Sample records for normal operating scenario

  1. Naturalistic Decision Making in Power Grid Operations: Implications for Dispatcher Training and Usability Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Podmore, Robin

    2008-11-17

    The focus of the present study is on improved training approaches to accelerate learning and improved methods for analyzing effectiveness of tools within a high-fidelity power grid simulated environment. A theory-based model has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The theoretical foundation for the method is based on the concepts of situation awareness, the methods of cognitive task analysis, and the naturalistic decision making (NDM) approach of Recognition Primed Decision Making. The method has been systematically explored and refined as part of a capability demonstration ofmore » a high-fidelity real-time power system simulator under normal and emergency conditions. To examine NDM processes, we analyzed transcripts of operator-to-operator conversations during the simulated scenario to reveal and assess NDM-based performance criteria. The results of the analysis indicate that the proposed framework can be used constructively to map or assess the Situation Awareness Level of the operators at each point in the scenario. We can also identify the mental models and mental simulations that the operators employ at different points in the scenario. This report documents the method, describes elements of the model, and provides appendices that document the simulation scenario and the associated mental models used by operators in the scenario.« less

  2. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    PubMed

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  4. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  5. Long-pulse stability limits of the ITER baseline scenario

    DOE PAGES

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and I p/aB T, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, B N≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, f GW 0.42 – 0.70 (the ITER design is f GW ≈ 0.8).more » The evolution of the current profile, using internal inductance (l i) as an indicator, is found to produce a smaller fraction of stable pulses when l i is increased above ≈ 1.1 at the beginning of β N flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less

  6. Operational Performance Risk Assessment in Support of A Supervisory Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.

    Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less

  7. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less

  8. Steady state scenario development with elevated minimum safety factor on DIII-D

    DOE PAGES

    Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...

    2014-08-15

    On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less

  9. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; hide

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  10. Central Safety Factor and Normalized Beta Control Under Near-Zero Input Torque Constraints in DIII-D

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Wehner, William; Schuster, Eugenio; Burrell, Keith; Ferron, John; Walker, Michael; Humphreys, David; Lehigh University Team; Atomics Team, General

    2017-10-01

    DIII-D experiments have assessed the capability of combined central safety factor (q0) and normalized beta (βN) control under near-zero net torque to facilitate access to QH-mode with reverse Ip and normal Bt. Regulation of q0 and βN can prevent magneto-hydrodynamic instabilities that deteriorate plasma performance in discharges with a monotonically increasing safety-factor profile. Zero-input-torque scenarios are of special interest because future burning plasma tokamaks such as ITER will most likely operate with very low input torque, which makes these scenarios more susceptible to locked modes. To support studies of such scenarios, a controller for simultaneous regulation of q0 and βN has been developed using near-zero net input torque actuators including balanced neutral beam injection (NBI) and electron-cyclotron heating & current drive (ECH/ECCD). Experimental results show that in spite of the presence of locked modes the use of feedback control resulted in good tracking of the commanded q0 and βN when both ECCD/ECH and NBI were available. Supported by the US DOE under DE-SC0010661 and DE-FC02-04ER54698.

  11. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led to the following conclusions:The existing outlets at Lookout Point Dam, because of the range of depths, allow for greater temperature control than the two existing outlets at Hills Creek Dam that are relatively deep.Temperature control at HCR through operational scenarios generally was minimal near Hills Creek Dam, but improved downstream toward the head of LOP when decreased release rates held HCR at a low lake elevation year-round.Inflows from unregulated streams between HCR and LOP helped to dilute the effects of HCR and achieve more natural stream temperatures before the MFWR entered LOP.The relative benefit of any particular scenario depended on the location in the MFWR system used to assess the potential change, with most scenarios involving changes to Hills Creek Dam being less effective with increasing downstream distance, such as downstream of DEX.To achieve as much temperature control as the most successful structural scenarios, which were able to resemble without-dam conditions for part of the year, most operational scenarios had to be free of any power-generation requirements at Lookout Point Dam.Downstream of DEX, scenarios incorporating a hypothetical floating outlet at either HCR or LOP resulted in similar temperatures, with both scenarios causing a delay in the estimated spring Chinook egg emergence by about 9–10 days compared to base-case temperature-management scenarios.

  12. Preliminary assessment of the health and environmental impacts of transporting M55 rockets from Lexington-Blue Grass Depot activity, Anniston Army depot, and Umatilla depot activity to alternative disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, S.A.; Breck, J.E.; Copenhaver, E.D.

    1986-03-01

    This assessment discusses the potential health and environmental impacts of transporting M55 rockets filled with nerve agent GB or VX from various existing Army storage depots to alternative Army depots for disposal. The origin depots include Anniston Army Depot in Alabama, Lexington-Blue Grass Depot Activity in Kentucky, and Umatilla Depot Activity in Oregon. The destination depots include Pine Bluff Arsenal in Arkansas, Tooele Army Depot in Utah, and the facility on Johnston Island in the central Pacific Ocean. This assessment considers the possible impacts of normal transport operations and of two postulated accident scenarios on the air quality, ground andmore » surface water, aquatic ecology, terrestrial ecology, human health, and cultural and socioeconomic resources of the various transport corridors involved. The impacts of these scenarios are assessed for truck, train, and air transport for each orgin-destination pair. The analysis considers three basic scenario during transport: (1) normal operations with no atmospheric release of nerve agent; (2) a minor agent spill (the contents of one rocket being released to the biosphere); and (3) a worst-case accident involving the release of a large, specified quantity of nerve agent to the biosphere. The extremely low probabilities of such accidents, which are reported elsewhere, are noted.« less

  13. Naturalistic Decision Making For Power System Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck

    2009-06-23

    Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operatormore » conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.« less

  14. Group 2: Real time LOFT operations

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.

    1981-01-01

    All LOFT scenarios should be constructed so as to provide the highest degree of realism that is economically, technically, and operationally feasible. The more realistic the situation, the faster the crew will adjust their thinking and provide reactions which would be typical of a line-flight orientation. The goal is to produce crew performance which would be typical of a crew on an actual line flight, given the same set of circumstances that were developed during the scenario. The briefing which is provided to the crew before entering the simulator for LOFT, the trip papers, the communications throughout the flight, the role played by the instructor, and so on, are important factors, crucial to the establishment and maintenance of a high degree of realism. Crews should have all manuals and other required equipment for a normal line-flight.

  15. Modeling radiation loads in the ILC main linac and a novel approach to treat dark current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nilolai V.; Rakhno, Igor L.; Tropin, Igor S.

    Electromagnetic and hadron showers generated by electrons of dark current (DC) can represent a significant radiation threat to the ILC linac equipment and personnel. In this study, a commissioning scenario is analysed which is considered as the worst-case scenario for the main linac regarding the DC contribution to the radiation environment in the tunnel. A normal operation scenario is analysed as well. An emphasis is made on radiation load to sensitive electronic equipment—cryogenic thermometers inside the cryomodules. Prompt and residual dose rates in the ILC main linac tunnels were also calculated in these new high-statistics runs. A novel approach wasmore » developed—as a part of general purpose Monte Carlo code MARS15—to model generation, acceleration and transport of DC electrons in electromagnetic fields inside SRF cavities. Comparisons were made with a standard approach when a set of pre-calculated DC electron trajectories is used, with a proper normalization, as a source for Monte Carlo modelling. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the peak absorbed dose in the cryogenic thermometers in the main tunnel for 20 years of operation is about 0.8 MGy. The calculated contact residual dose on cryomodules and tunnel walls in the main tunnel for typical irradiation and cooling conditions is 0.1 and 0.01 mSv/hr, respectively.« less

  16. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold: (1) to demonstrate the use of the operator functio model methodology to describe pilot-system interaction while engaging modes And monitoring the system, and (2) to initiate a discussion of how task-analytic models might inform design processes. While the operator function model is only one type of task-analytic representation, the hypothesis of this paper is that some type of task analytic structure is a prerequisite for the design of effective human-automation interaction.

  17. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.

    PubMed

    Khoo, Hsien H; Tan, Lester L Z; Tan, Reginald B H

    2012-05-01

    This article aims to generate the environmental profile of Singapore's Semakau landfill by comparing three different operational options associated with the life cycle stages of landfilling activities, against a 'business as usual' scenario. Before life cycle assessment or LCA is used to quantify the potential impacts from landfilling activities, an attempt to incorporate localized and empirical information into the amounts of ash and MSW sent to the landfill was made. A linear regression representation of the relationship between the mass of waste disposed and the mass of incineration ash generated was modeled from waste statistics between years 2004 and 2009. Next, the mass of individual MSW components was projected from 2010 to 2030. The LCA results highlighted that in a 'business as usual' scenario the normalized total impacts of global warming, acidification and human toxicity increased by about 2% annually from 2011 to 2030. By replacing the 8000-tonne barge with a 10000-tonne coastal bulk carrier or freighter (in scenario 2) a grand total reduction of 48% of both global warming potential and acidification can be realized by year 2030. Scenario 3 explored the importance of having a Waste Water Treatment Plant in place to reduce human toxicity levels - however, the overall long-term benefits were not as significant as scenario 2. It is shown in scenario 4 that the option of increased recycling championed over all other three scenarios in the long run, resulting in a total 58% reduction in year 2030 for the total normalized results. A separate comparison of scenarios 1-4 is also carried out for energy utilization and land use in terms of volume of waste occupied. Along with the predicted reductions in environmental burdens, an additional bonus is found in the expanded lifespan of Semakau landfill from year 2032 (base case) to year 2039. Model limitations and suggestions for improvements were also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  19. A new scenario-based approach to damage detection using operational modal parameter estimates

    NASA Astrophysics Data System (ADS)

    Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.

    2017-09-01

    In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Justin M; Borges, Raymond Charles; Buckner, Mark A

    Critical infrastructure Supervisory Control and Data Acquisition (SCADA) systems were designed to operate on closed, proprietary networks where a malicious insider posed the greatest threat potential. The centralization of control and the movement towards open systems and standards has improved the efficiency of industrial control, but has also exposed legacy SCADA systems to security threats that they were not designed to mitigate. This work explores the viability of machine learning methods in detecting the new threat scenarios of command and data injection. Similar to network intrusion detection systems in the cyber security domain, the command and control communications in amore » critical infrastructure setting are monitored, and vetted against examples of benign and malicious command traffic, in order to identify potential attack events. Multiple learning methods are evaluated using a dataset of Remote Terminal Unit communications, which included both normal operations and instances of command and data injection attack scenarios.« less

  1. Dynamic detailed model of a molten salt tower receiver, with ThermoSysPro library: Impacts of several failures or operational transients on the receiver dynamic behavior

    NASA Astrophysics Data System (ADS)

    Hefni, Baligh El; Bourdil, Charles

    2017-06-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for solar power plant. The molten salt tower receiver is based on a field of individually sun-tracking mirrors (heliostats) that reflect the incident sunshine to a receiver at the top of a centrally located tower. The objective of this study is to assess the impact of several transients issued from different scenarios (failure or normal operation mode) on the receiver dynamic behavior. A dynamic detailed model of Solar Two molten salt central receiver has been developed. The component model is meant to be used for receiver modeling with the ThermoSysPro library, developed by EDF. The paper also gives the results of the dynamic simulation for the selected scenarios on Solar Two receiver.

  2. Stability analysis of the high poloidal bet scenario on DIII-Dtowards operation athigher plasma current

    NASA Astrophysics Data System (ADS)

    Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.

    2017-10-01

    The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.

  3. The Evaluation of a Pulmonary Display to Detect Adverse Respiratory Events Using High Resolution Human Simulator

    PubMed Central

    Wachter, S. Blake; Johnson, Ken; Albert, Robert; Syroid, Noah; Drews, Frank; Westenskow, Dwayne

    2006-01-01

    Objective Authors developed a picture-graphics display for pulmonary function to present typical respiratory data used in perioperative and intensive care environments. The display utilizes color, shape and emergent alerting to highlight abnormal pulmonary physiology. The display serves as an adjunct to traditional operating room displays and monitors. Design To evaluate the prototype, nineteen clinician volunteers each managed four adverse respiratory events and one normal event using a high-resolution patient simulator which included the new displays (intervention subjects) and traditional displays (control subjects). Between-group comparisons included (i) time to diagnosis and treatment for each adverse respiratory event; (ii) the number of unnecessary treatments during the normal scenario; and (iii) self-reported workload estimates while managing study events. Measurements Two expert anesthesiologists reviewed video-taped transcriptions of the volunteers to determine time to treat and time to diagnosis. Time values were then compared between groups using a Mann-Whitney-U Test. Estimated workload for both groups was assessed using the NASA-TLX and compared between groups using an ANOVA. P-values < 0.05 were considered significant. Results Clinician volunteers detected and treated obstructed endotracheal tubes and intrinsic PEEP problems faster with graphical rather than conventional displays (p < 0.05). During the normal scenario simulation, 3 clinicians using the graphical display, and 5 clinicians using the conventional display gave unnecessary treatments. Clinician-volunteers reported significantly lower subjective workloads using the graphical display for the obstructed endotracheal tube scenario (p < 0.001) and the intrinsic PEEP scenario (p < 0.03). Conclusion Authors conclude that the graphical pulmonary display may serve as a useful adjunct to traditional displays in identifying adverse respiratory events. PMID:16929038

  4. Real-time contingency handling in MAESTRO

    NASA Technical Reports Server (NTRS)

    Britt, Daniel L.; Geoffroy, Amy L.

    1992-01-01

    A scheduling and resource management system named MAESTRO was interfaced with a Space Station Module Power Management and Distribution (SSM/PMAD) breadboard at MSFC. The combined system serves to illustrate the integration of planning, scheduling, and control in a realistic, complex domain. This paper briefly describes the functional elements of the combined system, including normal and contingency operational scenarios, then focusses on the method used by the scheduler to handle real-time contingencies.

  5. Sensitivity Analysis of the Off-Normal Conditions of the SPIDER Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veltri, P.; Agostinetti, P.; Antoni, V.

    2011-09-26

    In the context of the development of the 1 MV neutral beam injector for the ITER tokamak, the study on beam formation and acceleration has considerable importance. This effort includes the ion source and accelerator SPIDER (Source for Production of Ions of Deuterium Extracted from an Rf plasma) ion source, planned to be built in Padova, and designed to extract and accelerate a 355 A/m{sup 2} current of H{sup -}(or 285 A/m{sup 2} D{sup -}) up to 100 kV. Exhaustive simulations were already carried out during the accelerator optimization leading to the present design. However, as it is expected thatmore » the accelerator shall operate also in case of pre-programmed or undesired off-normal conditions, the investigation of a large set of off-normal scenarios is necessary. These analyses will also be useful for the evaluation of the real performances of the machine, and should help in interpreting experimental results, or in identifying dangerous operating conditions.The present contribution offers an overview of the results obtained during the investigation of these off-normal conditions, by means of different modeling tools and codes. The results, showed a good flexibility of the device in different operating conditions. Where the consequences of the abnormalities appeared to be problematic further analysis were addressed.« less

  6. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    NASA Astrophysics Data System (ADS)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  7. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    DOE PAGES

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...

    2016-06-20

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β p and β N despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β p plasmas challenge the energy transport understanding, especiallymore » in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less

  8. Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges

    NASA Astrophysics Data System (ADS)

    Park, J. M.

    2013-10-01

    Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.

  9. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, and the NMCFP of China under 2015GB110000 and 2015GB102000.

  10. A simulator-based nuclear reactor emergency response training exercise.

    PubMed

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  11. Disruption avoidance and fast ramp-down techniques for the DIII-D experimental scenarios

    NASA Astrophysics Data System (ADS)

    Barr, Jayson; Eidietis, N. W.; Humphreys, D. A.; Sammuli, B.; Luce, T.

    2017-10-01

    Plasma current ramp-down in ITER will continue in H-mode from 15 MA to 10 MA, and will keep a diverted shape until termination. This is in contrast to the limited ramp-down scenarios typically used in DIII-D operations. Additionally, fast emergency ramp-down scenarios for ITER and future reactors are a priority for disruption avoidance. New experiments in DIII-D use the ramp-down phase of a variety of experiments including in the ITER baseline scenario to survey and identify optimized ramp-down scenarios for both scheduled terminations and terminations triggered by off-normal event detection. Systematic scans in current ramp-rate (1-5 MA/s), neutral beam power (including βN feedback) and ramp-down shaping (limited versus continued diverted) have identified fast ramp-down scenarios for Lower Single Null (LSN) and Double Null (DN) plasmas. Scenario-specific methods and their rates of successful termination will be presented and compared relative to a historical data-set of ramp-down programming in the limiter configuration. Locked modes are found to be the most significant challenge to disruption avoidance in diverted ramp-downs. Results for LSN diverted discharges that begin the rampdown with large locked-modes will also be presented. If available, results of similar experiments on EAST will be presented. Work supported by US DOE under DE-FC02-04ER54698 and DE-SC0010685.

  12. Stress accumulation in the Marmara Sea estimated through ground-motion simulations from dynamic rupture scenarios

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Douglas, John; Ulrich, Thomas

    2017-03-01

    We compare ground motions simulated from dynamic rupture scenarios, for the seismic gap along the North Anatolian Fault under the Marmara Sea (Turkey), to estimates from empirical ground motion prediction equations (GMPEs). Ground motions are simulated using a finite difference method and a 3-D model of the local crustal structure. They are analyzed at more than a thousand locations in terms of horizontal peak ground velocity. Characteristics of probable earthquake scenarios are strongly dependent on the hypothesized level of accumulated stress, in terms of a normalized stress parameter T. With respect to the GMPEs, it is found that simulations for many scenarios systematically overestimate the ground motions at all distances. Simulations for only some scenarios, corresponding to moderate stress accumulation, match the estimates from the GMPEs. The difference between the simulations and the GMPEs is used to quantify the relative probabilities of each scenario and, therefore, to revise the probability of the stress field. A magnitude Mw7+ operating at moderate prestress field (0.6 < T ≤ 0.7) is statistically more probable, as previously assumed in the logic tree of probabilistic assessment of rupture scenarios. This approach of revising the mechanical hypothesis by means of comparison to an empirical statistical model (e.g., a GMPE) is useful not only for practical seismic hazard assessments but also to understand crustal dynamics.

  13. Scenario-based and scenario-neutral assessment of climate change impacts on operational performance of a multipurpose reservoir

    Treesearch

    Allison G. Danner; Mohammad Safeeq; Gordon E. Grant; Charlotte Wickham; Desirée Tullos; Mary V. Santelmann

    2017-01-01

    Scenario-based and scenario-neutral impacts assessment approaches provide complementary information about how climate change-driven effects on streamflow may change the operational performance of multipurpose dams. Examining a case study of Cougar Dam in Oregon, United States, we simulated current reservoir operations under scenarios of plausible future hydrology....

  14. Validation Of The Airspace Concept Evaluation System Using Real World Data

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon

    2005-01-01

    This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.

  15. Ileal Entrapment within a Paracaecal Hernia Mimicking Acute Appendicitis

    PubMed Central

    Birchley, David

    2009-01-01

    Presented is a case of incarcerated paracaecal hernia mimicking acute appendicitis. The clinical scenario highlights the need for a high index of suspicion in the management of patients with localised peritonism even in the absence of obstructive symptoms and the presence of normal laboratory markers of inflammation.Whilst computed tomography might offer a pre-operative diagnosis, in such a low-risk patient laparoscopy offers the combined advantages of immediate diagnosis and definitive treatment of acute pathology. PMID:19317924

  16. KSC-04PD-2441

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 39A, a rescue force climbs into slidewire baskets on the Fixed Service Structure during an emergency egress scenario. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  17. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  18. Dataset of anomalies and malicious acts in a cyber-physical subsystem.

    PubMed

    Laso, Pedro Merino; Brosset, David; Puentes, John

    2017-10-01

    This article presents a dataset produced to investigate how data and information quality estimations enable to detect aNomalies and malicious acts in cyber-physical systems. Data were acquired making use of a cyber-physical subsystem consisting of liquid containers for fuel or water, along with its automated control and data acquisition infrastructure. Described data consist of temporal series representing five operational scenarios - Normal, aNomalies, breakdown, sabotages, and cyber-attacks - corresponding to 15 different real situations. The dataset is publicly available in the .zip file published with the article, to investigate and compare faulty operation detection and characterization methods for cyber-physical systems.

  19. Transport modeling of the DIII-D high $${{\\beta}_{p}}$$ scenario and extrapolations to ITER steady-state operation

    DOE PAGES

    McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...

    2017-08-03

    In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less

  20. Performance of a system of reservoirs on futuristic front

    NASA Astrophysics Data System (ADS)

    Saha, Satabdi; Roy, Debasri; Mazumdar, Asis

    2017-10-01

    Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.

  1. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  2. Extreme weather-year sequences have nonadditive effects on environmental nitrogen losses.

    PubMed

    Iqbal, Javed; Necpalova, Magdalena; Archontoulis, Sotirios V; Anex, Robert P; Bourguignon, Marie; Herzmann, Daryl; Mitchell, David C; Sawyer, John E; Zhu, Qing; Castellano, Michael J

    2018-01-01

    The frequency and intensity of extreme weather years, characterized by abnormal precipitation and temperature, are increasing. In isolation, these years have disproportionately large effects on environmental N losses. However, the sequence of extreme weather years (e.g., wet-dry vs. dry-wet) may affect cumulative N losses. We calibrated and validated the DAYCENT ecosystem process model with a comprehensive set of biogeophysical measurements from a corn-soybean rotation managed at three N fertilizer inputs with and without a winter cover crop in Iowa, USA. Our objectives were to determine: (i) how 2-year sequences of extreme weather affect 2-year cumulative N losses across the crop rotation, and (ii) if N fertilizer management and the inclusion of a winter cover crop between corn and soybean mitigate the effect of extreme weather on N losses. Using historical weather (1951-2013), we created nine 2-year scenarios with all possible combinations of the driest ("dry"), wettest ("wet"), and average ("normal") weather years. We analyzed the effects of these scenarios following several consecutive years of relatively normal weather. Compared with the normal-normal 2-year weather scenario, 2-year extreme weather scenarios affected 2-year cumulative NO 3 - leaching (range: -93 to +290%) more than N 2 O emissions (range: -49 to +18%). The 2-year weather scenarios had nonadditive effects on N losses: compared with the normal-normal scenario, the dry-wet sequence decreased 2-year cumulative N 2 O emissions while the wet-dry sequence increased 2-year cumulative N 2 O emissions. Although dry weather decreased NO 3 - leaching and N 2 O emissions in isolation, 2-year cumulative N losses from the wet-dry scenario were greater than the dry-wet scenario. Cover crops reduced the effects of extreme weather on NO 3 - leaching but had a lesser effect on N 2 O emissions. As the frequency of extreme weather is expected to increase, these data suggest that the sequence of interannual weather patterns can be used to develop short-term mitigation strategies that manipulate N fertilizer and crop rotation to maximize crop N uptake while reducing environmental N losses. © 2017 John Wiley & Sons Ltd.

  3. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.

    PubMed

    Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor

    2017-08-01

    Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.

  4. AERIS - applications for the environment : real-time information synthesis : eco-lanes operational scenario modeling report.

    DOT National Transportation Integrated Search

    2014-12-01

    This report constitutes the detailed modeling and evaluation results of the Eco-Lanes Operational Scenario defined by the Applications for the Environment: Real-Time Information Synthesis (AERIS) Program. The Operational Scenario constitutes six appl...

  5. SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training

    NASA Technical Reports Server (NTRS)

    Owens, Brandon Dewain; Crocker, Alan R.

    2015-01-01

    Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.

  6. Developing a Signature Based Safeguards Approach for the Electrorefiner and Salt Cleanup Unit Operations in Pyroprocessing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Chantell Lynne-Marie

    Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS developmentmore » for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.« less

  7. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S.; Xu, G. S.; Wang, Q.

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  8. Scenario development for high β p low torque plasma with q min above 2 and large-radius internal transport barrier in DIII-D

    DOE PAGES

    Ding, S.; Xu, G. S.; Wang, Q.; ...

    2016-09-30

    A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high β p, high q min regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I p=0.8 MA) and significantly higher normalized fusion performance (G = H 89β N/=qmore » $$2\\atop{95}$$ = 0.16). The experiment aims at exploring high performance scenario with q min > 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H 89 = 3.5 or H 98,y2 = 2.1 with β N ~ 3.0, has been achieved transiently in this experiment together with q min > 2 and reduced NBI torque (3~5 N-m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I p=0.8 MA at large minor radius (normalized p ~ 0.7) in all channels (n e, T e, T i, V Φ, especially strong in the T e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. Finally, in an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash.« less

  9. Evaluation of Water Year 2011 Glen Canyon Dam Flow Release Scenarios on Downstream Sand Storage along the Colorado River in Arizona

    USGS Publications Warehouse

    Wright, Scott A.; Grams, Paul E.

    2010-01-01

    This report describes numerical modeling simulations of sand transport and sand budgets for reaches of the Colorado River below Glen Canyon Dam. Two hypothetical Water Year 2011 annual release volumes were each evaluated with six hypothetical operational scenarios. The six operational scenarios include the current operation, scenarios with modifications to the monthly distribution of releases, and scenarios with modifications to daily flow fluctuations. Uncertainties in model predictions were evaluated by conducting simulations with error estimates for tributary inputs and mainstem transport rates. The modeling results illustrate the dependence of sand transport rates and sand budgets on the annual release volumes as well as the within year operating rules. The six operational scenarios were ranked with respect to the predicted annual sand budgets for Marble Canyon and eastern Grand Canyon reaches. While the actual WY 2011 annual release volume and levels of tributary inputs are unknown, the hypothetical conditions simulated and reported herein provide reasonable comparisons between the operational scenarios, in a relative sense, that may be used by decision makers within the Glen Canyon Dam Adaptive Management Program.

  10. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  11. Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.

  12. Realizing steady-state tokamak operation for fusion energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2011-03-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  13. A Chatbot for a Dialogue-Based Second Language Learning System

    ERIC Educational Resources Information Center

    Huang, Jin-Xia; Lee, Kyung-Soon; Kwon, Oh-Woog; Kim, Young-Kil

    2017-01-01

    This paper presents a chatbot for a Dialogue-Based Computer-Assisted second Language Learning (DB-CALL) system. A DB-CALL system normally leads dialogues by asking questions according to given scenarios. User utterances outside the scenarios are normally considered as semantically improper and simply rejected. In this paper, we assume that raising…

  14. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  15. Development of advanced high heat flux and plasma-facing materials

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling materials, thereby minimizing the release of tritium under normal operation conditions. Finally, solutions for the unique bonding requirements of dissimilar material used in a fusion reactor are demonstrated by describing the current status and prospects of functionally graded materials.

  16. City-scale accessibility of emergency responders operating during flood events

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian; Wilby, Robert; Bosher, Lee; Patel, Ramila; Thompson, Philip; Trowell, Keith; Draycon, Julia; Halse, Martin; Yang, Lili; Ryley, Tim

    2017-01-01

    Emergency responders often have to operate and respond to emergency situations during dynamic weather conditions, including floods. This paper demonstrates a novel method using existing tools and datasets to evaluate emergency responder accessibility during flood events within the city of Leicester, UK. Accessibility was quantified using the 8 and 10 min legislative targets for emergency provision for the ambulance and fire and rescue services respectively under "normal" no-flood conditions, as well as flood scenarios of various magnitudes (1 in 20-year, 1 in 100-year and 1 in 1000-year recurrence intervals), with both surface water and fluvial flood conditions considered. Flood restrictions were processed based on previous hydrodynamic inundation modelling undertaken and inputted into a Network Analysis framework as restrictions for surface water and fluvial flood events. Surface water flooding was shown to cause more disruption to emergency responders operating within the city due to its widespread and spatially distributed footprint when compared to fluvial flood events of comparable magnitude. Fire and rescue 10 min accessibility was shown to decrease from 100, 66.5, 39.8 and 26.2 % under the no-flood, 1 in 20-year, 1 in 100-year and 1 in 1000-year surface water flood scenarios respectively. Furthermore, total inaccessibility was shown to increase with flood magnitude from 6.0 % under the 1 in 20-year scenario to 31.0 % under the 1 in 100-year flood scenario. Additionally, the evolution of emergency service accessibility throughout a surface water flood event is outlined, demonstrating the rapid impact on emergency service accessibility within the first 15 min of the surface water flood event, with a reduction in service coverage and overlap being observed for the ambulance service during a 1 in 100-year flood event. The study provides evidence to guide strategic planning for decision makers prior to and during emergency response to flood events at the city scale. It also provides a readily transferable method for exploring the impacts of natural hazards or disruptions in other cities or regions based on historic, scenario-based events or real-time forecasting, if such data are available.

  17. Violent Mergers

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger

    The progenitor systems and explosion scenarios of Type Ia supernovae (SNe Ia) are still heavily debated. The violent merger scenario is a recent addition to explosion scenarios for SNe Ia. Here, two white dwarfs (WDs) in a binary system approach each other owing to the emission of gravitational waves. The interaction between the two WDs preluding or during the merger creates a hotspot on the surface of the primary, more massive, WD that ignites a detonation. If the detonation is a carbon detonation, it completely burns the primary WD leading to a SN Ia. If instead the detonation is a helium detonation in the helium shell of a carbon-oxygen WD, it burns around the primary WD in its helium shell and sends a shock wave into its core that ignites a carbon detonation. Again the primary WD is fully burned. Synthetic observables for explosion models of SNe Ia in the violent merger scenario show good agreement with normal SNe Ia and the subclass of faint, slowly evolving 02es-like SNe Ia for different masses of the primary WD. The violent merger scenario can also explain the delay time distribution and brightness distribution of normal SNe Ia. This chapter discusses in detail the mechanism that leads to ignition in the violent merger scenario, summarizes the properties of explosions in the violent merger scenario and compares to observations. It ends with a summary of the main properties of the population of normal SNe Ia and discusses to which degree they can be explained in the violent merger scenario.

  18. Low flows and water temperature risks to Asian coal power plants in a warming world

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Byers, E.; Parkinson, S.; Wanders, N.; Wada, Y.; Bielicki, J. M.

    2017-12-01

    Thermoelectric power generation requires cooling, normally provided by wet cooling systems. The withdrawal and discharge of cooling water are subject to regulation. Therefore, operation of power plants may be vulnerable to changes in streamflow and rises in water temperatures. In Asia, about 489 GW of coal-fired power plants are currently under construction, permitted, or announced. Using a comprehensive dataset of these planned coal power plants (PCPPs) and cooling water use models, we investigated whether electricity generation at these power plants will be limited by streamflow and water temperature. Daily streamflow and water temperature time series are from the high-resolution (0.08ox0.08o) runs of the PCRGLOBWB hydrological model, driven by downscaled meteorological forcing from five global climate models. We compared three climate change scenarios (1.5oC, 2oC, and 3oC warming in global mean temperature) and three cooling system choice scenarios (freshwater once-through, freshwater cooling tower, and "business-as-usual" - where a PCPP uses the same cooling system as the nearest existing coal power plant). The potential available capacity of the PCPPs increase slightly from the 1.5oC to the 2oC and 3oC warming scenario due to increase in streamflow. The once-through cooling scenario results in virtually zero available capacity at the PCPPs. The other two cooling scenarios result in about 20% of the planned capacity being unavailable under all warming scenarios. Hotspots of the most water-limited PCPPs are in Pakistan, northwestern India, northwestern and north-central China, and northern Vietnam, where most of the PCPPs will face 30% to 90% unavailable nameplate capacity on annual average. Since coal power plants cannot operate effectively when the capacity factor falls below a minimum load level (about 20% to 50%), the actual limitation on generation capacity would be larger. In general, the PCPPs that will have the highest limitation on annual average capacity will also have the most frequent and longest periods of interrupted operation. These results suggest that to ensure security of energy supply and avoid over-withdrawing water resources, the water-limited PCPPs should implement adaptation measures such as dry-cooling, combined heat- and power, or using recycled wastewater.

  19. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  20. Steam plant startup and control in system restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, F.P. de; Westcott, J.C.

    1994-02-01

    The IEEE Working Group on Power System Restoration developed a panel session for the Summer Power Meeting on July 14, 1992 on Special Considerations in Power System Restoration. One of the contributions to this session is presented in this paper dealing with aspects of steam plant startup and control in scenarios of system restoration. The topics addressed include the complexity of a steam plant, the contrast between normal plant startups and shutdowns and those following major system blackouts including the effects of plant design, automatic controls, bypass valving and operator training.

  1. Hybrid integral-differential simulator of EM force interactions/scenario-assessment tool with pre-computed influence matrix in applications to ITER

    NASA Astrophysics Data System (ADS)

    Rozov, V.; Alekseev, A.

    2015-08-01

    A necessity to address a wide spectrum of engineering problems in ITER determined the need for efficient tools for modeling of the magnetic environment and force interactions between the main components of the magnet system. The assessment of the operating window for the machine, determined by the electro-magnetic (EM) forces, and the check of feasibility of particular scenarios play an important role for ensuring the safety of exploitation. Such analysis-powered prevention of damages forms an element of the Machine Operations and Investment Protection strategy. The corresponding analysis is a necessary step in preparation of the commissioning, which finalizes the construction phase. It shall be supported by the development of the efficient and robust simulators and multi-physics/multi-system integration of models. The developed numerical model of interactions in the ITER magnetic system, based on the use of pre-computed influence matrices, facilitated immediate and complete assessment and systematic specification of EM loads on magnets in all foreseen operating regimes, their maximum values, envelopes and the most critical scenarios. The common principles of interaction in typical bilateral configurations have been generalized for asymmetry conditions, inspired by the plasma and by the hardware, including asymmetric plasma event and magnetic system fault cases. The specification of loads is supported by the technology of functional approximation of nodal and distributed data by continuous patterns/analytical interpolants. The global model of interactions together with the mesh-independent analytical format of output provides the source of self-consistent and transferable data on the spatial distribution of the system of forces for assessments of structural performance of the components, assemblies and supporting structures. The numerical model used is fully parametrized, which makes it very suitable for multi-variant and sensitivity studies (positioning, off-normal events, asymmetry, etc). The obtained results and matrices form a basis for a relatively simple and robust force processor as a specialized module of a global simulator for diagnostic, operational instrumentation, monitoring and control, as well as a scenario assessment tool. This paper gives an overview of the model, applied technique, assessed problems and obtained qualitative and quantitative results.

  2. Recent field experiments with commercial satellite imagery direct downlink.

    PubMed

    Gonzalez, Anthony R; Amber, Samuel H

    US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal-a mobile satellite downlink ground station-has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.

  3. High-beta, steady-state hybrid scenario on DIII-D

    DOE PAGES

    Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...

    2015-12-17

    Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less

  4. Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Yu, Dapeng; Lin, Ning; Wilby, Robert L.

    2017-12-01

    This paper describes a scenario-based approach for evaluating the cascading impacts of sea level rise (SLR) and coastal flooding on emergency responses. The analysis is applied to Lower Manhattan, New York City, considering FEMA's 100- and 500-year flood scenarios and New York City Panel on Climate Change (NPCC2)'s high-end SLR projections for the 2050s and 2080s, using the current situation as the baseline scenario. Service areas for different response timeframes (3-, 5- and 8-min) and various traffic conditions are simulated for three major emergency responders (i.e. New York Police Department (NYPD), Fire Department, New York (FDNY) and Emergency Medical Service (EMS)) under normal and flood scenarios. The modelling suggests that coastal flooding together with SLR could result in proportionate but non-linear impacts on emergency services at the city scale, and the performance of operational responses is largely determined by the positioning of emergency facilities and the functioning of traffic networks. Overall, emergency service accessibility to the city is primarily determined by traffic flow speed. However, the situation is expected to be further aggravated during coastal flooding, with is set to increase in frequency and magnitude due to SLR.

  5. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  6. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  7. Theory of Stochastic Laplacian Growth

    NASA Astrophysics Data System (ADS)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2017-07-01

    We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.

  8. Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D

    DOE PAGES

    Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...

    2015-05-22

    The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  9. Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.

    2015-05-15

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less

  10. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecological fish habitat and recreational canoeing habitat, the antecedent conditions (habitat within normal range of habitat or below normal) appear to govern whether additional water withdrawals will affect habitat availability. As human populations and water demands increase, many of the ecological or recreational stresses may be lessened by managing the timing of water withdrawals from the system.

  11. Internet Data Delivery for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  12. Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.

  13. AERIS - applications for the environment : real-time information synthesis : eco-signal operations modeling report.

    DOT National Transportation Integrated Search

    2014-12-01

    This report constitutes the detailed modeling and evaluation results of the Eco-Signal Operations Operational Scenario defined by the AERIS program. The Operational Scenario constitutes four applications that are designed to provide environmental ben...

  14. Suited Contingency Ops Food - 2

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  15. How detrimental is eye movement during photorefractive keratectomy to the patient's postoperative vision?

    NASA Astrophysics Data System (ADS)

    Taylor, Natalie M.; van Saarloos, Paul P.; Eikelboom, Robert H.

    2000-06-01

    This study aimed to gauge the effect of the patient's eye movement during Photo Refractive Keratectomy (PRK) on post- operative vision. A computer simulation of both the PRK procedure and the visual outcome has been performed. The PRK simulation incorporated the pattern of movement of the laser beam to perform a given correction, the beam characteristics, an initial corneal profile, and an eye movement scenario; and generated the corrected corneal profile. The regrowth of the epithelium was simulated by selecting the smoothing filter which, when applied to a corrected cornea with no patient eye movement, produced similar ray tracing results to the original corneal model. Ray tracing several objects, such as letters of various contrast and sizes was performed to assess the quality of the post-operative vision. Eye movement scenarios included no eye movement, constant decentration and normally distributed random eye movement of varying magnitudes. Random eye movement of even small amounts, such as 50 microns reduces the contrast sensitivity of the image. Constant decentration decenters the projected image on the retina, and in extreme cases can lead to astigmatism. Eye movements of the magnitude expected during laser refractive surgery have minimal effect on the final visual outcome.

  16. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  17. Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network

    DOE PAGES

    Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen; ...

    2018-01-26

    With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less

  18. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.

    2003-01-01

    The goal of the NASA Aviation Safety Program (AvSP) is to develop and demonstrate technologies that contribute to a reduction in the aviation fatal accident rate by a factor of 5 by the year 2007 and by a factor of 10 by the year 2022. Integrated safety analysis of day-to-day operations and risks within those operations will provide an understanding of the Aviation Safety Program portfolio. Safety benefits analyses are currently being conducted. Preliminary results for the Synthetic Vision Systems (SVS) and Weather Accident Prevention (WxAP) projects of the AvSP have been completed by the Logistics Management Institute under a contract with the NASA Glenn Research Center. These analyses include both a reliability analysis and a computer simulation model. The integrated safety analysis method comprises two principal components: a reliability model and a simulation model. In the reliability model, the results indicate how different technologies and systems will perform in normal, degraded, and failed modes of operation. In the simulation, an operational scenario is modeled. The primary purpose of the SVS project is to improve safety by providing visual-flightlike situation awareness during instrument conditions. The current analyses are an estimate of the benefits of SVS in avoiding controlled flight into terrain. The scenario modeled has an aircraft flying directly toward a terrain feature. When the flight crew determines that the aircraft is headed toward an obstruction, the aircraft executes a level turn at speed. The simulation is ended when the aircraft completes the turn.

  19. Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhenshan; Liu, Dichen; Liao, Qingfen

    With the great increase of renewable generation as well as the DC loads in the distribution network; DC distribution technology is receiving more attention; since the DC distribution network can improve operating efficiency and power quality by reducing the energy conversion stages. This paper presents a new architecture for the medium voltage AC/DC hybrid distribution network; where the AC and DC subgrids are looped by normally closed AC soft open point (ACSOP) and DC soft open point (DCSOP); respectively. The proposed AC/DC hybrid distribution systems contain renewable generation (i.e., wind power and photovoltaic (PV) generation); energy storage systems (ESSs); softmore » open points (SOPs); and both AC and DC flexible demands. An energy management strategy for the hybrid system is presented based on the dynamic optimal power flow (DOPF) method. The main objective of the proposed power scheduling strategy is to minimize the operating cost and reduce the curtailment of renewable generation while meeting operational and technical constraints. The proposed approach is verified in five scenarios. The five scenarios are classified as pure AC system; hybrid AC/DC system; hybrid system with interlinking converter; hybrid system with DC flexible demand; and hybrid system with SOPs. Results show that the proposed scheduling method can successfully dispatch the controllable elements; and that the presented architecture for the AC/DC hybrid distribution system is beneficial for reducing operating cost and renewable generation curtailment.« less

  20. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K.; Odette, George R.; Almirall, Nathan

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughnessmore » loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.« less

  1. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  2. Concentration-Encoded Subdiffusive Molecular Communication: Theory, Channel Characteristics, and Optimum Signal Detection.

    PubMed

    Mahfuz, Mohammad Upal; Makrakis, Dimitrios; Mouftah, Hussein T

    2016-09-01

    Unlike normal diffusion, in anomalous diffusion, the movement of a molecule is described by the correlated random walk model where the mean square displacement of a molecule depends on the power law of time. In molecular communication (MC), there are many scenarios when the propagation of molecules cannot be described by normal diffusion process, where anomalous diffusion is a better fit. In this paper, the effects of anomalous subdiffusion on concentration-encoded molecular communication (CEMC) are investigated. Although classical (i.e., normal) diffusion is a widely-used model of diffusion in molecular communication (MC) research, anomalous subdiffusion is quite common in biological media involving bio-nanomachines, yet inadequately addressed as a research issue so far. Using the fractional diffusion approach, the molecular propagation effects in the case of pure subdiffusion occurring in an unbounded three-dimensional propagation medium have been shown in detail in terms of temporal dispersion parameters of the impulse response of the subdiffusive channel. Correspondingly, the bit error rate (BER) performance of a CEMC system is investigated with sampling-based (SD) and strength (i.e., energy)-based (ED) signal detection methods. It is found that anomalous subdiffusion has distinctive time-dispersive properties that play a vital role in accurately designing a subdiffusive CEMC system. Unlike normal diffusion, to detect information symbols in subdiffusive CEMC, a receiver requires larger memory size to operate correctly and hence a more complex structure. An in-depth analysis has been made on the performances of SD and ED optimum receiver models under diffusion noise and intersymbol interference (ISI) scenarios when communication range, transmission data rate, and memory size vary. In subdiffusive CEMC, the SD method.

  3. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  4. Microscopic prediction of speech intelligibility in spatially distributed speech-shaped noise for normal-hearing listeners.

    PubMed

    Geravanchizadeh, Masoud; Fallah, Ali

    2015-12-01

    A binaural and psychoacoustically motivated intelligibility model, based on a well-known monaural microscopic model is proposed. This model simulates a phoneme recognition task in the presence of spatially distributed speech-shaped noise in anechoic scenarios. In the proposed model, binaural advantage effects are considered by generating a feature vector for a dynamic-time-warping speech recognizer. This vector consists of three subvectors incorporating two monaural subvectors to model the better-ear hearing, and a binaural subvector to simulate the binaural unmasking effect. The binaural unit of the model is based on equalization-cancellation theory. This model operates blindly, which means separate recordings of speech and noise are not required for the predictions. Speech intelligibility tests were conducted with 12 normal hearing listeners by collecting speech reception thresholds (SRTs) in the presence of single and multiple sources of speech-shaped noise. The comparison of the model predictions with the measured binaural SRTs, and with the predictions of a macroscopic binaural model called extended equalization-cancellation, shows that this approach predicts the intelligibility in anechoic scenarios with good precision. The square of the correlation coefficient (r(2)) and the mean-absolute error between the model predictions and the measurements are 0.98 and 0.62 dB, respectively.

  5. Scenario for Hollow Cathode End-Of-Life

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    2000-01-01

    Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.

  6. Crew procedures for microwave landing system operations

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1987-01-01

    The objective of this study was to identify crew procedures involved in Microwave Landing System (MLS) operations and to obtain a preliminary assessment of crew workload. The crew procedures were identified for three different complements of airborne equipment coupled to an autopilot. Using these three equipment complements, crew tasks were identified for MLS approaches and precision departures and compared to an ILS approach and a normal departure. Workload comparisons between the approaches and departures were made by using a task-timeline analysis program that obtained workload indexes, i.e., the radio of time required to complete the tasks to the time available. The results showed an increase in workload for the MLS scenario for one of the equipment complements. However, even this workload was within the capacity of two crew members.

  7. Liquefied Petroleum Gas Monitoring System Based on Polystyrene Coated Long Period Grating

    PubMed Central

    Zotti, Aldobenedetto; Palumbo, Giovanna; Zuppolini, Simona; Consales, Marco; Cutolo, Antonello; Borriello, Anna; Zarrelli, Mauro; Iadicicco, Agostino

    2018-01-01

    In this work, we report the in-field demonstration of a liquefied petroleum gas monitoring system based on optical fiber technology. Long-period grating coated with a thin layer of atactic polystyrene (aPS) was employed as a gas sensor, and an array comprising two different fiber Bragg gratings was set for the monitoring of environmental conditions such as temperature and humidity. A custom package was developed for the sensors, ensuring their suitable installation and operation in harsh conditions. The developed system was installed in a real railway location scenario (i.e., a southern Italian operative railway tunnel), and tests were performed to validate the system performances in operational mode. Daytime normal working operations of the railway line and controlled gas expositions, at very low concentrations, were the searched realistic conditions for an out-of-lab validation of the developed system. Encouraging results were obtained with a precise indication of the gas concentration and external conditioning of the sensor. PMID:29734731

  8. Scenario-based design: A method for connecting information system design with public health operations and emergency management

    PubMed Central

    Reeder, Blaine; Turner, Anne M

    2011-01-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Methods: Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Results: Interview analysis identified twenty-five information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create twenty-five scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. Conclusion: The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. PMID:21807120

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourham, Mohamed A.; Gilligan, John G.

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing componentsmore » safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.« less

  10. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  11. NASA TLA workload analysis support. Volume 1: Detailed task scenarios for general aviation and metering and spacing studies

    NASA Technical Reports Server (NTRS)

    Sundstrom, J. L.

    1980-01-01

    The techniques required to produce and validate six detailed task timeline scenarios for crew workload studies are described. Specific emphasis is given to: general aviation single pilot instrument flight rules operations in a high density traffic area; fixed path metering and spacing operations; and comparative workload operation between the forward and aft-flight decks of the NASA terminal control vehicle. The validation efforts also provide a cursory examination of the resultant demand workload based on the operating procedures depicted in the detailed task scenarios.

  12. Spot the difference: Operational event sequence diagrams as a formal method for work allocation in the development of single-pilot operations for commercial aircraft.

    PubMed

    Harris, Don; Stanton, Neville A; Starr, Alison

    2015-01-01

    Function Allocation methods are important for the appropriate allocation of tasks between humans and automated systems. It is proposed that Operational Event Sequence Diagrams (OESDs) provide a simple yet rigorous basis upon which allocation of work can be assessed. This is illustrated with respect to a design concept for a passenger aircraft flown by just a single pilot where the objective is to replace or supplement functions normally undertaken by the second pilot with advanced automation. A scenario-based analysis (take off) was used in which there would normally be considerable demands and interactions with the second pilot. The OESD analyses indicate those tasks that would be suitable for allocation to automated assistance on the flight deck and those tasks that are now redundant in this new configuration (something that other formal Function Allocation approaches cannot identify). Furthermore, OESDs are demonstrated to be an easy to apply and flexible approach to the allocation of function in prospective systems. OESDs provide a simple yet rigorous basis upon which allocation of work can be assessed. The technique can deal with the flexible, dynamic allocation of work and the deletion of functions no longer required. This is illustrated using a novel design concept for a single-crew commercial aircraft.

  13. A Re-Analysis of the Collaborative Knowledge Transcripts from a Noncombatant Evacuation Operation Scenario: The Next Phase in the Evolution of a Team Collaboration Model

    DTIC Science & Technology

    2008-04-15

    65 E. Scoring Matrix for the NEO Scenario ............................................................................ 69 F. Experimenter...the unclassified scenario. Warner, Wroblewski, and Shuck (2004) also developed a scoring matrix for the final NEO plan (see appendix E). They did...this with input from military operational personnel who had experience in actual NEO scenarios. The researchers created the matrix so that they

  14. A high-resolution, regional analysis of stormwater runoff for managed aquifer recharge site assessment

    NASA Astrophysics Data System (ADS)

    Young, K. S.; Fisher, A. T.; Beganskas, S.; Harmon, R. E.; Teo, E. K.; Weir, W. B.; Lozano, S.

    2016-12-01

    Distributed Stormwater Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of aquifer replenishment by collecting runoff and infiltrating it into underlying aquifers, but its successful implementation demands thorough knowledge of the distribution and availability of hillslope runoff. We applied a surface hydrology model to analyze the dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 San Lorenzo River Basin (SLRB) watershed, northern Santa Cruz County, CA. We used a 3 m digital elevation model to create a detailed model grid, which we parameterized with high-resolution geologic, hydrologic, and land use data. To analyze hillslope runoff under a range of precipitation regimes, we developed dry, normal, and wet climate scenarios from historic daily precipitation records (1981-2014). Simulation results show high spatial variability of hillslope runoff generation as a function of differences in precipitation and soil and land use conditions, and reveal a consistent increase in the spatial and temporal variability of runoff under wetter climate scenarios. Our results suggest that there may be opportunities to develop successful DSC-MAR projects that provide benefits during all climate scenarios. In the SLRB, our results indicate that annual hillslope runoff generation achieves a target minimum of 100 acre-ft, per 100 acres of drainage area, in approximately 15% of the region during dry climate scenarios and 60% of the region during wet climate scenarios. The high spatial and temporal resolution of our simulation output enables quantification of hillslope runoff at sub-watershed scales, commensurate with the spacing and operation of DSC-MAR. This study demonstrates a viable tool for screening of potential DSC-MAR project sites and assessing project performance under a range of climate and land use scenarios.

  15. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramicmore » microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, FeCrAl would tend to generate heat and hydrogen from oxidation at a slower rate compared to the zirconium-based alloys in use today. The previous study, [2], of the FeCrAl ATF concept during station blackout (SBO) severe accident scenarios in BWRs was based on simulating short term SBO (STSBO), long term SBO (LTSBO), and modified SBO scenarios occurring in a BWR-4 reactor with MARK-I containment. The analysis indicated that FeCrAl had the potential to delay the onset of fuel failure by a few hours depending on the scenario, and it could delay lower head failure by several hours. The analysis demonstrated reduced in-vessel hydrogen production. However, the work was preliminary and was based on limited knowledge of material properties for FeCrAl. Limitations of the MELCOR code were identified for direct use in modeling ATF concepts. This effort used an older version of MELCOR (1.8.5). Since these analyses, the BWR model has been updated for use in MELCOR 1.8.6 [10], and more representative material properties for FeCrAl have been modeled. Sections 2 4 present updated analyses for the FeCrAl ATF concept response during severe accidents in a BWR. The purpose of the study is to estimate the potential gains afforded by the FeCrAl ATF concept during BWR SBO scenarios.« less

  16. Scenario-based design: a method for connecting information system design with public health operations and emergency management.

    PubMed

    Reeder, Blaine; Turner, Anne M

    2011-12-01

    Responding to public health emergencies requires rapid and accurate assessment of workforce availability under adverse and changing circumstances. However, public health information systems to support resource management during both routine and emergency operations are currently lacking. We applied scenario-based design as an approach to engage public health practitioners in the creation and validation of an information design to support routine and emergency public health activities. Using semi-structured interviews we identified the information needs and activities of senior public health managers of a large municipal health department during routine and emergency operations. Interview analysis identified 25 information needs for public health operations management. The identified information needs were used in conjunction with scenario-based design to create 25 scenarios of use and a public health manager persona. Scenarios of use and persona were validated and modified based on follow-up surveys with study participants. Scenarios were used to test and gain feedback on a pilot information system. The method of scenario-based design was applied to represent the resource management needs of senior-level public health managers under routine and disaster settings. Scenario-based design can be a useful tool for engaging public health practitioners in the design process and to validate an information system design. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Alternative release scenario analysis... scenario analysis. (a) The number of scenarios. The owner or operator shall identify and analyze at least... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario...

  18. Realizing Steady State Tokamak Operation for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2009-11-01

    Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.

  19. Acoustic Detection of Faults and Degradation in a High-Bypass Turbofan Engine during VIPR Phase III Testing

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2017-01-01

    The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.

  20. Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956.

  1. Science-based HRA: experimental comparison of operator performance to IDAC (Information-Decision-Action Crew) simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, Rachel; Smidts, Carol; Boring, Ronald

    Information-Decision-Action Crew (IDAC) operator model simulations of a Steam Generator Tube Rupture are compared to student operator performance in studies conducted in the Ohio State University’s Nuclear Power Plant Simulator Facility. This study is presented as a prototype for conducting simulator studies to validate key aspects of Human Reliability Analysis (HRA) methods. Seven student operator crews are compared to simulation results for crews designed to demonstrate three different decision-making strategies. The IDAC model used in the simulations is modified slightly to capture novice behavior rather that expert operators. Operator actions and scenario pacing are compared. A preliminary review of availablemore » performance shaping factors (PSFs) is presented. After the scenario in the NPP Simulator Facility, student operators review a video of the scenario and evaluate six PSFs at pre-determined points in the scenario. This provides a dynamic record of the PSFs experienced by the OSU student operators. In this preliminary analysis, Time Constraint Load (TCL) calculated in the IDAC simulations is compared to TCL reported by student operators. We identify potential modifications to the IDAC model to develop an “IDAC Student Operator Model.” This analysis provides insights into how similar experiments could be conducted using expert operators to improve the fidelity of IDAC simulations.« less

  2. Development of a Nutritional Delivery System to Feed Crew in a Pressurized Suit

    NASA Technical Reports Server (NTRS)

    Glass, J. W.; Leonig, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  3. An online dispatcher training simulator function for real-time analysis and training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadari, S.V.; Montstream, M.J.; Ross, H.B. Jr.

    1995-11-01

    Today`s power systems have become so complex that it is not easy for the system dispatcher to realistically predict the results of outages. The situation is compounded whenever the power grid is not in its normal configuration due to maintenance switching or equipment failure. The authors feel that the DTS is an excellent tool that can be used to teach the dispatcher how to react under these conditions. In this paper, the authors present an on-line implementation of the DTS which allows the user to initialize the DTS to an EMS disturbance using data that was captured at the timemore » of the disturbance; and place the DTS in a playback mode and go back to specific times in the scenario. The former feature allows the analyst to investigate EMS disturbances and then train the various dispatchers to be able to recognize such disturbances and to recover from them when they occur. The latter feature allows the instructor (with the trainee) to review and re-experience desired portions of the scenario. It is the authors` feeling that these two features will help the EMS operational staff understand their power system better and help their dispatchers in dealing with operational problems associated with the proper running of the system.« less

  4. Stability of Elevated-qmin Steady-State Scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.

    2016-10-01

    Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.

  5. Cost of enlarged operating zone for an existing Francis runner

    NASA Astrophysics Data System (ADS)

    Monette, Christine; Marmont, Hugues; Chamberland-Lauzon, Joël; Skagerstrand, Anders; Coutu, André; Carlevi, Jens

    2016-11-01

    Traditionally, hydro power plants have been operated close to best efficiency point, the more stable operating condition for which they have been designed. However, because of changes in the electricity market, many hydro power plants operators wish to operate their machines differently to fulfil those new market needs. New operating conditions can include whole range operation, many start/stops, extensive low load operation, synchronous condenser mode and power/frequency regulation. Many of these new operating conditions may impose more severe fatigue damage than the traditional base load operation close to best efficiency point. Under these conditions, the fatigue life of the runner may be significantly reduced and reparation or replacement cost might occur sooner than expected. In order to design reliable Francis runners for those new challenging operating scenarios, Andritz Hydro has developed various proprietary tools and design rules. These are used within Andritz Hydro to design mechanically robust Francis runners for the operating scenarios fulfilling customer's specifications. To estimate residual life under different operating scenarios of an existing runner designed years ago for best efficiency base load operation, Andritz Hydro's design rules and tools would necessarily lead to conservative results. While the geometry of a new runner can be modified to fulfil all conservative mechanical design rules, the predicted fatigue life of an existing runner under off-design operating conditions may appear rather short because of the conservative safety factor included in the calculations. The most precise and reliable way to calculate residual life of an existing runner under different operating scenarios is to perform a strain gauge measurement campaign on the runner. This paper presents the runner strain gage measurement campaign of a mid-head Francis turbine over all the operating conditions available during the test, the analysis of the measurement signals and the runner residual life assessment under different operating scenarios. With these results, the maintenance cost of the change in operating mode can then be calculated and foreseen by the power plant owner.

  6. Open Scenario Study, Phase I. Volume 3. Questionnaire Response

    DTIC Science & Technology

    2008-03-01

    a conceptual framework to assist users to grasp new ideas. As the concepts are used by a broad community and internationally, classified scenarios are...framework to assist users to grasp new ideas. As the concepts are used by a broad community and internationally, classified scenarios are not necessary for...from other sources Comment: Normally have an old version that we can update. Occasionally we’ve had to develop new scenarios - the SSSP for example - we

  7. Payload Operations

    NASA Technical Reports Server (NTRS)

    Cissom, R. D.; Melton, T. L.; Schneider, M. P.; Lapenta, C. C.

    1999-01-01

    The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304.

  8. Calculation of Operations Efficiency Factors for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long enough time to capture variations in relay asset interactions, Earth/Mars time phasing, and seasonal variations in holidays). This model is used to estimate the ops efficiency factor for each operations configuration. The second model in a separate Excel spreadsheet is a scenario model, which uses the sol types to rack up the total number of "scenario sols" for that scenario (in other words, the ideal number of sols it would take to perform the scenario objectives). Then, the number of sols requiring ground in the loop is calculated based on the soil types contained in the given scenario. Next, the scenario contains a description of what sequence of operations configurations is used, for how many days each, and this is used with the corresponding ops efficiency factors for each configuration to calculate the "ops duration" corresponding to that scenario. Finally, a margin is applied to determine the minimum surface lifetime required for that scenario. Typically, this level of analysis has not been performed until much later in the mission, and has not been able to influence mission design. Further, the notion of moving to sustainable operations during Prime Mission - and the effect that that move would have on surface mission productivity and mission objective choices - has not been encountered until the most recent rover missions (MSL and Mars 2018).

  9. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  10. An Investigation into the Electromagnetic Interactions between a Superconducting Torus and Solenoid for the Jefferson Lab 12 GeV Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput-Ghoshal, Renuka; Ghoshal, Probir K.; Fair, Ruben J.

    2015-06-01

    The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).

  11. The analysis of ballistic capabilities for countering disturbances associated with temporary emergency electric propulsion shutdown

    NASA Astrophysics Data System (ADS)

    Konstantinov, M. S.; Nguyen, D. N.

    2016-12-01

    The paper analyzes the possibility for countering ballistic perturbations of the interplanetary transfer trajectory of the spacecraft with electric propulsion (EP) associated with the temporary impossibility of the normal use of the EP in phases of the heliocentric transfer. The main result of the present study is the method for the determination of a new nominal trajectory, at any point of which the allowed duration of the emergency shutdown of electric propulsion is large enough. The numerical analysis is given for one of the possible scenarios of spacecraft injection into the operational heliocentric orbit for solar research.

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less

  13. Vertical transportation systems embedded on shuffled frog leaping algorithm for manufacturing optimisation problems in industries.

    PubMed

    Aungkulanon, Pasura; Luangpaiboon, Pongchanun

    2016-01-01

    Response surface methods via the first or second order models are important in manufacturing processes. This study, however, proposes different structured mechanisms of the vertical transportation systems or VTS embedded on a shuffled frog leaping-based approach. There are three VTS scenarios, a motion reaching a normal operating velocity, and both reaching and not reaching transitional motion. These variants were performed to simultaneously inspect multiple responses affected by machining parameters in multi-pass turning processes. The numerical results of two machining optimisation problems demonstrated the high performance measures of the proposed methods, when compared to other optimisation algorithms for an actual deep cut design.

  14. Virtual population-based assessment of the impact of 3 Tesla radiofrequency shimming and thermoregulation on safety and B1 + uniformity.

    PubMed

    Murbach, Manuel; Neufeld, Esra; Cabot, Eugenia; Zastrow, Earl; Córcoles, Juan; Kainz, Wolfgang; Kuster, Niels

    2016-09-01

    To assess the effect of radiofrequency (RF) shimming of a 3 Tesla (T) two-port body coil on B1 + uniformity, the local specific absorption rate (SAR), and the local temperature increase as a function of the thermoregulatory response. RF shimming alters induced current distribution, which may result in large changes in the level and location of absorbed RF energy. We investigated this effect with six anatomical human models from the Virtual Population in 10 imaging landmarks and four RF coils. Three thermoregulation models were applied to estimate potential local temperature increases, including a newly proposed model for impaired thermoregulation. Two-port RF shimming, compared to circular polarization mode, can increase the B1 + uniformity on average by +32%. Worst-case SAR excitations increase the local RF power deposition on average by +39%. In the first level controlled operating mode, induced peak temperatures reach 42.5°C and 45.6°C in patients with normal and impaired thermoregulation, respectively. Image quality with 3T body coils can be significantly increased by RF shimming. Exposure in realistic scan scenarios within guideline limits can be considered safe for a broad patient population with normal thermoregulation. Patients with impaired thermoregulation should not be scanned outside of the normal operating mode. Magn Reson Med 76:986-997, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Novel hybrid linear stochastic with non-linear extreme learning machine methods for forecasting monthly rainfall a tropical climate.

    PubMed

    Zeynoddin, Mohammad; Bonakdari, Hossein; Azari, Arash; Ebtehaj, Isa; Gharabaghi, Bahram; Riahi Madavar, Hossein

    2018-09-15

    A novel hybrid approach is presented that can more accurately predict monthly rainfall in a tropical climate by integrating a linear stochastic model with a powerful non-linear extreme learning machine method. This new hybrid method was then evaluated by considering four general scenarios. In the first scenario, the modeling process is initiated without preprocessing input data as a base case. While in other three scenarios, the one-step and two-step procedures are utilized to make the model predictions more precise. The mentioned scenarios are based on a combination of stationarization techniques (i.e., differencing, seasonal and non-seasonal standardization and spectral analysis), and normality transforms (i.e., Box-Cox, John and Draper, Yeo and Johnson, Johnson, Box-Cox-Mod, log, log standard, and Manly). In scenario 2, which is a one-step scenario, the stationarization methods are employed as preprocessing approaches. In scenario 3 and 4, different combinations of normality transform, and stationarization methods are considered as preprocessing techniques. In total, 61 sub-scenarios are evaluated resulting 11013 models (10785 linear methods, 4 nonlinear models, and 224 hybrid models are evaluated). The uncertainty of the linear, nonlinear and hybrid models are examined by Monte Carlo technique. The best preprocessing technique is the utilization of Johnson normality transform and seasonal standardization (respectively) (R 2  = 0.99; RMSE = 0.6; MAE = 0.38; RMSRE = 0.1, MARE = 0.06, UI = 0.03 &UII = 0.05). The results of uncertainty analysis indicated the good performance of proposed technique (d-factor = 0.27; 95PPU = 83.57). Moreover, the results of the proposed methodology in this study were compared with an evolutionary hybrid of adaptive neuro fuzzy inference system (ANFIS) with firefly algorithm (ANFIS-FFA) demonstrating that the new hybrid methods outperformed ANFIS-FFA method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additionalmore » areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.« less

  17. Helios1A EoL: A Success. For the first Time a Long Final Thrust Scenario, Respecting the French Law on Space Operations

    NASA Astrophysics Data System (ADS)

    Guerry, Agnes; Moussi, Aurelie; Sartine, Christian; Beaumet, Gregory

    2013-09-01

    HELIOS1A End Of Live (EOL) operations occurred in the early 2012. Through this EOL operation, CNES wanted to make an example of French Space Act compliance. Because the satellite wasn't natively designed for such an EOL phase, the operation was touchy and risky. It was organized as a real full project in order to assess every scenario details with dedicated Mission Analysis, to secure the operations through detailed risk analysis at system level and to consider the major failures that could occur during the EOL. A short scenario allowing to reach several objectives with benefits was eventually selected. The main objective of this project was to preserve space environment. The operations were led on a "best effort" basis. The French Space Operations Act (FSOA) requirements were met: HELIOS-1A EOL operations had been led successfully.

  18. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  19. Apparent Transition in the Human Height Distribution Caused by Age-Dependent Variation during Puberty Period

    NASA Astrophysics Data System (ADS)

    Iwata, Takaki; Yamazaki, Yoshihiro; Kuninaka, Hiroto

    2013-08-01

    In this study, we examine the validity of the transition of the human height distribution from the log-normal distribution to the normal distribution during puberty, as suggested in an earlier study [Kuninaka et al.: J. Phys. Soc. Jpn. 78 (2009) 125001]. Our data analysis reveals that, in late puberty, the variation in height decreases as children grow. Thus, the classification of a height dataset by age at this stage leads us to analyze a mixture of distributions with larger means and smaller variations. This mixture distribution has a negative skewness and is consequently closer to the normal distribution than to the log-normal distribution. The opposite case occurs in early puberty and the mixture distribution is positively skewed, which resembles the log-normal distribution rather than the normal distribution. Thus, this scenario mimics the transition during puberty. Additionally, our scenario is realized through a numerical simulation based on a statistical model. The present study does not support the transition suggested by the earlier study.

  20. Non-inductive improved H-mode operation at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Bock, A.; Fable, E.; Fischer, R.; Reich, M.; Rittich, D.; Stober, J.; Bernert, M.; Burckhart, A.; Doerk, H.; Dunne, M.; Geiger, B.; Giannone, L.; Igochine, V.; Kappatou, A.; McDermott, R.; Mlynek, A.; Odstrčil, T.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team

    2017-12-01

    Recent improvements to the heating and diagnostic systems on the ASDEX Upgrade tokamak allow renewed investigations into non-inductive operation scenarios with improved confinement in a full-metal device. Motivated by this, a scenario with \

  1. Management of pericardial fluid in blunt trauma: variability in practice and predictors of operative outcome in patients with computed tomography evidence of pericardial fluid

    PubMed Central

    Witt, Cordelie E.; Linnau, Ken F.; Maier, Ronald V.; Rivara, Frederick P.; Vavilala, Monica S.; Bulger, Eileen M.; Arbabi, Saman

    2017-01-01

    Background The objectives of this study were to assess current variability in management preferences for blunt trauma patients with pericardial fluid, and to identify characteristics associated with operative intervention for patients with pericardial fluid on admission computed tomography (CT) scan. Methods This was a mixed-methods study of blunt trauma patients with pericardial fluid. The first portion was a research survey of members of the Eastern Association for the Surgery of Trauma conducted in 2016, in which surgeons were presented with four clinical scenarios of blunt trauma patients with pericardial fluid. The second portion of the study was a retrospective evaluation of all blunt trauma patients ≥14 years treated at our Level I trauma center between 1/1/2010 and 11/1/2015 with pericardial fluid on admission CT scan. Results For the survey portion of our study, 393 surgeons responded (27% response rate). There was significant variability in management preferences for scenarios depicting trace pericardial fluid on CT with concerning hemodynamics, and for scenarios depicting hemopericardium intraoperatively. For the separate retrospective portion of our study, we identified 75 blunt trauma patients with pericardial fluid on admission CT scan. Seven underwent operative management; six of these had hypotension and/or electrocardiogram changes. In multivariable analysis, pericardial fluid amount was a significant predictor of receiving pericardial window (relative risk for one category increase in pericardial fluid amount: 3.99, 95% CI 1.47-10.81) but not of mortality. Conclusions There is significant variability in management preferences for patients with pericardial fluid from blunt trauma, indicating a need for evidence-based research. Our institutional data suggest that patients with minimal to small amounts of pericardial fluid without concerning clinical findings may be observed. Patients with moderate to large amounts of pericardial fluid who are clinically stable with normal hemodynamics may also appear appropriate for observation, although confirmation in larger studies is needed. Patients with hemodynamic instability should undergo operative exploration. Level of Evidence Level IV, Therapeutic/Care Management PMID:28129264

  2. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less

  4. Anti Submarine Warfare Search Models

    DTIC Science & Technology

    2016-09-01

    worthwhile to send a helicopter out to search for the target? The answer to this operational question depends on the probability of finding the target and...fist,” and “lungs” of the ASW weapon. This balance certainly depends upon the mission and the tactical parameters of the associated scenario. For...effectiveness of search models depends on the scenario and assumptions made, and one can never perfectly model an operational scenario. Each chapter

  5. Ability of paramedics to perform endotracheal intubation during continuous chest compressions: a randomized cadaver study comparing Pentax AWS and Macintosh laryngoscopes.

    PubMed

    Truszewski, Zenon; Czyzewski, Lukasz; Smereka, Jacek; Krajewski, Paweł; Fudalej, Marcin; Madziala, Marcin; Szarpak, Lukasz

    2016-09-01

    The aim of the trial was to compare the time parameters for intubation with the use of the Macintosh (MAC) laryngoscope and Pentax AWS-S100 videolaryngoscope (AWS; Pentax Corporation, Tokyo, Japan) with and without chest compression (CC) by paramedics during simulated cardiopulmonary resuscitation in a cadaver model. This was a randomized crossover cadaver trial. Thirty-five paramedics with no experience in videolaryngoscopy participated in the study. They performed intubation in two emergency scenarios: scenario A, normal airway without CC; scenario B, normal airway with continuous CC. The median time to first ventilation with the use of the AWS and the MAC was similar in scenario A: 25 (IQR, 22-27) seconds vs. 24 (IQR, 22.5-26) seconds (P=.072). A statistically significant difference in TTFV between AWS and MAC was noticed in scenario B (P=.011). In scenario A, the first endotracheal intubation (ETI) attempt success rate was achieved in 97.1% with AWS compared with 94.3% with MAC (P=.43). In scenario B, the success rate after the first ETI attempt with the use of the different intubation methods varied and amounted to 88.6% vs. 77.1% for AWS and MAC, respectively (P=.002). The Pentax AWS offered a superior glottic view as compared with the MAC laryngoscope, which was associated with a higher intubation rate and a shorter intubation time during an uninterrupted CC scenario. However, in the scenario without CC, the results for AWS and MAC were comparable. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  7. Operator learning effects in teleoperated rendezvous & docking

    NASA Astrophysics Data System (ADS)

    Wilde, M.; Harder, J.; Purschke, R.

    Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.

  8. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  9. Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation

    NASA Astrophysics Data System (ADS)

    Price, Layne C.

    2015-11-01

    We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.

  10. Smart garments for emergency operators: results of laboratory and field tests.

    PubMed

    Curone, Davide; Dudnik, Gabriela; Loriga, Giannicola; Magenes, Giovanni; Secco, Emanuele Lindo; Tognetti, Alessandro; Bonfiglio, Annalisa

    2008-01-01

    The first generation of ProeTEX prototypes has been completed at the end of August 2007. In the following period two main activities have involved the project partners. On one hand new technologies (in terms of sensors and devices) to be integrated in the next releases of prototypes have been developed; on the other hand intensive test sessions on the first prototype (both in laboratory conditions and simulating real operative scenarios) have been carried out. This paper is mainly focused on this second facet. Great efforts have been dedicated to the trials for different reasons: firstly to investigate the appropriateness and efficiency of the system in normal and harsh conditions; secondly to obtain useful indications regarding usability and efficacy by the end-users involved in the project. The results of the trials have been used to define the specifications of the second generation of prototypes, that will be released within the end of 2008.

  11. Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics

    NASA Astrophysics Data System (ADS)

    Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane

    2014-10-01

    This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...

  12. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    PubMed Central

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  13. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-12-31

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DIII-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  14. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  15. Optimizing Reservoir Operation to Adapt to the Climate Change

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  16. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    PubMed

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  17. Supply Chain Vulnerability Analysis Using Scenario-Based Input-Output Modeling: Application to Port Operations.

    PubMed

    Thekdi, Shital A; Santos, Joost R

    2016-05-01

    Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.

  18. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum visibility across the project. One key aspect is that the tool was built for a scenario process that accounts for stakeholder input, review, comment, and concurrence. By creating well-designed opportunities for stakeholder input and concurrence and by making the scenario content easily accessible to all project personnel, we maximize the opportunities for stakeholders to both understand and agree on the concepts for how their mission is to be carried out.

  19. 40 CFR 63.1258 - Monitoring Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... new operating scenario is implemented based on process knowledge and representative operating data... specified for control scenarios in Table 4 of this subpart and in paragraphs (b)(1)(ii) through (xi) of this.... The minimum scrubber flowrate or pressure drop shall be based on the conditions anticipated under...

  20. Decision support framework for evaluating the operational environment of forest bioenergy production and use: Case of four European countries.

    PubMed

    Pezdevšek Malovrh, Špela; Kurttila, Mikko; Hujala, Teppo; Kärkkäinen, Leena; Leban, Vasja; Lindstad, Berit H; Peters, Dörte Marie; Rhodius, Regina; Solberg, Birger; Wirth, Kristina; Zadnik Stirn, Lidija; Krč, Janez

    2016-09-15

    Complex policy-making situations around bioenergy production and use require examination of the operational environment of the society and a participatory approach. This paper presents and demonstrates a three-phase decision-making framework for analysing the operational environment of strategies related to increased forest bioenergy targets. The framework is based on SWOT (strengths, weaknesses, opportunities and threats) analysis and the Simple Multi-Attribute Rating Technique (SMART). Stakeholders of four case countries (Finland, Germany, Norway and Slovenia) defined the factors that affect the operational environments, classified in four pre-set categories (Forest Characteristics and Management, Policy Framework, Technology and Science, and Consumers and Society). The stakeholders participated in weighting of SWOT items for two future scenarios with SMART technique. The first scenario reflected the current 2020 targets (the Business-as-Usual scenario), and the second scenario contained a further increase in the targets (the Increase scenario). This framework can be applied to various problems of environmental management and also to other fields where public decision-making is combined with stakeholders' engagement. The case results show that the greatest differences between the scenarios appear in Germany, indicating a notably negative outlook for the Increase scenario, while the smallest differences were found in Finland. Policy Framework was a highly rated category across the countries, mainly with respect to weaknesses and threats. Intensified forest bioenergy harvesting and utilization has potentially wide country-specific impacts which need to be anticipated and considered in national policies and public dialogue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Operation Protective Edge - A Unique Challenge for a Civilian EMS Agency.

    PubMed

    Jaffe, Eli; Strugo, Refael; Wacht, Oren

    2015-10-01

    During July through August 2014, Operation Protective Edge, a military conflict between Israel and the Hamas regime in Gaza, dramatically affected both populations. Magen David Adom (MDA), the Israeli national Emergency Medical Service (EMS) and a member of the Red Cross, faced a unique challenge during the conflict: to continue providing crucial service to the entire civilian population of Israel, which was under constant missile threat. This challenge included not only providing immediate care for routine EMS calls under missile threat, but also preparing and delivering immediate care to civilians injured in attacks on major cities, as well as small communities, in Israel. This task is a challenge for a civilian EMS agency that normally operates in a non-military environment, yet, in an instant, must enhance its capability to respond to a considerable threat to its population. During Operation Protective Edge, MDA provided care for 842 wounded civilians and utilized a significant amount of its resources. Providing EMS services for a civilian population in a mixed civilian/military scenario is a challenging task on a national level for an EMS system, especially when the threat lasts for weeks. This report describes MDA's preparedness and operations during Operation Protective Edge, and the unique EMS challenges and dilemmas the agency faced.

  2. A comparison of a traditional endotracheal tube versus ETView SL in endotracheal intubation during different emergency conditions

    PubMed Central

    Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz

    2016-01-01

    Abstract Background: Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. Methods: ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. Results: The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5–22] sec, when compared to that of sETT at 21.5 [IQR, 20–25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5–24.5] sec (p < .001) and sETT was 27 [IQR, 24.5–31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19–25.5] sec for the ETView and 42.5 [IQR, 35–49.5] sec for sETT. Conclusions: In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. Trial Registration: clinicaltrials.gov Identifier: NCT02733536. PMID:27858851

  3. A comparison of a traditional endotracheal tube versus ETView SL in endotracheal intubation during different emergency conditions: A randomized, crossover cadaver trial.

    PubMed

    Truszewski, Zenon; Krajewski, Paweł; Fudalej, Marcin; Smereka, Jacek; Frass, Michael; Robak, Oliver; Nguyen, Bianka; Ruetzler, Kurt; Szarpak, Lukasz

    2016-11-01

    Airway management is a crucial skill essential to paramedics and personnel working in Emergency Medical Services and Emergency Departments: Lack of practice, a difficult airway, or a trauma situation may limit the ability of paramedics to perform direct laryngoscopy during cardiopulmonary resuscitation. Videoscope devices are alternatives for airway management in these situations. The ETView VivaSight SL (ETView; ETView Ltd., Misgav, Israel) is a new, single-lumen airway tube with an integrated high-resolution imaging camera. To assess if the ETView VivaSight SL can be a superior alternative to a standard endotracheal tube for intubation in an adult cadaver model, both during and without simulated CPR. ETView VivaSight SL tube was investigated via an interventional, randomized, crossover, cadaver study. A total of 52 paramedics participated in the intubation of human cadavers in three different scenarios: a normal airway at rest without concomitant chest compression (CC) (scenario A), a normal airway with uninterrupted CC (scenario B) and manual in-line stabilization (scenario C). Time and rate of success for intubation, the glottic view scale, and ease-of-use of ETView vs. sETT intubation were assessed for each emergency scenario. The median time to intubation using ETView vs. sETT was compared for each of the aforementioned scenarios. For scenario A, time to first ventilation was achieved fastest for ETView, 19.5 [IQR, 16.5-22] sec, when compared to that of sETT at 21.5 [IQR, 20-25] sec (p = .013). In scenario B, the time for intubation using ETView was 21 [IQR, 18.5-24.5] sec (p < .001) and sETT was 27 [IQR, 24.5-31.5] sec. Time to first ventilation for scenario C was 23.5 [IQR, 19-25.5] sec for the ETView and 42.5 [IQR, 35-49.5] sec for sETT. In normal airways and situations with continuous chest compressions, the success rate for intubation of cadavers and the time to ventilation were improved with the ETView. The time to glottis view, tube insertion, and cuff block were all found to be shorter with the ETView. clinicaltrials.gov Identifier: NCT02733536.

  4. Evaluation of cooling concepts and specimen geometries for high heat flux tests on neutron irradiated divertor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Bolt. H.; Breitbach, G.

    1994-12-31

    To assess the lifetime and the long term heat removal capabilities of plasma facing components in future thermonuclear fusion reactors such as ITER, neutron irradiation and subsequent high heat flux tests will be most essential. The effect of neutron damage will be simulated in material test reactors (such as the HFR-Petten) in a fission neutron environment. To investigate the heat loads during normal and off-normal operation scenarios a 60 kW electron beam test stand (Juelich Divertor Test Facility in Hot Cells, JUDITH) has been installed in a hot cell which can be operated by remote handling techniques. In this facilitymore » inertially cooled test coupons can be handled as well as small actively cooled divertor mock-ups. A special clamping mechanism for small test coupons (25 mm x 25 mm x 35 mm) with an integrated coolant channel within a copper or TZM heat sink has been developed and tested in an electron beam test bed. This method is an attractive alternative to costly large scale tests on complete divertor modules. The temperature and stress fields in individual CFC or beryllium tiles brazed to metallic heat sink (e.g. copper or TZM) can be investigated before and after neutron irradiation with moderate efforts.« less

  5. Internet Data Delivery for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Rash, James; Hogie, Keith; Casasanta, Ralph; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    This paper presents work being done at NASA/GSFC (Goddard Space Flight Center) on applying standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols (IP) can provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, and constellations of spacecraft. A primary component of this work is to design and demonstrate automated end-to-end transport of files in a dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. These functions and capabilities will become increasingly significant in the years to come as both Earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively expensive. This paper describes how an IP-based communication architecture can support existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end file transfers all the way from instruments to control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with data rates and downlink capabilities from 300 Kbps to 4 Mbps. Many examples are based on designs currently being investigated for the Global Precipitation Measurement (GPM) mission.

  6. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  7. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  8. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less

  9. PRESTO low-level waste transport and risk assessment code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, C.A.; Fields, D.E.; McDowell-Boyer, L.M.

    1981-01-01

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under US Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial trenches. The model is intended to be generic and to assess radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000-y period following the end of burial operations. Human exposure scenarios considered by the model include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population inlude: groundwatermore » transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the thousand-year period using a life-table approach. Data bases are being developed for three extant shallow land burial sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York.« less

  10. Environmental assessment model for shallow land disposal of low-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Little, C. A.; Fields, D. E.; Emerson, C. J.; Hiromoto, G.

    1981-09-01

    The PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) computer code developed to evaluate health effects from shallow land burial trenches is described. This generic model assesses radionuclide transport, ensuing exposure, and health impact to a static local population for a 1000 y period following the end of burial operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and site farming or reclamation. Pathways and processes of transit from the trench to an individual or population includes ground water transport overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses are calculated as well as doses to the intruder and farmer. Cumulative health effects in terms of deaths from cancer are calculated for the population over the 1000 y period using a life table approach. Data bases for three shallow land burial sites (Barnwell, South Carolina, Beatty, Nevada, and West Valley, New York) are under development. The interim model, includes coding for environmental transport through air, surface water, and ground water.

  11. An assessment of driving fitness in patients with visual impairment to understand the elevated risk of motor vehicle accidents

    PubMed Central

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi; Sanuki, Tomoyuki; Itoh, Makoto

    2015-01-01

    Objective To assess the driving fitness of patients with glaucoma by identifying specific areas and degrees of visual field impairment that threaten safe driving. Design Case–control study. Setting, and participants This prospective study included 36 patients with advanced glaucoma, defined as Humphrey field analyzer (HFA; 24-2 SITA standard program) measurements of mean deviation in both eyes of worse than −12 dB, and 36 age-matched and driving exposure time-matched normal subjects. All participants underwent testing in a novel driving simulator (DS) system. Participants were recruited between September 2010 and January 2012. Main outcome measures The number of collisions with simulated hazards and braking response time in 14 DS scenarios was recorded. Monocular HFA 24-2 test results from both eyes were merged to calculate the binocular integrated visual field (IVF). The position of the IVF subfields in which the collision-involved patients had lower sensitivity than the collision-uninvolved patients was compared with the track of the hazard. The cut-off value to predict an elevated risk of collisions was determined, as were its sensitivity and specificity, with the area under the receiver operating characteristic (AUROC) curve. Results Patients with advanced glaucoma were involved in a significantly higher number of collisions in the DS than the age-matched and driving exposure time-matched normal subjects (119 vs 40, respectively, p<0.0001), especially in four specific DS scenarios. In these four scenarios, IVF sensitivity was significantly lower in the collision-involved patients than in the collision-uninvolved patients in subfields on or near the track of the simulated hazard (p<0.05). The subfields with the largest AUROC curve had values ranging from 0.72 to 0.91 and were located in the paracentral visual field just below the horizontal. Conclusions Our novel DS system effectively assessed visual impairment, showing that simulators may have future potential in educating patients. PMID:25724982

  12. Intra-operative disruptions, surgeon's mental workload, and technical performance in a full-scale simulated procedure.

    PubMed

    Weigl, Matthias; Stefan, Philipp; Abhari, Kamyar; Wucherer, Patrick; Fallavollita, Pascal; Lazarovici, Marc; Weidert, Simon; Euler, Ekkehard; Catchpole, Ken

    2016-02-01

    Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon's intra-operative workload and technical performance. In a full-scale OR simulation, 19 surgeons were randomly allocated to either of the two disruption scenarios (telephone call vs. patient discomfort). Using a mixed virtual reality simulator with a computerized, high-fidelity mannequin, all surgeons were trained in performing a vertebroplasty procedure and subsequently performed such a procedure under experimental conditions. Standardized measures on subjective workload and technical performance (trocar positioning deviation from expert-defined standard, number, and duration of X-ray acquisitions) were collected. Intra-operative workload during simulated disruption scenarios was significantly higher compared to training sessions (p < .01). Surgeons in the telephone call scenario experienced significantly more distraction compared to their colleagues in the patient discomfort scenario (p < .05). However, workload tended to be increased in surgeons who coped with distractions due to patient discomfort. Technical performance was not significantly different between both disruption scenarios. We found a significant association between surgeons' intra-operative workload and technical performance such that surgeons with increased mental workload tended to perform worse (β = .55, p = .04). Surgical flow disruptions affect surgeons' intra-operative workload. Increased mental workload was associated with inferior technical performance. Our simulation-based findings emphasize the need to establish smooth surgical flow which is characterized by a low level of process deviations and disruptions.

  13. Directed Energy Technology Working Group Report (IDA/OSD R&M (Institute for Defense Analyses/Office of the Secretary of Defense Reliability and Maintainability) Study).

    DTIC Science & Technology

    1983-08-01

    Missile (SLBM) Defense Scenario ............................................ B-1 C Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario...Ballistic Missile (SLBM) Defense Scenario, and at Strategic Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario. These case studies are provided...of flight. 3.5.3 Spaced-Based ABM Defense Scenario In this scenario, an orbiting battle station is operating as an element of GBMD System, and it is

  14. Utility of an airframe referenced spatial auditory display for general aviation operations

    NASA Astrophysics Data System (ADS)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  15. Low-carbon, low-water scenarios with life cycle water factors for ES&T paper

    EPA Pesticide Factsheets

    The dataset includes all data used in the creation of figures and graphs in the paper: Scenarios for low carbon and low water electric power plant operations: implications for upstream water use. Data includes regional electricity mixes, full life cycle water use, and water use for each life cycle stage. These encompass a range of scenarios out to 2050, and should not be used as predictions, forecasts or official baselines. The scenarios and results are for research purposes only, and do not represent current or future U.S. EPA policies or regulations.This dataset is associated with the following publication:Dodder , R., J. Barnwell , and W. Yelverton. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 50(21): 11460-11470, (2016).

  16. Structural safety assessment for FLNG-LNGC system during offloading operation scenario

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Zhang, Dong-wei; Zhao, Dong-ya; Chen, Gang

    2017-04-01

    The crashworthiness of the cargo containment systems (CCSs) of a floating liquid natural gas (FLNG) and the side structures in side-by-side offloading operations scenario are studied in this paper. An FLNG vessel is exposed to potential threats from collisions with a liquid natural gas carrier (LNGC) during the offloading operations, which has been confirmed by a model test of FLNG-LNGC side-by-side offloading operations. A nonlinear finite element code LS-DYNA is used to simulate the collision scenarios during the offloading operations. Finite element models of an FLNG vessel and an LNGC are established for the purpose of this study, including a detailed LNG cargo containment system in the FLNG side model. Based on the parameters obtained from the model test and potential dangerous accidents, typical collision scenarios are defined to conduct a comprehensive study. To evaluate the safety of the FLNG vessel, a limit state is proposed based on the structural responses of the LNG CCS. The different characteristics of the structural responses for the primary structural components, energy dissipation and collision forces are obtained for various scenarios. Deformation of the inner hull is found to have a great effect on the responses of the LNG CCS, with approximately 160 mm deformation corresponding to the limit state. Densely arranged web frames can absorb over 35% of the collision energy and be proved to greatly enhance the crashworthiness of the FLNG side structures.

  17. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  18. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    PubMed

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Identifying socioeconomic, epidemiological and operational scenarios for tuberculosis control in Brazil: an ecological study.

    PubMed

    Pelissari, Daniele Maria; Rocha, Marli Souza; Bartholomay, Patricia; Sanchez, Mauro Niskier; Duarte, Elisabeth Carmen; Arakaki-Sanchez, Denise; Dantas, Cíntia Oliveira; Jacobs, Marina Gasino; Andrade, Kleydson Bonfim; Codenotti, Stefano Barbosa; Andrade, Elaine Silva Nascimento; Araújo, Wildo Navegantes de; Costa, Fernanda Dockhorn; Ramalho, Walter Massa; Diaz-Quijano, Fredi Alexander

    2018-06-06

    To identify scenarios based on socioeconomic, epidemiological and operational healthcare factors associated with tuberculosis incidence in Brazil. Ecological study. The study was based on new patients with tuberculosis and epidemiological/operational variables of the disease from the Brazilian National Information System for Notifiable Diseases and the Mortality Information System. We also analysed socioeconomic and demographic variables. The units of analysis were the Brazilian municipalities, which in 2015 numbered 5570 but 5 were excluded due to the absence of socioeconomic information. Tuberculosis incidence rate in 2015. We evaluated as independent variables the socioeconomic (2010), epidemiological and operational healthcare indicators of tuberculosis (2014 or 2015) using negative binomial regression. Municipalities were clustered by the k-means method considering the variables identified in multiple regression models. We identified two clusters according to socioeconomic variables associated with the tuberculosis incidence rate (unemployment rate and household crowding): a higher socioeconomic scenario (n=3482 municipalities) with a mean tuberculosis incidence rate of 16.3/100 000 population and a lower socioeconomic scenario (2083 municipalities) with a mean tuberculosis incidence rate of 22.1/100 000 population. In a second stage of clusterisation, we defined four subgroups in each of the socioeconomic scenarios using epidemiological and operational variables such as tuberculosis mortality rate, AIDS case detection rate and proportion of vulnerable population among patients with tuberculosis. Some of the subscenarios identified were characterised by fragility in their information systems, while others were characterised by the concentration of tuberculosis cases in key populations. Clustering municipalities in scenarios allowed us to classify them according to the socioeconomic, epidemiological and operational variables associated with tuberculosis risk. This classification can support targeted evidence-based decisions such as monitoring data quality for improving the information system or establishing integrative social protective policies for key populations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Life cycle assessment of a packaging waste recycling system in Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less

  1. Frequency Analysis of Failure Scenarios from Shale Gas Development.

    PubMed

    Abualfaraj, Noura; Gurian, Patrick L; Olson, Mira S

    2018-04-29

    This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur. Illegal dumping of flowback water, while rated as the least frequently occurring scenario, was considered the scenario least protected by safety controls and the one of most concern to the general public. In terms of worker safety, the highest concern came from improper or inadequate use of personal protective equipment (PPE). While safety guidelines appear to be highly protective regarding PPE usage, inadequate PPE is the most directly witnessed failure scenario. Spills of flowback water due to equipment failure are of concern both with regards to the welfare of the general public and worker safety as they occur more frequently than any other scenario examined in this study.

  2. Frequency Analysis of Failure Scenarios from Shale Gas Development

    PubMed Central

    Abualfaraj, Noura; Olson, Mira S.

    2018-01-01

    This study identified and prioritized potential failure scenarios for natural gas drilling operations through an elicitation of people who work in the industry. A list of twelve failure scenarios of concern was developed focusing on specific events that may occur during the shale gas extraction process involving an operational failure or a violation of regulations. Participants prioritized the twelve scenarios based on their potential impact on the health and welfare of the general public, potential impact on worker safety, how well safety guidelines protect against their occurrence, and how frequently they occur. Illegal dumping of flowback water, while rated as the least frequently occurring scenario, was considered the scenario least protected by safety controls and the one of most concern to the general public. In terms of worker safety, the highest concern came from improper or inadequate use of personal protective equipment (PPE). While safety guidelines appear to be highly protective regarding PPE usage, inadequate PPE is the most directly witnessed failure scenario. Spills of flowback water due to equipment failure are of concern both with regards to the welfare of the general public and worker safety as they occur more frequently than any other scenario examined in this study. PMID:29710821

  3. On the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Mazzali, Paolo

    2018-03-01

    We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.

  4. Operational Constraints on Hydropeaking and its Effects on the Hydrologic and Thermal Regime of a River in Central Chile

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Guzman, C.; Rossel, V.; De La Fuente, A.

    2013-12-01

    Hydropower accounts for about 44% of installed capacity in Chile's Central Interconnected System, which serves most of the Chilean population. Hydropower reservoir projects can affect ecosystems by changing the hydrologic regime and water quality. Given its volumen regulation capacity, low operation costs and fast response to demand fluctuations, reservoir hydropower plants commonly operate on a load-following or hydropeaking scheme. This short-term operational pattern produces alterations in the hydrologic regime downstream the reservoir. In the case of thermally stratified reservoirs, peaking operations can affect the thermal structure of the reservoir, as well as the thermal regime downstream. In this study, we assessed the subdaily hydrologic and thermal alteration donwstream of Rapel reservoir in Central Chile for alternative operational scenarios, including a base case and several scenarios involving minimum instream flow (Qmin) and maximum hourly ramping rates (ΔQmax). Scenarios were simulated for the stratification season of summer 2009-2012 in a grid-wide short-term economic dispatch model which prescribes hourly power production by every power plant on a weekly horizon. Power time series are then translated into time series of turbined flows at each hydropower plants. Indicators of subdaily hydrologic alteration (SDHA) were computed for every scenario. Additionally, turbined flows were used as input data for a three-dimensional hydrodynamic model (CWR-ELCOM) of the reservoir which simulated the vertical temperature profile in the reservoir and the outflow temperature. For the time series of outflow temperatures we computed several indicators of subdaily thermal alteration (SDTA). Operational constraints reduce the values of both SDHA and SDTA indicators with respect to the base case. When constraints are applied separately, the indicators of SDHA decrease as each type of constraint (Qmin or ΔQmax) becomes more stringent. However, ramping rate constraints proved more effective than minimun instream flows. Combined constraints produced even better results. Results for the indicators of SDTA follow a similar trend than that of SDHA. More restrictive operations result in lower values for the indicators. However, the impact of the different constraint scenarios is smaller, as results look alike for all scenarios. Moreover, due to the mixing conditions associated to the operational schemes, mean temperatures increased with respect to the unconstrained case.

  5. Analysis of the Astronomy Diagnostic Test

    ERIC Educational Resources Information Center

    Brogt, Erik; Sabers, Darrell; Prather, Edward E.; Deming, Grace L.; Hufnagel, Beth; Slater, Timothy F.

    2007-01-01

    Seventy undergraduate class sections were examined from the database of Astronomy Diagnostic Test (ADT) results of Deming and Hufnagel to determine if course format correlated with ADT normalized gain scores. Normalized gains were calculated for four different classroom scenarios: lecture, lecture with discussion, lecture with lab, and lecture…

  6. Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D

    DOE PAGES

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; ...

    2015-07-30

    DIII-D experimental results are reported to demonstrate the potential of physics-model-based safety factor profile control for robust and reproducible sustainment of advanced scenarios. In the absence of feedback control, variability in wall conditions and plasma impurities, as well as drifts due to external disturbances, can limit the reproducibility of discharges with simple pre-programmed scenario trajectories. The control architecture utilized is a feedforward + feedback scheme where the feedforward commands are computed off-line and the feedback commands are computed on-line. In this work, firstly a first-principles-driven (FPD), physics-based model of the q profile and normalized beta (β N) dynamics is embeddedmore » into a numerical optimization algorithm to design feedforward actuator trajectories that sheer the plasma through the tokamak operating space to reach a desired stationary target state that is characterized by the achieved q profile and β N. Good agreement between experimental results and simulations demonstrates the accuracy of the models employed for physics-model-based control design. Secondly, a feedback algorithm for q profile control is designed following a FPD approach, and the ability of the controller to achieve and maintain a target q profile evolution is tested in DIII-D high confinement (H-mode) experiments. The controller is shown to be able to effectively control the q profile when β N is relatively close to the target, indicating the need for integrated q profile and β N control to further enhance the ability to achieve robust scenario execution. Furthermore, the ability of an integrated q profile + β N feedback controller to track a desired target is demonstrated through simulation.« less

  7. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  8. Initial Development of C.A.T.E.S.: A Simulation-Based Competency Assessment Instrument for Neonatal Nurse Practitioners.

    PubMed

    Cates, Leigh Ann; Bishop, Sheryl; Armentrout, Debra; Verklan, Terese; Arnold, Jennifer; Doughty, Cara

    2015-01-01

    Determine content validity of global statements and operational definitions and choose scenarios for Competency, Assessment, Technology, Education, and Simulation (C.A.T.E.S.), instrument in development to evaluate multidimensional competency of neonatal nurse practitioners (NNPs). Real-time Delphi (RTD) method to pursue four specific aims (SAs): (1) identify which cognitive, technical, or behavioral dimension of NNP competency accurately reflects each global statement; (2) map the global statements to the National Association of Neonatal Nurse Practitioners (NANNP) core competency domains; (3) define operational definitions for the novice to expert performance subscales; and (4) determine the essential scenarios to assess NNPs. Twenty-five NNPs and nurses with competency and simulation experience Main outcome variable: One hundred percent of global statements correct for competency dimension and all but two correct for NANNP domain. One hundred percent novice to expert operational definitions and eight scenarios chosen. Content validity determined for global statements and novice to expert definitions and essential scenarios chosen.

  9. Validation of the SEPHIS Program for the Modeling of the HM Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.A.

    The SEPHIS computer program is currently being used to evaluate the effect of all process variables on the criticality safety of the HM 1st Uranium Cycle process in H Canyon. The objective of its use has three main purposes. (1) To provide a better technical basis for those process variables that do not have any realistic effect on the criticality safety of the process. (2) To qualitatively study those conditions that have been previously recognized to affect the nuclear safety of the process or additional conditions that modeling has indicated may pose a criticality safety issue. (3) To judge themore » adequacy of existing or future neutron monitors locations in the detection of the initial stages of reflux for specific scenarios.Although SEPHIS generally over-predicts the distribution of uranium to the organic phase, it is a capable simulation tool as long as the user recognizes its biases and takes special care when using the program for scenarios where the prediction bias is non-conservative. The temperature coefficient used by SEPHIS is poor at predicting effect of temperature on uranium extraction for the 7.5 percent TBP used in the HM process. Therefore, SEPHIS should not be used to study temperature related scenarios. However, within normal operating temperatures when other process variables are being studied, it may be used. Care must be is given to understanding the prediction bias and its effect on any conclusion for the particular scenario that is under consideration. Uranium extraction with aluminum nitrate is over-predicted worse than for nitric acid systems. However, the extraction section of the 1A bank has sufficient excess capability that these errors, while relatively large, still allow SEPHIS to be used to develop reasonable qualitative assessments for reflux scenarios. However, high losses to the 1AW stream cannot be modeled by SEPHIS.« less

  10. The perpetual state of emergency that sacrifices protected areas in a changing climate.

    PubMed

    Twidwell, Dirac; Wonkka, Carissa L; Bielski, Christine H; Allen, Craig R; Angeler, David G; Drozda, Jacob; Garmestani, Ahjond S; Johnson, Julia; Powell, Larkin A; Roberts, Caleb P

    2018-02-23

    A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate-change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate-change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4-month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long-term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing-season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario-impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate-change projections significantly depart from the current consensus. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  11. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; hide

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  12. Model based systems engineering (MBSE) applied to Radio Aurora Explorer (RAX) CubeSat mission operational scenarios

    NASA Astrophysics Data System (ADS)

    Spangelo, S. C.; Cutler, J.; Anderson, L.; Fosse, E.; Cheng, L.; Yntema, R.; Bajaj, M.; Delp, C.; Cole, B.; Soremekum, G.; Kaslow, D.

    Small satellites are more highly resource-constrained by mass, power, volume, delivery timelines, and financial cost relative to their larger counterparts. Small satellites are operationally challenging because subsystem functions are coupled and constrained by the limited available commodities (e.g. data, energy, and access times to ground resources). Furthermore, additional operational complexities arise because small satellite components are physically integrated, which may yield thermal or radio frequency interference. In this paper, we extend our initial Model Based Systems Engineering (MBSE) framework developed for a small satellite mission by demonstrating the ability to model different behaviors and scenarios. We integrate several simulation tools to execute SysML-based behavior models, including subsystem functions and internal states of the spacecraft. We demonstrate utility of this approach to drive the system analysis and design process. We demonstrate applicability of the simulation environment to capture realistic satellite operational scenarios, which include energy collection, the data acquisition, and downloading to ground stations. The integrated modeling environment enables users to extract feasibility, performance, and robustness metrics. This enables visualization of both the physical states (e.g. position, attitude) and functional states (e.g. operating points of various subsystems) of the satellite for representative mission scenarios. The modeling approach presented in this paper offers satellite designers and operators the opportunity to assess the feasibility of vehicle and network parameters, as well as the feasibility of operational schedules. This will enable future missions to benefit from using these models throughout the full design, test, and fly cycle. In particular, vehicle and network parameters and schedules can be verified prior to being implemented, during mission operations, and can also be updated in near real-time with oper- tional performance feedback.

  13. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    2010 Olympics and Paralympics games , about a hundred agencies and organizations were involved with the safety and security of the games . Accordingly...Joint Task Force Games (JTFG) staff members were augmented with other Command Staff from Canada Command and Canadian Operational Support Command...CANOSCOM) to create an operational HQ. The scenario used for demonstration was based on fictitious Olympic Games (Breton and Guitouni 2008). The scenario

  14. Construct and face validity of the American College of Surgeons/Association of Program Directors in Surgery laparoscopic troubleshooting team training exercise.

    PubMed

    Arain, Nabeel A; Hogg, Deborah C; Gala, Rajiv B; Bhoja, Ravi; Tesfay, Seifu T; Webb, Erin M; Scott, Daniel J

    2012-01-01

    Our aim was to develop an objective scoring system and evaluate construct and face validity for a laparoscopic troubleshooting team training exercise. Surgery and gynecology novices (n = 14) and experts (n = 10) participated. Assessments included the following: time-out, scenario decision making (SDM) score (based on essential treatments rendered and completion time), operating room communication assessment (investigator developed), line operations safety audits (teamwork), and National Aeronautics and Space Administration-Task Load Index (workload). Significant differences were detected for SDM scores for scenarios 1 (192 vs 278; P = .01) and 3 (129 vs 225; P = .004), operating room communication assessment (67 vs 91; P = .002), and line operations safety audits (58 vs 87; P = .001), but not for time-out (46 vs 51) or scenario 2 SDM score (301 vs 322). Workload was similar for both groups and face validity (8.8 on a 10-point scale) was strongly supported. Objective decision-making scoring for 2 of 3 scenarios and communication and teamwork ratings showed construct validity. Face validity and participant feedback were excellent. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Constructing probabilistic scenarios for wide-area solar power generation

    DOE PAGES

    Woodruff, David L.; Deride, Julio; Staid, Andrea; ...

    2017-12-22

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  16. Constructing probabilistic scenarios for wide-area solar power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, David L.; Deride, Julio; Staid, Andrea

    Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less

  17. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  18. Mapping the Relevance of Complex Decision Making to Canadian Forces Land Operations (Mappage de la pertinence de la prise de d cisions complexes pour les op rations terrestres des Forces canadiennes)

    DTIC Science & Technology

    2011-03-01

    operations erent types of lenge categor le pattern of of scenarios, ersonnel are nalysis s based upon . See Section t question th iffer on their...environmen change may Multiple con achievable a Underspecif Independent (they may h tential scen e complexity verall areas t ere both con ry operations rather...scenario de iption of the ghanistan operations co t as a liaison hanistan Nat of Security (N here was a m ut the level o in security. I security in

  19. Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sips, A. C. C.; Giruzzi, G.; Ide, S.; Kessel, C.; Luce, T. C.; Snipes, J. A.; Stober, J. K.

    2015-02-01

    The development of operating scenarios is one of the key issues in the research for ITER which aims to achieve a fusion gain (Q) of ˜10, while producing 500 MW of fusion power for ≥300 s. The ITER Research plan proposes a success oriented schedule starting in hydrogen and helium, to be followed by a nuclear operation phase with a rapid development towards Q ˜ 10 in deuterium/tritium. The Integrated Operation Scenarios Topical Group of the International Tokamak Physics Activity initiates joint activities among worldwide institutions and experiments to prepare ITER operation. Plasma formation studies report robust plasma breakdown in devices with metal walls over a wide range of conditions, while other experiments use an inclined EC launch angle at plasma formation to mimic the conditions in ITER. Simulations of the plasma burn-through predict that at least 4 MW of Electron Cyclotron heating (EC) assist would be required in ITER. For H-modes at q95 ˜ 3, many experiments have demonstrated operation with scaled parameters for the ITER baseline scenario at ne/nGW ˜ 0.85. Most experiments, however, obtain stable discharges at H98(y,2) ˜ 1.0 only for βN = 2.0-2.2. For the rampup in ITER, early X-point formation is recommended, allowing auxiliary heating to reduce the flux consumption. A range of plasma inductance (li(3)) can be obtained from 0.65 to 1.0, with the lowest values obtained in H-mode operation. For the rampdown, the plasma should stay diverted maintaining H-mode together with a reduction of the elongation from 1.85 to 1.4. Simulations show that the proposed rampup and rampdown schemes developed since 2007 are compatible with the present ITER design for the poloidal field coils. At 13-15 MA and densities down to ne/nGW ˜ 0.5, long pulse operation (>1000 s) in ITER is possible at Q ˜ 5, useful to provide neutron fluence for Test Blanket Module assessments. ITER scenario preparation in hydrogen and helium requires high input power (>50 MW). H-mode operation in helium may be possible at input powers above 35 MW at a toroidal field of 2.65 T, for studying H-modes and ELM mitigation. In hydrogen, H-mode operation is expected to be marginal, even at 2.65 T with 60 MW of input power. Simulation code benchmark studies using hybrid and steady state scenario parameters have proved to be a very challenging and lengthy task of testing suites of codes, consisting of tens of sophisticated modules. Nevertheless, the general basis of the modelling appears sound, with substantial consistency among codes developed by different groups. For a hybrid scenario at 12 MA, the code simulations give a range for Q = 6.5-8.3, using 30 MW neutral beam injection and 20 MW ICRH. For non-inductive operation at 7-9 MA, the simulation results show more variation. At high edge pedestal pressure (Tped ˜ 7 keV), the codes predict Q = 3.3-3.8 using 33 MW NB, 20 MW EC, and 20 MW ion cyclotron to demonstrate the feasibility of steady-state operation with the day-1 heating systems in ITER. Simulations using a lower edge pedestal temperature (˜3 keV) but improved core confinement obtain Q = 5-6.5, when ECCD is concentrated at mid-radius and ˜20 MW off-axis current drive (ECCD or LHCD) is added. Several issues remain to be studied, including plasmas with dominant electron heating, mitigation of transient heat loads integrated in scenario demonstrations and (burn) control simulations in ITER scenarios.

  20. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    NASA Astrophysics Data System (ADS)

    Zulkepli, Jafri; Fong, Chan Hwa; Abidin, Norhaslinda Zainal

    2015-12-01

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand from the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.

  1. Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes.

    PubMed

    Canis, Laure; Linkov, Igor; Seager, Thomas P

    2010-11-15

    The unprecedented uncertainty associated with engineered nanomaterials greatly expands the need for research regarding their potential environmental consequences. However, decision-makers such as regulatory agencies, product developers, or other nanotechnology stakeholders may not find the results of such research directly informative of decisions intended to mitigate environmental risks. To help interpret research findings and prioritize new research needs, there is an acute need for structured decision-analytic aids that are operable in a context of extraordinary uncertainty. Whereas existing stochastic decision-analytic techniques explore uncertainty only in decision-maker preference information, this paper extends model uncertainty to technology performance. As an illustrative example, the framework is applied to the case of single-wall carbon nanotubes. Four different synthesis processes (arc, high pressure carbon monoxide, chemical vapor deposition, and laser) are compared based on five salient performance criteria. A probabilistic rank ordering of preferred processes is determined using outranking normalization and a linear-weighted sum for different weighting scenarios including completely unknown weights and four fixed-weight sets representing hypothetical stakeholder views. No single process pathway dominates under all weight scenarios, but it is likely that some inferior process technologies could be identified as low priorities for further research.

  2. Improving the flow representation in a stochastic programming model for hydropower operations in Chile

    NASA Astrophysics Data System (ADS)

    Morales, Y.; Olivares, M. A.; Vargas, X.

    2015-12-01

    This research aims to improve the representation of stochastic water inflows to hydropower plants used in a grid-wide, power production scheduling model in central Chile. The model prescribes the operation of every plant in the system, including hydropower plants located in several basins, and uses stochastic dual dynamic programming (SDDP) with possible inflow scenarios defined from historical records. Each year of record is treated as a sample of weekly inflows to power plants, assuming this intrinsically incorporates spatial and temporal correlations, without any further autocorrelation analysis of the hydrological time series. However, standard good practice suggests the use of synthetic flows instead of raw historical records.The proposed approach generates synthetic inflow scenarios based on hydrological modeling of a few basins in the system and transposition of flows with other basins within so-called homogeneous zones. Hydrologic models use precipitation and temperature as inputs, and therefore this approach requires producing samples of those variables. Development and calibration of these models imply a greater demand of time compared to the purely statistical approach to synthetic flows. This approach requires consideration of the main uses in the basins: agriculture and hydroelectricity. Moreover a geostatistical analysis of the area is analyzed to generate a map that identifies the relationship between the points where the hydrological information is generated and other points of interest within the power system. Consideration of homogeneous zones involves a decrease in the effort required for generation of information compared with hydrological modeling of every point of interest. It is important to emphasize that future scenarios are derived through a probabilistic approach that incorporates the features of the hydrological year type (dry, normal or wet), covering the different possibilities in terms of availability of water resources. We present the results for Maule basin in Chile's Central Interconnected System (SIC).

  3. Toolbox for Urban Mobility Simulation: High Resolution Population Dynamics for Global Cities

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Lu, W.; Liu, C.; Thakur, G.; Karthik, R.

    2015-12-01

    In this rapidly urbanizing world, unprecedented rate of population growth is not only mirrored by increasing demand for energy, food, water, and other natural resources, but has detrimental impacts on environmental and human security. Transportation simulations are frequently used for mobility assessment in urban planning, traffic operation, and emergency management. Previous research, involving purely analytical techniques to simulations capturing behavior, has investigated questions and scenarios regarding the relationships among energy, emissions, air quality, and transportation. Primary limitations of past attempts have been availability of input data, useful "energy and behavior focused" models, validation data, and adequate computational capability that allows adequate understanding of the interdependencies of our transportation system. With increasing availability and quality of traditional and crowdsourced data, we have utilized the OpenStreetMap roads network, and has integrated high resolution population data with traffic simulation to create a Toolbox for Urban Mobility Simulations (TUMS) at global scale. TUMS consists of three major components: data processing, traffic simulation models, and Internet-based visualizations. It integrates OpenStreetMap, LandScanTM population, and other open data (Census Transportation Planning Products, National household Travel Survey, etc.) to generate both normal traffic operation and emergency evacuation scenarios. TUMS integrates TRANSIMS and MITSIM as traffic simulation engines, which are open-source and widely-accepted for scalable traffic simulations. Consistent data and simulation platform allows quick adaption to various geographic areas that has been demonstrated for multiple cities across the world. We are combining the strengths of geospatial data sciences, high performance simulations, transportation planning, and emissions, vehicle and energy technology development to design and develop a simulation framework to assist decision makers at all levels - local, state, regional, and federal. Using Cleveland, Tennessee as an example, in this presentation, we illustrate how emerging cities could easily assess future land use scenario driven impacts on energy and environment utilizing such a capability.

  4. Environmental and economic analysis of power generation in a thermophilic biogas plant.

    PubMed

    Ruiz, D; San Miguel, G; Corona, B; Gaitero, A; Domínguez, A

    2018-08-15

    This paper investigates the environmental and economic performance of the power production from biogas using Life Cycle Assessment, Life Cycle Costing and Cost Benefit Analysis methodologies. The analysis is based on a commercial thermophilic biogas plant located in Spain where is installed a Combined Heat and Power system that produces electricity that is sold to the grid. Power generation has been assumed as the only function of the biogas system, expanding the system boundaries to include the additional function related to the end-of-life management of the biowastes. Thus environmental burdens from the conventional management of residues were calculated separately and subtracted. The base scenario involves using agri-food waste, sewage sludge and pig/cow manure as substrates. This situation is compared against an alternative scenario where the production of synthetic fertilizer is surrogated by the digestate. The results have shown that the most impacting activities in all impacts categories of power production are primarily attributable to the operation and maintenance of the biogas plant except for water resource depletion and climate change. The avoided emissions associated with the conventional management of pig/cow manure more than offset GHG emissions of the biogas system resulting in a negative impact value of -73.9gCO 2 eq/kWh in the base case scenario. The normalized results show that local impact categories such as primarily human toxicity, fresh water ecotoxicity and particulate matter are the most significantly affected by the biogas system while global impact categories as climate change and ozone depletion are less severely affected. The operation and maintenance phase is also shown to be the largest contributor after the life cycle cost analysis, followed by the construction and dismantling of the biogas plant and the profitability of the project is primarily related to the income obtained from the management of the biowastes used as substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less

  6. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq.

    PubMed

    Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S

    2016-01-01

    Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation.

  7. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  8. Internet Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  9. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    Reports were presented covering a selection of topics on the safety of fusion power plants. These included a review on licensing studies developed for ITER site preparation surveying common and non-common issues (i.e. site dependent) as lessons to a broader approach for fusion power plant safety. Several fusion power plant models, spanning from accessible technology to more advanced-materials based concepts, were discussed. On the topic related to fusion-specific technology, safety studies were reported on different concepts of breeding blanket modules, tritium handling and auxiliary systems under normal and accident scenarios' operation. The testing of power plant relevant technology in ITER was also assessed in terms of normal operation and accident scenarios, and occupational doses and radioactive releases under these testings have been determined. Other specific safety issues for fusion have also been discussed such as availability and reliability of fusion power plants, dust and tritium inventories and component failure databases. This study reveals that the environmental impact of fusion power plants can be minimized through a proper selection of low activation materials and using recycling technology helping to reduce waste volume and potentially open the route for its reutilization for the nuclear sector or even its clearance into the commercial circuit. Computational codes for fusion safety have been presented in support of the many studies reported. The on-going work on establishing validation approaches aiming at improving the prediction capability of fusion codes has been supported by experimental results and new directions for development have been identified. Fusion standards are not available and fission experience is mostly used as the framework basis for licensing and target design for safe operation and occupational and environmental constraints. It has been argued that fusion can benefit if a specific fusion approach is implemented, in particular for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.

  10. 30 CFR 254.47 - Determining the volume of oil of your worst case discharge scenario.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the daily discharge rate, you must consider reservoir characteristics, casing/production tubing sizes, and historical production and reservoir pressure data. Your scenario must discuss how to respond to... drilling operations, the size of your worst case discharge scenario is the daily volume possible from an...

  11. Analysis of JT-60SA operational scenarios

    NASA Astrophysics Data System (ADS)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  12. Emission rate modeling and risk assessment at an automobile plant from painting operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Shrivastava, A.; Kulkarni, A.

    Pollution from automobile plants from painting operations has been addressed in the Clean Act Amendments (1990). The estimation of pollutant emissions from automobile painting operation were done mostly by approximate procedures than by actual calculations. The purpose of this study was to develop a methodology for calculating the emissions of the pollutants from painting operation in an automobile plant. Five scenarios involving an automobile painting operation, located in Columbus (Ohio), were studied for pollutant emission and concomitant risk associated with that. In the study of risk, a sensitivity analysis was done using Crystal Ball{reg{underscore}sign} on the parameters involved in risk.more » This software uses the Monte Carlo principle. The most sensitive factor in the risk analysis was the ground level concentration of the pollutants. All scenarios studied met the safety goal (a risk value of 1 x 10{sup {minus}6}) with different confidence levels. The highest level of confidence in meeting the safety goal was displayed by Scenario 1 (Alpha Industries). The results from the scenarios suggest that risk is associated with the quantity of released toxic pollutants. The sensitivity analysis of the various parameter shows that average spray rate of paint is the most important parameter in the estimation of pollutants from the painting operations. The entire study is a complete module that can be used by the environmental pollution control agencies for estimation of pollution levels and estimation of associated risk. The study can be further extended to other operations in an automobile industry or to different industries.« less

  13. Dependence of future mortality changes on global CO2 concentrations: A review.

    PubMed

    Lee, Jae Young; Choi, Hayoung; Kim, Ho

    2018-05-01

    The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Development of Optimal Stressor Scenarios for New Operational Energy Systems

    DTIC Science & Technology

    2017-12-01

    Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical information about the associated operational...from experimentation. The resulting system requirements can be used to revisit the design requirements and develop a more robust system. This process...stressor scenarios for acceptance testing. Analyzing the previous model using a design of experiments (DOE) and regression analysis provides critical

  15. The ALMA CONOPS project: the impact of funding decisions on observatory performance

    NASA Astrophysics Data System (ADS)

    Ibsen, Jorge; Hibbard, John; Filippi, Giorgio

    2014-08-01

    In time when every penny counts, many organizations are facing the question of how much scientific impact a budget cut can have or, putting it in more general terms, which is the science impact of alternative (less costly) operational modes. In reply to such question posted by the governing bodies, the ALMA project had to develop a methodology (ALMA Concepts for Operations, CONOPS) that attempts to measure the impact that alternative operational scenarios may have on the overall scientific production of the Observatory. Although the analysis and the results are ALMA specific, the developed approach is rather general and provides a methodology for a cost-performance analysis of alternatives before any radical alterations to the operations model are adopted. This paper describes the key aspects of the methodology: a) the definition of the Figures of Merit (FoMs) for the assessment of quantitative science performance impacts as well as qualitative impacts, and presents a methodology using these FoMs to evaluate the cost and impact of the different operational scenarios; b) the definition of a REFERENCE operational baseline; c) the identification of Alternative Scenarios each replacing one or more concepts in the REFERENCE by a different concept that has a lower cost and some level of scientific and/or operational impact; d) the use of a Cost-Performance plane to graphically combine the effects that the alternative scenarios can have in terms of cost reduction and affected performance. Although is a firstorder assessment, we believe this approach is useful for comparing different operational models and to understand the cost performance impact of these choices. This can be used to take decision to meet budget cuts as well as in evaluating possible new emergent opportunities.

  16. Environmental assessment of the thermal neutron activation explosive detection system for concourse use at US airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.G.

    1990-08-01

    This document is an environmental assessment of a system designed to detect the presence of explosives in checked airline baggage or cargo. The system is meant to be installed at the concourse or lobby ticketing areas of US commercial airports and uses a sealed radioactive source of californium-252 to irradiate baggage items. The major impact of the use of this system arises from direct exposure of the public to scattered or leakage radiation from the source and to induced radioactivity in baggage items. Under normal operation and the most likely accident scenarios, the environmental impacts that would be created bymore » the proposed licensing action would not be significant. 44 refs., 19 figs., 18 tabs.« less

  17. Investigation of key parameters for the development of reliable ITER baseline operation scenarios using CORSICA

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Casper, T. A.; Snipes, J. A.

    2018-05-01

    ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0  ×  10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.

  18. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    PubMed

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  20. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    NASA Astrophysics Data System (ADS)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  1. Operational Tsunami Modelling with TsunAWI for the German-Indonesian Tsunami Early Warning System: Recent Developments

    NASA Astrophysics Data System (ADS)

    Rakowsky, N.; Harig, S.; Androsov, A.; Fuchs, A.; Immerz, A.; Schröter, J.; Hiller, W.

    2012-04-01

    Starting in 2005, the GITEWS project (German-Indonesian Tsunami Early Warning System) established from scratch a fully operational tsunami warning system at BMKG in Jakarta. Numerical simulations of prototypic tsunami scenarios play a decisive role in a priori risk assessment for coastal regions and in the early warning process itself. Repositories with currently 3470 regional tsunami scenarios for GITEWS and 1780 Indian Ocean wide scenarios in support of Indonesia as a Regional Tsunami Service Provider (RTSP) were computed with the non-linear shallow water modell TsunAWI. It is based on a finite element discretisation, employs unstructured grids with high resolution along the coast and includes inundation. This contribution gives an overview on the model itself, the enhancement of the model physics, and the experiences gained during the process of establishing an operational code suited for thousands of model runs. Technical aspects like computation time, disk space needed for each scenario in the repository, or post processing techniques have a much larger impact than they had in the beginning when TsunAWI started as a research code. Of course, careful testing on artificial benchmarks and real events remains essential, but furthermore, quality control for the large number of scenarios becomes an important issue.

  2. Improved battery parameter estimation method considering operating scenarios for HEV/EV applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jufeng; Xia, Bing; Shang, Yunlong

    This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less

  3. Improved battery parameter estimation method considering operating scenarios for HEV/EV applications

    DOE PAGES

    Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...

    2016-12-22

    This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less

  4. Automation and robotics human performance

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.

    1990-01-01

    The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category.

  5. Data quality objectives for TWRS privatization phase 1: confirm tank T is an appropriate feed source for low-activity waste feed batch X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    1999-06-01

    The US. Department of Energy, Richland Operations Office (DOE-RL) has initiated Phase 1 of a two-phase privatization strategy for treatment and immobilization of low-activity waste (LAW) currently being managed by the Hanford Tank Waste Remediation System (TWRS) Project. In this strategy, DOE will purchase services from a contractor-owned and operated facility under a fixed price. The Phase 1 TWRS privatization contract requires that the Project Hanford Management Contract (PHMC) contractors, on behalf of DOE, deliver LAW feed in specified quantities and composition to the Privatization Contractor in a timely manner (DOE-RL 1996). Additional requirements are imposed by the interface controlmore » document (ICD-19) for LAW feed (PHMC 1997). In response to these requirements, the Tank Waste Remediation System Operation and Utilization Plan (TWRSO and UP) (Kirkbride et al. 1997) was prepared by the PHMC. The TWRSO and UP, as updated by the Readiness-To-Proceed deliverable (Payne et al. 1998), establishes the baseline operating scenario for the delivery of LAW feed to the Privatization Contractor. The scenario specifies tanks from which LAW will be provided for each feed batch, the operational activities needed to prepare and deliver each batch, and the timing of these activities. The operating scenario was developed based on current knowledge of waste composition and chemistry, waste transfer methods, and operating constraints, such as tank farm logistics and availability of tank space. A project master baseline schedule (PMBS) has been developed to implement the operating scenario. The PMBS also includes activities aimed at reducing programmatic risks. One of the activities, ''Confirm Plans and Requirements,'' was identified to verify the basis used to develop the scenario. Additional data on waste quantity, physical and chemical characteristics, and transfer properties will be needed to support this activity. This document describes the data quality objective (DQO) process undertaken to assme appropriate data will be collected to support the activity, ''Confirm Tank Plans and Requirements.'' The DQO process was implemented in accordance with the TWRS DQO process (Banning 1997) with some modifications to accommodate project or tank-specific requirements and constraints.« less

  6. Supernovae Ia in 2017: a long time delay from merger/accretion to explosion

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2018-04-01

    I use recent observational and theoretical studies of type Ia supernovae (SNe Ia) to further constrain the viable SN Ia scenarios and to argue that there must be a substantial time delay between the end of the merger of the white dwarf (WD) with a companion or the end of mass accretion on to the WD and its terminal explosion. This merger/accretion to explosion delay (MED) is required to allow the binary system to lead to a more or less spherical explosion and to prevent a pre-explosion ionizing radiation. Considering these recent results and the required MED, I conclude that the core degenerate scenario is somewhat more favorable over the other scenarios, followed by the double degenerate scenario. Although the single degenerate scenario is viable as well, it is less likely to account for common (normal) SN Ia. As all scenarios require substantial MED, the MED has turned from a disadvantage of the core degenerate scenario to a challenge that theory should overcome. I hope that the requirement for a MED will stimulate the discussion of the different SN Ia scenarios and the comparison of the scenarios to each other.

  7. Structural technology challenges for evolutionary growth of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doiron, Harold H.

    1990-01-01

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  8. Complexity associated with the optimisation of capability options in military operations

    NASA Astrophysics Data System (ADS)

    Pincombe, A.; Bender, A.; Allen, G.

    2005-12-01

    In the context of a military operation, even if the intended actions, the geographic location, and the capabilities of the opposition are known, there are still some critical uncertainties that could have a major impact on the effectiveness of a given set of capabilities. These uncertainties include unpredictable events and the response alternatives that are available to the command and control elements of the capability set. They greatly complicate any a priori mathematical description. In a forecasting approach, the most likely future might be chosen and a solution sought that is optimal for that case. With scenario analysis, futures are proposed on the basis of critical uncertainties and the option that is most robust is chosen. We use scenario analysis but our approach is different in that we focus on the complexity and use the coupling between scenarios and options to create information on ideal options. The approach makes use of both soft and hard operations research methods, with subject matter expertise being used to define plausible responses to scenarios. In each scenario, uncertainty affects only a subset of the system-inherent variables and the variables that describe system-environment interactions. It is this scenario-specific reduction of variables that makes the problem mathematically tractable. The process we define is significantly different to existing scenario analysis processes, so we have named it adversarial scenario analysis. It can be used in conjunction with other methods, including recent improvements to the scenario analysis process. To illustrate the approach, we undertake a tactical level scenario analysis for a logistics problem that is defined by a network, expected throughputs to end users, the transport capacity available, the infrastructure at the nodes and the capacities of roads, stocks etc. The throughput capacity, e.g. the effectiveness, of the system relies on all of these variables and on the couplings between them. The system is initially in equilibrium for a given level of demand. However, different, and simpler, solutions emerge as the balance of couplings and the importance of variables change. The scenarios describe such changes in conditions. For each scenario it was possible to define measures that describe the differences between options. As with agent-based distillations, the solution is essentially qualitative and exploratory, bringing awareness of possible future difficulties and of the capabilities that are necessary if we are to deal successfully with those difficulties.

  9. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    NASA Astrophysics Data System (ADS)

    Nelson, B. P.; Crandall, R. S.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-12-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting an unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present an acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management-appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  10. SPICE for ESA Planetary Missions: geometry and visualization support to studies, operations and data analysis within your reach

    NASA Astrophysics Data System (ADS)

    Costa, Marc

    2018-05-01

    JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEís study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.

  11. A Dynamic Infrastructure for Interconnecting Disparate ISR/ISTAR Assets (the ITA Sensor Fabric)

    DTIC Science & Technology

    2009-07-01

    areas of sensor identification, classification, interoperability and sensor data sharing, dissemination and consumability. This paper presents the ITA...sensors in the area of operations. This paper also presents a use case scenario developed in partnership with the U.S. Army Research Laboratory (ARL) and... paper we describe the Fabric, and its application to a simulated representative coalition operation scenario. The Fabric spans the network from the

  12. Novel Cooling Strategies for Military Training and Operations.

    PubMed

    Lee, Jason K W; Kenefick, Robert W; Cheuvront, Samuel N

    2015-11-01

    The deleterious effects of environmental heat stress, combined with high metabolic loads and protective clothing and equipment of the modern Warfighter, impose severe heat strain, impair task performance, and increase risk of heat illness, thereby reducing the chance for mission success. Despite the implementation of heat-risk mitigation procedures over the past decades, task performance still suffers and exertional heat illness remains a major military problem. We review 3 novel heat mitigation strategies that may be implemented in the training or operational environment to reduce heat strain and the risk of exertional heat illness. These strategies include ingestion of ice slurry, arm immersion cooling, and microclimate cooling. Each of these strategies is suitable for use in different scenarios and the choice of cooling strategy is contingent on the requirements, circumstances, and constraints of the training and operational scenario. Ingestion of ice slurry and arm immersion cooling are practical strategies that may be implemented during training scenarios; ice slurry can be ingested before and during exercise, whereas arm immersion cooling can be administered after exercise-heat exposure. In the operational environment, existing microclimate cooling can be implemented with retrofitted vehicles and as an unmounted system, and it has the potential for use in many military occupational scenarios. This review will discuss the efficacy, limitations, and practical considerations for field implementation of each strategy.

  13. High-Speed Civil Transport Forecast: Simulated Airlines Scenarios for Mach 1.6, Mach 2.0, and Mach 2.4 Configurations for Year 2015

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1996-01-01

    The report describes the development of a database of fuel burn and emissions from projected High Speed Civil Transport (HSCT) fleets that reflect actual airlines' networks, operational requirement, and traffic flow as operated by simulated world wide airlines for Mach 1.6, 2.0, and 2.4 HSCT configurations. For the year 2015, McDonnell Douglas Corporation created two supersonic commercial air traffic networks consisting of origin-destination city pair routes and associated traffic levels. The first scenario represented a manufacturing upper limit producible HSCT fleet availability by year 2015. The fleet projection of the Mach 2.4 configuration for this scenario was 1059 units with a traffic capture of 70 percent. The second scenario focused on the number of units that can minimally be produced by the year 2015. Using realistic production rates, the HSCT fleet projection amounts to 565 units. The traffic capture associated with this fleet was estimated at 40 percent. The airlines network was extracted from the actual networks of 21 major world airlines. All the routes were screened for suitability for HSCT operations. The route selection criteria included great circle distance, difference between flight path distance and great circle distance to avoid overland operations, and potential flight frequency.

  14. Concept of operations for virtual weigh station

    DOT National Transportation Integrated Search

    2009-06-01

    This document describes the concept of operations (ConOps) for the virtual weigh station (VWS). The ConOps describes the goals, functions, key concepts, architecture, operational scenarios, operational policies, and impacts of virtual weigh stations....

  15. Freight advanced traveler information system : concept of operations.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...

  16. A Validated Set of MIDAS V5 Task Network Model Scenarios to Evaluate Nextgen Closely Spaced Parallel Operations Concepts

    NASA Technical Reports Server (NTRS)

    Gore, Brian Francis; Hooey, Becky Lee; Haan, Nancy; Socash, Connie; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded operator models that comprise MIDAS. Following the initial settings, the model progresses to begin the first tasks required of the two flight deck operators, the Captain (CA) and the First Officer (FO). The task sets will initialize operator specific settings prior to loading all of the alerts, probes, and other events that occur in the scenario. As a note, the CA and FO were terms used in developing this model but the CA can also be thought of as the Pilot Flying (PF), while the FO can be considered the Pilot-Not-Flying (PNF)or Pilot Monitoring (PM). As such, the document refers to the operators as PFCA and PNFFO respectively.

  17. LAN attack detection using Discrete Event Systems.

    PubMed

    Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar

    2011-01-01

    Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T.

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less

  19. Modeling effects of climate change on Yakima River salmonid habitats

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Connolly, Patrick J.; Maule, Alec G.

    2014-01-01

    We evaluated the potential effects of two climate change scenarios on salmonid habitats in the Yakima River by linking the outputs from a watershed model, a river operations model, a two-dimensional (2D) hydrodynamic model, and a geographic information system (GIS). The watershed model produced a discharge time series (hydrograph) in two study reaches under three climate scenarios: a baseline (1981–2005), a 1-°C increase in mean air temperature (plus one scenario), and a 2-°C increase (plus two scenario). A river operations model modified the discharge time series with Yakima River operational rules, a 2D model provided spatially explicit depth and velocity grids for two floodplain reaches, while an expert panel provided habitat criteria for four life stages of coho and fall Chinook salmon. We generated discharge-habitat functions for each salmonid life stage (e.g., spawning, rearing) in main stem and side channels, and habitat time series for baseline, plus one (P1) and plus two (P2) scenarios. The spatial and temporal patterns in salmonid habitats differed by reach, life stage, and climate scenario. Seventy-five percent of the 28 discharge-habitat responses exhibited a decrease in habitat quantity, with the P2 scenario producing the largest changes, followed by P1. Fry and spring/summer rearing habitats were the most sensitive to warming and flow modification for both species. Side channels generally produced more habitat than main stem and were more responsive to flow changes, demonstrating the importance of lateral connectivity in the floodplain. A discharge-habitat sensitivity analysis revealed that proactive management of regulated surface waters (i.e., increasing or decreasing flows) might lessen the impacts of climate change on salmonid habitats.

  20. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion.

    PubMed

    Ventura, Jey-R S; Yang, Benqin; Lee, Yong-Woo; Lee, Kisay; Jahng, Deokjin

    2013-06-01

    With a target production of 1000 ton of dry algae/yr, lipid content of 30 wt.%, and productivity of 30 g/m(2)-d in a 340-day annual operation, four common scenarios of microalgae bioenergy routes were assessed in terms of cost, energy, and CO2 inputs and outputs. Scenario 1 (biodiesel production), Scenario 2 (Scenario 1 with integrated anaerobic digestion system), Scenario 3 (biogas production), and Scenario 4 (supercritical gasification) were evaluated. Scenario 4 outperformed other scenarios in terms of net energy production (1282.42 kWh/ton algae) and CO2 removal (1.32 ton CO2/ton algae) while Scenario 2 surpassed the other three scenarios in terms of net cost. Scenario 1 produced the lowest energy while Scenario 3 was the most expensive bioenergy system. This study evaluated critical parameters that could direct the proper design of the microalgae bioenergy system with an efficient energy production, CO2 removal, and economic feasibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Using in situ simulation to evaluate operational readiness of a children's hospital-based obstetrics unit.

    PubMed

    Ventre, Kathleen M; Barry, James S; Davis, Deborah; Baiamonte, Veronica L; Wentworth, Allen C; Pietras, Michele; Coughlin, Liza; Barley, Gwyn

    2014-04-01

    Relocating obstetric (OB) services to a children's hospital imposes demands on facility operations, which must be met to ensure quality care and a satisfactory patient experience. We used in situ simulations to prospectively and iteratively evaluate operational readiness of a children's hospital-based OB unit before it opened for patient care. This project took place at a 314-bed, university-affiliated children's hospital. We developed 3 full-scale simulation scenarios depicting a concurrent maternal and neonatal emergency. One scenario began with a standardized patient experiencing admission; the mannequin portrayed a mother during delivery. We ran all 3 scenarios on 2 dates scheduled several weeks apart. We ran 2 of the scenarios on a third day to verify the reliability of key processes. During the simulations, content experts completed equipment checklists, and participants identified latent safety hazards. Each simulation involved a unique combination of scheduled participants who were supplemented by providers from responding ancillary services. The simulations involved 133 scheduled participants representing OB, neonatology, and anesthesiology. We exposed and addressed operational deficiencies involving equipment availability, staffing, interprofessional communication, and systems issues such as transfusion protocol failures and electronic order entry challenges. Process changes between simulation days 1 to 3 decreased the elapsed time between transfusion protocol activation and blood arrival to the operating room and labor/delivery/recovery/postpartum setting. In situ simulations identified multiple operational deficiencies on the OB unit, allowing us to take corrective action before its opening. This project may guide other children's hospitals regarding care processes likely to require significant focus and possible modification to accommodate an OB service.

  2. Effective Cyber Situation Awareness (CSA) Assessment and Training

    DTIC Science & Technology

    2013-11-01

    activity/scenario. y. Save Wireshark Captures. z. Save SNORT logs. aa. Save MySQL databases. 4. After the completion of the scenario, the reversion...line or from custom Java code. • Cisco ASA Parser: Builds normalized vendor-neutral firewall rule specifications from Cisco ASA and PIX firewall...The Service tool lets analysts build Cauldron models from either the command line or from custom Java code. Functionally, it corresponds to the

  3. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    NASA Astrophysics Data System (ADS)

    Oughton, Edward J.; Skelton, Andrew; Horne, Richard B.; Thomson, Alan W. P.; Gaunt, Charles T.

    2017-01-01

    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.

  4. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  5. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  6. Regional operations research program for development of geothermal energy in the southwest United States. Final technical report, June 1977-August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlin, J.M.; Christ, R.; McDevitt, P.

    1979-01-01

    The efforts by the Core and State Teams in data acquisition, electric and non-electric economic studies, development of computer support functions and operations, and preparation of geothermal development scenarios are described. Team reports for the states of Arizona, Colorado, Nevada, New Mexico, and Utah are included in the appendices along with a summary of the state scenarios. (MHR)

  7. Startup and mode competition in a 420 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.

    2017-09-01

    In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.

  8. Issues related to line-oriented flight training

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.

    1981-01-01

    The use of a training simulator along with carefully structured, detailed, line trip scenarios was envisioned by NASA as a means of providing a controllable, repeatable way to observe line crews in a highly realistic simulation of their working environment and obtain better understanding operationally significant human factors problems and issues. Relevant research done by the agency and the results of full-mission simulation scenarios revealed potential implications for flight training. Aspects to be considered in creating training programs closely related to the actual line environment with a total crew application in real world incident experiences include: (1) operational, environmental, equipment, and crew problems in scenario design; (2) real time line oriented flight training operation; (3) performance assessment and debriefing; (4) instructor qualification and training; and (5) other issues such as ub un initial, transition, and upgrade training; procedures developent and evaluation, and equipment evaluation.

  9. SCE&G Cope Station simulator training program development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottlemire, J.L.; Fabry, R.

    1996-11-01

    South Carolina Electric and Gas Company made a significant investment into meeting the needs of their customers in designing and building the new fossil Generating Station near Cope, South Carolina. Cope Station is a state-of-the-art, 385 MW plant, with equipment and design features that will provide the plant with the capabilities of achieving optimum availability and capability. SCE&G has also implemented a team concept approach to plant organization at Cope Station. The modern plant design, operating philosophy, and introduction of a large percentage of new operations personnel presented a tremendous challenge in preparing for plant commissioning and commercial operation. SCE&G`smore » answer to this challenge was to hire an experienced operations trainer, and implement a comprehensive training program. An important part of the training investment was the procurement of a plant specific control room simulator. SCE&G, through tailored collaboration with the Electric Power Research Institute (EPRI), developed a specification for a simulator with the features necessary for training the initial plant staff as well as advanced operator training. The high-fidelity CRT based training simulator is a stimulated system that completely and accurately simulates the various plant systems, process startups, shutdowns, normal operating scenarios, and malfunctions. The process model stimulates a Foxboro Distributed Control System consisting of twelve control processors, five WP51 work stations, and one AW51 file server. The workstations, file server and support hardware and software necessary to interface with ESSCOR`s FSIM4 software was provided by Foxoboro.« less

  10. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted to a scenario that is different from the one that will actually realize.

  11. HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakmor, R.; Springel, V.; Kromer, M.

    2013-06-10

    The progenitors of Type Ia supernovae (SNe Ia) are still unknown, despite significant progress during the past several years in theory and observations. Violent mergers of two carbon-oxygen (CO) white dwarfs (WDs) are a candidate scenario suggested to be responsible for at least a significant fraction of normal SNe Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that allows for the inclusion of thin helium (He) shells (0.01 M{sub Sun }) on top of the WDs at an unprecedented numerical resolution. The accretion of He onto the primary WD leads to the formation ofmore » a detonation in its He shell. This detonation propagates around the CO WD and sends a converging shock wave into its core, known to robustly trigger a second detonation, as in the well-known double-detonation scenario for He-accreting CO WDs. However, in contrast to that scenario where a massive He shell is required to form a detonation through thermal instability, here the He detonation is ignited dynamically. Accordingly the required He-shell mass is significantly smaller, and hence its burning products are unlikely to affect the optical display of the explosion. We show that this scenario, which works for CO primary WDs with CO- as well as He-WD companions, has the potential to explain the different brightness distributions, delay times, and relative rates of normal and fast declining SNe Ia. Finally, we discuss extensions to our unified merger model needed to obtain a comprehensive picture of the full observed diversity of SNe Ia.« less

  12. Probing 6D operators at future e - e + colliders

    NASA Astrophysics Data System (ADS)

    Chiu, Wen Han; Leung, Sze Ching; Liu, Tao; Lyu, Kun-Feng; Wang, Lian-Tao

    2018-05-01

    We explore the sensitivities at future e - e + colliders to probe a set of six-dimensional operators which can modify the SM predictions on Higgs physics and electroweak precision measurements. We consider the case in which the operators are turned on simultaneously. Such an analysis yields a "conservative" interpretation on the collider sensitivities, complementary to the "optimistic" scenario where the operators are individually probed. After a detail analysis at CEPC in both "conservative" and "optimistic" scenarios, we also considered the sensitivities for FCC-ee and ILC. As an illustration of the potential of constraining new physics models, we applied sensitivity analysis to two benchmarks: holographic composite Higgs model and littlest Higgs model.

  13. Assessing the vulnerability of the transportation industry of Ukraine to future climate change

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2017-04-01

    Climate change will affect transportation primarily through increases in several types of weather and climate extremes. The impacts will vary by mode of transportation and region of the country, but they will be widespread and costly in both human and economic terms and will require significant changes in the planning, design, construction, operation, and maintenance of transportation systems. In the study impact of climate change on operation of road transport are analysed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean, maximum and minimum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 28 cities distributed evenly across Ukraine. Spatial and temporal distributions of meteorological variables are obtained. The statistic characteristics obtained were compared with the correspondent climate normals and highway-related temporal changeability is determined. Frequency of freezing rain, wet snow, very hot days, droughts, fogs, ice-covered ground, slippery wet ground, ice and snow slippery coat are investigated. Climate and economic risks to the road transport network are assessed. Maps of spatial distribution of risk assessment are obtained. The results obtained show typical weather pattern is changed and climate and weather extreme influencing on operation of road transport are more frequent for the both scenarios, but for the RCP 8.5 scenario hazard weather occurs more often. During the period of 2011-2050 significant climate warming (by 2-3°C) is registered. Extreme temperatures are observed more frequently. High temperatures bring on growth in frequency of wildfires and heat waves. Annual precipitation amount decreases, except the western mountain and northern regions, where precipitation amount increase on 35%. Increase in temperature and decrease in precipitation can produce droughts in southern, eastern and central regions. But growth in precipitation in mountain region can cause flooding and landslides. Strong increase in mixed precipitation and significant reduction in ice and liquid precipitation take place for all territory of Ukraine. In the southern region ice precipitation is virtually vanished and observed only 2-3 days per year. Growth of mixed precipitation causes increase in severe weather events such as freezing precipitation, ice-covered ground and snow slippery coat.

  14. Lunar Surface Mission Operations Scenario and Considerations

    NASA Technical Reports Server (NTRS)

    Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.

    2006-01-01

    Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.

  15. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    PubMed

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  16. 49 CFR 192.605 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operations and maintenance activities are conducted. (b) Maintenance and normal operations. The manual... personnel to determine the effectiveness, and adequacy of the procedures used in normal operation and... or flow rate outside normal operating limits; (iii) Loss of communications; (iv) Operation of any...

  17. Engineering thinking in emergency situations: A new nuclear safety concept

    PubMed Central

    Guarnieri, Franck; Travadel, Sébastien

    2014-01-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015

  18. Engineering thinking in emergency situations: A new nuclear safety concept.

    PubMed

    Guarnieri, Franck; Travadel, Sébastien

    2014-11-01

    The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.

  19. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  20. Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications

    DTIC Science & Technology

    2015-08-01

    Strategic. While the drone swarms of normal and micro - sized UAVs projected in this threat scenario may still be a few decades out and possibly...craft for reconnaissance and pro- paganda video purposes. Such groups are still very much in an experimental phase of using these craft and possess...technol- ogy trends influencing their potential uses, three red teaming threat scenarios have been created for early warning purposes: 1) Single UAV

  1. Performance Evaluation of Evasion Maneuvers for Parallel Approach Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Winder, Lee F.; Kuchar, James K.; Waller, Marvin (Technical Monitor)

    2000-01-01

    Current plans for independent instrument approaches to closely spaced parallel runways call for an automated pilot alerting system to ensure separation of aircraft in the case of a "blunder," or unexpected deviation from the a normal approach path. Resolution advisories by this system would require the pilot of an endangered aircraft to perform a trained evasion maneuver. The potential performance of two evasion maneuvers, referred to as the "turn-climb" and "climb-only," was estimated using an experimental NASA alerting logic (AILS) and a computer simulation of relative trajectory scenarios between two aircraft. One aircraft was equipped with the NASA alerting system, and maneuvered accordingly. Observation of the rates of different types of alerting failure allowed judgement of evasion maneuver performance. System Operating Characteristic (SOC) curves were used to assess the benefit of alerting with each maneuver.

  2. Probing new physics through Bs*→μ+μ- decay

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Saini, Jyoti; Gangal, Shireen; Das, Sanjeeda Bharati

    2018-02-01

    We perform a model independent analysis of new physics in Bs*→μ+μ- decay. We intend to identify new physics operator(s) which can provide large enhancement in the branching ratio of Bs*→μ+μ- above its standard model prediction. For this, we consider new physics in the form of vector, axial-vector, scalar and pseudoscalar operators. We find that scalar and pseudoscalar operators do not contribute to the branching ratio of Bs*→μ+μ- . We perform a global fit to all relevant b →s μ+μ- data for different new physics scenarios. For each of these scenarios, we predict Br (Bs*→μ+μ-) . We find that a significant enhancement in Br (Bs*→μ+μ-) is not allowed by any of these new physics operators. In fact, for all new physics scenarios providing a good fit to the data, the branching ratio of Bs*→μ+μ- is suppressed as compared to the standard model (SM) value. Hence the present b →s μ+μ- data indicates that the future measurement of Br (Bs*→μ+μ-) is expected to be suppressed in comparison to the standard model prediction.

  3. Simulating Operations at a Spaceport

    NASA Technical Reports Server (NTRS)

    Nevins, Michael R.

    2007-01-01

    SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.

  4. Economic Feasibility of Wireless Sensor Network-Based Service Provision in a Duopoly Setting with a Monopolist Operator.

    PubMed

    Sanchis-Cano, Angel; Romero, Julián; Sacoto-Cabrera, Erwin J; Guijarro, Luis

    2017-11-25

    We analyze the feasibility of providing Wireless Sensor Network-data-based services in an Internet of Things scenario from an economical point of view. The scenario has two competing service providers with their own private sensor networks, a network operator and final users. The scenario is analyzed as two games using game theory. In the first game, sensors decide to subscribe or not to the network operator to upload the collected sensing-data, based on a utility function related to the mean service time and the price charged by the operator. In the second game, users decide to subscribe or not to the sensor-data-based service of the service providers based on a Logit discrete choice model related to the quality of the data collected and the subscription price. The sinks and users subscription stages are analyzed using population games and discrete choice models, while network operator and service providers pricing stages are analyzed using optimization and Nash equilibrium concepts respectively. The model is shown feasible from an economic point of view for all the actors if there are enough interested final users and opens the possibility of developing more efficient models with different types of services.

  5. Scenarios for Education in the Twenty-First Century: Synthesis of an Unfinished Dialogue and Questions for Further Progress

    ERIC Educational Resources Information Center

    Prospects: Quarterly Review of Comparative Education, 2004

    2004-01-01

    This article presents a synthesis of an unfinished dialogue on Organisation for Economic Co-operation and Development's (OECD) scenarios for education in the twenty-first century and on the position of education that these scenarios question. The first part of this article brings together some of the core considerations put forward by the members…

  6. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R., E-mail: knozari@umz.ac.ir, E-mail: t.azizi@umz.ac.ir, E-mail: rezakord@ipm.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  7. A Scenario-Based Process for Requirements Development: Application to Mission Operations Systems

    NASA Technical Reports Server (NTRS)

    Bindschadler, Duane L.; Boyles, Carole A.

    2008-01-01

    The notion of using operational scenarios as part of requirements development during mission formulation (Phases A & B) is widely accepted as good system engineering practice. In the context of developing a Mission Operations System (MOS), there are numerous practical challenges to translating that notion into the cost-effective development of a useful set of requirements. These challenges can include such issues as a lack of Project-level focus on operations issues, insufficient or improper flowdown of requirements, flowdown of immature or poor-quality requirements from Project level, and MOS resource constraints (personnel expertise and/or dollars). System engineering theory must be translated into a practice that provides enough structure and standards to serve as guidance, but that retains sufficient flexibility to be tailored to the needs and constraints of a particular MOS or Project. We describe a detailed, scenario-based process for requirements development. Identifying a set of attributes for high quality requirements, we show how the portions of the process address many of those attributes. We also find that the basic process steps are robust, and can be effective even in challenging Project environments.

  8. Effect of Traffic Position Accuracy for Conducting Safe Airport Surface Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III; Barnes, James R.

    2014-01-01

    The Next Generation Air Transportation System (NextGen) concept proposes many revolutionary operational concepts and technologies, such as display of traffic information and movements, airport moving maps (AMM), and proactive alerts of runway incursions and surface traffic conflicts, to deliver an overall increase in system capacity and safety. A piloted simulation study was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center to evaluate the ability to conduct safe and efficient airport surface operations while utilizing an AMM displaying traffic of various position accuracies as well as the effect of traffic position accuracy on airport conflict detection and resolution (CD&R) capability. Nominal scenarios and off-nominal conflict scenarios were conducted using 12 airline crews operating in a simulated Memphis International Airport terminal environment. The data suggest that all traffic should be shown on the airport moving map, whether qualified or unqualified, and conflict detection and resolution technologies provide significant safety benefits. Despite the presence of traffic information on the map, collisions or near collisions still occurred; when indications or alerts were generated in these same scenarios, the incidences were averted.

  9. A One-Versus-All Class Binarization Strategy for Bearing Diagnostics of Concurrent Defects

    PubMed Central

    Ng, Selina S. Y.; Tse, Peter W.; Tsui, Kwok L.

    2014-01-01

    In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any work in the literature that studies this practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number of scenarios for data collection, by predicting concurrent defects from training data of normal and single defects. The proposed OVA diagnostic approach is evaluated with empirical analysis using support vector machine (SVM) and C4.5 decision tree, two popular classification algorithms frequently applied to system health diagnostics and prognostics. Statistical features are extracted from the time domain and the frequency domain. Prediction performance of the proposed strategy is compared with that of a simple multi-class classification, as well as that of random guess and worst-case classification. We have verified the potential of the proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected vibration data sets. PMID:24419162

  10. Demand forecasting for automotive sector in Malaysia by system dynamics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkepli, Jafri, E-mail: zhjafri@uum.edu.my; Abidin, Norhaslinda Zainal, E-mail: nhaslinda@uum.edu.my; Fong, Chan Hwa, E-mail: hfchan7623@yahoo.com

    In general, Proton as an automotive company needs to forecast future demand of the car to assist in decision making related to capacity expansion planning. One of the forecasting approaches that based on judgemental or subjective factors is normally used to forecast the demand. As a result, demand could be overstock that eventually will increase the operation cost; or the company will face understock, which resulted losing their customers. Due to automotive industry is very challenging process because of high level of complexity and uncertainty involved in the system, an accurate tool to forecast the future of automotive demand frommore » the modelling perspective is required. Hence, the main objective of this paper is to forecast the demand of automotive Proton car industry in Malaysia using system dynamics approach. Two types of intervention namely optimistic and pessimistic experiments scenarios have been tested to determine the capacity expansion that can prevent the company from overstocking. Finding from this study highlighted that the management needs to expand their production for optimistic scenario, whilst pessimistic give results that would otherwise. Finally, this study could help Proton Edar Sdn. Bhd (PESB) to manage the long-term capacity planning in order to meet the future demand of the Proton cars.« less

  11. Study of Convection Heat Transfer in a Very High Temperature Reactor Flow Channel: Numerical and Experimental Results

    DOE PAGES

    Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...

    2016-12-01

    Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less

  12. Admission Control Over Internet of Vehicles Attached With Medical Sensors for Ubiquitous Healthcare Applications.

    PubMed

    Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu

    2016-07-01

    Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.

  13. A one-versus-all class binarization strategy for bearing diagnostics of concurrent defects.

    PubMed

    Ng, Selina S Y; Tse, Peter W; Tsui, Kwok L

    2014-01-13

    In bearing diagnostics using a data-driven modeling approach, a concern is the need for data from all possible scenarios to build a practical model for all operating conditions. This paper is a study on bearing diagnostics with the concurrent occurrence of multiple defect types. The authors are not aware of any work in the literature that studies this practical problem. A strategy based on one-versus-all (OVA) class binarization is proposed to improve fault diagnostics accuracy while reducing the number of scenarios for data collection, by predicting concurrent defects from training data of normal and single defects. The proposed OVA diagnostic approach is evaluated with empirical analysis using support vector machine (SVM) and C4.5 decision tree, two popular classification algorithms frequently applied to system health diagnostics and prognostics. Statistical features are extracted from the time domain and the frequency domain. Prediction performance of the proposed strategy is compared with that of a simple multi-class classification, as well as that of random guess and worst-case classification. We have verified the potential of the proposed OVA diagnostic strategy in performance improvements for single-defect diagnosis and predictions of BPFO plus BPFI concurrent defects using two laboratory-collected vibration data sets.

  14. Data quality objectives for TWRS privatization phase 1: confirm tank T is an appropriate feed source for high-level waste feed batch X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    1999-06-01

    The U.S. Department of Energy-Richland Operations Office (DOE-RL) has initiated Phase 1 of a two-phase privatization strategy for treatment and immobilization of high-level waste (HLW) that is currently managed by the Hanford Tank Waste Remediation System (TWRS) Project. In this strategy, DOE will purchase services from a contractor-owned and operated facility under a fixed price. The Phase 1 TWRS privatization contract requires that the Project Hanford Management Contract (PHMC) contractors, on behalf of DOE, deliver HLW feed in specified quantities and composition to the Privatization Contractor in a timely manner (DOE-RL 1996). Additional requirements are imposed by the interface controlmore » document (ICD) for HLW feed (PHMC 1997). In response to these requirements, the Tank Waste Remediation System Operation and Utilization Plan (TWRSO and UP) (Kirkbride et al. 1997) was prepared by the PHMC. The TWRSO and UP, as updated by the Readiness-To-Proceed (RTP) deliverable (Payne et al. 1998), establishes the baseline operating scenario for the delivery of HLW feed to the Privatization Contractor. The scenario specifies tanks from which HLW will be provided for each feed batch, the operational activities needed to prepare and deliver each batch, and the timing of these activities. The operating scenario was developed based on current knowledge of waste composition and chemistry, waste transfer methods, and operating constraints such as tank farm logistics and availability of tank space. A project master baseline schedule (PMBS) has been developed to implement the operating scenario. The PMBS also includes activities aimed at reducing programmatic risks. One of the activities, ''Confirm Tank TI is Acceptable for Feed,'' was identified to verify the basis used to develop the scenario Additional data on waste quantity, physical and chemical characteristics, and transfer properties will be needed to support this activity. This document describes the data quality objective (DQO) process undertaken to assure appropriate data will be collected to support the activity, ''Confirm Tank T is Acceptable for HLW Feed.'' The DQO process was implemented in accordance with the TWRS DQO process (Banning 1997) with some modifications to accommodate project or tank-specific requirements and constraints.« less

  15. Operating in "Strange New Worlds" and Measuring Success - Test and Evaluation in Complex Environments

    NASA Technical Reports Server (NTRS)

    Qualls, Garry; Cross, Charles; Mahlin, Matthew; Montague, Gilbert; Motter, Mark; Neilan, James; Rothhaar, Paul; Tran, Loc; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    Software tools are being developed by the Autonomy Incubator at NASA's Langley Research Center that will provide an integrated and scalable capability to support research and non-research flight operations across several flight domains, including urban and mixed indoor-outdoor operations. These tools incorporate a full range of data products to support mission planning, approval, flight operations, and post-flight review. The system can support a number of different operational scenarios that can incorporate live and archived data streams for UAS operators, airspace regulators, and other important stakeholders. Example use cases are described that illustrate how the tools will benefit a variety of users in nominal and off-nominal operational scenarios. An overview is presented for the current state of the toolset, including a summary of current demonstrations that have been completed. Details of the final, fully operational capability are also presented, including the interfaces that will be supported to ensure compliance with existing and future airspace operations environments.

  16. Dispatchable hydrogen production at the forecourt for electricity grid balancing

    NASA Astrophysics Data System (ADS)

    Rahil, Abdulla; Gammon, Rupert; Brown, Neil

    2017-02-01

    The rapid growth of renewable energy (RE) generation and its integration into electricity grids has been motivated by environmental issues and the depletion of fossil fuels. For the same reasons, an alternative to hydrocarbon fuels is needed for vehicles; hence the anticipated uptake of electric and fuel cell vehicles. High penetrations of RE generators with variable and intermittent output threaten to destabilise electricity networks by reducing the ability to balance electricity supply and demand. This can be greatly mitigated by the use of energy storage and demand-side response (DSR) techniques. Hydrogen production by electrolysis is a promising option for providing DSR as well as an emission-free vehicle fuel. Tariff structures can be used to incentivise the operating of electrolysers as controllable (dispatchable) loads. This paper compares the cost of hydrogen production by electrolysis at garage forecourts under both dispatchable and continuous operation, while ensuring no interruption of fuel supply to fuel cell vehicles. An optimisation algorithm is applied to investigate a hydrogen refueling station in both dispatchable and continuous operation. Three scenarios are tested to see whether a reduced off-peak electricity price could lower the cost of electrolytic hydrogen. These scenarios are: 1) "Standard Continuous", where the electrolyser is operated continuously on a standard all-day tariff of 12p/kWh; 2) "Off-peak Only", where it runs only during off-peak periods in a 2-tier tariff system at the lower price of 5p/kWh; and 3) "2-Tier Continuous", operating continuously and paying a low tariff at off- peak times and a high tariff at other times. This study uses the Libyan coastal city of Derna as a case study. The cheapest electricity cost per kg of hydrogen produced was £2.8, which occurred in Scenario 2. The next cheapest, at £5.8 - £6.3, was in Scenario 3, and the most expensive was £6.8/kg in Scenario 1.

  17. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood.

    PubMed

    Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M

    2015-11-01

    Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.

  18. All APAPs Are Not Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven Commercially Available Devices.

    PubMed

    Zhu, Kaixian; Roisman, Gabriel; Aouf, Sami; Escourrou, Pierre

    2015-07-15

    This study challenged on a bench-test the efficacy of auto-titrating positive airway pressure (APAP) devices for obstructive sleep disordered breathing treatment and evaluated the accuracy of the device reports. Our bench consisted of an active lung simulator and a Starling resistor. Eleven commercially available APAP devices were evaluated on their reactions to single-type SDB sequences (obstructive apnea and hypopnea, central apnea, and snoring), and to a long general breathing scenario (5.75 h) simulating various SDB during four sleep cycles and to a short scenario (95 min) simulating one sleep cycle. In the single-type sequence of 30-minute repetitive obstructive apneas, only 5 devices normalized the airflow (> 70% of baseline breathing amplitude). Similarly, normalized breathing was recorded with 8 devices only for a 20-min obstructive hypopnea sequence. Five devices increased the pressure in response to snoring. Only 4 devices maintained a constant minimum pressure when subjected to repeated central apneas with an open upper airway. In the long general breathing scenario, the pressure responses and the treatment efficacy differed among devices: only 5 devices obtained a residual obstructive AHI < 5/h. During the short general breathing scenario, only 2 devices reached the same treatment efficacy (p < 0.001), and 3 devices underestimated the AHI by > 10% (p < 0.001). The long scenario led to more consistent device reports. Large differences between APAP devices in the treatment efficacy and the accuracy of report were evidenced in the current study. © 2015 American Academy of Sleep Medicine.

  19. High internal inductance for steady-state operation in ITER and a reactor

    DOE PAGES

    Ferron, John R.; Holcomb, Christopher T.; Luce, Timothy C.; ...

    2015-06-26

    Increased confinement and ideal stability limits at relatively high values of the internal inductance (more » $${{\\ell}_{i}}$$ ) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with $${{\\beta}_{\\text{N}}}\\approx 5$$ at $${{\\ell}_{i}}\\approx 1.3$$ , near the ideal $n=1$ kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at $${{\\beta}_{\\text{N}}}>5.5$$ . Confinement is above the H-mode level with $${{H}_{98\\left(\\text{y},2\\right)}}\\approx 1.8$$ . At $${{q}_{95}}\\approx 7.5$$ , the current is overdriven, with bootstrap current fraction $${{f}_{\\text{BS}}}\\approx 0.8$$ , noninductive current fraction $${{f}_{\\text{NI}}}>1$$ and negative surface voltage. For ITER (which has a single-null divertor shape), operation at $${{\\ell}_{i}}\\approx 1$$ is a promising option with $${{f}_{\\text{BS}}}\\approx 0.5$$ and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at $${{q}_{95}}=4.8$$ , so far reaching $${{f}_{\\text{NI}}}=0.7$$ and $${{f}_{\\text{BS}}}=0.4$$ at $${{\\beta}_{\\text{N}}}\\approx 3.5$$ with performance appropriate for the ITER Q=5 mission, $${{H}_{89}}{{\\beta}_{\\text{N}}}/q_{95}^{2}\\approx 0.3$$ . Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high $${{\\ell}_{i}}$$ discharge. Lastly, stable solutions in the double-null shape are found without the vacuum vessel wall at $${{\\beta}_{\\text{N}}}=4$$ , $${{\\ell}_{i}}=1.07$$ and $${{f}_{\\text{BS}}}=0.5$$ , and at $${{\\beta}_{\\text{N}}}=5$$ with the vacuum vessel wall.« less

  20. MHD limits and plasma response in high-beta hybrid operations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Piovesan, P.; Classen, I. G. J.; Dunne, M.; Gude, A.; Lauber, P.; Liu, Y.; Maraschek, M.; Marrelli, L.; McDermott, R.; Reich, M.; Ryan, D.; Schneller, M.; Strumberger, E.; Suttrop, W.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    The improved H-mode scenario (or high β hybrid operations) is one of the main candidates for high-fusion performance tokamak operation that offers a potential steady-state scenario. In this case, the normalized pressure {{β }N} must be maximized and pressure-driven instabilities will limit the plasma performance. These instabilities could have either resistive ((m  =  2, n  =  1) and (3,2) neoclassical tearing modes (NTMs)) or ideal character (n  =  1 ideal kink mode). In ASDEX Upgrade (AUG), the first limit for maximum achievable {{β }N} is set by the NTMs. The application of pre-emptive electron cyclotron current drive at the q  =  2 and q  =  1.5 resonant surfaces reduces this problem, so that higher values of {{β }N} can be reached. AUG experiments have shown that, in spite of the fact that hybrids are mainly limited by NTMs, the proximity to the no-wall limit leads to amplification of the external fields that strongly influence the plasma profiles. For example, rotation braking is observed throughout the plasma and peaks in the core. In this situation, even small external fields are amplified and their effect becomes visible. To quantify these effects, the plasma response to the magnetic fields produced by B-coils is measured as {{β }N} approaches the no-wall limit. These experiments and corresponding modeling allow the identification of the main limiting factors, which depend on the stabilizing influence of the conducting components facing the plasma surface, the existence of external actuators, and the kinetic interaction between the plasma and the marginally stable ideal modes. Analysis of the plasma reaction to external perturbations allowed us to identify optimal correction currents for compensating the intrinsic error field in the device. Such correction, together with the analysis of kinetic effects, will help to increase {{β }N} further in future experiments.

  1. Real-time modeling and simulation of distribution feeder and distributed resources

    NASA Astrophysics Data System (ADS)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  2. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  3. Development of steady-state scenarios compatible with ITER-like wall conditions

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Arnoux, G.; Beurskens, M.; Brezinsek, S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Giroud, C.; Pitts, R. A.; Rimini, F. G.; Andrew, Y.; Ariola, M.; Baranov, Yu F.; Brix, M.; Buratti, P.; Cesario, R.; Corre, Y.; DeLa Luna, E.; Fundamenski, W.; Giovannozzi, E.; Gryaznevich, M. P.; Hawkes, N. C.; Hobirk, J.; Huber, A.; Jachmich, S.; Joffrin, E.; Koslowski, H. R.; Liang, Y.; Loarer, Th; Lomas, P.; Luce, T.; Mailloux, J.; Matthews, G. F.; Mazon, D.; McCormick, K.; Moreau, D.; Pericoli, V.; Philipps, V.; Rachlew, E.; Reyes-Cortes, S. D. A.; Saibene, G.; Sharapov, S. E.; Voitsekovitch, I.; Zabeo, L.; Zimmermann, O.; Zastrow, K. D.; JET-EFDA Contributors, the

    2007-12-01

    A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q95 ~ 5 and high triangularity, δ (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching βN ~ 2 at Bo ~ 3.1 T. Operating at higher δ has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and mitigation of edge localized mode (ELM) activity. At reduced toroidal magnetic field strength, high βN regimes have been achieved and q-profile optimization investigated for use in steady-state scenarios. Values of βN above the 'no-wall magnetohydrodynamic limit' (βN ~ 3.0) have been sustained for a resistive current diffusion time in high-δ configurations (at 1.2 MA/1.8 T). In this scenario, ELM activity has been mitigated by applying magnetic perturbations using error field correction coils to provide ergodization of the magnetic field at the plasma edge. In a highly shaped, quasi-double null X-point configuration, ITBs have been generated on the ion heat transport channel and combined with 'grassy' ELMs with ~30 MW of applied heating power (at 1.2 MA/2.7 T, q95 ~ 7). Advanced algorithms and system identification procedures have been developed with a view to developing simultaneously temperature and q-profile control in real-time. These techniques have so far been applied to the control of the q-profile evolution in JET AT scenarios.

  4. Core transport properties in JT-60U and JET identity plasmas

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET

    2011-07-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.

  5. Robot and Human Surface Operations on Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  6. Sea Fighter Analysis

    DTIC Science & Technology

    2007-02-01

    which is used by the model to drive the normal activities of the crew (Figure C.1-2). These routines consist of a sequential list of high- level...separately. Figure C.1-3: Resources & Logic Sheet C.1.1.4 Scenario The scenario that is performed during a model run is a sequential list of all...were marked with a white fore and aft lineup stripe on both landing spots. Current Sea Fighter design does not provide a hangar; however, there

  7. Quick wins connected vehicles deployment scenario : a grassroots approach to safer roads, greater mobility, and cleaner air.

    DOT National Transportation Integrated Search

    2011-01-01

    The Quick Wins Connected Vehicles deployment scenario provides stakeholders from planners, to operators, to manufacturers, to policymakers with a defensible path towards the deployment of Connected Vehicles technologies over the next half-dec...

  8. Radar Sensing for Intelligent Vehicles in Urban Environments

    PubMed Central

    Reina, Giulio; Johnson, David; Underwood, James

    2015-01-01

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations. PMID:26102493

  9. Radar Sensing for Intelligent Vehicles in Urban Environments.

    PubMed

    Reina, Giulio; Johnson, David; Underwood, James

    2015-06-19

    Radar overcomes the shortcomings of laser, stereovision, and sonar because it can operate successfully in dusty, foggy, blizzard-blinding, and poorly lit scenarios. This paper presents a novel method for ground and obstacle segmentation based on radar sensing. The algorithm operates directly in the sensor frame, without the need for a separate synchronised navigation source, calibration parameters describing the location of the radar in the vehicle frame, or the geometric restrictions made in the previous main method in the field. Experimental results are presented in various urban scenarios to validate this approach, showing its potential applicability for advanced driving assistance systems and autonomous vehicle operations.

  10. Potential scenarios of concern for high speed rail operations

    DOT National Transportation Integrated Search

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  11. Tools and Techniques for Basin-Scale Climate Change Assessment

    NASA Astrophysics Data System (ADS)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.

  12. TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annette Rohr

    2005-09-30

    This report documents progress made on the subject project during the period of March 1, 2005 through August 31, 2005. The TERESA Study is designed to investigate the role played by specific emissions sources and components in the induction of adverse health effects by examining the relative toxicity of coal combustion and mobile source (gasoline and/or diesel engine) emissions and their oxidative products. The study involves on-site sampling, dilution, and aging of coal combustion emissions at three coal-fired power plants, as well as mobile source emissions, followed by animal exposures incorporating a number of toxicological endpoints. The DOE-EPRI Cooperative Agreementmore » (henceforth referred to as ''the Agreement'') for which this technical progress report has been prepared covers the performance and analysis of field experiments at the first TERESA plant, located in the Upper Midwest and henceforth referred to as Plant 0, and at two additional coal-fired power plants (Plants 1 and 2) utilizing different coal types and with different plant configurations. During this reporting period, fieldwork was completed at Plant 1, located in the Southeast. Stage I toxicological assessments were carried out in normal Sprague-Dawley rats, and Stage II assessments were carried out in a compromised model (myocardial infarction-MI-model). Normal rats were exposed to the following atmospheric scenarios: (1) primary particles; (2) oxidized emissions; (3) oxidized emissions + secondary organic aerosol (SOA)--this scenario was repeated; and (4) oxidized emissions + ammonia + SOA. Compromised animals were exposed to oxidized emissions + SOA (this scenario was also conducted in replicate). Stage I assessment endpoints included breathing pattern/pulmonary function; in vivo chemiluminescence (an indicator of oxidative stress); blood cytology; bronchoalveolar lavage (BAL) fluid analysis; and histopathology. Stage II assessments included continuous ECG monitoring via implanted telemeters and blood chemistry (complete blood count, circulating cytokines (interleukins-1 and -6), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-{alpha}), and endothelin-1). Only a subset of exposure data was available at the time of preparation of this report. Continuous PM{sub 2.5} mass (TEOM) results indicate a mass concentration of 14 {micro}g/m{sup 3} for the primary particle scenario, and a range of 151 to 385 {micro}g/m{sup 3} for the oxidized emissions scenarios. Toxicological results obtained to date from Plant 1 indicate subtle biological responses to some of the exposure scenarios. We observed statistically significant changes in several breathing pattern parameters, including tidal volume and frequency. For one scenario (oxidized emissions + SOA), we observed a significant increase in Enhanced Pause (Penh), a parameter that may reflect airflow restriction. However, the respiratory changes are very subtle and do not present a clear picture of a particular respiratory effect (e.g., airway restriction, sensory irritation, or pulmonary irritation). A significant increase in lung chemiluminescence (a marker of oxidative stress in lung tissue) in exposed animals (vs. air-exposed controls) was observed in animals exposed to oxidized emissions + SOA. No changes were observed in heart tissue, nor in any other scenario. Stage II assessments were conducted to the secondary + SOA scenario; ECG and blood analysis data are pending. Planning was initiated for Plant 2, located in the Midwest. Because of the requirement for both the FGD and the SCR to be concurrently operational for appropriate reaction conditions, fieldwork at Plant 2 is scheduled for Summer 2006. During the next reporting period, we will complete all remaining exposure and toxicological analyses for Plant 1, and the next semiannual report will include a detailed description of these data and their interpretation. We are also in the process of preparing a topical report for Plant 0.« less

  13. Operator Support System Design forthe Operation of RSG-GAS Research Reactor

    NASA Astrophysics Data System (ADS)

    Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.

  14. Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints

    NASA Astrophysics Data System (ADS)

    Dongnan, L.; Wan, W.; Zhao, J.

    2017-12-01

    Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.

  15. PRESTO-II: a low-level waste environmental transport and risk assessment code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, D.E.; Emerson, C.J.; Chester, R.O.

    PRESTO-II (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code designed for the evaluation of possible health effects from shallow-land and, waste-disposal trenches. The model is intended to serve as a non-site-specific screening model for assessing radionuclide transport, ensuing exposure, and health impacts to a static local population for a 1000-year period following the end of disposal operations. Human exposure scenarios considered include normal releases (including leaching and operational spillage), human intrusion, and limited site farming or reclamation. Pathways and processes of transit from the trench to an individual or population include ground-water transport, overland flow, erosion,more » surface water dilution, suspension, atmospheric transport, deposition, inhalation, external exposure, and ingestion of contaminated beef, milk, crops, and water. Both population doses and individual doses, as well as doses to the intruder and farmer, may be calculated. Cumulative health effects in terms of cancer deaths are calculated for the population over the 1000-year period using a life-table approach. Data are included for three example sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. A code listing and example input for each of the three sites are included in the appendices to this report.« less

  16. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna.

    PubMed

    Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y

    2018-02-01

    This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.

  17. Communication network for decentralized remote tele-science during the Spacelab mission IML-2

    NASA Technical Reports Server (NTRS)

    Christ, Uwe; Schulz, Klaus-Juergen; Incollingo, Marco

    1994-01-01

    The ESA communication network for decentralized remote telescience during the Spacelab mission IML-2, called Interconnection Ground Subnetwork (IGS), provided data, voice conferencing, video distribution/conferencing and high rate data services to 5 remote user centers in Europe. The combination of services allowed the experimenters to interact with their experiments as they would normally do from the Payload Operations Control Center (POCC) at MSFC. In addition, to enhance their science results, they were able to make use of reference facilities and computing resources in their home laboratory, which typically are not available in the POCC. Characteristics of the IML-2 communications implementation were the adaptation to the different user needs based on modular service capabilities of IGS and the cost optimization for the connectivity. This was achieved by using a combination of traditional leased lines, satellite based VSAT connectivity and N-ISDN according to the simulation and mission schedule for each remote site. The central management system of IGS allows minimization of staffing and the involvement of communications personnel at the remote sites. The successful operation of IGS for IML-2 as a precursor network for the Columbus Orbital Facility (COF) has proven the concept for communications to support the operation of the COF decentralized scenario.

  18. Assessing methane emission estimation methods based on atmospheric measurements from oil and gas production using LES simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Steinhoff, D.; Kosovic, B.; Weil, J.; Smith, N.; Blewitt, D.; Delle Monache, L.

    2017-12-01

    There are a wide variety of methods that have been proposed and used to estimate methane emissions from oil and gas production by using air composition and meteorology observations in conjunction with dispersion models. Although there has been some verification of these methodologies using controlled releases and concurrent atmospheric measurements, it is difficult to assess the accuracy of these methods for more realistic scenarios considering factors such as terrain, emissions from multiple components within a well pad, and time-varying emissions representative of typical operations. In this work we use a large-eddy simulation (LES) to generate controlled but realistic synthetic observations, which can be used to test multiple source term estimation methods, also known as an Observing System Simulation Experiment (OSSE). The LES is based on idealized simulations of the Weather Research & Forecasting (WRF) model at 10 m horizontal grid-spacing covering an 8 km by 7 km domain with terrain representative of a region located in the Barnett shale. Well pads are setup in the domain following a realistic distribution and emissions are prescribed every second for the components of each well pad (e.g., chemical injection pump, pneumatics, compressor, tanks, and dehydrator) using a simulator driven by oil and gas production volume, composition and realistic operational conditions. The system is setup to allow assessments under different scenarios such as normal operations, during liquids unloading events, or during other prescribed operational upset events. Methane and meteorology model output are sampled following the specifications of the emission estimation methodologies and considering typical instrument uncertainties, resulting in realistic observations (see Figure 1). We will show the evaluation of several emission estimation methods including the EPA Other Test Method 33A and estimates using the EPA AERMOD regulatory model. We will also show source estimation results from advanced methods such as variational inverse modeling, and Bayesian inference and stochastic sampling techniques. Future directions including other types of observations, other hydrocarbons being considered, and assessment of additional emission estimation methods will be discussed.

  19. Scenario based optimization of a container vessel with respect to its projected operating conditions

    NASA Astrophysics Data System (ADS)

    Wagner, Jonas; Binkowski, Eva; Bronsart, Robert

    2014-06-01

    In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

  20. Energy use in the marine transportation industry: Task III. Efficiency improvements; Task IV. Industry future. Final report, Volume IV. [Projections for year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-12-01

    Tasks III and IV measure the characteristics of potential research and development programs that could be applied to the maritime industry. It was necessary to identify potential operating scenarios for the maritime industry in the year 2000 and determine the energy consumption that would result given those scenarios. After the introductory chapter the operational, regulatory, and vessel-size scenarios for the year 2000 are developed in Chapter II. In Chapter III, future cargo flows and expected levels of energy use for the baseline 2000 projection are determined. In Chapter IV, the research and development programs are introduced into the future USmore » flag fleet and the energy-savings potential associated with each is determined. The first four appendices (A through D) describe each of the generic technologies. The fifth appendix (E) contains the baseline operating and cost parameters against which 15 program areas were evaluated. (MCW)« less

  1. Integrated modeling of high βN steady state scenario on DIII-D

    DOE PAGES

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...

    2018-01-10

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  2. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    PubMed

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Integrated modeling of high βN steady state scenario on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  4. Integrated modeling of high βN steady state scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.

    2018-01-01

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.

  5. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    NASA Astrophysics Data System (ADS)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its flexibility.

  6. The use of scenarios for long-range planning by investor-owned electric utilities in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Lyons, John V.

    Scenario planning is a method of organizing and understanding large amounts of quantitative and qualitative data for leaders to make better strategic decisions. There is a lack of academic research about scenario planning with a subsequent shortage of definitions and theories. This study utilized a case study methodology to analyze scenario planning by investor-owned electric utilities in the Pacific Northwest in their integrated resource planning (IRP) process. The cases include Avista Corporation, Idaho Power, PacifiCorp, Portland General Electric, and Puget Sound Energy. This study sought to determine how scenario planning was used, what scenario approach was used, the scenario outcomes, and the similarities and differences in the scenario planning processes. The literature review of this study covered the development of scenario planning, common definitions and theories, approaches to scenario development, and scenario outcomes. A research methodology was developed to classify the scenario development approach into intuitive, hybrid, or quantitative approaches; and scenario outcomes of changed thinking, stories of plausible futures, improved decision making, and enhanced organizational learning. The study found all three forms of scenario planning in the IRPs. All of the cases used a similar approach to IRP development. All of the cases had at least improved decision making as an outcome of scenario planning. Only one case demonstrated all four scenario outcomes. A critical finding was a correlation between the use of the intuitive approach and the use of all scenario outcomes. Another major finding was the unique use of predetermined elements, which are normally consistent across scenarios, but became critical uncertainties in some of the scenarios in the cases for this study. This finding will need to be confirmed by future research as unique to the industry or an aberration. An unusually high number of scenarios were found for cases using the hybrid approach, which was unexpected based on the literature. This work expanded the methods for studying scenario planning, enhanced the body of scholarly works on scenario planning, and provided a starting point for additional research concerning the use of scenario planning by electric utilities.

  7. SATS HVO Concept Validation Experiment

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria; Williams, Daniel; Murdoch, Jennifer; Adams, Catherine

    2005-01-01

    A human-in-the-loop simulation experiment was conducted at the NASA Langley Research Center s (LaRC) Air Traffic Operations Lab (ATOL) in an effort to comprehensively validate tools and procedures intended to enable the Small Aircraft Transportation System, Higher Volume Operations (SATS HVO) concept of operations. The SATS HVO procedures were developed to increase the rate of operations at non-towered, non-radar airports in near all-weather conditions. A key element of the design is the establishment of a volume of airspace around designated airports where pilots accept responsibility for self-separation. Flights operating at these airports, are given approach sequencing information computed by a ground based automated system. The SATS HVO validation experiment was conducted in the ATOL during the spring of 2004 in order to determine if a pilot can safely and proficiently fly an airplane while performing SATS HVO procedures. Comparative measures of flight path error, perceived workload and situation awareness were obtained for two types of scenarios. Baseline scenarios were representative of today s system utilizing procedure separation, where air traffic control grants one approach or departure clearance at a time. SATS HVO scenarios represented approaches and departure procedures as described in the SATS HVO concept of operations. Results from the experiment indicate that low time pilots were able to fly SATS HVO procedures and maintain self-separation as safely and proficiently as flying today's procedures.

  8. Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Spirkovska, Lilijana; McCann, Rob; Wang, Lui; Pohlkamp, Kara; Morin, Lee

    2012-01-01

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time-delay on todays mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time-delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time-delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crew members and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time-delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  9. Reducing a Knowledge-Base Search Space When Data Are Missing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    This software addresses the problem of how to efficiently execute a knowledge base in the presence of missing data. Computationally, this is an exponentially expensive operation that without heuristics generates a search space of 1 + 2n possible scenarios, where n is the number of rules in the knowledge base. Even for a knowledge base of the most modest size, say 16 rules, it would produce 65,537 possible scenarios. The purpose of this software is to reduce the complexity of this operation to a more manageable size. The problem that this system solves is to develop an automated approach that can reason in the presence of missing data. This is a meta-reasoning capability that repeatedly calls a diagnostic engine/model to provide prognoses and prognosis tracking. In the big picture, the scenario generator takes as its input the current state of a system, including probabilistic information from Data Forecasting. Using model-based reasoning techniques, it returns an ordered list of fault scenarios that could be generated from the current state, i.e., the plausible future failure modes of the system as it presently stands. The scenario generator models a Potential Fault Scenario (PFS) as a black box, the input of which is a set of states tagged with priorities and the output of which is one or more potential fault scenarios tagged by a confidence factor. The results from the system are used by a model-based diagnostician to predict the future health of the monitored system.

  10. Economic Feasibility of Wireless Sensor Network-Based Service Provision in a Duopoly Setting with a Monopolist Operator

    PubMed Central

    Romero, Julián; Sacoto-Cabrera, Erwin J.

    2017-01-01

    We analyze the feasibility of providing Wireless Sensor Network-data-based services in an Internet of Things scenario from an economical point of view. The scenario has two competing service providers with their own private sensor networks, a network operator and final users. The scenario is analyzed as two games using game theory. In the first game, sensors decide to subscribe or not to the network operator to upload the collected sensing-data, based on a utility function related to the mean service time and the price charged by the operator. In the second game, users decide to subscribe or not to the sensor-data-based service of the service providers based on a Logit discrete choice model related to the quality of the data collected and the subscription price. The sinks and users subscription stages are analyzed using population games and discrete choice models, while network operator and service providers pricing stages are analyzed using optimization and Nash equilibrium concepts respectively. The model is shown feasible from an economic point of view for all the actors if there are enough interested final users and opens the possibility of developing more efficient models with different types of services. PMID:29186847

  11. Modelling the thermomechanical behaviour of the tungsten first wall in HiPER laser fusion scenarios

    NASA Astrophysics Data System (ADS)

    Garoz, D.; Páramo, A. R.; Rivera, A.; Perlado, J. M.; González-Arrabal, R.

    2016-12-01

    The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.

  12. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  13. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  14. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  15. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  16. Highly immersive virtual reality laparoscopy simulation: development and future aspects.

    PubMed

    Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian

    2018-02-01

    Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.

  17. Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.; Rounds, Stewart A.

    2015-01-01

    Estimated egg-emergence days for endangered Upper Willamette River Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River winter steelhead (Oncorhynchus mykiss) were assessed for all scenarios. Estimated spring Chinook fry emergence under SlidingWeir scenarios was 9 days later immediately downstream of Big Cliff Dam, and 4 days later at Greens Bridge compared with existing structural scenarios at Detroit Dam. Despite the inclusion of a hypothetical sliding weir at Detroit Dam, temperatures exceeded without-dams temperatures during November and December. These late-autumn exceedances likely represent the residual thermal effect of Detroit Lake operated to meet minimum dry-season release rates (supporting instream habitat and irrigation requirements) and lake levels specified by the current (2014) operating rules (supporting recreation and flood mitigation).

  18. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian

    The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less

  20. An Efficient Wait-Free Vector

    DOE PAGES

    Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian

    2016-03-01

    The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less

  1. Efficient Operation of a Multi-purpose Reservoir in Chile: Integration of Economic Water Value for Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.

    2016-12-01

    Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.

  2. Association of a Surgical Task During Training With Team Skill Acquisition Among Surgical Residents: The Missing Piece in Multidisciplinary Team Training.

    PubMed

    Sparks, Jessica L; Crouch, Dustin L; Sobba, Kathryn; Evans, Douglas; Zhang, Jing; Johnson, James E; Saunders, Ian; Thomas, John; Bodin, Sarah; Tonidandel, Ashley; Carter, Jeff; Westcott, Carl; Martin, R Shayn; Hildreth, Amy

    2017-09-01

    The human patient simulators that are currently used in multidisciplinary operating room team training scenarios cannot simulate surgical tasks because they lack a realistic surgical anatomy. Thus, they eliminate the surgeon's primary task in the operating room. The surgical trainee is presented with a significant barrier when he or she attempts to suspend disbelief and engage in the scenario. To develop and test a simulation-based operating room team training strategy that challenges the communication abilities and teamwork competencies of surgeons while they are engaged in realistic operative maneuvers. This pre-post educational intervention pilot study compared the gains in teamwork skills for midlevel surgical residents at Wake Forest Baptist Medical Center after they participated in a standardized multidisciplinary team training scenario with 3 possible levels of surgical realism: (1) SimMan (Laerdal) (control group, no surgical anatomy); (2) "synthetic anatomy for surgical tasks" mannequin (medium-fidelity anatomy), and (3) a patient simulated by a deceased donor (high-fidelity anatomy). Participation in the simulation scenario and the subsequent debriefing. Teamwork competency was assessed using several instruments with extensive validity evidence, including the Nontechnical Skills assessment, the Trauma Management Skills scoring system, the Crisis Resource Management checklist, and a self-efficacy survey instrument. Participant satisfaction was assessed with a Likert-scale questionnaire. Scenario participants included midlevel surgical residents, anesthesia providers, scrub nurses, and circulating nurses. Statistical models showed that surgical residents exposed to medium-fidelity simulation (synthetic anatomy for surgical tasks) team training scenarios demonstrated greater gains in teamwork skills compared with control groups (SimMan) (Nontechnical Skills video score: 95% CI, 1.06-16.41; Trauma Management Skills video score: 95% CI, 0.61-2.90) and equivalent gains in teamwork skills compared with high-fidelity simulations (deceased donor) (Nontechnical Skills video score: 95% CI, -8.51 to 6.71; Trauma Management Skills video score: 95% CI, -1.70 to 0.49). Including a surgical task in operating room team training significantly enhanced the acquisition of teamwork skills among midlevel surgical residents. Incorporating relatively inexpensive, medium-fidelity synthetic anatomy in human patient simulators was as effective as using high-fidelity anatomies from deceased donors for promoting teamwork skills in this learning group.

  3. Extension of operational regime in high-temperature plasmas and effect of ECRH on ion thermal transport in the LHD

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Nakano, H.; Ida, K.; Tsujimura, T. I.; Kubo, S.; Kobayashi, T.; Tanaka, K.; Seki, R.; Takeiri, Y.; Yokoyama, M.; Maeta, S.; Nakata, M.; Yoshinuma, M.; Yamada, I.; Yasuhara, R.; Ido, T.; Shimizu, A.; Tsuchiya, H.; Tokuzawa, T.; Goto, M.; Oishi, T.; Morita, S.; Suzuki, C.; Emoto, M.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Makino, R.; Seki, T.; Kasahara, H.; Saito, K.; Kamio, S.; Nagasaki, K.; Mutoh, T.; Kaneko, O.; Morisaki, T.; the LHD Experiment Group

    2017-08-01

    A simultaneous high ion temperature (T i) and high electron temperature (T e) regime was successfully extended due to an optimized heating scenario in the LHD. Such high-temperature plasmas were realized by the simultaneous formation of an electron internal transport barrier (ITB) and an ion ITB by the combination of high power NBI and ECRH. Although the ion thermal confinement was degraded in the plasma core with an increase of T e/T i by the on-axis ECRH, it was found that the ion thermal confinement was improved at the plasma edge. The normalized ion thermal diffusivity {χ\\text{i}}/T\\text{i}1.5 at the plasma edge was reduced by 70%. The improvement of the ion thermal confinement at the edge led to an increase in T i in the entire plasma region, even though the core transport was degraded.

  4. Perspectives of different type biological life support systems (BLSS) usage in space missions

    NASA Astrophysics Data System (ADS)

    Bartsev, S. I.; Gitelson, J. I.; Lisovsky, G. M.; Mezhevikin, V. V.; Okhonin, V. A.

    1996-10-01

    In the paper an attempt is made to combine three important criteria of LSS comparison: minimum mass, maximum safety and maximum quality of life. Well-known types of BLSS were considered: with higher plant, higher plants and mushrooms, microalgae, and hydrogen-oxidizing bacteria. These BLSSs were compared in terms of "integrated" mass for the case of a vegetarian diet and a "normal" one (with animal proteins and fats). It was shown that the BLSS with higher plants and incineration of wastes becomes the best when the exploitation period is more than 1 yr. The dependence of higher plants' LSS structure on operation time was found. Comparison of BLSSs in terms of integral reliability (this criterion includes mass and quality of life criteria) for a lunar base scenario showed that BLSSs with higher plants are advantageous in reliability and comfort. This comparison was made for achieved level of technology of closing and for perspective one.

  5. Correction of contaminated yaw rate signal and estimation of sensor bias for an electric vehicle under normal driving conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Guoguang; Yu, Zitian; Wang, Junmin

    2017-03-01

    Yaw rate is a crucial signal for the motion control systems of ground vehicles. Yet it may be contaminated by sensor bias. In order to correct the contaminated yaw rate signal and estimate the sensor bias, a robust gain-scheduling observer is proposed in this paper. First of all, a two-degree-of-freedom (2DOF) vehicle lateral and yaw dynamic model is presented, and then a Luenberger-like observer is proposed. To make the observer more applicable to real vehicle driving operations, a 2DOF vehicle model with uncertainties on the coefficients of tire cornering stiffness is employed. Further, a gain-scheduling approach and a robustness enhancement are introduced, leading to a robust gain-scheduling observer. Sensor bias detection mechanism is also designed. Case studies are conducted using an electric ground vehicle to assess the performance of signal correction and sensor bias estimation under difference scenarios.

  6. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC weremore » tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.« less

  7. Experimental Investigation of Transient Sublimator Performance

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2012-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered for operations in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a supplemental heat rejection device during mission phases where the environmental temperature or heat rejection requirement changes rapidly. This scenario may occur during low lunar orbit, low earth orbit, or other planetary orbits. In these mission phases, the need for supplemental heat rejection will vary between zero and some fraction of the overall heat load. In particular, supplemental heat rejection is required for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will describe the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. Experimental data from various scenarios is analyzed to investigate feedwater consumption efficiency under the cyclical conditions. Start up utilization tests were conducted to better understand the transient performance. This paper also provides recommendations for future sublimator design and transient operation.

  8. Survey of practicing urologists: robotic versus open radical prostatectomy.

    PubMed

    Lee, Eugene K; Baack, Janet; Duchene, David A

    2010-04-01

    The robotic assisted radical prostatectomy (RARP) has become the most common operative choice for localized prostate cancer. At our institution, we have also seen a substantial increase in the proportion of RARP. Possible patient factors may include marketing, increased Internet usage by patients, and patient-to-patient communication. We surveyed urologists from the central United States to determine possible surgeon factors for the popularity of the RARP. We mailed a survey to all urologists in the South Central Section of the American Urological Association. After demographic information was obtained, participants were asked to choose an operation for themselves based on two prostate cancer scenarios; low risk and high risk. For the low risk prostate cancer scenario, 54.3% chose RARP while 32.9% chose a radical retropubic prostatectomy (RRP). In the high risk scenario, 32.3% chose a RARP while 58.8% chose the RRP. The top reasons for choosing robotics included decreased blood loss, better pain control, and visualization of the apex. The most popular reasons for an open operation included improved lymph node dissection, better tactile sensation, and easier operation for the surgeon. The two most important factors for choosing a particular operation were cancer control and the urologist performing the operation. Also, urologists favored the operative choice in which he or she performed. Robotic assisted radical prostatectomy has become the favored operative approach for low risk prostate cancer. However, many urologists still feel an oncologic difference may exist between open and robotic surgery as evidenced by more urologists favoring an open approach for high risk prostate cancer.

  9. All APAPs Are Not Equivalent for the Treatment of Sleep Disordered Breathing: A Bench Evaluation of Eleven Commercially Available Devices

    PubMed Central

    Zhu, Kaixian; Roisman, Gabriel; Aouf, Sami; Escourrou, Pierre

    2015-01-01

    Study Objectives: This study challenged on a bench-test the efficacy of auto-titrating positive airway pressure (APAP) devices for obstructive sleep disordered breathing treatment and evaluated the accuracy of the device reports. Methods: Our bench consisted of an active lung simulator and a Starling resistor. Eleven commercially available APAP devices were evaluated on their reactions to single-type SDB sequences (obstructive apnea and hypopnea, central apnea, and snoring), and to a long general breathing scenario (5.75 h) simulating various SDB during four sleep cycles and to a short scenario (95 min) simulating one sleep cycle. Results: In the single-type sequence of 30-minute repetitive obstructive apneas, only 5 devices normalized the airflow (> 70% of baseline breathing amplitude). Similarly, normalized breathing was recorded with 8 devices only for a 20-min obstructive hypopnea sequence. Five devices increased the pressure in response to snoring. Only 4 devices maintained a constant minimum pressure when subjected to repeated central apneas with an open upper airway. In the long general breathing scenario, the pressure responses and the treatment efficacy differed among devices: only 5 devices obtained a residual obstructive AHI < 5/h. During the short general breathing scenario, only 2 devices reached the same treatment efficacy (p < 0.001), and 3 devices underestimated the AHI by > 10% (p < 0.001). The long scenario led to more consistent device reports. Conclusion: Large differences between APAP devices in the treatment efficacy and the accuracy of report were evidenced in the current study. Citation: Zhu K, Roisman G, Aouf S, Escourrou P. All APAPs are not equivalent for the treatment of sleep disordered breathing: a bench evaluation of eleven commercially available devices. J Clin Sleep Med 2015;11(7):725–734. PMID:25766708

  10. Battlefield ethics training: integrating ethical scenarios in high-intensity military field exercises.

    PubMed

    Thompson, Megan M; Jetly, Rakesh

    2014-01-01

    There is growing evidence that modern missions have added stresses and ethical complexities not seen in previous military operations and that there are links between battlefield stressors and ethical lapses. Military ethicists have concluded that the ethical challenges of modern missions are not well addressed by current military ethics educational programs. Integrating the extant research in the area, we propose that scenario-based operational ethics training in high-intensity military field training settings may be an important adjunct to traditional military ethics education and training. We make the case as to why this approach will enhance ethical operational preparation for soldiers, supporting their psychological well-being as well as mission effectiveness.

  11. Battlefield ethics training: integrating ethical scenarios in high-intensity military field exercises

    PubMed Central

    Thompson, Megan M.; Jetly, Rakesh

    2014-01-01

    There is growing evidence that modern missions have added stresses and ethical complexities not seen in previous military operations and that there are links between battlefield stressors and ethical lapses. Military ethicists have concluded that the ethical challenges of modern missions are not well addressed by current military ethics educational programs. Integrating the extant research in the area, we propose that scenario-based operational ethics training in high-intensity military field training settings may be an important adjunct to traditional military ethics education and training. We make the case as to why this approach will enhance ethical operational preparation for soldiers, supporting their psychological well-being as well as mission effectiveness. PMID:25206947

  12. Loss estimation in southeast Korea from a scenario earthquake using the deterministic method in HAZUS

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, K.; Suk, B.; Yoo, H.

    2007-12-01

    Strong ground motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al. (1997) for the Site Class B has been selected for this study. Reliability of the assessment will be improved by using an appropriate attenuation relation. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Our preliminary estimates show 15.6% damage of houses, shelter needs for about three thousands residents, and 75 life losses in the study area for the scenario events occurring at 2 A.M. Approximately 96% of hospitals will be in normal operation in 24 hours from the proposed event. Losses related to houses will be more than 114 million US dollars. Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  13. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective" adaptation) or over a 30-year period centred around the date considered ("prospective" adaptation). These adaptation scenarios are translated into local-scale transient drought thresholds, as opposed to a non-adaptation scenario where the drought threshold remains constant. The perceived spatio-temporal characteristics derived from the theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the combined effect of local-scale adaptation and global-scale mitigation. This study thus proposes a proof of concept for using standardized drought indices for (1) assessing projections of spatio-temporal drought characteristics and (2) building theoretical adaptation scenarios and associated perceived changes in hydrological impact studies (Vidal et al., submitted). Vidal J.-P., Martin E., Franchistéguy L., Habets F., Soubeyroux J.-M., Blanchard M. & Baillon M. (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrology and Earth System Sciences, 14, 459-478.doi: 10.5194/hess-14-459-2010 Vidal J.-P., Martin E., Kitova N., Najac J. & Soubeyroux, J. M. (submitted) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Submitted to Hydrology and earth System Sciences

  14. Liberty and Lethality: Integrating MC-12W Liberty and Light Attack/Armed Reconnaissance Aircraft operations

    DTIC Science & Technology

    2010-05-20

    Ziemba , Syllabus, Project Liberty MQT Scenarios (Meridian: Mississippi Air National Guard, 2009), 1. 73Ibid. 26 their NVG skills.74 Flight...76Craig Ziemba , Syllabus, Project Liberty MQT Scenarios (Meridian: Mississippi Air National Guard, 2009), 1. 77Ibid., 3. 78Ibid., 1. 27 with

  15. 30 CFR 254.47 - Determining the volume of oil of your worst case discharge scenario.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated with the facility. In determining the daily discharge rate, you must consider reservoir characteristics, casing/production tubing sizes, and historical production and reservoir pressure data. Your...) For exploratory or development drilling operations, the size of your worst case discharge scenario is...

  16. Market scenarios and alternative administrative frameworks for US educational satellite systems

    NASA Technical Reports Server (NTRS)

    Walkmeyer, J. E., Jr.; Morgan, R. P.; Singh, J. P.

    1975-01-01

    Costs and benefits of developing an operational educational satellite system in the U.S. are analyzed. Scenarios are developed for each educational submarket and satellite channel and ground terminal requirements for a large-scale educational telecommunications system are estimated. Alternative organizational frameworks for such a system are described.

  17. Comparison of the force applied on oral structures during intubation attempts by novice physicians between the Macintosh direct laryngoscope, Airway Scope and C-MAC PM: a high-fidelity simulator-based study.

    PubMed

    Nakanishi, Taizo; Shiga, Takashi; Homma, Yosuke; Koyama, Yasuaki; Goto, Tadahiro

    2016-05-23

    We examined whether the use of Airway Scope (AWS) and C-MAC PM (C-MAC) decreased the force applied on oral structures during intubation attempts as compared with the force applied with the use of Macintosh direct laryngoscope (DL). Prospective cross-over study. A total of 35 novice physicians participated. We used 6 simulation scenarios based on the difficulty of intubation and intubation devices. Our primary outcome measures were the maximum force applied on the maxillary incisors and tongue during intubation attempts, measured by a high-fidelity simulator. The maximum force applied on maxillary incisors was higher with the use of the C-MAC than with the DL and AWS in the normal airway scenario (DL, 26 Newton (N); AWS, 18 N; C-MAC, 52 N; p<0.01) and the difficult airway scenario (DL, 42 N; AWS, 24 N; C-MAC, 68 N; p<0.01). In contrast, the maximum force applied on the tongue was higher with the use of the DL than with the AWS and C-MAC in both airway scenarios (DL, 16 N; AWS, 1 N; C-MAC, 7 N; p<0.01 in the normal airway scenario; DL, 12 N; AWS, 4 N; C-MAC, 7 N; p<0.01 in the difficult airway scenario). The use of C-MAC, compared with the DL and AWS, was associated with the higher maximum force applied on maxillary incisors during intubation attempts. In contrast, the use of video laryngoscopes was associated with the lower force applied on the tongue in both airway scenarios, compared with the DL. Our study was a simulation-based study, and further research on living patients would be warranted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Use of high fidelity operating room simulation to assess and teach communication, teamwork and laparoscopic skills: initial experience.

    PubMed

    Gettman, Matthew T; Pereira, Claudio W; Lipsky, Katja; Wilson, Torrence; Arnold, Jacqueline J; Leibovich, Bradley C; Karnes, R Jeffrey; Dong, Yue

    2009-03-01

    Structured opportunities for learning communication, teamwork and laparoscopic principles are limited for urology residents. We evaluated and taught teamwork, communication and laparoscopic skills to urology residents in a simulated operating room. Scenarios related to laparoscopy (insufflator failure, carbon dioxide embolism) were developed using mannequins, urology residents and nurses. These scenarios were developed based on Accreditation Council for Graduate Medical Education core competencies and performed in a simulation center. Between the pretest scenario (insufflation failure) and the posttest scenario (carbon dioxide embolism) instruction was given on teamwork, communication and laparoscopic skills. A total of 19 urology residents participated in the training that involved participation in at least 2 scenarios. Performance was evaluated using validated teamwork instruments, questionnaires and videotape analysis. Significant improvement was noted on validated teamwork instruments between scenarios based on resident (pretest 24, posttest 27, p = 0.01) and expert (pretest 16, posttest 25, p = 0.008) evaluation. Increased teamwork and team performance were also noted between scenarios on videotape analysis with significant improvement for adherence to best practice (p = 0.01) and maintenance of positive rapport among team members (p = 0.02). Significant improvement in the setup of the laparoscopic procedure was observed (p = 0.01). Favorable face and content validity was noted for both scenarios. Teamwork, intraoperative communication and laparoscopic skills of urology residents improved during the high fidelity simulation course. Face and content validity of the individual sessions was favorable. In this study high fidelity simulation was effective for assessing and teaching Accreditation Council for Graduate Medical Education core competencies related to intraoperative communication, teamwork and laparoscopic skills.

  19. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    NASA Technical Reports Server (NTRS)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  20. Designing Scenarios for Controller-in-the-Loop Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Kupfer, Michael; Mercer, Joey S.; Cabrall, Christopher; Callantine, Todd

    2013-01-01

    Well prepared traffic scenarios contribute greatly to the success of controller-in-the-loop simulations. This paper describes each stage in the design process of realistic scenarios based on real-world traffic, to be used in the Airspace Operations Laboratory for simulations within the Air Traffic Management Technology Demonstration 1 effort. The steps from the initial analysis of real-world traffic, to the editing of individual aircraft records in the scenario file, until the final testing of the scenarios before the simulation conduct, are all described. The iterative nature of the design process and the various efforts necessary to reach the required fidelity, as well as the applied design strategies, challenges, and tools used during this process are also discussed.

  1. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.

  2. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios.

    PubMed

    Byrne, Maria; Ho, Melanie; Selvakumaraswamy, Paulina; Nguyen, Hong D; Dworjanyn, Symon A; Davis, Andy R

    2009-05-22

    Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20-26 degrees C, pH 7.6-8.2) were tested in all combinations for the 'business-as-usual' scenario, with 20 degrees C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4 degrees C reduced cleavage by 40 per cent and +6 degrees C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6 degrees C. At 26 degrees C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.

  3. A Comprehensive Reliability Methodology for Assessing Risk of Reusing Failed Hardware Without Corrective Actions with and Without Redundancy

    NASA Technical Reports Server (NTRS)

    Putcha, Chandra S.; Mikula, D. F. Kip; Dueease, Robert A.; Dang, Lan; Peercy, Robert L.

    1997-01-01

    This paper deals with the development of a reliability methodology to assess the consequences of using hardware, without failure analysis or corrective action, that has previously demonstrated that it did not perform per specification. The subject of this paper arose from the need to provide a detailed probabilistic analysis to calculate the change in probability of failures with respect to the base or non-failed hardware. The methodology used for the analysis is primarily based on principles of Monte Carlo simulation. The random variables in the analysis are: Maximum Time of Operation (MTO) and operation Time of each Unit (OTU) The failure of a unit is considered to happen if (OTU) is less than MTO for the Normal Operational Period (NOP) in which this unit is used. NOP as a whole uses a total of 4 units. Two cases are considered. in the first specialized scenario, the failure of any operation or system failure is considered to happen if any of the units used during the NOP fail. in the second specialized scenario, the failure of any operation or system failure is considered to happen only if any two of the units used during the MOP fail together. The probability of failure of the units and the system as a whole is determined for 3 kinds of systems - Perfect System, Imperfect System 1 and Imperfect System 2. in a Perfect System, the operation time of the failed unit is the same as that of the MTO. In an Imperfect System 1, the operation time of the failed unit is assumed as 1 percent of the MTO. In an Imperfect System 2, the operation time of the failed unit is assumed as zero. in addition, simulated operation time of failed units is assumed as 10 percent of the corresponding units before zero value. Monte Carlo simulation analysis is used for this study. Necessary software has been developed as part of this study to perform the reliability calculations. The results of the analysis showed that the predicted change in failure probability (P(sub F)) for the previously failed units is as high as 49 percent above the baseline (perfect system) for the worst case. The predicted change in system P(sub F) for the previously failed units is as high as 36% for single unit failure without any redundancy. For redundant systems, with dual unit failure, the predicted change in P(sub F) for the previously failed units is as high as 16%. These results will help management to make decisions regarding the consequences of using previously failed units without adequate failure analysis or corrective action.

  4. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2010-04-21

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a ''without experiments'' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were $11.9 million.« less

  5. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.

    2011-01-11

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005.more » An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western whileothers resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $23 million.« less

  6. Hazardous material transportation safety and security field operational test beta test and baseline data report : executive summary

    DOT National Transportation Integrated Search

    2003-10-29

    The Beta Test and Baseline Data Collection efforts ensured that the test technologies would successfully operate during the field operational test (FOT) in the designed scenario configurations. These efforts also ensured that FOT systems would succes...

  7. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.G.; Yun, S.H.; Chung, D.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less

  8. Multi-spatial analysis of forest residue utilization for bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Ryan A.; Keefe, Robert F.; Smith, Alistair M. S.

    2016-06-17

    The alternative energy sector is expanding quickly in the USA since passage of the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007. Increased interest in wood-based bioenergy has led to the need for robust modeling methods to analyze woody biomass operations at landscape scales. However, analyzing woody biomass operations in regions like the US Inland Northwest is difficult due to highly variable terrain and wood characteristics. We developed the Forest Residue Economic Assessment Model (FREAM) to better integrate with Geographical Information Systems and overcome analytical modeling limitations. FREAM analyzes wood-based bioenergy logistics systems andmore » provides a modeling platform that can be readily modified to analyze additional study locations. We evaluated three scenarios to test the FREAM's utility: a local-scale scenario in which a catalytic pyrolysis process produces gasoline from 181 437 Mg yr-1 of forest residues, a regional-scale scenario that assumes a biochemical process to create aviation fuel from 725 748 Mg yr-1 of forest residues, and an international scenario that assumes a pellet mill producing pellets for international markets from 272 155 Mg yr-1 of forest residues. The local scenario produced gasoline for a modeled cost of $22.33 GJ-1*, the regional scenario produced aviation fuel for a modeled cost of $35.83 GJ-1 and the international scenario produced pellets for a modeled cost of $10.51 GJ-1. Results show that incorporating input from knowledgeable stakeholders in the designing of a model yields positive results.« less

  9. 40 CFR 68.25 - Worst-case release scenario analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used is based on TNT equivalent methods. (1) For regulated flammable substances that are normally gases... shall be used to determine the distance to the explosion endpoint if the model used is based on TNT...

  10. 40 CFR 68.25 - Worst-case release scenario analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used is based on TNT equivalent methods. (1) For regulated flammable substances that are normally gases... shall be used to determine the distance to the explosion endpoint if the model used is based on TNT...

  11. 40 CFR 68.25 - Worst-case release scenario analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used is based on TNT equivalent methods. (1) For regulated flammable substances that are normally gases... shall be used to determine the distance to the explosion endpoint if the model used is based on TNT...

  12. 40 CFR 68.25 - Worst-case release scenario analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used is based on TNT equivalent methods. (1) For regulated flammable substances that are normally gases... shall be used to determine the distance to the explosion endpoint if the model used is based on TNT...

  13. 40 CFR 68.25 - Worst-case release scenario analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used is based on TNT equivalent methods. (1) For regulated flammable substances that are normally gases... shall be used to determine the distance to the explosion endpoint if the model used is based on TNT...

  14. Test and Evaluation of MeshDynamics 802.11 Multi-Radio Mesh Modules in Support of Coalition Riverine Operations

    DTIC Science & Technology

    2006-06-01

    scenario, occurring just north of Chiang Mai , Thailand at the Mae Ngat Dam. Figure 3 is a map of Thailand and some of its bordering countries...displayed, and distributed in real-time to local ( Chiang Mai ), theater (Bangkok), and global (Alameda and Monterey, CA) Command and Control (C2) 11...systems in support of tactical action scenarios. This year’s COASTS scenario took place at the Mae Ngat Dam, located just north of Chiang Mai , Thailand

  15. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    NASA Technical Reports Server (NTRS)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  16. Event-based knowledge elicitation of operating room management decision-making using scenarios adapted from information systems data

    PubMed Central

    2011-01-01

    Background No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. Methods A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Results Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments. Conclusions Our technical advance is the development and use of automated event-based knowledge elicitation to identify suboptimal OR management decisions that decrease the efficiency of use of OR time. The adapted scenarios can be used in future decision-making. PMID:21214905

  17. Event-based knowledge elicitation of operating room management decision-making using scenarios adapted from information systems data.

    PubMed

    Dexter, Franklin; Wachtel, Ruth E; Epstein, Richard H

    2011-01-07

    No systematic process has previously been described for a needs assessment that identifies the operating room (OR) management decisions made by the anesthesiologists and nurse managers at a facility that do not maximize the efficiency of use of OR time. We evaluated whether event-based knowledge elicitation can be used practically for rapid assessment of OR management decision-making at facilities, whether scenarios can be adapted automatically from information systems data, and the usefulness of the approach. A process of event-based knowledge elicitation was developed to assess OR management decision-making that may reduce the efficiency of use of OR time. Hypothetical scenarios addressing every OR management decision influencing OR efficiency were created from published examples. Scenarios are adapted, so that cues about conditions are accurate and appropriate for each facility (e.g., if OR 1 is used as an example in a scenario, the listed procedure is a type of procedure performed at the facility in OR 1). Adaptation is performed automatically using the facility's OR information system or anesthesia information management system (AIMS) data for most scenarios (43 of 45). Performing the needs assessment takes approximately 1 hour of local managers' time while they decide if their decisions are consistent with the described scenarios. A table of contents of the indexed scenarios is created automatically, providing a simple version of problem solving using case-based reasoning. For example, a new OR manager wanting to know the best way to decide whether to move a case can look in the chapter on "Moving Cases on the Day of Surgery" to find a scenario that describes the situation being encountered. Scenarios have been adapted and used at 22 hospitals. Few changes in decisions were needed to increase the efficiency of use of OR time. The few changes were heterogeneous among hospitals, showing the usefulness of individualized assessments. Our technical advance is the development and use of automated event-based knowledge elicitation to identify suboptimal OR management decisions that decrease the efficiency of use of OR time. The adapted scenarios can be used in future decision-making.

  18. The use of multi criteria analysis to compare the operating scenarios of the hybrid generation system of wind turbines, photovoltaic modules and a fuel cell

    NASA Astrophysics Data System (ADS)

    Ceran, Bartosz

    2017-11-01

    The paper presents the results of the use of multi-criteria analysis to compare hybrid power generation system collaboration scenarios (HSW) consisting of wind turbines, solar panels and energy storage electrolyzer - PEM type fuel cell with electricity system. The following scenarios were examined: the base S-I-hybrid system powers the off-grid mode receiver, S-II, S-III, S-IV scenarios-electricity system covers 25%, 50%, 75% of energy demand by the recipient. The effect of weights of the above-mentioned criteria on the final result of the multi-criteria analysis was examined.

  19. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    USGS Publications Warehouse

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as much as 6–10 percentage points. The maximum decrease in survival occurred at an intermediate Sacramento River flow of about 20,000–30,000 ft3 /s. Diversion rates increased rapidly as Sacramento River flows increased from 20,000 ft3 /s to 30,000 ft3 /s, until a maximum diversion rate was reached at 9,000 ft3 /s. Because through-Delta survival increases sharply over this range of Sacramento River flow before beginning to level off with further flow increases, increasing diversion rates over this flow range causes a large decrease in survival relative to no diversion.  For the second analysis, we applied the survival model to 82 years of daily simulated flows under the Proposed Action (PA) and No Action Alternative (NAA). The PA includes operation of the Central Valley Project/State Water Project with implementation of the NDD and its operations prescribed by the NDD bypass rules, whereas the NAA assumes system operations without implementation of the NDD. We also evaluated a “Level 1” (L1) scenario, which was similar to the PA scenario but applied the most protective bypass rule known as Level 1 post-pulse operations. We noted a high probability that survival under the PA scenario was lower than under the NAA scenario, and that travel time was longer under PA relative to NAA in most simulation years. However, the largest survival differences between the PA and NAA scenarios occurred during October–November and May–June. Although bypass rules are less restrictive during these periods, we determined that more frequent use of the DCC under PA led to the largest differences in survival between the two scenarios. Additionally, we noted no difference in median survival decreases between the PA and L1 scenarios, although in some years the L1 scenario had a lower survival decrease than the PA scenario. For the third analysis, we proposed a quantitative approach for developing NDD rule curves (that is, prescribed diversion flows for given inflows) by using the survival model to identify diversion rates that meet a criterion of a having a small probability of exceeding a given decrease in survival. We examined diversion rates that led to a 10% chance of exceeding a given decrease in survival for a range of absolute and relative decreases in survival. To maintain a given constant level of protection across the range of river flows, our analysis indicated that diversions had to increase at a much slower rate with respect to Sacramento River flow relative to the rule curves defined in the NDD bypass table. Additionally, we determined that diversion rates could be higher than under the bypass table rule curves at river flows less than 20,000 ft3 /s, but diversions had to be less than defined by NDD bypass rules at higher flows. For the fourth analysis, we simulated the effect of “real-time operations” on salmon survival, where bypass flow rates were determined by the presence of juvenile salmon entering the Delta, as indicated by juvenile salmon catch in a rotary screw trap upstream of the Delta. For this analysis, we evaluated NDD operations as defined by the L1 scenario and an additional scenario (Unlimited Pulse Protection [UPP]) that provided protection to an unlimited number of fish pulses. This analysis indicated that the highest catches occurred during flow pulses when daily survival was high, which caused annual survival to be weighted towards periods of high daily survival, resulting in a high annual survival. We determined that the mean annual survival decreased by 1–4 percentage points, and annual survival decreases were more frequently smaller for the UPP scenario. Additionally, because the UPP scenario protected an unlimited number of fish pulses, decreases in daily survival under the UPP scenario were less than under the L1 scenario.

  20. Dynamic optimization of ISR sensors using a risk-based reward function applied to ground and space surveillance scenarios

    NASA Astrophysics Data System (ADS)

    DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.

    2012-06-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.

  1. Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2015-01-01

    Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the lateral confines of the runway for all conditions tested. The fail-operational concept with pilot in the loop needs further study.

  2. Development of ITER non-activation phase operation scenarios

    DOE PAGES

    Kim, S. H.; Poli, F. M.; Koechl, F.; ...

    2017-06-29

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  3. Development of ITER non-activation phase operation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. H.; Poli, F. M.; Koechl, F.

    Non-activation phase operations in ITER in hydrogen (H) and helium (He) will be important for commissioning of tokamak systems, such as diagnostics, heating and current drive (HCD) systems, coils and plasma control systems, and for validation of techniques necessary for establishing operations in DT. The assessment of feasible HCD schemes at various toroidal fields (2.65–5.3 T) has revealed that the previously applied assumptions need to be refined for the ITER non-activation phase H/He operations. A study of the ranges of plasma density and profile shape using the JINTRAC suite of codes has indicated that the hydrogen pellet fuelling into Hemore » plasmas should be utilized taking the optimization of IC power absorption, neutral beam shine-through density limit and H-mode access into account. The EPED1 estimation of the edge pedestal parameters has been extended to various H operation conditions, and the combined EPED1 and SOLPS estimation has provided guidance for modelling the edge pedestal in H/He operations. The availability of ITER HCD schemes, ranges of achievable plasma density and profile shape, and estimation of the edge pedestal parameters for H/He plasmas have been integrated into various time-dependent tokamak discharge simulations. In this paper, various H/He scenarios at a wide range of plasma current (7.5–15 MA) and field (2.65–5.3 T) have been developed for the ITER non-activation phase operation, and the sensitivity of the developed scenarios to the used assumptions has been investigated to provide guidance for further development.« less

  4. Optimal routing of hazardous substances in time-varying, stochastic transportation networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, A.L.; Miller-Hooks, E.; Mahmassani, H.S.

    This report is concerned with the selection of routes in a network along which to transport hazardous substances, taking into consideration several key factors pertaining to the cost of transport and the risk of population exposure in the event of an accident. Furthermore, the fact that travel time and the risk measures are not constant over time is explicitly recognized in the routing decisions. Existing approaches typically assume static conditions, possibly resulting in inefficient route selection and unnecessary risk exposure. The report described the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Severalmore » specific problem formulations are presented, reflecting different degrees of risk aversion on the part of the decision-maker, as well as different possible operational scenarios. All procedures explicitly consider travel times and travel costs (including risk measures) to be stochastic time-varying quantities. The procedures include both exact algorithms, which may require extensive computational effort in some situations, as well as more efficient heuristics that may not guarantee a Pareto-optimal solution. All procedures are systematically illustrated for an example application using the Texas highway network, for both normal and incident condition scenarios. The application illustrates the trade-offs between the information obtained in the solution and computational efficiency, and highlights the benefits of incorporating these procedures in a decision-support system for hazardous substance shipment routing decisions.« less

  5. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  6. Entanglement and Coherence in Quantum State Merging.

    PubMed

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  7. Lunar Lander Offloading Operations Using a Heavy-Lift Lunar Surface Manipulator System

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; Doggett, William R.; Chrone, Jonathan; Angster, Scott; Dorsey, John T.; Jones, Thomas C.; Haddad, Michael E.; Helton, David A.; Caldwell, Darrell L., Jr.

    2010-01-01

    This study investigates the feasibility of using a heavy-lift variant of the Lunar Surface Manipulator System (LSMS-H) to lift and handle a 12 metric ton payload. Design challenges and requirements particular to handling heavy cargo were examined. Differences between the previously developed first-generation LSMS and the heavy-lift version are highlighted. An in-depth evaluation of the tip-over risk during LSMS-H operations has been conducted using the Synergistic Engineering Environment and potential methods to mitigate that risk are identified. The study investigated three specific offloading scenarios pertinent to current Lunar Campaign studies. The first involved offloading a large element, such as a habitat or logistics module, onto a mobility chassis with a lander-mounted LSMS-H and offloading that payload from the chassis onto the lunar surface with a surface-mounted LSMS-H. The second scenario involved offloading small pressurized rovers with a lander-mounted LSMS-H. The third scenario involved offloading cargo from a third-party lander, such as the proposed ESA cargo lander, with a chassis-mounted LSMS-H. In all cases, the analyses show that the LSMS-H can perform the required operations safely. However, Chariot-mounted operations require the addition of stabilizing outriggers, and when operating from the Lunar surface, LSMS-H functionality is enhanced by adding a simple ground anchoring system.

  8. The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation distribution strongly depend on the star-forming environment. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  9. Enabling end-user network monitoring via the multicast consolidated proxy monitor

    NASA Astrophysics Data System (ADS)

    Kanwar, Anshuman; Almeroth, Kevin C.; Bhattacharyya, Supratik; Davy, Matthew

    2001-07-01

    The debugging of problems in IP multicast networks relies heavily on an eclectic set of stand-alone tools. These tools traditionally neither provide a consistent interface nor do they generate readily interpretable results. We propose the ``Multicast Consolidated Proxy Monitor''(MCPM), an integrated system for collecting, analyzing and presenting multicast monitoring results to both the end user and the network operator at the user's Internet Service Provider (ISP). The MCPM accesses network state information not normally visible to end users and acts as a proxy for disseminating this information. Functionally, through this architecture, we aim to a) provide a view of the multicast network at varying levels of granularity, b) provide end users with a limited ability to query the multicast infrastructure in real time, and c) protect the infrastructure from overwhelming amount of monitoring load through load control. Operationally, our scheme allows scaling to the ISPs dimensions, adaptability to new protocols (introduced as multicast evolves), threshold detection for crucial parameters and an access controlled, customizable interface design. Although the multicast scenario is used to illustrate the benefits of consolidated monitoring, the ultimate aim is to scale the scheme to unicast IP networks.

  10. 40 CFR 63.1366 - Monitoring and inspection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scenario is implemented based on process knowledge and representative operating data. The procedures used... control scenarios in paragraphs (b)(1)(ii) through (xii) of this section, and are summarized in Table 3 of... also be monitored once a day. The minimum scrubber liquid flow rate or pressure drop shall be based on...

  11. 40 CFR 63.43 - Maximum achievable control technology (MACT) determinations for constructed and reconstructed...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determinations for alternative operating scenarios. Approval of such determinations satisfies the requirements of section 112(g) of each such scenario. (4) Regardless of the review process, the MACT emission limitation... determined by the permitting authority. (2) Based upon available information, as defined in this subpart, the...

  12. Standard formatted data units-control authority operations

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this document is to illustrate a Control Authority's (CA) possible operation. The document is an interpretation and expansion of the concept found in the CA Procedures Recommendation. The CA is described in terms of the functions it performs for the management and control of data descriptions (metadata). Functions pertaining to the organization of Member Agency Control Authority Offices (MACAOs) (e.g., creating and disbanding) are not discussed. The document also provides an illustrative operational view of a CA through scenarios describing interaction between those roles involved in collecting, controlling, and accessing registered metadata. The roles interacting with the CA are identified by their actions in requesting and responding to requests for metadata, and by the type of information exchanged. The scenarios and examples presented in this document are illustrative only. They represent possible interactions supported by either a manual or automated system. These scenarios identify requirements for an automated system. These requirements are expressed by identifying the information to be exchanged and the services that may be provided by a CA for that exchange.

  13. ViCoMo: visual context modeling for scene understanding in video surveillance

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo M.; Javanbakhti, Solmaz; Loomans, Marijn J. H.; Hazelhoff, Lykele B.; Roubtsova, Nadejda; Zinger, Svitlana; de With, Peter H. N.

    2013-10-01

    The use of contextual information can significantly aid scene understanding of surveillance video. Just detecting people and tracking them does not provide sufficient information to detect situations that require operator attention. We propose a proof-of-concept system that uses several sources of contextual information to improve scene understanding in surveillance video. The focus is on two scenarios that represent common video surveillance situations, parking lot surveillance and crowd monitoring. In the first scenario, a pan-tilt-zoom (PTZ) camera tracking system is developed for parking lot surveillance. Context is provided by the traffic sign recognition system to localize regular and handicapped parking spot signs as well as license plates. The PTZ algorithm has the ability to selectively detect and track persons based on scene context. In the second scenario, a group analysis algorithm is introduced to detect groups of people. Contextual information is provided by traffic sign recognition and region labeling algorithms and exploited for behavior understanding. In both scenarios, decision engines are used to interpret and classify the output of the subsystems and if necessary raise operator alerts. We show that using context information enables the automated analysis of complicated scenarios that were previously not possible using conventional moving object classification techniques.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prowell, I.; Elgamal, A.; Romanowitz, H.

    Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools usedmore » to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.« less

  15. A radiological assessment of nuclear power and propulsion operations near Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Thomas, J. Kelly; Peddicord, K. Lee; Nelson, Paul; Marshall, David T.; Busche, Donna M.

    1990-01-01

    Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

  16. Scenarios for low carbon and low water electric power plant ...

    EPA Pesticide Factsheets

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  17. Location tests for biomarker studies: a comparison using simulations for the two-sample case.

    PubMed

    Scheinhardt, M O; Ziegler, A

    2013-01-01

    Gene, protein, or metabolite expression levels are often non-normally distributed, heavy tailed and contain outliers. Standard statistical approaches may fail as location tests in this situation. In three Monte-Carlo simulation studies, we aimed at comparing the type I error levels and empirical power of standard location tests and three adaptive tests [O'Gorman, Can J Stat 1997; 25: 269 -279; Keselman et al., Brit J Math Stat Psychol 2007; 60: 267- 293; Szymczak et al., Stat Med 2013; 32: 524 - 537] for a wide range of distributions. We simulated two-sample scenarios using the g-and-k-distribution family to systematically vary tail length and skewness with identical and varying variability between groups. All tests kept the type I error level when groups did not vary in their variability. The standard non-parametric U-test performed well in all simulated scenarios. It was outperformed by the two non-parametric adaptive methods in case of heavy tails or large skewness. Most tests did not keep the type I error level for skewed data in the case of heterogeneous variances. The standard U-test was a powerful and robust location test for most of the simulated scenarios except for very heavy tailed or heavy skewed data, and it is thus to be recommended except for these cases. The non-parametric adaptive tests were powerful for both normal and non-normal distributions under sample variance homogeneity. But when sample variances differed, they did not keep the type I error level. The parametric adaptive test lacks power for skewed and heavy tailed distributions.

  18. MESSOC capabilities and results. [Model for Estimating Space Station Opertions Costs

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    1990-01-01

    MESSOC (Model for Estimating Space Station Operations Costs) is the result of a multi-year effort by NASA to understand and model the mature operations cost of Space Station Freedom. This paper focuses on MESSOC's ability to contribute to life-cycle cost analyses through its logistics equations and databases. Together, these afford MESSOC the capability to project not only annual logistics costs for a variety of Space Station scenarios, but critical non-cost logistics results such as annual Station maintenance crewhours, upweight/downweight, and on-orbit sparing availability as well. MESSOC results using current logistics databases and baseline scenario have already shown important implications for on-orbit maintenance approaches, space transportation systems, and international operations cost sharing.

  19. Environmental management system for transportation maintenance operations : [technical brief].

    DOT National Transportation Integrated Search

    2014-04-01

    This report provides the framework for the environmental management system to analyze : greenhouse gas emissions from transportation maintenance operations. The system enables user : to compare different scenarios and make informed decisions to minim...

  20. A Framework for Understanding Experiments

    DTIC Science & Technology

    2008-06-01

    operations. Experiments that emphasize free play and uncertainty in scenarios reflect conditions found in existent operations and satisfy external...validity Requirement 4, the ability to relate results. Conversely, experiments emphasizing similar conditions with diminished free play across multiple

  1. Fault Mitigation Schemes for Future Spaceflight Multicore Processors

    NASA Technical Reports Server (NTRS)

    Some, Rafi; Gostelow, Kim P.; Lai, John; Reder, Leonard; Alexander, James; Clement, Brad

    2012-01-01

    The goal of this work is to achieve fail-operational and graceful-degradation behavior in realistic flight mission scenarios, of multicore processors such as Mars Entry-Descent-Landing (EDL) and Primitive Body proximity operations.

  2. COBE DMR-normalized open inflation cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.

    1995-01-01

    A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.

  3. The psychometrics of mental workload: multiple measures are sensitive but divergent.

    PubMed

    Matthews, Gerald; Reinerman-Jones, Lauren E; Barber, Daniel J; Abich, Julian

    2015-02-01

    A study was run to test the sensitivity of multiple workload indices to the differing cognitive demands of four military monitoring task scenarios and to investigate relationships between indices. Various psychophysiological indices of mental workload exhibit sensitivity to task factors. However, the psychometric properties of multiple indices, including the extent to which they intercorrelate, have not been adequately investigated. One hundred fifty participants performed in four task scenarios based on a simulation of unmanned ground vehicle operation. Scenarios required threat detection and/or change detection. Both single- and dual-task scenarios were used. Workload metrics for each scenario were derived from the electroencephalogram (EEG), electrocardiogram, transcranial Doppler sonography, functional near infrared, and eye tracking. Subjective workload was also assessed. Several metrics showed sensitivity to the differing demands of the four scenarios. Eye fixation duration and the Task Load Index metric derived from EEG were diagnostic of single-versus dual-task performance. Several other metrics differentiated the two single tasks but were less effective in differentiating single- from dual-task performance. Psychometric analyses confirmed the reliability of individual metrics but failed to identify any general workload factor. An analysis of difference scores between low- and high-workload conditions suggested an effort factor defined by heart rate variability and frontal cortex oxygenation. General workload is not well defined psychometrically, although various individual metrics may satisfy conventional criteria for workload assessment. Practitioners should exercise caution in using multiple metrics that may not correspond well, especially at the level of the individual operator.

  4. Evidence-based support for the all-hazards approach to emergency preparedness

    PubMed Central

    2012-01-01

    Background During the last decade there has been a need to respond and recover from various types of emergencies including mass casualty events (MCEs), mass toxicological/chemical events (MTEs), and biological events (pandemics and bio-terror agents). Effective emergency preparedness is more likely to be achieved if an all-hazards response plan is adopted. Objectives To investigate if there is a relationship among hospitals' preparedness for various emergency scenarios, and whether components of one emergency scenario correlate with preparedness for other emergency scenarios. Methods Emergency preparedness levels of all acute-care hospitals for MCEs, MTEs, and biological events were evaluated, utilizing a structured evaluation tool based on measurable parameters. Evaluations were made by professional experts in two phases: evaluation of standard operating procedures (SOPs) followed by a site visit. Relationships among total preparedness and different components' scores for various types of emergencies were analyzed. Results Significant relationships were found among preparedness for different emergencies. Standard Operating Procedures (SOPs) for biological events correlated with preparedness for all investigated emergency scenarios. Strong correlations were found between training and drills with preparedness for all investigated emergency scenarios. Conclusions Fundamental critical building blocks such as SOPs, training, and drill programs improve preparedness for different emergencies including MCEs, MTEs, and biological events, more than other building blocks, such as equipment or knowledge of personnel. SOPs are especially important in unfamiliar emergency scenarios. The findings support the adoption of an all-hazards approach to emergency preparedness. PMID:23098065

  5. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  6. Vacuum birefringence detection in all-optical scenarios

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2018-06-01

    In this paper we propose an all-optical vacuum birefringence experiment and evaluate its feasibility for various scenarios. Many petawatt-class lasers became operational and many more are expected to enter operation in the near future, therefore unprecedented electromagnetic fields (EL˜1014-1015 V/m and intensities IL˜1021-1023W/cm 2 ) will become available for experiments. In our proposal a petawatt-class laser disturbs the quantum vacuum and creates a delay in a counterpropagating probe laser beam. Placing this delayed beam in one arm of a Mach-Zehnder interferometer (MZI), allows the measurement of the vacuum refraction coefficient via a phase shift. Coherent as well as squeezed light are both considered and the minimum phase sensitivity evaluated. We show that using existing technology with some moderately optimistic assumptions, at least part of the discussed scenarios are feasible for a vacuum birefringence detection experiment.

  7. NASA Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  8. 28 CFR 42.712 - Exception; normal operation or statutory objective.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exception; normal operation or statutory objective. 42.712 Section 42.712 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION; EQUAL... Discrimination § 42.712 Exception; normal operation or statutory objective. (a) A recipient may take an action...

  9. Smart roadside initiative gap analysis : target functionality and gap analysis.

    DOT National Transportation Integrated Search

    2015-02-01

    This document summarizes the target functionality for the Smart Roadside Initiative, as well as the operational, institutional, and technical gaps that currently impede the deployment of three of its operational scenarios (electronic mainline s...

  10. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  11. An Information Theoretic Approach for Measuring Data Discovery and Utilization During Analytical and Decision Making Processes

    DTIC Science & Technology

    2015-07-31

    and make the expected decision outcomes. The scenario is based around a scripted storyboard where an organized crime network is operating in a city to...interdicted by law enforcement to disrupt the network. The scenario storyboard was used to develop a probabilistic vehicle traffic model in order to

  12. Operational Group Sandy technical progress report

    USGS Publications Warehouse

    ,

    2013-01-01

    This report documents results from the March 2013 deployment of the OGS. It includes background information on Hurricane Sandy and the federal response; the OGS methodology; scenarios for Hurricane Sandy’s impact on coastal communities and urban ecosystems; potential interventions to improve regional resilience to future major storms; a discussion of scenario results; and lessons learned about the OGS process.

  13. Method and system for fault accommodation of machines

    NASA Technical Reports Server (NTRS)

    Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)

    2011-01-01

    A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.

  14. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  15. Application of State Analysis and Goal-Based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  16. Testbeds for Assessing Critical Scenarios in Power Control Systems

    NASA Astrophysics Data System (ADS)

    Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem

    The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.

  17. Non-technical skills of surgeons and anaesthetists in simulated operating theatre crises.

    PubMed

    Doumouras, A G; Hamidi, M; Lung, K; Tarola, C L; Tsao, M W; Scott, J W; Smink, D S; Yule, S

    2017-07-01

    Deficiencies in non-technical skills (NTS) have been increasingly implicated in avoidable operating theatre errors. Accordingly, this study sought to characterize the impact of surgeon and anaesthetist non-technical skills on time to crisis resolution in a simulated operating theatre. Non-technical skills were assessed during 26 simulated crises (haemorrhage and airway emergency) performed by surgical teams. Teams consisted of surgeons, anaesthetists and nurses. Behaviour was assessed by four trained raters using the Non-Technical Skills for Surgeons (NOTSS) and Anaesthetists' Non-Technical Skills (ANTS) rating scales before and during the crisis phase of each scenario. The primary endpoint was time to crisis resolution; secondary endpoints included NTS scores before and during the crisis. A cross-classified linear mixed-effects model was used for the final analysis. Thirteen different surgical teams were assessed. Higher NTS ratings resulted in significantly faster crisis resolution. For anaesthetists, every 1-point increase in ANTS score was associated with a decrease of 53·50 (95 per cent c.i. 31·13 to 75·87) s in time to crisis resolution (P < 0·001). Similarly, for surgeons, every 1-point increase in NOTSS score was associated with a decrease of 64·81 (26·01 to 103·60) s in time to crisis resolution in the haemorrhage scenario (P = 0·001); however, this did not apply to the difficult airway scenario. Non-technical skills scores were lower during the crisis phase of the scenarios than those measured before the crisis for both surgeons and anaesthetists. A higher level of NTS of surgeons and anaesthetists led to quicker crisis resolution in a simulated operating theatre environment. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  18. Data for polarization in charmless B{yields}{phi}K*: A signal for new physics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Prasanta Kumar; Yang, K.-C.

    2005-05-01

    The recent observations of sizable transverse fractions of B{yields}{phi}K* may hint for the existence of new physics. We analyze all possible new-physics four-quark operators and find that two classes of new-physics operators could offer resolutions to the B{yields}{phi}K* polarization anomaly. The operators in the first class have structures (1-{gamma}{sub 5})x(1-{gamma}{sub 5}), {sigma}(1-{gamma}{sub 5})x{sigma}(1-{gamma}{sub 5}), and in the second class (1+{gamma}{sub 5})x(1+{gamma}{sub 5}), {sigma}(1+{gamma}{sub 5})x{sigma}(1+{gamma}{sub 5}). For each class, the new-physics effects can be lumped into a single parameter. Two possible experimental results of polarization phases, arg(A{sub perpendicular})-arg(A{sub parallel}){approx_equal}{pi} or 0, originating from the phase ambiguity in data, could be separatelymore » accounted for by our two new-physics scenarios: the first (second) scenario with the first (second) class new-physics operators. The consistency between the data and our new-physics analysis suggests a small new-physics weak phase, together with a large(r) strong phase. We obtain sizable transverse fractions {lambda}{sub parallel{sub parallel}}+{lambda}{sub perpendicular{sub perpendicular}}{approx_equal}{lambda}{sub 00}, in accordance with the observations. We find {lambda}{sub parallel{sub parallel}}{approx_equal}0.8{lambda}{sub perpendicular{sub perpendicular}} in the first scenario but {lambda}{sub parallel{sub parallel}} > or approx. {lambda}{sub perpendicular{sub perpendicular}} in the second scenario. We discuss the impact of the new-physics weak phase on observations.« less

  19. The GOES-R Rebroadcast (GRB) Data Stream Simulator

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.

    2013-12-01

    GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.

  20. A strategic planning approach for operational-environmental tradeoff assessments in terminal areas

    NASA Astrophysics Data System (ADS)

    Jimenez, Hernando

    This thesis proposes the use of well established statistical analysis techniques, leveraging on recent developments in interactive data visualization capabilities, to quantitatively characterize the interactions, sensitivities, and tradeoffs prevalent in the complex behavior of airport operational and environmental performance. Within the strategic airport planning process, this approach is used in the assessment of airport performance under current/reference conditions, as well as in the evaluation of terminal area solutions under projected demand conditions. More specifically, customized designs of experiments are utilized to guide the intelligent selection and definition of modeling and simulation runs that will yield greater understanding, insight, and information about the inherent systemic complexity of a terminal area, with minimal computational expense. For the research documented in this thesis, a modeling and simulation environment was created featuring three primary components. First, a generator of schedules of operations, based primarily on previous work on aviation demand characterization, whereby growth factors and scheduling adjustment algorithms are applied on appropriate baseline schedules so as to generate notional operational sets representative of consistent future demand conditions. The second component pertains to the modeling and simulation of aircraft operations, defined by a schedule of operations, on the airport surface and within its terminal airspace. This component is a discrete event simulator for multiple queuing models that captures the operational architecture of the entire terminal area along with all the necessary operational logic pertaining to simulated Air Traffic Control (ATC) functions, rules, and standard practices. The third and final component is comprised of legacy aircraft performance, emissions and dispersion, and noise exposure modeling tools, that use the simulation history of aircraft movements to generate estimates of fuel burn, emissions, and noise. The implementation of the proposed approach for the assessment of terminal area solutions incorporates the use of discrete response surface equations, and eliminates the use of quadratic terms that have no practical significance in this context. Rather, attention is entire placed on the main effects of different terminal area solutions, namely additional airport infrastructure, operational improvements, and advanced aircraft concepts, modeled as discrete independent variables for the regression model. Results reveal that an additional runway and a new international terminal, as well as reduced aircraft separation, have a major effect on all operational metrics of interest. In particular, the additional runway has a dominant effect for departure delay metrics and gate hold periods, with moderate interactions with respect to separation reduction. On the other hand, operational metrics for arrivals are co-dependent on additional infrastructure and separation reduction, featuring marginal improvements whenever these two solutions are implemented in isolation, but featuring a dramatic compounding effect when implemented in combination. The magnitude of these main effects for departures and of the interaction between these solutions for arrivals is confirmed through appropriate statistical significance testing. Finally, the inclusion o advanced aircraft concepts is shown to be most beneficial for airborne arrival operations and to a lesser extent for arrival ground movements. More specifically, advanced aircraft concepts were found to be primarily responsible for reductions in volatile organic compounds, unburned hydrocarbons, and particulate matter in this flight regime, but featured relevant interactions with separation reduction and additional airport infrastructure. To address the selection of scenarios for strategic airport planning, a technique for risk-based scenario construction, evaluation, and selection is proposed, incorporating n-dimensional dependence tree probability approximations into a morphological analysis approach. This approach to scenario construction and downselection is a distinct and novel contribution to the scenario planning field as it provides a mathematically and explicitly testable definition for an H parameter, contrasting with the qualitative alternatives in the current state of the art, which can be used in morphological analysis for scenario construction and downselection. By demonstrating that dependence tree probability product approximations are an adequate aggregation function, probability can be used for scenario construction and downselection without any mathematical or methodological restriction on the resolution of the probability scale or the number of morphological alternatives that have previously plagued probabilization and scenario downselection approaches. In addition, this approach requires expert input elicitation that is comparable or less than the current state of the art practices. (Abstract shortened by UMI.)

  1. Crew factors in flight operations. Part 3: The operational significance of exposure to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.; Lauber, J. K.; Baetge, M. M.; Acomb, D. B.

    1986-01-01

    Excessive flightcrew fatigue has potentially serious safety consequences. Laboratory studies have implicated fatigue as a causal factor associated with varying levels of performance deterioration depending on the amount of fatigue and the type of measure utilized in assessing performance. These studies have been of limited utility because of the difficulty of relating laboratory task performance to the demands associated with the operation of a complex aircraft. The performance of 20 volunteer twin-jet transport crews is examined in a full-mission simulator scenario that included most aspects of an actual line operation. The scenario included both routine flight operations and an unexpected mechanical abnormality which resulted in a high level of crew workload. Half of the crews flew the simulation within two to three hours after completing a three-day, high-density, short-haul duty cycle (Post-Duty condition). The other half flew the scenario after a minimum of three days off duty (Pre-Duty) condition). The results revealed that, not surprisingly, Post-Duty crews were significantly more fatigued than Pre-Duty crews. However, a somewhat counter-intuitive pattern of results emerged on the crew performancemeasures. In general, the performance of Post-Duty crews was significantly better than that of Pre-Duty crews, as rated by an expert observer on a number of dimensions relevant to flight safety. Analyses of the flightcrew communication patterns revealed that Post-Duty crews communicated significantly more overall, suggesting, as has previous research, that communication is a good predictor of overall crew performance.

  2. 45 CFR 91.12 - Definitions of normal operation and statutory objective.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... objective. 91.12 Section 91.12 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION... Standards for Determining Age Discrimination § 91.12 Definitions of normal operation and statutory objective. For purposes of §§ 91.13 and 91.14, the terms normal operation and statutory objective shall have the...

  3. A GIS based watershed information system for water resources management and planning in semi-arid areas

    NASA Astrophysics Data System (ADS)

    Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"

  4. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; ...

    2018-02-20

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less

  5. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less

  6. 40 CFR 63.4371 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wiper blades. Thus, it includes any cleaning material used in the web coating and printing subcategory... process operation run at atmospheric pressure would be a different operating scenario from the same dyeing process operation run under pressure. Organic HAP content means the mass of organic HAP per mass of solids...

  7. 40 CFR 63.4371 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wiper blades. Thus, it includes any cleaning material used in the web coating and printing subcategory... process operation run at atmospheric pressure would be a different operating scenario from the same dyeing process operation run under pressure. Organic HAP content means the mass of organic HAP per mass of solids...

  8. 40 CFR 63.4371 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wiper blades. Thus, it includes any cleaning material used in the web coating and printing subcategory... process operation run at atmospheric pressure would be a different operating scenario from the same dyeing process operation run under pressure. Organic HAP content means the mass of organic HAP per mass of solids...

  9. 40 CFR 63.4371 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wiper blades. Thus, it includes any cleaning material used in the web coating and printing subcategory... process operation run at atmospheric pressure would be a different operating scenario from the same dyeing process operation run under pressure. Organic HAP content means the mass of organic HAP per mass of solids...

  10. 40 CFR 63.4371 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wiper blades. Thus, it includes any cleaning material used in the web coating and printing subcategory... process operation run at atmospheric pressure would be a different operating scenario from the same dyeing process operation run under pressure. Organic HAP content means the mass of organic HAP per mass of solids...

  11. Experimental and Analytical Performance of a Dual Brayton Power Conversion System

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl

    2009-01-01

    The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.

  12. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2011-08-22

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCDmore » from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.« less

  13. Operations analysis for lunar surface construction: Results of two office of exploration case studies

    NASA Astrophysics Data System (ADS)

    Bell, Lisa Y.; Boles, Walter; Smith, Alvin

    1991-08-01

    In an environment of intense competition for Federal funding, the U.S. space research community is responsible for developing a feasible, cost-effective approach to establishing a surface base on the moon to fulfill long-term Government objectives. This report presents the results of a construction operations analysis of two lunar scenarios provided by the National Aeronautics and Space Administration (NASA). Activities necessary to install the lunar base surface elements are defined and scheduled, based on the productivities and availability of the base resources allocated to the projects depicted in each scenario. The only construction project in which the required project milestones were not completed within the nominal timeframe was the initial startup phase of NASA's FY89 Lunar Evolution Case Study (LECS), primarily because this scenario did not include any Earth-based telerobotic site preparation before the arrival of the first crew. The other scenario analyzed. Reference Mission A from NASA's 90-Day Study of the Human Exploration of the Moon and Mars, did use telerobotic site preparation before the manned phase of the base construction. Details of the analysis for LECS are provided, including spreadsheets indicating quantities of work and Gantt charts depicting the general schedule for the work. This level of detail is not presented for the scenario based on the 90-Day Study because many of the projects include the same (or similar) surface elements and facilities.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Sanders, David; Yang, Haori

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred tomore » DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks may also slide and collide with other casks or structural components. Also, the different DSC components may impact each other during these events. This study provides a comprehensive evaluation of DSCs subjected to these extreme demands, including the effect of vertical accelerations, and soilstructure interaction.« less

  15. Feasibility of a far infrared laser based polarimeter diagnostic system for the JT-60SA fusion experiment

    NASA Astrophysics Data System (ADS)

    Boboc, A.; Gil, C.; Terranova, D.; Orsitto, F. P.; Soare, S.; Lotte, P.; Sozzi, C.; Imazawa, R.; Kubo, H.

    2018-07-01

    JT-60SA is the large Tokamak device that is being built in Japan under the Broader Approach Satellite Tokamak Programme and the Japanese National Programme and will operate as a satellite machine for ITER. The main goal of the JT-60SA Programme is to provide valuable information for the ITER steady-state scenario and for the design of DEMO, where the real-time control of the safety factor profile is very important, in connection with both MHD stability and plasma confinement. It has been demonstrated in this work that to this end polarimetry measurements are necessary, in particular in order to reconstruct the safety factor profile in reversed shear scenarios. In this paper we present the main steps of a conceptual feasibility study of a multi-channel polarimeter diagnostic and the resulting optimised geometry. In this study, magnetic scenario modelling, a realistic CAD-driven design and long-term operation requirements, rarely even considered at this stage, have been considered. It is shown that a far infrared polarimeter system, with a laser operating at a wavelength of 194.7 μm and up to twelve channels can be envisaged for JT-60SA. The top requirements can be attained, i.e., that the polarimeter, together with other diagnostic measurements, should provide q-profile reconstruction with an accuracy of 10% for the entire plasma cycle and suitable time resolution for real-time applications, in particular in high density and ITER-relevant plasma scenarios.

  16. Optimizing Transportation of Disaster Relief Material to Support U.S. Pacific Command Foreign Humanitarian Assistance Operations

    DTIC Science & Technology

    2013-03-01

    Approved by: W. Matthew Carlyle, Professor Thesis Advisor Walter DeGrange, CDR, SC, USN Second Reader Robert F. Dell Chair...x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Disaster Relief Airlift Planner results for Malaysia cyclone scenario with...Planner results for Malaysia cyclone scenario with aircraft allocation varying

  17. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeliotis, Konstadinos, E-mail: kabeli@hua.gr; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The regionmore » of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.« less

  18. Maintaining Continuity of Knowledge (CoK) of Spent Fuel Pools: Tool Survey - Scenarios, Technology Considerations, and Evaluation Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benz, Jacob M.; Tanner, Jennifer E.; Smart, Heidi A.

    2016-01-18

    The objective of this report is to identify the foundational elements which will drive the survey and evaluation of potential technologies to be considered to maintain CoK of spent fuel within a pool in the potential absence of light or in low light scenarios. These foundational elements include identifying use cases that highlight the type of environments in which the technologies may be asked to operate; the CoK elements required of the technologies, such as unique identification or presence/absence identification; the functional and operational requirements for the technologies; and the criteria against which the technologies will be evaluated.

  19. Helicopters on the asymmetric battlefield: challenges for photonics

    NASA Astrophysics Data System (ADS)

    Heikell, Johnny

    2007-10-01

    The problem set of battlefield helicopters and related photonics in asymmetric scenarios is addressed with emphasis on survivability and electronic warfare. The problem set is identified starting from an operational perspective, asking how different the asymmetric battlefield is from the traditional Cold War scenario, and by identifying relevant characteristics of battlefield helicopters. Based on this information requirements for photonics are deduced. It is concluded that the shift to asymmetric conflicts brings evolutionary-but not revolutionary-challenges for photonics, mostly so for the laser community. Main causes for the evolutionary drive are shortened engagement ranges, increased threat from ballistic and CBRE weapons, stringent ROEs, and assassination operations.

  20. Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael

    Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less

  1. Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Bilimoria, Karl D.

    2016-01-01

    This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.

  2. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.

    PubMed

    Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun

    2014-12-19

    In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations.

  3. Passenger safety and convenience services in automated guideway transit. Volume 1 : data collection, scenarios, and evaluation

    DOT National Transportation Integrated Search

    1980-12-01

    In conventional transit operations, vehicle operators and station attendants : have been assigned' secondary roles connected with passenger safety and convenience : services (PS&CS). Giving directions, offering personal assistance to the ill, the : h...

  4. Alternatives for energy conservation in roadway lighting.

    DOT National Transportation Integrated Search

    1979-01-01

    From a review of some of the possible methods of conserving energy in the operation of roadway lighting, with due consideration being given to traffic operations and safety under the current energy scenario, it was concluded that the most favorable c...

  5. Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.

    2012-07-16

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. Thismore » study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.« less

  6. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application.

    PubMed

    Vasquez, Monica M; Hu, Chengcheng; Roe, Denise J; Chen, Zhao; Halonen, Marilyn; Guerra, Stefano

    2016-11-14

    The study of circulating biomarkers and their association with disease outcomes has become progressively complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these high dimensional data. However, it is unclear which LASSO-type method is preferable when considering data scenarios that may be present in serum biomarker research, such as high correlation between biomarkers, weak associations with the outcome, and sparse number of true signals. The goal of this study was to compare the LASSO to five LASSO-type methods given these scenarios. A simulation study was performed to compare the LASSO, Adaptive LASSO, Elastic Net, Iterated LASSO, Bootstrap-Enhanced LASSO, and Weighted Fusion for the binary logistic regression model. The simulation study was designed to reflect the data structure of the population-based Tucson Epidemiological Study of Airway Obstructive Disease (TESAOD), specifically the sample size (N = 1000 for total population, 500 for sub-analyses), correlation of biomarkers (0.20, 0.50, 0.80), prevalence of overweight (40%) and obese (12%) outcomes, and the association of outcomes with standardized serum biomarker concentrations (log-odds ratio = 0.05-1.75). Each LASSO-type method was then applied to the TESAOD data of 306 overweight, 66 obese, and 463 normal-weight subjects with a panel of 86 serum biomarkers. Based on the simulation study, no method had an overall superior performance. The Weighted Fusion correctly identified more true signals, but incorrectly included more noise variables. The LASSO and Elastic Net correctly identified many true signals and excluded more noise variables. In the application study, biomarkers of overweight and obesity selected by all methods were Adiponectin, Apolipoprotein H, Calcitonin, CD14, Complement 3, C-reactive protein, Ferritin, Growth Hormone, Immunoglobulin M, Interleukin-18, Leptin, Monocyte Chemotactic Protein-1, Myoglobin, Sex Hormone Binding Globulin, Surfactant Protein D, and YKL-40. For the data scenarios examined, choice of optimal LASSO-type method was data structure dependent and should be guided by the research objective. The LASSO-type methods identified biomarkers that have known associations with obesity and obesity related conditions.

  7. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    NASA Astrophysics Data System (ADS)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  8. Self-consistent modeling of CFETR baseline scenarios for steady-state operation

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team

    2017-07-01

    Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.

  9. Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from Two Future Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, Bethany; Keyser, David; Tegen, Suzanne

    Construction of the first offshore wind farm in the United States began in 2015, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) has commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical, large-scale deployment scenarios for California: 16more » GW of offshore wind by 2050 (Scenario A) and 10 GW of offshore wind by 2050 (Scenario B). The results of this analysis can be used to better understand the general scales of economic opportunities that could result from offshore wind development. Results show total state gross domestic product (GDP) impacts of $16.2 billion in Scenario B or $39.7 billion in Scenario A for construction; and $3.5 billion in Scenario B or $7.9 billion in Scenario A for the operations phases.« less

  10. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework.

    PubMed

    Si, Yuan; Li, Xiang; Yin, Dongqin; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO's capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model's accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000-2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference.

  11. Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework

    PubMed Central

    Si, Yuan; Liu, Ronghua; Wei, Jiahua; Huang, Yuefei; Li, Tiejian; Liu, Jiahong; Gu, Shenglong; Wang, Guangqian

    2018-01-01

    The hydropower system in the Upper Yellow River (UYR), one of the largest hydropower bases in China, plays a vital role in the energy structure of the Qinghai Power Grid. Due to management difficulties, there is still considerable room for improvement in the joint operation of this system. This paper presents a general LINGO-based integrated framework to study the operation of the UYR hydropower system. The framework is easy to use for operators with little experience in mathematical modeling, takes full advantage of LINGO’s capabilities (such as its solving capacity and multi-threading ability), and packs its three layers (the user layer, the coordination layer, and the base layer) together into an integrated solution that is robust and efficient and represents an effective tool for data/scenario management and analysis. The framework is general and can be easily transferred to other hydropower systems with minimal effort, and it can be extended as the base layer is enriched. The multi-objective model that represents the trade-off between power quantity (i.e., maximum energy production) and power reliability (i.e., firm output) of hydropower operation has been formulated. With equivalent transformations, the optimization problem can be solved by the nonlinear programming (NLP) solvers embedded in the LINGO software, such as the General Solver, the Multi-start Solver, and the Global Solver. Both simulation and optimization are performed to verify the model’s accuracy and to evaluate the operation of the UYR hydropower system. A total of 13 hydropower plants currently in operation are involved, including two pivotal storage reservoirs on the Yellow River, which are the Longyangxia Reservoir and the Liujiaxia Reservoir. Historical hydrological data from multiple years (2000–2010) are provided as input to the model for analysis. The results are as follows. 1) Assuming that the reservoirs are all in operation (in fact, some reservoirs were not operational or did not collect all of the relevant data during the study period), the energy production is estimated as 267.7, 357.5, and 358.3×108 KWh for the Qinghai Power Grid during dry, normal, and wet years, respectively. 2) Assuming that the hydropower system is operated jointly, the firm output can reach 3110 MW (reliability of 100%) and 3510 MW (reliability of 90%). Moreover, a decrease in energy production from the Longyangxia Reservoir can bring about a very large increase in firm output from the hydropower system. 3) The maximum energy production can reach 297.7, 363.9, and 411.4×108 KWh during dry, normal, and wet years, respectively. The trade-off curve between maximum energy production and firm output is also provided for reference. PMID:29370206

  12. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System (CIS). Chile's CIS is structured as a mandatory pool with audited costs and therefore the economic dispatch can be formulated as a cost minimization problem. Consequently, hydropower reservoir operations are controlled by the ISO. Reservoirs with the most potential to cause short-term hydrologic alteration were identified from existing operational records. These records have also been used to validate our simulated operations. Results in terms of daily and subdaily hydrologic alteration as well as the economic performance of the CIS are presented for alternative energy matrix scenarios. Tradeoff curves representing the compromise between indicators of hydrologic alteration and economic indicators of the CIS operation are developed.

  13. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  14. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  15. Alternative scenarios: harnessing mid-level providers and evidence-based practice in primary dental care in England through operational research.

    PubMed

    Wanyonyi, Kristina L; Radford, David R; Harper, Paul R; Gallagher, Jennifer E

    2015-09-15

    In primary care dentistry, strategies to reconfigure the traditional boundaries of various dental professional groups by task sharing and role substitution have been encouraged in order to meet changing oral health needs. The aim of this research was to investigate the potential for skill mix use in primary dental care in England based on the undergraduate training experience in a primary care team training centre for dentists and mid-level dental providers. An operational research model and four alternative scenarios to test the potential for skill mix use in primary care in England were developed, informed by the model of care at a primary dental care training centre in the south of England, professional policy including scope of practice and contemporary evidence-based preventative practice. The model was developed in Excel and drew on published national timings and salary costs. The scenarios included the following: "No Skill Mix", "Minimal Direct Access", "More Prevention" and "Maximum Delegation". The scenario outputs comprised clinical time, workforce numbers and salary costs required for state-funded primary dental care in England. The operational research model suggested that 73% of clinical time in England's state-funded primary dental care in 2011/12 was spent on tasks that may be delegated to dental care professionals (DCPs), and 45- to 54-year-old patients received the most clinical time overall. Using estimated National Health Service (NHS) clinical working patterns, the model suggested alternative NHS workforce numbers and salary costs to meet the dental demand based on each developed scenario. For scenario 1:"No Skill Mix", the dentist-only scenario, 81% of the dentists currently registered in England would be required to participate. In scenario 2: "Minimal Direct Access", where 70% of examinations were delegated and the primary care training centre delegation patterns for other treatments were practised, 40% of registered dentists and eight times the number of dental therapists currently registered would be required; this would save 38% of current salary costs cf. "No Skill Mix". Scenario 3: "More Prevention", that is, the current model with no direct access and increasing fluoride varnish from 13.1% to 50% and maintaining the same model of delegation as scenario 2 for other care, would require 57% of registered dentists and 4.7 times the number of dental therapists. It would achieve a 1% salary cost saving cf. "No Skill Mix". Scenario 4 "Maximum Delegation" where all care within dental therapists' jurisdiction is delegated at 100%, together with 50% of restorations and radiographs, suggested that only 30% of registered dentists would be required and 10 times the number of dental therapists registered; this scenario would achieve a 52% salary cost saving cf. "No Skill Mix". Alternative scenarios based on wider expressed treatment need in national primary dental care in England, changing regulations on the scope of practice and increased evidence-based preventive practice suggest that the majority of care in primary dental practice may be delegated to dental therapists, and there is potential time and salary cost saving if the majority of diagnostic tasks and prevention are delegated. However, this would require an increase in trained DCPs, including role enhancement, as part of rebalancing the dental workforce.

  16. Comparison of the Glidescope®, flexible fibreoptic intubating bronchoscope, iPhone modified bronchoscope, and the Macintosh laryngoscope in normal and difficult airways: a manikin study.

    PubMed

    Langley, Adrian; Mar Fan, Gabriel

    2014-02-28

    Smart phone technology is becoming increasingly integrated into medical care.Our study compared an iPhone modified flexible fibreoptic bronchoscope as an intubation aid and clinical teaching tool with an unmodified bronchoscope, Glidescope® and Macintosh laryngoscope in a simulated normal and difficult airway scenario. Sixty three anaesthesia providers, 21 consultant anaesthetists, 21 registrars and 21 anaesthetic nurses attempted to intubate a MegaCode Kelly™ manikin, comparing a normal and difficult airway scenario for each device. Primary endpoints were time to view the vocal cords (TVC), time to successful intubation (TSI) and number of failed intubations with each device. Secondary outcomes included participant rated device usability and preference for each scenario. Advantages and disadvantages of the iPhone modified bronchoscope were also discussed. There was no significant difference in TVC with the iPhone modified bronchoscope compared with the Macintosh blade (P = 1.0) or unmodified bronchoscope (P = 0.155). TVC was significantly shorter with the Glidescope compared with the Macintosh blade (P < 0.001), iPhone (P < 0.001) and unmodified bronchoscope (P = 0.011). The iPhone bronchoscope TSI was significantly longer than all other devices (P < 0.001). There was no difference between anaesthetic consultant or registrar TVC (P = 1.0) or TSI (P = 0.252), with both being less than the nurses (P < 0.001). Consultant anaesthetists and nurses had a higher intubation failure rate with the iPhone modified bronchoscope compared with the registrars. Although more difficult to use, similar proportions of consultants (14/21), registrars (15/21) and nurses (15/21) indicated that they would be prepared to use the iPhone modified bronchoscope in their clinical practice. The Glidescope was rated easiest to use (P < 0.001) and was the preferred device by all participants for the difficult airway scenario. The iPhone modified bronchoscope, in its current configuration, was found to be more difficult to use compared with the Glidescope® and unmodified bronchoscope; however it offered several advantages for teaching fibreoptic intubation technique when video-assisted bronchoscopy was unavailable.

  17. Team-based model for non-operating room airway management: validation using a simulation-based study.

    PubMed

    DeMaria, S; Berman, D J; Goldberg, A; Lin, H-M; Khelemsky, Y; Levine, A I

    2016-07-01

    Non-operating room (non-OR) airway management has previously been identified as an area of concern because it carries a significant risk for complications. One reason for this could be attributed to the independent practice of residents in these situations. The aim of the present study was to ascertain whether differences in performance exist between residents working alone vs with a resident partner when encountering simulated non-OR airway management scenarios. Thirty-six anaesthesia residents were randomized into two groups. Each group experienced three separate scenarios (two scenarios initially and then a third 6 weeks later). The scenarios consisted of one control scenario and two critical event scenarios [i.e. asystole during laryngoscopy and pulseless electrical activity (PEA) upon post-intubation institution of positive pressure ventilation]. One group experienced the simulated non-OR scenarios alone (Solo group). The other group consisted of resident pairs, participating in the same three scenarios (Team group). Although the time to intubation did not differ between the Solo and Team groups, there were several differences in performance. The Team group received better overall performance ratings for the asystole (8.5 vs 5.5 out of 10; P<0.001) and PEA (8.5 vs 5.8 out of 10; P<0.001) scenarios. The Team group was also able to recognize asystole and PEA conditions faster than the Solo group [10.1 vs 23.5 s (P<0.001) and 13.3 vs 36.0 s (P<0.001), respectively]. Residents who performed a simulated intubation with a second trained provider had better overall performance than those who practised independently. The residents who practised in a group were also faster to diagnose serious complications, including peri-intubation asystole and PEA. Given these data, it is reasonable that training programmes consider performing all non-OR airway management with a team-based method. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Future electro-optical sensors and processing in urban operations

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan

    2013-10-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and centralized processing is essential. There is a central role for sensor fusion of heterogeneous sensors in future processing. The changes that occur in the urban operations of the future due to the application of these new technologies will be the improved quality of information, with shorter reaction time, and with lower operator load.

  19. Design and Analysis of the Warm-To Suspension Links for Jefferson Lab's 11 Gev/c Super High Momentum Spectrometer

    NASA Astrophysics Data System (ADS)

    Sun, E.; Brindza, P.; Lassiter, S.; Fowler, M.

    2010-04-01

    This paper describes design and analysis performed for the warm-to-cold suspension links of the warm iron yoke superconducting quadrupole magnets, and superconducting dipole magnet. The results of investigation of titanium Ti-6Al-4V and Nitronic 50 stainless steel for the suspension links to support the cold mass, preloads, forces due to cryogenic temperature, and imbalanced magnetic forces from misalignments are presented. Allowable stresses at normal-case scenarios and worst-case scenarios, space constraints, and heat leak considerations are discussed. Principles of the ASME Pressure Vessel Code were used to determine allowable stresses. Optimal angles of the suspension links were obtained by calculation and finite element methods. The stress levels of suspension links at multiple scenarios are presented, discussed, and compared with the allowable stresses.

  20. On the possibility of connecting a non-operating main circulation pump with three pumps in operation without preliminary coast-down of power-generating unit No. 5 in the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Vitkovskii, I. L.; Nikonov, S. P.; Ryasnyi, S. I.

    2014-02-01

    The subject of this paper is a transient caused by connection of a standby loop to three operating circulation pumps at the initial reactor heat rate equal to 70% of the rated value without preliminarily reducing it to 30% of the rated level as required by the safe operation regulations. Failure of the following normal operation systems is supposed: the first- and the second-type warning protection systems, all quick-acting reducing devices releasing steam into the auxiliary manifold, the electric heaters of the pressurizer, the pressurizer injection system, the primary cooling circuit fluid makeup/blow-through systems, and the blocking systems to shut down the main circulation pump after the level in the steam generator is exceeded. In addition, it is supposed that, under transient conditions, the valves of the turbine regulation system will be in the position in which they were at the moment of the initial event until generation of the signal for positive closing of the turbine stop valves. The first signal to actuate the reactor emergency protection system (EPS) is skipped. The failure of all quick-acting reducing devices releasing steam into the atmosphere is assumed. In addition to equipment failure, at the moment when the main circulation pump is connected, the operator erroneously puts in a new setting to maintain the power allowable for four pumps in operation-in the calculations it was taken equal to 104% of the rated level at most considering the accuracy of evaluating and maintaining the reactor heat rate-and the working group of the reactor protection and control system (P&CS) starts moving upward. On reaching the set power level, the automatic reactor power regulator stops operating and the P&CS elements remain in the position in which they are at the moment. Compliance with the design safety criteria for the adopted scenario of the transient is demonstrated.

  1. Feasibility Analysis of UAV Technology to Improve Tactical Surveillance in South Korea’s Rear Area Operations

    DTIC Science & Technology

    2017-03-01

    determine the optimum required operational capability of the unmanned aerial vehicles to support Korean rear area operations. We use Map Aware Non ...area operations. Through further experimentations and analyses, we were able to find the optimum characteristics of an improved unmanned aerial...operations. We use Map Aware Non -Uniform Automata, an agent-based simulation software platform for computational experiments. The study models a scenario

  2. Orbital Express Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Ricky; Heaton, Andy; Pinson, Robin; Carrington, Connie

    2008-01-01

    In May 2007 the first US fully autonomous rendezvous and capture was successfully performed by DARPA's Orbital Express (OE) mission. Since then, the Boeing ASTRO spacecraft and the Ball Aerospace NEXTSat have performed multiple rendezvous and docking maneuvers to demonstrate the technologies needed for satellite servicing. MSFC's Advanced Video Guidance Sensor (AVGS) is a primary near-field proximity operations sensor integrated into ASTRO's Autonomous Rendezvous and Capture Sensor System (ARCSS), which provides relative state knowledge to the ASTRO GN&C system. This paper provides an overview of the AVGS sensor flying on Orbital Express, and a summary of the ground testing and on-orbit performance of the AVGS for OE. The AVGS is a laser-based system that is capable of providing range and bearing at midrange distances and full six degree-of-freedom (6DOF) knowledge at near fields. The sensor fires lasers at two different frequencies to illuminate the Long Range Targets (LRTs) and the Short Range Targets (SRTs) on NEXTSat. Subtraction of one image from the other image removes extraneous light sources and reflections from anything other than the corner cubes on the LRTs and SRTs. This feature has played a significant role for Orbital Express in poor lighting conditions. The very bright spots that remain in the subtracted image are processed by the target recognition algorithms and the inverse-perspective algorithms, to provide 3DOF or 6DOF relative state information. Although Orbital Express has configured the ASTRO ARCSS system to only use AVGS at ranges of 120 m or less, some OE scenarios have provided opportunities for AVGS to acquire and track NEXTSat at greater distances. Orbital Express scenarios to date that have utilized AVGS include a berthing operation performed by the ASTRO robotic arm, sensor checkout maneuvers performed by the ASTRO robotic arm, 10-m unmated operations, 30-m unmated operations, and Scenario 3-1 anomaly recovery. The AVGS performed very well during the pre-unmated operations, effectively tracking beyond its 10-degree Pitch and Yaw limit-specifications, and did not require I-LOAD adjustments before unmated operations. AVGS provided excellent performance in the 10-m unmated operations, effectively tracking and maintaining lock for the duration of this scenario, and showing good agreement between the short and long range targets. During the 30-m unmated operations, the AVGS continuously tracked the SRT to 31.6 m, exceeding expectations, and continuously tracked the LRT from 8.8 m out to 31.6 m, with good agreement between these two target solutions. After this scenario was aborted at a 10-m separation during remate operations, the AVGS tracked the LRT out 54.3 m, until the relative attitude between the vehicles was too large. The vehicles remained apart for eight days, at ranges from 1 km to 6 km. During the approach to remate in this recovery operation, the AVGS began tracking the LRT at 150 m, well beyond the OE planned limits for AVGS ranges, and functioned as the primary sensor for the autonomous rendezvous and docking.

  3. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net

    NASA Astrophysics Data System (ADS)

    Suzuki, W.; Yamamoto, N.; Miyoshi, T.; Aoi, S.

    2017-12-01

    If the tsunami inundation information can be rapidly and stably forecast before the large tsunami attacks, the information would have effectively people realize the impeding danger and necessity of evacuation. Toward that goal, we have developed a prototype system to perform the real-time tsunami inundation forecast for Chiba prefecture, eastern Japan, using off-shore ocean bottom pressure data observed by the seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) (Aoi et al., 2015, AGU). Because tsunami inundation simulation requires a large computation cost, we employ a database approach searching the pre-calculated tsunami scenarios that reasonably explain the observed S-net pressure data based on the multi-index method (Yamamoto et al., 2016, EPS). The scenario search is regularly repeated, not triggered by the occurrence of the tsunami event, and the forecast information is generated from the selected scenarios that meet the criterion. Test operation of the prototype system using the actual observation data started in April, 2017 and the performance and behavior of the system during non-tsunami event periods have been examined. It is found that the treatment of the noises affecting the observed data is the main issue to be solved toward the improvement of the system. Even if the observed pressure data are filtered to extract the tsunami signals, the noises in ordinary times or unusually large noises like high ocean waves due to storm affect the comparison between the observed and scenario data. Due to the noises, the tsunami scenarios are selected and the tsunami is forecast although any tsunami event does not actually occur. In most cases, the selected scenarios due to the noises have the fault models in the region along the Kurile or Izu-Bonin Trenches, far from the S-net region, or the fault models below the land. Based on the parallel operation of the forecast system with a different scenario search condition and examination of the fault models, we improve the stability and performance of the forecast system.This work was supported by Council for Science, Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Enhancement of societal resiliency against natural disasters"(Funding agency: JST).

  4. Three-Dimensional Eye Tracking in a Surgical Scenario.

    PubMed

    Bogdanova, Rositsa; Boulanger, Pierre; Zheng, Bin

    2015-10-01

    Eye tracking has been widely used in studying the eye behavior of surgeons in the past decade. Most eye-tracking data are reported in a 2-dimensional (2D) fashion, and data for describing surgeons' behaviors on stereoperception are often missed. With the introduction of stereoscopes in laparoscopic procedures, there is an increasing need for studying the depth perception of surgeons under 3D image-guided surgery. We developed a new algorithm for the computation of convergence points in stereovision by measuring surgeons' interpupillary distance, the distance to the view target, and the difference between gaze locations of the 2 eyes. To test the feasibility of our new algorithm, we recruited 10 individuals to watch stereograms using binocular disparity and asked them to develop stereoperception using a cross-eyed viewing technique. Participants' eye motions were recorded by the Tobii eye tracker while they performed the trials. Convergence points between normal and stereo-viewing conditions were computed using the developed algorithm. All 10 participants were able to develop stereovision after a short period of training. During stereovision, participants' eye convergence points were 14 ± 1 cm in front of their eyes, which was significantly closer than the convergence points under the normal viewing condition (77 ± 20 cm). By applying our method of calculating convergence points using eye tracking, we were able to elicit the eye movement patterns of human operators between the normal and stereovision conditions. Knowledge from this study can be applied to the design of surgical visual systems, with the goal of improving surgical performance and patient safety. © The Author(s) 2015.

  5. Rapid depressurization event analysis in BWR/6 using RELAP5 and contain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueftueoglu, A.K.; Feltus, M.A.

    1995-09-01

    Noncondensable gases may become dissolved in Boiling Water Reactor (BWR) water level instrumentation during normal operations. Any dissolved noncondensable gases inside these water columns may come out of solution during rapid depressurization events, and displace water from the reference leg piping resulting in a false high level. These water level errors may cause a delay or failure in actuation, or premature shutdown of the Emergency Core Cooling System. (ECCS). If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response and othermore » signals for automatic actuation such as high drywell pressure. It is also important to determine the effect of the level signal on ECCS operation after it is being actuated. The objective of this study is to determine the detailed coupled containment/NSSS response during this rapid depressurization events in BWR/6. The selected scenarios involve: (a) inadvertent opening of all ADS valves, (b) design basis (DB) large break loss of coolant accident (LOCA), and (c) main steam line break (MSLB). The transient behaviors are evaluated in terms of: (a) vessel pressure and collapsed water level response, (b) specific transient boundary conditions, (e.g., scram, MSIV closure timing, feedwater flow, and break blowdown rates), (c) ECCS initiation timing, (d) impact of operator actions, (e) whether indications besides low-low water level were available. The results of the analysis had shown that there would be signals to actuate ECCS other than low reactor level, such as high drywell pressure, low vessel pressure, high suppression pool temperature, and that the plant operators would have significant indications to actuate ECCS.« less

  6. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  7. Use of a Prototype Airborne Separation Assurance System for Resolving Near-Term Conflicts During Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.

    2003-01-01

    NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAGTM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. In order to perform these tasks, pilots use prototype conflict detection, prevention, and resolution tools, collectively known as an Airborne Separation Assurance System (ASAS). While ASAS would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. An experiment was conducted in NASA Langley's Air Traffic Operations Lab to evaluate the prototype ASAS for enabling pilots to resolve near-term conflicts and examine possible operational effects associated with the use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. In an effort to improve compliance rate, ASAS design changes are currently under consideration. Further studies will of evaluate these design changes and consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).

  8. Communications satellite systems operations with the space station, volume 2

    NASA Technical Reports Server (NTRS)

    Price, K.; Dixon, J.; Weyandt, C.

    1987-01-01

    A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

  9. Reflux physics and an operational scenario for the spheromak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, E. B.

    2010-07-20

    The spheromak [1] is a toroidal magnetic confinement geometry for plasma with most of the magnetic field generated by internal currents. It has been demonstrated to have excellent energy confinement properties: A peak electron temperature of 0.4 keV was achieved in the Compact Torus Experiment (CTX) experiment [2] and of 0.5 keV in the Sustained Spheromak Physics Experiment (SSPX) [3]. In both cases the plasmas were decaying slowly following formation and (in SSPX) sustainment by coaxial helicity injection (CHI) [4]. In SSPX, power balance analysis during this operational phase yielded electron thermal conductivities in the core plasma in the rangemore » of 1-10 m 2/s [5, 6], comparable to the tokamak L-mode. These results motivate the consideration of possible operating scenarios for future fusion experiments or even reactors.« less

  10. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  11. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  12. Cochlear implantation in Waardenburg syndrome: The Indian scenario.

    PubMed

    Deka, Ramesh Chandra; Sikka, Kapil; Chaturvedy, Gaurav; Singh, Chirom Amit; Venkat Karthikeyan, C; Kumar, Rakesh; Agarwal, Shivani

    2010-10-01

    Children with Waardenburg syndrome (WS) exhibiting normal inner ear anatomy, like those included in our cohort, derive significant benefit from cochlear implantation and results are comparable to those reported for the general population of implanted children. The patient population of WS accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with WS who have undergone cochlear implantation. On retrospective chart review, there were four cases with WS who underwent cochlear implantation. These cases were assessed for age at implantation, clinical and radiological features, operative and perioperative course, and performance outcomes. Auditory perception and speech production ability were evaluated using categories of auditory performance (CAP), meaningful auditory integration scales (MAIS), and speech intelligibility rating (SIR) during the follow-up period. In this group of children with WS, with a minimum follow-up of 12 months, the CAP score ranged from 3 to 5, MAIS from 25 to 30, and SIR was 3. These scores are comparable with those of other cochlear implantees.

  13. 75 FR 62476 - Ultra-Wideband Transmission Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... would be obtained from measurements taken with the system operating in its normal operating mode. At the... with the transmitter operating continuously at a fundamental transmission frequency. 9. Subsequent to... systems, measured in their normal operating modes, is less than that of a UWB transmitter employing...

  14. Operating Characteristics in DIII-D ELM-Suppressed RMP H-modes with ITER Similar Shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, T E; Fenstermacher, M E; Jakubowski, M

    2008-10-13

    Fast energy transients, incident on the DIII-D divertors due to Type-I edge localized modes (ELMs), are eliminated using small dc currents in a simple set of non-axisymmetric coils that produce edge resonant magnetic perturbations (RMP). In ITER similar shaped (ISS) plasmas, with electron pedestal collisionalities matched to those expected in ITER a sharp resonant window in the safety factor at the 95 percent normalized poloidal flux surface is observed for ELM suppression at q{sub 95}=3.57 with a minimum width {delta}q{sub 95} of {+-}0.05. The size of this resonant window has been increased by a factor of 4 in ISS plasmasmore » by increasing the magnitude of the current in an n=3 coil set along with the current in a separate n=1 coil set. The resonant ELM-suppression window is highly reproducible for a given plasma shape, coil configuration and coil current but can vary with other operating conditions such as {beta}{sub N}. Isolated resonant windows have also been found at other q95 values when using different RMP coil configurations. For example, when the I-coil is operated in an n=3 up-down asymmetric configuration rather than an up-down symmetric configuration a resonant window is found near q{sub 95}=7.4. A Fourier analysis of the applied vacuum magnetic field demonstrates a statistical correlation between the Chirikov island overlap parameter and ELM suppression. These results have been used as a guide for RMP coil design studies in various ITER operating scenarios.« less

  15. Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, N.; Kintner-Meyer, M.; Wu, D.

    The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes inmore » generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.« less

  16. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less

  17. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  18. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M; Lee, Vo

    2014-04-15

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  19. Adaptive model training system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-11-18

    An adaptive model training system and method for filtering asset operating data values acquired from a monitored asset for selectively choosing asset operating data values that meet at least one predefined criterion of good data quality while rejecting asset operating data values that fail to meet at least the one predefined criterion of good data quality; and recalibrating a previously trained or calibrated model having a learned scope of normal operation of the asset by utilizing the asset operating data values that meet at least the one predefined criterion of good data quality for adjusting the learned scope of normal operation of the asset for defining a recalibrated model having the adjusted learned scope of normal operation of the asset.

  20. Procedural wound geometry and blood flow generation for medical training simulators

    NASA Astrophysics Data System (ADS)

    Aras, Rifat; Shen, Yuzhong; Li, Jiang

    2012-02-01

    Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.

  1. Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.

    2015-06-01

    This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.

  2. Analysis of helium purification system capability during water ingress accident in RDE

    NASA Astrophysics Data System (ADS)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  3. GOCE gravity field simulation based on actual mission scenario

    NASA Astrophysics Data System (ADS)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  4. War Gamers Handbook: A Guide for Professional War Gamers

    DTIC Science & Technology

    2015-11-01

    more complex games led us to integrate knowledge management, web tools, and multitouch , multiuser technologies in order to more efficiently and... Multitouch multiuser (MTMU) and communications operating picture (COP) interfaces ◊ Web development—Web tools and player interfaces Now that the game...hurricane or flood scenario to provide a plausible backdrop to facilitate player interaction toward game objectives. Scenarios should include only the

  5. Life cycle environmental and economic implications of small drinking water system upgrades to reduce disinfection byproducts.

    PubMed

    Mo, Weiwei; Cornejo, Pablo K; Malley, James P; Kane, Tyler E; Collins, M Robin

    2018-06-20

    Many of the small drinking water systems in the US that utilize simple filtration and chlorine disinfection or chlorine disinfection alone are facing disinfection byproduct (DBP) noncompliance issues, which need immediate upgrades. In this study, four potential upgrade scenarios, namely the GAC, ozone, UV30, and UV186 scenarios, were designed for a typical small drinking water systems and compared in terms of embodied energy, carbon footprint, and life cycle cost. These scenarios are designed to either reduce the amount of DBP precursors using granular activated carbon filtration (the GAC scenario) or ozonation (the ozone scenario), or replace the chlorine disinfection with the UV disinfection at different intensities followed by chloramination (the UV30 and UV186 scenarios). The UV30 scenario was found to have the lowest embodied energy (417 GJ/year) and life cycle cost ($0.25 million US dollars), while the GAC scenario has the lowest carbon footprint (21 Mg CO 2 e/year). The UV186 scenario consistently presents the highest environmental and economic impacts. The major contributors of the economic and environmental impacts of individual scenarios also differ. Energy and/or material consumptions during the operation phase dominate the environmental impacts of the four scenarios, while the infrastructure investments have a noticeable contribution to the economic costs. The results are sensitive to changes in water quality. An increase of raw water quality, i.e., an increase in organic precursor content, could potentially result in the ozone scenario being the least energy intensive scenario, while a decrease of water quality could greatly reduce the overall competitiveness of the GAC scenario. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Ethier, Marie-Pier; Bussière, Bruno; Broda, Stefan; Aubertin, Michel

    2018-01-01

    The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D'Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

  7. Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Ethier, Marie-Pier; Bussière, Bruno; Broda, Stefan; Aubertin, Michel

    2018-06-01

    The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D'Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

  8. Theoretical and experimental researches on the operating costs of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, M.; Panaitescu, F.-V.; Anton, I.-A.

    2015-11-01

    Purpose of the work: The total cost of a sewage plants is often determined by the present value method. All of the annual operating costs for each process are converted to the value of today's correspondence and added to the costs of investment for each process, which leads to getting the current net value. The operating costs of the sewage plants are subdivided, in general, in the premises of the investment and operating costs. The latter can be stable (normal operation and maintenance, the establishment of power) or variables (chemical and power sludge treatment and disposal, of effluent charges). For the purpose of evaluating the preliminary costs so that an installation can choose between different alternatives in an incipient phase of a project, can be used cost functions. In this paper will be calculated the operational cost to make several scenarios in order to optimize its. Total operational cost (fixed and variable) is dependent global parameters of wastewater treatment plant. Research and methodology: The wastewater treatment plant costs are subdivided in investment and operating costs. We can use different cost functions to estimate fixed and variable operating costs. In this study we have used the statistical formulas for cost functions. The method which was applied to study the impact of the influent characteristics on the costs is economic analysis. Optimization of plant design consist in firstly, to assess the ability of the smallest design to treat the maximum loading rates to a given effluent quality and, secondly, to compare the cost of the two alternatives for average and maximum loading rates. Results: In this paper we obtained the statistical values for the investment cost functions, operational fixed costs and operational variable costs for wastewater treatment plant and its graphical representations. All costs were compared to the net values. Finally we observe that it is more economical to build a larger plant, especially if maximum loading rates are reached. The actual target of operational management is to directly implement the presented cost functions in a software tool, in which the design of a plant and the simulation of its behaviour are evaluated simultaneously.

  9. 40 CFR 63.2862 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) initial startup period or the § 63.2850(e)(2) malfunction period. Complete both plans before the... such as normal operation, nonoperating, initial startup period, malfunction period, or exempt operation... inventory. (ii) The operating status of your source such as normal operation, nonoperating, initial startup...

  10. 40 CFR 63.2862 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) initial startup period or the § 63.2850(e)(2) malfunction period. Complete both plans before the... such as normal operation, nonoperating, initial startup period, malfunction period, or exempt operation... inventory. (ii) The operating status of your source such as normal operation, nonoperating, initial startup...

  11. 40 CFR 63.2862 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) initial startup period or the § 63.2850(e)(2) malfunction period. Complete both plans before the... such as normal operation, nonoperating, initial startup period, malfunction period, or exempt operation... inventory. (ii) The operating status of your source such as normal operation, nonoperating, initial startup...

  12. 40 CFR 63.2862 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) initial startup period or the § 63.2850(e)(2) malfunction period. Complete both plans before the... such as normal operation, nonoperating, initial startup period, malfunction period, or exempt operation... inventory. (ii) The operating status of your source such as normal operation, nonoperating, initial startup...

  13. 40 CFR 63.2862 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) initial startup period or the § 63.2850(e)(2) malfunction period. Complete both plans before the... such as normal operation, nonoperating, initial startup period, malfunction period, or exempt operation... inventory. (ii) The operating status of your source such as normal operation, nonoperating, initial startup...

  14. A stepladder approach to a tokamak fusion power plant

    NASA Astrophysics Data System (ADS)

    Zohm, H.; Träuble, F.; Biel, W.; Fable, E.; Kemp, R.; Lux, H.; Siccinio, M.; Wenninger, R.

    2017-08-01

    We present an approach to design in a consistent way a stepladder connecting ITER, DEMO and an FPP, starting from an attractive FPP and then locating DEMO such that main similarity parameters for the core scenario are constant. The approach presented suggests how to use ITER such that DEMO can be extrapolated with maximum confidence and a development path for plasma scenarios in ITER follows from our approach, moving from low β N and q typical for the present Q  =  10 scenario to higher values needed for steady state. A numerical example is given, indicative of the feasibility of the approach, and it is backed up by more detailed 1.5-D calculation using the ASTRA code. We note that ideal MHD stability analysis of the DEMO operating point indicates that it is located between the no-wall and the ideal wall β-limit, which may require active stabilization. The DEMO design could also be a pulsed fallback solution should a stationary operation turn out to be impossible.

  15. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  16. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazardsmore » from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.« less

  17. Managing water and riparian habitats on the Bill Williams River with scientific benefit for other desert river systems

    USGS Publications Warehouse

    John Hickey,; Woodrow Fields,; Andrew Hautzinger,; Steven Sesnie,; Shafroth, Patrick B.; Dick Gilbert,

    2016-01-01

    This report details modeling to: 1) codify flow-ecology relationships for riparian species of the Bill Williams River as operational guidance for water managers, 2) test the guidance under different climate scenarios, and 3) revise the operational guidance as needed to address the effects of climate change. Model applications detailed herein include the River Analysis System  (HEC-RAS) and the Ecosystem Functions Model  (HEC-EFM), which was used to generate more than three million estimates of local seedling recruitment areas. Areas were aggregated and compared to determine which scenarios generated the most seedling area per unit volume of water. Scenarios that maximized seedling area were grouped into a family of curves that serve as guidance for water managers. This work has direct connections to water management decision-making and builds upon and adds to the rich history of science-based management for the Bill Williams River, Arizona, USA. 

  18. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  19. Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate?

    PubMed

    Silio-Calzada, Ana; Barquín, José; Huszar, Vera L M; Mazzeo, Nestor; Méndez, Fernando; Álvarez-Martínez, Jose Manuel

    2017-12-15

    Hydrological variability over seasonal and multi-annual timescales strongly shapes the ecological structure and functioning of floodplain ecosystems. The current IPCC climate scenario foresees an increase in the frequency of extreme events. This, in conjunction with other anthropogenic disturbances (e.g., river regulation or land-use changes) poses a serious threat to the natural functioning of these ecosystems. In this study we aimed to i) evaluate the long-term variability of the flooded area of the third largest floodplain lake in the Brazilian Pantanal using remote sensing techniques, and ii) analyze the possible factors influencing this variability. Changes in open-water and riparian floodplain-wetland vegetation areas were mapped by applying an ad hoc-developed remote-sensing method (including a newly developed normalized water index, NWI) to 221 Landsat-Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images, acquired between 1984 and 2011. Added to the lake's natural swing between riparian floodplain-wetland vegetation expansion and retraction, our analyses revealed large interannual changes, grouped into three main periods within the studied time interval. Moreover, our results indicate that this floodplain-lake system is losing open-water area, paired with an increase in riparian floodplain-wetland vegetation. The system's long-term dynamics are not all climate related, but are the result of a combination of drivers. The start of the Manso dam's operation upstream of the studied system, and the subsequent river regulation because of the dam operation, coupled with climatic oscillation appear to be responsible for the observed changes. However, other factors which were not considered in this study might also be important in this process and contributing to the reduction of the system's resilience to droughts (e.g., land-use changes). This study illustrates the serious conservation risks that the Pantanal faces in the near future, given the current climate-change scenario and the accumulation of dam building projects in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE PAGES

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.; ...

    2017-06-09

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  1. Health risk impacts analysis of fugitive aromatic compounds emissions from the working face of a municipal solid waste landfill in China.

    PubMed

    Liu, Yanjun; Liu, Yanting; Li, Hao; Fu, Xindi; Guo, Hanwen; Meng, Ruihong; Lu, Wenjing; Zhao, Ming; Wang, Hongtao

    2016-12-01

    Aromatic compounds (ACs) emitted from landfills have attracted a lot of attention of the public due to their adverse impacts on the environment and human health. This study assessed the health risk impacts of the fugitive ACs emitted from the working face of a municipal solid waste (MSW) landfill in China. The emission data was acquired by long-term in-situ samplings using a modified wind tunnel system. The uncertainty of aromatic emissions is determined by means of statistics and the emission factors were thus developed. Two scenarios, i.e. 'normal-case' and 'worst-case', were presented to evaluate the potential health risk in different weather conditions. For this typical large anaerobic landfill, toluene was the dominant species owing to its highest releasing rate (3.40±3.79g·m -2 ·d -1 ). Despite being of negligible non-carcinogenic risk, the ACs might bring carcinogenic risks to human in the nearby area. Ethylbenzene was the major health threat substance. The cumulative carcinogenic risk impact area is as far as ~1.5km at downwind direction for the normal-case scenario, and even nearly 4km for the worst-case scenario. Health risks of fugitive ACs emissions from active landfills should be concerned, especially for landfills which still receiving mixed MSW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optical datacenter network employing slotted (TDMA) operation for dynamic resource allocation

    NASA Astrophysics Data System (ADS)

    Bakopoulos, P.; Tokas, K.; Spatharakis, C.; Patronas, I.; Landi, G.; Christodoulopoulos, K.; Capitani, M.; Kyriakos, A.; Aziz, M.; Reisis, D.; Varvarigos, E.; Zahavi, E.; Avramopoulos, H.

    2018-02-01

    The soaring traffic demands in datacenter networks (DCNs) are outpacing progresses in CMOS technology, challenging the bandwidth and energy scalability of currently established technologies. Optical switching is gaining traction as a promising path for sustaining the explosive growth of DCNs; however, its practical deployment necessitates extensive modifications to the network architecture and operation, tailored to the technological particularities of optical switches (i.e. no buffering, limitations in radix size and speed). European project NEPHELE is developing an optical network infrastructure that leverages optical switching within a software-defined networking (SDN) framework to overcome the bandwidth and energy scaling challenges of datacenter networks. An experimental validation of the NEPHELE data plane is reported based on commercial off-the-shelf optical components controlled by FPGA boards. To facilitate dynamic allocation of the network resources and perform collision-free routing in a lossless network environment, slotted operation is employed (i.e. using time-division multiple-access - TDMA). Error-free operation of the NEPHELE data plane is verified for 200 μs slots in various scenarios that involve communication between Ethernet hosts connected to custom-designed top-of-rack (ToR) switches, located in the same or in different datacenter pods. Control of the slotted data plane is obtained through an SDN framework comprising an OpenDaylight controller with appropriate add-ons. Communication between servers in the optical-ToR is demonstrated with various routing scenarios, concerning communication between hosts located in the same rack or in different racks, within the same or different datacenter pods. Error-free operation is confirmed for all evaluated scenarios, underpinning the feasibility of the NEPHELE architecture.

  3. 77 FR 59667 - NIJ Evaluation of Through-Wall Sensor Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ..., Surveillance, and Biometric Technologies Center of Excellence (SSBT CoE). The evaluation is focused on field operation in civilian law enforcement scenarios. Supplied through-wall sensor devices must be fully certified by the Federal Communications Commission for domestic civilian law enforcement operation...

  4. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  5. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  6. Naturalistic Decision Making for Power System Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Podmore, Robin; Robinson, Marck

    2010-02-01

    Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less

  7. Fitting primitive shapes in point clouds: a practical approach to improve autonomous underwater grasp specification of unknown objects

    NASA Astrophysics Data System (ADS)

    Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.

    2016-03-01

    This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.

  8. PO*WW*ER mobile treatment unit process hazards analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.B.

    1996-06-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented PO*WW*ER mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat aqueous mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses evaporation to separate organics and water from radionuclides and solids, and catalytic oxidation to convert the hazardous into byproducts. This process hazards analysis evaluated a number of accident scenarios not directly related to the operation of the MTU, such as natural phenomena damagemore » and mishandling of chemical containers. Worst case accident scenarios were further evaluated to determine the risk potential to the MTU and to workers, the public, and the environment. The overall risk to any group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less

  9. Surface Modification Counteracts Adverse Effects Associated with Immobilization after Flexor Tendon Repair

    PubMed Central

    Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2012-01-01

    SUMMARY Although post-rehabilitation is routinely performed following flexor tendon repair, in some clinical scenarios post-rehabilitation must be delayed. We investigated modification of the tendon surface using carbodiimide derivatized hyaluronic acid and lubricin (cd-HA-Lub) to maintain gliding function following flexor tendon repair with postoperative immobilization in a in vivo canine model. Flexor digitorum profundus tendons from the 2nd and 5th digits of one forepaw of six dogs were transected and repaired. One tendon in each paw was treated with cd-HA-Lub; the other repaired tendon was not treated. Following tendon repair, a forearm cast was applied to fully immobilize the operated forelimb for 10 days, after which the animals were euthanized. Digit normalized work of flexion (nWOF) and tendon gliding resistance were assessed. The nWOF of the FDP tendons treated with cd-HA-Lub was significantly lower than the nWOF of the untreated tendons (p < 0.01). The gliding resistance of cd-HA-Lub treated tendons was also significantly lower than that of the untreated tendons (p < 0.05). Surface treatment with cd-HA-Lub following flexor tendon repair provides an opportunity to improve outcomes for patients in whom the post-operative therapy must be delayed after flexor tendon repair. PMID:22714687

  10. Distribution Functions of Sizes and Fluxes Determined from Supra-Arcade Downflows

    NASA Technical Reports Server (NTRS)

    McKenzie, D.; Savage, S.

    2011-01-01

    The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution.

  11. A nonparametric spatial scan statistic for continuous data.

    PubMed

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  12. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    PubMed

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prospects for steady-state scenarios on JET

    NASA Astrophysics Data System (ADS)

    Litaudon, X.; Bizarro, J. P. S.; Challis, C. D.; Crisanti, F.; DeVries, P. C.; Lomas, P.; Rimini, F. G.; Tala, T. J. J.; Akers, R.; Andrew, Y.; Arnoux, G.; Artaud, J. F.; Baranov, Yu F.; Beurskens, M.; Brix, M.; Cesario, R.; DeLa Luna, E.; Fundamenski, W.; Giroud, C.; Hawkes, N. C.; Huber, A.; Joffrin, E.; Pitts, R. A.; Rachlew, E.; Reyes-Cortes, S. D. A.; Sharapov, S. E.; Zastrow, K. D.; Zimmermann, O.; JET EFDA contributors, the

    2007-09-01

    In the 2006 experimental campaign, progress has been made on JET to operate non-inductive scenarios at higher applied powers (31 MW) and density (nl ~ 4 × 1019 m-3), with ITER-relevant safety factor (q95 ~ 5) and plasma shaping, taking advantage of the new divertor capabilities. The extrapolation of the performance using transport modelling benchmarked on the experimental database indicates that the foreseen power upgrade (~45 MW) will allow the development of non-inductive scenarios where the bootstrap current is maximized together with the fusion yield and not, as in present-day experiments, at its expense. The tools for the long-term JET programme are the new ITER-like ICRH antenna (~15 MW), an upgrade of the NB power (35 MW/20 s or 17.5 MW/40 s), a new ITER-like first wall, a new pellet injector for edge localized mode control together with improved diagnostic and control capability. Operation with the new wall will set new constraints on non-inductive scenarios that are already addressed experimentally and in the modelling. The fusion performance and driven current that could be reached at high density and power have been estimated using either 0D or 1-1/2D validated transport models. In the high power case (45 MW), the calculations indicate the potential for the operational space of the non-inductive regime to be extended in terms of current (~2.5 MA) and density (nl > 5 × 1019 m-3), with high βN (βN > 3.0) and a fraction of the bootstrap current within 60-70% at high toroidal field (~3.5 T).

  14. COMS normal operation for Earth Observation mission

    NASA Astrophysics Data System (ADS)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  15. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  16. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  17. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  18. Electricity system expansion studies to consider uncertainties and interactions in restructured markets

    NASA Astrophysics Data System (ADS)

    Jin, Shan

    This dissertation concerns power system expansion planning under different market mechanisms. The thesis follows a three paper format, in which each paper emphasizes a different perspective. The first paper investigates the impact of market uncertainties on a long term centralized generation expansion planning problem. The problem is modeled as a two-stage stochastic program with uncertain fuel prices and demands, which are represented as probabilistic scenario paths in a multi-period tree. Two measurements, expected cost (EC) and Conditional Value-at-Risk (CVaR), are used to minimize, respectively, the total expected cost among scenarios and the risk of incurring high costs in unfavorable scenarios. We sample paths from the scenario tree to reduce the problem scale and determine the sufficient number of scenarios by computing confidence intervals on the objective values. The second paper studies an integrated electricity supply system including generation, transmission and fuel transportation with a restructured wholesale electricity market. This integrated system expansion problem is modeled as a bi-level program in which a centralized system expansion decision is made in the upper level and the operational decisions of multiple market participants are made in the lower level. The difficulty of solving a bi-level programming problem to global optimality is discussed and three problem relaxations obtained by reformulation are explored. The third paper solves a more realistic market-based generation and transmission expansion problem. It focuses on interactions among a centralized transmission expansion decision and decentralized generation expansion decisions. It allows each generator to make its own strategic investment and operational decisions both in response to a transmission expansion decision and in anticipation of a market price settled by an Independent System Operator (ISO) market clearing problem. The model poses a complicated tri-level structure including an equilibrium problem with equilibrium constraints (EPEC) sub-problem. A hybrid iterative algorithm is proposed to solve the problem efficiently and reliably.

  19. 48 CFR 232.901 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... comptroller, that conditions exist that limit normal business operations; and (iii) Payments will be made in..., invoice, and receiving report) from the operational area. (2) Criteria limiting normal business operations... conditions as— (i) Support infrastructure, hardware, communications capabilities, and bandwidth are not...

  20. Extrapolation of the DIII-D high poloidal beta scenario to ITER steady-state using transport modeling

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2016-10-01

    Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.

  1. Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball

    NASA Astrophysics Data System (ADS)

    Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.

  2. On Correlations, Distances and Error Rates.

    ERIC Educational Resources Information Center

    Dorans, Neil J.

    The nature of the criterion (dependent) variable may play a useful role in structuring a list of classification/prediction problems. Such criteria are continuous in nature, binary dichotomous, or multichotomous. In this paper, discussion is limited to the continuous normally distributed criterion scenarios. For both cases, it is assumed that the…

  3. Scripting Scenarios for the Human Patient Simulator

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Miller, Robert; Doerr, Harold

    2004-01-01

    The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.

  4. Cognitive Requirements for Small Unit Leaders in Military Operations in Urban Terrain

    DTIC Science & Technology

    1998-09-01

    operations specifically. A cognitive task analysis , based on in depth interviews with subject matter experts (n=7), was conducted to expose the...process. The findings of the cognitive task analysis guided the development of training recommendations, particularly the need for a scenario based

  5. Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations

    DOT National Transportation Integrated Search

    2017-05-19

    Potential sUAS BVLOS operational scenarios/use cases and DAA approaches were collected through a number of industry wide data calls. Every 333 Exemption holder was solicited for this same information. Summary information from more than 5,000 exemptio...

  6. Observational signatures of neutron stars in low-mass X-ray binaries climbing a stability peak

    NASA Astrophysics Data System (ADS)

    Kantor, E. M.; Gusakov, M. E.; Chugunov, A. I.

    2016-01-01

    In the recent papers by Gusakov et al., a new scenario describing evolution of rapidly rotating neutron stars (NSs) in low-mass X-ray binaries was proposed. The scenario accounts for a resonant interaction of normal r-modes with superfluid inertial modes at some specific internal stellar temperatures (`resonance temperatures'). This interaction results in an enhanced damping of r-mode and appearance of the `stability peaks' in the temperature - spin frequency plane, which split the r-mode instability window in the vicinity of the resonance temperatures. The scenario suggests that the hot and rapidly rotating NSs spend most of their life climbing up these peaks and, in particular, are observed there at the moment. We analyse in detail possible observational signatures of this suggestion. In particular, we show that these objects may exhibit `anti-glitches' - sudden frequency jumps on a time-scale of hours-months.

  7. Development of economic consequence methodology for process risk analysis.

    PubMed

    Zadakbar, Omid; Khan, Faisal; Imtiaz, Syed

    2015-04-01

    A comprehensive methodology for economic consequence analysis with appropriate models for risk analysis of process systems is proposed. This methodology uses loss functions to relate process deviations in a given scenario to economic losses. It consists of four steps: definition of a scenario, identification of losses, quantification of losses, and integration of losses. In this methodology, the process deviations that contribute to a given accident scenario are identified and mapped to assess potential consequences. Losses are assessed with an appropriate loss function (revised Taguchi, modified inverted normal) for each type of loss. The total loss is quantified by integrating different loss functions. The proposed methodology has been examined on two industrial case studies. Implementation of this new economic consequence methodology in quantitative risk assessment will provide better understanding and quantification of risk. This will improve design, decision making, and risk management strategies. © 2014 Society for Risk Analysis.

  8. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods.

    PubMed

    Wang, Hou Chuan; Hwang, Jyh Feng; Chi, Kai Hsien; Chang, Moo Been

    2007-04-01

    The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).

  9. NASA in-house Commercially Developed Space Facility (CDSF) study report. Volume 1: Concept configuration definition

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Chiger, H. D.; Deryder, D. D.; Detweiler, K. N.; Dupree, R. L.; Gillespie, V. P.; Hall, J. B.; Heck, M. L.; Herrick, D. C.; Katzberg, S. J.

    1989-01-01

    The results of a NASA in-house team effort to develop a concept definition for a Commercially Developed Space Facility (CDSF) are presented. Science mission utilization definition scenarios are documented, the conceptual configuration definition system performance parameters qualified, benchmark operational scenarios developed, space shuttle interface descriptions provided, and development schedule activity was assessed with respect to the establishment of a proposed launch date.

  10. An Aluminum Salvage Station for the External Tank (ASSET)

    DTIC Science & Technology

    1990-12-01

    34 High Efficiency GaAs-Ge Tandem Solar Cells Grown by MOCVD." In NASA Conference Publication 3030, Space Photovoltaic Re- search and Technology 1988...Solar Dynamic vs. PV Array Comparisons .... ............ C-8 E.1. ASSET Thermal Model Results ...... .................. E-16 G.I. Scenario I CER...during the salvage operation. A thermal model is developed and the thermal impacts of on-orbit salvage are included in all scenarios. A probabilistic

  11. Training Requirements for Visualizing Time and Space at Company and Platoon Level

    DTIC Science & Technology

    2007-09-01

    vignettes. Participants were given approximately 20 minutes to develop a concept of operations, using whiteboards or butcher paper as necessary (see Figure...was conducted based on workshops with active and retired military personnel (n = 50). The CTA used a representative scenario and supporting...throughout this research effort including design of the scenario and vignettes used in the workshops, participation in and facilitation of the workshops

  12. Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio

    NASA Astrophysics Data System (ADS)

    Zaremba, Maciej; Zaharia, Raluca; Turati, Andrea; Brambilla, Marco; Vitvar, Tomas; Ceri, Stefano

    In this chapter we compare the WSMO/WSML/WSMX andWebML/WebRatio approaches to the SWS-Challenge workshop mediation scenario in terms of the utilized underlying technologies and delivered solutions. In the mediation scenario one partner uses Roset-taNet to define its B2B protocol while the other one operates on a proprietary solution. Both teams shown how these partners could be semantically integrated.

  13. Commercial Mobile Alert Service (CMAS) Scenarios

    DTIC Science & Technology

    2012-05-01

    Commercial Mobile Alert Service (CMAS) Scenarios The WEA Project Team May 2012 SPECIAL REPORT CMU/SEI-2012-SR-020 CERT® Division, Software ...Homeland Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally...DISTRIBUTES IT “AS IS.” References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise

  14. Control of particle and power exhaust in pellet fuelled ITER DT scenarios employing integrated models

    NASA Astrophysics Data System (ADS)

    Wiesen, S.; Köchl, F.; Belo, P.; Kotov, V.; Loarte, A.; Parail, V.; Corrigan, G.; Garzotti, L.; Harting, D.

    2017-07-01

    The integrated model JINTRAC is employed to assess the dynamic density evolution of the ITER baseline scenario when fuelled by discrete pellets. The consequences on the core confinement properties, α-particle heating due to fusion and the effect on the ITER divertor operation, taking into account the material limitations on the target heat loads, are discussed within the integrated model. Using the model one can observe that stable but cyclical operational regimes can be achieved for a pellet-fuelled ITER ELMy H-mode scenario with Q  =  10 maintaining partially detached conditions in the divertor. It is shown that the level of divertor detachment is inversely correlated with the core plasma density due to α-particle heating, and thus depends on the density evolution cycle imposed by pellet ablations. The power crossing the separatrix to be dissipated depends on the enhancement of the transport in the pedestal region being linked with the pressure gradient evolution after pellet injection. The fuelling efficacy of the deposited pellet material is strongly dependent on the E  ×  B plasmoid drift. It is concluded that integrated models like JINTRAC, if validated and supported by realistic physics constraints, may help to establish suitable control schemes of particle and power exhaust in burning ITER DT-plasma scenarios.

  15. Do abnormal responses show utilitarian bias?

    PubMed

    Kahane, Guy; Shackel, Nicholas

    2008-03-20

    Neuroscience has recently turned to the study of utilitarian and non-utilitarian moral judgement. Koenigs et al. examine the responses of normal subjects and those with ventromedial-prefrontal-cortex (VMPC) damage to moral scenarios drawn from functional magnetic resonance imaging studies by Greene et al., and claim that patients with VMPC damage have an abnormally "utilitarian" pattern of moral judgement. It is crucial to the claims of Koenigs et al. that the scenarios of Greene et al. pose a conflict between utilitarian consequence and duty: however, many of them do not meet this condition. Because of this methodological problem, it is too early to claim that VMPC patients have a utilitarian bias.

  16. Specific heat and Knight shift of cuprates within the van Hove scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Das, A.N.

    1996-12-01

    The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  17. The Financial Benefits of Various Catastrophic Failure Prevention Strategies in a Wind Farm: Two market studies (UK-Spain)

    NASA Astrophysics Data System (ADS)

    Yürüşen, N. Y.; Tautz-Weinert, J.; Watson, S. J.; Melero, J. J.

    2017-11-01

    Operation of wind farms is driven by the overall aim of minimising costs while maximising energy sales. However, in certain circumstances investments are required to guarantee safe operation and survival of an asset. In this paper, we discuss the merits of various catastrophic failure prevention strategies in a Spanish wind farm. The wind farm operator was required to replace blades in two phases: temporary and final repair. We analyse the power performance of the turbine in the different states and investigate four scenarios with different timing of temporary and final repair during one year. The financial consequences of the scenarios are compared with a baseline by using a discounted cash flow analysis that considers the wholesale electricity market selling prices and interest rates. A comparison with the UK electricity market is conducted to highlight differences in the rate of return in the two countries.

  18. Using formal methods to scope performance challenges for Smart Manufacturing Systems: focus on agility.

    PubMed

    Jung, Kiwook; Morris, K C; Lyons, Kevin W; Leong, Swee; Cho, Hyunbo

    2015-12-01

    Smart Manufacturing Systems (SMS) need to be agile to adapt to new situations by using detailed, precise, and appropriate data for intelligent decision-making. The intricacy of the relationship of strategic goals to operational performance across the many levels of a manufacturing system inhibits the realization of SMS. This paper proposes a method for identifying what aspects of a manufacturing system should be addressed to respond to changing strategic goals. The method uses standard modeling techniques in specifying a manufacturing system and the relationship between strategic goals and operational performance metrics. Two existing reference models related to manufacturing operations are represented formally and harmonized to support the proposed method. The method is illustrated for a single scenario using agility as a strategic goal. By replicating the proposed method for other strategic goals and with multiple scenarios, a comprehensive set of performance challenges can be identified.

  19. Reservoirs performances under climate variability: a case study

    NASA Astrophysics Data System (ADS)

    Longobardi, A.; Mautone, M.; de Luca, C.

    2014-09-01

    A case study, the Piano della Rocca dam (southern Italy) is discussed here in order to quantify the system performances under climate variability conditions. Different climate scenarios have been stochastically generated according to the tendencies in precipitation and air temperature observed during recent decades for the studied area. Climate variables have then been filtered through an ARMA model to generate, at the monthly scale, time series of reservoir inflow volumes. Controlled release has been computed considering the reservoir is operated following the standard linear operating policy (SLOP) and reservoir performances have been assessed through the calculation of reliability, resilience and vulnerability indices (Hashimoto et al. 1982), comparing current and future scenarios of climate variability. The proposed approach can be suggested as a valuable tool to mitigate the effects of moderate to severe and persistent droughts periods, through the allocation of new water resources or the planning of appropriate operational rules.

  20. Identification and Analysis of National Airspace System Resource Constraints

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.

    2015-01-01

    This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.

Top