Kim, Chunki; Han, Yoonhee; Shen, Hong; Wu, Jiashin; You, Min

    2016-10-21

    MitoNEET (mNT) (CDGSH iron-sulfur domain-containing protein 1 or CISD1) is an outer mitochondrial membrane protein that donates 2Fe-2S clusters to apo-acceptor proteins. In the present study, using a global mNT knock-out (mNTKO) mouse model, we investigated the in vivo functional role of mNT in the development of alcoholic steatohepatitis. Experimental alcoholic steatohepatitis was achieved by pair feeding wild-type (WT) and mNTKO mice with Lieber-DeCarli ethanol-containing diets for 4 weeks. Strikingly, chronically ethanol-fed mNTKO mice were completely resistant to ethanol-induced steatohepatitis as revealed by dramatically reduced hepatic triglycerides, decreased hepatic cholesterol level, diminished liver inflammatory response, and normalized serum ALT levels. Mechanistic studies demonstrated that ethanol administration to mNTKO mice induced two pivotal endocrine hormones, namely, adipose-derived adiponectin and gut-derived fibroblast growth factor 15 (Fgf15). The elevation in circulating levels of adiponectin and Fgf15 led to normalized hepatic and serum levels of bile acids, limited hepatic accumulation of toxic bile, attenuated inflammation, and amelioration of liver injury in the ethanol-fed mNTKO mice. Other potential mechanisms such as reduced oxidative stress, activated Sirt1 signaling, and diminished NF-κB activity also contribute to hepatic improvement in the ethanol-fed mNTKO mice. In conclusion, the present study identified adiponectin and Fgf15 as pivotal adipose-gut-liver metabolic coordinators in mediating the protective action of mNT deficiency against development of alcoholic steatohepatitis in mice. Our findings may help to establish mNT as a novel therapeutic target and pharmacological inhibition of mNT may be beneficial for the prevention and treatment of human alcoholic steatohepatitis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Lack of Evidence for Green Tea Polyphenols as DNA Methylation Inhibitors in Murine Prostate

    PubMed Central

    Morey Kinney, Shannon R.; Zhang, Wa; Pascual, Marien; Greally, John M.; Gillard, Bryan M.; Karasik, Ellen; Foster, Barbara A.; Karpf, Adam R.

    2009-01-01

    Green tea polyphenols (GTPs) have been reported to inhibit DNA methylation in cultured cells. Here we tested whether oral consumption of GTPs affects normal or cancer specific DNA methylation in vivo, using mice. Wildtype (WT) and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice were administered 0.3% GTPs in drinking water beginning at 4 weeks of age. To monitor DNA methylation, we measured 5-methyl-deoxycytidine (5mdC) levels, methylation of the B1 repetitive element, and methylation of the Mage-a8 gene. Each of these parameters were unchanged in prostate, gut, and liver from WT mice at both 12 and 24 weeks of age, with the single exception of a decrease of 5mdC in the liver at 12 weeks. In GTP-treated TRAMP mice, 5mdC levels and the methylation status of four loci hypermethylated during tumor progression were unaltered in TRAMP prostates at 12 or 24 weeks. Quite surprisingly, GTP treatment did not inhibit tumor progression in TRAMP mice, although known pharmacodynamic markers of GTPs were altered in both WT and TRAMP prostates. We also administered 0.1%, 0.3%, or 0.6% GTPs to TRAMP mice for 12 weeks and measured 5mdC levels and methylation of B1 and Mage-a8 in prostate, gut, and liver tissues. No dose-dependent alterations in DNA methylation status were observed. Genome-wide DNA methylation profiling using the HELP assay also revealed no significant hypomethylating effect of GTP. These data indicate that oral administration of GTPs does not affect normal or cancer-specific DNA methylation in the murine prostate. PMID:19934341

  6. Intraperitoneal AAV9-shRNA inhibits target expression in neonatal skeletal and cardiac muscles.

    PubMed

    Mayra, Azat; Tomimitsu, Hiroyuki; Kubodera, Takayuki; Kobayashi, Masaki; Piao, Wenying; Sunaga, Fumiko; Hirai, Yukihiko; Shimada, Takashi; Mizusawa, Hidehiro; Yokota, Takanori

    2011-02-11

    Systemic injections of AAV vectors generally transduce to the liver more effectively than to cardiac and skeletal muscles. The short hairpin RNA (shRNA)-expressing AAV9 (shRNA-AAV9) can also reduce target gene expression in the liver, but not enough in cardiac or skeletal muscles. Higher doses of shRNA-AAV9 required for inhibiting target genes in cardiac and skeletal muscles often results in shRNA-related toxicity including microRNA oversaturation that can induce fetal liver failure. In this study, we injected high-dose shRNA-AAV9 to neonates and efficiently silenced genes in cardiac and skeletal muscles without inducing liver toxicity. This is because AAV is most likely diluted or degraded in the liver than in cardiac or skeletal muscle during cell division after birth. We report that this systemically injected shRNA-AAV method does not induce any major side effects, such as liver dysfunction, and the dose of shRNA-AAV is sufficient for gene silencing in skeletal and cardiac muscle tissues. This novel method may be useful for generating gene knockdown in skeletal and cardiac mouse tissues, thus providing mouse models useful for analyzing diseases caused by loss-of-function of target genes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Mycotoxin-Containing Diet Causes Oxidative Stress in the Mouse

    PubMed Central

    Hou, Yan-Jun; Zhao, Yong-Yan; Xiong, Bo; Cui, Xiang-Shun; Kim, Nam-Hyung; Xu, Yin-Xue; Sun, Shao-Chen

    2013-01-01

    Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse. PMID:23555961

  8. Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver

    PubMed Central

    Schreiber, Renate; Taschler, Ulrike; Wolinski, Heimo; Seper, Andrea; Tamegger, Stefanie N.; Graf, Maria; Kohlwein, Sepp D.; Haemmerle, Guenter; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2009-01-01

    Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with β-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl β-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism. PMID:19723663

  9. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans.

    PubMed

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth; Cherñavsky, Alejandra Claudia

    2017-01-01

    The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research.

  10. Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice.

    PubMed

    da Silva, Suelen S; Mizokami, Sandra S; Fanti, Jacqueline R; Miranda, Milena M; Kawakami, Natalia Y; Teixeira, Fernanda Humel; Araújo, Eduardo J A; Panis, Carolina; Watanabe, Maria A E; Sforcin, José M; Pavanelli, Wander R; Verri, Waldiceu A; Felipe, Ionice; Conchon-Costa, Ivete

    2016-04-01

    Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.

  11. Specific gene delivery to liver sinusoidal and artery endothelial cells.

    PubMed

    Abel, Tobias; El Filali, Ebtisam; Waern, Johan; Schneider, Irene C; Yuan, Qinggong; Münch, Robert C; Hick, Meike; Warnecke, Gregor; Madrahimov, Nodir; Kontermann, Roland E; Schüttrumpf, Jörg; Müller, Ulrike C; Seppen, Jurgen; Ott, Michael; Buchholz, Christian J

    2013-09-19

    Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.

  12. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer.

    PubMed

    Olson, Peter; Lu, Jun; Zhang, Hao; Shai, Anny; Chun, Matthew G; Wang, Yucheng; Libutti, Steven K; Nakakura, Eric K; Golub, Todd R; Hanahan, Douglas

    2009-09-15

    While altered expression of microRNAs (miRs) in tumors has been well documented, it remains unclear how the miR transcriptome intersects neoplastic progression. By profiling the miR transcriptome we identified miR expression signatures associated with steps in tumorigenesis and the acquisition of hallmark capabilities in a prototypical mouse model of cancer. Metastases and a rare subset of primary tumors shared a distinct miR signature, implicating a discrete lineage for metastatic tumors. The miR-200 family is strongly down-regulated in metastases and met-like primary tumors, thereby relieving repression of the mesenchymal transcription factor Zeb1, which in turn suppresses E-cadherin. Treatment with a clinically approved angiogenesis inhibitor normalized angiogenic signature miRs in primary tumors, while altering expression of metastatic signature miRs similarly to liver metastases, suggesting their involvement in adaptive resistance to anti-angiogenic therapy via enhanced metastasis. Many of the miR changes associated with specific stages and hallmark capabilities in the mouse model are similarly altered in human tumors, including cognate pancreatic neuroendocrine tumors, implying a generality.

  13. Human plasma metabolic profiles of benzydamine, a flavin-containing monooxygenase probe substrate, simulated with pharmacokinetic data from control and humanized-liver mice.

    PubMed

    Yamazaki-Nishioka, Miho; Shimizu, Makiko; Suemizu, Hiroshi; Nishiwaki, Megumi; Mitsui, Marina; Yamazaki, Hiroshi

    2018-02-01

    1. Benzydamine is used clinically as a nonsteroidal anti-inflammatory drug in oral rinses and is employed in preclinical research as a flavin-containing monooxygenase (FMO) probe substrate. In this study, plasma concentrations of benzydamine and its primary N-oxide and N-demethylated metabolites were investigated in control TK-NOG mice, in humanized-liver mice, and in mice whose liver cells had been ablated with ganciclovir. 2. Following oral administration of benzydamine (10 mg/kg) in humanized-liver TK-NOG mice, plasma concentrations of benzydamine N-oxide were slightly higher than those of demethyl benzydamine. In contrast, in control and ganciclovir-treated TK-NOG mice, concentrations of demethyl benzydamine were slightly higher than those of benzydamine N-oxide. 3. Simulations of human plasma concentrations of benzydamine and its N-oxide were achieved using simplified physiologically based pharmacokinetic models based on data from control TK-NOG mice and from reported benzydamine concentrations after low-dose administration in humans. Estimated clearance rates based on data from humanized-liver and ganciclovir-treated TK-NOG mice were two orders magnitude high. 4. The pharmacokinetic profiles of benzydamine were different for control and humanized-liver TK-NOG mice. Humanized-liver mice are generally accepted human models; however, drug oxidation in mouse kidney might need to be considered when probe substrates undergo FMO-dependent drug oxidation in mouse liver and kidney.

  14. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  15. Optoacoustic tomography in preclinical research: in vivo distribution of highly purified PEG-coated gold nanorods

    NASA Astrophysics Data System (ADS)

    Su, Richard; Liopo, Anton; Brecht, Hans-Peter; Ermilov, Sergey; Larin, Kirill; Oraevsky, Alexander A.

    2011-07-01

    We report on the optoacoustic (OA) imaging of the whole mouse body using a biocompatible contrast agent - highly purified, pegylated gold nanorods (GNR) - which has strong optical absorption in the near-infrared region and low level of toxicity. In vitro toxicity studies showed no significant change in survival rates of the cultured normal epithelium IEC-6 cells when incubated for 24 hours with up to 1 nM of GNR. In vivo toxicity studies in nude mice showed no pathological changes in liver 1 month after the IV injection of GNR with intra-body concentration around 0.25-0.50 nM. In order to study the enhancement of the OA contrast and accumulation of GNR in different tissues, we performed 3D OA imaging of live nude mice with IV-injected GNR. The enhancement of the OA contrast in comparison with the images of the untreated mice was visible starting 1 hour after the GNR injection. The OA contrast of kidneys, liver, and spleen peaked at about 2-3 days after the administration of the GNR, and then was gradually reducing.

  16. The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis.

    PubMed

    Ishihara, Erika; Nishina, Hiroshi

    2018-04-17

    The vertebrate body shape is formed by the specific sizes and shapes of its resident tissues and organs, whose alignments are essential for proper functioning. To maintain tissue and organ shape, and thereby function, it is necessary to remove senescent, transformed, and/or damaged cells, which impair function and can lead to tumorigenesis. However, the molecular mechanisms underlying three-dimensional (3D) organ formation and homeostasis are not fully clear. Yes-associated protein (YAP) is a transcriptional co-activator that is involved in organ size control and tumorigenesis. Recently, we reported that YAP is essential for proper 3D body shape through regulation of cell tension by using a unique medaka fish mutant, hirame ( hir ). In Madin–Darby canine kidney (MDCK) epithelial cells, active YAP-transformed cells are eliminated apically when surrounded by normal cells. Furthermore, in a mosaic mouse model, active YAP-expressing damaged hepatocytes undergo apoptosis and are eliminated from the liver. Thus, YAP functions in quantitative and quality control in organogenesis. In this review, we describe the various roles of YAP in vertebrates, including in the initiation of liver cancer.

  17. Analysis of LIF-Raman spectroscopy for the diagnosis of normal and liver diseases

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Yu, Ting; Sun, Ruomin; Li, Siqi

    2011-07-01

    In this paper, 514.5nm argon ion laser induced human serum Raman and auto-fluorescence spectra of normal, liver cirrhosis and liver cancer were measured and analyzed. The spectral differences between these three types of serums were observed and given brief explanations. Three parameters α, φ and Δλ were introduced to describe characteristics of each type of spectrum. Experimental results showed that these parameters might be applicable for discrimination of normal, liver cirrhosis and liver cancer, which will provide some reference values to explore the method of laser spectral diagnosis of cancer.

  18. The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis.

    PubMed

    Le Guilcher, Camille; Garcin, Isabelle; Dellis, Olivier; Cauchois, Florent; Tebbi, Ali; Doignon, Isabelle; Guettier, Catherine; Julien, Boris; Tordjmann, Thierry

    2018-05-23

    Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular adenosine triphosphate, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the P2X4 purinergic receptor (P2X4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. In vivo, bile duct ligation (BDL) and methionine- and choline-deficient (MCD) diet were performed in WT and P2X4 knock-out (P2X4-KO) mice. In vitro, hMF were isolated from mouse (WT and P2X4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after BDL or MCD diet. Human and mouse hMF expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMF blunted their activation marker expression and their fibrogenic properties. We finally showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, with impact on ATP release, pro-fibrogenic secretory profile, and on transcription factor activation. P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. During chronic injury, the liver often repairs with fibrotic tissue for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor "P2X4", can modulate fibrotic liver repair, and could be considered for future translational investigations. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Mouse genotypes drive the liver and adrenal gland clocks

    NASA Astrophysics Data System (ADS)

    Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana

    2016-08-01

    Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression.

  20. Immunological characteristics and response to lipopolysaccharide of mouse lines selectively bred with natural and acquired immunities.

    PubMed

    Narahara, Hiroki; Sakai, Eri; Katayama, Masafumi; Ohtomo, Yukiko; Yamamoto, Kanako; Takemoto, Miki; Aso, Hisashi; Ohwada, Shyuichi; Mohri, Yasuaki; Nishimori, Katsuhiko; Isogai, Emiko; Yamaguchi, Takahiro; Fukuda, Tomokazu

    2012-05-01

    Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  1. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    EPA Science Inventory

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  2. COMPARATIVE LIVER P450 ENZYME ACTIVITY AND HISTOPATHOLOGY IN MICE TREATED WITH THE CONAZOLE FUNGICIDES: MYCLOBUTANIL, PROPICONAZOLE AND TRIADIMETON

    EPA Science Inventory

    Conazoles used in agriculture and pharmaceutical products comprise a class of chemicals which inhibit ergosterol biosynthesis to act as fungicides. Both propiconazole and triadimefon are hepatotoxic and hepatotumorigenic in mice, while myclobutanil is not a mouse liver tumorigen....

  3. Unique activation of matrix metalloproteinase-9 within human liver metastasis from colorectal cancer.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1998-01-01

    Experimental in vitro and animal data support an important role for matrix metalloproteinases (MMPs) in cancer invasion and metastasis via proteolytic degradation of the extracellular matrix (ECM). Our previous data have shown that MMP-9 mRNA is localized to the interface between liver metastasis and normal liver tissue, indicating that MMP-9 may play an important role in liver metastasis formation. In the present study, we analysed the cellular enzymatic expression of MMP-9 in 18 human colorectal cancer (CRC) liver metastasis specimens by enzyme-linked immunosorbent assay (ELISA) and zymography. ELISA analysis reveals that the latent form of MMP-9 is present in both liver metastasis and paired adjacent normal liver tissue. The mean level of the latent form of MMP-9 is 580+/-270 ng per mg total tissue protein (mean+/-s.e.) in liver metastasis vs 220+/-90 in normal liver tissue. However, this difference is not significantly different (P = 0.26). Using gelatin zymography, the 92-kDa band representative of the latent form is present in both liver metastasis and normal liver tissue. However, the 82 kDa band, representative of the active form of MMP-9, was seen only in liver metastasis. This was confirmed by Western blot analysis. Our observation of the unique presence of the active form of MMP-9 within liver metastasis suggests that proMMP-9 activation may be a pivotal event during CRC liver metastasis formation. Images Figure 3 Figure 4 PMID:9703281

  4. Hepatocyte nuclear factor 4alpha contributes to thyroid hormone homeostasis by cooperatively regulating the type 1 iodothyronine deiodinase gene with GATA4 and Kruppel-like transcription factor 9.

    PubMed

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F; Gonzalez, Frank J; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-06-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.

  5. Hepatocyte Nuclear Factor 4α Contributes to Thyroid Hormone Homeostasis by Cooperatively Regulating the Type 1 Iodothyronine Deiodinase Gene with GATA4 and Krüppel-Like Transcription Factor 9▿ †

    PubMed Central

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F.; Gonzalez, Frank J.; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-01-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4α (HNF4α)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4α-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4α plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4α site (direct repeat 1 [TGGACAAAGGTGC]; HNF4α-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4α. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4α-RE. Furthermore, KLF9 functions together with HNF4α and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4α and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4α regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9. PMID:18426912

  6. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, B.L.; Bazan, N.G.

    1989-04-01

    Docosahexaenoic acid is concentrated in phospholipids of cellular membranes from brain and retina. Although linolenic acid is the major {omega}3 fatty acid of mouse dams' milk, 22:6 is the prevalent {omega}3 fatty acid in serum and tissues. Intraperitoneal injection of (1-{sup 14}C)18:3 into 3-day-old mouse pups resulted in liver and serum lipid labeling that was initially high, followed by a rapid decline. In contrast, labeling of brain and retinal lipids were initially low and increased with time. Labeled 22:6 first appeared in liver 2 hr after injection and later in brain and retina. The authors suggest that 22:6 synthesized frommore » 18:3 by the liver is secreted into the bloodstream in lipoproteins, taken up by brain and retina, and incorporated into cell membranes. They hypothesize that the 22;6 requirements of membranes (e.g., during synaptogenesis, photoreceptor membrane biogenesis, or repair after ischemic injury or neurodegenerative disorders) are met by a signal that is sent by the appropriate tissues to the liver to evoke the secretion of 22:6-containing lipoproteins.« less

  7. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition

    PubMed Central

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-01-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration. PMID:25482284

  8. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis ismore » that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.« less

  9. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum.

    PubMed

    Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander

    2002-06-28

    Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.

  10. Immunohistochemical study of retinol-binding protein in livers of polar bears (Thalarctos maritimus).

    PubMed

    Heier, A; Gröne, A; Völlm, J; Kübber-Heiss, A; Bacciarini, L N

    2003-03-01

    Liver tumors of unknown cause have frequently been described in polar bears. Concurrent decrease of vitamin A levels and chronic liver disease are associated with hepatic carcinogenesis in humans. More than 90% of the body's vitamin A is stored in the liver, where it is bound to an intracellular retinol-binding protein (RBP). Therefore, in this retrospective study, RBP was assessed by immunohistochemistry in liver sections of 11 polar bears. Two of these polar bears had hepatocellular carcinoma, four showed other chronic liver changes, and five had normal livers. In normal livers, the cytoplasm stained diffusely positive with intensely staining cytoplasmic granules. RBP staining was evaluated and the abundance of diffuse cytoplasmic staining and intracytoplasmic large granules was determined. All cases with pathologic liver changes had markedly decreased staining intensities for RBP compared with normal livers. The findings of this study suggest that in polar bears, as in humans, vitamin A metabolism may play a role in hepatic carcinogenesis.

  11. Detection of septicemia in chicken livers by spectroscopy,.

    PubMed

    Dey, B P; Chen, Y R; Hsieh, C; Chan, D E

    2003-02-01

    To establish a procedure for differentiating normal chickens from chickens with septicemia/toxemia (septox) by machine inspection under the Hazard Analysis and Critical Control Point-Based Inspection Models Project, spectral measurements of 300 chicken livers, of which half were normal and half were condemned due to septox conditions, were collected and analyzed. Neural network classification of the spectral data after principal component analysis (PCA) indicated that normal and septox livers were correctly differentiated by spectroscopy at a rate of 96%. Analysis of the data established 100% correlation between the spectroscopic identification and the subset of samples, both normal and septox, that were histopathologically diagnosed. In an attempt to establish the microbiological etiology of the diseased livers, isolates from 30 livers indicated that the poultry carcasses were contaminated mostly with coliforms present in the environment, hindering the isolation of pathogenic microorganisms. Therefore, to establish the cause of diseased livers, a strictly aseptic environment and procedure for sample collection is required.

  12. Detection of liver cancer and abnormal liver tissue by Raman spectroscopy and fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Ding, Jianhua; Zhang, Xiujun; Lin, Junxiu; Wang, Deli

    2005-01-01

    In this paper, laser induced human serum Raman spectra of liver cancer are measured. The spectra differences in serum from normal people and liver disease patients are analyzed. For the typical spectrum of normal serum, there are three sharp Raman peaks and relative intensity of Raman peaks excited by 514.5nm is higher than that excited by 488.0nm. For the Raman spectrum of liver cancer serum there are no peaks or very weak Raman peaks at the same positions. Results from more than two hundred case measurements show that clinical diagnostic accuracy is 92.86%. And then, the liver fibrosis and liver cirrhosis are studied applying the technology of LIF. To liver cirrhosis, the shape of Raman peak is similar to normal and fluorescence spectrum is similar to that of liver cancer from statistic data. The experiment indicates that there is notable fluorescence difference between the abnormal and normal liver tissue and have blue shift in fluorescence peak. Except for human serum, we use rats serum for researching either. Compared with results of path al examination, we analyze the spectra of normal cases, hepatic fibrosis and hepatocirrhosis respectively in an attempt to find some difference between them. Red shift of fluorescence peak is observed with disease evolution using 514.5nm excitation of an Ar-ion laser. However, no distinct changes happen with 488.0nm excitation. These results have important reference values to explore the method of laser spectrum diagnosis.

  13. Automated evaluation of liver fibrosis in thioacetamide, carbon tetrachloride, and bile duct ligation rodent models using second-harmonic generation/two-photon excited fluorescence microscopy.

    PubMed

    Liu, Feng; Chen, Long; Rao, Hui-Ying; Teng, Xiao; Ren, Ya-Yun; Lu, Yan-Qiang; Zhang, Wei; Wu, Nan; Liu, Fang-Fang; Wei, Lai

    2017-01-01

    Animal models provide a useful platform for developing and testing new drugs to treat liver fibrosis. Accordingly, we developed a novel automated system to evaluate liver fibrosis in rodent models. This system uses second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy to assess a total of four mouse and rat models, using chemical treatment with either thioacetamide (TAA) or carbon tetrachloride (CCl 4 ), and a surgical method, bile duct ligation (BDL). The results obtained by the new technique were compared with that using Ishak fibrosis scores and two currently used quantitative methods for determining liver fibrosis: the collagen proportionate area (CPA) and measurement of hydroxyproline (HYP) content. We show that 11 shared morphological parameters faithfully recapitulate Ishak fibrosis scores in the models, with high area under the receiver operating characteristic (ROC) curve (AUC) performance. The AUC values of 11 shared parameters were greater than that of the CPA (TAA: 0.758-0.922 vs 0.752-0.908; BDL: 0.874-0.989 vs 0.678-0.966) in the TAA mice and BDL rat models and similar to that of the CPA in the TAA rat and CCl 4 mouse models. Similarly, based on the trends in these parameters at different time points, 9, 10, 7, and 2 model-specific parameters were selected for the TAA rats, TAA mice, CCl 4 mice, and BDL rats, respectively. These parameters identified differences among the time points in the four models, with high AUC accuracy, and the corresponding AUC values of these parameters were greater compared with those of the CPA in the TAA rat and mouse models (rats: 0.769-0.894 vs 0.64-0.799; mice: 0.87-0.93 vs 0.739-0.836) and similar to those of the CPA in the CCl 4 mouse and BDL rat models. Similarly, the AUC values of 11 shared parameters and model-specific parameters were greater than those of HYP in the TAA rats, TAA mice, and CCl 4 mouse models and were similar to those of HYP in the BDL rat models. The automated evaluation system, combined with 11 shared parameters and model-specific parameters, could specifically, accurately, and quantitatively stage liver fibrosis in animal models.

  14. Computer-aided diagnosis of splenic enlargement using wave pattern of spleen in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong Won

    2006-03-01

    It is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We have examined a wave pattern at the left boundary of spleen on the abdominal CT images having liver cirrhosis, and found that they are different from those on the images having a normal liver. It is noticed that the abdominal CT images of patient with liver cirrhosis shows strong bending in the wave pattern. In the case of normal liver, the images may also have a wave pattern, but its bends are not strong. Therefore, the total waving area of the spleen with liver cirrhosis is found to be greater than that of the spleen with a normal liver. Moreover, we found that the waves of the spleen from the image with liver cirrhosis have the higher degree of circularity compared to the normal liver case. Based on the two observations above, we propose an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images. The proposed automatic method improves the diagnostic performance compared with the conventional process based on the size of spleen.

  15. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease.

    PubMed

    Tang, Y; Bian, Z; Zhao, L; Liu, Y; Liang, S; Wang, Q; Han, X; Peng, Y; Chen, X; Shen, L; Qiu, D; Li, Z; Ma, X

    2011-11-01

    Mechanisms associated with the progression of simple steatosis to non-alcoholic fatty liver disease (NAFLD) remain undefined. Regulatory T cells (T(regs)) play a critical role in regulating inflammatory processes in non-alcoholic steatohepatitis (NASH) and because T helper type 17 (Th17) functionally oppose T(reg)-mediated responses, this study focused on characterizing the role of Th17 cells using a NAFLD mouse model. C57BL/6 mice were fed either a normal diet (ND) or high fat (HF) diet for 8 weeks. Mice in the HF group had a significantly higher frequency of liver Th17 cells compared to ND-fed mice. Neutralization of interleukin (IL)-17 in HF mice ameliorated lipopolysaccharide (LPS)-induced liver injury reflected by decreased serum alanine aminotransferase (ALT) levels and reduced inflammatory cell infiltrates in the liver. In vitro, HepG2 cells cultured in the presence of free fatty acids (FFA; oleic acid and palmitic acid) for 24 h and IL-17 developed steatosis via insulin-signalling pathway interference. IL-17 and FFAs synergized to induce IL-6 production by HepG2 cells and murine primary hepatocytes which, in combination with transforming growth factor (TGF-β), expanded Th17 cells. It is likely that a similar process occurs in NASH patients, as there were significant levels of IL-17(+) cell infiltrates in NASH patient livers. The hepatic expression of Th17 cell-related genes [retinoid-related orphan receptor gamma (ROR)γt, IL-17, IL-21 and IL-23] was also increased significantly in NASH patients compared to healthy controls. Th17 cells and IL-17 were associated with hepatic steatosis and proinflammatory response in NAFLD and facilitated the transition from simple steatosis to steatohepatitis. Strategies designed to alter the balance between Th17 cells and T(regs) should be explored as a means of preventing progression to NASH and advanced liver diseases in NAFLD patients. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  16. Global Liver Gene Expression Analysis on a Murine Metabolic Syndrome Model Treated by Low-molecular-weight Lychee Fruit Polyphenol (Oligonol®).

    PubMed

    Uchiyama, Hironobu; Uehara, Kaori; Nagashima, Takayuki; Nakata, Akifumi; Sato, Keisuke; Mihara, Yoshihiro; Komatsu, Ken-Ich; Takanari, Jun; Shimizu, Shigeomi; Wakame, Koji

    2016-07-01

    Oligonol® (OLG) is a low-molecular-weight lychee fruit polyphenol mainly containing catechin-type monomers and oligomers of proanthocyanidins. Dietary OLG supplementation reportedly improves lipid metabolism disorder and lowers the visceral fat level in animal and human studies. Thus, we investigated the mechanism behind the protective and beneficial effects of OLG on a Western diet (WD)-induced metabolic syndrome (MetS) of a murine model. Using the C57BL/6J mouse for the MetS model, mice were divided into three groups: control (normal diet: ND), Western diet (WD) and WD + 0.5% OLG (OLG) groups. The WD group was fed a high-calorie (high fructose plus high fat) diet for 12 weeks to develop MetS. At week 12, all mice were sacrificed and the blood and liver were obtained for histological and biological examinations and RNA sequencing (RNA-Seq). Body weight, liver weight, plasma triglycerides (TG), total cholesterol (T-Cho) and alanine aminotransferase (ATS) levels of both OLG groups were significantly lower than those of the WD group. On histological examination of the liver, the area of fatty deposits was shown to be suppressed by OLG administration. Expression gene analysis in the liver of WD- versus OLG-fed mice by RNA-Seq showed that 464/45,706 genes exhibited a significant change of expression (corrected p-value <0.05, absolute value of fold change (FC) ≥2). Gene network analysis showed that genes related to hepatic steatosis, liver inflammation and tumor invasion were inactivated in the OLG group. In particular, the lipid metabolism-related genes Lpin1, Adig and Cidea were regulated by OLG administration. OLG may function to suppress MetS and the progression of geriatric diseases in WD-fed mice by regulating the expression of lipid metabolism, inflammation and tumor-related genes in the liver. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

    PubMed

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key

    2016-06-01

    The purpose of the present study was to prepare isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu (folate-GGCE), and to evaluate the feasibility of their use for folate receptor (FR)-targeted molecular imaging and as theranostic agents in a mouse tumor model. Folate-GGCE was synthesized using solid-phase peptide synthesis and radiolabeled with Tc-99m or Re-188. Radiochemical characterization was performed by radio-high-performance liquid chromatography. The biodistribution of Tc-99m-folate-GGCE was studied, with or without co-injection of excess free folate, in mice bearing both FR-positive (KB cell) and FR-negative (HT1080 cell) tumors. Biodistribution of Re-188-folate-GGCE was studied in mice bearing KB tumors. Serial planar scintigraphy was performed in the dual tumor mouse model after intravenous injection of Tc-99m-folate-GGCE. Serial micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies were performed, with or without co-injection of excess free folate, in the mouse tumor model after injection of Tc-99m-folate-GGCE or Re-188-folate-GGCE. The radiolabeling efficiency and radiochemical stability of Tc-99m- and Re-188-folate-GGCE were more than 95 % for up to 4 h after radiolabeling. Uptake of Tc-99m-folate-GGCE at 1, 2, and 4 h after injection in KB tumor was 16.4, 23.2, and 17.6 % injected dose per gram (%ID/g), respectively. This uptake was suppressed by 97.4 % when excess free folate was co-administered. Tumor:normal organ ratios at 4 h for blood, liver, lung, muscle, and kidney were 54.3, 25.2, 38.3, 97.8, and 0.3, respectively. Tumor uptake of Re-188-folate-GGCE at 2, 4, 8, and 16 h after injection was 17.4, 21.7, 24.1, and 15.6 %ID/g, respectively. Tumor:normal organ ratios at 8 h for blood, liver, lung, muscle, and kidney were 126.8, 21.9, 54.8, 80.3, and 0.4, respectively. KB tumors were clearly visualized at a high intensity using serial scintigraphy and micro-SPECT/CT in mice injected with Tc-99m- or Re-188-folate-GGCE. The tumor uptake of these molecules was completely suppressed when excess free folate was co-administered. Isostructural Tc-99m- and Re-188-folate-GGCE showed high and FR-specific uptake by tumors and generally favorable tumor:normal organ ratios. The tumor targeting capabilities of Tc-99m- and Re-188-folate-GGCE were clearly evident on serial imaging studies. This isostructural pair may have potential diagnostic and theranostic applications for FR-positive tumors.

  18. Early outcomes of liver transplants in patients receiving organs from hypernatremic donors.

    PubMed

    Khosravi, Mohammad Bagher; Firoozifar, Mohammad; Ghaffaripour, Sina; Sahmeddini, Mohammad Ali; Eghbal, Mohammad Hossien

    2013-12-01

    Uncorrected hypernatremia in organ donors has been associated with poor graft or patient survival during liver transplants. However, recent studies have found no association between the donor serum sodium and transplant outcome. This study sought to show the negative effect donor hypernatremia has on initial liver allograft function. This is the first study to investigate international normalized ratio and renal factors of patients with normal and those with hypernatremic donor livers. This study was conducted at the Shiraz Transplant Research Center in Shiraz, Iran, between May 2009, and July 2011. Four hundred seven consecutive adult orthotopic liver transplants were performed at the University of Shiraz Medical Center. There were 93 donors in the group with hypernatremia with terminal serum sodium of 155 mEq/L or greater (group 1), and 314 with terminal serum sodium less than 155 mEq/L (group 2). Posttransplant data after 5 days showed that aspartate aminotransferase, alanine aminotransferase, international normalized ratio, and kidney function did not differ between the groups. Hypernatremia is the most important complication after brain death. Previous studies have suggested donor hypernatremia results in a greater incidence of early postoperative graft dysfunction in liver transplant and is considered one of the extended criteria donor. However, in recent years, this hypothesis has been questioned. Our study shows no difference between patients' initial results of liver and kidney functioning with normal and hypernatremic donor livers. This is the first study to investigate international normalized ratio as a fundamental factor in defining early allograft dysfunction and renal factors between patients with normal and hypernatremic donor's livers.

  19. Synergistic Interaction of Light Alcohol Administration in the Presence of Mild Iron Overload in a Mouse Model of Liver Injury: Involvement of Triosephosphate Isomerase Nitration and Inactivation

    PubMed Central

    Gao, Wanxia; Zhao, Jie; Gao, Zhonghong

    2017-01-01

    It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or alcohol used in studies are usually able to induce liver injury independently. Little attention has been paid to the coexistence of low alcohol consumption and mild iron overload when either of them is insufficient to cause obvious liver damage, although this situation is very common among some people. We studied the interactive effects and the underlining mechanism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran, i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4 weeks of treatment, mice were sacrificed and blood and livers were collected for biochemical analysis. Protein nitration level in liver tissue was determined by immunoprecipitation and Western blot analysis. Although neither iron overload nor alcohol consumption at our tested doses can cause severe liver injury, it was found that co-administration of the same doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and subsequent elevated protein nitration level. Further study revealed that triosephosphate isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and nitrated, which was responsible for its inactivation. These data indicate that even under low alcohol intake, a certain amount of iron overload can cause significant liver oxidative damage, and the modification of triosephosphate isomerasemight be the important underlining mechanism of hepatic dysfunction. PMID:28103293

  20. Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.

    PubMed

    Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-01-01

    Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.

  1. Use of polymerase chain reaction in the diagnosis of toxocariasis: an experimental study.

    PubMed

    Rai, S K; Uga, S; Wu, Z; Takahashi, Y; Matsumura, T

    1997-09-01

    In this paper we report the usefulness of polymerase chain reaction technique in the diagnosis of visceral larva migrans in a mouse model. Liver samples obtained from two set of experimentally infected mice (10, 100, 1,000 and 10,000 embryonated Toxocara canis eggs per mouse) along with the eggs of T. canis, T. cati and Ascaris suum were included in this study. Polymerase chain reaction (PCR) was performed using Toxocara primers (SB12). The first PCR product electrophoresis revealed very thin positive bands or no bands in liver samples. However, on second PCR a clear-cut bands were observed. No positive band was shown by A. suum eggs. Our findings thus indicate the usefulness of PCR technic in the diagnosis of visceral larva migrans (VLM) in liver biopsy materials specifically by means of double PCR using the primer SB12.

  2. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival

    PubMed Central

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function. PMID:26783413

  3. The Protective Effects of Trypsin Inhibitor on Hepatic Ischemia-Reperfusion Injury and Liver Graft Survival.

    PubMed

    Guan, Lianyue; Liu, Hongyu; Fu, Peiyao; Li, Zhuonan; Li, Peidong; Xie, Lijuan; Xin, Mingang; Wang, Zhanpeng; Li, Wei

    2016-01-01

    The aim of this study was to explore the protective effects of ulinastatin (urinary trypsin inhibitor, UTI) on liver ischemia-reperfusion injury (IRI) and graft survival. We employed mouse liver cold IRI and orthotopic liver transplantation (OLTx) models. UTI was added to lactated Ringer's (LR) solution for liver perfusion and preservation in vitro or combined with UTI injection intraperitoneally to the liver graft recipient. Our results indicated that UTI supplementation protected the liver from cold IRI in a dose-dependent manner and prolonged liver graft survival from extended cold preserved liver donors significantly. The underlying mechanism of UTI on liver IRI may be mediated by inhibition of proinflammatory cytokine release, increasing the expression of the antiapoptotic gene Bcl-2 and decreasing the expression of the proapoptosis genes of Caspase-3 and Bax, and further protects hepatocytes from apoptotic death and improves liver function.

  4. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone

    PubMed Central

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza

    2015-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the expression of sex-specific lincRNAs and their potential for regulation of sex differences in liver physiology and disease. PMID:26459762

  5. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts.

    PubMed

    Tanemura, Kouichi; Ohtaki, Tadatoshi; Kuwahara, Yasushi; Tsumagari, Shigehisa

    2017-01-20

    Uridine 5'-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows.

  6. Association between liver failure and hepatic UDP-glucuronosyltransferase activity in dairy cows with follicular cysts

    PubMed Central

    TANEMURA, Kouichi; OHTAKI, Tadatoshi; KUWAHARA, Yasushi; TSUMAGARI, Shigehisa

    2016-01-01

    Uridine 5’-diphospho-glucuronosyltransferase (UGT) liver activity was measured using estradiol-17β as a substrate in dairy cows with follicular cysts. The activity was significantly lower than that in dairy cows with normal estrous cycles (P<0.01). Liver disorders, such as fatty liver and hepatitis, were observed in half cows with follicular cysts, and liver UGT activity was lower than that in cows with normal estrus cycles. In addition, the liver UGT activity was significantly lower in dairy cows with follicular cysts without liver disorders than in dairy cows with normal estrous cycles. Therefore, the cows were divided into those with low, middle and high liver UGT activities, and liver disorder complication rates were investigated. The complication rate was significantly higher in the low- (78.1%) than in the middle- (22.2%) and high-level (8.3%) groups, suggesting that liver disorders are closely associated with the development of follicular cysts in dairy cows and that steroid hormone metabolism is delayed because of reduced liver UGT activity, resulting in follicular cyst formation. We conclude that reduced estradiol-17β glucuronidation in the liver and liver disorders are associated with follicular cyst occurrence in dairy cows. PMID:27666462

  7. SHEAR WAVE DISPERSION MEASURES LIVER STEATOSIS

    PubMed Central

    Barry, Christopher T.; Mills, Bradley; Hah, Zaegyoo; Mooney, Robert A.; Ryan, Charlotte K.; Rubens, Deborah J.; Parker, Kevin J.

    2012-01-01

    Crawling waves, which are interfering shear wave patterns, can be generated in liver tissue over a range of frequencies. Some important biomechanical properties of the liver can be determined by imaging the crawling waves using Doppler techniques and analyzing the patterns. We report that the dispersion of shear wave velocity and attenuation, that is, the frequency dependence of these parameters, are strongly correlated with the degree of steatosis in a mouse liver model, ex vivo. The results demonstrate the possibility of assessing liver steatosis using noninvasive imaging methods that are compatible with color Doppler scanners and, furthermore, suggest that liver steatosis can be separated from fibrosis by assessing the dispersion or frequency dependence of shear wave propagations. PMID:22178165

  8. Antioxidant supplementation ameliorates molecular deficits in Smith-Lemli-Opitz Syndrome (SLOS)

    PubMed Central

    Korade, Zeljka; Xu, Libin; Harrison, Fiona E.; Ahsen, Refayat; Hart, Sarah E; Folkes, Oakleigh M; Mirnics, Karoly; Porter, Ned A

    2013-01-01

    Background Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol biosynthesis characterized by diminished cholesterol and increased 7-dehydrocholesterol (7-DHC) levels. 7-DHC is highly reactive, giving rise to biologically active oxysterols. Methods 7-DHC-derived oxysterols were measured in fibroblasts from SLOS patients and an in vivo SLOS rodent model using HPLC-MS-MS. Expression of lipid biosynthesis genes was ascertained by qPCR and Western blot. The effects of an antioxidant mixture, vitamin A, coenzyme Q10, vitamin C and vitamin E were evaluated for their potential to reduce formation of 7-DHC oxysterols in fibroblast from SLOS patients. Finally, the effect of maternal feeding of vitamin E enriched diet was ascertained in the brain and liver of newborn SLOS mice. Results In cultured human SLOS fibroblasts the antioxidant mixture led to decreased levels of the 7-DHC-derived oxysterol, DHCEO. Furthermore, gene expression changes in SLOS human fibroblasts were normalized with antioxidant treatment. The active ingredient appeared to be vitamin E, as even at low concentrations, it significantly decreased DHCEO levels. In addition, analyzing a mouse SLOS model revealed that feeding a vitamin E enriched diet to pregnant females led to a decrease in oxysterol formation in brain and liver tissues of the newborn Dhcr7-knockout pups. Conclusions Considering the adverse effects of 7-DHC-derived oxysterols in neuronal and glial cultures, and the positive effects of antioxidants in patient cell cultures and the transgenic mouse model, we believe that preventing formation of 7-DHC oxysterols is critical for countering the detrimental effects of Dhcr7 mutations. PMID:23896203

  9. DEVELOPMENT OF AN INTACT HEPATOCYTE ACTIVATION SYSTEM FOR ROUTINE USE WITH THE MOUSE LYMPHOMA ASSAY

    EPA Science Inventory

    The authors have developed a method for cocultivating primary rat hepatocytes with L5178Y/TK+/- 3.7.2C mouse lymphoma cells. The system should provide a means to simulate more closely in vivo metabolism compared to metabolism by liver homogenates, while still being useful for rou...

  10. Native fluorescence characterization of human liver abnormalities

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.

    1999-05-01

    Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.

  11. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan

    2013-08-08

    The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.

  12. CRISPR/Cas9 Technology Targeting Fas Gene Protects Mice From Concanavalin-A Induced Fulminant Hepatic Failure.

    PubMed

    Liang, Wei-Cheng; Liang, Pu-Ping; Wong, Cheuk-Wa; Ng, Tzi-Bun; Huang, Jun-Jiu; Zhang, Jin-Fang; Waye, Mary Miu-Yee; Fu, Wei-Ming

    2017-03-01

    Fulminant hepatic failure is a life-threatening disease which occurs in patients without preexisting liver disease. Nowadays, there is no ideal therapeutic tool in the treatment of fulminant hepatic failure. Recent studies suggested that a novel technology termed CRISPR/Cas9 may be a promising approach for the treatment of fulminant hepatic failure. In this project, we have designed single chimeric guide RNAs specifically targeting the genomic regions of mouse Fas gene. The in vitro and in vivo effects of sgRNAs on the production of Fas protein were examined in cultured mouse cells and in a hydrodynamic injection-based mouse model, respectively. The in vivo delivery of CRISPR/Cas9 could maintain liver homeostasis and protect hepatocytes from Fas-mediated cell apoptosis in the fulminant hepatic failure model. Our study indicates the clinical potential of developing the CRISPR/Cas9 system as a novel therapeutic strategy to rescue Concanavalin-A-induced fulminant hepatic failure in the mouse model. J. Cell. Biochem. 118: 530-536, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs.

    PubMed

    Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair

    2010-05-27

    We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.

  14. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantlymore » decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.« less

  15. Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1.

    PubMed

    Wang, Sheng-Han; Yeh, Shiou-Hwei; Shiau, Chung-Wai; Chen, Kuen-Feng; Lin, Wei-Hsiang; Tsai, Ting-Fen; Teng, Yuan-Chi; Chen, Ding-Shinn; Chen, Pei-Jer

    2015-10-01

    Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) shows a higher incidence in men, mainly because of hepatitis B X (HBx)-mediated enhancement of androgen receptor (AR) activity. We aimed to examine this pathway in hepatocarcinogenesis and to identify drug(s) specifically blocking this carcinogenic event in the liver. HBx transgenic mice that spontaneously develop HCC (n = 28-34 per group) were used, either by knockout of hepatic AR or by castration. Efficacy of several HCC-targeted drugs in suppressing HBx-induced AR activity was evaluated, and cellular factors mediating suppression were investigated in cultured cells. Tissue specificity of the candidate drug was validated using mouse tissues. Data were analyzed with Chi-square and Student's t tests. All statistical tests were two-sided. The androgen pathway was shown to be important in early stage hepatocarcinogenesis of HBx transgenic mice. The tumor incidence was decreased from 80% to 32% by AR knockout (P < .001) and from 90% to 25% by early castration (P < .001). Sorafenib markedly inhibited the HBx-enhanced AR activity through activating the SHP-1 phosphatase, which antagonized the activation of Akt/GSK3β and c-Src by HBx. Moreover, SHP-1 protein level was much higher in the liver than in testis, which enabled sorafenib to inhibit aberrant AR activity in the HBx-expressing liver, while not affecting the physiological AR function in normal liver or testis. The androgen pathway may be a druggable target for the chemoprevention of HBV-related HCC, and sorafenib might be used as a tissue- and disease-specific regimen for the chemoprevention of HBV-related HCC. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity.

    PubMed

    Bedossa, Pierre; Tordjman, Joan; Aron-Wisnewsky, Judith; Poitou, Christine; Oppert, Jean-Michel; Torcivia, Adriana; Bouillot, Jean-Luc; Paradis, Valerie; Ratziu, Vlad; Clément, Karine

    2017-09-01

    Non-alcoholic fatty liver disease (NAFLD) is a frequent complication of morbid obesity, but its severity varies greatly and thus there is a strong need to better define its natural history in these patients. Liver biopsies were systematically performed in 798 consecutive patients with severe obesity undergoing bariatric surgery. Histology was compared with clinical, biological, anthropometrical and body composition characteristics. Patients with presumably normal liver (n=179, 22%) were significantly younger at bariatric surgery than patients with NAFLD (37.0 vs 44.4 years, p<0.0001). However, both groups showed quite similar obesity duration, since patients with presumably normal liver reported the onset of obesity at a significantly younger age than those with NAFLD (14.8 vs 20.0 year, p<0.0001). The trunk/limb fat mass ratio increased according to liver disease severity (presumably normal liver: 1.00, steatosis: 1.21, non-alcoholic steatohepatitis (NASH): 1.34, p<0.0001), although the total body fat mass decreased (presumably normal liver: 50%, steatosis: 49.1%, NASH: 47.4%, p<0.0001). The volume of subcutaneous adipocytes increased according to severity of liver disease but only in female patients (presumably normal liver: 8543 picolitres, steatosis: 9156 picolitres, NASH: 9996 picolitres). These results suggest that young adults are more prone to store fat in subcutaneous tissue and reach the threshold of bariatric surgery indication before their liver is damaged. A shift of fat storage from subcutaneous to visceral adipose tissue compartment is associated with liver damages. Liver might also be targeted by subcutaneous hypertrophic adipocytes in females since hypertrophic adipocytes are more exposed to lipolysis and to the production of inflammatory mediators. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Development of Short-term Molecular Thresholds to Predict Long-term Mouse Liver Tumor Outcomes: Phthalate Case StudyTo be

    EPA Science Inventory

    Molecular Thresholds for Early Key Events in Liver Tumorgensis: PhthalateCase StudyTriangleShort-term changes in molecular profiles are a central component of strategies to model health effects of environmental chemicals such as phthalates, for which there is widespread human exp...

  18. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  19. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    PubMed Central

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  20. Combination Gene Therapy for Liver Metastasis of Colon Carcinoma in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hsai; Chen, X. H. Li; Wang, Yibin; Kosai, Ken-Ichiro; Finegold, Milton J.; Rich, Susan S.

    1995-03-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8^+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.

  1. Iron chelation as a possible mechanism for aspirin-induced malondialdehyde production by mouse liver microsomes and mitochondria.

    PubMed Central

    Schwarz, K B; Arey, B J; Tolman, K; Mahanty, S

    1988-01-01

    To investigate the possibility that lipid peroxidation is the mechanism responsible for aspirin-induced liver damage, pure neutralized acetylsalicylic acid (ASA), 0.6-90.9 mM, was added to calcium-aggregated mouse liver microsomes followed by incubation in NADPH buffer at 37 degrees C for 60 min and subsequent measurement of malondialdehyde (MDA). MDA production at ASA concentrations from 1.2 to 4.6 mM was greater than control (P less than 0.004). Peak MDA values were observed with 4.6 mM ASA, 39.58 +/- 6.73 nmol MDA/mg protein vs. 16.16 +/- 2.85 (P less than 0.004). Higher concentrations of ASA were inhibitory compared with the value at 4.6 mM (P less than 0.001). Aspirin had similar effects on MDA production by mouse liver mitochondria. MDA production with either ASA or buffer was completely suppressed by the potent iron-chelating agents desferrioxamine and alpha,alpha' dipyridyl when these were added to the microsomal preparations. Since MDA production in this system is known to be affected by iron-chelating agents (enhanced at low concentration, inhibited at higher concentration), the iron-chelating properties of ASA were investigated. Conductivity titration curves of Fe(OH)3 added to water or ASA suggested that the ASA was complexing with iron. The presence of an iron-ASA complex was established by high pressure liquid chromatographic analysis of the solution from this study. We conclude that aspirin enhances MDA production by hepatic microsomes and mitochondria via an aspirin-iron chelate and that this represents at least one mechanism by which aspirin may produce liver damage. PMID:3335633

  2. Interaction of acute-phase-inducible and liver-enriched nuclear factors with the promoter region of the mouse alpha sub 1 -acid glycoprotein gene-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, T.; Papaconstantinou, J.

    1992-02-25

    The synthesis and secretion of several acute-phase proteins increases markedly following physiological stress. {alpha}{sub 1}-Acid glycoprotein (AGP), a major acute-phase reactant made by the liver, is strongly induced by inflammatory agents such as lipopolysaccharide (LPS). Nuclear run-on assay showed a 17-fold increase in the rate of AGP transcription 4 h following LPS injection. DNase I footprinting assays revealed multiple protein binding domains in the mouse AGP-1 promoter region. Region B ({minus}104 to {minus}91) is protected by a liver-enriched transcription factor that is heat labile and in limiting quantity. An adjacent region, C ({minus}125 to {minus}104), is well-protected by nuclear extractsmore » from hepatocytes. Electrophoretic mobility shift assays indicated that only one DNA-protein complex can form with an oligonucleotide corresponding to region B. However, nuclear proteins from untreated mouse liver can form three strong complexes (C1, C2, and C3) and a weak one (C4) with oligonucleotide C. An acute-phase-inducible DNA-binding protein (AP-DBP) forms complex 4. A dramatic increase (over 11-fold) in AP-DBP binding activity is seen with nuclear proteins from LPS-stimulated animals. Interestingly, AP-DBP, a heat-stable factor, can form heterodimers with the transcription factor CCAAT/enhancer binding protein (C/EBP). Furthermore, purified C/EBP also binds avidly to region C. The studies indicate that several liver-enriched nuclear factors can interact with AGP-1 promoter and that AP-DBP binds to the AGP-1 promoter with high affinity only during the acute-phase induction.« less

  3. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    PubMed Central

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  4. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  5. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice.

    PubMed

    Peng, Lai; Cui, Julia Y; Yoo, Byunggil; Gunewardena, Sumedha S; Lu, Hong; Klaassen, Curtis D; Zhong, Xiao-Bo

    2013-12-01

    Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.

  6. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse.

    PubMed

    Nyman, Lara R; Cox, Keith B; Hoppel, Charles L; Kerner, Janos; Barnoski, Barry L; Hamm, Doug A; Tian, Liqun; Schoeb, Trenton R; Wood, Philip A

    2005-01-01

    To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.

  7. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    NASA Astrophysics Data System (ADS)

    Thanh Tran, The; Phan, Van Chi

    2010-03-01

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.

  8. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    PubMed

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  9. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice

    PubMed Central

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-01-01

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect. PMID:28029143

  10. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver

    PubMed Central

    Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.

    2017-01-01

    The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223

  11. Modification of nanocellulose by poly-lysine can inhibit the effect of fumonisin B1 on mouse liver cells.

    PubMed

    Jebali, Ali; Yasini Ardakani, Seyed Ali; Shahdadi, Hossein; Balal Zadeh, Mohammad Hossein; Hekmatimoghaddam, Seyedhossein

    2015-02-01

    Fumonisin B1 is an important mycotoxin, mainly produced by Fusarium verticillioides. It has toxic effects on liver, brain, and kidney cells. The first aim of this study was to synthesize nanocellulose modified with poly-lysine (NMPL), and the second aim was to evaluate the adsorption of fumonisin B1 by NMPL. As third aim, the function of mouse liver cells was investigated after exposure to fumonisin B1, and fumonisin B1+ NMPL. In this study, NMPL was prepared using cross-linker, and then incubated with fumonisin B1 at controlled conditions. After incubation, the adsorption and release of fumonisin B1 were evaluated in each condition. Next, mouse liver cells were separately exposed to fumonisin B1, NMPL, and (fumonisin B1+NMPL). Then, the level of aniline aminotransferase (ALT) and aspartate aminotransferase (AST) was evaluated. It was found that both adsorption and release of fumonisin B1 were not affected by temperature and incubation time, but affected by pH and concentration of NMPL. Also, this study showed NMPL could adsorb fumonisin B1 in different foodstuffs. Importantly, although the levels of ALT and AST were increased when the cells were treated with fumonisin B1 alone, they were not affected when exposed to NMPL or (fumonisin B1+NMPL). The authors suggest that NMPL is a good adsorbent to remove and inhibit fumonisin B1. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Inhibitory Effects of Purple Sweet Potato Color on Hepatic Inflammation Is Associated with Restoration of NAD⁺ Levels and Attenuation of NLRP3 Inflammasome Activation in High-Fat-Diet-Treated Mice.

    PubMed

    Wang, Xin; Zhang, Zi-Feng; Zheng, Gui-Hong; Wang, Ai-Min; Sun, Chun-Hui; Qin, Su-Ping; Zhuang, Juan; Lu, Jun; Ma, Dai-Fu; Zheng, Yuan-Lin

    2017-08-08

    Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + PSPC group, and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. Nicotinamide riboside (NR) was used to increase NAD⁺ levels. Our results showed that PSPC effectively ameliorated obesity and liver injuries in HFD-fed mice. Moreover, PSPC notably blocked hepatic oxidative stress in HFD-treated mice. Furthermore, PSPC dramatically restored NAD⁺ level to abate endoplasmic reticulum stress (ER stress) in HFD-treated mouse livers, which was confirmed by NR treatment. Consequently, PSPC remarkably suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide oligomerization domain protein1/2 (NOD1/2) signaling in HFD-treated mouse livers. Thereby, PSPC markedly diminished the NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation, ultimately lowering the expressions of inflammation-related genes in HFD-treated mouse livers. In summary, PSPC protected against HFD-induced hepatic inflammation by boosting NAD⁺ level to inhibit NLRP3 inflammasome activation.

  13. Effects of aqueous extracts from Panax ginseng and Hippophae rhamnoides on acute alcohol intoxication: An experimental study using mouse model.

    PubMed

    Wen, Da-Chao; Hu, Xiao-Yu; Wang, Yan-Yan; Luo, Jian-Xing; Lin, Wu; Jia, Ling-Yan; Gong, Xin-Yue

    2016-11-04

    Acute alcohol intoxication (AAI) is a frequent emergency, but therapeutic drugs with superior efficacy and safety are lacking. Panax ginseng (PG) and Hippophae rhamnoides (HR) respectively has a wide application as a complementary therapeutic agent in China for the treatment of AAI and liver injury induced by alcohol. We investigated the effects of aqueous extracts from PG and HR (AEPH) on AAI mice and identified its underlying mechanisms. Models of AAI were induced by intragastric administration of ethanol (8g/kg). Seventy-two Specific pathogen-free (SPF) male Kunming mice were randomly divided into six groups: normal group, positive control group, AEPH of low dosage (100mg/kg) group, AEPH of medium dose (200mg/kg) group, AEPH of high dosage (400mg/kg) group and model group. The mice were treated with metadoxine (MTD, 500mg/kg) and AEPH. Thirty minutes later, the normal group was given normal saline, while the other groups were given ethanol (i.g., 8g/kg). The impact of AEPH was observed. In the same way, another seventy-two Kunming mice were randomly divided into six groups equally. The blood ethanol concentration at 0.5, 1, 1.5, 2, 3 and 6h after ethanol intake was determined by way of gas chromatography. The activity of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and microsomal ethanol oxidase (EO) in liver, and the concentration of β-endorphin (β-EP), leucine-enkephalin (LENK) in the brain were determined by enzyme-linked-immunosorbent serologic assay (ELISA). AEPH markedly prolonged alcohol tolerance time and shortened sober-up time after acute ethanol administration. AEPH decreased blood ethanol levels in six tests after ethanol intake. The 7-day survival rate of AEPH group was obviously superior to model group. AEPH increased the activities of ADH, ALDH, and decreased EO activity in liver. The crucial find was that AEPH markedly decreased β-EP and LENK concentration in the brain. AEPH can markedly increase the levels of ADH, ALDH, decrease EO activity in liver and decrease the concentration of β-EP and LENK in the brain to against acute alcohol intoxication in mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Characterization of the Regulation and Function of Zinc-Dependent Histone Deacetylases During Mouse Liver Regeneration

    PubMed Central

    Huang, Jiansheng; Barr, Emily; Rudnick, David A.

    2013-01-01

    The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575

  15. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver.

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2015-12-05

    Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    PubMed

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  17. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation

    PubMed Central

    Makia, Ngome L.; Bojang, Pasano; Falkner, K. Cameron; Conklin, Daniel J.; Prough, Russell A.

    2015-01-01

    Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer’s and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (Vmax/Km = 23). However, Aldh1a1 exhibits far higher affinity for acrolein (Km = 23.2 μM) compared to Aldh3a1 (Km = 464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈ 3 fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1 mM NAD+ was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies. PMID:21256123

  18. Association between macroscopic appearance of liver lesions and liver histology in dogs with splenic hemangiosarcoma: 79 cases (2004-2009).

    PubMed

    Clendaniel, Daphne C; Sivacolundhu, Ramesh K; Sorenmo, Karin U; Donovan, Taryn A; Turner, Avenelle; Arteaga, Theresa; Bergman, Philip J

    2014-01-01

    Medical records for 79 dogs with confirmed splenic hemangiosarcoma (HSA) following splenectomy were reviewed for information regarding either the presence or absence of macroscopic liver lesions and the histopathological characteristics of the liver. Only 29 of 58 dogs (50%) with grossly abnormal livers had HSA metastasis. No dogs with grossly normal livers had metastasis detected on liver pathology. Gross lesions in the liver such as multiple nodules, dark-colored nodules, and active bleeding nodules were highly associated with malignancy. For the dogs in this study, performing biopsy in a grossly normal liver was a low-yield procedure in dogs with splenic HSA.

  19. In vitro metabolism of pyranocoumarin isomers decursin and decursinol angelate by liver microsomes from man and rodents.

    PubMed

    Li, Li; Zhang, Jinhui; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan

    2013-11-01

    The aim of this study is to investigate and compare the metabolic rate and profiles of pyranocoumarin isomers decursin and decursinol angelate using liver microsomes from humans and rodents, and to characterize the major metabolites of decursin and decursinol angelate in human liver microsomal incubations using LC-MS/MS. First, we conducted liver microsomal incubations of decursin and decursinol angelate in the presence or absence of NADPH. We found that in the absence of NADPH, decursin was efficiently hydrolyzed to decursinol by hepatic esterase(s), but decursinol angelate was not. In contrast, formation of decursinol from decursinol angelate was mediated mainly by cytochrome P450(s). Second, we measured the metabolic rate of decursin and decursinol angelate in liver S9 fractions from mice and humans. We found that human liver S9 fractions metabolized both decursin and decursinol angelate more slowly than those of the mouse. Third, we characterized the major metabolites of decursin and decursinol angelate from human liver microsomes incubations using HPLC-UV and LC-MS/MS methods and assessed the in vivo metabolites in mouse plasma from a one-dose PK study. Decursin and decursinol angelate have different metabolite profiles. Nine metabolites of decursin and nine metabolites of decursinol angelate were identified in human liver microsome incubations besides decursinol using a hybrid triple quadruple linear ion trap LC-MS/MS system, and many of them were later verified to be also present in plasma samples from rodent PK studies. Georg Thieme Verlag KG Stuttgart · New York.

  20. An Animal Model of Abacavir-Induced HLA-Mediated Liver Injury.

    PubMed

    Song, Binbin; Aoki, Shigeki; Liu, Cong; Susukida, Takeshi; Ito, Kousei

    2018-04-01

    Genome-wide association studies indicate that several idiosyncratic adverse drug reactions are highly associated with specific human leukocyte antigen (HLA) alleles. For instance, abacavir, a human immunodeficiency virus reverse transcriptase inhibitor, induces multiorgan toxicity exclusively in patients carrying the HLA-B*57:01 allele. However, the underlying mechanism is unclear due to a lack of appropriate animal models. Previously, we developed HLA-B*57:01 transgenic mice and found that topical application of abacavir to the ears induced proliferation of CD8+ lymphocytes in local lymph nodes. Here, we attempted to reproduce abacavir-induced liver injury in these mice. However, oral administration of abacavir alone to HLA-B*57:01 transgenic mice did not increase levels of the liver injury marker alanine aminotransferase. Considering the importance of innate immune activation in mouse liver, we treated mice with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist, plus abacavir. This resulted in a marked increase in alanine aminotransferase, pathological changes in liver, increased numbers of activated CD8+ T cells, and tissue infiltration by immune cells exclusively in HLA-B*57:01 transgenic mice. These results indicate that CpG oligodeoxynucleotide-induced inflammatory reactions and/or innate immune activation are necessary for abacavir-induced HLA-mediated liver injury characterized by infiltration of CD8+ T cells. Thus, we developed the first mouse model of HLA-mediated abacavir-induced idiosyncratic liver injury. Further investigation will show that the proposed HLA-mediated liver injury model can be applied to other combinations of drugs and HLA types, thereby improving drug development and contributing to the development of personalized medicine.

  1. Alcoholic liver disease.

    PubMed

    Penny, Steven M

    2013-01-01

    In the United States, approximately 100,000 deaths are attributed to alcohol abuse each year. In 2009, the World Health Organization listed alcohol use as one of the leading causes of the global burden of disease and injury. Alcoholic liver disease, a direct result of chronic alcohol abuse, insidiously destroys the normal functions of the liver. The end result of the disease, cirrhosis, culminates in a dysfunctional and diffusely scarred liver. This article discusses the clinical manifestations, imaging considerations, and treatment of alcoholic liver disease and cirrhosis. Normal liver function, liver hemodynamics, the disease of alcoholism, and the deleterious effects of alcohol also are reviewed.

  2. Disease progression in Chinese chronic hepatitis C patients with persistently normal alanine aminotransaminase levels.

    PubMed

    Hui, C-K; Zhang, H-Y; Shek, T; Yao, H; Yueng, Y-H; Leung, K-W; Lai, S-T; Lai, J-Y; Leung, N; Lau, G K

    2007-06-01

    Although chronic hepatitis C virus-infected patients with persistently normal alanine aminotransaminase levels usually have mild liver disease, disease progression can still occur. However, it is uncertain which group of patients is at risk of disease progression. To examine the severity of liver disease on liver biopsy in Chinese patients with persistently normal alanine aminotransaminase levels, and their disease progression over time. Eighty-two patients with persistently normal alanine aminotransaminase levels were followed up longitudinally. The median time of follow-up was 8.1 years. Forty-seven of the 82 patients (57.3%) had a second liver biopsy. At the time of analysis, six of the 82 patients (7.3%) developed decompensated liver cirrhosis. Patients with an initial fibrosis stage F2 or F3 [6/23 (26.1%) vs. 0/59 (0%), P < 0.0001] or inflammatory grade A2 or A3 [5/40 (12.5%) vs. 1/42 (2.4%), P = 0.04] were more likely to develop decompensated liver cirrhosis. On multivariate analysis, initial fibrosis stage F2 or F3 was independently associated with progression to decompensated liver cirrhosis (relative risk 2.3, 95% confidence interval 0.03-2.5, P = 0.02). Chinese chronic hepatitis C virus patients with persistently normal alanine aminotransaminase levels with moderate to severe fibrosis at initial evaluation are more likely to develop decompensated liver cirrhosis.

  3. Peretinoin, an acyclic retinoid, suppresses steatohepatitis and tumorigenesis by activating autophagy in mice fed an atherogenic high-fat diet

    PubMed Central

    Honda, Masao; Takegoshi, Kai; Yamashita, Taro; Nakamura, Mikiko; Shirasaki, Takayoshi; Sakai, Yoshio; Shimakami, Tetsuro; Nagata, Naoto; Takamura, Toshinari; Tanaka, Takuji; Kaneko, Shuichi

    2017-01-01

    The pathogenesis of non-alcoholic steatohepatitis (NASH) is still unclear and the prevention of the development of hepatocellular carcinoma (HCC) has not been established. We established an atherogenic and high-fat diet mouse model that develops hepatic steatosis, inflammation, fibrosis, and liver tumors at a high frequency. Using two NASH-HCC mouse models, we showed that peretinoin, an acyclic retinoid, significantly improved liver histology and reduced the incidence of liver tumors. Interestingly, we found that peretinoin induced autophagy in the liver of mice, which was characterized by the increased co-localized expression of microtubule-associated protein light chain 3B-II and lysosome-associated membrane protein 2, and increased autophagosome formation and autophagy flux in the liver. These findings were confirmed using primary mouse hepatocytes. Among representative autophagy pathways, the autophagy related (Atg) 5-Atg12-Atg16L1 pathway was impaired; especially, Atg16L1 was repressed at both the mRNA and protein level. Decreased Atg16L1 mRNA expression was also found in the liver of patients with NASH according to disease progression. Promoter analysis revealed that peretinoin activated the promoter of Atg16L1 by increasing the expression of CCAAT/enhancer-binding-protein-alpha. Interestingly, Atg16L1 overexpression in HepG2 cells inhibited palmitate-induced NF-kB activation and interleukin-6-induced STAT3 activation. We showed that Atg16L1 induced the de-phosphorylation of Gp130, a receptor subunit of interleukin-6 family cytokines, which subsequently repressed phosphorylated-STAT3 (Tyr705) levels, and this process might be independent of autophagy function. Thus, peretinoin prevents the progression of NASH and the development of HCC through activating the autophagy pathway by increased Atg16L1 expression, which is an essential regulator of autophagy and anti-inflammatory proteins. PMID:28591717

  4. EFFECT ON PERFUSION VALUES OF SAMPLING INTERVAL OF CT PERFUSION ACQUISITIONS IN NEUROENDOCRINE LIVER METASTASES AND NORMAL LIVER

    PubMed Central

    Ng, Chaan S.; Hobbs, Brian P.; Wei, Wei; Anderson, Ella F.; Herron, Delise H.; Yao, James C.; Chandler, Adam G.

    2014-01-01

    Objective To assess the effects of sampling interval (SI) of CT perfusion acquisitions on CT perfusion values in normal liver and liver metastases from neuroendocrine tumors. Methods CT perfusion in 16 patients with neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction, for tumor and normal liver. CT perfusion values for the reference sampling interval of 0.5s (SI0.5) were compared with those of SI datasets of 1s, 2s, 3s and 4s, using mixed-effects model analyses. Results Increases in SI beyond 1s were associated with significant and increasing departures of CT perfusion parameters from reference values at SI0.5 (p≤0.0009). CT perfusion values deviated from reference with increasing uncertainty with increasing SIs. Findings for normal liver were concordant. Conclusion Increasing SIs beyond 1s yield significantly different CT perfusion parameter values compared to reference values at SI0.5. PMID:25626401

  5. Living Donor Liver Transplantation Using a Liver Graft With Congenital Intrahepatic Portosystemic Shunt

    PubMed Central

    Kamei, Hideya; Imai, Hisashi; Onishi, Yasuharu; Sugimoto, Hiroyuki; Suzuki, Kojiro; Ogura, Yasuhiro

    2016-01-01

    Background Despite of recent development of imaging modalities, congenital intrahepatic portosystemic shunt (IPSS) is rarely diagnosed. Therefore, living donor liver transplantation using a liver graft with IPSS has not been previously published. Materials and Methods We report a 28-year-old male patient with end-stage liver disease secondary to Wilson disease. His 26-year-old brother was a potential living donor, who had an IPSS of 25 mm in diameter at segment 6 as shown by computed tomography. Liver function tests were normal, and blood ammonia concentration was in the upper limit of normal. Results Living donor liver transplantation was uneventfully performed. After surgery, a recipient liver function tests showed a quick recovery, and serum ammonia levels were consistently normal. Although thrombosis inside the IPSS was confirmed by computed tomography on postoperative day 21, this thrombosis disappeared at 3 months posttransplant with anticoagulants. Currently (12 months posttransplant), the patient has fully recovered, and the IPSS is still the same size. Conclusions Based on our experience, liver allografts with IPSS can be accepted as potential liver allografts. PMID:27500240

  6. Liver failure in total artificial heart therapy.

    PubMed

    Dimitriou, Alexandros Merkourios; Dapunt, Otto; Knez, Igor; Wasler, Andrae; Oberwalder, Peter; Koerfer, Reiner; Tenderich, Gero; Spiliopoulos, Sotirios

    2016-07-01

    Congestive hepatopathy (CH) and acute liver failure (ALF) are common among biventricular heart failure patients. We sought to evaluate the impact of total artificial heart (TAH) therapy on hepatic function and associated clinical outcomes. A total of 31 patients received a Syncardia Total Artificial Heart. Preoperatively 17 patients exhibited normal liver function or mild hepatic derangements that were clinically insignificant and did not qualify as acute or chronic liver failure, 5 patients exhibited ALF and 9 various hepatic derangements owing to CH. Liver associated mortality and postoperative course of liver values were prospectively documented and retrospectively analyzed. Liver associated mortality in normal liver function, ALF and CH cases was 0%, 20% (P=0.03) and 44.4% (P=0.0008) respectively. 1/17 (5.8%) patients with a normal liver function developed an ALF, 4/5 (80%) patients with an ALF experienced a markedly improvement of hepatic function and 6/9 (66.6%) patients with CH a significant deterioration. TAH therapy results in recovery of hepatic function in ALF cases. Patients with CH prior to surgery form a high risk group with increased liver associated mortality.

  7. FINE STRUCTURE OF CELLS ISOLATED FROM ADULT MOUSE LIVER

    PubMed Central

    Berry, M. N.; Simpson, F. O.

    1962-01-01

    Suspensions of isolated cells in various media were prepared from mouse liver which had been perfused via the portal vein with a buffered medium containing 0.40 M sucrose, and the cells were fixed with osmium tetroxide. Their fine structure was compared with that of cells from perfused and unperfused intact liver. Perfusion brought about some separation of the cells with little or no damage to cell membranes. When cells were dispersed in 0.40 M sucrose medium the plasma membranes partially broke down, and this disintegration was increased by transfer of the cells to media of lower osmolarity. This is presumed to account for the loss of permeability barriers which occurs in isolated liver cells. The mitochondria in cells of perfused liver and in isolated cells remained elongated, but the layers of many mitochondrial cristae became separated by clear spaces. When cells were transferred to a medium containing 0.20 M sucrose, the mitochondria swelled and became spherical, often with displacement of the swollen cristae to the periphery. In a medium containing 0.06 M sucrose and 0.08 M potassium chloride the outer chamber of many mitochondria became swollen with displacement of the mitochondrial body to one side to give a crescent-shaped appearance. These changes in mitochondrial morphology are discussed in relation to the metabolic activity of isolated liver cells. PMID:19866610

  8. Alcoholic Liver Disease: A Mouse Model Reveals Protection by Lactobacillus fermentum

    PubMed Central

    Barone, Rosario; Rappa, Francesca; Macaluso, Filippo; Caruso Bavisotto, Celeste; Sangiorgi, Claudia; Di Paola, Gaia; Tomasello, Giovanni; Di Felice, Valentina; Marcianò, Vito; Farina, Felicia; Zummo, Giovanni; Conway de Macario, Everly; J.L. Macario, Alberto; Cocchi, Massimo; Cappello, MD, Francesco; Marino Gammazza, Antonella

    2016-01-01

    Objectives: Alcoholism is one of the most devastating diseases with high incidence, but knowledge of its pathology and treatment is still plagued with gaps mostly because of the inherent limitations of research with patients. We developed an animal model for studying liver histopathology, Hsp (heat-shock protein)-chaperones involvement, and response to treatment. Methods: The system was standardized using mice to which ethanol was orally administered alone or in combination with Lactobacillus fermentum following a precise schedule over time and applying, at predetermined intervals, a battery of techniques (histology, immunohistochemistry, western blotting, real-time PCR, immunoprecipitation, 3-nitrotyrosine labeling) to assess liver pathology (e.g., steatosis, fibrosis), and Hsp60 and iNOS (inducible form of nitric oxide synthase) gene expression and protein levels, and post-translational modifications. Results: Typical ethanol-induced liver pathology occurred and the effect of the probiotic could be reliably monitored. Steatosis score, iNOS levels, and nitrated proteins (e.g., Hsp60) decreased after probiotic intake. Conclusions: We describe a mouse model useful for studying liver disease induced by chronic ethanol intake and for testing pertinent therapeutic agents, e.g., probiotics. We tested L. fermentum, which reduced considerably ethanol-induced tissue damage and deleterious post-translational modifications of the chaperone Hsp60. The model is available to test other agents and probiotics with therapeutic potential in alcoholic liver disease. PMID:26795070

  9. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy.

    PubMed

    Piergiovanni, Monica; Bianchi, Elena; Capitani, Giada; Li Piani, Irene; Ganzer, Lucia; Guidotti, Luca G; Iannacone, Matteo; Dubini, Gabriele

    2017-10-03

    The liver is organized in hexagonal functional units - termed lobules - characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries - termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation. Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees. The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    PubMed

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  11. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans

    PubMed Central

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth

    2017-01-01

    Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515

  12. [Liver transplantation for the treatment of hyperammonemia due to urea cycle disorder: report of four cases].

    PubMed

    Zhu, Zhijun; Sun, Liying; Wei, Lin; Qu, Wei; Zeng, Zhigui; Liu, Ying; Zhang, Liang; He, Enhui; Wang, Dong

    2015-02-01

    To analyze clinical efficacy and prognosis of liver transplantation in children with hyperammonemia caused by urea cycle disorders. A retrospective analysis was performed on the occurrence of disease, operation and the follow-up post liver transplantation in 4 patients with urea cycle disorders who underwent liver transplantation during June 2001 to May 2014. Four girls were diagnosed with ornithine carbamoyl transferase deficiency by genetic test. They had the clinical onset at the age of 1.5 to 3.0 years. Liver transplantation had been performed at their age of 53.9 months, 40.6 months, 40.3 months and 22.8 months, respectively. The grafts of case 1 and case 2 were from left lateral lobe of liver of cadaveric donor, the graft of case 3 was from left lateral lobe of liver of a living donor, the graft of case 4 was a whole liver of a dead child. The liver function of 4 patients gradually returned to normal, blood ammonia levels were normal and restored the normal diet, 4 children were discharged on postoperative 25-30 days. Regular follow-up was done, the liver function, biochemical features and growth status have been followed up for 162.2 months, 124.2 months, 12.0 months and 4.8 months after liver transplantation, respectively. Now, all the four cases are healthy and growth is normal. Liver transplantation is an important way to the patients with severe hyperammonemia caused by urea cycle disorders. In this study, the patients with ornithine carbamoyl transferase defect got satisfactory long-term outcome after liver transplantation.

  13. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis

    PubMed Central

    Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio

    2016-01-01

    Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284

  14. Early tumor growth in metastatic organs influenced by the microenvironment is an important factor which provides organ specificity of colon cancer metastasis.

    PubMed

    Hara, Y; Ogata, Y; Shirouzu, K

    2000-12-01

    We have previously demonstrated that liver metastases in nude mice and lung metastases in nude rats occurred specifically, when KM12SM human colon carcinoma cells were inoculated orthotopically into the cecal wall of nude mice and rats. To clarify the relationship between the tumor growth potential in the metastatic organs and the metastatic organ preference in these two metastatic models, we have evaluated the in vitro cell growth activities affected by the organ conditioned medium (CM) from the liver and lung, and the in vivo growth activities of the ectopic implanted tumors in the liver and lung. The tumorigenicity of the ectopic implanted tumors was 100% in mouse liver, 33% in rat liver, 50% in mouse lung, and 75% in rat lung. The crude liver CM of the animals showed inhibitory activities for KM12SM cell growth in a dosage-dependent manner, and the crude lung CM stimulated KM12SM cell growth. The liver CM of nude mice inhibited the KM12SM cell growth more strongly compared with the CM of nude rats, and the lung CM of nude rats was more strongly stimulated compared with the CM of nude mice. The liver CM of nude mice had non-heparin binding factors, which stimulated or inhibited KM12SM cell growth, in a molecular weight range of 50 to 100 kDa. By contrast, the liver CM of nude rats showed no growth stimulating activity for KM12SM cells. These results suggest that the metastatic organ specificity of KM12SM cells may depend on the early tumor growth influenced by the microenvironment in metastatic organs.

  15. Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations

    PubMed Central

    Schwen, Lars Ole; Schenk, Arne; Kreutz, Clemens; Timmer, Jens; Bartolomé Rodríguez, María Matilde; Kuepfer, Lars; Preusser, Tobias

    2015-01-01

    The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale. PMID:26222615

  16. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    PubMed

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  17. Donor miR-196a-2 polymorphism is associated with hepatocellular carcinoma recurrence after liver transplantation in a Han Chinese population.

    PubMed

    Xu, Xiao; Ling, Qi; Wang, Jianguo; Xie, Haiyang; Wei, Xuyong; Lu, Di; Hu, Qichao; Zhang, Xuanyu; Wu, Liming; Zhou, Lin; Zheng, Shusen

    2016-02-01

    Recurrence of hepatocellular carcinoma (HCC) is one of the leading causes of death after liver transplantation (LT). We aim to evaluate the association of donor and recipient single nucleotide polymorphisms (SNPs) with the risk of HCC recurrence after LT. A total of 155 adult patients who underwent primary LT for HCC were enrolled. Ten SNPs associated with HCC susceptibility were genotyped. Patients who received donor livers with the rs11614913 homozygous CC variant presented significantly higher recurrence rates of HCC (41.7 vs. 15.3%, p = 0.009) and lower cumulative tumor-free survival (p = 0.005) than those who received TT wild-type donor livers. The donor rs11614913 genetic variant was an independent risk factor for HCC recurrence (odds ratio = 2 per each C allele, p < 0.05) and could significantly improve the predictive abilities of clinical models (Milan, UCSF and Hangzhou criteria). Donor livers homozygous for rs11614913 CC were associated with a higher miR-196a expression than TT (p = 0.002). In a lentiviral infection of mouse liver and orthotopic mouse model of HCC, the liver miR-196a overexpression group showed a significantly larger tumor size than the control group (p = 0.001). There is a close association between the tumor size and expression of miR-196a in the liver (r = 0.693, p = 0.001). In conclusion, the donor miR-196a-2 rs11614913 polymorphism is associated with HCC recurrence after LT and improves the predictive value of clinical models. The overexpression of miR-196a in the liver might provide a tumor-favorable environment for the development of HCC. © 2015 UICC.

  18. Identification of Organ-Enriched Protein Biomarkers of Acute Liver Injury by Targeted Quantitative Proteomics of Blood in Acetaminophen- and Carbon-Tetrachloride-Treated Mouse Models and Acetaminophen Overdose Patients.

    PubMed

    Qin, Shizhen; Zhou, Yong; Gray, Li; Kusebauch, Ulrike; McEvoy, Laurence; Antoine, Daniel J; Hampson, Lucy; Park, Kevin B; Campbell, David; Caballero, Juan; Glusman, Gustavo; Yan, Xiaowei; Kim, Taek-Kyun; Yuan, Yue; Wang, Kai; Rowen, Lee; Moritz, Robert L; Omenn, Gilbert S; Pirmohamed, Munir; Hood, Leroy

    2016-10-07

    Organ-enriched blood proteins, those produced primarily in one organ and secreted or exported to the blood, potentially afford a powerful and specific approach to assessing diseases in their cognate organs. We demonstrate that quantification of organ-enriched proteins in the blood offers a new strategy to find biomarkers for diagnosis and assessment of drug-induced liver injury (and presumably the assessment of other liver diseases). We used selected reaction monitoring (SRM) mass spectrometry to quantify 81 liver-enriched proteins plus three aminotransferases (ALT1, AST1, and AST2) in plasma of C57BL/6J and NOD/ShiLtJ mice exposed to acetaminophen or carbon tetrachloride. Plasma concentrations of 49 liver-enriched proteins were perturbed significantly in response to liver injury induced by one or both toxins. We validated four of these toxin-responsive proteins (ALDOB, ASS1, BHMT, and GLUD1) by Western blotting. By both assays, these four proteins constitute liver injury markers superior to currently employed markers such as ALT and AST. A similar approach was also successful in human serum where we had analyzed 66 liver-enriched proteins in acetaminophen overdose patients. Of these, 23 proteins were elevated in patients; 15 of 23 overlapped with the concentration-increased proteins in the mouse study. A combination of 5 human proteins, AGXT, ALDOB, CRP, FBP1, and MMP9, provides the best diagnostic performance to distinguish acetaminophen overdose patients from controls (sensitivity: 0.85, specificity: 0.84, accuracy: 85%). These five blood proteins are candidates for detecting acetaminophen-induced liver injury using next-generation diagnostic devices (e.g, microfluidic ELISA assays).

  19. Expression of Enzymes that Metabolize Medications

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Peters, C. P.

    2012-01-01

    Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

  20. Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver

    PubMed Central

    Zaulet, Mihaela; Kevorkian, Steliana Elvira Maria; Dinescu, Sorina; Cotoraci, Coralia; Suciu, Maria; Herman, Hildegard; Buburuzan, Laura; Badulescu, Liliana; Ardelean, Aurel; Hermenean, Anca

    2017-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical released into the environment, with severe consequences for human health, including metabolic syndrome and associated pathological conditions. Due to limited information on BPA-induced hepatotoxicity, the present study focused on investigating the association between BPA-induced toxicity and inflammatory markers in the liver, and how these injuries may be alleviated using the natural agent silymarin, a flavonoid with antioxidant properties obtained from Silybum marianum. Administration of BPA to male CD-1 mice for 10 days caused a significant increase in the number of cells immunopositive for interleukin 6 and tumor necrosis factor-α, pro-inflammatory cytokines that mediate the hepatic inflammatory response. Treatment with 200 mg/kg of silymarin concurrently with BPA for 10 days resulted in a diminished level of pro-inflammatory cytokines and in significantly reduced ultrastructural injuries. Additionally, silymarin was able to restore the significantly decreased glycogen deposits observed following BPA exposure to normal levels, thus favoring hepatic glycogenesis. This study represents the first report of silymarin ability to reduce hepatic lesions and to counteract inflammation caused by BPA in mice. A dose of 200 mg/kg silymarin was sufficient to induce a protective effect against structural and ultrastructural injuries induced by BPA and to lower the levels of pro-inflammatory cytokines observed in murine liver tissue following exposure to BPA. PMID:28450905

Top