Sample records for normal nervous system

  1. Different protein profile in amniotic fluid with nervous system malformations by surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry (SELDI-TOF-MS) technology.

    PubMed

    Ma, Zhe; Liu, Cun; Deng, Biping; Dong, Shaogang; Tao, Guowei; Zhan, Xinfeng; Wang, Chuner; Liu, Shaoping; Qu, Xun

    2010-12-01

    To detect the distinct proteins in amniotic fluid (AF) between nervous system malformations fetuses and normal fetuses. Surface-enhanced laser desorption-ionization/time-of-flight mass spectrometry was used to characterize AF peptides in AF between nervous system malformations fetuses and normal fetuses. WCX2 protein chips were used to characterize AF peptides in AF. Protein chips were examined in a PBSIIC protein reader, the protein profiling was collected by ProteinChip software version 3.1 (Ciphergen Biosystems, Fremont, CA, USA) and analyzed by Biomarker Wizard software (Ciphergen Biosystems). Nine distinct proteins were identified in AF between nervous system malformations fetuses and normal fetuses. Compared with the control group, three proteins with m/z 4967.5 Da, 5258.0 Da, and 11,717.0 Da were down-regulated, and six proteins with m/z 2540.4 Da, 3107.1 Da, 3396.8 Da, 4590.965 Da, 5589.2 Da and 6429.4 Da up-regulated in nervous system malformations fetuses. The results suggest that there are distinct proteins in protein profiling of AF between nervous system malformations fetuses and normal fetuses. © 2010 The Authors. Journal of Obstetrics and Gynaecology Research © 2010 Japan Society of Obstetrics and Gynecology.

  2. Nutritional and metabolic diseases involving the nervous system.

    PubMed

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  3. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  4. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  5. Radiation injury to the nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.

  6. Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study.

    PubMed

    Fehlert, E; Willmann, K; Fritsche, L; Linder, K; Mat-Husin, H; Schleger, F; Weiss, M; Kiefer-Schmidt, I; Brucker, S; Häring, H-U; Preissl, H; Fritsche, A

    2017-11-01

    Gestational diabetes mellitus (GDM) potentially harms the child before birth. We previously found GDM to be associated with developmental changes in the central nervous system. We now hypothesise that GDM may also impact on the fetal autonomic nervous system under metabolic stress like an oral glucose tolerance test (OGTT). We measured heart rate variability (HRV) of mothers and fetuses during a three-point OGTT using fetal magnetocardiography (fMCG). Measurements were performed in the fMEG Centre in Tübingen. After exclusion of 23 participants, 13 pregnant women with GDM and 36 pregnant women with normal glucose tolerance were examined. All women underwent the same examination setting with OGTT during which fMCG was recorded three times. Parameters of heart rate variability were measured. Compared with mothers with normal glucose regulation, mothers with GDM showed increased heart rate but no significant differences of maternal HRV. In contrast, HRV in fetuses of mothers with GDM differed from those in the metabolically healthy group regarding standard deviation normal to normal beat (SDNN) (P = 0.012), low-frequency band (P = 0.008) and high-frequency band (P = 0.031). These HRV parameters exhibit a decrease only in GDM fetuses during the second hour of the OGTT. These results show an altered response of the fetal autonomic nervous system to metabolic stress in GDM-complicated pregnancies. Hence, disturbances in maternal glucose metabolism might not only impact on the central nervous system of the fetus but may also affect the fetal autonomic nervous system. Metabolic stress reveals a different response of fetal autonomic nervous system in GDM-complicated pregnancies. © 2016 Royal College of Obstetricians and Gynaecologists.

  7. Muscle twitching

    MedlinePlus

    ... Some are common and normal. Others are signs of a nervous system disorder. Causes Causes may include: Autoimmune disorders , such ... muscle Spinal muscular atrophy Weak muscles (myopathy) Symptoms of a nervous system disorder include: Loss of, or change in, sensation ...

  8. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  9. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  10. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  11. 43 CFR 11.62 - Injury determination phase-injury definition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... normal brain ChE activity of the wildlife species. These enzymes are in the nervous system of vertebrate... are in the nervous systems of vertebrate organisms and the rate of ChE activity is associated with the... other organs, as well as soft tissues of the gastrointestinal tract and vascular system, when comparing...

  12. 43 CFR 11.62 - Injury determination phase-injury definition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... normal brain ChE activity of the wildlife species. These enzymes are in the nervous system of vertebrate... are in the nervous systems of vertebrate organisms and the rate of ChE activity is associated with the... other organs, as well as soft tissues of the gastrointestinal tract and vascular system, when comparing...

  13. 43 CFR 11.62 - Injury determination phase-injury definition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... normal brain ChE activity of the wildlife species. These enzymes are in the nervous system of vertebrate... are in the nervous systems of vertebrate organisms and the rate of ChE activity is associated with the... other organs, as well as soft tissues of the gastrointestinal tract and vascular system, when comparing...

  14. 43 CFR 11.62 - Injury determination phase-injury definition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... normal brain ChE activity of the wildlife species. These enzymes are in the nervous system of vertebrate... are in the nervous systems of vertebrate organisms and the rate of ChE activity is associated with the... other organs, as well as soft tissues of the gastrointestinal tract and vascular system, when comparing...

  15. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  16. Autonomic correlates at rest and during evoked attention in children with attention-deficit/hyperactivity disorder and effects of methylphenidate.

    PubMed

    Negrao, Bianca Lee; Bipath, Priyesh; van der Westhuizen, Deborah; Viljoen, Margaretha

    2011-01-01

    The aim of this study was to assess autonomic nervous system functioning in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of methylphenidate and focussed attention. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulants. On both occasions, autonomic nervous system functioning was tested at baseline and during focussed attention. Autonomic nervous system functioning of control subjects was also tested at baseline and during focussed attention. Autonomic nervous system activity was determined by means of heart rate variability (HRV) and skin conductivity analyses. Attention was evoked by means of the BioGraph Infiniti biofeedback apparatus. HRV was determined by time domain, frequency domain and Poincaré analysis of RR interval data. Skin conductivity was determined by the BioGraph Infiniti biofeedback apparatus. The main findings of this study were (a) that stimulant-free children with ADHD showed a sympathetic underarousal and parasympathetic overarousal of the sympathovagal balance relative to control subjects; (b) methylphenidate shifted the autonomic balance of children with ADHD towards normal levels; however, a normal autonomic balance was not reached, and (c) stimulant-free children with ADHD exhibited a shift in the sympathovagal balance towards the sympathetic nervous system from baseline to focussed attention; however, methylphenidate appeared to abolish this shift. Stimulant-free children with ADHD have a parasympathetic dominance of the autonomic balance, relative to control subjects. Methylphenidate attempts to restore the normal autonomic balance in children with ADHD, but inhibits the normal autonomic nervous system response to a cognitive challenge. These results indicate that methylphenidate may have a suppressive effect on the normal stress response. Although this may be of benefit to those who interact with children who suffer from ADHD, the implications for the physiological and psychological well-being of the children themselves are debatable. Further research is needed. Only 19 children with ADHD and 18 control subjects were tested. Further studies should include prior testing in order to exclude children with possible co-existing learning disabilities. Cognitive function and emotional responses of children with ADHD were not tested. © 2010 S. Karger AG, Basel.

  17. Axonal sprouting and laminin appearance after destruction of glial sheaths.

    PubMed Central

    Masuda-Nakagawa, L M; Muller, K J; Nicholls, J G

    1993-01-01

    Laminin, a large extracellular matrix molecule, is associated with axonal outgrowth during development and regeneration of the nervous system in a variety of animals. In the leech central nervous system, laminin immunoreactivity appears after axon injury in advance of the regenerating axons. Although studies of vertebrate nervous system in culture have implicated glial and Schwann cells as possible sources, the cells that deposit laminin at sites crucial for regeneration in the living animal are not known. We have made a direct test to determine whether, in the central nervous system of the leech, cells other than ensheathing glial cells can produce laminin. Ensheathing glial cells of adult leeches were ablated selectively by intracellular injection of a protease. As a result, leech laminin accumulated within 10 days in regions of the central nervous system where it is not normally found, and undamaged, intact axons began to sprout extensively. In normal leeches laminin immunoreactivity is situated only in the basement membrane that surrounds the central nervous system, whereas after ablation of ensheathing glia it appeared in spaces through which neurons grew. Within days of ablation of the glial cell, small mobile phagocytes, or microglia, accumulated in the spaces formerly occupied by the glial cell. Microglia were concentrated at precisely the sites of new laminin appearance and axon sprouting. These results suggest that in the animal, as in culture, leech laminin promotes sprouting and that microglia may be responsible for its appearance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8506343

  18. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  19. Blood pressure normalization post-jugular venous balloon angioplasty.

    PubMed

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the association between blood pressure deviation and internal jugular veins narrowing, and whether blood pressure normalization affects Patient's clinical outcomes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    PubMed

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  1. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Dangerfield, P H; Freeman, B J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.

  2. The Serine Protease Inhibitor Neuroserpin Is Required for Normal Synaptic Plasticity and Regulates Learning and Social Behavior

    ERIC Educational Resources Information Center

    Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna

    2017-01-01

    The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…

  3. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study.

    PubMed

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-11-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.

  4. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study

    PubMed Central

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-01-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132

  5. Mechanisms of developmental neurite pruning.

    PubMed

    Schuldiner, Oren; Yaron, Avraham

    2015-01-01

    The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system.

  6. Role of endothelial-to-mesenchymal transition in the pathogenesis of central nervous system hemangioblastomas.

    PubMed

    Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu

    2018-06-07

    Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  8. Mechanisms of developmental neurite pruning

    PubMed Central

    Schuldiner, Oren; Yaron, Avraham

    2016-01-01

    The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system. PMID:25213356

  9. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    PubMed

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Classification of neural tumors in laboratory rodents, emphasizing the rat.

    PubMed

    Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D

    2011-01-01

    Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.

  11. Teleost fish as a model system to study successful regeneration of the central nervous system.

    PubMed

    Zupanc, Günther K H; Sîrbulescu, Ruxandra F

    2013-01-01

    Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.

  12. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  13. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  14. Distribution and function of voltage-gated sodium channels in the nervous system.

    PubMed

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  15. The dynamic genome: transposons and environmental adaptation in the nervous system.

    PubMed

    Lapp, Hannah E; Hunter, Richard G

    2016-02-01

    Classically thought as genomic clutter, the functional significance of transposable elements (TEs) has only recently become a focus of attention in neuroscience. Increasingly, studies have demonstrated that the brain seems to have more retrotransposition and TE transcription relative to other somatic tissues, suggesting a unique role for TEs in the central nervous system. TE expression and transposition also appear to vary by brain region and change in response to environmental stimuli such as stress. TEs appear to serve a number of adaptive roles in the nervous system. The regulation of TE expression by steroid, epigenetic and other mechanisms in interplay with the environment represents a significant and novel avenue to understanding both normal brain function and disease.

  16. Concordance of Time-of-Flight MRA and Digital Subtraction Angiography in Adult Primary Central Nervous System Vasculitis.

    PubMed

    de Boysson, H; Boulouis, G; Parienti, J-J; Touzé, E; Zuber, M; Arquizan, C; Dequatre, N; Detante, O; Bienvenu, B; Aouba, A; Guillevin, L; Pagnoux, C; Naggara, O

    2017-10-01

    3D-TOF-MRA and DSA are 2 available tools to demonstrate neurovascular involvement in primary central nervous system vasculitis. We aimed to compare the diagnostic concordance of vessel imaging using 3D-TOF-MRA and DSA in patients with primary central nervous system vasculitis. We retrospectively identified all patients included in the French primary central nervous system vasculitis cohort of 85 patients who underwent, at baseline, both intracranial 3D-TOF-MRA and DSA in an interval of no more than 2 weeks and before treatment initiation. Two neuroradiologists independently reviewed all 3D-TOF-MRA and DSA imaging. Brain vasculature was divided into 25 arterial segments. Concordance between 3D-TOF-MRA and DSA for the identification of arterial stenosis was assessed by the Cohen κ Index. Thirty-one patients met the inclusion criteria, including 20 imaged with a 1.5T MR unit and 11 with a 3T MR unit. Among the 25 patients (81%) with abnormal DSA findings, 24 demonstrated abnormal 3D-TOF-MRA findings, whereas all 6 remaining patients with normal DSA findings had normal 3D-TOF-MRA findings. In the per-segment analysis, concordance between 1.5T 3D-TOF-MRA and DSA was 0.82 (95% CI, 0.75-0.93), and between 3T 3D-TOF-MRA and DSA, it was 0.87 (95% CI, 0.78-0.91). 3D-TOF-MRA shows a high concordance with DSA in diagnostic performance when analyzing brain vasculature in patients with primary central nervous system vasculitis. In patients with negative 3T 3D-TOF-MRA findings, the added diagnostic value of DSA is limited. © 2017 by American Journal of Neuroradiology.

  17. Effect of sodium intake on sympathetic and hemodynamic response to thermal receptor stimulation.

    PubMed

    DiBona, Gerald F; Jones, Susan Y

    2003-02-01

    Low dietary sodium intake increases central nervous system angiotensin activity, which increases basal renal sympathetic nerve activity and shifts its arterial baroreflex control to a higher level of arterial pressure. This results in a higher level of renal sympathetic nerve activity for a given level of arterial pressure during low dietary sodium intake than during either normal or high dietary sodium intake, in which there is less central angiotensin activity. Peripheral thermal receptor stimulation overrides arterial baroreflex control and produces a pressor response, tachycardia, increased renal sympathetic nerve activity, and renal vasoconstriction. To test the hypothesis that increased central angiotensin activity would enhance the responses to peripheral thermal receptor stimulation, anesthetized normal rats in balance on low, normal, and high dietary sodium intake were subjected to acute peripheral thermal receptor stimulation. Low sodium rats had greater increases in renal sympathetic nerve activity, greater decreases in RBF, and greater increases in renal vascular resistance than high sodium rats. Responses of normal sodium rats were between those of low and high sodium rats. Arterial pressure and heart rate responses were not different among dietary groups. Spontaneously hypertensive rats, known to have increased central nervous system angiotensin activity, also had greater renal sympathoexcitatory and vasoconstrictor responses than normotensive Wistar-Kyoto rats. These results support the view that increased central nervous system angiotensin activity alters arterial baroreflex control of renal sympathetic nerve activity such that the renal sympathoexcitatory and vasoconstrictor responses to peripheral thermoreceptor stimulation are enhanced.

  18. Overview of the Neurolab Spacelab mission

    NASA Technical Reports Server (NTRS)

    Homick, J. L.; Delaney, P.; Rodda, K.

    1998-01-01

    Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.

  19. THE EFFECTS OF IONIZING RADIATIONS ON THE DEVELOPING ANIMAL WITH SPECIAL REFERENCE TO THE NERVOUS SYSTEM. Progress Report and Application of Renewal of Atomic Energy Commission Contract AT(30-1)-1454

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, S.P.

    1960-06-01

    Findings are summarized from studies on the effects of radiation on the development of the nervous system in mammals. Radiation has been proven to be a useful tool for experimental mammalian embryology in studies of normal brain development as well as in studies of abnormalities of brain development. Manuscripts are included of papers accepted for publication. (C.H.)

  20. Effects of Music Therapy on the Cardiovascular and Autonomic Nervous System in Stress-Induced University Students: A Randomized Controlled Trial.

    PubMed

    Lee, Kyoung Soon; Jeong, Hyeon Cheol; Yim, Jong Eun; Jeon, Mi Yang

    2016-01-01

    Stress is caused when a particular relationship between the individual and the environment emerges. Specifically, stress occurs when an individual's abilities are challenged or when one's well-being is threatened by excessive environmental demands. The aim of this study was to measure the effects of music therapy on stress in university students. Randomized controlled trial. Sixty-four students were randomly assigned to the experimental group (n = 33) or the control group (n = 31). Music therapy. Initial measurement included cardiovascular indicators (blood pressure and pulse), autonomic nervous activity (standard deviation of the normal-to-normal intervals [SDNN], normalized low frequency, normalized high frequency, low/high frequency), and subjective stress. After the first measurement, participants in both groups were exposed to a series of stressful tasks, and then a second measurement was conducted. The experimental group then listened to music for 20 minutes and the control group rested for 20 minutes. A third and final measurement was then taken. There were no significant differences between the two groups in the first or second measurement. However, after music therapy, the experimental group and the control group showed significant differences in all variables, including systolic blood pressure (p = .026), diastolic blood pressure (p = .037), pulse (p < .001), SDNN (p = .003), normalized low frequency (p < .001), normalized high frequency (p = .010), and subjective stress (p = .026). Classical music tends to relax the body and may stimulate the parasympathetic nervous system. These results suggest music therapy as an intervention for stress reduction.

  1. Evaluation system for minor nervous dysfunction by pronation and supination of forearm using wireless acceleration and angular velocity sensors.

    PubMed

    Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori

    2011-01-01

    We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system.

  2. Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.

    PubMed

    Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth

    2011-10-01

    The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.

  3. Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects

    PubMed Central

    McCraty, Rollin; Atkinson, Mike; Stolc, Viktor; Alabdulgader, Abdullah A.; Vainoras, Alfonsas

    2017-01-01

    A coupling between geomagnetic activity and the human nervous system’s function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group’s autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group’s HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants’ HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances. PMID:28703754

  4. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    PubMed

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  5. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.

    PubMed

    Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S

    2014-06-20

    Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. © 2014. Published by The Company of Biologists Ltd.

  6. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion

    PubMed Central

    Talbot, Jared A.; Currie, Ko W.; Pearson, Bret J.; Collins, Eva-Maria S.

    2014-01-01

    ABSTRACT Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  7. Autonomic control of circulation in fish: a comparative view.

    PubMed

    Sandblom, Erik; Axelsson, Michael

    2011-11-16

    The autonomic nervous system has a central role in the control and co-ordination of the cardiovascular system in all vertebrates. In fish, which represent the largest and most diverse vertebrate group, the autonomic control of the circulation displays a vast variation with a number of interesting deviations from the typical vertebrate pattern. This diversity ranges from virtually no known nervous control of the circulation in hagfish, to a fully developed dual control from both cholinergic and adrenergic nerves in teleost, much resembling the situation found in other vertebrate groups. This review summarizes current knowledge on the role of the autonomic nervous system in the control of the cardiovascular system in fish. We set out by providing an overview of the general trends and patterns in the major fish groups, and then a summary of how the autonomic nervous control is involved in normal daily activities such as barostatic control of blood pressure, as well as adjustments of the cardiovascular system during feeding and environmental hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness

    DTIC Science & Technology

    2011-09-01

    testing on software • Performed static and dynamic analysis on safety code Research Interests To understand how the nervous system operates, how...dynamics of these systems to reset control of the HPA-immune axis to normal. We have completed the negotiation of sub-awards to the CFIDS Association...We propose that severe physical or psychological insult to the endocrine and immune systems can displace these from a normal regulatory equilibrium

  9. [Digoxin as a cause of chromatopsia and depression in a patient with heart failure and hyperthyroidism].

    PubMed

    Chyrek, R; Jabłecka, A; Pupek-Musialik, D; Lowicki, Z

    2000-08-01

    67 year old patient with chronic heart failure and persistent atrial fibrillation had overdosed glycosides for several months. The symptoms of gastrointestinal system and nervous system appeared after long term therapy with toxic doses of glycosides. Originally depression was diagnosed based on the central nervous system disturbances. Even though overdose of glycosides was diagnosed the blood serum glycoside level was within the therapeutic limits. Based on the precise analysis of the data, it was concluded that the reason for normal blood serum glycoside level in this case was coexisting hyperthyreosis.

  10. Sarcoidosis

    MedlinePlus

    ... larger than normal spleen Anemia Burning, itchy, or dry eyes Fainting Heart palpitations Joint pain Muscle weakness Problems ... problems with the nervous system; burning, itching, or dry eyes; swollen salivary glands; swollen lymph nodes in the ...

  11. Rett Syndrome

    MedlinePlus

    Rett syndrome is a rare genetic disease that causes developmental and nervous system problems, mostly in girls. It's related to autism spectrum disorder. Babies with Rett syndrome seem to grow and develop normally at first. ...

  12. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  13. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection

    PubMed Central

    Kingma, John G; Simard, Denys; Rouleau, Jacques R

    2017-01-01

    Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies. PMID:28706586

  14. Femoral-facial syndrome with malformations in the central nervous system.

    PubMed

    Leal, Evelia; Macías-Gómez, Nelly; Rodríguez, Lisa; Mercado, F Miguel; Barros-Núñez, Patricio

    2003-01-01

    The femoral hypoplasia-unusual facies syndrome (FFS) is a very rare association of femoral and facial abnormalities. Maternal diabetes mellitus has been mainly involved as the causal agent. We report the second case of FFS with anomalies in the central nervous system (CNS) including corticosubcortical atrophy, colpocephaly, partial agenesis of corpus callosum, hypoplasia of the falx cerebri and absent septum pellucidum. The psychomotor development has been normal. We propose that the CNS defects observed in these patients are part of the spectrum of abnormalities in the FFS.

  15. 4H Syndrome

    MedlinePlus

    ... syndrome? 4H syndrome is short for hypomyelination, hypogonadotropic hypogonadism and hypodontia. Hypomyelination means that there is lack ... myelin in the central nervous system. In hypogonadotropic hypogonadism, normal puberty development is absent because the central ...

  16. Drosophila Importin-α2 Is Involved in Synapse, Axon and Muscle Development

    PubMed Central

    Mosca, Timothy J.; Schwarz, Thomas L.

    2010-01-01

    Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature. PMID:21151903

  17. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell-mediated and humoral immunity.

    PubMed

    Kapoor, A K; Nash, A A; Wildy, P

    1982-07-01

    B cell responses of Balb/c mice were suppressed using sheep anti-mouse IgM serum. At 4 weeks, both B cell-suppressed and normal littermates were infected in the ear pinna with herpes simplex virus type 1 (HSV-1). The B cell-suppressed mice failed to produce neutralizing herpes antibodies in their sera but had a normal cell-mediated immunity (CMI) response as measured by a delayed hypersensitivity skin test. Although the infection was eliminated from the ear in both B cell-suppressed and normal mice by day 10 after infection, there was an indication that B cell-suppressed mice had a more florid primary infection of the peripheral and central nervous system and also a higher incidence of a latent infection. These results support the hypothesis that antibody is important in restricting the spread of virus to the central nervous system, whereas CMI is important in clearing the primary infection in the ear pinna.

  18. Lyme Disease (For Parents)

    MedlinePlus

    ... spread to the nervous system, causing facial paralysis ( Bell's palsy ) or meningitis . The last stage of Lyme disease ... feeling back to normal within several weeks after treatment starts. Is Lyme Disease Contagious? Lyme disease is ...

  19. Aspartic acid

    MedlinePlus

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  20. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some tentative ideas concerning the importance of this nervous system in cardiac disease states with a view to stimulating further interest in neural control of the heart so that appropriate neurocardiological strategies can be devised for the management of heart disease.

  1. Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.

    PubMed

    Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori

    2011-01-01

    Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    NASA Astrophysics Data System (ADS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.

  3. Williams syndrome as a model of genetically determined right-hemisphere dominance.

    PubMed

    Bogdanov, N N; Solonichenko, V G

    1997-01-01

    Studies were carried out on the dermatoglyphics (skin ridge marks) on the hands of children with Williams syndrome; this is an inherited disease with cardiovascular pathology and a characteristic facial phenotype ("elf" facies), along with specific mental and cognitive disturbances. The results suggest a characteristic dermatoglyphic type with the presence of complex whorls on the fingers and a clear predominance of marks of greater complexity on the left hand; this is a very rare trait in normal people and in those with other inherited nervous system disorders. The features of the dermatoglyphic pattern serve as a characteristic marker of a genetically determined state of the human central nervous system, and suggests directions for neurophysiological studies of children with Williams syndrome as a unique model for analysis of higher nervous function in humans.

  4. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    PubMed Central

    Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A

    2016-01-01

    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807

  5. Nerve supply to the pelvis (image)

    MedlinePlus

    The nerves that branch off the central nervous system (CNS) provide messages to the muscles and organs for normal ... be compromised. In multiple sclerosis, the demyelinization of nerve cells may lead to bowel incontinence, bladder problems ...

  6. [Cognitive function in patients with systemic sclerosis].

    PubMed

    Straszecka, J; Jonderko, G; Kucharz, E J; Brzezińska-Wcisło, L; Kotulska, A; Bogdanowski, T

    1997-09-01

    Central nervous system involvement is seldom reported in patients with systemic sclerosis (SSc). Cognitive functions were determined in 21 patients with definite SSc and 42 healthy controls. Thyroid function was also measured in order to eliminate the effect of hypothyroidism on cognitive functioning. It was found that the SSc patients with normal thyroid function showed defective long-term and recent memory, learning ability, criticism, perception and visuo-perceptual skills, their simple reaction time was prolonged. Similar but less advanced cognitive defects were shown in the SSc patients with overt or latent hypothyroidism. The obtained results indicate that the central nervous system involvement is more common in patients with SSc than it has been reported earlier.

  7. Effects of GABA, Neural Regulation, and Intrinsic Cardiac Factors on Heart Rate Variability in Zebrafish Larvae.

    PubMed

    Vargas, Rafael Antonio

    2017-04-01

    Heart rate (HR) is a periodic activity that is variable over time due to intrinsic cardiac factors and extrinsic neural control, largely by the autonomic nervous system. Heart rate variability (HRV) is analyzed by measuring consecutive beat-to-beat intervals. This variability can contain information about the factors regulating cardiac activity under normal and pathological conditions, but the information obtained from such analyses is not yet fully understood. In this article, HRV in zebrafish larvae was evaluated under normal conditions and under the effect of substances that modify intrinsic cardiac activity and cardiac activity modulated by the nervous system. We found that the factors affecting intrinsic activity have negative chronotropic and arrhythmogenic effects at this stage of development, whereas neural modulatory factors have a lesser impact. The results suggest that cardiac activity largely depends on the intrinsic properties of the heart tissue in the early stages of development and, to a lesser extent, in the maturing nervous system. We also report, for the first time, the influence of the neurotransmitter gamma amino butyric acid on HRV. The results demonstrate the larval zebrafish model as a useful tool in the study of intrinsic cardiac activity and its role in heart diseases.

  8. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervousmore » systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of formation of connections between neurons in simplest biological objects. Based on the correspondence of function of the created models to function of biological nervous systems we suggest the use of computational and electronic models of the brain for the study of its function under normal and pathological conditions, because operating principles of the models are built on principles imitating the function of biological nervous systems and the brain.« less

  9. [Late sequelae of central nervous system prophylaxis in children with acute lymphoblastic leukemia: high doses of intravenous methotrexate versus radiotherapy of the central nervous system--review of literature].

    PubMed

    Zając-Spychała, Olga; Wachowiak, Jacek

    2012-01-01

    Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in combination with high doses of intravenous methotrexate.

  10. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  11. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    PubMed

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    NASA Astrophysics Data System (ADS)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  13. Neurotoxic effects of n-hexane on the human central nervous system: evoked potential abnormalities in n-hexane polyneuropathy.

    PubMed Central

    Chang, Y C

    1987-01-01

    An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221

  14. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora.

    PubMed

    Stamatis, Sebastian-Alexander; Worsaae, Katrine; Garm, Anders

    2018-02-01

    Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.

  15. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  16. [Case of acute ophthalmoparesis with gaze nystagmus].

    PubMed

    Ikuta, Naomi; Tada, Yukiko; Koga, Michiaki

    2012-01-01

    A 61-year-old man developed double vision subsequent to diarrheal illness. Mixed horizontal-vertical gaze palsy in both eyes, diminution of tendon reflexes, and gaze nystagmus were noted. His horizontal gaze palsy was accompanied by gaze nystagmus in the abducent direction, indicative of the disturbance in central nervous system. Neither limb weakness nor ataxia was noted. Serum anti-GQ1b antibody was detected. Brain magnetic resonance imaging (MRI) findings were normal. The patient was diagnosed as having acute ophthalmoparesis. The ophthalmoparesis and nystagmus gradually disappeared in 3 months. The accompanying nystagmus suggests that central nervous system disturbance may also be present with acute ophthalmoparesis.

  17. Is there anything "autonomous" in the nervous system?

    PubMed

    Rasia-Filho, Alberto A

    2006-03-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate that no element shows "autonomy" in an integrated body. Nor are they solely "passive" or generated "without mental elaboration." In addition, to be "not consciously controlled" is not a unique attribute of these components. Another term that could be proposed is "homeostatic nervous system" for providing conditions to the execution of behaviors and maintenance of the internal milieu within normal ranges. But, not all homeostatic conditions are under the direct influence of these groups of neurons, and some situations clearly impose different ranges for some variables that are adaptative (or hazardous) in the tentative of successfully coping with challenging situations. Finally, the name "nervous system for visceral control" emerges as another possibility. Unfortunately, it is not only "viscera" that represent end targets for this specific innervation. Therefore, it is commented that no quite adequate term for the sympathetic, parasympathetic, and gastrointestinal divisions has already been coined. The basic condition for a new term is that it should clearly imply the whole integrated and collaborative functions that the components have in an indivisible organism, including the neuroendocrine, immunological, and respiratory systems. Until that, we can call these parts simply by their own names and avoid terms that are more "convenient" than appropriate.

  18. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies

    PubMed Central

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P.; Alder, Hansjuerg; Carosi, Mariantonia A.; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M.

    2015-01-01

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application. The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies. CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization. Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies. This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications. PMID:26246487

  19. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies.

    PubMed

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P; Alder, Hansjuerg; Carosi, Mariantonia A; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M

    2015-08-28

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.

  20. Galantamine Facilitates Acquisition of Hippocampus-Dependent Trace Eyeblink Conditioning in Aged Rabbits

    ERIC Educational Resources Information Center

    Weible, Aldis P.; Oh, M. Matthew; Lee, Grace; Disterhoft, John F.

    2004-01-01

    Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive…

  1. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    PubMed Central

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans. PMID:19878575

  2. Are evoked potentials in patients with adult-onset pompe disease indicative of clinically relevant central nervous system involvement?

    PubMed

    Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt

    2014-08-01

    Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.

  3. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

    PubMed Central

    Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge

    2011-01-01

    The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381

  4. Axial mesendoderm refines rostrocaudal pattern in the chick nervous system.

    PubMed

    Rowan, A M; Stern, C D; Storey, K G

    1999-07-01

    There has long been controversy concerning the role of the axial mesoderm in the induction and rostrocaudal patterning of the vertebrate nervous system. Here we investigate the neural inducing and regionalising properties of defined rostrocaudal regions of head process/prospective notochord in the chick embryo by juxtaposing these tissues with extraembryonic epiblast or neural plate explants. We localise neural inducing signals to the emerging head process and using a large panel of region-specific neural markers, show that different rostrocaudal levels of the head process derived from headfold stage embryos can induce discrete regions of the central nervous system. However, we also find that rostral and caudal head process do not induce expression of any of these molecular markers in explants of the neural plate. During normal development the head process emerges beneath previously induced neural plate, which we show has already acquired some rostrocaudal character. Our findings therefore indicate that discrete regions of axial mesendoderm at headfold stages are not normally responsible for the establishment of rostrocaudal pattern in the neural plate. Strikingly however, we do find that caudal head process inhibits expression of rostral genes in neural plate explants. These findings indicate that despite the ability to induce specific rostrocaudal regions of the CNS de novo, signals provided by the discrete regions of axial mesendoderm do not appear to establish regional differences, but rather refine the rostrocaudal character of overlying neuroepithelium.

  5. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    PubMed

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  6. Evaluation of central nervous system in patients with glycogen storage disease type 1a.

    PubMed

    Aydemir, Yusuf; Gürakan, Figen; Saltık Temizel, İnci Nur; Demir, Hülya; Oğuz, Kader Karlı; Yalnızoğlu, Dilek; Topçu, Meral; Özen, Hasan; Yüce, Aysel

    2016-01-01

    We aimed to evaluate structure and functions of central nervous system (CNS) in children with glycogen storage disease (GSD) type 1a. Neurological examination, psychometric tests, electroencephalography (EEG), magnetic resonance imaging (MRI), visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) were performed. The results were compared between patients with good and poor metabolic control and healthy children. Twenty-three patients with GSD type 1a were studied. Twelve patients were in poor metabolic control group and 11 patients in good metabolic control group. Five patients had intellectual disability, 10 had EEG abnormalities, seven had abnormal VEP and two had abnormal BAEP results. MRI was abnormal in five patients. There was significant correlation between the number of hypoglycemic attacks and MRI abnormalities. Central nervous system may be affected in GSD type 1a even in patients with normal neurologic examination. Accumulation of abnormal results in patients with poor metabolic control supports the importance of metabolic control in GSD type 1a.

  7. ELAV Links Paused Pol II to Alternative Polyadenylation in the Drosophila Nervous System

    PubMed Central

    Oktaba, Katarzyna; Zhang, Wei; Lotz, Thea Sabrina; Jun, David Jayhyun; Lemke, Sandra Beatrice; Ng, Samuel Pak; Esposito, Emilia; Levine, Michael; Hilgers, Valérie

    2014-01-01

    SUMMARY Alternative polyadenylation (APA) has been implicated in a variety of developmental and disease processes. A particularly dramatic form of APA occurs in the developing nervous system of flies and mammals, whereby various developmental genes undergo coordinate 3′ UTR extension. In Drosophila, the RNA-binding protein ELAV inhibits RNA processing at proximal polyadenylation sites, thereby fostering the formation of exceptionally long 3′ UTRs. Here, we present evidence that paused Pol II promotes recruitment of ELAV to extended genes. Replacing promoters of extended genes with heterologous promoters blocks normal 3′ extension in the nervous system, while extension-associated promoters can induce 3′ extension in ectopic tissues expressing ELAV. Computational analyses suggest that promoter regions of extended genes tend to contain paused Pol II and associated cis-regulatory elements such as GAGA. ChIP-Seq assays identify ELAV in the promoter regions of extended genes. Our study provides evidence for a regulatory link between promoter-proximal pausing and APA. PMID:25544561

  8. Temperament affects sympathetic nervous function in a normal population.

    PubMed

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  9. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  10. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity

    PubMed Central

    Jasoni, Christine L.; Sanders, Tessa R.; Kim, Dong Won

    2015-01-01

    The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life. PMID:25691854

  11. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  12. Parasympathetic tone variations according to umbilical cord pH at birth: a computerized fetal heart rate variability analysis.

    PubMed

    Butruille, Laura; De Jonckheere, Julien; Flocteil, Mathilde; Garabedian, Charles; Houfflin-Debarge, Véronique; Storme, Laurent; Deruelle, Philippe; Logier, Régis

    2017-12-01

    Non-reassuring fetal heart rate tracings reflect an imbalance between the parasympathetic and sympathetic nervous systems. In this situation, fetal asphyxia can be suspected and may be confirmed by metabolic measurements at birth like low pH or high base deficit values. The objective of this study was to determine whether fetal asphyxia during labor is related to parasympathetic nervous system activity. This is a retrospective study of a database collected in 5 centers. Two hundred and ninety-nine fetal heart rate tracings collected during labor were analyzed. Autonomic nervous system, especially the parasympathetic nervous system, was analyzed using an original index: the FSI (Fetal Stress Index). The FSI is a parasympathetic activity evaluation based on fetal heart rate variability analysis. Infants were grouped based on normal or low pH value at birth. FSI was measured during the last 30 min of labor before birth and compared between groups. The minimum value of the FSI during the last 30 min before delivery was significantly lower in the group with the lower umbilical cord arterial pH value. In this pilot study during labor, FSI was lower in the group of infants with low arterial pH at birth.

  13. Autonomic nervous system profile in fibromyalgia patients and its modulation by exercise: a mini review.

    PubMed

    Kulshreshtha, Poorvi; Deepak, Kishore K

    2013-03-01

    This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  14. Effects of male and female sex steroids on the development of normal and the transient Froriep's dorsal root ganglia of the chick embryo.

    PubMed

    Liu, Jiali; Chen, Dawei; Goldstein, Ronald S; Cui, Sheng

    2005-03-22

    Sex steroids can influence developmental processes and support the survival of neurons in the embryonic central nervous system. Recent studies have shown that estrogen receptors are also expressed in the peripheral nervous system, in the dorsal root ganglia (DRG) of chick embryos. However, no studies have examined the effects of sex steroids on development of embryonic DRG. In the present study, 0.2 microg, 1.0 microg, 5.0 microg 10 microg, 20 microg, 25 microg, and 40 microg doses of testosterone or estradiol were delivered to chick embryos at Hamburger and Hamilton stage 18 (E3). The actions of these doses of sex steroids on the development of the C5DRG (fifth cervical ganglion, a "normal" DRG) and C2DRG (a transient ganglion known as a "Froriep's DRG") were then evaluated by quantifying ganglionic volumes, cell number, proliferation, and apoptosis after 1 day of growth to stage 23. We found that both testosterone and estradiol promoted proliferation of cells in both normal DRG and the Froriep's ganglia. By contrast, estradiol significantly increased the number of apoptotic cells, while testosterone strongly inhibited apoptosis. These actions of sex steroids on DRG development were dose-dependent, and C5DRG and C2DRG showed different sensitivities to the applied sex steroids. In addition, the present results demonstrated that specific ER and AR inhibitors (tamoxifen and flutamide) did not influence the effects of 5 microg E2 and 5 microg T on C2 and C5DRG significantly. These results demonstrate that male and female sex steroids can modulate DRG development through an epigenetic mechanism, as had been shown for the central nervous system.

  15. EXTRAPOLATION FROM IN VITRO MECHANISMS TO IN VIVO EFFECTS FOR DEVELOPMENTAL NEUROTOXICOLOGY.

    EPA Science Inventory

    Processes that are critical to development of the nervous system can be altered by both genetic and epigenetic factors. Developmental exposure to neurotoxicants can alter these processes and lead to perturbation of normal neural development. As numerous processes occur in tande...

  16. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  17. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis.

    PubMed

    Costa, João; Moreira, André; Moreira, Pedro; Delgado, Luís; Silva, Diana

    2018-01-09

    Obesity has been linked to autonomic dysfunction, which is thought to be one of the main contributors for hypertension, cardiac remodelling and death. Exercise and diet-based weight loss are the mainstay therapy for obesity, but there is a paucity of data regarding the effect of weight changes in autonomic nervous system (ANS) activity. To describe the impact of weight changes in autonomic nervous system. A systematic literature search of four biomedical databases was performed evaluating effects of weight changes, thorough diet and/or exercise-based interventions, in the following ANS outcomes: heart rate variability, namely low frequency (LF)/high frequency (HF) ratio (LF/HF ratio), normalized units of LF (LFnu) and HF (HFnu), muscle sympathetic nerve activity (MSNA), noradrenaline spillover rate (NA-SR), standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), baroreflex sensitivity and pupillometry. Quality appraisal was performed using the GRADE methodology and, where fitting, studies with comparable outcomes were pooled for meta-analysis. Twenty-seven studies - 7 controlled clinical trials and 20 observational studies - were included. Weight gain was reported in 4 studies and weight loss in all the other studies. Interventions inducing weight changes included: hypocaloric or hypercaloric diets, exercise (strength, endurance or aerobic training) and hypocaloric diet coupled with exercise programs. Most studies which resulted in weight loss reported decreases in LF/HF ratio, LFnu, MSNA burst frequency and incidence, NA-SR, and an increase of baroreflex sensitivity, HF, HFnu and RMSSD, pointing to a parasympathetic nervous system activation. Meta-analysis regarding weight loss interventions showed a significant pooled effect size (95% CI) with a decreased of MSNA burst frequency -5.09 (-8.42, -1.75), MSNA incidence -6.66 (-12.40, -0.62), however this was not significant for SDNN 14.32 (-4.31, 32.96). Weight gain was associated with an increase in LF/HF, LFnu, MSNA burst frequency and incidence. The weight loss effects were potentiated by the association of hypocaloric diet with exercise. Nevertheless, weight changes effects in these outcomes were based in low or very low quality of evidence. Diet and exercise based weight loss appears to increase parasympathetic and decrease sympathetic activity, the opposing effects being observed with weight gain. These findings are not uniformly reported in the literature, possibly due to differences in study design, methodology, characteristics of the participants and techniques used to estimate autonomic nervous activity. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Language disorders in children with central nervous system injury

    PubMed Central

    Dennis, Maureen

    2011-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional taxonomy of language, with examples of the phenomenology and neurobiology of clinical deficits in children with CNS insults. Finally, it attempts to situate language in the broader realm of cognition and in current theoretical accounts of embodied cognition. PMID:20397297

  19. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis

    NASA Technical Reports Server (NTRS)

    Doniach, T.; Phillips, C. R.; Gerhart, J. C.

    1992-01-01

    It has long been thought that anteroposterior (A-P) pattern in the vertebrate central nervous system is induced in the embryo's dorsal ectoderm exclusively by signals passing vertically from underlying, patterned dorsal mesoderm. Explants from early gastrulae of the frog Xenopus laevis were prepared in which vertical contact between dorsal ectoderm and mesoderm was prevented but planar contact was maintained. In these, four position-specific neural markers (engrailed-2, Krox-20, XlHbox 1, and XlHbox 6) were expressed in the ectoderm in the same A-P order as in the embryo. Thus, planar signals alone, following a path available in the normal embryo, can induce A-P neural pattern.

  20. Does gravity influence the early stages of the development of the nervous system in an amphibian?

    PubMed

    Duprat, A M; Husson, D; Gualandris-Parisot, L

    1998-11-01

    As a result of previous studies using hypergravity (centrifuge) or virtual microgravity (clinostat), it was proposed that gravity was involved in embryonic development, i.e., in the establishment of the embryonic polarities and the body plan pattern which subsequently direct morphogenesis and organogenesis of the central nervous system and of sensory organs. Recent experiments were performed in space using sounding rockets and orbiting space-modules to ascertain whether gravity is indeed required for embryogenesis in Invertebrates and Vertebrates. Eggs fertilised in vivo or in vitro in microgravity showed some abnormalities during embryonic development but were able to regulate and produce nearly normal larvae. Copyright 1998 Elsevier Science B.V.

  1. Alzheimer’s Disease as the Product of a Progressive Energy Deficiency Syndrome in the Central Nervous System: The Neuroenergetic Hypothesis

    PubMed Central

    Blonz, Edward R.

    2017-01-01

    The decreased availability of metabolizable energy resources in the central nervous system is hypothesized to be a key factor in the pathogenesis of Alzheimer’s disease. More specifically, the age-related decline in the ability of glucose to cross the blood-brain barrier creates a metabolic stress that shifts the normal, benign processing of amyloid-β protein precursor toward pathways associated with the production of amyloid-β plaques and tau-containing neurofibrillary tangles that are characteristic of the disease. The neuroenergetic hypothesis provides insight into the etiology of Alzheimer’s disease and illuminates new approaches for diagnosis, monitoring, and treatment. PMID:28946565

  2. Herpes Zoster Meningitis Presenting With a Cerebrospinal Fluid Leukemoid Reaction in an Adolescent With preB-ALL in Remission.

    PubMed

    Adachi, Kristina; Song, Sophie X; Kao, Roy L; Van Dyne, Elizabeth; Kempert, Pamela; Deville, Jaime G

    2016-08-01

    A 19-year-old girl with a history of precursor B acute lymphoblastic leukemia in remission presented with fever, headache, and a skin rash. Cerebrospinal fluid (CSF) examination reported pleocytosis with blast-like cells concerning for a central nervous system leukemic relapse. After the patient showed significant improvement on intravenous acyclovir, a repeat lumbar puncture revealed normalization of CSF. The abnormal CSF cells were reviewed and ultimately determined to be activated and atypical lymphocytes. The patient recovered uneventfully. Atypical lymphocytes resembling leukemic blasts are an unusual finding in viral meningitis. Varicella zoster virus reactivation should be considered during initial evaluation for central nervous system relapse of leukemia.

  3. Clinical neurologic indices of toxicity in animals.

    PubMed Central

    O'Donoghue, J L

    1996-01-01

    The fundamental structures and functions of the nervous systems of animals and humans are conserved in many ways across species. These similarities provide a basis for developing common neurologic examinations for a number of species of animals and also provide a basis for developing risk assessments across species for neurologic end points. The neurologic examination requires no expensive equipment and can be conducted in the field or wherever impaired animals are identified. The proper conduct of neurologic examinations in animals assumes that the examiner has a fundamental understanding of the normal structure and function of the nervous system as well as knowledge about the spontaneous disease background of the species being studied. PMID:9182039

  4. Molecular and cell biological effects of 3,5,3'-triiodothyronine on progenitor cells of the enteric nervous system in vitro.

    PubMed

    Mohr, Roland; Neckel, Peter; Zhang, Ying; Stachon, Susanne; Nothelfer, Katharina; Schaeferhoff, Karin; Obermayr, Florian; Bonin, Michael; Just, Lothar

    2013-11-01

    Thyroid hormones play important roles in the development of neural cells in the central nervous system. Even minor changes to normal thyroid hormone levels affect dendritic and axonal outgrowth, sprouting and myelination and might even lead to irreversible damages such as cretinism. Despite our knowledge of the influence on the mammalian CNS, the role of thyroid hormones in the development of the enteric nervous system (ENS) still needs to be elucidated. In this study we have analyzed for the first time the influence of 3,5,3'-triiodothyronine (T3) on ENS progenitor cells using cell biological assays and a microarray technique. In our in vitro model, T3 inhibited cell proliferation and stimulated neurite outgrowth of differentiating ENS progenitor cells. Microarray analysis revealed a group of 338 genes that were regulated by T3 in differentiating enterospheres. 67 of these genes are involved in function and development of the nervous system. 14 of them belong to genes that are involved in axonal guidance or neurite outgrowth. Interestingly, T3 regulated the expression of netrin G1 and endothelin 3, two guidance molecules that are involved in human enteric dysganglionoses. The results of our study give first insights how T3 may affect the enteric nervous system. T3 is involved in proliferation and differentiation processes in enterospheres. Microarray analysis revealed several interesting gene candidates that might be involved in the observed effects on enterosphere differentiation. Future studies need to be conducted to better understand the gene to gene interactions. © 2013.

  5. Impact of the opioid system on the reproductive axis.

    PubMed

    Böttcher, Bettina; Seeber, Beata; Leyendecker, Gerhard; Wildt, Ludwig

    2017-08-01

    Endogenous opioids, first described more than 40 years ago, have long been recognized for their main role as important neuromodulators within the central nervous system. More recently endogenous opioids and their receptor have been identified in a variety of reproductive and nonreproductive tissues outside the central nervous system. Their role within these tissues and organs, however, is only incompletely understood. In the central nervous system, endogenous opioids inhibit pulsatile GnRH release, in part mediating the stress response within the central nervous-pituitary gonadal axis, resulting in hypothalamic amenorrhea. In the ovary, the presence of endogenous opioids primarily produced by granulosa cells has been demonstrated within the follicular fluid, likely influencing oocyte maturation. In hypothalamic amenorrhea, normal cycles can be restored by the administration of opioid antagonists, such as naltrexone. In polycystic ovarian syndrome, endogenous opioids have found to be elevated and may stimulate insulin secretion from the endocrine pancreas. This effect can be inhibited by opioid antagonists, resulting in a decrease of circulating insulin levels in response to glucose challenge. Endogenous opioids may also play a role in the pathogenesis of ovarian hyperstimulation syndrome. In summary, endogenous opioids exert a wide variety of actions within the reproductive system and are worthy of further scientific study. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.

    PubMed

    Potzner, Michaela R; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R; Wegner, Michael; Sock, Elisabeth

    2007-08-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation.

  7. A Demonstration of Sympathetic Cotransmission

    ERIC Educational Resources Information Center

    Johnson, Christopher D.

    2010-01-01

    Currently, most undergraduate textbooks that cover the autonomic nervous system retain the concept that autonomic nerves release either acetylcholine or norepinephrine. However, in recent years, a large volume of research has superseded this concept with one in which autonomic nerves normally release at least one cotransmitter along with a…

  8. METHYLMERCURY BUT NOT MERCURIC CHLORIDE INDUCES APOPTOTIC CELL DEATH IN PC12 CELLS.

    EPA Science Inventory

    Normal development of the nervous system requires the process of apoptosis, a form of programmed cell death, to remove superfluous neurons. Abnormal patterns of apoptosis may be a consequence of exposure to environmental neurotoxicants leading to a disruption in the tightly regul...

  9. Effect of long-term stress on H3Ser10 histone phosphorylation in neuronal nuclei of the sensorimotor cortex and midbrain reticular formation in rats with different nervous system excitability.

    PubMed

    Pavlova, M B; Dyuzhikova, N A; Shiryaeva, N V; Savenko, Yu N; Vaido, A I

    2013-07-01

    The effects of long-term mental and pain stress on H3Ser10 histone phosphorylation in neurons of the the sensorimotor corex and midbrain reticular formation were studied 24 h, 2 weeks, and 2 months after exposure of rats differing by the nervous system excitability. Rats with high excitability threshold exhibited higher basal level of H3Ser10 histone phosphorylation in the midbrain reticular formation neurons than rats with low excitability threshold. The sensorimotor cortical neurons of the two strains did not differ by this parameter. Stress led to a significant increase in the counts of immunopositive neuronal nuclei in rats with low excitability threshold: the parameter increased significantly in the sensorimotor cortex 24 h after exposure and normalized in 2 weeks after neurotization. In the midbrain reticular formation of this rat strain stress stimulated H3Ser10 histone phosphorylation after 24 h and after 2 weeks; the parameter normalized after neurotization in 2 months. Hence, genetically determined level of the nervous system excitability was essential for the basal level of neuron phosphorylation and for the time course of this process after long-term exposure to mental and pain stress, depending on the brain structure. A probable relationship between H3Ser10 histone phosphorylation process and liability to obsessive compulsive mental disorders in humans was discussed.

  10. Translational neurocardiology: preclinical models and cardioneural integrative aspects

    PubMed Central

    Andresen, M. C.; Armour, J. A.; Billman, G. E.; Chen, P.‐S.; Foreman, R. D.; Herring, N.; O'Leary, D. S.; Sabbah, H. N.; Schultz, H. D.; Sunagawa, K.; Zucker, I. H.

    2016-01-01

    Abstract Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various ‘levels’ become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. PMID:27098459

  11. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system.

    PubMed

    Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio

    2006-06-01

    To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.

  12. Pan-brachial plexus neuropraxia following lightning: A rare case report.

    PubMed

    Patnaik, Ashis; Mahapatra, Ashok Kumar; Jha, Menka

    2015-01-01

    Neurological complications following lightning are rare and occur in form of temporary neurological deficits of central origin. Involvement of peripheral nervous system is extremely rare and only a few cases have been described in the literature. Isolated unilateral pan-brachial plexus neuropraxia has never been reported in the literature. Steroids have long been used for treatment of neuropraxia. However, their use in lightning neural injury is unique and requires special mention. We report a rare case of lightning-induced unilateral complete flaccid paralysis along with sensory loss in a young patient. Lightning typically causes central nervous involvement in various types of motor and sensory deficit. Surprisingly, the nerve conduction study showed the involvement of peripheral nervous system involvement. Steroids were administered and there was significant improvement in neurological functions within a short span of days. Patients' functions in the affected limb were normal in one month. Our case was interesting since it is the first such case in the literature where lightning has caused such a rare instance of unilateral pan-brachial plexus lesion. Such cases when seen, raises the possibility of more common central nervous system pathology rather than peripheral involvement. However, such lesions can be purely benign forms of peripheral nerve neuropraxia, which can be managed by steroid treatment without leaving any long-term neurological deficits.

  13. Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: Challenges and Opportunities

    PubMed Central

    Curley, Colleen T.; Sheybani, Natasha D.; Bullock, Timothy N.; Price, Richard J.

    2017-01-01

    Immunotherapy is rapidly emerging as the cornerstone for the treatment of several forms of metastatic cancer, as well as for a host of other pathologies. Meanwhile, several new high-profile studies have uncovered remarkable linkages between the central nervous and immune systems. With these recent developments, harnessing the immune system for the treatment of brain pathologies is a promising strategy. Here, we contend that MR image-guided focused ultrasound (FUS) represents a noninvasive approach that will allow for favorable therapeutic immunomodulation in the setting of the central nervous system. One obstacle to effective immunotherapeutic drug delivery to the brain is the blood brain barrier (BBB), which refers to the specialized structure of brain capillaries that prevents transport of most therapeutics from the blood into brain tissue. When applied in the presence of circulating microbubbles, FUS can safely and transiently open the BBB to facilitate the delivery of immunotherapeutic agents into the brain parenchyma. Furthermore, it has been demonstrated that physical perturbations of the tissue microenvironment via FUS can modulate immune response in both normal and diseased tissue. In this review article, we provide an overview of FUS energy regimens and corresponding tissue bioeffects, followed by a review of the literature pertaining to FUS for therapeutic antibody delivery in normal brain and preclinical models of brain disease. We provide an overview of studies that demonstrate FUS-mediated immune modulation in both the brain and peripheral settings. Finally, we provide remarks on challenges facing FUS immunotherapy and opportunities for future expansion in this area. PMID:29109764

  14. Understanding the process of fascial unwinding.

    PubMed

    Minasny, Budiman

    2009-09-23

    Fascial or myofascial unwinding is a process in which a client undergoes a spontaneous reaction in response to the therapist's touch. It can be induced by using specific techniques that encourage a client's body to move into areas of ease. Unwinding is a popular technique in massage therapy, but its mechanism is not well understood. In the absence of a scientific explanation or hypothesis of the mechanism of action, it can be interpreted as "mystical." This paper proposes a model that builds on the neurobiologic, ideomotor action, and consciousness theories to explain the process and mechanism of fascial unwinding. HYPOTHETICAL MODEL: During fascial unwinding, the therapist stimulates mechanoreceptors in the fascia by applying gentle touch and stretching. Touch and stretching induce relaxation and activate the parasympathetic nervous system. They also activate the central nervous system, which is involved in the modulation of muscle tone as well as movement. As a result, the central nervous system is aroused and thereby responds by encouraging muscles to find an easier, or more relaxed, position and by introducing the ideomotor action. Although the ideomotor action is generated via normal voluntary motor control systems, it is altered and experienced as an involuntary response. Fascial unwinding occurs when a physically induced suggestion by a therapist prompts ideomotor action that the client experiences as involuntary. This action is guided by the central nervous system, which produces continuous action until a state of ease is reached. Consequently, fascial unwinding can be thought of as a neurobiologic process employing the self-regulation dynamic system theory.

  15. Dosha brain-types: A neural model of individual differences.

    PubMed

    Travis, Frederick T; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  16. Ancient Dietary Wisdom for Tomorrow's Children.

    ERIC Educational Resources Information Center

    Fallon, Sally

    1997-01-01

    A review of Dr. Weston Price's work on the nutritional practices of "primitive" peoples and their subsequent levels of physical development shows that animal fats and cholesterol are not villains but vital factors in the diet, necessary for normal growth, proper functioning of the brain and nervous system, protection from disease, and…

  17. Oral Diadochokinetic Rates for Normal Thai Children

    ERIC Educational Resources Information Center

    Prathanee, Benjamas; Thanaviratananich, Sangaunsak; Pongjanyakul, Amonrat

    2003-01-01

    Background: The diadochokinetic (DDK) rate represents an index for assessing motor skills. It is commonly used in routine clinical evaluation of diseases of the central nervous system, disturbances of the peripheral sensory motor formations and immaturity of the speech mechanism. "Oral" DDK rates are a popular guideline for the…

  18. [The action of bemitil on the self-regulation systems during short-term immobilization].

    PubMed

    Kirichek, L T; Bobkov, Iu G

    1991-01-01

    In the immobilized rats bemithyl (50 mg/kg in a single dose) was shown to normalize the state of the musculomotor and cardiovascular systems exerting the positive influence on the key links of the process of autoregulation in the form of the sedative (the central nervous system), stress-protective (hormonal regulation) and antihypoxic (metabolism) effects that characterizes it as the drug with the distinct antistress activity.

  19. Sunitinib in Treating Young Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2014-01-27

    Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  20. Autoimmune Channelopathies of the Nervous System

    PubMed Central

    Kleopa, Kleopas A

    2011-01-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460

  1. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis

    PubMed Central

    Lovato, Laura; Willis, Simon N.; Rodig, Scott J.; Caron, Tyler; Almendinger, Stefany E.; Howell, Owain W.; Reynolds, Richard; Hafler, David A.

    2011-01-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis. PMID:21216828

  2. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.

    PubMed

    Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A

    2011-02-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

  3. Cortical neuronal cytoskeletal changes associated with FIV infection

    NASA Technical Reports Server (NTRS)

    Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.

    1997-01-01

    HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.

  4. A review of Heinrich Obersteiner's 1888 textbook on the central nervous system by the neurologist Sigmund Freud.

    PubMed

    Hatzigiannakoglou, Paul D; Triarhou, Lazaros C

    2011-06-01

    In 1888, the Austrian neuroanatomist Heinrich Obersteiner, founder of Vienna's Neurological Institute, published his "Introduction to the Study of the Structure of the Central Nervous Organs in Health and Disease", a fundamental textbook in which he summarised the state-of-the-art knowledge available then on the normal and pathological anatomy of the human nervous system, incorporating many of his original research findings. The book became "the Bible for generations of budding neurologists" worldwide and was crucial for the eventual development of neurology as an independent medical discipline. In his early career as a neuroanatomist, Sigmund Freud wrote a review of Obersteiner's book for the Wiener Medizinische Wochenschrift. That review was not included in the "Standard Edition of the Complete Psychological Works". The present article provides an English translation of Freud's review and further discusses its historical context, especially regarding the influence of Theodor Meynert on his two illustrious students, Freud and Obersteiner.

  5. Raman spectroscopy and immunohistochemistry for schwannoma characterization: a case study

    NASA Astrophysics Data System (ADS)

    Neto, Lazaro P. M.; das Chagas, Maurilio J.; Carvalho, Luis Felipe C. S.; Ferreira, Isabelle; dos Santos, Laurita; Haddad, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    The schwannomas is a tumour of the tissue that covers nerves, called the nerve sheath. Schwannomas are often benign tumors of the Schwan cells, which are the principal glia of the peripheral nervous system (PNS). Preoperative diagnosis of this lesion usually is difficult, therefore, new techniques are being studied as pre surgical evaluation. Among these, Raman spectroscopy, that enables the biochemical identification of the tissue analyzed by their optical properties, may be used as a tool for schwannomas diagnosis. The aim of this study was to discriminate between normal nervous tissue and schwannoma through the confocal Raman spectroscopy and Raman optical fiber-based techniques combined with immunohistochemical analysis. Twenty spectra were analyzed from a normal nerve tissue sample (10) and schwannoma (10) by Holospec f / 1.8 (Kayser Optical Systems) coupled to an optical fiber with a 785nm laser line source. The data were pre-processed and vector normalized. The average analysis and standard deviation was performed associated with cluster analysis. AML, 1A4, CD34, Desmin and S-100 protein markers were used for immunohistochemical analysis. Immunohistochemical analysis was positive only for protein S-100 marker which confirmed the neural schwanomma originality. The immunohistochemistry analysis were important to determine the source of the injury, whereas Raman spectroscopy were able to differentiated tissues types indicating important biochemical changes between normal and benign neoplasia.

  6. Detection of human immunodeficiency virus induced inflammation and oxidative stress in lenticular nuclei with magnetic resonance spectroscopy despite antiretroviral therapy.

    PubMed

    Roc, Anne C; Ances, Beau M; Chawla, Sanjeev; Korczykowski, Marc; Wolf, Ronald L; Kolson, Dennis L; Detre, John A; Poptani, Harish

    2007-09-01

    Single-voxel magnetic resonance spectroscopy measurements of N-acetyl aspartate, choline, and creatine (Cr) are affected in patients with human immunodeficiency virus (HIV) and neurocognitive impairment. However, these metabolic markers are often normalized in affected central nervous system regions, such as the lenticular nuclei, after initiation of highly active antiretroviral therapy (HAART). To examine whether lactate (Lac), a marker of inflammation and anaerobic glycolysis, and lipid, an indicator of cell membrane turnover resulting from oxidative stress, could serve as surrogate biomarkers within the lenticular nuclei of HIV-positive patients with different degrees of neurocognitive impairment. Three-tesla 2-dimensional-chemical shift imaging magnetic resonance spectroscopy at echo times of 30 milliseconds and 135 milliseconds was performed in voxels overlapping the lenticular nuclei of seronegative controls and a spectrum of HIV-positive patients (neurocognitively normal, mildly impaired, or moderately to severely impaired). University of Pennsylvania, Philadelphia. Ten seronegative controls and 45 HIV-positive patients with different degrees of neurocognitive impairment (15 neurocognitively normal patients, 12 mildly impaired patients, and 18 moderately to severely impaired patients). In vivo 2-dimensional-chemical shift imaging magnetic resonance spectroscopy analysis of N-acetyl aspartate:Cr, choline:Cr, Lac:Cr, and (lipid + Lac):Cr ratios among the various groups. In addition, the effect of the degree of HAART central nervous system penetration (high vs low) on these ratios was studied. No significant lenticular nuclei atrophy was detected with volumes similar across all of the groups. Both N-acetyl aspartate:Cr and choline:Cr ratios were similar across all of the groups at either echo time. In contrast, the Lac:Cr ratio was significantly greater in HIV-positive patients with moderate to severe impairment compared with seronegative controls. The (lipid + Lac):Cr ratio was significantly elevated within each HIV-positive subgroup compared with seronegative controls. Within HIV-positive patients receiving HAART, the degree of central nervous system penetration (high vs low) did not affect metabolic ratios. As seen with 2-dimensional-chemical shift imaging magnetic resonance spectroscopy, HIV induces inflammation and oxidative stress in HIV-positive patients despite HAART. Lipid and Lac are more sensitive inflammatory biomarkers that may be used to differentiate HIV-positive subgroups. However, no significant difference in efficacy, as measured by metabolic ratios, exists for high- vs low-central nervous system-penetrating HAART.

  7. Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system.

    PubMed

    Siegler, M V; Jia, X X

    1999-02-01

    Engrailed is expressed in subsets of interneurons that do not express Connectin or appreciable Neuroglian, whereas other neurons that are Engrailed negative strongly express these adhesion molecules. Connectin and Neuroglian expression are virtually eliminated in interneurons when engrailed expression is driven ubiquitously in neurons, and greatly increased when engrailed genes are lacking in mutant embryos. The data suggest that Engrailed is normally a negative regulator of Connectin and neuroglian. These are the first two "effector" genes identified in the nervous system of Drosophila as regulatory targets for Engrailed. We argue that differential Engrailed expression is crucial in determining the pattern of expression of cell adhesion molecules and thus constitutes an important determinant of neuronal shape and perhaps connectivity.

  8. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians.

    PubMed

    Cowles, Martis W; Omuro, Kerilyn C; Stanley, Brianna N; Quintanilla, Carlo G; Zayas, Ricardo M

    2014-10-01

    Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.

  9. Statin Therapy Inhibits Remyelination in the Central Nervous System

    PubMed Central

    Miron, Veronique E.; Zehntner, Simone P.; Kuhlmann, Tanja; Ludwin, Samuel K.; Owens, Trevor; Kennedy, Timothy E.; Bedell, Barry J.; Antel, Jack P.

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2strong and Nkx2.2strong OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2strong OPCs and an increase in Olig2strong cells, suggesting that OPCs were maintained in an immature state (Olig2strong/Nkx2.2weak). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes. PMID:19349355

  10. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract.

    PubMed

    Balu, Muthaiya; Sangeetha, Purushotham; Haripriya, Dayalan; Panneerselvam, Chinnakannu

    2005-08-05

    Oxidative stress is considered as a major risk factor that contributes to age-related increase in lipid peroxidation and declined antioxidants in the central nervous system during aging. Grape seed extract, one of the bioflavonoid, is widely used for its medicinal properties. In the present study, we evaluated the role of grape seed extract on lipid peroxidation and antioxidant status in discrete regions of the central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I-control young rats, Group II-young rats treated with grape seed extract (100 mg/kg body weight) for 30 days, Group III-aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg body weight) for 30 days. Age-associated increase in lipid peroxidation was observed in the spinal cord, cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and levels of non-enzymic antioxidants like reduced glutathione, Vitamin C and Vitamin E were found to be significantly decreased in all the brain regions studied in aged rats when compared to young rats. However, normalized lipid peroxidation and antioxidant defenses were reported in the grape seed extract-supplemented aged rats. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in the central nervous system of aged rats.

  11. Loss of Gq/11 Family G Proteins in the Nervous System Causes Pituitary Somatotroph Hypoplasia and Dwarfism in Mice

    PubMed Central

    Wettschureck, N.; Moers, A.; Wallenwein, B.; Parlow, A. F.; Maser-Gluth, C.; Offermanns, S.

    2005-01-01

    Heterotrimeric G proteins of the Gq/11 family transduce signals from a variety of neurotransmitter and hormone receptors and have therefore been implicated in various functions of the nervous system. Using the Cre/loxP system, we generated mice which lack the genes coding for the α subunits of the two main members of the Gq/11 family, gnaq and gna11, selectively in neuronal and glial precursor cells. Mice with defective gnaq and gna11 genes were morphologically normal, but they died shortly after birth. Mice carrying a single gna11 allele survived the early postnatal period but died within 3 to 6 weeks as anorectic dwarfs. In these mice, postnatal proliferation of pituitary somatotroph cells was strongly impaired, and plasma growth hormone (GH) levels were reduced to 15%. Hypothalamic levels of GH-releasing hormone (GHRH), an important stimulator of somatotroph proliferation, were strongly decreased, and exogenous administration of GHRH restored normal proliferation. The hypothalamic effects of ghrelin, a regulator of GHRH production and food intake, were reduced in these mice, suggesting that an impairment of ghrelin receptor signaling might contribute to GHRH deficiency and abnormal eating behavior. Taken together, our findings show that Gq/11 signaling is required for normal hypothalamic function and that impairment of this signaling pathway causes somatotroph hypoplasia, dwarfism, and anorexia. PMID:15713647

  12. Simpson-Golabi-Behmel syndrome types I and II.

    PubMed

    Tenorio, Jair; Arias, Pedro; Martínez-Glez, Víctor; Santos, Fernando; García-Miñaur, Sixto; Nevado, Julián; Lapunzina, Pablo

    2014-09-20

    Simpson-Golabi-Behmel syndrome (SGBS) is a rare overgrowth syndrome clinically characterized by multiple congenital abnormalities, pre/postnatal overgrowth, distinctive craniofacial features, macrocephaly, and organomegaly. Abnormalities of the skeletal system, heart, central nervous system, kidney, and gastrointestinal tract may also be observed. Intellectual disability, early motor milestones and speech delay are sometimes present; however, there are a considerable number of individuals with normal intelligence.

  13. Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  14. Translational neurocardiology: preclinical models and cardioneural integrative aspects.

    PubMed

    Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H

    2016-07-15

    Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Saccadic eye movements analysis as a measure of drug effect on central nervous system function.

    PubMed

    Tedeschi, G; Quattrone, A; Bonavita, V

    1986-04-01

    Peak velocity (PSV) and duration (SD) of horizontal saccadic eye movements are demonstrably under the control of specific brain stem structures. Experimental and clinical evidence suggest the existence of an immediate premotor system for saccade generation located in the paramedian pontine reticular formation (PPRF). Effects on saccadic eye movements have been studied in normal volunteers with barbiturates, benzodiazepines, amphetamine and ethanol. On two occasions computer analysis of PSV, SD, saccade reaction time (SRT) and saccade accuracy (SA) was carried out in comparison with more traditional methods of assessment of human psychomotor performance like choice reaction time (CRT) and critical flicker fusion threshold (CFFT). The computer system proved to be a highly sensitive and objective method for measuring drug effect on central nervous system (CNS) function. It allows almost continuous sampling of data and appears to be particularly suitable for studying rapidly changing drug effects on the CNS.

  16. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  17. Effect of Muslim prayer (Salat) on α electroencephalography and its relationship with autonomic nervous system activity.

    PubMed

    Doufesh, Hazem; Ibrahim, Fatimah; Ismail, Noor Azina; Wan Ahmad, Wan Azman

    2014-07-01

    This study investigated the effect of Muslim prayer (salat) on the α relative power (RPα) of electroencephalography (EEG) and autonomic nervous activity and the relationship between them by using spectral analysis of EEG and heart rate variability (HRV). Thirty healthy Muslim men participated in the study. Their electrocardiograms and EEGs were continuously recorded before, during, and after salat practice with a computer-based data acquisition system (MP150, BIOPAC Systems Inc., Camino Goleta, California). Power spectral analysis was conducted to extract the RPα and HRV components. During salat, a significant increase (p<.05) was observed in the mean RPα in the occipital and parietal regions and in the normalized unit of high-frequency (nuHF) power of HRV (as a parasympathetic index). Meanwhile, the normalized unit of low-frequency (nuLF) power and LF/HF of HRV (as sympathetic indices) decreased according to HRV analyses. RPα showed a significant positive correlation in the occipital and parietal electrodes with nuHF and significant negative correlations with nuLF and LF/HF. During salat, parasympathetic activity increased and sympathetic activity decreased. Therefore, regular salat practices may help promote relaxation, minimize anxiety, and reduce cardiovascular risk.

  18. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  19. Time-course study of retinal pathology in C57BL/6 mice infected with RML scrapie

    USDA-ARS?s Scientific Manuscript database

    Prions are proteinaceous pathogens that cause transmissible spongiform encephalopathies (TSEs). These diseases develop slowly as the misfolded and protease-resistant prion protein, PrP**Sc, interacts with the normal cellular form, PrP**C, a cell-surface protein found throughout the nervous system. T...

  20. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos)

    USDA-ARS?s Scientific Manuscript database

    Transmissible spongiform encephalopathies (TSE) are caused by accumulation of a misfolded form of the prion protein (PrP). The normal cellular isoform of PrP is produced by the prion gene (PRNP) and is highly expressed in the central nervous system. Currently, there is an absence of information rega...

  1. A transfectant RK13 cell line permissive to classical caprine scrapie prion propagation

    USDA-ARS?s Scientific Manuscript database

    Classical scrapie is a form of transmissible spongiform encephalopathies (TSE) affecting domestic goats and sheep and disease is characterized by the accumulation of abnormal conformational isoform (PrP-Sc) of normal cellular prion protein (PrP-C) in the central nervous system and, in most cases, ly...

  2. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    NASA Astrophysics Data System (ADS)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  3. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    PubMed

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  4. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.

  5. Do enteric neurons make hypocretin?

    PubMed

    Baumann, Christian R; Clark, Erika L; Pedersen, Nigel P; Hecht, Jonathan L; Scammell, Thomas E

    2008-04-10

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, sectioned tissue, pre-treatment of mice with colchicine, and the use of various primary antisera), we could not identify hypocretin-producing cells in enteric nervous tissue collected from mice or normal human subjects. These results raise doubts about whether enteric neurons produce hypocretin.

  6. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis

    PubMed Central

    Tarussio, David; Metref, Salima; Seyer, Pascal; Mounien, Lourdes; Vallois, David; Magnan, Christophe; Foretz, Marc; Thorens, Bernard

    2013-01-01

    How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function. PMID:24334455

  7. Tumor-Like Presentation of Primary Angiitis of the Central Nervous System.

    PubMed

    de Boysson, Hubert; Boulouis, Grégoire; Dequatre, Nelly; Godard, Sophie; Néel, Antoine; Arquizan, Caroline; Detante, Olivier; Bloch-Queyrat, Coralie; Zuber, Mathieu; Touzé, Emmanuel; Bienvenu, Boris; Aouba, Achille; Guillevin, Loïc; Naggara, Olivier; Pagnoux, Christian

    2016-09-01

    We aimed to describe the clinical and imaging features of patients with tumor-like presentation of primary angiitis of the central nervous system. We retrospectively analyzed 10 patients enrolled in the French primary angiitis of the central nervous system cohort, who initially presented tumor-like brain lesions and compared them with other patients within the cohort. The 10 patients with tumor-like presentation in the cohort were younger and had more seizures at diagnosis than the other 75 patients (median of 37 [30-48] years versus 46 [18-79] years; P=0.008; 9 [90%] with seizures versus 22 [29%], P<0.001; respectively). All 10 patients had a biopsy (stereotactic procedure in 7 and open-wedge surgery in 3). Histological findings suggestive of vasculitis were observed in 9 patients in whom conventional cerebral angiography and magnetic resonance angiography were negative. In the remaining patient, vascular imaging demonstrated diffuse bilateral large- and medium-sized vessel involvement (biopsy did not reveal vasculitis). All patients with tumor-like presentation received glucocorticoids, combined with cyclophosphamide in 9 cases. With a median follow-up of 27 (12-130) months, 5 (50%) patients relapsed, but achieved remission again after treatment intensification. Patients with tumor-like presentation of primary angiitis of the central nervous system represent a subgroup characterized with mainly small-sized vessel disease that requires histological confirmation because vascular imaging is often normal. Although relapses are not uncommon, global outcomes are good under treatment with glucocorticoids and cyclophosphamide. © 2016 American Heart Association, Inc.

  8. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila.

    PubMed

    Banerjee, Swati; Pillai, Anilkumar M; Paik, Raehum; Li, Jingjun; Bhat, Manzoor A

    2006-03-22

    Axonal insulation is critical for efficient action potential propagation and normal functioning of the nervous system. In Drosophila, the underlying basis of nerve ensheathment is the axonal insulation by glial cells and the establishment of septate junctions (SJs) between glial cell membranes. However, the details of the cellular and molecular mechanisms underlying axonal insulation and SJ formation are still obscure. Here, we report the characterization of axonal insulation in the Drosophila peripheral nervous system (PNS). Targeted expression of tau-green fluorescent protein in the glial cells and ultrastructural analysis of the peripheral nerves allowed us to visualize the glial ensheathment of axons. We show that individual or a group of axons are ensheathed by inner glial processes, which in turn are ensheathed by the outer perineurial glial cells. SJs are formed between the inner and outer glial membranes. We also show that Neurexin IV, Contactin, and Neuroglian are coexpressed in the peripheral glial membranes and that these proteins exist as a complex in the Drosophila nervous system. Mutations in neurexin IV, contactin, and neuroglian result in the disruption of blood-nerve barrier function in the PNS, and ultrastructural analyses of the mutant embryonic peripheral nerves show loss of glial SJs. Interestingly, the murine homologs of Neurexin IV, Contactin, and Neuroglian are expressed at the paranodal SJs and play a key role in axon-glial interactions of myelinated axons. Together, our data suggest that the molecular machinery underlying axonal insulation and axon-glial interactions may be conserved across species.

  9. Psychiatric Symptoms due to Thyroid Disease in a Female Adolescent

    PubMed Central

    Capetillo-Ventura, Nelly; Baeza, Inmaculada

    2014-01-01

    The hypothalamic-pituitary-thyroid axis is involved in the production of thyroid hormone which is needed to maintain the normal functioning of various organs and systems, including the central nervous system. This study reports a case of hypothyroidism in a fifteen-year-old female adolescent who was attended for psychiatric symptoms. This case reveals the importance of evaluating thyroid function in children and adolescents with neuropsychiatric symptoms. PMID:25436160

  10. Are there any functional differences of the enteric nervous system between the right-sided diverticular colon and the left-sided diverticular colon? An in vitro study.

    PubMed

    Tomita, Ryouichi

    2014-05-01

    To evaluate functional differences of the enteric nervous system (ENS) in patients between right-side colonic diverticula (RCD) and left-sided colonic diverticula (LCD), the author compared the ENS responses between RCD and LCD. Ten specimens were obtained from 10 patients with RCD, and 16 specimens were taken from 16 LCD. As a control, twenty-two specimens of right-sided normal colon (RNC) were obtained from 22 colonic cancers. Twenty-four specimens of left sided normal colon (LNC) were obtained from 24 colonic cancers. A mechanography was used to evaluate in vitro muscle responses to electrical field stimulation (EFS) before and after treatment with various autonomic nerve blockers. Before blockade of the adrenergic and cholinergic nerves, the incidences of contraction via cholinergic nerve in the colons with diverticula were significantly greater than those in the normal colons (right-sided colon; p = 0.0022, left-sided colon; p < 0.0001). There were no significant differences between RNC and LNC (p = 0.3606), and between RCD and LCD (p = 0.7684). After the blockade of adrenergic and cholinergic nerves, the incidence of relaxation via non-adrenergic non-cholinergic inhibitory (NANC) nerve in the normal colons was significantly greater than that in the diverticular colons (right-sided colon; p = 0.0435, left-sided colon; p = 0.0034). There were no significant differences between RNC and LNC (p = 0.2909) and between RCD and LCD (p = 0.9464). Cholinergic nerves were dominant in bilateral diverticular colon compared with bilateral normal colon. NANC inhibitory nerves were dominant in bilateral normal colon compared with bilateral diverticular colon. There were also no functional differences of the ENS between RCD and LCD.

  11. Pazopanib Hydrochloride in Treating Young Patients With Solid Tumors That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific

  12. LGR5/GPR49 is implicated in motor neuron specification in nervous system.

    PubMed

    Song, Shao-jun; Mao, Xing-gang; Wang, Chao; Han, An-guo; Yan, Ming; Xue, Xiao-yan

    2015-01-01

    The biological roles of stem cell marker LGR5, the receptor for the Wnt-agonistic R-spondins, for nervous system are poorly known. Bioinformatics analysis in normal human brain tissues revealed that LGR5 is closely related with neuron development and functions. Interestingly, LGR5 and its ligands R-spondins (RSPO2 and RSPO3) are specifically highly expressed in projection motor neurons in the spinal cord, brain stem and cerebral. Inhibition of Notch activity in neural stem cells (NSCs) increased the percentage of neuronal cells and promoted LGR5 expression, while activation of Notch signal decreased neuronal cells and inhibited the LGR5 expression. Furthermore, knockdown of LGR5 inhibited the expression of neuronal markers MAP2, NeuN, GAP43, SYP and CHRM3, and also reduced the expression of genes that program the identity of motor neurons, including Isl1, Lhx3, PHOX2A, TBX20 and NEUROG2. Our data demonstrated that LGR5 is highly expressed in motor neurons in nervous system and is involved in their development by regulating transcription factors that program motor neuron identity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. [The role of neurotrophic factors in adaptational processes in the nervous system].

    PubMed

    Akoev, G N; Chalisova, N I

    1995-08-01

    Many of neurotrophic factors (NTF) promote the survival during development, growth and neurite differentiation of neurons. The most known NTF are nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins-3,4,5. These factors increase the survival of peripheral sensory neurons and some central neurons. The NTF are produced by the target of neuronal proections including brain tissues. So the process of adaptation in the nervous system may be also connected with level of the NTF. Recently it is shown that the NTF level in the brain is changed by central nervous system deseases--epilepsy, Parcinson and Alcgeimer deseases. In this conditions NGF and BDNF mRNC expression and their receptors mRNC are increased. So NTF diffusion in intracellular space can provide the brain function regulation in normal and pathological conditions. Model of chronic epileptogenesis was in vitro. The organotypic coculture was used--the rat newborn hippocampus and chick embryo dorsal root ganglia. Veratridine (30 nM) added in culture media induced neuronal activity in hippocampus explants and the level of NTF in media cosequently rised. It was shown that neurite-stimulating effect was mediated by veratridine. This action was blocked by NGF-antybody treatment and due to NGF activity.

  14. Biogenic amines in the nervous system of the cockroach, Periplaneta americana following envenomation by the jewel wasp, Ampulex compressa.

    PubMed

    Banks, Christopher N; Adams, Michael E

    2012-02-01

    The emerald jewel wasp, Ampulex compressa, exploits the American cockroach, Periplaneta americana, as a host for its progeny. The wasp subdues the host by stinging directly into the brain and subesophageal ganglion, inducing long-term hypokinesia. The hypokinesic host lacks normal escape behavior and motivation to walk, making it easy for subjugation by the wasp. The mechanism underlying hypokinesia induction is not known, but depletion of monoamines induces behavior resembling venom-induced hypokinesia. To test whether amine depletion occurs in stung animals, we used high-performance liquid chromatography with electrochemical detection (HPLC-ED) to measure quantitatively amine levels in the central nervous system. Our data show clearly that levels of dopamine, serotonin, octopamine and tyramine remain unchanged in stung animals, whereas animals treated with reserpine exhibited marked depletion of all amines sampled. Furthermore, stung animals treated with reserpine show depletion of amines, demonstrating that envenomation also does not interfere with amine release. These results show that hypokinesia induced by Ampulex venom does not result from amine depletion or inability to release monoamines in the central nervous system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Raman spectroscopy reveals spectroscopic changes in histologically normal retinas in a mouse model of alpha-synucleinopathy

    USDA-ARS?s Scientific Manuscript database

    The retina is an extension of the nervous system and is accessible for in vivo assessments. We have previously demonstrated changes in retinal function and pathology associated with scrapie, TME and BSE. The purpose of this work was to determine the utility of the retina to identify early CNS change...

  16. Behavior and Learning Difficulties in Children of Normal Intelligence Born to Alcoholic Mothers.

    ERIC Educational Resources Information Center

    Shaywitz, Sally E.; And Others

    1980-01-01

    Children referred to the Learning Disorders Unit of the Yale-New Haven Hospital were evaluated for indications of prenatal exposure to ethanol. Our results suggest a continuum of teratogenic effects of ethanol on the central nervous system. Journal availability The C. V. Mosby Co., 11830 Westline Industrial Dr., St. Louis, MO 63141. (Author)

  17. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  18. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  19. Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration

    PubMed Central

    Ramaker, Jenna M.; Swanson, Tracy L.

    2016-01-01

    Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL–Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin–APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin–APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained controversial. This research provides new evidence that members of the Contactin family function as authentic ligands for APP and its orthologs, and that this evolutionarily conserved class of membrane-attached proteins regulates key aspects of APP-dependent migration and outgrowth in the embryonic nervous system. By defining the normal role of Contactin–APP signaling during development, these studies also provide the framework for investigating how the misregulation of Contactin–APP interactions might contribute to neuronal dysfunction in the context of both normal aging and neurodegenerative conditions, including Alzheimer's disease. PMID:27535920

  20. Impact of regular relaxation training on the cardiac autonomic nervous system of hospital cleaners and bank employees.

    PubMed

    Toivanen, H; Länsimies, E; Jokela, V; Hänninen, O

    1993-10-01

    The work-related strain of 50 female hospital cleaners and 48 female bank employees was recorded during a period of rationalization in the workplace, and the effect of daily relaxation to help the workers cope was tested. The subjects were arranged into age-matched pairs and randomly allocated into intervention and reference groups. The intervention period lasted six months. The relaxation method was brief and easily introduced as an alternative break in the workplace. Each training session lasted 15 min. A microcomputer-based system was used to record heart rate variability in response to quiet breathing, the Valsalva maneuver, deep breathing, and active orthostatic tests. Cardiac reflexes indicated that occupational strain (especially of a mental nature) caused the functioning of the autonomic nervous system to deteriorate. Regular deep relaxation normalized the function and improved the ability to cope.

  1. Risk of defeats in the central nervous system during deep space missions.

    PubMed

    Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S

    2016-12-01

    Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  3. [Prevention of neuro- and cardiotoxic side effects of tuberculosis chemotherapy with noopept].

    PubMed

    Mordyk, A V; Lysov, A V; Kondria, A V; Gol'dzon, M A; Khlebova, N V

    2009-01-01

    The study evaluated clinical efficiency of noopept used to prevent adverse side effects of antituberculous agents. It included 60 patients with newly diagnosed respiratory tuberculosis. Those in group 1 (n = 30) received 10 mg of noopept twice daily during the first month. The treatment promoted functional normalization of vegetative nervous system and antioxidative systems, reduced manifestations of anxiety, decreased frequency of adverse neuro- and cardiotoxic responses to antituberculous drugs.

  4. Overview of the Autonomic Nervous System

    MedlinePlus

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  5. Neurodynamic system theory: scope and limits.

    PubMed

    Erdi, P

    1993-06-01

    This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.

  6. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    PubMed Central

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  7. Somatosensory evoked potentials in patients with hypocalcaemia after parathyroidectomy.

    PubMed

    Kanda, F; Jinnai, J; Fujita, T

    1988-01-01

    The effects of hypocalcaemia on somatosensory evoked potentials (SEPs) were studied in five patients after parathyroidectomy. Despite normal latencies the mean value of amplitudes of the SEPs in hypocalcaemic patients was greater than that in normocalcaemic subjects. Recovery functions of the SEPs showed a significant decrease in hypocalcaemic patients at interstimulus intervals of about 10 ms compared with those in normocalcaemic patients and in normal volunteers. Recovery functions appear to be a valid indicator of synaptic efficacy, especially for evaluation of the reduction in conduction efficacy of the central nervous system in hypocalcaemia.

  8. Paraneoplastic Neurological Disorder in Nasopharyngeal Carcinoma.

    PubMed

    Ng, Sze Yin; Kongg, Min Han; Yunus, Mohd Razif Mohamad

    2017-03-01

    Paraneoplastic neurological disorder (PND) is a condition due to immune cross-reactivity between the tumour cells and the normal tissue, whereby the "onconeural" antibodies attack the normal host nervous system. It can present within weeks to months before or after the diagnosis of malignancies. Nasopharyngeal carcinoma is associated with paraneoplastic syndrome, for example, dermatomyositis, and rarely with a neurological disorder. We report on a case of nasopharyngeal carcinoma with probable PND. Otolaryngologists, oncologists and neurologists need to be aware of this condition in order to make an accurate diagnosis and to provide prompt treatment.

  9. Do enteric neurons make hypocretin? ☆

    PubMed Central

    Baumann, Christian R.; Clark, Erika L.; Pedersen, Nigel P.; Hecht, Jonathan L.; Scammell, Thomas E.

    2008-01-01

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, sectioned tissue, pre-treatment of mice with colchicine, and the use of various primary antisera), we could not identify hypocretin-producing cells in enteric nervous tissue collected from mice or normal human subjects. These results raise doubts about whether enteric neurons produce hypocretin. PMID:18191238

  10. Distribution of ciprofloxacin into the central nervous system in rats with acute renal or hepatic failure.

    PubMed

    Naora, K; Ichikawa, N; Hirano, H; Iwamoto, K

    1999-05-01

    Pharmacokinetic changes of various drugs have been reported in renal or hepatic failure. The present study employed ciprofloxacin, a quinolone antibiotic having neurotoxic side effects, to assess the influence of these diseases on distribution of ciprofloxacin into the central nervous system (CNS). After intravenous dosing of ciprofloxacin (10-30 mg kg(-1)), ciprofloxacin levels in plasma and brain were measured in normal rats (Wistar, male, 10-week-old) and those with acute renal and hepatic injuries which were induced by uranyl nitrate and carbon tetrachloride (CCl4), respectively. In the uranyl nitrate-treated rats, the plasma elimination half-life of ciprofloxacin was prolonged and the total body clearance was reduced when compared with those in the normal rats. Similar but smaller changes were observed in the CCl4-treated group. Brain levels of ciprofloxacin were significantly increased by both uranyl nitrate and CCl4 treatments. A proportional correlation between serum unbound levels and brain levels of ciprofloxacin was observed in the normal group. However, brain-to-serum unbound concentration ratios of ciprofloxacin were reduced in the rats with renal or hepatic failure. These results suggest that renal failure as well as hepatic failure retards elimination of ciprofloxacin from the blood, leading to elevation of the CNS level, and also that ciprofloxacin distribution in the brain is reduced in these disease states.

  11. Stress management at the worksite: reversal of symptoms profile and cardiovascular dysregulation.

    PubMed

    Lucini, Daniela; Riva, Silvano; Pizzinelli, Paolo; Pagani, Massimo

    2007-02-01

    Work stress may increase cardiovascular risk either indirectly, by inducing unhealthy life styles, or directly, by affecting the autonomic nervous system and arterial pressure. We hypothesized that, before any apparent sign of disease, work-related stress is already accompanied by alterations of RR variability profile and that a simple onsite stress management program based on cognitive restructuring and relaxation training could reduce the level of stress symptoms, revert stress-related autonomic nervous system dysregulation, and lower arterial pressure. We compared 91 white-collar workers, enrolled at a time of work downsizing (hence, in a stress condition), with 79 healthy control subjects. Psychological profiles were assessed by questionnaires and autonomic nervous system regulation by spectral analysis of RR variability. We also tested a simple onsite stress management program (cognitive restructuring and relaxation training) in a subgroup of workers compared with a sham subgroup (sham program). Workers presented an elevated level of stress-related symptoms and an altered variability profile as compared with control subjects (low-frequency component of RR variability was, respectively, 65.2+/-2 versus 55.3+/-2 normalized units; P<0.001; opposite changes were observed for the high-frequency component). These alterations were largely reverted (low-frequency component of RR variability from 63.6+/-3.9 to 49.3+/-3 normalized units; P<0.001) by the stress management program, which also slightly lowered systolic arterial pressure. No changes were observed in the sham program group. This noninvasive study indicates that work stress is associated with unpleasant symptoms and with an altered autonomic profile and suggests that a stress management program could be implemented at the worksite, with possible preventive advantages for hypertension.

  12. Understanding the Hows and Whys of Decision-Making: From Expected Utility to Divisive Normalization.

    PubMed

    Glimcher, Paul

    2014-01-01

    Over the course of the last century, economists and ethologists have built detailed models from first principles of how humans and animals should make decisions. Over the course of the last few decades, psychologists and behavioral economists have gathered a wealth of data at variance with the predictions of these economic models. This has led to the development of highly descriptive models that can often predict what choices people or animals will make but without offering any insight into why people make the choices that they do--especially when those choices reduce a decision-maker's well-being. Over the course of the last two decades, neurobiologists working with economists and psychologists have begun to use our growing understanding of how the nervous system works to develop new models of how the nervous system makes decisions. The result, a growing revolution at the interdisciplinary border of neuroscience, psychology, and economics, is a new field called Neuroeconomics. Emerging neuroeconomic models stand to revolutionize our understanding of human and animal choice behavior by combining fundamental properties of neurobiological representation with decision-theoretic analyses. In this overview, one class of these models, based on the widely observed neural computation known as divisive normalization, is presented in detail. The work demonstrates not only that a discrete class of computation widely observed in the nervous system is fundamentally ubiquitous, but how that computation shapes behaviors ranging from visual perception to financial decision-making. It also offers the hope of reconciling economic analysis of what choices we should make with psychological observations of the choices we actually do make. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. The Frequency-Dependent Aerobic Exercise Effects of Hypothalamic GABAergic Expression and Cardiovascular Functions in Aged Rats

    PubMed Central

    Li, Yan; Zhao, Ziqi; Cai, Jiajia; Gu, Boya; Lv, Yuanyuan; Zhao, Li

    2017-01-01

    A decline in cardiovascular modulation is a feature of the normal aging process and associated with cardiovascular diseases (CVDs) such as hypertension and stroke. Exercise training is known to promote cardiovascular adaptation in young animals and positive effects on motor and cognitive capabilities, as well as on brain plasticity for all ages in mice. Here, we examine the question of whether aerobic exercise interventions may impact the GABAergic neurons of the paraventricular nucleus (PVN) in aged rats which have been observed to have a decline in cardiovascular integration function. In the present study, young (2 months) and old (24 months) male Wistar rats were divided into young control (YC), old sedentary, old low frequency exercise (20 m/min, 60 min/day, 3 days/week, 12 weeks) and old high frequency exercise (20 m/min, 60 min/day, 5 days/week, 12 weeks). Exercise training indexes were obtained, including resting heart rate (HR), blood pressure (BP), plasma norepinephrine (NE), and heart weight (HW)-to-body weight (BW) ratios. The brain was removed and processed according to the immunofluorescence staining and western blot used to analyze the GABAergic terminal density, the proteins of GAD67, GABAA receptor and gephyrin in the PVN. There were significant changes in aged rats compared with those in the YC. Twelve weeks aerobic exercise training has volume-dependent ameliorated effects on cardiovascular parameters, autonomic nervous activities and GABAergic system functions. These data suggest that the density of GABAergic declines in the PVN is associated with imbalance in autonomic nervous activities in normal aging. Additionally, aerobic exercise can rescue aging-related an overactivity of the sympathetic nervous system and induces modifications the resting BP and HR to lower values via improving the GABAergic system in the PVN. PMID:28713263

  14. Potential involvement of the extracranial venous system in central nervous system disorders and aging

    PubMed Central

    2013-01-01

    Background The role of the extracranial venous system in the pathology of central nervous system (CNS) disorders and aging is largely unknown. It is acknowledged that the development of the venous system is subject to many variations and that these variations do not necessarily represent pathological findings. The idea has been changing with regards to the extracranial venous system. Discussion A range of extracranial venous abnormalities have recently been reported, which could be classified as structural/morphological, hemodynamic/functional and those determined only by the composite criteria and use of multimodal imaging. The presence of these abnormalities usually disrupts normal blood flow and is associated with the development of prominent collateral circulation. The etiology of these abnormalities may be related to embryologic developmental arrest, aging or other comorbidities. Several CNS disorders have been linked to the presence and severity of jugular venous reflux. Another composite criteria-based vascular condition named chronic cerebrospinal venous insufficiency (CCSVI) was recently introduced. CCSVI is characterized by abnormalities of the main extracranial cerebrospinal venous outflow routes that may interfere with normal venous outflow. Summary Additional research is needed to better define the role of the extracranial venous system in relation to CNS disorders and aging. The use of endovascular treatment for the correction of these extracranial venous abnormalities should be discouraged, until potential benefit is demonstrated in properly-designed, blinded, randomized and controlled clinical trials. Please see related editorial: http://www.biomedcentral.com/1741-7015/11/259. PMID:24344742

  15. Influence of the Enteric Nervous System on Gut Motility Patterns in Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Ganz, Julia; Melancon, Ellie; Eisen, Judith; Parthasarathy, Raghuveer

    The enteric nervous system (ENS), composed of diverse neuronal subtypes and glia, regulates essential gut functions including motility, secretion, and homeostasis. In humans and animals, decreased numbers of enteric neurons lead to a variety of types of gut dysfunction. However, surprisingly little is known about how the number, position, or subtype of enteric neurons affect the regulation of gut peristalsis, due to the lack of good model systems and the lack of tools for the quantitative characterization of gut motion. We have therefore developed a method of quantitative spatiotemporal mapping using differential interference contrast microscopy and particle image velocimetry, and have applied this to investigate intestinal dynamics in normal and mutant larval zebrafish. From movies of gut motility, we obtain a velocity vector field representative of gut motion, from which we can quantify parameters relating to gut peristalsis such as frequency, wave speed, deformation amplitudes, wave duration, and non-linearity of waves. We show that mutants with reduced neuron number have contractions that are more regular in time and reduced in amplitude compared to wild-type (normal) fish. We also show that feeding fish before their yolk is consumed leads to stronger motility patterns. We acknowledge support from NIH awards P50 GM098911 and P01 HD022486.

  16. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    PubMed

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  17. Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function

    PubMed Central

    Seppala, Maisa; Xavier, Guilherme M.; Fan, Chen-Ming; Cobourne, Martyn T.

    2014-01-01

    ABSTRACT Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1−/− mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc−/− mice have a normal facial midline. However, Gas1−/−; Boc−/− mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations. PMID:25063195

  18. Prolonged Sox4 Expression in Oligodendrocytes Interferes with Normal Myelination in the Central Nervous System▿ †

    PubMed Central

    Potzner, Michaela R.; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R.; Wegner, Michael; Sock, Elisabeth

    2007-01-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5′ flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation. PMID:17515609

  19. SPED light sheet microscopy: fast mapping of biological system structure and function

    PubMed Central

    Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M.; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl

    2016-01-01

    The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light-sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca2+ imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363

  20. Electrophysiological appraisal of relative segmental motoneurone pool excitability in flexor and extensor.

    PubMed Central

    Fisher, M A

    1978-01-01

    F responses recorded from flexor and extensor muscles were analysed in 18 normal subjects and in 16 patients with motor system abnormalities. The prominence of the F responses was evaluated quantitatively by determining the persistence--that is, the fraction of measurable F responses which actually occur after a series of supramaximal stimuli--and average amplitude of the F responses. In the normal resting state, the data are consistent with the hypothesis that the "central excitatory states" of motoneurones is greater in the antigravity muscles than in those muscles not stretched by gravity. This pattern was disrupted in eight of the 16 patients with motor system abnormalities caused by central nervous system lesions. These changes reflect a clinically testable aspect of the pathophysiology of certain motor system disorders. PMID:690640

  1. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.

    PubMed

    Bondarenko, Vladimir E; Cymbalyuk, Gennady S; Patel, Girish; Deweerth, Stephen P; Calabrese, Ronald L

    2004-12-01

    Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.

  2. Confirmed viral meningitis with normal CSF findings.

    PubMed

    Dawood, Naghum; Desjobert, Edouard; Lumley, Janine; Webster, Daniel; Jacobs, Michael

    2014-07-17

    An 18-year-old woman presented with a progressively worsening headache, photophobia feverishness and vomiting. Three weeks previously she had returned to the UK from a trip to Peru. At presentation, she had clinical signs of meningism. On admission, blood tests showed a mild lymphopenia, with a normal C reactive protein and white cell count. Chest X-ray and CT of the head were normal. Cerebrospinal fluid (CSF) microscopy was normal. CSF protein and glucose were in the normal range. MRI of the head and cerebral angiography were also normal. Subsequent molecular testing of CSF detected enterovirus RNA by reverse transcriptase PCR. The patient's clinical syndrome correlated with her virological diagnosis and no other cause of her symptoms was found. Her symptoms were self-limiting and improved with supportive management. This case illustrates an important example of viral central nervous system infection presenting clinically as meningitis but with normal CSF microscopy. 2014 BMJ Publishing Group Ltd.

  3. The Role of Neural Reflexes in Control of the Cardiovascular System during Stress.

    DTIC Science & Technology

    1984-02-01

    cold block increase arterial pressure but did not alter plasma renin activity or renin secretory rate in dogs with normal or high sodium diet...also found that these afferents may play a keen role in the regulation of renin scretoary rate during conditions which may alter cardiopulmonary blood ...important hormone in -. the regulation of arterial pressure . However, the role of the nervous system in controlling the release of vasopressin has not been

  4. Perineuronal satellite neuroglia in the telencephalon of New Caledonian crows and other Passeriformes: evidence of satellite glial cells in the central nervous system of healthy birds?

    PubMed Central

    Medina, Felipe S.; Hunt, Gavin R.; Gray, Russell D.; Wild, J. Martin

    2013-01-01

    Glia have been implicated in a variety of functions in the central nervous system, including the control of the neuronal extracellular space, synaptic plasticity and transmission, development and adult neurogenesis. Perineuronal glia forming groups around neurons are associated with both normal and pathological nervous tissue. Recent studies have linked reduction in the number of perineuronal oligodendrocytes in the prefrontal cortex with human schizophrenia and other psychiatric disorders. Therefore, perineuronal glia may play a decisive role in homeostasis and normal activity of the human nervous system. Here we report on the discovery of novel cell clusters in the telencephala of five healthy Passeriforme, one Psittaciform and one Charadriiforme bird species, which we refer to as Perineuronal Glial Clusters (PGCs). The aim of this study is to describe the structure and distribution of the PGCs in a number of avian species. PGCs were identified with the use of standard histological procedures. Heterochromatin masses visible inside the nuclei of these satellite glia suggest that they may correspond to oligodendrocytes. PGCs were found in the brains of nine New Caledonian crows, two Japanese jungle crows, two Australian magpies, two Indian mynah, three zebra finches (all Passeriformes), one Southern lapwing (Charadriiformes) and one monk parakeet (Psittaciformes). Microscopic survey of the brain tissue suggests that the largest PGCs are located in the hyperpallium densocellulare and mesopallium. No clusters were found in brain sections from one Gruiform (purple swamphen), one Strigiform (barn owl), one Trochiliform (green-backed firecrown), one Falconiform (chimango caracara), one Columbiform (pigeon) and one Galliform (chick). Our observations suggest that PGCs in Aves are brain region- and taxon-specific and that the presence of perineuronal glia in healthy human brains and the similar PGCs in avian gray matter is the result of convergent evolution. The discovery of PGCs in the zebra finch is of great importance because this species has the potential to become a robust animal model in which to study the function of neuron-glia interactions in healthy and diseased adult brains. PMID:23904989

  5. Principles of Bobath neuro-developmental therapy in cerebral palsy.

    PubMed

    Klimont, L

    2001-01-01

    The purpose of this article is to present the basics of Bobath Neurodevelopment Therapy (NDT) for the rehabilitation of patients with cerebral palsy, based on the fundamentals of neurophysiology.
    Two factors are continually stressed in therapy: first, postural tension, whose quality provides the foundation for the development of motor coordination, both normal and pathological, and plays a role in shaping the mechanism of the normal postural reflex; and secondly, the impact of damage to the central nervous system on the process of its growth and development.
    The practical application of the theoretical assumptions includes the use of inhibition, facilitation, and stimulation by key points of control, preparatory to evoking more nearly normal motor responses.

  6. 77 FR 56133 - Dinotefuran; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... is the nervous system but effects on the nervous system were only observed at high doses. Nervous... cholinergic nervous system seen after repeated dosing. Typically, low to moderate levels of neonicotinoids... peripheral nervous system (PNS). High levels of neonicotinoids can over stimulate the PNS, maintaining cation...

  7. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    PubMed

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  8. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    PubMed

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  9. Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid.

    PubMed

    Gonzalez, Ana Maria; Leadbeater, Wendy; Podvin, Sonia; Borboa, Alexandra; Burg, Michael; Sawada, Ritsuko; Rayner, James; Sims, Karen; Terasaki, Tetsuya; Johanson, Conrad; Stopa, Edward; Eliceiri, Brian; Baird, Andrew

    2010-11-04

    Because the choroid plexus normally controls the production and composition of cerebrospinal fluid and, as such, its many functions of the central nervous system, we investigated whether ligand-mediated targeting could deliver genes to its secretory epithelium. We show here that when bacteriophages are targeted with epidermal growth factor, they acquire the ability to enter choroid epithelial cells grown in vitro as cell cultures, ex vivo as tissue explants or in vivo by intracerebroventricular injection. The binding and internalization of these particles activate EGF receptors on targeted cells, and the dose- and time-dependent internalization of particles is inhibited by the presence of excess ligand. When the phage genome is further reengineered to contain like green fluorescent protein or firefly luciferase under control of the cytomegalovirus promoter, gene expression is detectable in the choroid plexus and ependymal epithelium by immunohistochemistry or by noninvasive imaging, respectively. Taken together, these data support the hypothesis that reengineered ligand-mediated gene delivery should be considered a viable strategy to increase the specificity of gene delivery to the central nervous system and bypass the blood-brain barrier so as to exploit the biological effectiveness of the choroid plexus as a portal of entry into the brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy.

    PubMed

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Boccara, A Claude; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  11. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation.

    PubMed

    Merfeld, Daniel M

    2003-01-01

    Normally, the nervous system must process ambiguous graviceptor (e.g., otolith) cues to estimate tilt and translation. The neural processes that help perform these estimation processes must adapt upon exposure to weightlessness and readapt upon return to Earth. In this paper we present a review of evidence supporting a new hypothesis that explains some aspects of these adaptive processes. This hypothesis, which we label the rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis, suggests that the neural processes resulting in spaceflight adaptation include deterioration in the ability of the nervous system to use rotational cues to help accurately estimate the relative orientation of gravity ("tilt"). Changes in the ability to estimate gravity then also influence the ability of the nervous system to estimate linear acceleration ("translation"). We explicitly hypothesize that such changes in the ability to estimate "tilt" and "translation" will be measurable upon return to Earth and will, at least partially, explain the disorientation experienced when astronauts return to Earth. In this paper, we present the details and implications of ROTTR, review data related to ROTTR, and discuss the relationship of ROTTR to the influential otolith tilt-translation reinterpretation (OTTR) hypothesis as well as discuss the distinct differences between ROTTR and OTTR.

  12. Single myelin fiber imaging in living rodents without labeling by deep optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Ben Arous, Juliette; Binding, Jonas; Léger, Jean-François; Casado, Mariano; Topilko, Piotr; Gigan, Sylvain; Claude Boccara, A.; Bourdieu, Laurent

    2011-11-01

    Myelin sheath disruption is responsible for multiple neuropathies in the central and peripheral nervous system. Myelin imaging has thus become an important diagnosis tool. However, in vivo imaging has been limited to either low-resolution techniques unable to resolve individual fibers or to low-penetration imaging of single fibers, which cannot provide quantitative information about large volumes of tissue, as required for diagnostic purposes. Here, we perform myelin imaging without labeling and at micron-scale resolution with >300-μm penetration depth on living rodents. This was achieved with a prototype [termed deep optical coherence microscopy (deep-OCM)] of a high-numerical aperture infrared full-field optical coherence microscope, which includes aberration correction for the compensation of refractive index mismatch and high-frame-rate interferometric measurements. We were able to measure the density of individual myelinated fibers in the rat cortex over a large volume of gray matter. In the peripheral nervous system, deep-OCM allows, after minor surgery, in situ imaging of single myelinated fibers over a large fraction of the sciatic nerve. This allows quantitative comparison of normal and Krox20 mutant mice, in which myelination in the peripheral nervous system is impaired. This opens promising perspectives for myelin chronic imaging in demyelinating diseases and for minimally invasive medical diagnosis.

  13. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    PubMed

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  14. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  15. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  16. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  17. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  18. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  19. Glial heterotopia of the lip: A rare presentation.

    PubMed

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  20. The neurology of parasitic diseases and malaria.

    PubMed

    Román, Gustavo C

    2011-02-01

    Neurologists should be aware of parasitic diseases occurring in travelers and recent migrants because the world has become a global village as a result of tourism and immigration. Global warming is changing the distribution of diseases formerly confined to the tropics. The two most common parasitic diseases of the nervous system are Plasmodium falciparum malaria presenting as a febrile encephalopathy with normal CSF and neurocysticercosis causing seizures with focal MRI lesions or with intracranial hypertension. Numerous parasites may cause larva migrans with eosinophilic meningitis. Spinal cord involvement is the signature presentation of schistosomiasis. Trypanosoma cruzi, the agent of Chagas disease in the Americas, may cause myocardiopathy and embolic stroke. Sleeping sickness remains the most common manifestation of African trypanosomiasis. These conditions are challenging to diagnose unless a history of travel is elicited. Prospective travelers should be advised of preventive measures to avoid potentially severe infections of the nervous system.

  1. Lipidomics: the function of vital lipids in embryogenesis preventing autism spectrum disorders, treating sterile inflammatory diatheses with a lymphopoietic central nervous system component.

    PubMed

    Tallberg, Thomas; Dabek, Jan; Hallamaa, Raija; Atroshi, Faik

    2011-01-01

    The central role performed by billions of vital central nervous system (CNS) lipids "lipidomics" in medical physiology is usually overlooked. A metabolic deficiency embracing these vital lipids can form the aetiology for a variety of diseases. CNS lipids regulate embryogenesis, cell induction, mental balance by preventing autism spectrum disorders, depression, burn-out syndromes like posttraumatic stress disease PTSD, by guarding normal immunity, treating sterile inflammatory diatheses with a titanium containing lymphopoietic CNS lipid component. The propaganda driving for unphysiological fat-free diets is dangerous and can cause serious health problems for a whole generation. This article presents a broad list of various mental and motor bodily functions of which the healthy function depends on these vital CNS lipids. A rigorous fat-free diet can provoke these metabolic lipid deficiencies but they can fortunately be compensated by dietary supplementation, but not by pharmacologic treatment.

  2. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Psychophysiological Correlates of Reading Dysfunction in Junior College Students with a Long History of Reading Problems.

    ERIC Educational Resources Information Center

    Reichurdt, Konrad W.; Wilson, John A. R.

    This study was undertaken to measure emotional expression as mediated by the automatic nervous system during reading and during other tasks related to school work. Subjects for this research were eight normal readers, reading above the 46th percentile on the Davis Reading Test Form 1-A, used as a control group and sixteen abnormal readers drawn…

  4. RNA content in motor and sensory neurons and surrounding neuroglia of mouse spinal cord under conditions of hypodynamia and following normalization

    NASA Technical Reports Server (NTRS)

    Brumberg, V. A.; Pevzner, L. A.

    1980-01-01

    The differences in the dynamics of reparative processes in RNA metabolism within the neuron-neuroglia unit after the cessation of hyper- and hypodynamia is dicussed. The role of neuroglia is stressed in compensatory, reparative and trophic processes in the nervous system as well as the possibility in an adaptation at the cellular level.

  5. Prophylaxis and treatment of seasickness

    NASA Technical Reports Server (NTRS)

    Yefremenko, M.

    1980-01-01

    Depending upon the dominant type of symptoms, seasickness is divided into three forms: nervous, gastro-intestinal, and cardiovascular. Various medications are recommended appropriate to these forms. The first goal is normalization of impaired system functions as well as metabolism and the electrolyte and acid-base condition of the organism. Dietary recommendations are made and specific suggestions on the use of physical exercise, including prophylatic vestibular training exercises.

  6. Central Nervous System Vasculitis

    MedlinePlus

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  7. Subacute combined degeneration

    MedlinePlus

    ... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...

  8. The Effect of Head Massage on the Regulation of the Cardiac Autonomic Nervous System: A Pilot Randomized Crossover Trial.

    PubMed

    Fazeli, Mir Sohail; Pourrahmat, Mir-Masoud; Liu, Mailan; Guan, Ling; Collet, Jean-Paul

    2016-01-01

    To evaluate the effect of a single 10-minute session of Chinese head massage on the activity of the cardiac autonomic nervous system via measurement of heart rate variability (HRV). In this pilot randomized crossover trial, each participant received both head massage and the control intervention in a randomized fashion. The study was conducted at Children's & Women's Health Centre of British Columbia between June and November 2014. Ten otherwise healthy adults (6 men and 4 women) were enrolled in this study. The intervention comprised 10 minutes of head massage therapy (HMT) in a seated position compared with a control intervention of sitting quietly on the same chair with eyes closed for an equal amount of time (no HMT). The primary outcome measures were the main parameters of HRV, including total power (TP), high frequency (HF), HF as a normalized unit, pre-ejection period, and heart rate (HR). A single short session (10 minutes) of head massage demonstrated an increase in TP continuing up to 20 minutes after massage and reaching statistical significance at 10 minutes after massage (relative change from baseline, 66% for HMT versus -6.6% for no HMT; p = 0.017). The effect on HF also peaked up to 10 minutes after massage (59.4% for HMT versus 4% for no HMT; p = 0.139). Receiving head massage also decreased HR by more than three-fold compared to the control intervention. This study shows the potential benefits of head massage by modulating the cardiac autonomic nervous system through an increase in the total variability and a shift toward higher parasympathetic nervous system activity. Randomized controlled trials with larger sample size and multiple sessions of massage are needed to substantiate these findings.

  9. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    PubMed

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors, increase the risk of downstream disorders including type 2 diabetes and Alzheimer's disease.

  10. An Investigation of Stimulant Effects on the EEG of Children With Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Clarke, Adam R; Barry, Robert J; Baker, Iris E; McCarthy, Rory; Selikowitz, Mark

    2017-07-01

    Stimulant medications are the most commonly prescribed treatment for Attention-Deficit/Hyperactivity Disorder (AD/HD). These medications result in a normalization of the EEG. However, past research has found that complete normalization of the EEG is not always achieved. One reason for this may be that studies have used different medications interchangeably, or groups of subjects on different stimulants. This study investigated whether methylphenidate and dexamphetamine produce different levels of normalization of the EEG in children with AD/HD. Three groups of 20 boys participated in this study. There were 2 groups with a diagnosis of AD/HD; one group, good responders to methylphenidate, and the second, good responders to dexamphetamine. The third group was a normal control group. Baseline EEGs were recorded using an eyes-closed resting condition, and analyzed for total power and relative delta, theta, alpha, and beta. Subjects were placed on a 6-month trial of methylphenidate or dexamphetamine, after which a second EEG was recorded. At baseline, the children with AD/HD had elevated relative theta, less relative alpha and beta compared with controls. Baseline differences were found between the two medication groups, with the dexamphetamine group having greater EEG abnormalities than the methylphenidate group. The results indicate that good responders to methylphenidate and dexamphetamine have different EEG profiles when assessed before medication, and these differences may represent different underlying central nervous system deficits. The 2 medications were found to result in substantial normalization of the EEG, with no significant differences in EEG changes occurring between the 2 medications. This indicates that the degree of pretreatment EEG abnormality was the major factor contributing to the degree of normalization of the EEG. As good responders to the 2 medications appear to have different central nervous system abnormalities, it is recommended that stimulant medications be treated independently and not used interchangeably in research and treatment of AD/HD.

  11. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.

    PubMed

    Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J

    2012-01-01

    The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.

  12. Agrin in Alzheimer's Disease: Altered Solubility and Abnormal Distribution within Microvasculature and Brain Parenchyma

    NASA Astrophysics Data System (ADS)

    Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.

    1999-05-01

    Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.

  13. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  14. Over-adaptation and heart rate variability in Japanese high school girls.

    PubMed

    Sugawara, Yuko; Hiramoto, Izumi; Kodama, Hideya

    2013-06-01

    In the field of educational psychology in Japan, a model of "over-adaptation" has been applied to conceptualize the personality of students who are vulnerable to external stressors and prone to developing psychiatric problems. However, the influence of over-adaptation on physiological functions in adolescents is still largely unknown. Therefore, the present study aimed to investigate the association between an over-adapted tendency and autonomic nervous system activities in high school girls. Circadian profiles of cardiac autonomic nervous system activities in 47 normal high school girls were evaluated using time-domain measures of heart rate variability (HRV) taken from 24-h ambulatory electrocardiogram recordings, and their relation to an over-adaptation scale composed of 5 subscales was evaluated. A significant increase in RMSSD (root mean square of successive difference of normal-to-normal beat intervals) during daytime (09:00-14:00) was observed in students who scored high on the sum of the over-adaptation subscales (n=6). Two of the over-adaptation subscales, namely, "self-restraint" and "self-insufficiency", were positively correlated with time-domain measures. Parasympathetic activity in over-adapted students was elevated during school, and this autonomic response was suggested to be linked to over-adaptation subscales related to repressed emotions in over-adapted students. Thus, in over-adapted students, repressing emotions appears to be a style of coping, and may lead to a quiet, emotionally stable life in school, which in turn may result in parasympathetic activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  16. Source characterization of nervous system active pharmaceutical ingredients in healthcare wastewaters

    EPA Science Inventory

    Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...

  17. What Health-Related Functions Are Regulated by the Nervous System?

    MedlinePlus

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  18. Long-term follow-up of endocrine function among young children with newly diagnosed malignant central nervous system tumors treated with irradiation-avoiding regimens.

    PubMed

    Cochrane, Anne M; Cheung, Clement; Rangan, Kasey; Freyer, David; Nahata, Leena; Dhall, Girish; Finlay, Jonathan L

    2017-11-01

    The adverse effects of irradiation on endocrine function among patients with pediatric brain tumor are well documented. Intensive induction chemotherapy followed by marrow-ablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) without central nervous system (CNS) irradiation has demonstrated efficacy in a proportion of very young children with some malignant CNS tumors. This study assessed the long-term endocrine function of young children following chemotherapy-only treatment regimens. A retrospective chart review was performed on 99 patients under 6 years of age with malignant brain tumors newly diagnosed between May 1991 and October 2010 treated with irradiation-avoiding strategies. Thirty patients survived post-AuHCR without cranial irradiation for a mean of 8.1 years (range 3.0-22.25 years). The patient cohort included 18 males and 12 females (mean age at AuHCR of 2.5 years, range 0.8-5.1 years). All 30 surviving patients had documented normal age-related thyroid function, insulin-like growth factor binding protein 3 (IGF-BP3), prolactin, testosterone, and estradiol levels. Insulin-like growth factor 1 age-related levels were abnormal in one child with normal height. Ninety-seven percent of patients had normal cortisol levels, while follicle-stimulating hormone and LH levels among females were normal in 83% and 92%, respectively, and in 100% of males. Growth charts demonstrated age-associated growth within 2 standard deviations of the mean in 67% of patients. Of 10 patients (33%) with short stature, 6 had proportional diminutions in both height and weight. These findings demonstrate that the use of relatively brief, intensive chemotherapy regimens including marrow-ablative chemotherapy with AuHCR results in fewer endocrine sequelae than treatment schemes utilizing CNS irradiation. © 2017 Wiley Periodicals, Inc.

  19. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  20. Acute hypoxia during organogenesis affects cardiac autonomic balance in pregnant rats.

    PubMed

    Maslova, M V; Graf, A V; Maklakova, A S; Krushinskaya, Ya V; Sokolova, N A; Koshelev, V B

    2005-02-01

    Changes in ECG parameters were studied in pregnant rats exposed to acute hypobaric hypoxia during the period of organogenesis (gestation days 9 to 10). Rats with low, medium, and high tolerance to hypoxia exhibited pronounced autonomic nervous system imbalance, which become apparent as a loss of correlation between various parameters of ECG signals recorded at rest and during exposure to some stress factors existing under normal conditions.

  1. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  2. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  3. Sublethal Effects of Neonicotinoid Insecticide on Calling Behavior and Pheromone Production of Tortricid Moths.

    PubMed

    Navarro-Roldán, Miguel A; Gemeno, César

    2017-09-01

    In moths, sexual behavior combines female sex pheromone production and calling behavior. The normal functioning of these periodic events requires an intact nervous system. Neurotoxic insecticide residues in the agroecosystem could impact the normal functioning of pheromone communication through alteration of the nervous system. In this study we assess whether sublethal concentrations of the neonicotinoid insecticide thiacloprid, that competitively modulates nicotinic acetylcholine receptors at the dendrite, affect pheromone production and calling behavior in adults of three economically important tortricid moth pests; Cydia pomonella (L.), Grapholita molesta (Busck), and Lobesia botrana (Denis & Schiffermüller). Thiacloprid significantly reduced the amount of calling in C. pomonella females at LC 0.001 (a lethal concentration that kills only 1 in 10 5 individuals), and altered its calling period at LC 1 , and in both cases the effect was dose-dependent. In the other two species the effect was similar but started at higher LCs, and the effect was relatively small in L. botrana. Pheromone production was altered only in C. pomonella, with a reduction of the major compound, codlemone, and one minor component, starting at LC 10 . Since sex pheromones and neonicotinoids are used together in the management of these three species, our results could have implications regarding the interaction between these two pest control methods.

  4. School behaviour and health status after central nervous system tumours in childhood.

    PubMed Central

    Glaser, A. W.; Abdul Rashid, N. F.; U, C. L.; Walker, D. A.

    1997-01-01

    This study was designed to assess the overall morbidity burden of survival from central nervous system (CNS) tumours and its impact on return to a normal lifestyle. School behaviour and health status of 27 children after treatment for CNS tumours, of 25 of their school-aged siblings, plus age- and sex-matched controls is reported. Spinetta school behaviour, Lansky play-performance and Health Utilities Index (mark II and III) assessments have been made. Patients had reduced mobility and increased pain levels. They demonstrated a reluctance to participate in organized physical activities. Impaired cognition, emotion and self-esteem were reported. They worried more than controls but attended school willingly, interacted normally with their peers and viewed the future confidently. Their siblings were reluctant to express openly concern for others or feelings of joy. Teachers were reliable proxies for most attributes, notable exceptions being speech and emotion. This is the first study to have assessed the school behaviour of a cohort solely composed of survivors of childhood CNS tumours. The good social reintegration is reassuring and likely to reflect a high level of psychosocial support. However, the results presented identify these young people as a 'special educational needs' group as defined by the 1981 and 1993 Education Acts. PMID:9303365

  5. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    PubMed

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  6. Breaking ignorance: the case of the brain.

    PubMed

    Wekerle, H

    2006-01-01

    Immunological self-tolerance is maintained through diverse mechanisms, including deletion of autoreactive immune cells following confrontation with autoantigen in the thymus or in the periphery and active suppression by regulatory cells. A third way to prevent autoimmunity is by hiding self tissues behind a tissue barrier impermeable for circulating immune cells. The latter mechanism has been held responsible for self-tolerance within the nervous tissue. Indeed, the nervous tissues enjoy a conditionally privileged immune status: they are normally unreachable for self-reactive T and B cells, they lack lymphatic drainage, and they are deficient in local antigen-presenting cells. Yet the immune system is by no means fully ignorant of the nervous structures. An ever-growing number of brain specific autoantigens is expressed within the thymus, which ensures an early confrontation with the unfolding T cell repertoire, and there is evidence that B cells also contact CNS-like structures outside of the brain. Then pathological processes such as neurodegeneration commonly lift the brain's immune privilege, shifting the local milieus from immune-hostile to immune-friendly. Finally, brain-reactive T cells, which abound in the healthy immune repertoire, but remain innocuous throughout life, can be activated and gain access to their target tissues. On their way, they take an ordered migration through peripheral lymphoid tissues and blood circulation, and undergo a profound reprogramming of their gene expression profile, which renders them fit to enter the nervous system and to interact with local cellule elements.

  7. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  8. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion

    PubMed Central

    Richards, Alexsia L.; Sollars, Patricia J.; Stults, Austin M.; Pickard, Gary E.

    2017-01-01

    A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses. PMID:29216315

  9. Biological stress systems, adverse life events and the onset of chronic multisite musculoskeletal pain: a 6-year cohort study.

    PubMed

    Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Penninx, Brenda W J H; Dekker, Joost

    2016-05-01

    Dysregulated biological stress systems and adverse life events, independently and in interaction, have been hypothesised to initiate chronic pain. We examine whether (1) function of biological stress systems, (2) adverse life events, and (3) their combination predict the onset of chronic multisite musculoskeletal pain. Subjects (n=2039) of the Netherlands Study of Depression and Anxiety, free from chronic multisite musculoskeletal pain at baseline, were identified using the Chronic Pain Grade Questionnaire and followed up for the onset of chronic multisite musculoskeletal pain over 6 years. Baseline assessment of biological stress systems comprised function of the hypothalamic-pituitary-adrenal axis (1-h cortisol awakening response, evening levels, postdexamethasone levels), the immune system (basal and lipopolysaccharide-stimulated inflammation) and the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, respiratory sinus arrhythmia). The number of recent adverse life events was assessed at baseline using the List of Threatening Events Questionnaire. Hypothalamic-pituitary-adrenal axis, immune system and autonomic nervous system functioning was not associated with onset of chronic multisite musculoskeletal pain, either by itself or in interaction with adverse life events. Adverse life events did predict onset of chronic multisite musculoskeletal pain (HR per event=1.14, 95% CI 1.04 to 1.24, p=0.005). This longitudinal study could not confirm that dysregulated biological stress systems increase the risk of developing chronic multisite musculoskeletal pain. Adverse life events were a risk factor for the onset of chronic multisite musculoskeletal pain, suggesting that psychosocial factors play a role in triggering the development of this condition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. An option space for early neural evolution.

    PubMed

    Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter

    2015-12-19

    The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).

  11. 78 FR 9311 - Hazard Communication; Corrections and Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...

  12. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  13. Immunoneutralization of Agmatine Sensitizes Mice to μ-Opioid Receptor Tolerance

    PubMed Central

    Wade, Carrie L.; Eskridge, Lori L.; Nguyen, H. Oanh X.; Kitto, Kelley F.; Stone, Laura S.; Wilcox, George

    2009-01-01

    Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-d-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two μ-opioid receptor-selective agonists, [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity. PMID:19684255

  14. Immunoneutralization of agmatine sensitizes mice to micro-opioid receptor tolerance.

    PubMed

    Wade, Carrie L; Eskridge, Lori L; Nguyen, H Oanh X; Kitto, Kelley F; Stone, Laura S; Wilcox, George; Fairbanks, Carolyn A

    2009-11-01

    Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-D-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two micro-opioid receptor-selective agonists, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity.

  15. 77 FR 70908 - Dinotefuran; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... level of skin irritation. The main target of toxicity is the nervous system but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as clinical signs and... motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen after...

  16. 78 FR 21267 - Dinotefuran; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... causes a low level of skin irritation. The main target of toxicity is the nervous system, but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as... in motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen...

  17. HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System.

    PubMed

    Bachiller, Sara; Roca-Ceballos, María Angustias; García-Domínguez, Irene; Pérez-Villegas, Eva María; Martos-Carmona, David; Pérez-Castro, Miguel Ángel; Real, Luis Miguel; Rosa, José Luis; Tabares, Lucía; Venero, José Luis; Armengol, José Ángel; Carrión, Ángel Manuel; Ruiz, Rocío

    2018-03-30

    A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.

  18. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    PubMed Central

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  19. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?

    PubMed

    Gasperini, Robert J; Pavez, Macarena; Thompson, Adrian C; Mitchell, Camilla B; Hardy, Holly; Young, Kaylene M; Chilton, John K; Foa, Lisa

    2017-10-01

    The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  20. Alpha-1 adrenoceptor hyperresponsiveness in three neuropathic pain states: complex regional pain syndrome 1, diabetic peripheral neuropathic pain and central pain states following spinal cord injury.

    PubMed

    Teasell, Robert W; Arnold, J Malcolm O

    2004-01-01

    The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).

  1. Baroreflex Function in Rats after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Hasser, Eileen M.

    1997-01-01

    Prolonged exposure of humans to decreased gravitational forces during spaceflight results in a number of adverse cardiovascular consequences, often referred to as cardiovascular deconditioning. Prominent among these negative cardiovascular effects are orthostatic intolerance and decreased exercise capacity. Rat hindlimb unweighting is an animal model which simulates weightlessness, and results in similar cardiovascular consequences. Cardiovascular reflexes, including arterial and cardiopulmonary baroreflexes, are required for normal adjustment to both orthostatic challenges and exercise. Therefore, the orthostatic intolerance and decreased exercise capacity associated with exposure to microgravity may be due to cardiovascular reflex dysfunction. The proposed studies will test the general hypothesis that hindlimb unweighting in rats results in impaired autonomic reflex control of the sympathetic nervous system. Specifically, we hypothesize that the ability to reflexly increase sympathetic nerve activity in response to decreases in arterial pressure or blood volume will be blunted due to hindlimb unweighting. There are 3 specific aims: (1) To evaluate arterial and cardiopulmonary baroreflex control of renal and lumbar sympathetic nerve activity in conscious rats subjected to 14 days of hindlimb unweighting; (2) To examine the interaction between arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in conscious hindlimb unweighted rats; (3) to evaluate changes in afferent and/or central nervous system mechanisms in baroreflex regulation of the sympathetic nervous system. These experiments will provide information related to potential mechanisms for orthostatic and exercise intolerance due to microgravity.

  2. Neuroprotection for the new millennium. Matchmaking pharmacology and technology

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    2001-01-01

    A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.

  3. Screening for Electrophysiological Abnormalities in Chronic Hepatitis C Infection: Peripheral Neuropathy and Optic Neuropathy.

    PubMed

    Köşkderelioğlu, Aslı; Ortan, Pınar; Ari, Alpay; Gedizlioğlu, Muhteşem

    2016-03-01

    To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type.

  4. Screening for Electrophysiological Abnormalities in Chronic Hepatitis C Infection: Peripheral Neuropathy and Optic Neuropathy

    PubMed Central

    KÖŞKDERELİOĞLU, Aslı; ORTAN, Pınar; ARI, Alpay; GEDİZLİOĞLU, Muhteşem

    2016-01-01

    Introduction To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Methods Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Results Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Conclusion Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type. PMID:28360761

  5. Effects of Hearing Loss on Heart-Rate Variability and Skin Conductance Measured During Sentence Recognition in Noise

    PubMed Central

    Mackersie, Carol L.; MacPhee, Imola X.; Heldt, Emily W.

    2014-01-01

    SHORT SUMMARY (précis) Sentence recognition by participants with and without hearing loss was measured in quiet and in babble noise while monitoring two autonomic nervous system measures: heart-rate variability and skin conductance. Heart-rate variability decreased under difficult listening conditions for participants with hearing loss, but not for participants with normal hearing. Skin conductance noise reactivity was greater for those with hearing loss, than for those with normal hearing, but did not vary with the signal-to-noise ratio. Subjective ratings of workload/stress obtained after each listening condition were similar for the two participant groups. PMID:25170782

  6. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  7. Body weight and dysautonomia in early Parkinson's disease.

    PubMed

    Umehara, T; Nakahara, A; Matsuno, H; Toyoda, C; Oka, H

    2017-05-01

    Patients with Parkinson's disease (PD) begin to lose weight several years before diagnosis, which suggests weight variation is associated with some factor(s) that precede the onset of motor symptoms. This study aimed to investigate the association of autonomic nervous system with body weight in patients with PD. The subjects were 90 patients with early de novo PD. We examined the associations of body mass index (BMI) with sympathetic nervous activity reflected in orthostatic intolerance or cardiac uptake of 123 I-metaiodobenzylguanidine and parasympathetic nervous activity reflected in constipation or heart rate variability (HRV). Twelve patients (13.3%) were overweight (BMI>25 kg/m 2 ), 62 patients (68.9%) were normal-weight (18.5≦BMI<25 kg/m 2 ), and 16 patients (17.8%) were underweight (BMI<18.5 kg/m 2 ). Underweight patients had greater disease severity and decrease in blood pressure on head-up tilt-table testing, higher cardiac washout ratio of 123 I-metaiodobenzylguanidine, and lower HRV and complained of constipation more often than those with normal-weight or overweight patients. On multiple regression analyses, the correlation of these variables with BMI maintained statistical significance after adjustment for age, sex, symptom duration, and motor subtype. Dysautonomia and disease severity are closely related to body weight independently of age, sex, symptom duration, and motor subtype. Dysautonomia may play a partial role on weight variation in the early stage of PD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Hilbert-Huang Transformation Based Analyses of FP1, FP2, and Fz Electroencephalogram Signals in Alcoholism.

    PubMed

    Lin, Chin-Feng; Su, Jiun-Yi; Wang, Hao-Min

    2015-09-01

    Chronic alcoholism may damage the central nervous system, causing imbalance in the excitation-inhibition homeostasis in the cortex, which may lead to hyper-arousal of the central nervous system, and impairments in cognitive function. In this paper, we use the Hilbert-Huang transformation (HHT) method to analyze the electroencephalogram (EEG) signals from control and alcoholic observers who watched two different pictures. We examined the intrinsic mode function (IMF) based energy distribution features of FP1, FP2, and Fz EEG signals in the time and frequency domains for alcoholics. The HHT-based characteristics of the IMFs, the instantaneous frequencies, and the time-frequency-energy distributions of the IMFs of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers who watched two different pictures were analyzed. We observed that the number of peak amplitudes of the alcoholic subjects is larger than that of the control. In addition, the Pearson correlation coefficients of the IMFs, and the energy-IMF distributions of the clinical FP1, FP2, and Fz EEG signals recorded from normal and alcoholic observers were analyzed. The analysis results show that the energy ratios of IMF4, IMF5, and IMF7 waves of the normal observers to the refereed total energy were larger than 10 %, respectively. In addition, the energy ratios of IMF3, IMF4, and IMF5 waves of the alcoholic observers to the refereed total energy were larger than 10 %. The FP1 and FP2 waves of the normal observers, the FP1 and FP2 waves of the alcoholic observers, and the FP1 and Fz waves of the alcoholic observers demonstrated extremely high correlations. On the other hand, the FP1 waves of the normal and alcoholic observers, the FP1 wave of the normal observer and the FP2 wave of the alcoholic observer, the FP1 wave of the normal observer and the Fz wave of the alcoholic observer, the FP2 waves of the normal and alcoholic FP2 observers, and the FP2 wave of the normal observer and the Fz wave of the alcoholic observer demonstrated extremely low correlations. The IMF4 of the FP1 and FP2 signals of the normal observer, and the IMF5 of the FP1 and FP2 signals of the alcoholic observer were correlated. The IMF4 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer as well as the IMF5 of the FP1 signal of the normal observer and that of the FP2 signal of the alcoholic observer exhibited extremely low correlations. In this manner, our experiment leads to a better understanding of the HHT-based IMFs features of FP1, FP2, and Fz EEG signals in alcoholism. The analysis results show that the energy ratios of the wave of an alcoholic observer to its refereed total energy for IMF4, and IMF5 in the δ band for FP1, FP2, and Fz channels were larger than those of the respective waves of the normal observer. The alcoholic EEG signals constitute more than 1 % of the total energy in the δ wave, and the reaction times were 0_4, 4_8, 8_12, and 12_16 s. For normal EEG signals, more than 1 % of the total energy is distributed in the δ wave, with a reaction time 0 to 4 s. We observed that the alcoholic subject reaction times were slower than those of the normal subjects, and the alcoholic subjects could have experienced a cognitive error. This phenomenon is due to the intoxicated central nervous systems of the alcoholic subjects.

  9. The impact of systemic cortical alterations on perception

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2011-12-01

    Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects of adaptation most likely reflect changes in central nervous system. The findings in this work provide valuable information for better understanding the underlying mechanisms involved in the development and maintenance of different neurological conditions.

  10. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  11. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    ClinicalTrials.gov

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  12. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions.

    PubMed

    Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham

    2017-04-01

    It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cystic Fibrosis and the Nervous System.

    PubMed

    Reznikov, Leah R

    2017-05-01

    Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.

    PubMed

    Maurer, Laura L; Philbert, Martin A

    2015-01-01

    The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.

  15. Adaptation of the ammoniacal silver reaction to cytochemical demonstration of myelin basic protein.

    PubMed

    Staykova, M; Jordanov, J; Goranov, I

    1978-01-01

    A modification of Black and Ansley's ammoniacal silver reaction (ASR) for histones is proposed for visualizing myelin basic protien (MBP) in the nervous system. The reaction is performed on histological sections of tissues fixed in neutralized formalin-alcohol and delipidized in the course of the routine paraffin embedding. The deparaffinized sections are again treated with formalin in order to make the "unmasked" by the delipidization basic groups of MBP reactive to ammoniacal silver. After treatment with this reagent MBP of the myelin sheaths of the nerve fibres is impregnated brownish-black. Deparaffinized sections subjected to an extraction of MBP with hydrochloric acid exhibit a negative reaction at the level of the myelin sheaths the same reaction being preserved at the level of the nuclear histones. The reaction is positive in paper spots of nervous tissue extracts obtained with the same acid. These assays indicate the specificity of the modified ASR. The method can be used for studies on the processes of myelination and demylination in normal histogenesis and in pathology of the nervous tissue.

  16. Differential expression of utrophin-A and -B promoters in the central nervous system (CNS) of normal and dystrophic mdx mice.

    PubMed

    Baby, Santhosh M; Bogdanovich, Sasha; Willmann, Gabriel; Basu, Utpal; Lozynska, Olga; Khurana, Tejvir S

    2010-03-01

    Utrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms. As this distinction may impact upregulation strategies, we generated Utrn-A and -B promoter-specific antibodies, Taqman Polymerase chain reaction (PCR)-based absolute copy number assays, and luciferase-reporter constructs to study CNS of normal and dystrophic mdx mice. Differential expression of Utrn-A and -B was noted in microdissected and capillary-enriched fractions. At the protein level, Utrn-B was predominantly expressed in vasculature and ependymal lining, whereas Utrn-A was expressed in neurons, astrocytes, choroid plexus and pia mater. mRNA quantification demonstrated matching patterns of differential expression; however, transcription-translation mismatch was noted for Utrn-B in caudal brain regions. Utrn-A and Utrn-B proteins were significantly upregulated in olfactory bulb and cerebellum of mdx brain. Differential promoter activity, mRNA and protein expressions were studied in cultured C2C12, bEnd3, neurons and astrocytes. Promoter activity ranking for Utrn-A and -B was neurons > astrocytes > C2C12 > bEnd3 and bEnd3 > astrocytes > neurons > C2C12, respectively. Our results identify promoter usage patterns for therapeutic targeting and define promoter-specific differential distribution of Utrn isoforms in normal and dystrophic CNS.

  17. Benefits of Docosahexaenoic Acid, Folic Acid, Vitamin D and Iodine on Foetal and Infant Brain Development and Function Following Maternal Supplementation during Pregnancy and Lactation

    PubMed Central

    Morse, Nancy L.

    2012-01-01

    Scientific literature is increasingly reporting on dietary deficiencies in many populations of some nutrients critical for foetal and infant brain development and function. Purpose: To highlight the potential benefits of maternal supplementation with docosahexaenoic acid (DHA) and other important complimentary nutrients, including vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or infant brain development and/or function. Methods: English language systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional and case-control studies were obtained through searches on MEDLINE and the Cochrane Register of Controlled Trials from January 2000 through to February 2012 and reference lists of retrieved articles. Reports were selected if they included benefits and harms of maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during pregnancy and/or lactation. Results: Maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function. Conclusion: Maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring. PMID:22852064

  18. Comparison of electroacupuncture frequency-related effects on heart rate variability in healthy volunteers: a randomized clinical trial.

    PubMed

    Lee, Jong-Ho; Kim, Kyu-Hyeong; Hong, Jin-Woo; Lee, Won-Chul; Koo, Sungtae

    2011-06-01

    This study aimed to compare the effects of high frequency electroacupuncture (EA) and low-frequency EA on the autonomic nervous system by using a heart rate variability measuring device in normal individuals. Fourteen participants were recruited and each participated in the high-frequency and low-frequency sessions (crossover design). The order of sessions was randomized and the interval between the two sessions was over 2 weeks. Participants received needle insertion with 120-Hz stimulation during the high-frequency session (high-frequency EA group), and with 2-Hz stimulation during the low-frequency session (low-frequency EA group). Acupuncture needles were directly inserted perpendicularly to LI 4 and LI 11 acupoints followed by delivery of electric pulses to these points for 15 minutes. Heart rate variability was measured 5 minutes before and after EA stimulation by a heart rate variability measuring system. We found a significant increase in the standard deviation of the normal-to-normal interval in the high-frequency EA group, with no change in the low-frequency EA group. Both the high-frequency and low-frequency EA groups showed no significant differences in other parameters including high-frequency power, low-frequency power, and the ratio of low-frequency power to high-frequency power. Based on these findings, we concluded that high-frequency EA stimulation is more effective than low-frequency EA stimulation in increasing autonomic nervous activity and there is no difference between the two EA frequencies in enhancing sympathovagal balance. Copyright © 2011 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  19. Assessment of metallothionein and antibodies to metallothionein in normal and autistic children having exposure to vaccine-derived thimerosal.

    PubMed

    Singh, Vijendra K; Hanson, Jeff

    2006-06-01

    Allergic autoimmune reaction after exposure to heavy metals such as mercury may play a causal role in autism, a developmental disorder of the central nervous system. As metallothionein (MT) is the primary metal-detoxifying protein in the body, we conducted a study of the MT protein and antibodies to metallothionein (anti-MT) in normal and autistic children whose exposure to mercury was only from thimerosal-containing vaccines. Laboratory analysis by immunoassays revealed that the serum level of MT did not significantly differ between normal and autistic children. Furthermore, autistic children harboured normal levels of anti-MT, including antibodies to isoform MT-I (anti-MT-I) and MT-II (anti-MT-II), without any significant difference between normal and autistic children. Our findings indicate that because autistic children have a normal profile of MT and anti-MT, the mercury-induced autoimmunity to MT may not be implicated in the pathogenesis of autism.

  20. Syndromic craniosynostosis: neuropsycholinguistic abilities and imaging analysis of the central nervous system.

    PubMed

    Maximino, Luciana Paula; Ducati, Luis Gustavo; Abramides, Dagma Venturini Marques; Corrêa, Camila de Castro; Garcia, Patrícia Fernandes; Fernandes, Adriano Yacubian

    2017-12-01

    To characterize patients with syndromic craniosynostosis with respect to their neuropsycholinguistic abilities and to present these findings together with the brain abnormalities. Eighteen patients with a diagnosis of syndromic craniosynostosis were studied. Eight patients had Apert syndrome and 10 had Crouzon syndrome. They were submitted to phonological evaluation, neuropsychological evaluation and magnetic resonance imaging of the brain. The phonological evaluation was done by behavioral observation of the language, the Peabody test, Token test and a school achievement test. The neuropsychological evaluation included the WISC III and WAIS tests. Abnormalities in language abilities were observed and the school achievement test showed abnormalities in 66.67% of the patients. A normal intelligence quotient was observed in 39.3% of the patients, and congenital abnormalities of the central nervous system were observed in 46.4% of the patients. Abnormalities of language abilities were observed in the majority of patients with syndromic craniosynostosis, and low cognitive performance was also observed.

  1. First report on the diagnosis and treatment of encephalic and urinary paracoccidioidomycosis in a cat.

    PubMed

    Gonzalez, Juan F; Montiel, Nestor A; Maass, Rodrigo L

    2010-08-01

    A male Persian cat was presented with persistent fever, anorexia, weakness, hypopyon, nystagmus, and intention tremors. The hemogram showed severe neutropenia and laboratory analysis on cerebrospinal fluid (CSF) smears revealed abundant yeast cells compatible with Paracoccidioides brasiliensis. Urinalysis demonstrated persistent funguria and an increased urine protein-to-creatinine ratio (UPC) in addition to mild azotemia. Long-term therapy with oral fluconazole was effective in controlling the nervous system signs. Funguria was resolved with subcutaneous administration of diluted amphotericin B in a large volume of saline solution for a period of 12 weeks during the second year after initial diagnosis. Throughout 5 years of treatment, no adverse effects were observed and tolerance to the drugs was normal. Due to development of progressive uremic syndrome the animal was euthanased. To the best of our knowledge, this report is the first clinical case described of a nervous and urinary system infection caused by the P brasiliensis in a cat. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  2. Role of antibody in recovery from experimental rabies. I. Effect of depletion of B and T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.; Morse, H.C. III; Winkelstein, J.

    1978-07-01

    The avirulent high egg passage (HEP) strain of rabies virus produces an inapparent infection limited to the central nervous system (CNS) in intracerebrally inoculated adult mice. Heavy chain isotype (anti-..mu.. antiserum) immunosuppression potentiates the infection, with a mortality of about 60% and with elevated virus titers in the brain. Anti-..mu..-treated mice fail to raise antibody responses to rabies virus although their T cell function is normal when measured by the concanavalin A response of splenic lymphocytes. This indicates that the B cell response plays an important role in clearance of rabies virus from the neuroparenchyma. Treatment with cyclophosphamide or bymore » adult thymectomy, x-irradiation, and bone marrow reconstitution potentiates HEP infection to a greater extent than does isotype supression. Since these suppressive techniques impair both T and B lymphocyte responses, the data suggest that cellular immune mechanisms may also contribute to host defenses against this central nervous system (CNS) virus infection.« less

  3. Neuroscience Literacy: "Brain Tells" as Signals of Brain Dysfunction Affecting Daily Life.

    PubMed

    Royeen, Charlotte B; Brašić, James R; Dvorak, Leah; Provoziak-O'Brien, Casey; Sethi, Chetna; Ahmad, S Omar

    2016-01-01

    The structures and circuits of the central and the peripheral nervous systems provide the basis for thinking, speaking, experiencing sensations, and performing perceptual and motor activities in daily life. Healthy people experience normal functioning without giving brain functions a second thought, while dysfunction of the neural circuits may lead to marked impairments in cognition, communication, sensory awareness, and performing perceptual and motor tasks. Neuroscience literacy provides the knowledge to associate the deficits observed in patients with the underlying deficits in the structures and circuits of the nervous system. The purpose of this paper is to begin the conversation in this area via a neuroscience literacy model of "Brain Tells," defined as stereotypical or observable behaviors often associated with brain dysfunction. Occupational therapists and other allied health professionals should be alert for the signs of "Brain Tells" that may be early warning signs of brain pathology. We also suggest that neuroscience literacy be emphasized in training provided to public safety workers, teachers, caregivers, and health care professionals at all levels.

  4. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    NASA Astrophysics Data System (ADS)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  5. Synapse maintenance and restoration in the retina by NGL2

    PubMed Central

    Zhao, Lei

    2018-01-01

    Synaptic cell adhesion molecules (CAMs) promote synapse formation in the developing nervous system. To what extent they maintain and can restore connections in the mature nervous system is unknown. Furthermore, how synaptic CAMs affect the growth of synapse-bearing neurites is unclear. Here, we use adeno-associated viruses (AAVs) to delete, re-, and overexpress the synaptic CAM NGL2 in individual retinal horizontal cells. When we removed NGL2 from horizontal cells, their axons overgrew and formed fewer synapses, irrespective of whether Ngl2 was deleted during development or in mature circuits. When we re-expressed NGL2 in knockout mice, horizontal cell axon territories and synapse numbers were restored, even if AAVs were injected after phenotypes had developed. Finally, overexpression of NGL2 in wild-type horizontal cells elevated synapse numbers above normal levels. Thus, NGL2 promotes the formation, maintenance, and restoration of synapses in the developing and mature retina, and restricts axon growth throughout life. PMID:29553369

  6. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    PubMed

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  7. Genetic factors in human sleep disorders with special reference to Norrie disease, Prader-Willi syndrome and Moebius syndrome.

    PubMed

    Parkes, J D

    1999-06-01

    Sleep-wake problems are common in specific inborn errors of metabolism and structure of the central nervous system. Psychological factors, behavioural difficulties, metabolic disturbances, and widespread rather than focal damage to the nervous system are present in many of these diseases and all influence the sleep-wake cycle. However, a number of conditions cause relatively focal damage to the neuroanatomical substrate of sleeping and waking. These include fatal familial insomnia, with involvement of the prion protein gene on chromosome 20, Norrie disease, the Prader-Willi syndrome and the Moebius syndrome. The last three important conditions, although rare, are considered in detail in this review. They result in sensory deprivation, hypothalamic and mid-brain damage, and involve the X-chromosome, chromosome 15, and chromosome 13, respectively. These conditions cause a wide variety of sleep disturbance, including parasomnias, daytime sleepiness, and a condition like cataplexy. The place of the relevant gene products in normal sleep regulation needs further exploration.

  8. The epigenetic switches for neural development and psychiatric disorders.

    PubMed

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. Copyright © 2013. Published by Elsevier Ltd.

  9. Effects of fenoterol on the skeletal system depend on the androgen level.

    PubMed

    Śliwiński, Leszek; Cegieła, Urszula; Pytlik, Maria; Folwarczna, Joanna; Janas, Aleksandra; Zbrojkiewicz, Małgorzata

    2017-04-01

    The role of sympathetic nervous system in the osseous tissue remodeling is not clear enough. The effects of fenoterol, a selective β 2 -adrenomimetic drug, on the skeletal system of normal and androgen deficient (orchidectomized) rats were studied in vivo. Osteoclastogenesis and mRNA expression in osteoblasts were investigated in vitro in mouse cell cultures. Fenoterol administered to animals with physiological androgen level unfavorably affected the skeletal system, damaging the bone microarchitecture. Androgen deficiency induced osteoporotic changes, and fenoterol protected the osseous tissue from consequences of androgen deficiency. The results of in vitro studies correlated with the in vivo observations. A significantly increased number of osteoclasts in bone marrow cell cultures to which testosterone and fenoterol were added simultaneously was demonstrated. In cultures without the addition of testosterone, fenoterol significantly inhibited osteoclastogenesis in comparison with control cultures. The results indicate the favorable action of fenoterol in conditions of testosterone deficiency, and its destructive influence upon the skeleton in the presence of androgens. The results confirm the key role of sympathetic nervous system in the regulation of bone remodeling. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  10. Effects of water immersion on plasma catecholamines in normal humans

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Johnson, G.; Denunzio, A. G.

    1983-01-01

    An investigation was conducted in order to determine whether water immersion to the neck (NI) alters plasma catecholamines in normal humans. Eight normal subjects were studied during a seated control study (C) and during 4 hr of NI, and the levels of norepinephrine (NE) and epinephrine (E) as determined by radioenzymatic assay were measured hourly. Results show that despite the induction of a marked natriuresis and diuresis indicating significant central hypervolemia, NI failed to alter plasma NE or E levels compared with those of either C or the corresponding prestudy 1.5 hr. In addition, the diuresis and natriuresis was found to vary independently of NE. These results indicate that the response of the sympathetic nervous system to acute volume alteration may differ from the reported response to chronic volume expansion.

  11. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  12. Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury.

    PubMed

    Wang, J; Hauer-Jensen, M

    2007-09-01

    Intestinal radiation injury is characterized by breakdown of the epithelial barrier and mucosal inflammation. In addition to replicative and apoptotic cell death, radiation also induces changes in cellular function, as well as alterations secondary to tissue injury. The recognition of these "non-cytocidal" radiation effects has enhanced the understanding of normal tissue radiation toxicity, thus allowing an integrated systems biology-based approach to modulating radiation responses and providing a mechanistic rationale for interventions to mitigate or treat radiation injuries. The enteric nervous system regulates intestinal motility, blood flow and enterocyte function. The enteric nervous system also plays a central role in maintaining the physiological state of the intestinal mucosa and in coordinating inflammatory and fibroproliferative processes. The afferent component of the enteric nervous system, in addition to relaying sensory information, also exerts important effector functions and contributes critically to preserving mucosal integrity. Interactions between afferent nerves, mast cells as well as other cells of the resident mucosal immune system serve to maintain mucosal homeostasis and to ensure an appropriate response to injury. Notably, enteric sensory neurons regulate the activation threshold of mast cells by secreting substance P, calcitonin gene-related peptide and other neuropeptides, whereas mast cells signal to enteric nerves by the release of histamine, nerve growth factor and other mediators. This article reviews how enteric neurons interact with mast cells and other immune cells to regulate the intestinal radiation response and how these interactions may be modified to mitigate intestinal radiation toxicity. These data are not only applicable to radiation therapy, but also to intestinal injury in a radiological terrorism scenario.

  13. Sarcoidosis of the central nervous system: clinical features, imaging, and CSF results.

    PubMed

    Kidd, Desmond P

    2018-06-19

    Neurological complications of systemic sarcoidosis are uncommon and the natural history and optimal treatments under-researched. With the advent of modern biological therapies, it is important to define the clinical characteristics and immunopathology of the disease. Patients referred to and treated within the Centre for Neurosarcoidosis over a 15 year period who had biopsy-proven "highly probable" disease of the central nervous system were studied prospectively. 166 patients were studied, of whom two-thirds had involvement of the brain and spinal cord and the remainder cranial neuropathies and radiculopathy. Imaging was abnormal in all those with meningeal and parenchymal diseases, and was normal in 37% of those with cranial neuropathy. Those with leptomeningeal disease had a more severe disorder, with hydrocephalus and tissue destruction, whereas those with pachymeningeal disease had more striking imaging features but less neurological impairment. The CSF was active in 70% of cases, even when imaging was normal. Disability correlated with CSF indices in those with a leptomeningitis. Oligoclonal bands were seen in 30% of cases and correlated with disability and the presence of hydrocephalus. Unmatched bands were seen only in isolated neurological disease. This prospective study of neurosarcoidosis increases our understanding of the pathophysiology of the disease. A reclassification of the clinical and imaging features of the disease allows an understanding of its pathophysiology and correlation with CSF indices allows an early identification of those with a more destructive disease will help to define treatment and may thereby improve outcome.

  14. Neuro-transmitters in the central nervous system & their implication in learning and memory processes.

    PubMed

    Reis, Helton J; Guatimosim, Cristina; Paquet, Maryse; Santos, Magda; Ribeiro, Fabíola M; Kummer, Arthur; Schenatto, Grace; Salgado, João V; Vieira, Luciene B; Teixeira, Antônio L; Palotás, András

    2009-01-01

    This review article gives an overview of a number of central neuro-transmitters, which are essential for integrating many functions in the central nervous system (CNS), such as learning, memory, sleep cycle, body movement, hormone regulation and many others. Neurons use neuro-transmitters to communicate, and a great variety of molecules are known to fit the criteria to be classified as such. A process shared by all neuro-transmitters is their release by excocytosis, and we give an outline of the molecular events and protein complexes involved in this mechanism. Synthesis, transport, inactivation, and cellular signaling can be very diverse when different neuro-transmitters are compared, and these processes are described separately for each neuro-transmitter system. Here we focus on the most well known neuro-transmitters: acetyl-choline, catechol-amines (dopamine and nor-adrenalin), indole-amine (serotonin), glutamate, and gamma-amino-butyric acid (GABA). Glutamate is the major excitatory neuro-transmitter in the brain and its actions are counter-balanced by GABA, which is the major inhibitory substance in the CNS. A balance of neuronal transmission between these two neuro-transmitters is essential to normal brain function. Acetyl-choline, serotonin and catechol-amines have a more modulatory function in the brain, being involved in many neuronal circuits. Apart from summarizing the current knowledge about the synthesis, release and receptor signaling of these transmitters, some disease states due to alteration of their normal neuro-transmission are also described.

  15. The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders

    PubMed Central

    Costales, Jesse; Kolevzon, Alexander

    2016-01-01

    Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584

  16. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  17. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clement, G. R.; Harm, D. L.; Rupert, A. H.; Guedry, F. E.; Reschke, M. F.

    2005-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Our general hypothesis is that the central nervous system utilizes both multi-sensory integration and frequency segregation as neural strategies to resolve the ambiguity of tilt and translation stimuli. Movement in an altered gravity environment, such as weightlessness without a stable gravity reference, results in new patterns of sensory cues. For example, the semicircular canals, vision and neck proprioception provide information about head tilt on orbit without the normal otolith head-tilt position that is omnipresent on Earth. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth's gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of disorientation and tilt-translation disturbances reported by crewmembers during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  18. A new goldfish model to evaluate pharmacokinetic and pharmacodynamic effects of drugs used for motion sickness in different gravity loads

    NASA Astrophysics Data System (ADS)

    Lathers, Claire M.; Mukai, Chiaki; Smith, Cedric M.; Schraeder, Paul L.

    2001-08-01

    This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.

  19. Central nervous system considerations in the use of beta-blockers, angiotensin-converting enzyme inhibitors, and thiazide diuretics in managing essential hypertension.

    PubMed

    Gengo, F M; Gabos, C

    1988-07-01

    The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.

  20. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  1. [ASSESSMENT OF PEFORMANCE IN STUDENTS WITH DIFFERENT TYPES OF THE NERVOUS SYSTEM WITH THE USE OF THE DEVELOPED SOFTWARE FOR PC "TAPPING-TEST"].

    PubMed

    Shumskikh, D S; Rakhmanov, R S; Orlov, A L

    2015-01-01

    There was developed the PC software, which demonstrates the type of nervous system, allows us to differentiate people according to the empirical coefficient within groups with the same type of nervous system, provides information on the severity of the asymmetry of the hemispheres of the brain and shows the results of performance of the work It does not require additional calculations. With its use there were examined 1 and 2 courses students of the institution. Ehpyky was performed the comparative analysis of the progress of students with different types of nervous system. The academic performance in the examinees with a strong type of nervous system was significantly higher than in those with a weak type. In order to improve professional training the assessment of the type of the nervous system can be used in the educational process for the identification and correction of students with a weak nervous system.

  2. Kopra

    NASA Image and Video Library

    2016-03-16

    ISS047e010094 (03/16/2016) --- Expedition 47 Commander Tim Kopra of NASA participates in the Ocular Health investigation aboard the International Space Station. The study seeks to help researchers better understand microgravity-induced visual impairment and changes believed to arise from elevated intracranial pressure. These tests will help characterize how living in microgravity can affect the visual, vascular and central nervous system. The investigation will also measure how long it takes for astronauts to return to normal after they return to Earth.

  3. Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics

    PubMed Central

    Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.

    2016-01-01

    Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333

  4. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system

    PubMed Central

    Polito, Annabella; Reynolds, Richard

    2005-01-01

    The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor α-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs. PMID:16367798

  5. Chronic estrogen deficiency leads to molecular aberrations related to neurodegenerative changes in follitropin receptor knockout female mice.

    PubMed

    Tam, J; Danilovich, N; Nilsson, K; Sairam, M R; Maysinger, D

    2002-01-01

    The follitropin receptor knockout (FORKO) mouse undergoes ovarian failure, thereby providing an animal model to investigate the consequences of the depletion of circulating estrogen in females. The estrogen deficiency causes marked defects in the female reproductive system, obesity, and skeletal abnormalities. In light of estrogen's known pleiotropic effects in the nervous system, our study examined the effects of genetically induced estrogen-testosterone imbalance on this system in female FORKO mice. Circulating concentrations of 17-beta-estradiol (E2) in FORKO mice are significantly decreased (FORKO -/-: 1.13+/-0.34 pg/ml; wild-type +/+: 17.6+/-3.5 pg/ml, P<0.0001, n=32-41); in contrast, testosterone levels are increased (-/-: 37.7+/-2.3 pg/ml; wild-type +/+: 3.9+/-1.7 pg/ml, P<0.005, n=25-33). The focus was on the activities of key enzymes in the central cholinergic and peripheral nervous systems, on dorsal root ganglia (DRGs) capacity for neurite outgrowth, and on the phosphorylation state of structural neurofilament (NF) proteins. Choline acetyltransferase activity was decreased in several central cholinergic structures (striatum 50+/-3%, hippocampus 24+/-2%, cortex 12+/-3%) and in DRGs (11+/-6%). Moreover, we observed aberrations in the enzymatic activities of mitogen-activated protein kinases (extracellular-regulated kinase and c-Jun N-terminal kinase) in the hippocampus, DRGs, and sciatic nerves. Hippocampal and sensory ganglia samples from FORKO mice contained hyper-phosphorylated NFs. Finally, explanted ganglia of FORKO mice displayed decreased neurite outgrowth (20-50%) under non-treated conditions and when treated with E2 (10 nM). Our results demonstrate that genetic depletion of circulating estrogen leads to biochemical and morphological changes in central and peripheral neurons, and underlie the importance of estrogen in the normal development and functioning of the nervous system. In particular, the findings suggest that an early and persisting absence of the steroid leads to neurodegenerative changes and identify several key enzymes that may contribute to the process. This model provides a system to explore the consequences of circulating estrogen deprivation and other hormonal imbalances in the nervous system.

  6. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  7. Diagnosis and management of congenital hypothyroidism.

    PubMed

    Harrell, G B; Murray, P D

    1998-03-01

    Thyroid hormones are integral to the development and maturation of the central nervous system as well as normal growth and development. Comprehensive knowledge of the maturation and function of the thyroid gland is essential to understanding the pathophysiology of thyroid dysfunction. Early diagnosis and appropriate treatment in thyroid disease are imperative for normalization of thyroid hormone ratios. Optimal management includes early introduction and strict adherence to a regimen of L-thyroxine and routine monitoring of thyroid levels throughout life. Parents need to understand the importance of consistent medication administration and daily assessment of well-being because these actions are crucial to the attainment of an optimal level of development for infants with congenital hypothyroidism.

  8. Autonomic nervous system activity of preschool-age children who stutter

    PubMed Central

    Jones, Robin M.; Buhr, Anthony P.; Conture, Edward G.; Tumanova, Victoria; Walden, Tedra A.; Porges, Stephen W.

    2014-01-01

    Purpose The purpose of this study was to investigate potential differences in autonomic nervous system (ANS) activity to emotional stimuli between preschool-age children who do (CWS) and do not stutter (CWNS). Methods Participants were 20 preschool-age CWS (15 male) and 21 preschool-age CWNS (11 male). Participants were exposed to two emotion-inducing video clips (negative and positive) with neutral clips used to establish pre-and post-arousal baselines, and followed by age-appropriate speaking tasks. Respiratory sinus arrhythmia (RSA) – often used as an index of parasympathetic activity – and skin conductance level (SCL) – often used as an index of sympathetic activity – were measured while participants listened to/watched the audio-video clip presentation and performed a speaking task. Results CWS, compared to CWNS, displayed lower amplitude RSA at baseline and higher SCL during a speaking task following the positive, compared to the negative, condition. During speaking, only CWS had a significant positive relation between RSA and SCL. Conclusion Present findings suggest that preschool-age CWS, when compared to their normally fluent peers, have a physiological state that is characterized by a greater vulnerability to emotional reactivity (i.e., lower RSA indexing less parasympathetic tone) and a greater mobilization of resources in support of emotional reactivity (i.e., higher SCL indexing more sympathetic activity) during positive conditions. Thus, while reducing stuttering to a pure physiological process is unwarranted, the present findings suggest that parasympathetic and sympathetic nervous system activity is involved. PMID:25087166

  9. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    PubMed

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  10. Recovery from dispositional and pharmacodynamic tolerance after chronic pentobarbital treatment.

    PubMed

    Okamoto, M; Rao, S N; Reyes, J; Rifkind, A B

    1985-10-01

    Recovery characteristics of dispositional and pharmacodynamic tolerances produced by chronic Na-pentobarbital treatment were studied. To study dispositional tolerance, the rate of disappearance of pentobarbital from blood was estimated by sequential blood sampling before and after chronic treatment and during 15 days of withdrawal after chronic treatment. Pentobarbital half-life values were compared with four representative cytochrome P-450-mediated hepatic microsomal mixed-function oxidase reactions: aminopyrine demethylase, benzo(a)pyrene hydroxylase, 7-ethoxycoumarin deethylase and 7-ethoxyresorufin deethylase and with the concentration of cytochrome P-450 in sequentially biopsied liver samples. Pharmacodynamic tolerance was evaluated by measuring the increase in pentobarbital blood concentration required to produce predetermined central nervous system functional depression ratings. The recovery from dispositional tolerance was more rapid than the recovery from pharmacodynamic tolerance. Thus, whereas cytochrome P-450 levels and pentobarbital elimination rates were increased to close to twice pretreatment values by chronic treatment, by about 2 week post-withdrawal the values had normalized. In contrast, pharmacodynamic tolerance persisted after no residual dispositional tolerance remained. The neuronal functions most sensitive to barbiturate (i.e., sedation and loss of fine motor coordination) exhibited a greater degree of pharmacodynamic tolerance than other functions; hence the recovery of these neuronal functions took a longer period of time for their recovery. However, the rates of recovery of pharmacodynamic tolerance at all levels of central nervous system function seemed relatively constant indicating that there are uniform readaptation mechanisms for all the central nervous systems functions.

  11. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases.

    PubMed

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario; Christofi, Fievos L

    2016-02-01

    The word "glia" is derived from the Greek word "γλoια," glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the "reactive glial phenotype" is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor-α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential.

  12. Stages of Childhood Soft Tissue Sarcoma

    MedlinePlus

    ... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...

  13. Treatment Options for Childhood Soft Tissue Sarcoma

    MedlinePlus

    ... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...

  14. The interaction between the meningeal lymphatics and blood-brain barrier

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Dubrovsky, A.; Pavlov, A.; Shushunova, N.; Maslyakova, G.; Navolokin, N.; Bucharskaya, A.; Tuchin, V.; Kurths, J.

    2018-02-01

    Here we show the interaction between the meningeal lymphatic system and the blood-brain barrier (BBB) function. In normal state, the meningeal lymphatic vessels are invisible on optical coherent tomography (OCT), while during the opening of the BBB, meningeal lymphatic vessels are clearly visualized by OCT in the area of cerebral venous sinuses. These results give a significant impulse in the new application of OCT for the study of physiology of meningeal lymphatic system as well as sheds light on novel strategies in the prognosis of the opening of the BBB related with many central nervous system diseases, such as stroke, brain trauma, Alzheimers disease, etc.

  15. A history of the autonomic nervous system: part II: from Reil to the modern era.

    PubMed

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.

  16. Evolution of eumetazoan nervous systems: insights from cnidarians.

    PubMed

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-12-19

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.

  17. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  18. An Exploratory Study of Autonomic Function Investigations in Hemophiliacs on Homoeopathy Medications Using Impedance Plethysmography.

    PubMed

    Kundu, Tapas K; Barde, Pradip B; Jindal, Ghanshyam D; Motiwala, Farooq F

    2017-10-01

    Status of autonomic homoeostasis in hemostasic disturbances due to hemophilia needs to be studied. To compare autonomic nervous system markers measured by heart rate variability (HRV) and blood flow variability (BFV) in hemophiliacs and healthy age-matched control population using medical analyzer system. Cross-sectional study. Motiwala Homoeopathy Medical College, and Hemophilia Clinics, Nashik. Eighty subjects. Nil. Autonomic function markers for HRV and BFV. Among 80 subjects, BFV time domain measure, root mean square of successive NN (normal-to-normal) interval differences (RMSSD), was significantly higher among hemophiliacs than nonhemophiliacs. Frequency domain analysis parameter, low frequency for both HRV and BFV was significantly higher among hemophiliacs as compared with nonhemophiliacs. Hemophiliacs were shown to have higher autonomic activity as compared with healthy controls. Homoeopathic medicines used as an adjunct was associated with decrease in parasympathetic modulations.

  19. 75 FR 69005 - Flumioxazin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... reproduction studies indicated an effect on the nervous systems. Based on the lack of evidence of... flumioxazin does not directly impact the nervous system or directly target the immune system. The Agency does... to indicate that flumioxazin targets the nervous system or the immune system. Further, EPA has...

  20. Treatment Option Overview (Childhood Soft Tissue Sarcoma)

    MedlinePlus

    ... nearby lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... therapy , and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...

  1. Hypotonia

    MedlinePlus

    ... will include a detailed examination of the nervous system and muscle function. In most cases, a neurologist (specialist in ... require ongoing care and support. Alternative Names Decreased muscle tone; Floppy infant ... Central nervous system and peripheral nervous system References Burnette WB. Hypotonic ( ...

  2. Sweating

    MedlinePlus

    ... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...

  3. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  4. [Effects of inflammation and stimulant diets on functions of autonomic nervous system (author's transl)].

    PubMed

    Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H

    1981-06-01

    In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.

  5. Quantum-holographic and classical Hopfield-like associative nnets: implications for modeling two cognitive modes of consciousness

    NASA Astrophysics Data System (ADS)

    Rakovic, D.; Dugic, M.

    2005-05-01

    Quantum bases of consciousness are considered with psychosomatic implications of three front lines of psychosomatic medicine (hesychastic spirituality, holistic Eastern medicine, and symptomatic Western medicine), as well as cognitive implications of two modes of individual consciousness (quantum-coherent transitional and altered states, and classically reduced normal states) alongside with conditions of transformations of one mode into another (considering consciousness quantum-coherence/classical-decoherence acupuncture system/nervous system interaction, direct and reverse, with and without threshold limits, respectively) - by using theoretical methods of associative neural networks and quantum neural holography combined with quantum decoherence theory.

  6. [Pathophysiology of prolonged hypokinesia].

    PubMed

    Kovalenko, E A

    1976-01-01

    Hypokinesia is an important problem in modern medicine. In the pathogenetic effect of prolonged hypokinesia the main etiological factor is diminished motor activity; of major importance are disorders in the energy and plastic metabolism which affect the muscle system; the contributing factors are cardiovascular deconditioning and orthostatic intolerance. This is attributed to a decreased oxygen supply and eliminated hydrostatic influences during a prolonged recumbency. Blood redistribution in the vascular bed is related to the Gauer-Henry reflex and subsequent changes in the fluid-electrolyte balance. Decreased load on the bone system induces changes in the protein-phosphate-calcium metabolism, diminished bone density and increased calcium content in the blood and urine. Changes in the calcium metabolism are systemic. The activity of the higher nervous system and reflex functions is lowered. Changes in the function of the autonomic nervous system which include a noticeable decline of its adaptive-trophic role as a result of the decrease of afferent and efferent impulsation are of great importance. Changes in the hormonal function involve a peculiar stress-reaction which develops at an early stage of hypokinesia as a response to an unusual situation. Prolonged hypokinesia may result in a disturbed function of the pituitary-adrenal system. It is assumed that prolonged hypokinesia may induce a specific disease of hypokinesia during which man cannot lead a normal mode of life and work.

  7. Paralysis and pernicious anemia in a young woman.

    PubMed

    Matrana, Marc R; Gauthier, Carl; Lafaye, Kristina M

    2009-01-01

    Vitamin B12 is important for normal nervous system functioning, and deficiencies are associated with various neurological abnormalities. We present a case of an 18-year-old woman who presented with significant neurological sequelae, but only mild hematologic abnormalities and normal vitamin B12 levels. She was found to have a moderately increased mean corpuscular volume, a markedly elevated homocysteine level, and a greatly increased methylmalonic acid level. In symptomatic patients it is important for physicians to maintain a high index of suspicion for B12 deficiency despite normal serum levels. The measurement of MMA and homocysteine levels provides much more sensitive tests, but even these tests do not completely rule out a deficiency. Although, the traditional treatment for vitamin B12 deficiency has been intramuscular cobalamin injections, recent studies have shown that oral cobalamin may be as efficacious.

  8. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also

  9. Immunostaining to visualize murine enteric nervous system development.

    PubMed

    Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush

    2015-04-29

    The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.

  10. Biological Stress Systems, Adverse Life Events, and the Improvement of Chronic Multisite Musculoskeletal Pain Across a 6-Year Follow-Up.

    PubMed

    Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; de Geus, Eco J C N; Dekker, Joost; Penninx, Brenda W J H

    2017-02-01

    Dysfunction of biological stress systems and adverse life events, independently and in interaction, have been hypothesized to predict chronic pain persistence. Conversely, these factors may hamper the improvement of chronic pain. Longitudinal evidence is currently lacking. We examined whether: 1) function of biological stress systems, 2) adverse life events, and 3) their combination predict the improvement of chronic multisite musculoskeletal pain. Subjects of the Netherlands Study of Depression and Anxiety (NESDA) with chronic multisite musculoskeletal pain at baseline (N = 665) were followed-up 2, 4, and 6 years later. The Chronic Pain Grade Questionnaire was used to determine improvement (not meeting the criteria) of chronic multisite musculoskeletal pain at follow-up. Baseline assessment of biological stress systems included function of hypothalamic-pituitary-adrenal axis (1-hour cortisol awakening response, evening level, and post dexamethasone level), the immune system (basal and lipopolysaccharide-stimulated inflammatory markers), the autonomic nervous system (heart rate, pre-ejection period, SD of the normal-to-normal interval, and respiratory sinus arrhythmia). The number of adverse life events were assessed at baseline and 2-year follow-up using the List of Threatening Events Questionnaire. We showed that hypothalamic-pituitary-adrenal axis, immune system, and autonomic nervous system functioning and adverse life events were not associated with the improvement of chronic multisite musculoskeletal pain, either as a main effect or in interaction. This longitudinal study could not confirm that biological stress system dysfunction and adverse life events affect the course of chronic multisite musculoskeletal pain. Biological stress systems and adverse life events are not associated with the improvement of chronic multisite musculoskeletal pain over 6 years of follow-up. Other determinants should thus be considered in future research to identify in which persons pain symptoms will improve. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Biomedical effects of low-power laser controlled by electroacupuncture

    NASA Astrophysics Data System (ADS)

    Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.

    1997-12-01

    The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.

  12. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  13. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    PubMed

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Acute chloroform ingestion successfully treated with intravenously administered N-acetylcysteine.

    PubMed

    Dell'Aglio, Damon M; Sutter, Mark E; Schwartz, Michael D; Koch, David D; Algren, D A; Morgan, Brent W

    2010-06-01

    Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.

  15. CNS germinoma with elevated serum human chorionic gonadotropin level: Clinical characteristics and treatment outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogino, Hiroyuki; Shibamoto, Yuta; Takanaka, Tsuyoshi

    2005-07-01

    Purpose: The prognostic significance of human chorionic gonadotropin (HCG) level in central nervous system germinoma remains controversial. The purpose of this study was to compare clinical characteristics and prognosis of germinoma patients with normal and high HCG titers in the serum. Methods and Materials: We undertook a multi-institutional retrospective analysis of 103 patients with central nervous system germinoma whose serum HCG and/or {beta}-HCG level had been measured before treatment between 1984 and 2002. All patients had been treated with radiation therapy either alone (n = 66) or in combination with chemotherapy (n = 37) with a median dose of 47.8more » Gy. Results: HCG and/or {beta}-HCG level in the serum was high in 39% of all patients. The proportion of HCG-producing tumors was higher in the lesions at the basal ganglia than in the lesions at the other sites. No correlation was found between tumor size and HCG level, but there seemed to be a weak correlation between size and {beta}-HCG. The 5- and 10-year survival rates were 96% and 94%, respectively, in both patient groups with normal and high HCG (p = 0.99). The 5- and 10-year relapse-free survival rates were 87% and 82%, respectively, in patients with normal HCG level and were both 87% in patients with high HCG (p = 0.74). Also, no other patient-, tumor-, or treatment-related factors seemed to influence the prognosis of the patients. Conclusion: Serum HCG level does not seem to influence patient prognosis when treated with sufficient doses of radiation. Relationship between tumor size and site and HCG level should be investigated further.« less

  16. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    PubMed

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  17. Pressure wave injuries to the nervous system caused by high-energy missile extremity impact: Part I. Local and distant effects on the peripheral nervous system--a light and electron microscopic study on pigs.

    PubMed

    Suneson, A; Hansson, H A; Seeman, T

    1990-03-01

    Pigs were used for studies of effects on the peripheral nervous tissue of pressure waves induced by impact and passage through the left thigh of high-energy missiles. The short-lasting pressure waves were demonstrated to move close to the speed of sound and to have a spectrum of high frequencies and large amplitudes. The sciatic nerve in the contralateral leg showed no hemorrhage or major deformation. Both immediately after the missile impact and after 48 hr the myelin sheaths in the contralateral sciatic nerve showed deformation. Myelin was bulging into the axon, dislocating the axoplasm. The nodes of Ranvier could be exposed to an increased extent. Electron microscopic examination revealed decreased number of microtubules immediately after the trauma, persisting even after 48 hr in the largest axon. Schwann cells showed, especially after 48 hr, signs of damage and swelling. Similar changes, although less extensive, were noticed in the phrenic nerves as well as in unmyelinated axons in both sciatic and phrenic nerves. It is concluded that a high-energy missile hit in the thigh of a pig, caused structurally demonstrable dislocations of myelin sheaths, and disarrangement of cytoskeleton and endoplasmic reticulum in axons as well as other signs of damage. The changes may interfere with the normal functions of peripheral and autonomic nerves.

  18. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    PubMed Central

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  19. Developmental and perinatal brain diseases.

    PubMed

    Adle-Biassette, Homa; Golden, Jeffery A; Harding, Brian

    2017-01-01

    This chapter briefly describes the normal development of the nervous system, the neuropathology and pathophysiology of acquired and secondary disorders affecting the embryo, fetus, and child. They include CNS manifestations of chromosomal change; forebrain patterning defects; disorders of the brain size; cell migration and specification disorders; cerebellum, hindbrain and spinal patterning defects; hydrocephalus; secondary malformations and destructive pathologies; vascular malformations; arachnoid cysts and infectious diseases. The distinction between malformations and disruptions is important for pathogenesis and genetic counseling. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Intracellular Membrane and Synaptic Properties in Medial Preoptic Slices Containing the Sexually Dimorphic Nucleus of the Rat

    DTIC Science & Technology

    1992-01-01

    these events appear to be LTS potentials, as originally described in other central regions (Jahnsen and Llings 1984). In some media preoptic neurons, LTS...Kelly, J.S. An intracellular study of grafted and in situ preoptic area neurones in brain slices from normal and hypogonadal mice. J Physiol. 423: 111... central nervous system function. Science 242: 1654-1664, 1988. Llings, R., and Yarom, Y. Electrophysiology of mammalian inferior olivary neurons in vitro

  1. Distribution and determination of cholinesterases in mammals

    PubMed Central

    Holmstedt, Bo

    1971-01-01

    This paper reviews the distribution of cholinesterases in the central nervous system, the ganglia, the striated muscle, and the blood of mammals, and discusses the correlation between the histochemical localization and the function of neuronal cholinesterase. Different methods for the determination of cholinesterase levels are reviewed, with particular reference to their practical value for field work. The Warburg method and the Tintometer and Acholest colorimetric methods are compared on the basis of cholinesterase levels determined in normal persons and in those suffering from parathion intoxication. PMID:4999484

  2. [Subclinical hypothyroidism in obese children].

    PubMed

    Januszek-Trzciąkowska, Aleksandra; Małecka-Tendera, Ewa

    2013-08-05

    Subclinical hypothyroidism (SH) is defined as an elevated thyroid stimulating hormone (TSH) associated with normal levels of free thyroxine. In obese persons prevalence of SH is significantly higher than in general population. SH is of particular interest in children with respect to the crucial role of thyroid hormones in the development of central nervous system and linear growth. Currently there is no general consensus on the treatment of SH with L-tyroxine. It is suggested that this hormonal state is rather a consequence that the cause of the overweight status.

  3. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  4. Classical Neurotransmitters and their Significance within the Nervous System.

    ERIC Educational Resources Information Center

    Veca, A.; Dreisbach, J. H.

    1988-01-01

    Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)

  5. Responses to the lowering of magnesium and calcium concentrations in the cerebrospinal fluid of unanesthetized sheep.

    PubMed

    Allsop, T F; Pauli, J V

    1975-12-01

    A technique for ventriculolumbar perfusion of the cerebrospinal fluid space has been used to study the neuromuscular effects of low concentrations of magnesium and calcium in the cerebrospinal fluid of conscious sheep. Perfusion with synthetic cerebrospinal fluid solutions containing less than 0-6 mg magnesium/100 ml produced episodes of tetany which were abolished by perfusion with a solution of normal magnesium concentration. This suggests that the low cerebrospinal fluid magnesium concentrations reported in cases of hypomagneseamic tetany may result in changes within the central nervous system that could produce the nervous signs. Perfusates with a calcium concentration below 2-0 mg/100 ml caused hyperpnoea and continuous muscle tremors. Magnesium (0-6 mg/100 ml) and calcium (2-0 mg/100 ml) perfused simultaneously acted synergistically to produce signs characteristic of low levels of each of the ions.

  6. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  7. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  8. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  9. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  10. Central and peripheral nervous systems: master controllers in cancer metastasis.

    PubMed

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  11. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  12. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  13. 76 FR 5711 - Bispyribac-sodium; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ...- sodium has shown no indications of central or peripheral nervous system toxicity in any study and does not appear to be structurally related to any other chemical that causes adverse nervous system effects... the nervous system is a target for [[Page 5715

  14. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  15. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  16. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  17. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    ClinicalTrials.gov

    2017-08-30

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  18. Natural History Study of Children With Metachromatic Leukodystrophy

    ClinicalTrials.gov

    2016-04-19

    Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis

  19. Effects of Sleep Fragmentation on Glucose Metabolism in Normal Subjects

    PubMed Central

    Stamatakis, Katherine A.

    2010-01-01

    Background: Sleep disorders are increasingly associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Whether the metabolic toll imposed by sleep-related disorders is caused by poor-quality sleep or due to other confounding factors is not known. The objective of this study was to examine whether experimental sleep fragmentation across all sleep stages would alter glucose metabolism, adrenocortical function, and sympathovagal balance. Methods: Sleep was experimentally fragmented across all stages in 11 healthy, normal volunteers for two nights using auditory and mechanical stimuli. Primary outcomes included insulin sensitivity (SI), glucose effectiveness (SG), and insulin secretion, as determined by the intravenous glucose tolerance test. Secondary outcomes included measures of sympathovagal balance and serum levels of inflammatory markers, adipokines, and cortisol. Results: Following two nights of sleep fragmentation, SI decreased from 5.02 to 3.76 (mU/L)−1min−1 (P < .0001). SG, which is the ability of glucose to mobilize itself independent of an insulin response, also decreased from 2.73 × 10−2 min−1 to 2.16 × 10−2 min−1 (P < .01). Sleep fragmentation led to an increase in morning cortisol levels and a shift in sympathovagal balance toward an increase in sympathetic nervous system activity. Markers of systemic inflammation and serum adipokines were unchanged with sleep fragmentation. Conclusions: Fragmentation of sleep across all stages is associated with a decrease in SI and SG. Increases in sympathetic nervous system and adrenocortical activity likely mediate the adverse metabolic effects of poor sleep quality. PMID:19542260

  20. The glia of the adult Drosophila nervous system

    PubMed Central

    Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.

    2017-01-01

    Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822

  1. [Involvement of the peripheral nervous system in systemic connective tissue diseases: report on clinical cases].

    PubMed

    Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew

    2011-01-01

    The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.

  2. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  3. 75 FR 4571 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... peripheral nervous systems. Researchers at the National Cancer Institute (``NCI'')-Frederick investigating genetic influences on cancer susceptibility of the nervous system have synthesized novel analogues of.... Applications: Therapies for tumors associated with NF1 (including brain and peripheral nervous system tumors...

  4. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    MedlinePlus

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  5. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  6. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Laboratory Manual. Revised Version, 1976.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Designed to accompany the student text on the nervous system, this manual presents laboratory activities dealing with concepts presented in the text. Thirty-seven activities are described. Four supplementary activities dealing with concepts in electricity are also included. Laboratory activities are divided into several parts, each part covering a…

  7. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Instructor's Manual. Revised Version, 1976.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This volume contains the lesson plans and appropriate teacher background material for a 37-lesson sequence on the nervous system in health and medicine. Additional material is provided for supplementary lessons on concepts of electricity. Associated material, contained in separate volumes, include a student text and a student laboratory manual.…

  8. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  9. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system

    NASA Technical Reports Server (NTRS)

    Lowe, Christopher J.; Wu, Mike; Salic, Adrian; Evans, Louise; Lander, Eric; Stange-Thomann, Nicole; Gruber, Christian E.; Gerhart, John; Kirschner, Marc

    2003-01-01

    The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.

  10. Complex Homology and the Evolution of Nervous Systems.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A

    2016-02-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.

  11. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    PubMed

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give rise to dysfunction of the peripheral autonomic nerves resembling that observed in normal-weight diabetic children and adolescents.

  12. IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

    PubMed Central

    Maya-Vetencourt, José Fernando; Baroncelli, Laura; Viegi, Alessandro; Tiraboschi, Ettore; Castren, Eero; Cattaneo, Antonino; Maffei, Lamberto

    2012-01-01

    The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes. PMID:22720172

  13. Interaction between sympathetic nervous system and renin angiotensin system on MMPs expression in juvenile rat aorta.

    PubMed

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2011-09-01

    The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.

  14. Undiagnosed neurological disease as a potential cause of male lower urinary tract symptoms.

    PubMed

    Wei, Diana Y; Drake, Marcus J

    2016-01-01

    In the central nervous system there are many regulatory processes controlling the lower urinary tract. This review considers the possibility that urinary dysfunction may precede diagnosis of neurological disease. Lower urinary tract symptoms (LUTS) occur early in multiple system atrophy, Parkinson's disease and normal pressure hydrocephalus, and may present before neurological diagnosis. Some people present with LUTS and subsequently are diagnosed with multiple sclerosis or a spinal condition. In male LUTS, the symptoms could reflect early stages of a neurological disease, which has not yet been diagnosed ('occult neurology'). Key symptoms include erectile dysfunction, retrograde ejaculation, enuresis, loss of filling sensation or unexplained stress urinary incontinence. Directed questioning should enquire about visual symptoms, back pain, anosmia, bowel dysfunction and incontinence, or memory loss. Examination features can include resting tremor, 'croaky' speech, abnormal gait, orthostatic hypotension, ataxia, or altered perineal sensation. Imaging, such as MRI scan, should only be requested after expert neurological examination, to ensure the correct parts of the central nervous system are scanned with appropriate radiological protocols. Urologists should consider an undiagnosed neurological condition can be present in a few cases. Any finding should be further evaluated by colleagues with relevant expertise.

  15. Localization of organ-specific antigens in the nervous system of the rat.

    PubMed

    Weinrauder, H; Lach, B

    1977-08-16

    Localization of organ-specific brain antigens in the central nervous system of the rat has been studied by means of indirect immunofluorescence. Rabbit antiserum against homogenate of rat brain, previously absorbed with normal serum and homogenates of rat organs (kidney, liver, spleen), reacted with the water-soluble antigens of rat brain prepared by extraction with phosphate buffer (pH 7.3) and ultracentrifugation at 50 000 X g to give one band in the immunodiffusion test and 2--3 precipitation arcs in immunoelectrophoresis. There was also a positive reaction with peripheral nerve. The antigen was detectable in all regions of the CNS. Cells with distinct cytoplasmic immunofluorescence were most frequently observed in cerebellar white matter, pons, cerebellar pedunculi, longitudinal tracts of the brain stem. Positive immunofluorecence reaction has appeared in the outer plexiform layer and granular layer of the retina, satelite cells of the spinal root ganglia and Schwann cells. A similar reaction was observed in human, mouse and guinea pig brain slices. Both the morphological and immunochemical reactions are indicative of glial localization of this antigen.

  16. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    PubMed

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  17. dMyc is required in retinal progenitors to prevent JNK-mediated retinal glial activation

    PubMed Central

    Correia, Andreia; Santos, Marília A.; Relvas, João B.; Pereira, Paulo S.

    2017-01-01

    In the nervous system, glial cells provide crucial insulation and trophic support to neurons and are important for neuronal survival. In reaction to a wide variety of insults, glial cells respond with changes in cell morphology and metabolism to allow repair. Additionally, these cells can acquire migratory and proliferative potential. In particular, after axonal damage or pruning the clearance of axonal debris by glial cells is key for a healthy nervous system. Thus, bidirectional neuron-glial interactions are crucial in development, but little is known about the cellular sensors and signalling pathways involved. In here, we show that decreased cellular fitness in retinal progenitors caused by reduced Drosophila Myc expression triggers non cell-autonomous activation of retinal glia proliferation and overmigration. Glia migration occurs beyond its normal limit near the boundary between differentiated photoreceptors and precursor cells, extending into the progenitor domain. This overmigration is stimulated by JNK activation (and the function of its target Mmp1), while proliferative responses are mediated by Dpp/TGF-β signalling activation. PMID:28267791

  18. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease.

    PubMed

    Chang, Junlei; Mancuso, Michael R; Maier, Carolina; Liang, Xibin; Yuki, Kanako; Yang, Lu; Kwong, Jeffrey W; Wang, Jing; Rao, Varsha; Vallon, Mario; Kosinski, Cynthia; Zhang, J J Haijing; Mah, Amanda T; Xu, Lijun; Li, Le; Gholamin, Sharareh; Reyes, Teresa F; Li, Rui; Kuhnert, Frank; Han, Xiaoyuan; Yuan, Jenny; Chiou, Shin-Heng; Brettman, Ari D; Daly, Lauren; Corney, David C; Cheshier, Samuel H; Shortliffe, Linda D; Wu, Xiwei; Snyder, Michael; Chan, Pak; Giffard, Rona G; Chang, Howard Y; Andreasson, Katrin; Kuo, Calvin J

    2017-04-01

    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption.

  19. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs).

    PubMed

    Bhattacharyya, Samarjit

    2016-08-01

    Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are activated by the neurotransmitter glutamate in the central nervous system. Among the eight subtypes, mGluR1 and mGluR5 belong to the group I family. These receptors play important roles in the brain and are believed to be involved in multiple forms of experience dependent synaptic plasticity including learning and memory. In addition, group I mGluRs also have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism etc. The normal signaling depends on the precise location of these receptors in specific region of the neuron and the process of receptor trafficking plays a crucial role in controlling this localization. Intracellular trafficking could also regulate the desensitization, resensitization, down-regulation and intracellular signaling of these receptors. In this review I focus on the current understanding of group I mGluR regulation in the central nervous system and also their role in neuropsychiatric disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Signals for glucagon secretion.

    PubMed

    Bloom, S R

    1977-01-01

    The normal physiological role of glucagon is in controlling hepatic glucose output. Glucagon subserves the role of homeostasis by maintaining plasma glucose and of a stress hormone by producing hyperglycaemia. While control of glucagon release by circulating metabolites and also other hormones is clearly important, it seems likely that the nervous system exerts an over-riding influence. The parasympathetic nervous system maintains homeostasis and the sympathetic acts in stress. Glucagon levels are found to be high in cirrhosis and also after acute hepatic failure. It is likely that these changes in glucagon concentration are secondary to metabolic abnormalities. While some glucagon is cleared by the liver, a similar clearance is seen by many other tissues and it is not likely that the elevation of glucagon seen in liver failure is due solely to a gross deficiency of glucagon clearance. No liver abnormality is seen in the glucagonoma syndrome, where glucagon concentration are chronically high, or in patients who have had a total pancreatectomy, where plasma glucagon is undetectably low. It thus seems unlikely that liver mass is importantly controlled by glucagon.

  1. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures

    PubMed Central

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2017-01-01

    Background There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. Patient Description We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. Conclusion This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes. PMID:29308451

  2. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  3. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  4. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  5. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  6. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  7. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  8. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  9. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  10. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  11. Drug-induced sexual dysfunction.

    PubMed

    Aldridge, S A

    1982-01-01

    Commonly used drugs that may cause sexual dysfunction are reviewed. The anatomy and physiology of the normal sexual response are reviewed. The influence of drugs on neurogenic, hormonal, and vascular mechanisms may result in diminished libido, impotence, ejaculatory and orgasmic difficulties, inhibited vaginal lubrication, menstrual irregularities, and gynecomastia in men or painful breast enlargement in women. Parasympatholytic agents, which interfere with cholinergic transmission, may affect erectile potency, while adrenergic inhibiting agents may interfere with ejaculatory control. Central nervous system depressants or sedating drugs, drugs producing hyperprolactinemia, and antiandrogenic drugs also may affect the normal sexual response. Drugs such as antihypertensive and antipsychotic agents may induce sexual dysfunction that can result in patient noncompliance. Usually, drug-induced side effects are reversible with discontinuation of the offending agent.

  12. Immunohistochemical evidence of ubiquitous distribution of the metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines.

    PubMed

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2008-11-01

    Immunohistochemical evidence of ubiquitous distribution of the metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, and spleen) and on a cell microarray of 31 tumor cell lines of different origin, as well as trophoblast cells and normal blood lymphocytes and granulocytes. IDE protein was expressed in all the tissues assessed and all the tumor cell lines except for Raji and HL-60. Trophoblast cells and granulocytes, but not normal lymphocytes, were also IDE-positive.

  13. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  14. An Exploratory Study of Autonomic Function Investigations in Hemophiliacs on Homoeopathy Medications Using Impedance Plethysmography

    PubMed Central

    Kundu, Tapas K.; Barde, Pradip B.; Jindal, Ghanshyam D.; Motiwala, Farooq F.

    2017-01-01

    Background. Status of autonomic homoeostasis in hemostasic disturbances due to hemophilia needs to be studied. Objectives. To compare autonomic nervous system markers measured by heart rate variability (HRV) and blood flow variability (BFV) in hemophiliacs and healthy age-matched control population using medical analyzer system. Design. Cross-sectional study. Settings. Motiwala Homoeopathy Medical College, and Hemophilia Clinics, Nashik. Subjects. Eighty subjects. Interventions. Nil. Outcome Measures. Autonomic function markers for HRV and BFV. Results. Among 80 subjects, BFV time domain measure, root mean square of successive NN (normal-to-normal) interval differences (RMSSD), was significantly higher among hemophiliacs than nonhemophiliacs. Frequency domain analysis parameter, low frequency for both HRV and BFV was significantly higher among hemophiliacs as compared with nonhemophiliacs. Conclusions. Hemophiliacs were shown to have higher autonomic activity as compared with healthy controls. Homoeopathic medicines used as an adjunct was associated with decrease in parasympathetic modulations. PMID:28719973

  15. Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease.

    PubMed

    Ziv, Yaniv; Schwartz, Michal

    2008-11-01

    Immune cells and immune molecules have recently been shown to support neurogenesis from neural stem and progenitor cells in the adult brain. This non-classical immune activity takes place constantly under normal physiological conditions and is extended under acute pathological conditions to include the attraction of progenitor cells and induction of neurogenesis in regions of the adult central nervous system (CNS) in which formation of new neurons does not normally occur. We suggest that the immune system should be viewed as a novel player in the adult neural stem cell niche and a coordinator of cell renewal processes after injury. We discuss these notions in light of the well-known facts that both immune-cell activity and cell renewal are inherently limited in the adult CNS and that immune and stem cells provide the body's mechanisms of repair.

  16. Effect of mental stress on plasma homovanillic acid in healthy human subjects.

    PubMed

    Sumiyoshi, T; Yotsutsuji, T; Kurachi, M; Itoh, H; Kurokawa, K; Saitoh, O

    1998-07-01

    Plasma levels of homovanillic acid (pHVA) have been suggested to provide a measure of dopaminergic activity in the central nervous system. The present study investigated the effect of mental stress by the Kraepelin test, a test of continuous arithmetic addition of single-digit figures for 30 min, on pHVA levels in 13 male psychiatrically normal healthy volunteers. Following an overnight fast and restricted physical activity, plasma samples were collected immediately before and after the administration of the Kraepelin test. Plasma HVA levels following the administration of the Kraepelin test were significantly lower than the pretest pHVA levels. The percent change in pHVA levels by the Kraepelin test positively correlated with pretest pHVA levels. The observed reduction in pHVA levels by mental stress in normal subjects may reflect some aspects of a dopamine-dependent restitutive system in the brain.

  17. L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo

    PubMed Central

    Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.

    1998-01-01

    L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755

  18. Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome

    PubMed Central

    Vodopiutz, Julia; Zoller, Heinz; Fenwick, Aimée L.; Arnhold, Richard; Schmid, Max; Prayer, Daniela; Müller, Thomas; Repa, Andreas; Pollak, Arnold; Aufricht, Christoph; Wilkie, Andrew O.M.; Janecke, Andreas R.

    2013-01-01

    Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations. PMID:23069192

  19. Neuro-immune lessons from an annelid: The medicinal leech.

    PubMed

    Tasiemski, Aurélie; Salzet, Michel

    2017-01-01

    An important question that remains unanswered is how the vertebrate neuroimmune system can be both friend and foe to the damaged nervous tissue. Some of the difficulty in obtaining responses in mammals probably lies in the conflation in the central nervous system (CNS), of the innate and adaptive immune responses, which makes the vertebrate neuroimmune response quite complex and difficult to dissect. An alternative strategy for understanding the relation between neural immunity and neural repair is to study an animal devoid of adaptive immunity and whose CNS is well described and regeneration competent. The medicinal leech offers such opportunity. If the nerve cord of this annelid is crushed or partially cut, axons grow across the lesion and conduction of signals through the damaged region is restored within a few days, even when the nerve cord is removed from the animal and maintained in culture. When the mammalian spinal cord is injured, regeneration of normal connections is more or less successful and implies multiple events that still remain difficult to resolve. Interestingly, the regenerative process of the leech lesioned nerve cord is even more successful under septic than under sterile conditions suggesting that a controlled initiation of an infectious response may be a critical event for the regeneration of normal CNS functions in the leech. Here are reviewed and discussed data explaining how the leech nerve cord sensu stricto (i.e. excluding microglia and infiltrated blood cells) recognizes and responds to microbes and mechanical damages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sympathovagal response to orthostatism in overt and in subclinical hyperthyroidism.

    PubMed

    Goichot, B; Brandenberger, G; Vinzio, S; Perrin, A E; Geny, B; Schlienger, J L; Simon, C

    2004-04-01

    Heart rate variability (HRV) is a measure of the physiological variation of R-R intervals, reflecting the sympathovagal balance. In both overt and subclinical hyperthyroidism, a relative increase in sympathetic activity has been demonstrated, mainly due to a decrease in vagal activity. The modifications of HRV during orthostatism in normal subjects resemble those seen in hyperthyroidism. We have studied the response of 19 patients with overt hyperthyroidism and 12 with subclinical hyperthyroidism during orthostatism using HRV and compared the results to those of 32 healthy controls. In the three groups, the R-R intervals decreased in the same proportion after orthostatism. The low frequency power (LF)/[LF + high frequency power (HF)] ratio, which reflects the sympathetic tone, also increased in the same proportion in the three groups. However, the mechanisms of the modulation of the sympathovagal balance during orthostatism were different among the three groups. In controls, the relative increase of sympathetic tone after orthostatism was due principally to a decrease in vagal tone (reflected by decreased power in the HF band), while in overt hyperthyroidism, where the power in the HF band was already minimal in the lying position, there was a clear increase in the LF band power during orthostatism. The results were intermediate in the subclinical hyperthyroidism group, reflecting a continuum of effects of the thyroid hormone excess on the autonomic nervous system. Our study shows that despite an apparent normal cardiovascular adaptation to orthostatism in hyperthyroidism, the modulation of the autonomic nervous system is profoundly modified.

  1. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  2. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  3. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  4. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  5. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  6. Extraversion, Neuroticism and Strength of the Nervous System

    ERIC Educational Resources Information Center

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  7. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    PubMed Central

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  8. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue.

    PubMed

    Caine, Sally; Heraud, Philip; Tobin, Mark J; McNaughton, Donald; Bernard, Claude C A

    2012-02-15

    In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Canadian medical experiments on Shuttle Flight 41-G

    NASA Technical Reports Server (NTRS)

    Watt, D. G. D.; Money, K. E.; Bondar, R. L.; Thirsk, R. B.; Garneau, M.

    1985-01-01

    During the 41-G mission, two payload specialist astronauts took part in six Canadian medical experiments designed to measure how the human nervous system adapts to weightlessness, and how this might contribute to space motion sickness. Similar tests conducted pre-flight provided base-line data, and post-flight experiments examined re-adaptation to the ground. No changes were detected in the vestibulo-ocular reflex during this 8-day mission. Pronounced proprioceptive illusions were experienced, especially immediately post-flight. Tactile acuity was normal in the fingers and toes, but the ability to judge limb position was degraded. Estimates of the locations of familiar targets were grossly distorted in the absence of vision. There were no differences in taste thresholds or olfaction. Despite pre-flight tests showing unusual susceptibility to motion sickness, the Canadian payload specialist turned out to be less susceptible than normal on-orbit. Re-adaptation to the normal gravity environment occurred within the first day after landing.

  10. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  11. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron

    PubMed Central

    Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2018-01-01

    Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972

  12. 76 FR 18915 - Ethiprole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... homeostasis and the developing nervous system in the young is not available. Based on a battery of... of the nervous system, the Agency is requiring a developmental thyroid toxicity study to assess for... nervous system, the Agency is requiring the developmental thyroid toxicity study in lieu of the DNT. iii...

  13. 75 FR 10867 - Determinations Concerning Illnesses Discussed in the Institute of Medicine Report on Gulf War and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... cancer; nervous system disease; reproductive or developmental dysfunction; non-malignant respiratory... nervous system cancers, stomach cancer, prostatic cancer and testicular cancer. The non-malignant diseases... and bladder cancer exists. G. Brain and Other Central Nervous System Cancers Of the 20 published...

  14. 75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...

  15. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ..., Central Nervous System Research Unit (Currently Known as Neuroscience Research Unit), Global External... as Warner Lambert Company, Central Nervous System Research Unit, Global External Supply Department... Central Nervous System Research Unit was renamed the Neuroscience Research Unit. In order to ensure proper...

  16. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  17. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  18. Mitochondria in the nervous system: From health to disease, part II.

    PubMed

    Carrì, Maria Teresa; Polster, Brian M; Beart, Philip M

    2018-04-10

    In Part II of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together more reviews and original articles from researchers in the field of mitochondrial metabolism in the healthy and diseased nervous system. Subjects span from basic mitochondrial physiology to papers on mitochondrial dynamics and to those altered states of the nervous system that can be considered "mitopathologies". Finally, a few papers approach aspects of mitochondrial biology linked to the feasibility and validity of a mitochondrial therapy. Copyright © 2018. Published by Elsevier Ltd.

  19. Diagnosis abnormalities of limb movement in disorders of the nervous system

    NASA Astrophysics Data System (ADS)

    Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul

    2017-08-01

    The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.

  20. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans.

    PubMed

    Chatterjee, Nivedita; Sinha, Sitabhra

    2008-01-01

    The nervous system of the nematode C. elegans provides a unique opportunity to understand how behavior ('mind') emerges from activity in the nervous system ('brain') of an organism. The hermaphrodite worm has only 302 neurons, all of whose connections (synaptic and gap junctional) are known. Recently, many of the functional circuits that make up its behavioral repertoire have begun to be identified. In this paper, we investigate the hierarchical structure of the nervous system through k-core decomposition and find it to be intimately related to the set of all known functional circuits. Our analysis also suggests a vital role for the lateral ganglion in processing information, providing an essential connection between the sensory and motor components of the C. elegans nervous system.

  1. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    PubMed

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  2. Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system of Drosophila melanogaster.

    PubMed

    Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M

    2002-12-01

    The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.

  3. Degenerative disease affecting the nervous system.

    PubMed

    Eadie, M J

    1974-03-01

    The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.

  4. New tools for the analysis of glial cell biology in Drosophila.

    PubMed

    Awasaki, Takeshi; Lee, Tzumin

    2011-09-01

    Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. Copyright © 2011 Wiley-Liss, Inc.

  5. Hypothalamic control of energy and glucose metabolism.

    PubMed

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  6. Searching for the Origin through Central Nervous System: A Review and Thought which Related to Microgravity, Evolution, Big Bang Theory and Universes, Soul and Brainwaves, Greater Limbic System and Seat of the Soul.

    PubMed

    Idris, Zamzuri

    2014-07-01

    Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".

  7. Skin rubdown with a dry towel, 'kanpu-masatsu' is an aerobic exercise affecting body temperature, energy production, and the immune and autonomic nervous systems.

    PubMed

    Watanabe, Mayumi; Takano, Osamu; Tomiyama, Chikako; Matsumoto, Hiroaki; Kobayashi, Takahiro; Urahigashi, Nobuatsu; Urahigashi, Nobuatsu; Abo, Toru

    2012-01-01

    Skin rubdown using a dry towel (SRDT) to scrub the whole body is a traditional therapy for health promotion. To investigate its mechanism, 24 healthy male volunteers were studied. Body temperature, pulse rate, red blood cells (RBCs), serum levels of catecholamines and cortisol, blood gases (PO(2), sO(2), PCO(2) and pH), lactate and glucose, and the ratio and number of white blood cells (WBCs) were assessed before and after SRDT. After SRDT, pulse rate and body temperature were increased. PO(2), sO(2) and pH were also increased and there was no Rouleaux formation by RBCs. Lactate level tended to increase, whereas that of glucose did not. Adrenaline and noradrenaline levels increased, indicating sympathetic nerve (SN) dominance with increase in granulocytes. WBC number and ratio were divided into two groups according to granulocyte ratio (≤ or < 60%) before SRDT: a normal group and a SN group. Only in the SN group did the granulocyte ratio decrease and the lymphocyte ratio and number increase after SRDT. It is suggested that SRDT is a mild aerobic, systemic exercise that might affect the immune system via the autonomic nervous system.

  8. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.

  9. Risk of central nervous system defects in offspring of women with and without mental illness.

    PubMed

    Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie

    2018-02-22

    We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.

  10. STP Position Paper: Recommended Practices for Sampling and Processing the Nervous System (Brain, Spinal Cord, Nerve, and Eye) during Nonclinical General Toxicity Studies

    EPA Science Inventory

    The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...

  11. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  12. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  13. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  14. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  15. 76 FR 77895 - Schedules of Controlled Substances: Placement of Ezogabine Into Schedule V

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... ester, is a new chemical substance with central nervous system depressant properties and is classified... nervous system as an anticonvulsant and the potential side effects of the drug therein, warrant closer... the central nervous system is alone not enough to merit its inclusion into Schedule IV of the CSA, nor...

  16. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  17. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  18. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  19. 78 FR 19499 - Request for Information: The National Toxicology Program Requests Information On Assays and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... means adverse outcomes to the nervous system resulting from exposure during any life stage. Special... critical to the development and/or function of the nervous system. The NTP is also interested in receiving... to act as toxicants to the developing or adult nervous systems. Request for Information 1...

  20. [Process in menstrual blood-derived mesenchymal stem cells for treatment of central nervous system diseases].

    PubMed

    Liu, Mengmeng; Cheng, Xinran; Li, Kaikai; Xu, Mingrui; Wu, Yongji; Wang, Mengli; Zhang, Qianru; Yan, Wenyong; Luo, Chang; Zhao, Shanting

    2018-05-25

    Stem cell research has become a frontier in the field of life sciences, and provides an ideal model for exploring developmental biology problems such as embryogenesis, histiocytosis, and gene expression regulation, as well as opens up new doors for clinical tissue defective and inheritance diseases. Among them, menstrual blood-derived stem cells (MenSCs) are characterized by wide source, multi-directional differentiation potential, low immune rejection characteristics. Thus, MenSCs can achieve individual treatment and have the most advantage of the clinical application. The central nervous system, including brain and spinal cord, is susceptible to injury. And lethality and morbidity of them tops the list of all types of trauma. Compared to peripheral nervous system, recovery of central nervous system after damage remains extremely hard. However, the treatment of stem cells, especially MenSCs, is expected to solve this problem. Therefore, biological characteristics of MenSCs and their treatment in the respect of central nervous system diseases have been reviewed at home and abroad in recent years, so as to provide reference for the treatment of central nervous system diseases.

  1. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  2. Attenuated or absent HRV response to postural change in subjects with primary insomnia.

    PubMed

    Jiang, Xiao-ling; Zhang, Zheng-gang; Ye, Cui-ping; Lei, Ying; Wu, Lei; Zhang, Ying; Chen, Yuan-yuan; Xiao, Zhong-ju

    2015-03-01

    Previous studies have compared rest heart rate variability (HRV) between insomniacs and good sleepers, but the results have not been consistent. The altered HRV behavior in response to postural change was considered useful as another sensitive measure for evaluating the autonomic nervous function, however, to our knowledge, no study was found using HRV response to postural change in primary insomnia. Our study aimed to examine HRV response to postural change maneuver (PCM) in both primary insomniacs and controls between 22 and 39 years of age to gain insights into the characteristics of the autonomic nervous system (ANS) function in primary insomnia subjects. HRV was recorded for 5 min at seated rest, and then, the subjects quickly stood up from a seated position in up to 3s and remained standing for 15 min. HRV was recorded at the following times: seated rest and 0-5 min, 5-10 min and 10-15 min in the standing position. In primary insomnia subjects, attenuated or absent HRV response to postural change was identified, the increase in LF/HF ratio and the decrease in HF and SD1 from seated to standing were much slower than in the normal controls. In conclusion, this study provided evidence of the possible bi-directional relationship between insomnia and autonomic nervous system (ANS) function, which will move us closer to developing a new sensitive method for measuring autonomic impairment and early sympathetic damage in primary insomnia subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  4. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  5. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic leukemia are due to other etiologies in approximately 80% of cases. Analysis of the cerebrospinal fluid has high sensitivity but limited specificity to distinguish clinically significant chronic lymphocytic leukemia involvement from other etiologies. Copyright© Ferrata Storti Foundation.

  6. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development.

  7. Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria).

    PubMed

    Piraino, Stefano; Zega, Giuliana; Di Benedetto, Cristiano; Leone, Antonella; Dell'Anna, Alessandro; Pennati, Roberta; Carnevali, Daniela Candia; Schmid, Volker; Reichert, Heinrich

    2011-07-01

    The organization of the cnidarian nervous system has been widely documented in polyps and medusae, but little is known about the nervous system of planula larvae, which give rise to adult forms after settling and metamorphosis. We describe histological and cytological features of the nervous system in planulae of the hydrozoan Clava multicornis. These planulae do not swim freely in the water column but rather crawl on the substrate by means of directional, coordinated ciliary movement coupled to lateral muscular bending movements associated with positive phototaxis. Histological analysis shows pronounced anteroposterior regionalization of the planula's nervous system, with different neural cell types highly concentrated at the anterior pole. Transmission electron microscopy of planulae shows the nervous system to be unusually complex, with a large, orderly array of sensory cells at the anterior pole. In the anterior half of the planula, the basiectodermal plexus of neurites forms an extensive orthogonal network, whereas more posteriorly neurites extend longitudinally along the body axis. Additional levels of nervous system complexity are uncovered by neuropeptide-specific immunocytochemistry, which reveals distinct neural subsets having specific molecular phenotypes. Together these observations imply that the nervous system of the planula of Clava multicornis manifests a remarkable level of histological, cytological, and functional organization, the features of which may be reminiscent of those present in early bilaterian animals. Copyright © 2011 Wiley-Liss, Inc.

  8. [Thyroid hormones and the development of the nervous system].

    PubMed

    Mussa, G C; Zaffaroni, M; Mussa, F

    1990-09-01

    The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa)

    PubMed Central

    2016-01-01

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. PMID:26598729

  10. Olivopontocerebellar atrophy

    MedlinePlus

    ... degeneration; Multiple system atrophy cerebellar predominance; MSA-C Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...

  11. Pomalidomide and Dexamethasone in Treating Patients With Relapsed or Refractory Primary Central Nervous System Lymphoma or Newly Diagnosed or Relapsed or Refractory Intraocular Lymphoma

    ClinicalTrials.gov

    2017-08-28

    B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Central Nervous System Lymphoma; Intraocular Lymphoma; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Recurrent Adult Diffuse Large Cell Lymphoma; Retinal Lymphoma

  12. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    EPA Science Inventory

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  13. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...

  14. Results from a Survey of Current Practices for Sampling of Nervous System in Rodents and Non-rodents in General Toxicity Studies

    EPA Science Inventory

    A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...

  15. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2012-07-01

    the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the

  16. Glossary

    MedlinePlus

    ... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...

  17. The complex simplicity of the brittle star nervous system.

    PubMed

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  18. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy

    PubMed Central

    2013-01-01

    Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414

  19. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    PubMed

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  20. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count < 50 x 109/L (p-value = 0.0008). There was no difference in cumulative central nervous system relapse (isolated or combined) for the other analyzed variables: immunophenotype, traumatic lumbar puncture, interval between diagnosis and first lumbar puncture and place where the procedure was performed. Conclusions These results suggest that a leukocyte count > 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  1. Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children

    PubMed Central

    Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto

    2012-01-01

    Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735

  2. Multiple Concurrent Visual-Motor Mappings: Implications for Models of Adaptation

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Welch, Robert B.

    1994-01-01

    Previous research on adaptation to visual-motor rearrangement suggests that the central nervous system represents accurately only 1 visual-motor mapping at a time. This idea was examined in 3 experiments where subjects tracked a moving target under repeated alternations between 2 initially interfering mappings (the 'normal' mapping characteristic of computer input devices and a 108' rotation of the normal mapping). Alternation between the 2 mappings led to significant reduction in error under the rotated mapping and significant reduction in the adaptation aftereffect ordinarily caused by switching between mappings. Color as a discriminative cue, interference versus decay in adaptation aftereffect, and intermanual transfer were also examined. The results reveal a capacity for multiple concurrent visual-motor mappings, possibly controlled by a parametric process near the motor output stage of processing.

  3. Sonographic study of the development of fetal corpus callosum in a Chinese population.

    PubMed

    Zhang, Hai-chun; Yang, Jie; Chen, Zhong-ping; Ma, Xiao-yan

    2009-02-01

    The observation of fetal corpus callosum (CC) is important for the prenatal sonographic assessment of fetal central nervous system development. The aim of this study was to investigate the development of normal Chinese fetal CC. CC measurements were performed using high-resolution transabdominal sonography on 622 Chinese fetuses between 16 and 39 weeks' gestation. The correlation between CC size and gestational age was investigated. The fetal CC length increased in a linear fashion during pregnancy. The length of the CC as a function of gestational age was expressed by the following regression equation: length (mm) = -9.567 + 1.495 x gestational age (weeks) (r = 0.932, p < 0.001). Knowledge of normal CC appearance may help identify developmental anomalies and enable accurate prenatal counseling. (c) 2008 Wiley Periodicals, Inc.

  4. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Lipton, Stuart A.

    2015-01-01

    At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. In contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. Here we highlight protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent posttranslational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics. PMID:26707925

  5. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development.

    PubMed

    Jin, Yunho; Choi, Jeonghyun; Won, Jinyoung; Hong, Yonggeun

    2018-01-18

    The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.

  6. Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates.

    PubMed

    Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A

    2015-07-01

    Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.

  7. Beneficial Effects of X-Irradiation on Recovery of lesioned Mammalian Central Nervous Tissue

    NASA Astrophysics Data System (ADS)

    Kalderon, Nurit; Alfieri, Alan A.; Fuks, Zvi

    1990-12-01

    We examined the potential of x-irradiation, at clinical dose levels, to manipulate the cellular constituents and thereby change the consequences of transection injury to adult mammalian central nervous tissue (rat olfactory bulb). Irradiation resulted in reduction or elimination of reactive astrocytes at the site of incision provided that it was delivered within a defined time window postinjury. Under conditions optimal for the elimination of gliosis (15-18 days postinjury), irradiation of severed olfactory bulbs averted some of the degenerative consequences of lesion. We observed that irradiation was accompanied by prevention of tissue degeneration around the site of lesion, structural healing with maintenance of the typical cell lamination, and rescue of some axotomized mitral cells (principal bulb neurons). Thus radiation resulted in partial preservation of normal tissue morphology. It is postulated that intrusive cell populations are generated in response to injury and reactive astrocytes are one such group. Our results suggest that selective elimination of these cells by irradiation enabled some of the regenerative processes that are necessary for full recovery to maintain their courses. The cellular targets of these cells, their modes of intervention in recovery, and the potential role of irradiation as a therapeutic modality for injured central nervous system are discussed.

  8. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system.

    PubMed

    Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E

    2016-03-01

    The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development. © 2016 Wiley Periodicals, Inc.

  9. Evolution of the Human Nervous System Function, Structure, and Development.

    PubMed

    Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad

    2017-07-13

    The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Functional Subnetwork Approach to Designing Synthetic Nervous Systems That Control Legged Robot Locomotion

    PubMed Central

    Szczecinski, Nicholas S.; Hunt, Alexander J.; Quinn, Roger D.

    2017-01-01

    A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot. PMID:28848419

  11. Primary central nervous system B-cell lymphoma in a young dog

    PubMed Central

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372

  12. Spraguea (Microsporida: Spraguidae) infections in the nervous system of the Japanese anglerfish, Lophius litulon (Jordan), with comments on transmission routes and host pathology.

    PubMed

    Freeman, M A; Yokoyama, H; Osada, A; Yoshida, T; Yamanobe, A; Ogawa, K

    2011-06-01

    Anglerfish from the genus Lophius are a globally important commercial fishery. The microsporidian Spraguea infects the nervous system of these fish resulting in the formation of large, visible parasitic xenomas. Lophius litulon from Japan were investigated to evaluate the intensity and distribution of Spraguea xenomas throughout the nervous system and to assess pathogenicity to the host and possible transmission routes of the parasite. Spraguea infections in L. litulon had a high prevalence; all fish over 403 mm in standard length being infected, with larger fish usually more heavily infected than smaller fish. Seventy percent of all fish examined had some gross visible sign of infection. The initial site of development is the supramedullary cells on the dorsal surface of the medulla oblongata, where all infected fish have parasitic xenomas. As the disease progresses, a number of secondary sites typically become infected such as the spinal, trigeminal and vagus nerves. Fish with infection in the vagus nerve bundles often have simultaneous sites of infection, in particular the spinal nerves and along the ventral nerve towards the urinary bladder. Advanced vagus nerve infections sometimes form xenomas adjacent to kidney tissue. Spraguea DNA was amplified from the contents of the urinary bladders of two fish, suggesting that microsporidian spores may be excreted in the urine. We conclude that supramedullary cells on the hindbrain are the primary site of infection, which is probably initiated at the cutaneous mucous glands where supramedullary cells are known to extend their peripheral axons. The prevalence of Spraguea infections in L. litulon was very high, and infections often extremely heavy; however, no associated pathogenicity was observed, and heavily infected fish were otherwise normal. © 2011 Blackwell Publishing Ltd.

  13. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models.

    PubMed Central

    Rice, D; Barone, S

    2000-01-01

    Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 12 Figure 14 Figure 16 Figure 17 PMID:10852851

  14. [Stress and autonomic dysregulation in patients with fibromyalgia syndrome].

    PubMed

    Friederich, H-C; Schellberg, D; Mueller, K; Bieber, C; Zipfel, S; Eich, W

    2005-06-01

    The aim of the present study was to evaluate to what extent the orthostatic dysregulation of FMS patients can be attributed primarily to reduced baroreceptor-mediated activation of the sympathetic nervous system and whether a hyporeactive sympathetic nervous system can also be confirmed for mental stress. A total of 28 patients with primary FMS were examined and compared with 15 healthy subjects. Diagnostic investigations of the autonomic nervous system were based on measuring HRV in frequency range and assessing spontaneous baroreflex sensitivity (sBRS) under mental stress and passive orthostatism. Both under orthostatic and mental stress FMS patients exhibited reduced activation of the sympathetic nervous system as measured by the spectral power of HRV in the low-frequency range and the mean arterial blood pressure or heart rate. The present study provided no indications for dysregulation of sBRS. The results obtained confirm the hypothesis of a hyporeactive stress system in FMS patients for both peripherally and centrally mediated stimulation of the sympathetic nervous system.

  15. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  16. What have we learned about GPER function in physiology and disease from knockout mice?

    PubMed Central

    Prossnitz, Eric R.; Hathaway, Helen J.

    2015-01-01

    Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910

  17. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    PubMed

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  18. Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations.

    PubMed

    Carlsson, G; van't Hooft, I; Melin, M; Entesarian, M; Laurencikas, E; Nennesmo, I; Trebińska, A; Grzybowska, E; Palmblad, J; Dahl, N; Nordenskjöld, M; Fadeel, B; Henter, J-I

    2008-10-01

    Homozygous mutations in the HAX1 gene were recently identified in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Our observations suggested that these patients also develop neurological and neuropsychological symptoms. Detailed clinical studies and mutation analyses were performed in the surviving patients belonging to the Kostmann kindred and in two patients not related to this family, along with studies of HAX1 splice variant expression in normal human tissues. Five of six Kostmann family patients and one other patient from northern Sweden harboured homozygous HAX1 mutations (568C-->T, Q190X) and one carried a heterozygous ELA2 gene mutation. One Swedish patient of Kurdish extraction carried alternative homozygous HAX1 mutations (131G-->A, W44X). All the three patients with Q190X mutations who were alive and available for evaluation developed neurological disease with decreased cognitive function, and three of four patients who reached 10 years developed epilepsy. In contrast, the patients with the ELA2 and W44X HAX1 mutations, respectively, showed no obvious neurological abnormalities. Moreover, two alternative HAX1 splice variants were identified in normal human tissues, including the brain. Both transcripts contained exon 5, harbouring the Q190X mutation, whereas the 5' end of exon 2 containing the W44X mutation was spliced out from the second transcript. We describe neurological and neuropsychological abnormalities for the first time in Kostmann disease patients. These central nervous system symptoms appear to be associated with specific HAX1 mutations.

  19. A Sympathetic Neuron Autonomous Role for Egr3-Mediated Gene Regulation in Dendrite Morphogenesis and Target Tissue Innervation

    PubMed Central

    Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.

    2013-01-01

    Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373

  20. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Hsu, Yun-Wei A.; Cox, Timothy C.; Turner, Eric E.

    2012-01-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  1. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    PubMed

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  2. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    PubMed

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  3. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  4. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  5. A map of terminal regulators of neuronal identity in Caenorhabditis elegans

    PubMed Central

    2016-01-01

    Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279

  6. Developing and applying the adverse outcome pathway ...

    EPA Pesticide Factsheets

    To support a paradigm shift in regulatory toxicology testing and risk assessment, the Adverse Outcome Pathway (AOP) concept has recently been proposed. This concept is similar to that for Mode of Action (MOA), describing a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis to predict effects for structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed.A variety of cellular and molecular processes are known to be critical to normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of principles of the description and assessment of MOA and AOPs, examples of adverse out

  7. Ginseng leaf-stem: bioactive constituents and pharmacological functions

    PubMed Central

    Wang, Hongwei; Peng, Dacheng; Xie, Jingtian

    2009-01-01

    Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852

  8. [Bilateral optic neuropathy and non-Hodkin's lymphoma].

    PubMed

    El Kettani, A; Lamari, H; Lahbil, D; Rais, L; Zaghloul, K

    2006-01-01

    While ocular lesion is commonly known in lymphoma, optic neuropathy is very rare : 1,3% of lymphomas affecting the central nervous systems. Authors report the case of a 75 year old patient treated in the haematology department for 8 years, for a large cell B phenotype stage IV lymphoma for which he received 7 chemotherapy courses (CHOP protocol). After a 4 year remission period, he presented a relapse with a rapid progressive bilateral impairment of visual acuity observed for a week before his admission. The ophthalmologic exam revealed no light perception and no afferent reflex on the right eye. There was light perception and weak afferent reflex on the left eye. The anterior segment was normal on both eyes and fundus examination revealed a bilateral stage I papillar oedema. The general exam showed a right facial palsy and an impairment of general condition. The orbital CT scan revealed a significant thickening of both optic nerves caused by lymphomatous infiltration. A chemotherapy with highly dosed IV and intrathecal methotrexate was performed. the optic neuropathy is usually associated with a generalized lymphoma with central nervous system involvement, but sometimes can precede the systemic spread of the disease. Apart from infiltration, the optic nerve can be compressed by an intracranial or orbital tumor. The optic neuropathy can also be caused by lymphomatous leptomeningitis.

  9. Normalization of white matter intensity on T1-weighted images of patients with acquired central nervous system demyelination.

    PubMed

    Ghassemi, Rezwan; Brown, Robert; Narayanan, Sridar; Banwell, Brenda; Nakamura, Kunio; Arnold, Douglas L

    2015-01-01

    Intensity variation between magnetic resonance images (MRI) hinders comparison of tissue intensity distributions in multicenter MRI studies of brain diseases. The available intensity normalization techniques generally work well in healthy subjects but not in the presence of pathologies that affect tissue intensity. One such disease is multiple sclerosis (MS), which is associated with lesions that prominently affect white matter (WM). To develop a T1-weighted (T1w) image intensity normalization method that is independent of WM intensity, and to quantitatively evaluate its performance. We calculated median intensity of grey matter and intraconal orbital fat on T1w images. Using these two reference tissue intensities we calculated a linear normalization function and applied this to the T1w images to produce normalized T1w (NT1) images. We assessed performance of our normalization method for interscanner, interprotocol, and longitudinal normalization variability, and calculated the utility of the normalization method for lesion analyses in clinical trials. Statistical modeling showed marked decreases in T1w intensity differences after normalization (P < .0001). We developed a WM-independent T1w MRI normalization method and tested its performance. This method is suitable for longitudinal multicenter clinical studies for the assessment of the recovery or progression of disease affecting WM. Copyright © 2014 by the American Society of Neuroimaging.

  10. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).

    PubMed

    Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas

    2016-01-05

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.

  11. The Drosophila imd signaling pathway.

    PubMed

    Myllymäki, Henna; Valanne, Susanna; Rämet, Mika

    2014-04-15

    The fruit fly, Drosophila melanogaster, has helped us to understand how innate immunity is activated. In addition to the Toll receptor and the Toll signaling pathway, the Drosophila immune response is regulated by another evolutionarily conserved signaling cascade, the immune deficiency (Imd) pathway, which activates NF-κB. In fact, the Imd pathway controls the expression of most of the antimicrobial peptides in Drosophila; thus, it is indispensable for normal immunity in flies. In this article, we review the current literature on the Drosophila Imd pathway, with special emphasis on its role in the (patho)physiology of different organs. We discuss the systemic response, as well as local responses, in the epithelial and mucosal surfaces and the nervous system.

  12. CSF oligoclonal banding - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...

  13. Macroglial cells of the teleost central nervous system: a survey of the main types.

    PubMed

    Cuoghi, Barbara; Mola, Lucrezia

    2009-12-01

    Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a "simple" but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.

  14. Acute Moderate Exercise Does Not Further Alter the Autonomic Nervous System Activity in Patients with Sickle Cell Anemia

    PubMed Central

    Waltz, Xavier; Sinnapah, Stéphane; Lemonne, Nathalie; Etienne-Julan, Maryse; Soter, Valérie; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Barthélémy, Jean-Claude; Connes, Philippe

    2014-01-01

    A decreased global autonomic nervous system (ANS) activity and increased sympathetic activation in patients with sickle cell anemia (SCA) seem to worsen the clinical severity and could play a role in the pathophysiology of the disease, notably by triggering vaso-occlusive crises. Because exercise challenges the ANS activity in the general population, we sought to determine whether a short (<15 min) and progressive moderate exercise session conducted until the first ventilatory threshold had an effect on the ANS activity of a group of SCA patients and a group of healthy individuals (CONT group). Temporal and spectral analyses of the nocturnal heart rate variability were performed before and on the 3 nights following the exercise session. Standard deviation of all normal RR intervals (SDNN), total power, low frequencies (LF) and high frequencies powers (HF) were lower but LF/HF was higher in SCA patients than in the CONT group. Moderate exercise did not modify ANS activity in both groups. In addition, no adverse clinical events occurred during the entire protocol. These results imply that this kind of short and moderate exercise is not detrimental for SCA patients. PMID:24740295

  15. Phospholipase D-mediated hypersensitivity at central synapses is associated with abnormal behaviours and pain sensitivity in rats exposed to prenatal stress.

    PubMed

    Sun, Liting; Gooding, Hayley L; Brunton, Paula J; Russell, John A; Mitchell, Rory; Fleetwood-Walker, Sue

    2013-11-01

    Adverse events at critical stages of development can lead to lasting dysfunction in the central nervous system (CNS). To seek potential underlying changes in synaptic function, we used a newly developed protocol to measure alterations in receptor-mediated Ca(2+) fluorescence responses of synaptoneurosomes, freshly isolated from selected regions of the CNS concerned with emotionality and pain processing. We compared adult male controls and offspring of rats exposed to social stress in late pregnancy (prenatal stress, PS), which showed programmed behavioural changes indicating anxiety, anhedonia and pain hypersensitivity. We found corresponding increases, in PS rats compared with normal controls, in responsiveness of synaptoneurosomes from frontal cortex to a glutamate receptor (GluR) agonist, and from spinal cord to activators of nociceptive afferents. Through a combined pharmacological and biochemical strategy, we found evidence for a role of phospholipase D1 (PLD1)-mediated signalling, that may involve 5-HT2A receptor (5-HT2AR) activation, at both levels of the nervous system. These changes might participate in underpinning the enduring alterations in behaviour induced by PS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development.

    PubMed

    Nagy, Nandor; Barad, Csilla; Hotta, Ryo; Bhave, Sukhada; Arciero, Emily; Dora, David; Goldstein, Allan M

    2018-05-08

    The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins. © 2018. Published by The Company of Biologists Ltd.

  17. Central nervous system vasculitis after starting methimazole in a woman with Graves' disease.

    PubMed

    Tripodi, Pier Francesco; Ruggeri, Rosaria M; Campennì, Alfredo; Cucinotta, Mariapaola; Mirto, Angela; Lo Gullo, Renato; Baldari, Sergio; Trimarchi, Francesco; Cucinotta, Domenico; Russo, Giuseppina T

    2008-09-01

    Graves' disease (GD), a prototypical autoimmune disorder, is associated with other autoimmune diseases, including vasculitis. Antithyroid drugs, despite their postulated immunosuppressive effects, may cause several autoimmune disorders. Here we describe the first patient with central nervous system (CNS) vasculitis that developed shortly after the start of methimazole (MMI) treatment for GD. CNS vasculitis was suspected on the basis of the clinical features and neurologic examination, showing a reinforcement of deep reflexes, especially of the left knee and Achilles reflexes. The diagnosis was confirmed by a brain magnetic resonance imaging (MRI), which showed some hyperintensive spots in the subcortical substantia alba and in the parietal area bilaterally, and by a single-photon emission computed tomography (SPECT) imaging, which showed a nonhomogenous distribution of the blood flow in the brain, with a reduced perfusion on the left side of the frontotemporal and parietal regions, and on the right side of the frontotemporal area. MMI was stopped before total thyroidectomy, and symptoms resolved in the next 5 weeks. Six months after MMI was stopped, the brain MRI and SPECT had become normal. To our knowledge, this is the first report of CNS vasculitis related to MMI therapy.

  18. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    PubMed Central

    Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian

    2018-01-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:29375299

  19. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration.

    PubMed

    Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben

    2014-05-01

    Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.

  20. Similar effects of substance P on learning and memory function between hippocampus and striatal marginal division

    PubMed Central

    Yu, Yan; Zeng, Changchun; Shu, Siyun; Liu, Xuemei; Li, Chuhua

    2014-01-01

    Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal division of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neurokinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Independent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addition to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum. PMID:25206901

  1. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    PubMed

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD. © 2015 Wiley Periodicals, Inc.

  2. [Hypertensive crisis in children and adolescents].

    PubMed

    Skrzypczyk, Piotr; Roszkowska-Blaim, Maria; Daniel, Maria

    2013-12-01

    Hypertensive crisis is a sudden rise in blood pressure above 99 c. for sex, age and height +5 mm Hg. Depending on patient's symptoms, hypertensive crisis can be divided into hypertensive emergency severe arterial hypertension with target organ insufficiency and/r damage (central nervous system, heart, kidney, eye), and hypertensive urgency - severe arterial hypertension without target organ insufficiency and damage with non-specific symptoms like: headaches, vertigo, nasal bleeding, nausea, and vomiting. The most common causes of hypertensive crisis in neonates and infants are renal artery thrombosis, broncho-pulmonary dysplasia, and coarctation of aorta; in older children - kidney diseases and renal artery stenosis. In neonates and infants symptoms of cardiac failure predominate, whereas in older children symptoms from central nervous system (headaches, nausea, vomiting, changes in level of consciousness, seizures, focal deficits). Hypertensive crisis is treated with fast- and short-acting medications; 25% reduction of blood pressure within first 8 hours is recommended, with complete normalization within 24-48 hours. Hypertensive emergency should be treated with intravenous agents (labetalol, hydralazine, nicardipine, and sodium nitroprusside), hypertensive urgency with intravenous or oral agents like nifedipine, isradipine, clonidine and minoxidil. Nicardipine is a first-choice medication in neonates.

  3. Protective immune responses against West Nile virus are primed by distinct complement activation pathways.

    PubMed

    Mehlhop, Erin; Diamond, Michael S

    2006-05-15

    West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.

  4. Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine

    DTIC Science & Technology

    2017-06-01

    treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in

  5. Physiological and Mood Changes Induced by Exercise Withdrawal

    DTIC Science & Technology

    2004-01-01

    parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an

  6. The biochemical, nanomechanical and chemometric signatures of brain cancer

    NASA Astrophysics Data System (ADS)

    Abramczyk, Halina; Imiela, Anna

    2018-01-01

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n = 5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm- 1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99 ± 0.026) than that found in non-tumor brain tissue, which is 1.456 ± 0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7 kPa, and the mean of 27.16 kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development.

  7. Exposure to air pollution near a steel plant is associated with reduced heart rate variability: a randomised crossover study.

    PubMed

    Shutt, Robin H; Kauri, Lisa Marie; Weichenthal, Scott; Kumarathasan, Premkumari; Vincent, Renaud; Thomson, Errol M; Liu, Ling; Mahmud, Mamun; Cakmak, Sabit; Dales, Robert

    2017-01-28

    Epidemiological studies have shown that as ambient air pollution (AP) increases the risk of cardiovascular mortality also increases. The mechanisms of this effect may be linked to alterations in autonomic nervous system function. We wished to examine the effects of industrial AP on heart rate variability (HRV), a measure of subtle changes in heart rate and rhythm representing autonomic input to the heart. Sixty healthy adults were randomized to spend five consecutive 8-h days outdoors in one of two locations: (1) adjacent to a steel plant in the Bayview neighbourhood in Sault Ste Marie Ontario or (2) at a College campus, several kilometers from the plant. Following a 9-16 day washout period, participants spent five consecutive days at the other site. Ambient AP levels and ambulatory electrocardiogram recordings were collected daily. HRV analysis was undertaken on a segment of the ambulatory ECG recording during a 15 min rest period, near the end of the 8-h on-site day. Standard HRV parameters from both time and frequency domains were measured. Ambient AP was measured with fixed site monitors at both sites. Statistical analysis was completed using mixed-effects models. Compared to the College site, HRV was statistically significantly reduced at the Bayview site by 13% (95%CI 3.6,19.2) for the standard deviation of normal to normal, 8% (95%CI 0.1, 4.9) for the percent normal to normal intervals differing by more than 50 ms, and 15% (95%CI 74.9, 571.2) for low frequency power. Levels of carbon monoxide, sulphur dioxide, nitrogen dioxide, and fine and ultrafine particulates were slightly, but statistically significantly, elevated at Bayview when compared to College. Interquartile range changes in individual air pollutants were significantly associated with reductions in HRV measured on the same day. The patterns of effect showed a high degree of consistency, with nearly all pollutants significantly inversely associated with at least one measure of HRV. The significant associations between AP and changes in HRV suggest that ambient AP near a steel plant may impact autonomic nervous system control of the heart.

  8. RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS

    PubMed Central

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2014-01-01

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. PMID:23623823

  9. Recent advances in quantitative neuroproteomics.

    PubMed

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2013-06-15

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. Copyright © 2013. Published by Elsevier Inc.

  10. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less

  11. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure

    PubMed Central

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E.; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M.; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5–19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level. PMID:26928125

  12. Relationships between Head Circumference, Brain Volume and Cognition in Children with Prenatal Alcohol Exposure.

    PubMed

    Treit, Sarah; Zhou, Dongming; Chudley, Albert E; Andrew, Gail; Rasmussen, Carmen; Nikkel, Sarah M; Samdup, Dawa; Hanlon-Dearman, Ana; Loock, Christine; Beaulieu, Christian

    2016-01-01

    Head circumference is used together with other measures as a proxy for central nervous system damage in the diagnosis of fetal alcohol spectrum disorders, yet the relationship between head circumference and brain volume has not been investigated in this population. The objective of this study is to characterize the relationship between head circumference, brain volume and cognitive performance in a large sample of children with prenatal alcohol exposure (n = 144) and healthy controls (n = 145), aged 5-19 years. All participants underwent magnetic resonance imaging to yield brain volumes and head circumference, normalized to control for age and sex. Mean head circumference, brain volume, and cognitive scores were significantly reduced in the prenatal alcohol exposure group relative to controls, albeit with considerable overlap between groups. Males with prenatal alcohol exposure had reductions in all three measures, whereas females with prenatal alcohol exposure had reduced brain volumes and cognitive scores, but no difference in head circumference relative to controls. Microcephaly (defined here as head circumference ≤ 3rd percentile) occurred more often in prenatal alcohol exposed participants than controls, but 90% of the exposed sample had head circumferences above this clinical cutoff indicating that head circumference is not a sensitive marker of prenatal alcohol exposure. Normalized head circumference and brain volume were positively correlated in both groups, and subjects with very low head circumference typically had below-average brain volumes. Conversely, over half of the subjects with very low brain volumes had normal head circumferences, which may stem from differential effects of alcohol on the skeletal and nervous systems. There were no significant correlations between head circumference and any cognitive score. These findings confirm group-level reductions in head circumference and increased rates of microcephaly in children with prenatal alcohol exposure, but raise concerns about the predictive value of this metric at an individual-subject level.

  13. Severe Methanol Poisoning with Supralethal Serum Formate Concentration: A Case Report

    PubMed Central

    Nurieva, Olga; Kotikova, Katerina

    2015-01-01

    Objective To present a case of survival without visual and central nervous system sequelae at a formate concentration of twice the reported lethal level. Clinical Presentation and Intervention This was a case of a 33-year-old man who ingested 1 liter of a toxic mixture of methanol and ethanol. Upon admission, he presented with anxiety, tachycardia and hypertension and had a serum formate level of 1,400 mg/l (normal range 0.9–2.1 mg/l), a methanol level of 806 mg/l (normal range 2–30 mg/l), an undetectable ethanol concentration and a normal lactate level. A 10% solution of ethanol and folinic acid was administered intravenously and two 8-hour sessions of intermittent hemodialysis were performed. The patient was discharged on the fifth day without sequelae of poisoning. The follow-up examinations 3 months and 2 years later revealed no damage to the basal ganglia. The patient had normal visual-evoked potential and findings on optical coherence tomography. The genetic analysis revealed a rare minor allele for the gene coding CYP2E1 enzyme of the microsomal ethanol oxidizing system. Conclusion The patient survived acute methanol poisoning without long-term sequelae despite a high serum level of formic acid upon admission. PMID:26380973

  14. Determining Optimal Post-Stroke Exercise (DOSE)

    ClinicalTrials.gov

    2018-02-13

    Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases

  15. Central Nervous System Infections in Denmark

    ClinicalTrials.gov

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  16. [Molecular genetics of familial tumour syndromes of the central nervous system].

    PubMed

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  17. Thermal Threshold: Research Study on Small Fiber Dysfunction in Distal Diabetic Polyneuropathy

    PubMed Central

    Jimenez-Cohl, Pedro; Grekin, Carlos; Leyton, Cristian; Vargas, Claudio; Villaseca, Roberto

    2012-01-01

    Objective The most commonly used technique for diagnosis of diabetic neuropathy (DN) is nervous conduction (NC). Our hypothesis is that the use of the thermal threshold (TT) technique to evaluate small fiber damage, which precedes large fiber damage, could enable earlier diagnosis and diminish false negatives. Research Design and Methods The study involved 70 asymptomatic patients with type 2 diabetes mellitus (T2DM) all being treated with oral hypoglycemic medication, and having negative metabolic control levels with glycosylated hemoglobin A1c greater than 7% and less than 8%. Diabetic neuropathy was their only evident complication. All other complications or other causes of neuropathy were discarded. Their time of evolution was 1 to 48 months since date of diagnosis of diabetes. Both thermal threshold and sensory and motor nervous conduction were determined in upper and lower limbs. Results Nervous conduction was found normal in 81% and altered in 19% of patients (large fiber neuropathy). Thermal threshold was normal in 57% and altered in 43% of patients (small fiber neuropathy). In those with normal TTs, no case with an altered NC was found (p < 0.001). Patients with altered TTs could have normal (57%) or altered NC (43%). Thus, NC showed a high frequency of false negatives for DN (57% of 30 cases). The frequency of small fiber neuropathy found with the TT test was higher than that of large fiber neuropathy found with the NC test (p < 0.001) and was found at an earlier age. Conclusions The TT test demonstrated a higher frequency of neuropathy than the NC test in clinically asymptomatic T2DM patients. We suggest that small fiber should be studied before large fiber function to diagnosis distal and symmetrical DN. PMID:22401337

  18. A history of the autonomic nervous system: part I: from Galen to Bichat.

    PubMed

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.

  19. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  20. Computerized system for assessing heart rate variability.

    PubMed

    Frigy, A; Incze, A; Brânzaniuc, E; Cotoi, S

    1996-01-01

    The principal theoretical, methodological and clinical aspects of heart rate variability (HRV) analysis are reviewed. This method has been developed over the last 10 years as a useful noninvasive method of measuring the activity of the autonomic nervous system. The main components and the functioning of the computerized rhythm-analyzer system developed by our team are presented. The system is able to perform short-term (maximum 20 minutes) time domain HRV analysis and statistical analysis of the ventricular rate in any rhythm, particularly in atrial fibrillation. The performances of our system are demonstrated by using the graphics (RR histograms, delta RR histograms, RR scattergrams) and the statistical parameters resulted from the processing of three ECG recordings. These recordings are obtained from a normal subject, from a patient with advanced heart failure, and from a patient with atrial fibrillation.

Top