Science.gov

Sample records for normal phase liquid

  1. Determination of void volume in normal phase liquid chromatography.

    PubMed

    Jiang, Ping; Wu, Di; Lucy, Charles A

    2014-01-10

    Void volume is an important fundamental parameter in chromatography. Little prior discussion has focused on the determination of void volume in normal phase liquid chromatography (NPLC). Various methods to estimate the total void volume are compared: pycnometry; minor disturbance method based on injection of weak solvent; tracer pulse method; hold-up volume based on unretained compounds; and accessible volume based on Martin's rule and its descendants. These are applied to NPLC on silica, RingSep and DNAP columns. Pycnometry provides a theoretically maximum value for the total void volume and should be performed at least once for each new column. However, pycnometry does not reflect the volume of adsorbed strong solvent on the stationary phase, and so only yields an accurate void volume for weaker mobile phase conditions. 1,3,5-Tri-t-butyl benzene (TTBB) results in hold-up volumes that are convenient measures of the void volume for all eluent conditions on charge-transfer columns (RingSep and DNAP), but is weakly retained under weak eluent conditions on silica. Injection of the weak mobile phase component (hexane) may be used to determine void volume, but care must be exercised to select the appropriate disturbance feature. Accessible volumes, that are determined using a homologous series, are always biased low, and are not recommended as a measure of the void volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ionic liquids as novel stationary phases in gas liquid chromatography: inverse or normal isotope effect?

    PubMed

    Schmarr, Hans-Georg; Slabizki, Petra; Müntnich, Sabrina; Metzger, Carmen; Gracia-Moreno, Elisa

    2012-12-28

    The separation of deuterated and non-deuterated compounds in gas liquid partitioning chromatography (GLC) on silicone type stationary phase usually results in the inverse isotope effect. With ionic liquids (ILs) as stationary phase, however, this may show a totally different nature. The inverse isotope effect, in which heavier (deuterated) isotopic compounds (isotopologues) elute earlier, is to be expected when van der Waals (London) dispersion forces play a dominant role in the solute-stationary phase interaction. Such (apolar) interactions seem to play only a minor role when ILs are the stationary phases, leading to only a marginal inverse isotope effect, e.g. for the separation of 2,4,6-trichloroanisole and its [(2)H(5)]-isotopologue on 1,12-di(tripropylphosphonium) dodecane bis(trifluoromethansulfonyl) amide (commercialized as SLB-IL59, Supelco). Indeed, with the most polar stationary phase available (commercialized as SLB-IL111; Supelco), this separation showed a normal isotope effect. Further examples are presented and the nature of the isotope effect observed is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cooperative motion in liquids: On librational dynamics of chloroform throughout its normal liquid-phase range

    NASA Astrophysics Data System (ADS)

    Rothschild, Walter G.; Cavagnat, Raymond M.

    1994-03-01

    We have extended the Raman spectral accumulations of the ν3 mode (A1, 367 cm-1) of liquid CHCl3-Cl-35 and its simulation in terms of an orientational equilibrium renewal process [W. G. Rothschild, R. M. Cavagnat, and P. Maraval, J. Chem. Phys. 99, 8922 (1993)] to a temperature of 338 K, about the normal boiling point of the system (335 K). The values of the best-fit parameters predict that the orientational motion of liquid chloroform, even at such a relatively high kinetic energy, is described predominantly by libratory states; their lifetime (˜1 ps) is four times longer than that of the free-rotational steps. The character of the orientational motion of the system, when traversing the range of 213 to 338 K from just above its melting to near its boiling point at about atmospheric pressure, reflects the softening of the liquid-cage structure in terms of an increasing dispersion and/or a decreasing value of the mean libration frequency, a lowering of the depth of its potential well, but near-invariance of its lifetime. Simultaneously, there is an approximately twofold increase in the lifetime of the much shorter stages of free-rotational motion. In essence, the system dynamics remain that of an assembly of librators.

  4. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    PubMed

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.

  5. Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles

    NASA Astrophysics Data System (ADS)

    Dykas, Sławomir; Szymański, Artur; Majkut, Mirosław

    2017-06-01

    This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles. By nature, atmospheric air always contains a certain amount of water vapor. The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) "half-nozzle", referred to as a transonic diffuser, with a much slower expansion rate. The calculations were performed using an in-house CFD code. The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air. The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.

  6. Simultaneous determination of tocopherols and tocotrienols in hazelnuts by a normal phase liquid chromatographic method.

    PubMed

    Amaral, Joana S; Casal, Susana; Torres, Duarte; Seabra, Rosa M; Oliveira, Beatriz P P

    2005-12-01

    A normal-phase high-performance liquid chromatography (NP-HPLC) method for the determination of tocopherols and tocotrienols in hazelnuts is reported. Three extraction procedures (with and without saponification) were assayed; the best results were obtained with a simple solid-liquid extraction procedure. Chromatographic separation was achieved using an Inertsil 5 SI column using isocratic elution with hexane/1,4-dioxane (95.5:4.5, v/v) at a flow rate of 0.7 mL/min. The effluent was monitored by a series arrangement of a diode-array followed by a fluorescence detector. All compounds were separated in a short period of time (17 min). The method proved to be rapid, sensitive, reproducible and accurate, allowing the simultaneous determination of all vitamin E homologues.

  7. Gradient elution in aqueous normal-phase liquid chromatography on hydrosilated silica-based stationary phases.

    PubMed

    Soukup, Jan; Janás, Petr; Jandera, Pavel

    2013-04-19

    The possibility of applying a theoretical model in the prediction of the retention of phenolic acids on hydrosilated silica, in aqueous normal phase mode was studied. The actual gradient of the aqueous component in acetonitrile may fluctuate from the pre-set program, as even the gradient-grade acetonitrile contains some water. Hence, the actual concentration of water during the gradient run is higher than pre-set by the gradient program, which leads to lower than expected sample retention. Furthermore, the actual gradient profile may be affected by an increase in water uptake on a polar column during the gradient run. These effects were investigated using the using frontal analysis method and Karl-Fischer titration, for the determination of water in the initial mobile phase, and in the column effluent. Preferential adsorption of water on the Silica hydride, Diamond hydride, UDC Cholesterol, Bidentate C18, and Phenyl hydride columns can be described by Langmuir isotherms. At the column saturation capacity, less than one monomolecular water layer is adsorbed, with a further decrease in coverage density for modified materials. Parameters of semi-logarithmic and logarithmic model equations, describing the dependence of retention factor on the concentration of water, were determined under isocratic conditions. These parameters and linear gradient profiles corrected for the actual water concentrations were used in calculation of gradient retention data. The corrections for the actual water concentration greatly improved the agreement between the experiment and the predicted gradient elution volumes. Generally, the semi-logarithmic model provides slightly better prediction of the gradient data, with respect to the logarithmic retention model. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Separation of some platinum metal 8-hydroxyquinolinates by normal phase high-performance liquid chromatography.

    PubMed

    Alimarinod, I P; Basova, E M; Malykhin, A Y; Bol'shova, T A

    1990-05-01

    The method of normal phase high-performance liquid chromatography has been applied to the separation and determination of Pd(II), Pt(II), Rh(III), Ir(IV), Ru(III) and Os(IV) as chelates with 8-hydroxyquinoline on a 62 x 2 mm column packed with Silasorb 600 5 mu silica gel by elution with methylene chloride-isopropyl alcohol mixture (97:3 v/v). The detection limits (ng per 5 mul), were Pd 0.3, Pt 1.0, Rh 1.0, Ir 5.0, Ru 1.5, Os 25. The separation time was 12 min at a flow-rate of 0.1 ml/min.

  9. Analysis of amitrole by normal-phase liquid chromatography and tandem mass spectrometry using a sheath liquid electrospray interface.

    PubMed

    Girod, Marion; Delaurent, Corinne; Charles, Laurence

    2006-01-01

    The coupling of normal-phase liquid chromatography to tandem mass spectrometry, previously developed in our laboratory, has been applied to the analysis of amitrole. This coupling utilizes an electrospray interface modified to accommodate the introduction of a make-up solution at the tip of the electrospray probe. A methanolic solution containing 3 mM ammonium acetate delivered at a flow rate of 10 microL . min(-1) was found to be the optimal sheath liquid to promote successful ionization of the amitrole. Protonated molecules, arising from in-source dissociation of ammonium adducts, were subjected to tandem mass spectrometric experiments in a triple-quadrupole instrument. The main fragmentation reactions were characterized and selected to acquire chromatographic data in the multiple reaction monitoring mode. The limit of detection for amitrole was in the ppm range without any preconcentration step. Enhanced efficiency of ion transmission achievable nowadays in mass spectrometers (this analytical configuration was developed with a 15-year-old instrument) is reasonably expected to further improve this detection level. Copyright 2006 John Wiley & Sons, Ltd.

  10. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods.

  11. Comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for analysis of toad skin.

    PubMed

    Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2017-04-15

    An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC.

  12. High performance liquid chromatographic separations of gas oil samples and their hydrotreated products using commercial normal phases.

    PubMed

    Oro, Nicole E; Lucy, Charles A

    2011-10-28

    Three commercially available high performance liquid chromatography columns are used in normal phase or quasi-normal phase mode for the separation of gas oil samples. The columns are tested with 20 analytical standards to determine their suitability for separations of petroleum samples and their ability to separate the nitrogen group-types (pyrrole and pyridine) found in petroleum. The columns studied are polymeric hypercrosslinked polystyrene (HGN), a biphenyl phase, and a Chromegabond "DNAP" column from ES Industries. The HGN column separates gas oils based on both ring structure and heteroatom, while the biphenyl phase has low retention of most compounds studied in quasi-normal phase mode. The "DNAP" column is selective for nitrogen-containing compounds, separating them from PAHs as well as oxygen and sulphur compounds. Retention data of standards on all three columns is shown, along with chromatograms of gas oil samples on the HGN and "DNAP" columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Chromatographic performance of synthetic polycrystalline diamond as a stationary phase in normal phase high performance liquid chromatography.

    PubMed

    Peristyy, Anton; Paull, Brett; Nesterenko, Pavel N

    2015-04-24

    The chromatographic properties of high pressure high temperature synthesised diamond (HPHT) are investigated in normal phase mode of high performance liquid chromatography. Purified nonporous irregular shape particles of average particles size 1.2 μm and specific surface area 5.1 m(2) g(-1) were used for packing 100×4.6 mm ID or 50×4.6 mm ID stainless steel columns. The retention behaviour of several classes of compounds including alkyl benzenes, polyaromatic hydrocarbons (PAH), alkylphenylketones, phenols, aromatic acids and bases were studied using n-hexane-2-propanol mixtures as mobile phase. The results are compared with those observed for microdispersed sintered detonation nanodiamond (MSDN) and porous graphitic carbon (PGC). HPHT diamond revealed distinctive separation selectivity, which is orthogonal to that observed for porous graphitic carbon; while selectivities of HPHT diamond and microdispersed sintered detonation nanodiamonds are similar. Owing to non-porous particle nature, columns packed with high pressure high temperature diamond exhibited excellent mass transfer and produce separations with maximum column efficiency of 128,200 theoretical plates per meter.

  14. Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography coupled with mass spectrometry.

    PubMed

    Zhang, Yun; Jin, Hongli; Li, Xiaolong; Zhao, Jianqiang; Guo, Xiujie; Wang, Jixia; Guo, Zhimou; Zhang, Xiuli; Tao, Yanduo; Liu, Yanfang; Chen, Deliang; Liang, Xinmiao

    2016-07-15

    Bufadienolides possess various bioactivities especially antitumor. Due to the high structural diversity, the separation of bufadienolides often suffers from coelution problem on conventional RP columns. In this work, an off-line two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D-NPLC×RPLC) method was developed to separate and characterize bufadienolides in toad skin. Several RP and NP columns were evaluated with five reference bufadienlides. The XUnion C18 and XAmide columns exhibited superior chromatographic performances for bufadienlide separation, and were selected in RPLC and NPLC, respectively. RPLC was used in the second-dimension for the good compatibility with MS, while NPLC was adopted in the first-dimension. The orthogonality of the 2D-NPLC×RPLC system was investigated by the geometric approach using fifteen bufadienolide mixtures. The result was 49.6%, demonstrating reasonable orthogonality of this 2D-LC system. By combining the 2D-LC system with MS, 64 bufadienlides including 33 minor ones and 11 pairs of isomers in toad skin were identified. This off-line 2D-NPLC×RPLC allowed to solve the coelution problem of bufadienlides in one-dimension RPLC, and thus facilitated the identification significantly. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.

    1996-01-01

    For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.

  16. Development of LC chiral methods for neutral pharmaceutical related compounds using reversed phase and normal phase liquid chromatography with different types of polysaccharide stationary phases.

    PubMed

    Zhou, Lili; Welch, Chris; Lee, Clair; Gong, Xiaoyi; Antonucci, Vincent; Ge, Zhihong

    2009-05-01

    The enantioselectivity of a collection of neutral pharmaceutical compounds on six different types of polysaccharide chiral stationary phases (CSPs), Chiralpak AD (and AD-RH), Chiralcel OD (and OD-RH), Chiralpak OJ (and OJ-R), Chiralcel AS (and AS-RH), Sepapak-2 and Sepapak-4 are compared using reversed phase (RPLC) and normal phase liquid chromatography (NPLC). Screening strategies for maximizing the probability of achieving an initial chiral separation hit for neutral compounds using both RPLC and NPLC are described. Further method optimizations are demonstrated by modifying parameters such as organic modifier composition, eluent pH or CSP particle size. Several practical examples of the application of chiral methods for the study of synthetic reaction mixtures are presented. The most critical validation aspects, including limit of detection, specificity, and ruggedness, are also briefly presented.

  17. High temperature normal phase liquid chromatography of aromatic hydrocarbons on bare zirconia.

    PubMed

    Paproski, Richard E; Liang, Chen; Lucy, Charles A

    2011-11-04

    The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. An investigation into the flow behavior of a single phase gas system and a two phase gas/liquid system in normal gravity with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Heist, Timothy J.

    1990-01-01

    The fluid behavior in normal gravity of a single phase gas system and a two phase gas/liquid system in an enclosed circular cylinder heated suddenly and nonuniformly from above was investigated. Flow visualization was used to obtain qualitative data on both systems. The use of thermochromatic liquid crystal particles as liquid phase flow tracers was evaluated as a possible means of simultaneously gathering both flow pattern and temperature gradient data for the two phase system. The results of the flow visualization experiments performed on both systems can be used to gain a better understanding of the behavior of such systems in a reduced gravity environment and aid in the verification of a numerical model of the system.

  19. Quantitative analysis of vitamin D3 in a feed using normal phase high pressure liquid chromatography.

    PubMed

    Cohen, H; Lapointe, M

    1979-09-01

    A procedure is described for the separation and quantification of Vitamin D3 from different feeds and premixes. The study was conducted, first using a liquid partition step as a preliminary clean-up after extraction, then chromatography on activated Silica gel 60 before final analysis on a high pressure liquid chromatograph (HPLC) using a LiChrosorb NH2 (10 mu) column and a variable wavelength UV detector set at 264 nm. Total analysis on the HPLC was achieved in fifteen minutes. The detector response curve for an authentic D3 standard was linear using peak areas with a minimum detectable amount being 5 ng. The overall percent recovery of D3 in feeds was 94.4 +/- 2.4%. The minimum detectable amount of D3 in animal feeds was found to be in the region of 2,000 I.U./kg.

  20. Quantitation of ceramides in nude mouse skin by normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Liou, Yi-Bo; Sheu, Ming-Thau; Liu, Der-Zen; Lin, Shan-Yang; Ho, Hsiu-O

    2010-06-01

    A sensitive and accurate normal-phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) method for determining the standard ceramide [NS] (Cer[NS]) was developed and validated so as to improve the traditional thin-layer chromatography (TLC) technique and LC-electrospray ionization (ESI)-MS method to profile and quantify ceramides in nude mouse skin. Normal-phase LC-APCI-MS was optimized to separate the nine classes of ceramides presented in the stratum corneum (SC) of nude mouse skin. A normal-phase silica column eluted with the gradient system from heptane:acetone/butanol (90:10, v/v) of 75:25 to 100% acetone/butanol (90:10, v/v) (with each solvent containing 0.1% [v/v] triethylamine and 0.1% [v/v] formic acid) at a flow rate of 0.8 ml/min was found to be optimal for analyzing standard Cer[NS]. The analysis of Cer[NS] was validated and employed as the standard for constructing a calibration curve to quantitate all classes of ceramides. This method was applied to profile the classes and contents of ceramides in the SC of nude mouse skin and proved to be workable. It was concluded that this improved method can be used to directly detect and quantify all classes of ceramides in the SC of nude mouse skin and that it is more convenient and labor-saving than the traditional TLC method.

  1. Determination of alkenes in cracking products by normal-phase high-performance liquid chromatography-diode array detection.

    PubMed

    Tomić, Tatjana; Babić, Sandra; Nasipak, Nada Uzorinac; Ruszkowski, Maja Fabulić; Skrobonja, Livijana; Kastelan-Macan, Marija

    2009-05-01

    Alkene content determinations in fluid catalytic cracking (FCC) liquid products were performed by means of normal-phase high-performance liquid chromatography (NP-HPLC) with diode array detection (UV/DAD). Separation of alkenes from aromatic hydrocarbons was performed on amino-modified silica gel column with n-heptane as mobile phase. The column has a little affinity to alkenes and saturated hydrocarbons and a pronounced affinity to aromatic compounds. The problem of alkenes and saturates co-elution on this column type was overcome with the detection system, UV/DAD, sensitive and selective to alkenes, while saturates are inactive in UV field. Total alkene content was determined as a sum of mono- and dialkene groups quantified by external standard method. Validation and verification of the developed method proved their applicability. The following criteria were used to validate the HPLC-DAD method: selectivity, linearity, precision, limits of detection and quantification. Alkene contents were quantified with the external standard method of wide calibration range, so both low and high alkene contents can be determined by the single calibration. Correlation coefficients were higher than 0.99. Precision was evaluated as repeatability and intermediary precision with relative standard deviations less than 5%. Some structural investigation of alkene groups was performed to confirm the assumption. Proposed method was compared with certified NMR method. Six commercial motor gasoline samples were analyzed by these two methods. Obtained results indicate good agreement between alkene content determined by both methods. The developed method was applied to the determination of alkene content in liquid FCC products in the boiling range from 70 degrees C to 190 degrees C.

  2. Preparation and characterization of neutral poly(ethylene glycol) methacrylate-based monolith for normal phase liquid chromatography.

    PubMed

    Li, Yun; Lee, Milton L; Jin, Jing; Chen, Jiping

    2012-09-15

    A novel porous poly(ethylene glycol) methacrylate-based monolithic column for normal phase liquid chromatography was prepared by thermally initiated polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and ethylene dimethacrylate (EDMA) in the presence of selected porogens. The monolith was macroscopically homogeneous, had low flow resistance, and did not swell or shrink significantly in solvents of different polarities. Inverse size-exclusion data indicate that the monolith had a total porosity of 79.2%, including an external porosity of 69.3% and an internal porosity of 9.9%. Due to its mild polarity (hydrophilicity), the PEG-functionalized monolith could perform traditional normal phase chromatography using non-polar solvents The van Deemter plot demonstrated that the column efficiency of 33,600-34,320 theoretical plates/m could be achieved at a linear flow velocity of 0.9-1.5mm/s. The dual retention capability (both weak hydrophilic and hydrophobic interactions) investigated in this paper explains well why the PEG-functionalized monolith could operate in various chromatographic modes.

  3. Quantitation of a de-fluorinated analogue of casopitant mesylate by normal-phase liquid chromatography/mass spectrometry.

    PubMed

    Dams, Riet; Bernabe, Elena; Nicoletti, Anna; Loda, Claudio; Martini, Luca; Papini, Damiano

    2010-09-15

    The introduction of Quality by Design (QbD) in Drug Development has resulted in a greater emphasis on chemical process understanding, in particular on the origin and fate of impurities. Therefore, the identification and quantitation of low level impurities in new Active Pharmaceutical Ingredients (APIs) play a crucial role in project progression and this has created a greater need for sensitive and selective analytical methodology. Consequently, scientists are constantly challenged to look for new applications of traditional analytical techniques. In this context a normal-phase liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method was developed to determine the amount of a de-fluorinated analogue impurity in Casopitant Mesylate, a new API under development in GlaxoSmithKline, Verona. Normal-phase LC provided the selectivity needed between our target analyte and Casopitant, while a single quadrupole mass spectrometer was used to ensure the sensitivity needed to detect the impurity at <0.05%w/w. Standard solutions and samples were prepared in heptane/ethanol (50:50, v/v) containing 1% of 2 M NH(3) in ethanol; the mobile phase consisted of heptane/ethanol (95:5, v/v) with isocratic elution (flow rate: 1.0 mL/min, total run time: 23 min). To allow the formation of ions in solutions under normal-phase (apolar) conditions, a post-column infusion of a solution of 0.1% v/v of formic acid in methanol was applied (flow rate: 200 microL/min). The analysis was carried out in positive ion mode, monitoring the impurity by single ion monitoring (SIM). The method was fully validated and its applicability was demonstrated by the analysis of real-life samples. This work is an example of the need for selective and accurate methodology during the development of a new chemical entity in order to develop an appropriate control strategy for impurities to ultimately ensure patient safety. Copyright 2010 John Wiley & Sons, Ltd.

  4. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences.

  5. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine.

    PubMed

    Zhang, Tong; Creek, Darren J; Barrett, Michael P; Blackburn, Gavin; Watson, David G

    2012-02-21

    In this study, we assessed three liquid chromatographic platforms: reversed phase (RP), aqueous normal phase (ANP), and hydrophilic interaction (HILIC) for the analysis of polar metabolite standard mixtures and for their coverage of urinary metabolites. The two zwitterionic HILIC columns showed high-quality chromatographic performance for metabolite standards, improved separation for isomers, and the greatest coverage of polar metabolites in urine. In contrast, on the reversed phase column, most metabolites eluted very rapidly with little or no separation. Using an Exactive Orbitrap mass spectrometer with a HILIC liquid chromatographic platform, approximately 970 metabolite signals with repeatable peak areas (relative standard deviation (RSD) ≤ 25%) could be putatively identified in human urine, by elemental composition assignment within a 3 ppm mass error. The ability of the methodology for the verification of nonmolecular ions, which arise from adduct formation, and the possibility of distinguishing isomers could also be demonstrated. Careful examination of the raw data and the use of masses for predicted metabolites produced an extension of the metabolite list for human urine.

  6. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals.

    PubMed

    Panfili, Gianfranco; Fratianni, Alessandra; Irano, Mario

    2003-07-02

    The eight vitamers of vitamin E (alpha-, beta-, gamma-, and delta-tocopherols and -tocotrienols) have different antioxidant and biological activities and have different distributions in foods. Some cereals, especially oat, rye, and barley, are good sources of tocotrienols. A fast procedure for the determination of tocopherols and tocotrienols (tocols) in cereal foods was developed. It involves sample saponification and extraction followed by normal phase high-performance liquid chromatography (HPLC). The results have been compared with those found by direct extraction without saponification. The method is sensitive and selective enough to be tested on a wide variety of cereal samples. The highest tocol levels were found in soft wheat and barley ( approximately 75 mg/kg of dry weight). beta-Tocotrienol is the main vitamer found in hulled and dehulled wheats (from 33 to 43 mg/kg of dry weight), gamma-tocopherol predominates in maize (45 mg/kg of dry weight) ), and alpha-tocotrienol predominates in oat and barley (56 and 40 mg/kg of dry weight, respectively).

  8. Proanthocyanidins in wild sea buckthorn (Hippophaë rhamnoides) berries analyzed by reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography with UV and MS detection.

    PubMed

    Kallio, Heikki; Yang, Wei; Liu, Pengzhan; Yang, Baoru

    2014-08-06

    A rapid and sensitive method for profiling of proanthocyanidins (PAs) of sea buckthorn (Hippophaë rhamnoides) berries was established based on aqueous, acidified acetone extraction. The extract was purified by Sephadex column chromatography and analyzed using reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography (HILIC). Negative ion electrospray ionization mass spectrometry (ESI-MS) in single ion recording (SIR) and full scan modes combined with UV detection were used to define the combinations and ratios of PA oligomer classes. PAs with degree of polymerization from 2 to 11 were detected by HILIC-ESI-MS. Quantification of dimeric, trimeric, and tetrameric PAs was carried out with ESI-MS-SIR, and their molar proportions were 40, 40, and 20%, respectively. Only B-type PAs were found, and (epi)gallocatechins were the main monomeric units. More than 60 combinations of (epi)catechins and (epi)gallocatechins of proanthocyanidin dimers and trimers were found. A majority of the PAs were shown to be higher polymers based on the HILIC-UV analysis.

  9. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase.

    PubMed

    Zhao, Wei-Wei; Zhang, Chao-Yan; Yan, Zeng-Guang; Bai, Li-Ping; Wang, Xiayan; Huang, Hongliang; Zhou, You-Ya; Xie, Yabo; Li, Fa-Sheng; Li, Jian-Rong

    2014-11-28

    Metal-organic frameworks (MOFs) have great potential for applications in chromatography due to their highly tailorable porous structures and unique properties. In this work, the stable MOF UiO-66 was evaluated as both a normal-phase (NP-) and a reverse-phase (RP-) stationary phase in the high performance liquid chromatography (HPLC) to separate substituted benzenes (SBs) and polycyclic aromatic hydrocarbons (PAHs). It was found that the mobile phase composition has a significant effect on the HPLC separation. Baseline RP-HPLC separations of xylene isomers; naphthalene and anthracene; naphthalene and chrysene; and naphthalene, fluorene, and chrysene were achieved using MeOH/H2O ratios of 80:20, 75:25, 85:15, and 75:25, respectively, on the UiO-66 column. Similarly, baseline NP-HPLC separations of xylene isomers and ethylbenzene; ethylbenzene, styrene, o-xylene, and m-xylene; and several PAHs were also obtained on the UiO-66 column with different mobile phase compositions. The relative standard deviations (RSDs) of retention time, peak height, peak area, and half peak width for five replicate separations of the tested analytes were within the ranges 0.2-0.4%, 0.2-1.6%, 0.7-3.9%, 0.4-1.1%, respectively. We also evaluated other critical HPLC parameters, including injected sample mass, column temperature, and the thermodynamic characters of both the RP-HPLC and the NP-HPLC separation processes. It was confirmed that the separation of SBs on a UiO-66 column was an exothermic process, controlled by both enthalpy change (ΔH) and entropy change (ΔS). The reverse shape selectivity, size selectivity, stacking effect, and electrostatic force played vital roles in the separations of these analytes. To the best of our knowledge, this method is one of the very few examples of using MOFs as the stationary phase in both NP-HPLC and RP-HPLC. MOF-based stationary phases may thus be applied in the separations and analyses of SBs and PAHs in environmental samples.

  10. Sliding Luttinger liquid phases

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Kane, C. L.; Lubensky, T. C.

    2001-07-01

    We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T-->0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

  11. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  12. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  13. Application of Diol column under adsorption and mixed partition-adsorption normal-phase liquid chromatography mode for the separation of purines and pyrimidines.

    PubMed

    Kazoka, H

    2008-05-02

    The diol-bonded phase (column LiChrospher 100 Diol) has been studied for the separation of some purines and pyrimidines under normal-phase liquid chromatography (NPLC) conditions. Retention time, column efficiency, and selectivity of column with diol-phase were compared to those of unmodified silica (column LiChrospher SI-60). It was established that under adsorption NPLC mode application of diol-phase can reduce the separation time and a little improve the column efficiency. Significant improvement of the column efficiency for polar solutes is observed if mixed partition-adsorption NPLC mode is used. The investigation has shown that application of diol-phase instead of bare silica is useful not only under adsorption, but also under mixed partition-adsorption mode if the system with specific selectivity is necessary.

  14. Determination of zafirlukast, a selective leukotriene antagonist, human plasma by normal-phase high-performance liquid chromatography with fluorescence detection.

    PubMed

    Bui, K H; Kennedy, C M; Azumaya, C T; Birmingham, B K

    1997-08-15

    A high-performance liquid chromatographic (HPLC) method was developed for the determination of zafirlukast, a selective peptide leukotriene receptor antagonist, in human plasma. Zafirlukast and the internal standard, ICI 198 707, were extracted from deproteinated plasma samples using large reservoir C18 solid-phase extraction columns and analyzed by normal-phase liquid chromatography with fluorescence detection. The method had a lower limit of quantitation of 0.75 ng/ml and a linear calibration curve in the range of 0.75 to 200 ng/ml. The absolute recovery of zafirlukast was > 90%, and the within-day and between-day relative standard deviations were < 9%. The utility of the method in the characterization of the plasma concentration-time profiles of zafirlukast in clinical studies was demonstrated.

  15. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  16. Determination of famotidine in low-volume human plasma by normal-phase liquid chromatography/tandem mass spectrometry.

    PubMed

    Zhong, L; Eisenhandler, R; Yeh, K C

    2001-07-01

    A rapid, sensitive and robust assay procedure using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the determination of famotidine in human plasma and urine is described. Famotidine and the internal standard were isolated from plasma samples by cation-exchange solid-phase extraction with benzenesulfonic acid (SCX) cartridges. The urine assay used direct injection of a diluted urine sample. The chromatographic separation was accomplished by using a BDS Hypersil silica column with a mobile phase of acetonitrile-water containing trifluoroacetic acid. The MS/MS detection of the analytes was set in the positive ionization mode using electrospray ionization for sample introduction. The analyte and internal standard precursor-product ion combinations were monitored in the multiple-reaction monitoring mode. Assay calibration curves were linear in the concentration range 0.5--500 ng ml(-1) and 0.05--50 microg ml(-1) in plasma and urine, respectively. For the plasma assay, a 100 microl sample aliquot was subjected to extraction. To perform the urine assay, a 50 microl sample aliquot was used. The intra-day relative standard deviations at all concentration levels were <10%. The inter-day consistency was assessed by running quality control samples during each daily run. The limit of quantification was 0.5 ng ml(-1) in plasma and 0.05 microg ml(-1) in urine. The methods were utilized to support clinical pharmacokinetic studies in infants aged 0-12 months.

  17. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography.

    PubMed

    Flakelar, Clare L; Prenzler, Paul D; Luckett, David J; Howitt, Julia A; Doran, Gregory

    2017-01-01

    A normal phase high performance liquid chromatography (HPLC) method was developed to simultaneously quantify several prominent bioactive compounds in canola oil vis. α-tocopherol, γ-tocopherol, δ-tocopherol, β-carotene, lutein, β-sitosterol, campesterol and brassicasterol. The use of sequential diode array detection (DAD) and tandem mass spectrometry (MS/MS) allowed direct injection of oils, diluted in hexane without derivatisation or saponification, greatly reducing sample preparation time, and permitting the quantification of both free sterols and intact sterol esters. Further advantages over existing methods included increased analytical selectivity, and a chromatographic run time substantially less than other reported normal phase methods. The HPLC-DAD-MS/MS method was applied to freshly extracted canola oil samples as well as commercially available canola, palm fruit, sunflower and olive oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of an on-line coupling of liquid-liquid extraction, normal-phase liquid chromatography and high-resolution gas chromatography producing an analytical marker for the prediction of mutagenicity and carcinogenicity of bitumen and bitumen fumes.

    PubMed

    Blomberg, J; de Groot, P C; Brandt, H C; van der Does, J J; Schoenmakers, P J

    1999-07-23

    A fast and fully automated system for the determination of polycyclic aromatic compounds (PACs) is described. The system has been developed to produce an analytical 'marker', correlating chemical characteristics (including PAC analysis) with mutagenicity and carcinogenicity. The products of interest are bitumen fumes, bitumen and other (heavy or even residual) oil products, regardless of their boiling range. Dimethyl sulphoxide (DMSO) extractables obtained from a flow-injection analysis (FIA) system are introduced on-line in a normal-phase liquid chromatographic (NPLC) system. Here, the PACs are separated from the DMSO and possible co-extracted heavy residual species. The final step incorporates on-line gas chromatographic analysis of the three-to-six-ring PAC fraction, followed by flame-ionisation detection for quantification. It was demonstrated that data obtained from samples in the distillate lubrication-oil range correlate well with data obtained from the manual DMSO-extraction method standardised by the Institute of Petroleum as IP346.

  19. Analysis of oil-biodiesel samples by high performance liquid chromatography using the normal phase column of new generation and the evaporative light scattering detector.

    PubMed

    Fedosov, Sergey N; Fernandes, Natalia A; Firdaus, Mohd Y

    2014-01-24

    Conversion of vegetable oil to biodiesel is usually monitored by gas chromatography. This is not always convenient because of (i) an elaborate derivatization of the samples; (ii) inhibition of this process by methanol and water; (iii) low stability of the derivatives under storage. HPLC methods are apparently more convenient, but none of the described variants had won a wide recognition so far. This can be ascribed to the problems of reproducibility (in the case of normal phase chromatography) and limited separation of some analytes (in the case of reverse phase chromatography). Here we report an HPLC procedure suitable for separation of biodiesel, free fatty acids, glycerides, glycerol and lecithin. The normal phase column of new generation (Poroshell 120 HILIC) and the novel gradient were used. The method was tested on both the artificial mixtures and the crude reaction samples. Elution of the analytes was monitored by an evaporative light scattering detector. This method is usually confined to a very limited range of masses, where only a part of the complex calibration curve is used. We have analyzed the light scattering signal within a very broad range of masses, whereupon the calibration curves were produced. The data were approximated by the appropriate equations used afterward to recalculate the signal to the mass in a convenient way. An experimental conversion of rapeseed oil to biodiesel was performed by a liquid lipase formulation. This process was monitored by HPLC to illustrate advantages of the suggested registration method.

  20. Analysis of the enantiomers of VX using normal-phase chiral liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Smith, J R

    2004-01-01

    The chemical warfare nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) is a mixture of two enantiomers resulting from the chiral center at the phosphorus atom. Significant differences exist in the reported toxicity and acetylcholinesterase inhibition rates of the two enantiomers. This makes the ability to distinguish between them desirable for either toxicological studies or the development of antidotal therapies. Using a Chiralcel OD-H column with normal-phase liquid chromatography, the enantiomers were baseline resolved in less than 7 min. Atmospheric pressure chemical ionization was utilized as the interface between a liquid chromatograph and mass spectrometer. The mass spectra of the two enantiomers were virtually identical. The protonated molecule was readily observed at m/z 268. VX was incubated with human plasma for 13 min, followed by hexane extraction. The areas of the first and second eluting VX enantiomers decreased by approximately 40% and 6%, respectively, when compared with VX-spiked plasma samples that were not allowed an incubation phase. Currently, research by others has been directed towards the identification, isolation, and possible modification of enzymes capable of hydrolyzing VX. The method presented here provides an analytical tool capable of monitoring the stereospecificity of enzymes that react with VX.

  1. Highly sensitive and rapid normal-phase chiral screen using high-performance liquid chromatography-atmospheric pressure ionization tandem mass spectrometry (HPLC/MS).

    PubMed

    de la Puente, María Luz

    2004-11-05

    In the last years, there has been an increasing demand on the development of quantitative assays for determination of enantiopurity. Herein, we present a methodology based on a direct linking of an atmospheric pressure ionization mass spectrometer (MS-APCI) with a high-performance liquid chromatography HPLC (DAD) system, operated under normal-phase mode and without post-column addition of MS-compatible solvents, which provides the high specificity/selectivity (identification of isomers in complex mixtures) and accuracy (1-2% area level) required for daily chiral studies. As result of the success of our screen, the preparation of individual enantiomers or the racemic mixture in our Drug Discovery Research Laboratories at Lilly, Spain is usually not required. Therefore, additional non-valuable synthetic work is eliminated.

  2. Enantioselective determination of cetirizine in human plasma by normal-phase liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Kang, Seung Woo; Jang, Hae Jong; Moore, Victor S; Park, Ji-Young; Kim, Kyoung-Ah; Youm, Jeong-Rok; Han, Sang Beom

    2010-12-15

    A highly sensitive and enantioselective method has been developed and validated for the determination of levocetirizine [(R)-cetirizine] in human plasma by normal-phase liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization (APCI) interface in the positive ion mode. Enantioselective separation was achieved on a CHIRALPAK AD-H column using an isocratic mobile phase consisting of a mixture of n-hexane, ethyl alcohol, diethylamine, and acetic acid (60:40:0.1:0.1, v/v/v/v). Levocetirizine-D(8) was used as an internal standard (IS). Levocetirizine and the IS were detected by multiple-reaction monitoring (MRM). Mass transitions of analyte and IS were m/z 389.2→201.1 and 397.2→201.1, respectively. Under optimized analytical conditions, a baseline separation of two enantiomers and IS was obtained in less than 11 min. Samples were prepared by a simple two-step extraction by protein precipitation using acetonitrile followed by liquid-liquid extraction with a n-hexane-dichloromethane mixture (50:50, v/v). The standard curve for levocetirizine was linear (r(2)>0.995) in the concentration range 0.5-300 ng/mL. Recovery was between 97.0 and 102.2% at low, medium, and high concentration. The limit of quantification (LOQ) was 0.5 ng/mL. Other method validation parameters, such as precision, accuracy, and stability, were very satisfactory. Finally, the proposed method was successfully applied to the study of enantioselective oral pharmacokinetics of levocetirizine in healthy Korean volunteers.

  3. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole.

  4. Analysis of normal and modified nucleosides in urine samples by high-performance liquid chromatography with different stationary phases.

    PubMed

    Studzińska, S; Buszewski, Bogusław

    2014-08-01

    The main aim of the present work was to study the retention behavior and quantification of nine nucleosides with the use of octadecyl, alkylamide, cholesterol and alkyl-phosphate stationary phases. The influence of organic solvent and buffer concentration on the separation of these compounds was under investigation. The retention factor had the highest values for the octadecyl and cholesterol packing materials. Complete separation of all the studied nucleosides was achieved in case of cholesterol stationary phase. The optimized separation method was applied for the quantification of nucleosides in the urine samples. Calibration plots showed good linearity (R(2) > 0.999) and the limits of detection were in a range of 0.3-0.5 µg/mL, while the limits of quantitation were >0.9 µg/mL. Accuracy was in the range of 5-11%. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.

    PubMed

    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu

    2002-01-01

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  6. Coal liquefaction process streams characterization and evaluation: High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection

    SciTech Connect

    Clifford, D.J.; McKinney, D.E.; Hou, Lei; Hatcher, P.G.

    1994-01-01

    This study demonstrated the considerable potential of using two-dimensional, high performance liquid chromatography (HPLC) with normal-phase separation and ultraviolet (UV) diode array detection for the examination of filtered process liquids and the 850{degrees}F{sup {minus}} distillate materials derived from direct coal liquefaction process streams. A commercially available HPLC column (Hypersil Green PAH-2) provided excellent separation of the complex mixture of polynuclear aromatic hydrocarbons (PAHs) found in coal-derived process streams process. Some characteristics of the samples delineated by separation could be attributed to processing parameters. Mass recovery of the process derived samples was low (5--50 wt %). Penn State believes, however, that, improved recovery can be achieved. High resolution mass spectrometry and gas chromatography/mass spectrometry (GC/MS) also were used in this study to characterize the samples and the HPLC fractions. The GC/MS technique was used to preliminarily examine the GC-elutable portion of the samples. The GC/MS data were compared with the data from the HPLC technique. The use of an ultraviolet detector in the HPLC work precludes detecting the aliphatic portion of the sample. The GC/MS allowed for identification and quantification of that portion of the samples. Further development of the 2-D HPLC analytical method as a process development tool appears justified based on the results of this project.

  7. Normal phase-liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization for the purity assessment of 17β-estradiol.

    PubMed

    Josephs, Ralf Dieter; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert Ian

    2015-04-01

    A normal phase-liquid chromatography-hybrid tandem mass spectrometry (NP-LC-MS/MS) method utilizing atmospheric pressure photoionization (APPI) without dopant has been developed and implemented for the simultaneous determination of several estrogenic steroid hormones. The combination of both NP-LC and APPI-MS/MS tolerates the use of solvents that have the advantages of being self-doping for APPI and, at the same time, inhibit the in situ formation of estrogen dimers as frequently observed for conventional reversed phase (RP)-LC methods. The NP-LC-APPI-MS/MS method has been validated in-house, and its performance characteristics (linearity, repeatability, limits of detection, etc.) were assessed for use in the quantification of estrogens. Moreover, the method was used to characterize and determine the inherent related structure impurities in batches of β-estradiol, required for the establishment of reference measurement systems for clinical chemistry and laboratory medicine, which served as candidate reference material for an organic purity assessment interlaboratory study (CCQM-K55.a) organized by the International Bureau of Weights and Measures (BIPM) Chemistry Department and carried out within the framework of the Organic Analysis Working Group (OAWG) of the Consultative Committee for Amount of Substance-Metrology in Chemistry (CCQM).

  8. Quantum chemical approach in the description of the amphiphile clusterization at the air/liquid and liquid/liquid interfaces with phase nature accounting. I. Aliphatic normal alcohols at the air/water interface.

    PubMed

    Vysotsky, Yuri B; Belyaeva, Elena A; Kartashynska, Elena S; Fainerman, Valentine B; Smirnova, Natalia A

    2015-02-19

    A new model based on the quantum chemical approach is proposed to describe structural and thermodynamic parameters of clusterization for substituted alkanes at the air/liquid and liquid/liquid interfaces. The new model by the authors, unlike the previous one, proposes an explicit account of the liquid phase (phases) influence on the parameters of monomers, clusters and monolayers of substituted alkanes at the regarded interface. The calculations were carried out in the frameworks of the quantum chemical semiempirical PM3 method (Mopac 2012), using the COSMO procedure. The new model was tested in the calculations of the clusterization parameters of fatty alcohols under the standard conditions at the air/water interface. The enthalpy, Gibbs' energy and absolute entropy of formation for alcohol monomers alongside with clusterization parameters for the cluster series including the monolayer at air/water interface were calculated. In our calculations the sinkage of monomers, molecules in clusters and monolayers was varied from 1 up to 5 methylene groups. Thermodynamic parameters calculated using the proposed model for the alcohol monolayers are in a good agreement with the corresponding experimental data. However, the proposed model cannot define the most energetically preferable immersion of the monolayer molecules in the water phase.

  9. Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry.

    PubMed

    Uran, S; Larsen, A; Jacobsen, P B; Skotland, T

    2001-07-15

    A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes in human blood. The separation was obtained using an HPLC diol column and a gradient of chloroform and methanol with 0.1% formic acid, titrated to pH 5.3 with ammonia and added 0.05% triethylamine. The HPLC system was coupled on-line with an electrospray ionisation ion-trap mass spectrometer. Chromatographic baseline separation was obtained between phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, lyso-phosphatidylcholine, phosphatidylinositol and phosphatidylserine, eluting in that order. The total run time was 30 min. Plasmalogen phosphatidylethanolamine and sphingomyelin, which both are substances with structural similarities to the glycerophospholipids, had similar retention time as phosphatidylethanolamine, but were well separated from the other glycerophospholipid classes. The species from each class were identified using MS2 or MS3, which forms characteristic lyso-fragments. The combination of lyso-fragment mass, molecular ion and chromatographic retention time was used to identify each species, including 20 species of phosphatidylglycerol. The mass spectra obtained for the phospholipid classes are presented. Using this system 17 disaturated phospholipid species not earlier described to be present in blood were identified. The limit of detection varied between different phospholipid classes and was in the range 0.1-5 ng of injected substance.

  10. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-05

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    ERIC Educational Resources Information Center

    Schaber, Peter M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  12. Normal-Phase Open Column versus Reversed-Phase High Performance Liquid Chromatography: Separation of Chlorophyll a and Chlorophyll b from their Diastereomers.

    ERIC Educational Resources Information Center

    Schaber, Peter M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment involving the separation of chlorophyll a and chlorophyll b from their diastereomers. Reasons why the experiment can be easily integrated into most laboratory curricula where high-performance liquid chromatography capabilities exist are given. (JN)

  13. Specific detection and quantification of palmitoyl-stearoyl-phosphatidylserine in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry.

    PubMed

    Hvattum, E; Larsen, A; Uran, S; Michelsen, P M; Skotland, T

    1998-09-25

    A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes using an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 5.3 with ammonia. The HPLC system was coupled on-line with an electrospray mass spectrometry (ES-MS) or electrospray tandem mass spectrometry (ES-MS-MS) system and the separation of several major phospholipid classes was shown. The molecular species of some phospholipid classes in human blood were qualitatively determined. A method was further developed for specific determination of a molecular species from phosphatidylserine, palmitoyl-stearoyl-phosphatidylserine (PSPS), in human blood using HPLC-ES-MS. The analyses were performed by single ion monitoring of the [M-H]- molecular ions of PSPS and an internal standard, dipalmitoyl-phosphatidylserine. The limit of quantification of the method was 1.2 ng of PSPS. The calibration curve ranged from 0.12 to 5.81 microg/ml of PSPS dissolved in the mobile phase. The curve was fitted to a second-order polynomial equation and found to be highly reproducible. Analysis of control samples was found to be reproducible with a between-series precision below 9.2% R.S.D. The amount of endogenous PSPS in human blood was determined in 13 subjects and found to range from 1.73 to 3.09 microg/ml. The identity of endogenous PSPS was confirmed by HPLC-ES-MS-MS.

  14. Quantification of phosphatidylserine, phosphatidic acid and free fatty acids in an ultrasound contrast agent by normal-phase high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Hvattum, Erlend; Uran, Steinar; Sandbaek, Anne Gunvor; Karlsson, Anders A; Skotland, Tore

    2006-10-11

    Sonazoid is a new contrast agent for ultrasound imaging. The product is an aqueous suspension of perfluorobutane microbubbles coated with phospholipids obtained from hydrogenated egg phosphatidylserine (H-EPS). A normal-phase high-performance liquid chromatographic (HPLC) method with evaporative light scattering detection was developed for quantification of free fatty acids, phosphatidylserine and phosphatidic acid in H-EPS and Sonazoid. Separation of the lipids was carried out on an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 7.5 with ammonia. The calibration standards contained stearic acid, distearoyl-phosphatidic acid (DSPA) and distearoyl-phosphatidylserine (DSPS) in the concentration range of 0.016-1.0mg/ml (0.4-25microg injected). The method was validated with a limit of quantification of the three lipids set to 0.4microg (approximately 20-60microM). The best fit of the three calibration curves were obtained when the logarithmic transformed theoretical lipid concentration was plotted against the logarithmic transformed area under the peak and fitted to a second order polynomial equation. Stearic acid, DSPA and DSPS were analysed with an intermediate precision ranging from 4.4% to 5.3% R.S.D. and they were extracted from an aqueous suspension with a recovery ranging from 103.3% to 113.3%. The sum of total phospholipid concentration determined in H-EPS ranged from 96.4% to 103.2% of the theoretical values. The lipids in the ultrasound product were quantitated with a repeatability ranging from 6.2% to 11.7% R.S.D.

  15. Simultaneous Analysis of Tertiary Butylhydroquinone and 2-tert-Butyl-1,4-benzoquinone in Edible Oils by Normal-Phase High-Performance Liquid Chromatography.

    PubMed

    Li, Jun; Bi, Yanlan; Liu, Wei; Sun, Shangde

    2015-09-30

    During the process of antioxidation of tertiary butylhydroquinone (TBHQ) in oil and fat systems, 2-tert-butyl-1,4-benzoquinone (TQ) can be formed. The toxicity of TQ was much more than that of TBHQ. In the work, a normal-phase high-performance liquid chromatography (NP-HPLC) method for the accurate and simultaneous detection of TBHQ and TQ in edible oils was investigated. A C18 column was used to separate TBHQ and TQ, and the gradient elution solutions consisted of n-hexane containing 5% ethyl acetate and n-hexane containing 5% isopropanol. The ultraviolet (UV) detector was set at dual wavelength mode (280 nm for TBHQ and 310 nm for TQ). The column temperature was 30 °C. Before the NP-HPLC analysis, TBHQ and TQ were first extracted by methanol, subjected to vortex treatment, and then filtered through a 0.45 μm membrane filter. Results showed that linear ranges of TBHQ and TQ were both within 0.10-500.00 μg/mL (R(2) > 0.9999). The limit of detection (LOD) and limit of quantification (LOQ) of TBHQ and TQ were below 0.30 and 0.91 μg/mL and below 0.10 and 0.30 μg/mL, respectively. The recoveries of TBHQ and TQ were 98.92-102.34 and 96.28-100.58% for soybean oil and 96.11-99.42 and 98.83-99.24% for lard, respectively. These results showed that NP-HPLC can be successfully used to analyze simultaneously TBHQ and TQ in the oils and fats.

  16. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.

    PubMed

    Farwanah, Hany; Wirtz, Jennifer; Kolter, Thomas; Raith, Klaus; Neubert, Reinhard H H; Sandhoff, Konrad

    2009-10-01

    Many lipidomic approaches focus on investigating aspects of sphingolipid metabolism. Special emphasis is put on neutral sphingolipids and cholesterol and their interaction. Such an interest is attributed to the fact that those lipids are altered in a series of serious disorders including various sphingolipidoses. High performance thin-layer chromatography (HPTLC) has become a widely used technique for lipid analysis. However, mass spectrometric profiling is irreplaceable for gaining an overview about the various molecular species within a lipid class. In this work we have developed a sensitive method based on a gradient normal phase high performance liquid chromatography (HPLC) coupled to quadrupole time of flight (QTOF) atmospheric pressure chemical ionization mass spectrometry (APCI-MS) in positive mode, which for the first time enables separation, on-line detection, and mass spectrometric profiling of multiple neutral sphingolipids including ceramide, glucosylceramide, lactosylceramide, globotriaosylceramide, globotetraosylceramide, sphingomyelin as well as cholesterol within less than 15min. An important advantage of the presented HPLC/APCI-MS approach is that the separation pattern emulates the one obtained by an optimized HPTLC method with a multiple stage development. Thus, the lipid classes previously separated and quantified by HPTLC can be easily screened regarding their mass spectrometric profiles by HPLC/APCI-MS. In addition, the selected ionization conditions enable in-source fragmentation providing useful structural information. The methods (HPLC/APCI-MS and the optimized HPTLC) were applied for the analysis of the mentioned lipids in human fibroblasts. This approach is aimed basically at investigators who perform studies based on genetic modifications or treatment with pharmacological agents leading to changes in the biochemical pathways of neutral sphingolipids and cholesterol. In addition, it can be of interest for research on disorders related to

  17. Migration of lubricants from food packagings. Screening for lipid classes and quantitative estimation using normal-phase liquid chromatographic separation with evaporative light scattering detection.

    PubMed

    Schaefer, A; Küchler, T; Simat, T J; Steinhart, H

    2003-10-31

    A normal-phase high-performance liquid chromatography (NP-HPLC) method is introduced for the identification and quantitative estimation of 12 lipid classes (paraffin, wax esters, cholesterol esters, fatty acid methyl esters, triacyl glycerols, fatty alcohols, free fatty acids, cholesterol, 1,3-diacyl glycerols, 1,2-diacyl glycerols, monoacyl glycerols and fatty acid amide) used as lubricantsin food packaging materials. The HPLC separation is carried out on a LiChrospher Diol (100 A, 5 microm, 125 mm x 3 mm) column with gradient elution (isooctane/0.1% acetic acid in tert-butyl methyl ether) and evaporative light scattering detection (ELSD). The method has been calibrated with representatives of each class in working ranges of about 5-150 mg/l, depending on the lipid class. Intra-day variance for all representatives range from 1.9 to 5.1%, inter-day variances from 7.0 to 26.5% and the limits of detection from 0.79 to 3.65 mg/l (except for two classes). A simple sample preparation could be established for the determination of migrating lubricants obtained from packaging materials containing external or internal lubricants. Since the detector response depends on the chain length and the degree of saturation, the quantification of a lipid class with unknown composition is only semi-quantitative. The amount of migrating lubricants from an epoxy-based can coating could be estimated with 0.3 mg/dm2 and from a light weight container with 5.5 mg/dm2.

  18. Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Industry spends billions of dollars each year on machine tools to manufacture products out of metal. This includes tools for cutting every kind of metal part from engine blocks to Shuttle main engine components. Cutting tool tips often break because of weak spots or defects in their composition. Based on a new concept called defect trapping, space offers a novel environment to study defect formation in molten metal materials as they solidify. After the return of these materials from space, researchers can evaluate the source of the defect and seek ways to eliminate them in products prepared on Earth. A widely used process for cutting tip manufacturing is liquid phase sintering. Compared to Earth-sintered samples which slump due to buoyancy induced by gravity, space samples are uniformly shaped and defects remain where they are formed. By studying metals sintered in space the US tool industry can potentially enhance its worldwide competitiveness. The Consortium for Materials Development in Space along with Wyle Labs, Teledyne Advanced Materials, and McDornell Douglas have conducted experiments in space.

  19. PHASE CHANGE LIQUIDS

    SciTech Connect

    Susan S. Sorini; John F. Schabron

    2006-03-01

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  20. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  1. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  2. Dense Nonaqueous Phase Liquids

    EPA Pesticide Factsheets

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  3. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  4. Preparation and kinetic performance assessment of thick film 10-20 μm open tubular silica capillaries in normal phase high pressure liquid chromatography.

    PubMed

    Forster, Simon; Kolmar, Harald; Altmaier, Stephan

    2013-11-08

    It is well-known that the open tubular column design basically can offer very high plate numbers. Experimental realization has however not kept pace with theoretical considerations, lacking efficient methods for the deposition of a thick film porous layer within a microbore capillary. A previously published sol-gel synthesis method was extended from 20 μm to 10 μm inner diameter fused silica capillaries and the resulting columns were compared to a monolithic reference capillary in terms of kinetic performance at pressure maximum. Column permeability was investigated and pressure/flow-diagrams were obtained with a 400-fold permeability gain for the open tubes. Structural characterizations regarding layer thickness and surface porosity were carried out and displayed via scanning electron microscopy and nitrogen sorption analysis. Chromatographic results in normal phase mode at elevated mobile phase flow rate reveal the intrinsic performance potential of this column format when it comes to kinetic performance limitation plots, which were constructed for all columns prepared and compared to the monolithic silica reference capillary.

  5. Stereoselective determination of a novel chiral insecticide, sulfoxaflor, in brown rice, cucumber and apple by normal-phase high-performance liquid chromatography.

    PubMed

    Chen, Zenglong; Dong, Fengshou; Xu, Jun; Liu, Xingang; Cheng, Youpu; Liu, Na; Tao, Yan; Zheng, Yongquan

    2014-02-01

    An effective high-performance liquid chromatography method was developed for the stereoselective determination of a new sulfoximines insecticide, sulfoxaflor, in brown rice, cucumber and apple. Target compounds were extracted with acetonitrile and an aliquot cleaned with Cleanert PestiCarb/PSA (primary and secondary amine) cartridge. Five polysaccharide-based columns were investigated on the separation of sulfoxaflor stereoisomers and the best was achieved on a ChromegaChiral CCA column with n-hexane/ethanol/methanol (90:2:8, v/v/v) as mobile phase by UV detection at 220 nm at 20ºC. The resolutions of the four stereoisomers were 1.85, 1.54 and 3.08, and the elution order was identified by optical rotation and stereoisomers ratio. The mean recoveries of sulfoxaflor stereoisomers ranged from 77.1% to 99.3%, with relative standard deviations less than 8.9% at three concentration levels in all matrices. The limits of detection for all stereoisomers varied from 0.05 mg/kg to 0.07 mg/kg, while the limit of quantification did not exceed 0.22 mg/kg. The method was then successfully applied to determine the sulfoxaflor stereoisomers in authentic samples, confirming that it is convenient and reliable for stereoselective determination of sulfoxaflor stereoisomers in food.

  6. Separation and molecular characterization of mycolic acid from the cell wall skeleton of Mycobacterium bovis BCG Tokyo 172 (SMP-105) and BCG substrains by normal-phase high performance liquid chromatography and liquid chromatography/mass spectrometry.

    PubMed

    Uenishi, Yuko; Takii, Takemasa; Yano, Ikuya; Sunagawa, Makoto

    2009-06-01

    Since mycolic acids, the most characteristic major lipid component in mycobacterial cell envelopes, play pivotal roles in the cell surface-based host immune responses, normal-phase HPLC has been developed to quantify and identify mycolic acids of the cell wall skeleton from Mycobacterium bovis BCG Tokyo 172 (SMP-105).

  7. A rapid method for the determination of vitamin E forms in tissues and diet by high-performance liquid chromatography using a normal-phase diol column.

    PubMed

    Kramer, J K; Blais, L; Fouchard, R C; Melnyk, R A; Kallury, K M

    1997-03-01

    This paper describes a simple method for the analysis of tocopherols in tissues by which frozen tissues-70 degrees C were pulverized at dry ice temperatures (-70 degrees C) and immediately extracted with hexane. There was no need to remove the coeluting lipids from tissues by saponification, since at that level of neutral lipids in the sample, there was no reduction in fluorescence response. For the analysis of oil, in which large amounts of neutral lipids were coextracted, a 20% reduction of fluorescence response was observed, but the response was equal for all tocopherol forms, and was appropriately corrected. Saponification was used only when tocopherol esters were present, and only after an initial hexane extraction to remove the free tocopherols in order to avoid their loss by saponification, particularly non alpha-tocopherol and tocotrienols. All the tocopherols and tocotrienols were separated on a normal-phase diol (epoxide) column that gave consistent and reproducible results, without the disadvantages of nonreproducibility with silica columns, or the lack of separation with reversed-phase columns. The tocopherols were quantitated by using a tocopherol form not present in the sample as an internal tocopherol standard, or using an external tocopherol standard if all forms were present, or when the sample was saponified. Piglet heart and liver samples showed the presence of mainly alpha-tocopherol, with minor amounts of beta- and gamma-tocopherol and alpha-tocotrienol, but no delta-tocopherol. Only small amounts of tocopherol esters were present in the liver but not in the heart.

  8. Column temperature as an active variable in the isocratic, normal-phase high-performance liquid chromatography separation of lipophilic metabolites of nonylphenol ethoxylates.

    PubMed

    Babay, Paola A; Gettar, Raquel T; Magallanes, Jorge F; Becquart, Elena T; Thiele, Björn; Batistoni, Daniel A

    2007-07-20

    Normal-phase separation of technical grade nonylphenol (t-NP, about 90% 4-nonylphenol), 4-nonylphenol mono-ethoxylate (4-NP1EO) and 4-nonylphenol di-ethoxylate (4-NP2EO) was assessed, with the inclusion of column temperature as an active variable. The compound 2,4,6-trimethylphenol was evaluated for use as internal standard. Isocratic elution with 2-propanol/hexanes mixtures from an amino-silica column and spectrometric UV detection at 277 nm were employed. Technical nonylphenol presented a significant contribution from unknown substances that eluted with retention times similar to that of 4-NP1EO. GC-MS analysis of the unknowns allowed to identify them as isomers of 2-NP. The response of the system to joint variations in flow rate, eluent composition and column temperature was investigated by means of Doehlert statistical experimental design. A model for retention of the analytes as a function of the experimental variables was proposed, and separation selectivity was studied. Selection of the optimal working zone was made through desirability function (D) calculations. Potential co-elution of 2-NP isomers with 4-NP1EO was considered when optimizing the separation. The occurrence of a restricted region of the experimental space where baseline resolution of analytes, associated impurities and internal standard results feasible (D not equal to 0) is apparent.

  9. Determination of lycopene in tissues and plasma of rats by normal-phase high-performance liquid chromatography with photometric detection.

    PubMed

    Froescheis, O; Moalli, S; Liechti, H; Bausch, J

    2000-03-10

    An analytical method for the determination of lycopene in tissues and plasma of rats is described. The method was validated for the determination of lycopene in liver and plasma with respect to selectivity, linearity, accuracy, recovery and precision. Following precipitation of proteins with water-ethanol plasma was extracted with hexane; tissues were extracted with acetone followed by precipitation of proteins with water-ethanol and extraction of lycopene with hexane. Separation and quantification of geometrical isomers of lycopene was achieved by normal-phase HPLC with UV/VIS detection at 471 nm. The method proved to be selective and specific for lycopene in plasma and liver. Detector response was linear in the range from 2 ng/g to 10 microg/g liver and 0.5 ng/ml to 2 microg/ml plasma, respectively. Average recoveries ranged from 96 to 101% in spiked liver samples and from 91 to 94% in spiked plasma samples. Intra-day variability (C.V.) was < or = 6% and < or = 5% in liver and plasma, respectively. Inter-day precision was < or = 9% for liver samples and < or = 6% for plasma samples. The procedures were successfully applied to the sample analysis of pharmacokinetic and metabolism studies.

  10. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  11. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  12. APPARATUS FOR LIQUID PHASE EXTRACTION

    DOEpatents

    Hicks, T.R.; Lehman, H.R.; Rubin, B.

    1958-09-16

    operation is described. It comprises a tubular colunm having upper and lower enlarged terminal portions, and a constricted central section containing fluid dispersal packing. Pulsing means are coupled to the upper portion of the column. The inlet for the less dense phase is located above the inlet for the denser phase and both are positioned so that liquids enter the constricted packingfilled central section. The apparatos also includes an interfacing level control, and means fer sensing the level of the interface actuate apparatus for controlling the rate of flow of input or discharge. The outlet for the less dense phase is located in the upper packing free portion of the colunm and that of the denser phase in the lower portion.

  13. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  14. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  15. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  16. Vapors-liquid phase separator

    NASA Astrophysics Data System (ADS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-10-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  17. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  18. One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction.

    PubMed

    Jiménez-Carvelo, Ana M; Pérez-Castaño, Estefanía; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-04-15

    A new method for differentiation of olive oil (independently of the quality category) from other vegetable oils (canola, safflower, corn, peanut, seeds, grapeseed, palm, linseed, sesame and soybean) has been developed. The analytical procedure for chromatographic fingerprinting of the methyl-transesterified fraction of each vegetable oil, using normal-phase liquid chromatography, is described and the chemometric strategies applied and discussed. Some chemometric methods, such as k-nearest neighbours (kNN), partial least squared-discriminant analysis (PLS-DA), support vector machine classification analysis (SVM-C), and soft independent modelling of class analogies (SIMCA), were applied to build classification models. Performance of the classification was evaluated and ranked using several classification quality metrics. The discriminant analysis, based on the use of one input-class, (plus a dummy class) was applied for the first time in this study.

  19. Liquid-Phase Beam Pen Lithography.

    PubMed

    He, Shu; Xie, Zhuang; Park, Daniel J; Liao, Xing; Brown, Keith A; Chen, Peng-Cheng; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2016-02-24

    Beam pen lithography (BPL) in the liquid phase is evaluated. The effect of tip-substrate gap and aperture size on patterning performance is systematically investigated. As a proof-of-concept experiment, nanoarrays of nucleotides are synthesized using BPL in an organic medium, pointing toward the potential of using liquid phase BPL to perform localized photochemical reactions that require a liquid medium.

  20. A new approach to bioanalysis: aqueous normal-phase chromatography with silica hydride stationary phases.

    PubMed

    Pesek, Joseph J; Matyska, Maria T

    2012-04-01

    Stationary phases based on silica hydride have demonstrated a number of unique properties that are especially advantageous for bioanalyses. They have excellent retention capabilities for hydrophilic compounds, which have been the most difficult to analyze by standard reversed-phase methods and, in many cases, can outperform newer approaches for the analysis of polar molecules, such as hydrophilic liquid interaction chromatography. In addition, all columns utilizing silica-hydride materials can be used in either the normal-phase or reversed-phase modes, sometimes retaining both polar and nonpolar compounds simultaneously. These stationary phases have a high degree of reproducibility and long-term stability.

  1. Study of the slope of the linear relationship between retention and mobile phase composition (Snyder-Soczewiñski model) in normal phase liquid chromatography with bonded and charge-transfer phases.

    PubMed

    Wu, Di; Lucy, Charles A

    2016-12-02

    The Snyder model and the Soczewiñski model are compared on classic NPLC bonded phases using literature data, and on the charge transfer 2, 4-dinitroanilinopropyl (DNAP) column using experimentally collected data. Overall, the Snyder model slightly better predicts the n-slope than the Soczewiñski model. However, both models give comparable uncertainty in predicting n-slope for a given compound. The number of aromatic double bonds was the most suitable descriptor for estimating the relative n-slope of PAHs, as it correlated with behavior better than the number of aromatic rings and is simpler to calculate than the solute adsorption area. On the DNAP phase, a modified Soczewiñski model is suggested to allow for the significant contribution of the aromatic rings to the n-slope. For classic NPLC bonded phases and DNAP columns, the contribution of polar group to the n-slope parallels the adsorption energy of each polar group. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  3. Improved Root Normal Size Distributions for Liquid Atomization

    DTIC Science & Technology

    2015-11-01

    Improved Root Normal Size Distributions for Liquid Atomization Distribution Statement A. Approved for public release; distribution is unlimited... Atomization Culbert B. Laney1 Engility Corp., 8211 Terminal Rd, Lorton, VA 22079 U.S.A. Abstract: This paper identifies two issues with traditional...root normal size distributions, which are commonly fitted to experimental results for liquid atomization and sprays. First, while root normal size

  4. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  5. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.

    1989-01-01

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

  6. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  7. Application of ionic liquid in liquid phase microextraction technology.

    PubMed

    Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho

    2012-11-01

    Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years.

  9. Morphology of Liquid-Liquid Phase Separated Aerosols.

    PubMed

    Qiu, Yuqing; Molinero, Valeria

    2015-08-26

    The morphology of liquid-liquid phase separated aerosols has a strong impact on their rate of gas and water uptake, and the type and rate of heterogeneous reactions in the atmosphere. However, it is extremely challenging to experimentally distinguish different morphologies (core-shell or partial wetting) of aerosols and to quantify the extent of wetting between the two phases. The aim of this work is to quantitatively predict the morphology of liquid-liquid aerosols from fundamental physical properties of the aerosol phases. We determine the equilibrium structure of liquid-liquid phase separated aerosols through free energy minimization and predict that the contact angle between the two liquids in the aerosol depends on the composition but not the amount of each phase. We demonstrate that for aerosols of diameter larger than ∼100 nm, the equilibrium contact angle can be accurately predicted from the surface tensions of each liquid with the vapor and between the two liquids through an expression that is identical to Young's equation. The internal structure of smaller, ultrafine aerosols depends also on the value of the line tension between the two liquids and the vapor. The thermodynamic model accurately predicts the experimental morphology, core-shell or partial wetting, of all aerosols for which surface tensions are provided in the literature, and provides contact angles that cannot be accurately determined with state of the art experimental methods. We find that the contact angle of model atmospheric aerosols is rarely higher than 30°. We validate the thermodynamic predictions through molecular simulations of nonane-water droplets, and use the simulation data to compute line tension values that are in good agreement with theory and the analysis from experimental data in water-nonane droplets. Our finding of a simple analytical equation to compute the contact angle of liquid-liquid droplets should have broad application for the prediction of the morphology of

  10. Liquid phase chromatography on microchips.

    PubMed

    Kutter, Jörg P

    2012-01-20

    Over the past twenty years, the field of microfluidics has emerged providing one of the main enabling technologies to realize miniaturized chemical analysis systems, often referred to as micro-Total Analysis Systems (uTAS), or, more generally, Lab-on-a-Chip Systems (LOC) [1,2]. While microfluidics was driven forward a lot from the engineering side, especially with respect to ink jet and dispensing technology, the initial push and interest from the analytical chemistry community was through the desire to develop miniaturized sensors, detectors, and, very early on, separation systems. The initial almost explosive development of, in particular, chromatographic separation systems on microchips, has, however, slowed down in recent years. This review takes a closer, critical look at how liquid phase chromatography has been implemented in miniaturized formats over the past several years, what is important to keep in mind when developing or working with separations in a miniaturized format, and what challenges and pitfalls remain. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Profile and quantification of human stratum corneum ceramides by normal-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: development of targeted lipidomic method and application to human stratum corneum of different age groups.

    PubMed

    Jia, Zhi-Xin; Zhang, Jin-Lan; Shen, Chun-Ping; Ma, Lin

    2016-09-01

    Skin, the largest organ of the human body, serves as the primary barrier to the external environment. Ceramides are one of the main constituents of stratum corneum (SC), playing an important role in skin barrier function. Therefore, comprehensive profiling and quantification of SC ceramide is important. Herein, a new targeted lipidomic method for human SC ceramide profiling and quantification is presented and tested. Normal-phase high-performance liquid chromatography coupled with dynamic multiple reaction monitoring mass spectrometry (NP-HPLC-dMRM-MS) was used to separate ceramides into subclasses and then characterize different ceramides within each subclass on the basis of their characteristics. In total, 483 ceramides were quantified in a single run within 20 min, covering 12 subclasses as well as some glycosylated ceramides not previously reported. Each subclass had typical standard substances (if available) that served to establish representative standard curves and were used for related substances with no standards. Linearity range, limit of quantification (LOQ), limit of detection (LOD), precision, accuracy, stability, and matrix effects were validated. dMRM increased sensitivity and accuracy greatly compared with common MRM (cMRM). This method was successfully applied to the study of human SC from different age groups. A total of 193 potential biomarkers were found to indicate age differences between children and adults. This method is an innovative approach for high-throughput quantification of SC ceramide. Graphical Abstract Method establishment (MRM spectra by the established method) and method application (score scatter plots of authentic samples).

  12. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  13. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  14. Determination of (R)-timolol in (S)-timolol maleate active pharmaceutical ingredient: validation of a new supercritical fluid chromatography method with an established normal phase liquid chromatography method.

    PubMed

    Marley, Adrian; Connolly, Damian

    2014-01-17

    An enantioselective supercritical fluid chromatography (SFC) method was developed and validated to meet the current European Pharmacopoeia requirements of a limit test for the determination of S-timolol maleate enantiomeric purity in timolol maleate drug substance. The developed method is presented as an alternative to the current normal phase high performance liquid chromatography (NP-HPLC) method described in the European Pharmacopoeia (Timolol Maleate Monograph). Using a 4.6mm×250mm Chiralcel OD-H (dp: 5μm) column and a mobile phase of (93:7) CO2/0.1% (v/v) TEA in MeOH delivered at 4.0mLmin(-1) resolution of 2.0 was achieved within 5min, representing a 3-fold reduction in run-time and an 11-fold reduction in solvent consumption relative to the NP-HPLC method. Method robustness was examined by the variation of flow rate (±0.5mLmin(-1)), column temperature (±5°C) and column back-pressure (±10bar) and resolution was maintained at ≥1.9 in all cases. R-timolol was resolved from all potential impurities and the limit of detection was improved by increasing the sample concentration threefold compared to the NP-HPLC method such that the method could detect the R-timolol enantiomer at 0.5% (w/w) with respect to S-timolol maleate. Additional validation parameters demonstrated that the potential of the method to be used for routine release testing of timolol maleate raw material for drug product manufacturing in which the quantitation of R-timolol impurity in S-timolol maleate drug substance would be a requirement.

  15. Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2016-11-01

    Melt supercooling leads to glass formation. Liquid-to-liquid phase transitions are observed depending on thermal paths. Viscosity, density and surface tension thermal dependences measured at heating and subsequent cooling show hysteresis below a branching temperature and result from the competition of two-liquid phases separated by an enthalpy difference depending on temperature. The nucleation classical equation of these phases is completed by this enthalpy saving existing at all temperatures. The glass phase thermodynamic parameters and their thermal variation have already been determined in such a two-liquid model. They are used at high temperatures to predict liquid-to-liquid transitions in some metallic glass-forming melts.

  16. Generic mechanism for generating a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Franzese, Giancarlo; Malescio, Gianpietro; Skibinsky, Anna; Buldyrev, Sergey V.; Stanley, H. Eugene

    2001-02-01

    Recent experimental results indicate that phosphorus-a single-component system-can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular, liquid metals), and such potentials are often used to describe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of a density anomaly.

  17. Liquid-liquid phase transition in supercooled silicon.

    PubMed

    Sastry, Srikanth; Austen Angell, C

    2003-11-01

    Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other 'tetrahedral network' liquids that show density maxima. Proper study of the 'liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.

  18. Liquid-phase chlorination of perchloroethylene

    SciTech Connect

    Levanova, S.V.; Evstigneev, O.V.; Rodova, R.M.; Berlin, E.R.; Ul'yanov, A.A.

    1988-06-01

    The relationships in the liquid-phase chlorination of perchloroethylene to hexachlorethane in a thermal process and in the presence of an initiator have been studied. The rate constants and the activation parameters of the process have been determined.

  19. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-03

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results.

  20. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  1. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    PubMed

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-02

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced.

  2. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  3. Liposomes as potential masking agents in sport doping. Part 1: analysis of phospholipids and sphingomyelins in drugs and biological fluids by aqueous normal-phase liquid chromatography-tandem mass spectrometry.

    PubMed

    Esposito, Simone; Colicchia, Sonia; de la Torre, Xavier; Mazzarino, Monica; Botrè, Francesco

    2017-01-01

    In the present work, aqueous normal-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in different acquisition modes, was employed for the direct analysis and profiling of nine phospholipid classes (phosphatidic acids, phosphatidylserines, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylglycerols, phosphatidylinositols, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins) in biological and pharmaceutical matrices. After chromatographic separation by a diol column, detection and elucidation of phospholipid and sphingomyelin classes and molecular species were performed by different scan acquisition modes. For screening analysis, molecular ions [M + H](+) were detected in positive precursor ion scan of m/z 184 for the classes of phosphatidylcholines, lyso-phosphatidylcholines and sphingomyelins; while phosphatidylethanolamines and lyso-phosphatidylethanolamines were detected monitoring neutral loss scan of 141 Da; and phosphatidylserines detected using neutral loss scan of 184 Da. Molecular ions [M-H](-) were instead acquired in negative precursor ion scan of m/z 153 for the classes of phosphatidic acids and phosphatidylglycerols; and of m/z 241 for the phosphatidylinositols. For the identification of the single molecular species, product ion scan mass spectra of the [M + HCOO](-) ions for phosphatidylcholines and [M + H](+) ions for the other phospholipids considered were determined for each class and compared with the fragmentation pattern of model phospholipid reference standard. By this approach, nearly 100 phospholipids and sphingomyelins were detected and identified. The optimized method was then used to characterize the phospholipid and sphingomyelin profiles in human plasma and urine samples and in two phospholipid-based pharmaceutical formulations, proving that it also allows to discriminate compounds of endogenous origin from those resulting from the intake of pharmaceutical

  4. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  5. Phase separation in transparent liquid-liquid miscibility gap systems

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Bhat, B. N.; Laub, R. J.

    1979-01-01

    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods.

  6. Liquid-Liquid phase transition in a single component system

    NASA Astrophysics Data System (ADS)

    Franzese, Giancarlo; Skibinsky, Anna; Buldyrev, Sergey; Stanley, H. Eugene

    2001-06-01

    Recent experimental results indicate that phosphorus, a single-component system, can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order LDL-HDL transition line ending in a critical point is consistent with experimental data and Molecular Dynamics (MD) simulations for a variety of single-component systems such as water, silica and carbon, but a coherent and general interpretation of the LDL-HDL transition is lacking. By means of MD, we show that the LDL-HDL transition can be directly related to an interaction potential with an attractive part and with not one but `two' preferred short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state, in particular liquid metals. For the fisrt time, we show that the LDL-HDL transition can occur in systems with no density anomaly, opening an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.

  7. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  8. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  9. Simultaneous analysis of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils by normal-phase high performance liquid chromatography.

    PubMed

    Li, Jun; Bi, Yanlan; Sun, Shangde; Peng, Dan

    2017-11-01

    A normal-phase high performance liquid chromatography method for the simultaneous determination of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils was investigated. A silica column was used to separate the analytes with the gradient elution. An ultraviolet-visible detector was set at dual wavelengths mode (280 and 310nm). The column temperature was 30°C. The analytes were directly extracted with methanol. Results showed that the normal-phase high performance liquid chromatography method performed well with wide liner ranges (0.10∼500.00μg/mL, R(2)>0.9998), low limits of detection and quantitation (below 0.40 and 1.21μg/mL, respectively), and good recoveries (81.38∼102.34% in soybean oils and 83.03∼100.79% in lard, respectively). The reduction of tert-butylquinone caused by the reverse-phase high performance liquid chromatography during the injection was avoided with the current normal-phase method. The two isomers of butylated hydroxyanisole can also be separated with good resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ultrasonic atomization: effect of liquid phase properties.

    PubMed

    Avvaru, Balasubrahmanyam; Patil, Mohan N; Gogate, Parag R; Pandit, Aniruddha B

    2006-02-01

    Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.

  11. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  12. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    PubMed Central

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL). PMID:25716054

  13. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  14. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    function interaction between columns as occurs in the case of flux lines in type-II superconductors or long polyelectrolytes in an ionic solution. We find that the centered interstitial is the lowest energy defect for a very wide range of interactions; the symmetric vacancy is preferred only for extremely short interaction ranges. Finally, we take a look at the hydrodynamics of smectic films at an air-water interface, with particular focus on the viscous response of the film under flow normal to the layers. The corrections to the response functions of the smectic phase, arising from the coupling between the flow and the smectic order parameter, are calculated. The results for the effective viscosity are illustrated by analysing smectic film flow in a channel geometry. The limiting cases of the flow, namely, motion dominated by dislocation-induced shear-softening or motion dominated by the permeation mode of mass transfer, are studied. The effect of drag from a finite depth liquid subphase is considered. The results are compared to those for hexatic and liquid films.

  15. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  16. Instability of finance markets. Normal liquid markets vs. finance crashes

    NASA Astrophysics Data System (ADS)

    McCauley, J. L.

    2009-11-01

    This lecture focuses on the economic crisis in the world today, and can be seen as a continuation of my Geilo 2007 lecture where I observed that we had a Dollar crisis based on the worldwide flood of Dollars (M3) that began after 1971 [1,2]. Here, I want to focus on why we have a finance crisis, which is essentially a Dollar crisis, and what I think will need to be done to get out of it. Toward that end, the instability of normal liquid finance markets is contrasted with the worse instability of a liquidity drought, so I'll begin by explaining the former. The current liquidity drought can be compared with the Great Depression and is the covered in the second part of this paper.

  17. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  18. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  19. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  20. Diffraction from a liquid crystal phase grating.

    PubMed

    Kashnow, R A; Bigelow, J E

    1973-10-01

    The diffraction of light by a sinusoidal perturbation of the optic axis in a nematic liquid crystal is discussed. This corresponds to experiments at the electrohydrodynamic instability thresholds. An interesting qualitative feature appears: The diffraction pattern exhibits a contribution at half of the expected spatial frequency, corresponding to nonorthogonal traversals of the thick phase grating.

  1. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  2. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  3. Gas phase kinetics during normal combustion

    NASA Technical Reports Server (NTRS)

    Price, C. F.; Boggs, T. L.; Eisel, J. L.; Atwood, A. I.; Zurn, D. E.

    1980-01-01

    The role of gas phase kinetics during combustion was explored in the steady state modeling efforts and in the analysis of ignition phenomena. In both cases it was shown that the combustion characteristics of some high energy ingredients and propellants are strongly affected, if not dictated, by the gas phase reactions which take place.

  4. Liquid-liquid separation in solutions of normal and sickle cell hemoglobin

    NASA Astrophysics Data System (ADS)

    Galkin, Oleg; Chen, Kai; Nagel, Ronald L.; Elison Hirsch, Rhoda; Vekilov, Peter G.

    2002-06-01

    We show that in solutions of human hemoglobin (Hb)oxy- and deoxy-Hb A or Sof near-physiological pH, ionic strength, and Hb concentration, liquid-liquid phase separation occurs reversibly and reproducibly at temperatures between 35 and 40°C. In solutions of deoxy-HbS, we demonstrate that the dense liquid droplets facilitate the nucleation of HbS polymers, whose formation is the primary pathogenic event for sickle cell anemia. In view of recent results that shifts of the liquid-liquid separation phase boundary can be achieved by nontoxic additives at molar concentrations up to 30 times lower than the protein concentrations, these findings open new avenues for the inhibition of the HbS polymerization.

  5. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  6. Liquid crystal display for phase shifting

    NASA Astrophysics Data System (ADS)

    Villalobos-Mendoza, B.; Granados-Agustín, F. S.; Aguirre-Aguirre, D.; Cornejo-Rodríguez, A.

    2013-11-01

    This work arises based on the idea proposed by Millered et al. in 2004, where they show how to get in one shot interferograms with phase shift using a mask with micro-polarizers, in this work we pretend to obtain phase shift in localized areas of an interferogram using the properties of polarization and the pixelated configuration of a liquid crystal display (LCD) for testing optical surfaces. In this work we describes the process of characterization of a liquid crystal display CRL Opto and XGA2P01 model, which is introduced in one arm of a Twyman Green interferometer. Finally we show the experimental interferograms with phase shifts which are caused by different gray levels displayed in the LCD.

  7. Liquid Crystalline Phases of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Amini, Kiana; Abukhdeir, Nasser; Matsen, Mark

    The phase behavior of liquid-crystal polymeric brushes in solvent are investigated using self-consistent field theory. The polymers are modeled as freely-jointed chain consisting of N rigid segments. The isotropic interactions between the polymer and the solvent are treated using the standard Flory-Huggins theory, while the anisotropic liquid-crystalline (LC) interactions between rigid segments are taken into account using the Mayer-Saupe theory. For weak LC interactions, the brush exhibits the conventional parabolic-like profile, while for strong LC interactions, the polymers crystallize into a dense brush with a step-like profile. At intermediate interaction strengths, we find the microphase-segregated phase observed previously for lattice-model calculations. In this phase, the brush exhibits a crystalline layer next to the grafting surface with an external layer similar to the conventional brush. This work was supported by NSERC of Canada.

  8. The gravitational effects on liquid phase sintering

    NASA Technical Reports Server (NTRS)

    Kipphut, C. M.; German, Randall M.; Bose, A.; Kishi, T.

    1989-01-01

    The liquid-phase sintering of heavy-metal PM alloys containing 78, 83, 88, 93, or 98 wt pct W plus Ni and Fe in a 7:3 ratio is investigated experimentally. The focus is on the potential role of gravity in phenomena such as specimen slumping and distortion, liquid migration, and microstructural coarsening. The results are presented in extensive graphs and micrographs and discussed in detail, and a preliminary grain-growth model is developed which accounts for the effects of contiguity and the volume fraction of solid.

  9. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  10. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr.; Cochran, H.D.; Leitnaker, J.M.

    1989-09-01

    In the safe handling and processing of uranium hexafluoride (UF{sub 6}), it is often desirable to calculate vapor composition and pressure from known liquid composition and temperature. Furthermore, the ability to use analyses of equilibrium vapor-phase samples to calculate liquid-phase compositions would be economically advantageous to the International Atomic Energy Agency (IAEA) in its international safeguards program and to uranium enrichment operators. The latter technique is projected to save the IAEA on the order of $1500 or more per sample. Either type of calculation could be performed with a multicomponent vapor-liquid equilibrium (VLE) model if this model were shown to apply to UF{sub 6} and its common impurities. This report is concerned with the distribution of four potential impurities in UF{sub 6} between liquid and vapor phases. The impurities are carbon dioxide, sulfur hexafluoride, chloryl fluoride, and Freon-114 (CClF{sub 2}CClF{sub 2}). There are no binary equilibrium data on the first three of these impurities; hence, the VLE calculations are based entirely on the thermodynamic properties of the pure components. There are two sets of binary equilibrium data for the system Freon-114-UF{sub 6} that are analyzed in terms of the model of Prausnitz et al. Calculations based on these data are compared with those based solely on the thermodynamic properties of pure Freon-114 and pure UF{sub 6}. 23 refs., 3 figs., 5 tabs.

  11. Liquid phase microextraction applications in food analysis.

    PubMed

    Asensio-Ramos, María; Ravelo-Pérez, Lidia M; González-Curbelo, Miguel Ángel; Hernández-Borges, Javier

    2011-10-21

    Over the last years, liquid-phase microextraction (LPME) in its different application modes (single drop microextraction, dispersive liquid-liquid microextraction and hollow fiber-LPME) has been increasingly applied for the extraction of both inorganic and organic analytes from different matrices. Its advantages over conventional extraction procedures (simplicity, effectiveness, rapidity and low consumption of organic solvents) has also attracted its application in the complex food analysis field, in which it has clearly provided good and challenging results. A comprehensive review dealing with those articles published since its introduction till the end of March 2011 is presented, offering also a critical vision of the analytical potential of LPME for the analysis of foods. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Phase transitions in liquid crystal + aerosil gels

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Mehmet Kerim

    Liquid Crystals (LCs) are found in many different phases, the most well-known, basic ones being Isotropic (I), Nematic (N), and Smectic-A (SmA). LCs show a rich variety of phase transitions between these phases. This makes them very interesting materials in which to study the basics of phase transitions and related topics. In the low symmetry phases, LCs show both positional and directional orders. X-ray scattering is an important tool to study these phase transitions as it probes the instantaneous positional correlations in these phases. Random forces have a nontrivial effect on ordering in nature, and the problem of phase transitions in the presence of a random field is a current and not well-understood topic. It has been found that aerosils posses a quenched randomness in the mixture of LC+aerosil samples, forming a gel random network which destroys long-range order (LRO) in the SmA phase. This can be modeled as a random field problem. In the N to SmA phase transition in 4O.8 LC (butyloxybenzlidene octylaniline), orientational order (N ) is modified by a 1-D density wave describing 2-D fluid layer spacing structure (SmA). Likewise the I to Sm A phase transition in 10CB LC (decylcyanobiphenyl), a transitional ordered phase develops without going through an orientational ordered phase. To study these phase transitions with aerosil dispersion carries the opportunity to probe the effect of induced quenched random disorder on phase transitions, which are 2nd order in the first case and 1st order in the second case. A two-component line-shape analysis is developed to define the phases in all temperature ranges. It consists of the thermal and the static structure factors. The reentered nematic (RN) phase of the [6:8]OCB+aerosil gels ([6:8]OCB is a mixture of hexyloxycyanobiphenyl and octyloxcyanobiphenyl) is another interesting case in which to study the quenched random disorder effects. The weak SmA phase of [6:8]OCB+aerosil gels is followed by a RN phase at low

  13. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    PubMed

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains.

  14. Spin response of a normal Fermi liquid with noncentral interactions

    SciTech Connect

    Pethick, C. J.; Schwenk, A.

    2009-11-15

    We consider the spin response of a normal Fermi liquid with noncentral interactions under conditions intermediate between the collisionless and hydrodynamic regimes. This problem is of importance for calculations of neutrino properties in dense matter. By expressing the deviation of the quasiparticle distribution function from equilibrium in terms of eigenfunctions of the transport equation under the combined influence of collisions and an external field, we derive a closed expression for the spin-density-spin-density response function and compare its predictions with that of a relaxation-time approximation. Our results indicate that the relaxation-time approximation is reliable for neutrino properties under astrophysically relevant conditions.

  15. Spectral function and kinetic equation for a normal Fermi liquid

    SciTech Connect

    Arshad, M.; Siddique, I.; Kondratyev, A. S.

    2007-08-01

    On the basis of the Kadanoff-Baym (KB) version of the time-dependent Green's function method, an Ansatz for the approximation of a spectral function is offered. The Ansatz possesses all the advantages of quasiparticle and extended quasiparticle approximations and satisfies the KB equation for a spectral function in the case of slightly nonequilibrium system when disturbances in space and time are taken into consideration in the gradient approximation. This feature opens opportunities for the microscopic derivation of the Landau kinetic equation for the quasiparticle distribution function of the normal Fermi liquid and provides the widening of these equations' temperature range of validity.

  16. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  17. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  18. Frustration of crystallisation by a liquid-crystal phase.

    PubMed

    Syme, Christopher D; Mosses, Joanna; González-Jiménez, Mario; Shebanova, Olga; Walton, Finlay; Wynne, Klaas

    2017-02-17

    Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being "in between" the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids.

  19. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    NASA Astrophysics Data System (ADS)

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-03-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase.

  20. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation

    PubMed Central

    Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.

    2017-01-01

    Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase. PMID:28281691

  1. Class separation of lipids and polycyclic aromatic hydrocarbons in normal phase high performance liquid chromatography - a prospect for analysis of aromatics in edible vegetable oils and biodiesel exhaust particulates.

    PubMed

    Olsson, Petter; Sadiktsis, Ioannis; Holmbäck, Jan; Westerholm, Roger

    2014-09-19

    The retention characteristics of the major lipid components in biodiesels and edible oils as well as representative polycyclic aromatic compounds (PAHs) have been investigated on five different normal phase HPLC stationary phases, in order to optimize class separation for an automatized online HPLC cleanup of PAHs prior GC-MS analysis. By stepwise comparison of different hexane/MTBE compositions as mobile phases on cyano-, phenyl-, pentabromobenzyl-, nitrophenyl- and amino-modified silica columns, the capacity and selectivity factors for each analyte and column could be calculated. It was concluded that the most suitable column for backflush isolation of PAHs in biodiesel and edible oil matrices was the pentabromobenzyl-modified silica (PBB). A previously described online HPLC-GC-MS system using the PBB column was then evaluated by qualitative and quantitative analysis of a biodiesel exhaust particulate extract and a vegetable oil reference material. The GC-MS full scan analysis of the biodiesel particulate extract showed that the lipids had been removed from the sample and a fraction containing PAHs and oxygenated derivatives thereof had been isolated. Quantified mass fractions of PAHs of the reference material BCR-458 agreed well for most of the certified PAH mass fractions in the spiked coconut oil reference material. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles.

  3. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity.

  4. Non-Aqueous Phase Liquid Calculator

    SciTech Connect

    Rucker, Gregory G.

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver than water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.

  5. Method performance and multi-laboratory assessment of a normal phase high pressure liquid chromatography-fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples.

    PubMed

    Robbins, Rebecca J; Leonczak, Jadwiga; Johnson, J Christopher; Li, Julia; Kwik-Uribe, Catherine; Prior, Ronald L; Gu, Liwei

    2009-06-12

    The quantitative parameters and method performance for a normal-phase HPLC separation of flavanols and procyanidins in chocolate and cocoa-containing food products were optimized and assessed. Single laboratory method performance was examined over three months using three separate secondary standards. RSD(r) ranged from 1.9%, 4.5% to 9.0% for cocoa powder, liquor and chocolate samples containing 74.39, 15.47 and 1.87 mg/g flavanols and procyanidins, respectively. Accuracy was determined by comparison to the NIST Standard Reference Material 2384. Inter-lab assessment indicated that variability was quite low for seven different cocoa-containing samples, with a RSD(R) of less than 10% for the range of samples analyzed.

  6. A Crossed Sliding Luttinger Liquid phase

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Kane, C. L.; Lubensky, T. C.

    2001-03-01

    It was recently demonstrated [1] that a stack of weakly coupled 2D planar XY-models can exhibit a sliding phase characterized by correlations that die off as a power-law with distance within a plane and exponentially with distance in the perpendicular direction. In this talk we investigate how these ideas can be extended to two-dimensional arrays of coupled quantam wires. In particular, we will focus on a crossed array of wires and demonstrate the existence of the so-called "crossed sliding Luttinger liquid" phase [2]. This phase is characterized by power-law correlations, and a two-dimensional isotropic in-plane conductivity that diverges as a power-law in temperature T as T goes to 0. It thus represents a nearly isotropic non-Fermi liquid state in two dimensions. 1. C.S. O'Hern, T.C. Lubensky, and J.Toner, Phys. Rev. Lett. 83, 2745 (1999). 2. Ranjan Mukhopadhyay, C.L. Kane, and T.C. Lubensky, condmat/0007039.

  7. Wide Angle Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xing-Hua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John J.; Miranda, Felix A.; McManamon, Paul F.

    2004-01-01

    Accurate modeling of a high resolution, liquid crystal (LC) based, optical phased array (OPA) is shown. The simulation shows excellent agreement with a test 2-D LC OPA. The modeling method is extendable to cases where the array element size is close to the wavelength of light. The fringing fields of such a device are first studied, and subsequently reduced. This results in a device that demonstrates plus or minus 7.4 degrees of continuous beam steering at a wavelength of 1550 nm, and a diffraction efficiency (DE) higher than 72%.

  8. Liquid crystalline phase transitions in hydrogels

    NASA Astrophysics Data System (ADS)

    Alsayed, A. M.; Dogic, Z.; Islam, M. F.; Yodh, A. G.; Angler, A.; Discher, D. E.

    2003-03-01

    We investigate the isotropic-nematic (IN) phase transition of fd rods dissolved in P(NIPAAm) gel. The P(NIPAAm) gel exhibits a first order phase transition at 32 C from a low temperature expanded state to a high temperature collapsed state. Surprisingly we found it is possible to induce the nematic phase by keeping the volume of the gel constant and changing temperature. The sample exhibits a continuous and reversible transition from isotropic to nematic phase as the temperature is changed between 24-31 C. This unusual behavior is correlated with the presence of heterogeneities in the gel. Dissolving the rods into the gel effectively changes this concentration dependent lyotropic liquid crystal into temperature dependant system. The possibility that fd/gel system exhibits soft elasticity is currently being explored. Additionally we observe a temperature dependent nematic-smectic phase transition in this system and we studied its kinetics. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.

  9. Analysis of particle growth by coalescence during liquid phase sintering

    SciTech Connect

    Takajo, S.; Kaysser, W.A.; Petzow, G.

    1984-06-01

    A statistical approach has been applied to particle coarsening during liquid phase sintering assuming direct particle coalescence as basic growth mechanism instead of Ostwald ripening. The coalescence process controlled by diffusion through the melt results in an increase of the average particle size proportional to the cube root of sintering time. After a short initial sintering interval the particle size distribution approaches a unique normalized form which is broader than forms predicted by Ostwald ripening theories. The effect of preferred coalescence possibilities for definite particle size ranges and the effect of concurrent coalescence and Ostwald ripening are discussed.

  10. Liquid-liquid phase transitions and water-like anomalies in liquids

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik

    In this thesis we employ computer simulations and statistical physics to understand the origin of liquid-liquid phase transitions and their relationship with anomalies typical of liquid water. Compared with other liquids, water has many anomalies. For example the density anomaly: when water is cooled below 4 °C the density decreases rather than increases. This and other anomalies have also been found to occur in a few other one-component liquids, sometimes in conjunction with the existence of a liquid-liquid phase transition (LLPT) between a low-density liquid (LDL) and a high-density liquid (HDL). Using simple models we explain how these anomalies arise from the presence of two competing length scales. As a specific example we investigate the cut ramp potential, where we show the importance of "competition" in this context, and how one length scale can sometimes be zero. When there is a clear energetic preference for either LDL or HDL for all pressures and temperatures, then there is insufficient competition between the two liquid structures and no anomalies occur. From the simple models it also follows that anomalies can occur without the presence of a LLPT and vice versa. It remains therefore unclear if water has a LLPT that ends in a liquid-liquid critical point (LLCP), a hypothesis that was first proposed based on simulations of the ST2 water model. We confirm the existence of a LLCP in this model using finite size scaling and the Challa-Landau-Binder parameter, and show that the LLPT is not a liquid-crystal transition, as has recently been suggested. Previous research has indicated the possible existence of a LLCP in liquid silica. We perform a detailed analysis of two different silica models (WAC and BKS) at temperatures much lower than was previously simulated. Within the accessible temperature range we find no LLCP in either model, although in the case of WAC potential it is closely approached. We compare our results with those obtained for other

  11. Determination of Vitamin E and Vitamin A in Infant Formula and Adult Nutritionals by Normal-Phase High-Performance Liquid Chromatography: Collaborative Study, Final Action 2012.10.

    PubMed

    McMahon, Adrienne

    2016-01-01

    The main objective of the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN) project is to establish international consensus methods for infant formula and adult nutritionals, which will benefit intermarket supply and dispute resolution. A collaborative study was conducted on AOAC First Action Method 2012.10 Simultaneous Determination of 13-cis and All-trans Vitamin A Palmitate (Retinyl Palmitate), Vitamin A Acetate (Retinyl Acetate), and Total Vitamin E (α-Tocopherol and D-α-tocopherol acetate) in Infant Formula and Adult Nutritionals by Normal-Phase HPLC. Fifteen laboratories from 11 countries participated in an interlaboratory study to determine 13-cis and all-trans vitamin A palmitate (retinyl palmitate), vitamin A acetate (retinyl acetate), and total vitamin E (α-tocopherol and D-α-tocopherol acetate) in infant formula and adult nutritionals by normal-phase HPLC and all laboratories returned valid data. Eighteen test portions of nine blind duplicates of a variety of infant formula and adult nutritional products were used in the study. The matrixes included milk-based and soy-based hydrolyzed protein as well as a low fat product. Each of the samples was prepared fresh and analyzed in singlicate. As the number of samples exceeded the recommended number to be prepared in a single day, analysis took place over 2 days running 12 samples on day one and 10 samples on day two. The reference standard stock was prepared once and the six-point curve diluted freshly on each day. Results obtained from all 15 laboratories are reported. The RSDR for total vitamin A (palmitate or acetate) ranged from 6.51 to 22.61% and HorRat values ranged from 0.33 to 1.25. The RSDR for total vitamin E (as tocopherol equivalents) ranged from 3.84 to 10.78% and HorRat values ranged from 0.27 to 1.04. Except for an adult low fat matrix which generated reproducibility RSD >40% for some isomers, most SPIFAN matrixes gave results within the acceptance criteria of <16

  12. Polymerization and phase separation studies in liquids

    NASA Astrophysics Data System (ADS)

    Venkateshan, Karthik

    In technology, a thermosetting polymer's electrical, thermal and mechanical properties are modified by incorporating an elastomer phase in its matrix. This is achieved by phase separation of the dissolved elastomer during the course of polymerization until the liquid vitrifies. The phase separation mechanism and nature of interface formed determine the negative effect of phase separation on polymerization and the transition of mass-controlled kinetics to diffusion-controlled kinetics. This thesis provides an experimental study of polymerization, phase separation and vitrification processes by using real time measurements of dielectric relaxation, calorimetric changes, elastic constants and thermal conductivity of diepoxide-amine mixtures with and without the phase separating amine-terminated butadiene acrylonitrile elastomer. The results are discussed in general terms of mutual slowing of molecular diffusion and polymerization, and of the development of diffused interfaces between regions of elastomer and polymer matrix, that form as a result of, (i) high degree of spatial heterogeneity in the intermingled regions of non-stoichiometric amounts of polymer and elastomer, (ii) high degree of compatibility between the elastomer and polymer matrix and (iii) large size of the elastomer and polymer molecules. The consequence of molecular diffusional constraints and manifestation of spatial heterogeneity is confirmed by the appearance of Johari-Goldstein relaxation which acts as the precursor for the significantly broadened alpha-relaxation and higher values of dielectric permittivity in the frequency range of 1 kHz and greater. Spatial heterogeneity in the intermingled regions of non-stoichiometric amounts of polymer and elastomer is also confirmed by calorimetry studies. With increasing diffusional limitation, the total heat of polymerization varies from values obtained for stoichiometric amounts of reactants with no change in calorimetric peak temperature. Furthermore

  13. Behavior in normal and reduced gravity of an enclosed liquid/gas system with nonuniform heating from above

    NASA Technical Reports Server (NTRS)

    Ross, H. D.; Schiller, D. N.; Disimile, P.; Sirignano, W. A.

    1989-01-01

    The temperature and velocity fields have been investigated for a single-phase gas system and a two-layer gas-and-liquid system enclosed in a circular cylinder being heated suddenly and nonuniformly from above. The transient response of the gas, liquid, and container walls was modelled numerically in normal and reduced gravity (10 to the -5 g). Verification of the model was accomplished via flow visualization experiments in 10 cm high by 10 cm diameter plexiglass cylinders.

  14. Gas flow headspace liquid phase microextraction.

    PubMed

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  15. On liquid phases in cometary nuclei

    NASA Astrophysics Data System (ADS)

    Miles, Richard; Faillace, George A.

    2012-06-01

    In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles

  16. Confinement effect on the adsorption from a binary liquid system near liquid/liquid phase separation

    NASA Astrophysics Data System (ADS)

    Rother, Gernot; Woywod, Dirk; Schoen, Martin; Findenegg, Gerhard H.

    2004-06-01

    The preferential adsorption of one component of a binary system at the inner surfaces of mesoporous silica glasses was studied in a wide composition range at temperatures close to liquid/liquid phase separation. Confinement effects on the adsorption were investigated by using three controlled-pore glass (CPG-10) materials of different mean pore size (10 to 50 nm). For the experimental system (2-butoxyethanol+water), which exhibits an upper miscibility gap, strong preferential adsorption of water occurs, as the coexistence curve is approached at bulk compositions, at which water is the minority component. In this strong adsorption regime the area-related surface excess amount of adsorbed water decreases with decreasing pore width, while the shift in the volume-related mean composition of the pore liquid shows an opposite trend, i.e., greatest deviation from bulk composition occurring in the most narrow pores. A simple mean-field lattice model of a liquid mixture confined by parallel walls is adopted to rationalize these experimental findings. This model reproduces the main findings of the confinement effect on the adsorption near liquid/liquid phase separation.

  17. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  18. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  19. Transient liquid phase bonding of intermetallics

    NASA Astrophysics Data System (ADS)

    Guan, Yimin

    The present work was undertaken to examine the applicability of transient liquid phase bonding to structural intermetallics. This research was based on an investigation of the mechanisms governing microstructural development in the joint and adjacent substrates during the joining process. The bonding systems investigated included polycrystalline NiAl/Cu/Ni, polycrystalline NiAl/Cu/superalloys (Martin-Marietta (MM)-247, Inconel (IN) 718 and Nimonic 90), single-crystal NiAl (with 1.5 at % Hf) joined to MM-247 using different filler metals (Cu foil, powder filler metal and electro-plated thin Cu film), and martensitic NiAl joined with martensitic NiTi using Cu foil and specially designed powder filler metals. In polycrystalline NiAl/Cu/Ni bonds, the mechanism of isothermal solidification is considered. Changes in the microstructure of the bond centerline due to element redistribution are discussed. The precipitation of both L1sb2 type gammasp' and B2 type beta phase at the joint centerline is investigated. The formation of martensitic L1sb0 type NiAl is also examined. The mechanical properties of the joints are investigated using shear strength and microhardness tests. In TLP bonding of polycrystalline NiAl with MM-247, both the epitaxial growth of the beta phase NiAl into the joint and the formation of non-epitaxial beta-phase layers are considered. The formation of second-phases, including the gammasp' phase, carbides, and sigma-phase intermetallics is also examined. Bond-line and adjacent substrate microstructures for the NiAl/Cu/MM-247 bonds are correlated with joint mechanical properties determined by room temperature shear testing. Single-crystal NiAl (1.5 at % Hf)/Cu/MM-247 joints are examined and compared with polycrystalline NiAl/Cu/MM247 joints. The effect of Hf on the microstructure of joints is investigated. The influence of different filler metals (i.e., wide-gap powder filler metal and electro-plated thin film filler metal) on the joining process is also

  20. Two-phase liquid-liquid flows generated by impinging liquid jets

    NASA Astrophysics Data System (ADS)

    Tsaoulidis, Dimitrios; Li, Qi; Angeli, Panagiota

    2015-11-01

    Two-phase flows in intensified small-scale systems find increasing applications in (bio)chemical analysis and synthesis, fuel cells, polymerisation, and separation processes (solvent extraction). Current nuclear spent fuel reprocessing separation technologies have been developed many decades ago and have not taken account recent advances on process intensification which can drive down plant size and economics. In this work, intensified impinging jets will be developed to create dispersions by bringing the two liquid phases into contact through opposing small channels. A systematic set of experiments has been undertaken, to investigate the hydrodynamic characteristics, to develop predictive models, and enable comparisons with other contactors. Drop size distribution and mixing intensity will be investigated for liquid-liquid mixtures as a function of various parameters using high speed imaging and conductivity probes.

  1. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  2. Liquid-phase exfoliation of flaky graphite

    NASA Astrophysics Data System (ADS)

    Pavlova, Alexandra S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.; Monat, Christelle; Rojo-Romeo, Pedro; Obraztsova, Elena D.

    2016-01-01

    The majority of currently available methods of graphene production have certain drawbacks limiting its scaling. Unlike the others, liquid-phase exfoliation of graphite is a promising technique for high-yield graphene production. In this work, we present our results on one- to four-layer graphene production using various solvents and surfactants from flaky graphite. We suppose that the initial graphite in the form of millimeter-size flakes can be more advantageous for extended graphene flake acquisition than graphite powder consisting of tiny particles used in previous works. Half-centimeter-size graphene films were obtained by depositing exfoliated flakes on an arbitrary substrate. Such films can be useful for electronic and photonic applications.

  3. Surfactant mediated liquid phase exfoliation of graphene.

    PubMed

    Narayan, Rekha; Kim, Sang Ouk

    2015-01-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  4. Surfactant mediated liquid phase exfoliation of graphene

    NASA Astrophysics Data System (ADS)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  5. Liquid phase exfoliated graphene for electronic applications

    NASA Astrophysics Data System (ADS)

    Sukumaran, Sheena S.; Jinesh, K. B.; Gopchandran, K. G.

    2017-09-01

    Graphene dispersions were prepared using the liquid phase exfoliation method with three different surfactants. One surfactant was used from each of the surfactant types, anionic, cationic, and non-ionic; those used, were sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), respectively. Raman spectroscopy was used to investigate the number of layers and the nature of any defects present in the exfoliated graphene. The yield of graphene was found to be less with the non-ionic surfactant, PVP. The deconvolution of 2D peaks at ~2700 cm‑1 indicated that graphene prepared using these surfactants resulted in sheets consisting of few-layer graphene. The ratio of intensity of the D and G bands in the Raman spectra showed that edge defect density is high for samples prepared with SDBS compared to the other two, and is attributed to the smaller size of the graphene sheets, as shown in the electron micrographs. In the case of the dispersion in PVP, it is found that the sizes of the graphene sheets are highly sensitive to the concentration of the surfactant used. Here, we have made an attempt to investigate the local density of states in the graphene sheets by measuring the tunnelling current–voltage characteristics. Graphene layers have shown consistent p-type behaviour when exfoliated with SDBS and n-type behaviour when exfoliated with CTAB, with a larger band gap for graphene exfoliated using CTAB. Hence, in addition to the known advantages of liquid phase exfoliation, we found that by selecting suitable surfactants, to a certain extent it is possible to tune the band gap and determine the type of majority carriers.

  6. Development of normal phase-high performance liquid chromatography-atmospherical pressure chemical ionization-mass spectrometry method for the study of 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine hydrolytic degradation.

    PubMed

    Nicolas, Grégory; Jankowski, Christopher K; Lucas-Lamouroux, Christine; Bresson, Carole

    2011-09-16

    In the field of nuclear waste management, the 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine (CyMe(4)BTBP) is a polycyclic N-based molecule eligible to remove actinides from spent nuclear fuel by liquid-liquid extraction processes. In such processes, the organic phase containing the extracting molecules will undergo hydrolysis and radiolysis, involving degradation products. The purpose of this work was to develop a normal phase chromatography (NP-HPLC) coupled to atmospherical pressure chemical ionisation-mass spectrometry (APCI-MS) method to separate and identify degradation products of CyMe(4)BTBP dissolved in octanol, submitted to HNO(3) hydrolysis. 1 mol L(-1) HNO(3) hydrolysis conditions were used regarding the selective actinides extraction (SANEX) process, while 3 mol L(-1) HNO(3) conditions were applied for the group actinide extraction (GANEX) process. The first step consisted in optimizing the chromatographic separation conditions using a diode array detection (DAD). Retention behavior of a non hydrolyzed mixture of N,N'-dimethyl-N,N'-dioctyl-hexyloxyethyl-malonamide (DMDOHEMA), a malonamide used in the SANEX process to increase the kinetic of extraction, and CyMe(4)BTBP were investigated on diol-, cyano-, and amino-bonded stationary phases using different mobile phase compositions. These latter were hexane with different polar modifiers, i.e. dioxane, isopropanol, ethanol and methylene chloride/methanol. The different retention processes in NP-HPLC were highlighted when using various stationary and mobile phases. The second step was the setting-up of the NP-HPLC-APCI-MS coupling and the use of the low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) of the precursor protonated molecules that allowed the separation and the characterization of the main hydrolytic CyMe(4)BTBP degradation product under a 3 mol L(-1) HNO(3) concentration. Investigation of the CID-MS/MS fragmentation pattern was

  7. An experimental investigation of two-phase liquid oxygen pumping

    NASA Technical Reports Server (NTRS)

    Gross, L. A.

    1973-01-01

    The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.

  8. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    PubMed Central

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  9. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models.

    PubMed

    Brovchenko, Ivan; Geiger, Alfons; Oleinikova, Alla

    2005-07-22

    Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.

  10. The normal-auxeticity mechanical phase transition in graphene

    NASA Astrophysics Data System (ADS)

    Deng, Binghui; Hou, Jie; Zhu, Hanxing; Liu, Sheng; Liu, Emily; Shi, Yunfeng; Peng, Qing

    2017-06-01

    When a solid object is stretched, in general, it shrinks transversely. However, the abnormal ones are auxetic, which exhibit lateral expansion, or negative Poisson ratio. While graphene is a paradigm 2D material, surprisingly, graphene converts from normal to auxetic at certain strains. Here, we show via molecular dynamics simulations that the normal-auxeticity mechanical phase transition only occurs in uniaxial tension along the armchair direction or the nearest neighbor direction. Such a characteristic persists at temperatures up to 2400 K. Besides monolayer, bilayer and multi-layer graphene also possess such a normal-auxeticity transition. This unique property could extend the applications of graphene to new horizons.

  11. Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H.

    2001-01-01

    We conduct extensive molecular dynamics computer simulations of two models for liquid silica [the model of Woodcock, Angell and Cheeseman, J. Phys. Chem. 65, 1565 (1976); and that of van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)] to determine their thermodynamic properties at low temperature T across a wide density range. We find for both models a wide range of states in which isochores of the potential energy U are a linear function of T3/5, as recently proposed for simple liquids [Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998)]. We exploit this behavior to fit an accurate equation of state to our thermodynamic data. Extrapolation of this equation of state to low T predicts the occurrence of a liquid-liquid phase transition for both models. We conduct simulations in the region of the predicted phase transition, and confirm its existence by direct observation of phase separating droplets of atoms with distinct local density and coordination environments.

  12. Effect of confinement on the liquid-liquid phase transition of supercooled water.

    PubMed

    Brovchenko, I; Oleinikova, A

    2007-06-07

    We report on an observation of the phase transition between two liquid phases of supercooled confined water in simulations. The temperature of the liquid-liquid transition of water at zero pressure slightly decreases due to confinement in the hydrophobic pore. The hydrophilic confinement affects this temperature in the opposite direction and shifts the critical point of the liquid-liquid transition to a higher pressure. As a result, in a strongly hydrophilic pore the liquid-liquid phase transition becomes continuous at zero pressure, indicating the shift of its critical point from negative to a positive pressure. These findings indicate that experimental studies of water confined in the pores of various hydrophobicity/hydrophilicity may clarify the location of the liquid-liquid critical point of bulk water.

  13. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Bauduin, Pierre; Rück, Thomas; Touraud, Didier; Kunz, Werner

    2009-01-15

    In this investigation we present for the first time microemulsions comprising an ionic liquid as surfactant and a room-temperature ionic liquid as polar pseudo-phase. Microemulsions containing the long- chain ionic liquid1-hexadecyl-3-methyl-imidazolium chloride ([C16mim][Cl]) as surfactant, decanol as cosurfactant, dodecaneas continuous phase and room temperature ionic liquids (ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim

  14. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  15. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  16. Electron spectral function and algebraic spin liquid for the normal state of underdoped high T(c) superconductors.

    PubMed

    Rantner, W; Wen, X G

    2001-04-23

    We propose to describe the spin fluctuations in the normal state (spin-pseudogap phase) of underdoped high T(c) cuprates as a manifestation of an algebraic spin liquid. Within the slave boson implementation of spin-charge separation, the normal state is described by massless Dirac fermions, charged bosons, and a gauge field. The gauge interaction, as an exact marginal perturbation, drives the mean-field free-spinon fixed point to a new spin-quantum fixed point-the algebraic spin liquid. Luttinger-liquid-like line shapes for the electron spectral function are obtained in the normal state, and we show how a coherent quasiparticle peak appears as spin and charge recombine.

  17. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  18. Analysis of hydrodynamic (landau) instability in liquid-propellant combustion at normal and reduced gravity

    SciTech Connect

    Margolis, S.B.

    1997-10-01

    The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Such limiting models have recently been formulated thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. These instabilities thus lead to a number of interesting phenomena, such as the sloshing type of waves that have been observed in mixtures of HAN and triethanolammonium nitrate (TEAN) with water. Although the Froude number was treated as an O(l) quantity in these studies, the limit of small inverse Froude number corresponding to the microgravity regime is increasingly of interest. In the present work, the author formally exploits this limiting parameter regime to compare some of the features of hydrodynamic instability of liquid-propellant combustion at reduced gravity with the same phenomenon at normal gravity.

  19. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  20. Liquid disordered-liquid ordered phase coexistence in bicelles containing unsaturated lipids and cholesterol.

    PubMed

    Schmidt, Miranda L; Davis, James H

    2016-04-01

    Magnetically orienting bicelles are often made by combining the long chain phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short chain phospholipid 1,2-dicaproyl-sn-glycero-3-phosphocholine (DCPC) in buffer. These bicelles orient with their bilayer normals perpendicular to the external magnetic field. We have examined the phase behaviour of DMPC/DCPC bicelles and the effects of cholesterol and the unsaturated phospholipid 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (DPoPC) as a function of temperature using static solid state (2)H nuclear magnetic resonance spectroscopy. As expected, cholesterol has an ordering effect on the long phospholipid chains and this is reflected in the phase behaviour of the bicelle mixtures. Liquid disordered-liquid ordered, fluid-fluid phase coexistence is observed in DMPC/cholesterol/DCPC bicelles with cholesterol mole fractions of 0.13 and higher. DPoPC/DMPC/cholesterol/DCPC bicelles also exhibit two fluid phase coexistence over a broad range of temperatures and compositions. Bicelles can provide a useful medium in which to study membrane bound peptides and proteins. The orientation parallel to the magnetic field is favourable for studying membrane peptides/proteins because information about the orientation of relevant molecular bonds or internuclear vectors can be obtained directly from the resulting (2)H spectra. Lanthanide ions can be used to flip the bicelles to have their bilayer normals parallel to the external magnetic field. Yb(3+) was used to flip the DPoPC/DMPC/cholesterol/DCPC bicelles while Eu(3+) was found to be ineffective at flipping bicelles containing cholesterol in the present work.

  1. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    NASA Astrophysics Data System (ADS)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Ferreira, Fabio F.; Costa, Fanny N.; Giles, Carlos

    2016-06-01

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  2. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  3. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    NASA Astrophysics Data System (ADS)

    Bertram, A. K.; You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hiranuma, N.; Smith, M.; Zhang, X.; Weber, R.; Shilling, J. E.; Dabdub, D.; Martin, S. T.

    2012-12-01

    A large fraction of submicron atmospheric particles contain both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles may be affected. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two non-crystalline phases in particles generated from samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using simulated atmospheric conditions. These results show that atmospheric particles can undergo liquid-liquid phase separations.

  4. Liquid crystal gratings from nematic to blue phase

    NASA Astrophysics Data System (ADS)

    Lu, Yan-qing; Hu, Wei; Lin, Xiao-wen; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2012-10-01

    Some of our recent progress on liquid crystal (LC) gratings, from nematic to blue phase, is reviewed in this invited talk. The first kind of grating is fabricated by periodically adjusting the LC directors to form alternate micro phase retarders and polarization rotators in a cell placed between crossed polarizers. The second one is demonstrated by means of photoalignment technique with alternate orthogonal homogeneously-aligned domains. To improve the response time of the gratings, several approaches are also proposed by using dual-frequency addressed nematic LC, ferroelectric LC and blue phase LC, which shows great performance including high transmittance, polarization independency and submillisecond response. At last, to obtain other controllable LC microstructures rather than simple 1D/2D gratings, we develop a micro-lithography system with a digital micro-mirror device as dynamic mask forms. It may instantly generate arbitrary micro-images on photoalignment layers and further guides the LC molecule orientations. Besides normal phase gratings, more complex patterns such as quasicrystal structures are demonstrated. Some new applications such as tunable multiport optical switching and vector beam generations are expected.

  5. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    tends to become more transparent, thus introducing a rather large amount of error into the phase-shifting measurement. While that error can be greatly reduced by normalization, we prefer eliminating the source of the error. To that end, we have pursued development of a 'blend' of custom dyes that will not exhibit these properties. That goal has not yet been fully achieved. Guardalben, et al, presented a similar set of interferograms in a paper partially funded by this grant. Shearing interferometers are a second class of common path interferometers. Typically they consist of a thick glass plate optimized for equal reflection from the front and back surface. While not part of the original thrust of the project, through the course of laboratory work, we demonstrated a prototype of a shearing interferometer capable of phase shifting using a commercial liquid crystal retardation plate. A schematic of this liquid crystal shearing interferometer (LCSI) and a sample set of interferograms are in the reference. This work was also supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. Additional information is included in the original extended abstract.

  6. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    tends to become more transparent, thus introducing a rather large amount of error into the phase-shifting measurement. While that error can be greatly reduced by normalization, we prefer eliminating the source of the error. To that end, we have pursued development of a 'blend' of custom dyes that will not exhibit these properties. That goal has not yet been fully achieved. Guardalben, et al, presented a similar set of interferograms in a paper partially funded by this grant. Shearing interferometers are a second class of common path interferometers. Typically they consist of a thick glass plate optimized for equal reflection from the front and back surface. While not part of the original thrust of the project, through the course of laboratory work, we demonstrated a prototype of a shearing interferometer capable of phase shifting using a commercial liquid crystal retardation plate. A schematic of this liquid crystal shearing interferometer (LCSI) and a sample set of interferograms are in the reference. This work was also supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. Additional information is included in the original extended abstract.

  7. Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.

    PubMed

    Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo

    2017-03-18

    The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research.

  8. Pseudo line tension in pressurized liquid-phase laser ablation

    NASA Astrophysics Data System (ADS)

    Soliman, Wafaa

    2017-06-01

    In pressurized liquid-phase laser ablation, the ratio between the pseudo line tension and the artificial surface tension (σ/S) is evaluated for the first time. It is treated as an adjusting parameter in the solution of Rayleigh-Plesset model to obtain the best fitting with the experimental observations of the dynamics of the cavitation bubble. It is found that σ/S satisfies the relationship σ/S ∝P0(-1/3k), where k is the adiabatic constant. The occupation of the cavitation bubble with nanoparticles, that observed experimentally, deviates the normal magnitudes of σ/S to anomalous values. At water pressure P0=0.1 MPa, σ and S are estimated as 1.9×10-3 N and 4.2 N/m respectively.

  9. Multiple liquid crystal phases of DNA at high concentrations.

    PubMed

    Strzelecka, T E; Davidson, M W; Rill, R L

    1988-02-04

    DNA packaging in vivo is very tight, with volume concentrations approaching 70% w/v in sperm heads, virus capsids and bacterial nucleoids. The packaging mechanisms adopted may be related to the natural tendency of semi-rigid polymers to form liquid crystalline phases in concentrated solutions. We find that DNA forms at least three distinct liquid crystalline phases at concentrations comparable to those in vivo, with phase transitions occurring over relatively narrow ranges of DNA concentration. A weakly birefringent, dynamic, 'precholesteric' mesophase with microscopic textures intermediate between those of a nematic and a true cholesteric phase forms at the lowest concentrations required for phase separation. At slightly higher DNA concentrations, a second mesophase forms which is a strongly birefringent, well-ordered cholesteric phase with a concentration-dependent pitch varying from 2 to 10 micron. At the highest DNA concentrations, a phase forms which is two-dimensionally ordered and resembles smectic phases of thermotropic liquid crystals observed with small molecules.

  10. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure

    NASA Astrophysics Data System (ADS)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Giles, Carlos

    2016-06-01

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114]+ and [N1444]+ proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444]+ as to [N1114]+ because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114]+ cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  11. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Giles, Carlos

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  12. Ferrofluid-based liquid-phase microextraction.

    PubMed

    Shi, Zhi-Guo; Zhang, Yufeng; Lee, Hian Kee

    2010-11-19

    A new mode of liquid-phase microextraction based on a ferrofluid has been developed. The ferrofluid was composed of silica-coated magnetic particles and 1-octanol as the extractant solvent. The 1-octanol was firmly confined within the silica-coated particles, preventing it from being lost during extraction. Sixteen polycyclic aromatic hydrocarbons (PAHs) were used as model compounds in the development and evaluation of the extraction procedure in combination with gas chromatography-mass spectrometry. Parameters affecting the extraction efficiency were investigated in detail. The optimal conditions were as follows: 20mL sample volume, 10mg of the silica-coated magnetic particles (28mg of ferrofluid), agitation at 20Hz, 20min extraction time, and 2min by sonication with 100μL acetonitrile as the final extraction solvent. Under optimal extraction conditions, enrichment factors ranging from 102- to 173-fold were obtained for the analytes. The limits of detection and the limits of quantification were in the range of 16.8 and 56.7pgmL(-1) and 0.06 and 0.19ngmL(-1), respectively. The linearities were between 0.5-100 and 1-100ngmL(-1) for different PAHs. As the ferrofluid can respond to and be attracted by a magnet, the extraction can be easily achieved by reciprocating movement of an external magnet that served to agitate the sample. No other devices were needed in this new approach of extraction. This new technique is affordable, efficient and convenient for microextraction, and offers portability for potential onsite extraction.

  13. Liquid-Liquid Phase Transformation in Silicon: Evidence from First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-11-01

    We report results of first principles molecular dynamics simulations that confirm early speculations on the presence of liquid-liquid phase transition in undercooled silicon. However, we find that structural and electronic properties of both low-density liquid (LDL) and high-density liquid (HDL) phases are quite different from those obtained by empirical calculations, the difference being more pronounced for the HDL phase. The discrepancy between quantum and classical simulations is attributed to the inability of empirical potentials to describe changes in chemical bonds induced by density and temperature variations.

  14. Oiling out or molten hydrate-liquid-liquid phase separation in the system vanillin-water.

    PubMed

    Svärd, Michael; Gracin, Sandra; Rasmuson, Ake C

    2007-09-01

    Vanillin crystals in a saturated aqueous solution disappear and a second liquid phase emerges when the temperature is raised above 51 degrees C. The phenomenon has been investigated with crystallization and equilibration experiments, using DSC, TGA, XRD and hot-stage microscopy for analysis. The new liquid solidifies on cooling, appears to melt at 51 degrees C, and has a composition corresponding to a dihydrate. However, no solid hydrate can be detected by XRD, and it is shown that the true explanation is that a liquid-liquid phase separation occurs above 51 degrees C where the vanillin-rich phase has a composition close to a dihydrate. To our knowledge, liquid-liquid phase separation has not previously been reported for the system vanillin-water, even though thousands of tonnes of vanillin are produced globally every year. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  15. Phase Diagram Characterization Using Magnetic Beads as Liquid Carriers.

    PubMed

    Blumenschein, Nicholas; Han, Daewoo; Steckl, Andrew J

    2015-09-04

    Magnetic beads with ~1.9 µm average diameter were used to transport microliter volumes of liquids between contiguous liquid segments with a tube for the purpose of investigating phase change of those liquid segments. The magnetic beads were externally controlled using a magnet, allowing for the beads to bridge the air valve between the adjacent liquid segments. A hydrophobic coating was applied to the inner surface of the tube to enhance the separation between two liquid segments. The applied magnetic field formed an aggregate cluster of magnetic beads, capturing a certain liquid amount within the cluster that is referred to as carry-over volume. A fluorescent dye was added to one liquid segment, followed by a series of liquid transfers, which then changed the fluorescence intensity in the neighboring liquid segment. Based on the numerical analysis of the measured fluorescence intensity change, the carry-over volume per mass of magnetic beads has been found to be ~2 to 3 µl/mg. This small amount of liquid allowed for the use of comparatively small liquid segments of a couple hundred microliters, enhancing the feasibility of the device for a lab-in-tube approach. This technique of applying small compositional variation in a liquid volume was applied to analyzing the binary phase diagram between water and the surfactant C12E5 (pentaethylene glycol monododecyl ether), leading to quicker analysis with smaller sample volumes than conventional methods.

  16. Modeling of the primary rearrangement stage of liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Malik Tahir, Abdul; Malik, Amer; Amberg, Gustav

    2016-10-01

    The dimensional variations during the rearrangement stage of liquid phase sintering could have a detrimental effect on the dimensional tolerances of the sintered product. A numerical approach to model the liquid phase penetration into interparticle boundaries and the accompanied dimensional variations during the primary rearrangement stage of liquid phase sintering is presented. The coupled system of the Cahn-Hilliard and the Navier-Stokes equations is used to model the penetration of the liquid phase, whereas the rearrangement of the solid particles due to capillary forces is modeled using the equilibrium equation for a linear elastic material. The simulations are performed using realistic physical properties of the phases involved and the effect of green density, wettability and amount of liquid phase is also incorporated in the model. In the first step, the kinetics of the liquid phase penetration and the rearrangement of solid particles connected by a liquid bridge is modeled. The predicted and the calculated (analytical) results are compared in order to validate the numerical model. The numerical model is then extended to simulate the dimensional changes during primary rearrangement stage and a qualitative match with the published experimental data is achieved.

  17. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    SciTech Connect

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-07-30

    A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles will be affected, with important implications for climate predictions. The actual occurrence of these types of phase transitions within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we observe the coexistence of two non-crystalline phases in particles generated from real-world samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. Using a box model, we show that liquid-liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 in the Atlanta region, due to decreased particle uptake of N2O5.

  18. Analysis of Hydrodynamic (Landau) Instability in Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.

    1997-01-01

    The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond

  19. Analysis of Hydrodynamic (Landau) Instability in Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.

    1997-01-01

    The burning of liquid propellants is a fundamental combustion problem that is applicable to various types of propulsion and energetic systems. The deflagration process is often rather complex, with vaporization and pyrolysis occurring at the liquid/gas interface and distributed combustion occurring either in the gas phase or in a spray. Nonetheless, there are realistic limiting cases in which combustion may be approximated by an overall reaction at the liquid/gas interface. In one such limit, the gas flame occurs under near-breakaway conditions, exerting little thermal or hydrodynamic influence on the burning propellant. In another such limit, distributed combustion occurs in an intrusive regime, the reaction zone lying closer to the liquid/gas interface than the length scale of any disturbance of interest. Finally, the liquid propellant may simply undergo exothermic decomposition at the surface without any significant distributed combustion, such as appears to occur in some types of HydroxylAmmonium Nitrate (HAN)-based liquid propellants at low pressures. Such limiting models have recently been formulated,thereby significantly generalizing earlier classical models that were originally introduced to study the hydrodynamic stability of a reactive liquid/gas interface. In all of these investigations, gravity appears explicitly and plays a significant role, along with surface tension, viscosity, and, in the more recent models, certain reaction-rate parameters associated with the pressure and temperature sensitivities of the reaction itself. In particular, these parameters determine the stability of the deflagration with respect to not only classical hydrodynamic disturbances, but also with respect to reactive/diffusive influences as well. Indeed, the inverse Froude number, representing the ratio of buoyant to inertial forces, appears explicitly in all of these models, and consequently, in the dispersion relation that determines the neutral stability boundaries beyond

  20. Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

    SciTech Connect

    Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

    2005-02-09

    Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

  1. Liquid-liquid phase transition in an ionic model of silica

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Lascaris, Erik; Palmer, Jeremy C.

    2017-06-01

    Recent equation of state calculations [E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016)] for an ionic model of silica suggest that it undergoes a density-driven, liquid-liquid phase transition (LLPT) similar to the controversial transition hypothesized to exist in deeply supercooled water. Here, we perform extensive free energy calculations to scrutinize the model's low-temperature phase behavior and confirm the existence of a first-order phase transition between two liquids with identical compositions but different densities. The low-density liquid (LDL) exhibits tetrahedral order, which is partially disrupted in the high-density liquid (HDL) by the intrusion of additional particles into the primary neighbor shell. Histogram reweighting methods are applied to locate conditions of HDL-LDL coexistence and the liquid spinodals that bound the two-phase region. Spontaneous liquid-liquid phase separation is also observed directly in large-scale molecular dynamics simulations performed inside the predicted two-phase region. Given its clear LLPT, we anticipate that this model may serve as a paradigm for understanding whether similar transitions occur in water and other tetrahedral liquids.

  2. The nature of ionic liquids in the gas phase.

    PubMed

    Leal, João P; Esperança, José M S S; da Piedade, Manuel E Minas; Lopes, José N Canongia; Rebelo, Luís P N; Seddon, Kenneth R

    2007-07-19

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) experiments showed that when aprotic ionic liquids vaporize under pressure and temperature conditions similar to those of a reduced-pressure distillation, the gas phase is composed of discrete anion-cation pairs. The evolution of the mass spectrometric signals recorded during fractional distillations of binary ionic liquid mixtures allowed us to monitor the changes of the gas-phase composition and the relative volatility of the components. In addition, we have studied a protic ionic liquid, and demonstrated that it exists as separated neutral molecules in the gas phase.

  3. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture

    NASA Astrophysics Data System (ADS)

    Murata, Ken-Ichiro; Tanaka, Hajime

    2012-05-01

    The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT inpure water.

  4. Phase change liquid purifier and pump

    DOEpatents

    Steinhour, Leif Alexi

    2017-05-23

    Systems, methods, and apparatus are provided for purifying and pumping liquids, and more particularly, for purifying and pumping water. The apparatus includes a chamber including a top portion and a bottom portion. A surface configured to be heated is proximate the bottom portion of the chamber. A baffle is disposed within the chamber and above the surface. The baffle is disposed at an angle relative to a vertical direction. The chamber further includes an inlet and a first outlet. The surface heats a liquid in the chamber, causing the liquid to boil. In operation, bubbles rise from the surface and are forced in a horizontal direction by the baffle disposed in the chamber.

  5. Measurements of liquid-phase turbulence in gas-liquid two-phase flows using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-12-01

    Liquid-phase turbulence measurements were performed in an air-water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method--planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas-liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  6. Thermomorphic phase separation in ionic liquid-organic liquid systems--conductivity and spectroscopic characterization.

    PubMed

    Riisager, Anders; Fehrmann, Rasmus; Berg, Rolf W; van Hal, Roy; Wasserscheid, Peter

    2005-08-21

    Electrical conductivity, FT-Raman and NMR measurements are demonstrated as useful tools to probe and determine phase behavior of thermomorphic ionic liquid-organic liquid systems. To illustrate the methods, consecutive conductivity measurements of a thermomorphic methoxyethoxyethyl-imidazolium ionic liquid/1-hexanol system are performed in the temperature interval 25-80 degrees C using a specially constructed double-electrode cell. In addition, FT-Raman and 1H-NMR spectroscopic studies performed on the phase-separable system in the same temperature interval confirm the mutual solubility of the components in the system, the liquid-liquid equilibrium phase diagram of the binary mixture, and signify the importance of hydrogen bonding between the ionic liquid and the hydroxyl group of the alcohol.

  7. Liquid-Liquid Phase Transitions in Tetrahedrally Coordinated Fluids via Wertheim Theory.

    PubMed

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2015-07-23

    Network interpenetration has been proposed as a mechanism for generating liquid-liquid phase transitions in one component systems. We introduce a model of four coordinated particles, which explicitly treats the system as a mixture of two interacting interpenetrating networks that can freely exchange particles. This model can be solved within Wertheim's theory for associating fluids and shows liquid-liquid phase separations (in addition to the gas-liquid) for a wide range of model parameters. We find that originating a liquid-liquid transition requires a small degree of interpenetrability and a preference for intranetwork bonding. Physically, these requirements can be seen as controlling the softness of the particle-particle interaction and the bond flexibility, in full agreement with recent findings [Smallenburg, F.; Filion, L.; Sciortino, F. Nat. Phys. 2014, 10, 653].

  8. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.

  9. Time evolution of excitations in normal Fermi liquids

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Y.; Rubio, A.; Berakdar, J.

    2013-05-01

    We inspect the initial and the long-time evolution of excitations in Fermi liquids by analyzing the time structure of the electron spectral function. Focusing on the short-time limit we study the electron-boson model for the homogeneous electron gas and apply the first-order (in boson propagator) cumulant expansion of the electron Green's function. In addition to a quadratic decay in time upon triggering the excitation, we identify nonanalytic terms in the time expansion similar to those found in the Fermi edge singularity phenomenon. We also demonstrate that the exponential decay in time in the long-time limit is inconsistent with the GW approximation for the self-energy. The background for this is the Paley-Wiener theorem of complex analysis. To reconcile with the Fermi liquid behavior an inclusion of higher order diagrams (in the screened Coulomb interaction) is required.

  10. Influence of driving voltage of liquid crystal on modulation phase

    NASA Astrophysics Data System (ADS)

    Guo, Hongyang; Du, Shengping

    2017-09-01

    Based on the elastic theory and the dynamics equation of liquid crystal, we use Finite-Difference iterative method to calculate the liquid crystal molecules director distributions under the effect of electric field. According to the director distributions, this paper gets the relationship between LCD modulation phase and the driving voltage. The results of simulation proves that with driving voltage varying from 0 to 5v and the crystal modulation phase varies from 0 to 4π.

  11. Direct Raman evidence for a weak continuous phase transition in liquid water.

    PubMed

    Alphonse, Natalie K; Dillon, Stephanie R; Dougherty, Ralph C; Galligan, Dawn K; Howard, Louis N

    2006-06-22

    This paper presents the Raman depolarization ratio of degassed ultrapure water as a function of temperature, in the range 303.4-314.4 K (30.2-41.2 degrees C). The pressure of the sample was the vapor pressure of water at the measurement temperature. The data provide a direct indication of the existence of a phase transition in the liquid at 307.7 K, 5.8 kPa (34.6 degrees C, 0.057 atm). The minimum in the heat capacity, C(p)(), of water occurs at 34.5 degrees C, 1.0 atm (J. Res. Natl. Bur. Stand. 1939, 23, 197(1)). The minimum in C(p)() is shallow, and the transition is a weak-continuous phase transition. The pressure coefficient of the viscosity of water changes sign as pressure increases for temperatures below 35 degrees C (Nature 1965, 207, 620(2)). The viscosity minimum tracks the liquid phase transition in the P, T plane where it connects with the minimum in the freezing point of pure water in the same plane (Proc. Am. Acad. Arts Sci. 1911-12, 47, 441(3)). Previously we argued (J. Chem. Phys. 1998, 109, 7379(4)) that the minimum in the pressure coefficient of viscosity signaled the elimination of three-dimensional connectivity in liquid water. These observations coupled with recent measurements of the coordination shell of water near 300 K (Science 2004, 304, 995(5)) suggest that the structural component that changes during the phase transition is tetrahedrally coordinated water. At temperatures above the transition, there is no tetrahedrally coordinated water in the liquid and locally planar water structures dominate the liquid structure. Water is a structured liquid with distinct local structures that vary with temperature. Furthermore, liquid water has a liquid-liquid phase transition near the middle of the normal liquid range.

  12. SANS Study of Liquid-Liquid Phase Transition in Protein Electrolyte Solution

    NASA Astrophysics Data System (ADS)

    Chinchalikar, Akshay J.; Aswal, V. K.; Kohlbrecher, J.; Wagh, A. G.

    2011-07-01

    Small-angle Neutron Scattering (SANS) measurements have been performed on lysozyme protein solution to examine liquid-liquid phase transition with the addition of NaCl. We show that the liquid-liquid phase transition is governed by the increase in the attractive interaction between protein molecules as tuned by the salt concentration. This attractive interaction is modeled by the Baxter's sticky hard sphere potential. It is found that when the attractive potential becomes significantly larger than the thermal energy protein molecules coalesce to form gel.

  13. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons.

    PubMed

    Beye, Martin; Sorgenfrei, Florian; Schlotter, William F; Wurth, Wilfried; Föhlisch, Alexander

    2010-09-28

    The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack--like water--a thorough explanation. Proposed models--controversially discussed--explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the "no man's land"--a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported.

  14. Determination of alkylphenols and alkylphenol polyethoxylates by reversed-phase high-performance liquid chromatography and solid-phase extraction.

    PubMed

    Takasu, Takuma; Iles, Alexander; Hasebe, Kiyoshi

    2002-02-01

    A simple, accurate and reproducible reversed-phase high-performance liquid chromatography (HPLC) method was developed for the separation and characterisation of alkylphenols (APs) and alkylphenol polyethoxylates (APEOs), using a C18 octadecyl silica (ODS) column. APs and each APEO oligomer were separated successfully within a reasonable time without gradient elution. An excellent resolution was obtained, even for mixtures of APs and low EO number APEOs, which are otherwise difficult to separate using conventional normal-phase HPLC methods. This method, combined with solid-phase extraction, was highly applicable for the simultaneous determination of alkylphenols and alkylphenol ethoxylates in real samples.

  15. The contribution of hydrogen peroxide to atmospheric liquid phase chemistry

    SciTech Connect

    Klockow, D.; Jacob, P.; Bambauer, A.

    1986-04-01

    The most frequently investigated and best understood atmospheric liquid phase process is the oxidation of dissolved sulfur dioxide. The relevant reactions are controlled either by restricted solubilities of the respective species or by high activation energies. The most favorable properties as an oxidant for SO/sub 2/ (aq) under atmospheric conditions are exhibited by hydrogen peroxide: It is highly soluble in water and reacts fast with dissolved sulfur dioxide even at low pH values. In this talk new methodology for determination of hydrogen peroxide in liquid and gas phase is presented. Furthermore results of measurement of hydrogen peroxide in condensed phases (rain, snow, polar ice) as well as in the gas phase are discussed. Finally laboratory and field studies related to formation of hydrogen peroxide in the liquid phase and its reaction with dissolved reduced species ((HSO/sub 3/, NO/sub 2/) under the influence of light are described.

  16. Relationship between the liquid liquid phase transition and dynamic behaviour in the Jagla model

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ehrenberg, Isaac; Buldyrev, Sergey V.; Stanley, H. Eugene

    2006-09-01

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.

  17. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  18. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented.

  19. Retention mechanism of hypercrosslinked polystyrene silica hybrid phase in normal phase chromatography.

    PubMed

    Wu, Di; Nedev, Georgi K; Lucy, Charles A

    2014-11-28

    Hypercrosslinked polystyrene phases have been described as quasi-normal phase because they lack discrete polar sites. Retention on the HC-Tol column is investigated using the Snyder-Soczewinski model. Solvent strength of different hexane-solvent binary mobile phase compositions can be predicted with solvent strength of pure dichloromethane (DCM, 0.159), tetrahydrofuran (THF, 0.22), and benzene (0.127). The HC-Tol column is shown to be a localizing adsorptive phase. Also, site-competition delocalization on HC-Tol demonstrates that whatever its adsorption groups are, they are able to participate in lateral interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Possible quantum liquid crystal phases of helium monolayers

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Matsui, K.; Matsui, T.; Fukuyama, Hiroshi

    2016-11-01

    The second-layer phase diagrams of 4He and 3He adsorbed on graphite are investigated. Intrinsically rounded specific-heat anomalies are observed at 1.4 and 0.9 K, respectively, over extended density regions in between the liquid and incommensurate solid phases. They are identified to anomalies associated with the Kosterlitz-Thouless-Halperin-Nelson-Young type two-dimensional melting. The prospected low temperature phase (C2 phase) is a commensurate phase or a quantum hexatic phase with quasi-bond-orientational order, both containing zero-point defectons. In either case, this would be the first atomic realization of the quantum liquid crystal, a new state of matter. From the large enhancement of the melting temperature over 3He, we propose to assign the observed anomaly of 4He-C 2 phase at 1.4 K to the hypothetical supersolid or superhexatic transition.

  1. A single-component liquid-phase hydrogen storage material.

    PubMed

    Luo, Wei; Campbell, Patrick G; Zakharov, Lev N; Liu, Shih-Yuan

    2011-12-07

    The current state-of-the-art for hydrogen storage is compressed H(2) at 700 bar. The development of a liquid-phase hydrogen storage material has the potential to take advantage of the existing liquid-based distribution infrastructure. We describe a liquid-phase hydrogen storage material that is a liquid under ambient conditions (i.e., at 20 °C and 1 atm pressure), air- and moisture-stable, and recyclable; releases H(2) controllably and cleanly at temperatures below or at the proton exchange membrane fuel cell waste-heat temperature of 80 °C; utilizes catalysts that are cheap and abundant for H(2) desorption; features reasonable gravimetric and volumetric storage capacity; and does not undergo a phase change upon H(2) desorption. © 2011 American Chemical Society

  2. Liquid-liquid phase transition and structure inheritance in carbon films

    PubMed Central

    He, Yezeng; Li, Hui; Jiang, Yanyan; Li, Xiongying; Bian, Xiufang

    2014-01-01

    Molecular dynamics simulations are performed to study the cooling process of quasi-2D liquid carbon. Our results show an obvious liquid-liquid phase transition (LLPT) from the twofold coordinated liquid to the threefold coordinated liquid with the decrease of temperature, followed by a liquid-solid phase transition (LSPT). The LLPT can be regarded as the preparation stage of LSPT. During the cooling process, the chain structures firstly self-assemble into some ring structures and then aggregate into some stable islands which can further connect together to form a complete polycrystalline film. The threefold coordinated structures play an important role in the formation of atomic rings. The inheritance of the threefold coordinated structures provides essential condition to form rings and islands. PMID:24407276

  3. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal.

    PubMed

    Yan, Jin; Li, Yan; Wu, Shin-Tson

    2011-04-15

    We demonstrate a tunable phase grating using a polymer-stabilized blue phase liquid crystal. Because of the electric-field-induced rectangularlike phase profile, a high diffraction efficiency of 40% is achieved. Moreover, this device shows submillisecond response time. The proposed tunable phase grating holds great potential for photonics and display applications.

  4. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  5. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  6. Phase behavior of nanoparticles in a thermotropic liquid crystal.

    PubMed

    Da Cruz, Cristina; Sandre, Olivier; Cabuil, Valérie

    2005-08-04

    In this work, we describe the outstanding behavior of a nanocomposite system composed of the thermotropic liquid crystal 5CB doped with nanoparticles of the magnetic iron oxide maghemite (gamma-Fe(2)O(3)). We show that the I-N transition is associated with a reversible gathering of nanoparticles inside droplets of the ferronematic phase coexisting with a nonmagnetic nematic host phase.

  7. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation.

    PubMed

    Zhang, Qingquan; Xu, Meng; Liu, Xiaojun; Zhao, Wenfeng; Zong, Chenghua; Yu, Yang; Wang, Qi; Gai, Hongwei

    2016-04-11

    We present a universal and scalable method to fabricate Janus droplets based on evaporation driven liquid-liquid phase separation. In this work, the morphologies and chemical properties of separate parts of the Janus droplets can be flexibly regulated, and more complex Janus droplets (such as core-shell Janus droplets, ternary Janus droplets, and multiple Janus droplets) can be constructed easily.

  8. Liquid-Phase Bioreactor for Degradation of Trichloroethylene and Benzene

    DTIC Science & Technology

    1993-04-01

    AD-A275 03.5 0S-R-20 LIQUID-PHASE BIOREACTOR FOR DEGRADATION OF TRICHLOROETHYLENE AND BENZENE B. FOLSOM ENVIROGEN, INC. 4100 QUAKERBR1DGE RD...AND SUBTITLE S. FUNDING NUMBERS Liquid-Phase Bioreactor for Degradation of Trichloroethylene and Benzene C: F08635-91-C-0198 6. AUTHOR(S) Brian Folsom...treated into a vapor phase bioreactor . The second-stage unit biodegraded greater than 907. of the TCE and greater than 90% of the residual benzene load

  9. Phase Distribution Characteristics of Bubbly Flow in Mini Pipes Under Normal and Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi

    2015-03-01

    The axial development of the void fraction, interfacial area concentration and Sauter mean bubble diameter profiles of adiabatic air-water bubbly flows in 5.0 and 3.0 mm-diameter pipes were measured using a stereo image processing method under two gravity conditions, vertical upward (normal gravity) and microgravity. The flow measurements were performed at four axial locations. The axial distances from the pipe inlet ( z) normalized by the pipe diameter ( D) were z/ D = 5.5, 34, 72 and 110 for 5.0 mm-diameter pipe and z/ D = 15, 62, 120 and 188 for 3.0 mm-diameter pipe. Data were collected for superficial gas and liquid velocities respectively in the ranges of 0.00434-0.0500 m/s and 0.205-0.754 m/s. The effect of gravity on the radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail, based on the obtained database. The phase distributions in pipe cross-sections were classified into 3 basic patterns: core peak, intermediate peak and wall peak distributions, based on two normalized parameters: a normalized void peak position and a normalized void peak intensity. Phase distribution pattern maps under normal and microgravity conditions were generated for bubbly flows in 5.0 and 3.0 mm-diameter pipes. The data obtained in the current experiment are expected to contribute to the benchmarking of CFD simulation of void fraction and interfacial area concentration distribution patterns in forced convective pipe flow under microgravity conditions.

  10. Phase behavior and dynamics of a cholesteric liquid crystal

    SciTech Connect

    Roy, D.; Fragiadakis, D.; Roland, C. M.; Dabrowski, R.; Dziaduszek, J.; Urban, S.

    2014-02-21

    The synthesis, equation of state, phase diagram, and dielectric relaxation properties are reported for a new liquid crystal, 4{sup ′}-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*), which exhibits a cholesteric phase at ambient temperature. The steepness of the intermolecular potential was characterized from the thermodynamic potential parameter, Γ = 4.3 ± 0.1 and the dynamic scaling exponent, γ = 3.5 ± 0.2. The difference between them is similar to that seen previously for nematic and smectic liquid crystals, with the near equivalence of Γ and γ consistent with the near constancy of the relaxation time of 4ABO5* at the cholesteric to isotropic phase transition (i.e., the clearing line). Thus, chirality does not cause deviations from the general relationship between thermodynamics and dynamics in the ordered phase of liquid crystals. The ionic conductivity of 4ABO5* shows strong coupling to the reorientational dynamics.

  11. GROUND WATER ISSUE: DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  12. GROUND WATER ISSUE: DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    This issue paper is a literature evaluation focusing on DNAPLs and provides an overview from a conceptual fate and transport point of view of DNAPL phase distribution, monitoring, site characterization, remediation, and modeling.

  13. A superconductor to superfluid phase transition in liquid metallic hydrogen.

    PubMed

    Babaev, Egor; Sudbø, Asle; Ashcroft, N W

    2004-10-07

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  14. Chemicals from low temperature liquid-phase cracking of coals

    SciTech Connect

    Sato, Y.; Kodera, Y.; Kamo, T.; Yamaguchi, H.; Tatsumoto, K.

    1999-07-01

    Mild gasification and low temperature pyrolysis are considered to be the most promising process for high-moisture subbituminous and lignite coal to produce upgraded solid fuel with high heating value and low sulfur, and to produce a useful liquid product. However effective technology to prevent spontaneous combustion of solid product and to utilize oxygen-rich liquid product has not yet been reported to enhance commercial feasibility of these process. In this study, liquid-phase cracking of low rank coal at 350--450 C under 2 MPa of initial nitrogen atmosphere has been studied to produce upgraded coal and value added liquid product. Liquid-phase cracking of Wyoming subbituminous Buckskin coal using iron oxide catalyst in the presence of t-decalin at 440C gave 10 wt% of liquid product, 12 wt% of gases and 74 wt% of upgraded coal with small amount of water. Gaseous product consisted of mainly carbon dioxide (62wt%) and methane. Therefore, cracking of carboxylic function took place effectively in these conditions. Liquid product contains BTX, phenols and alkylphenols. Concentrated chemicals of BTX, phenol and cresols from the liquid products by hydrocracking and hydrotreating will be discussed.

  15. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  16. Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts

    NASA Technical Reports Server (NTRS)

    Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul

    2004-01-01

    The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.

  17. Liquid hydrogen suction dip and slosh wave excitation during draining under normal and reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1992-01-01

    The paper discusses the dynamical behavior of vapor ingestion, liquid residual at the incipience of suction dip, slosh wave excitation under normal and reduced gravity and different flow rates during liquid hydrogen draining. Liquid residuals at the incipience of suction dip increase as the values of gravity decrease. Also liquid residuals increase with the draining flow rates. Lower ratio of Bond number and Weber number are unable to excite slosh waves. Lower flow rates and higher gravity excites waves with lower frequencies and higher wave amplitude slosh waves.

  18. Surface-functionalized ionic liquid crystal-supported ionic liquid phase materials: ionic liquid crystals in mesopores.

    PubMed

    Kohler, Florian T U; Morain, Bruno; Weiss, Alexander; Laurin, Mathias; Libuda, Jörg; Wagner, Valentin; Melcher, Berthold U; Wang, Xinjiao; Meyer, Karsten; Wasserscheid, Peter

    2011-12-23

    The influence of confinement on the ionic liquid crystal (ILC) [C(18)C(1)Im][OTf] is studied using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The ILC studied is supported on Si-based powders and glasses with pore sizes ranging from 11 to 50 nm. The temperature of the solid-to-liquid-crystalline phase transition seems mostly unaffected by the confinement, whereas the temperature of the liquid-crystalline-to-liquid phase transition is depressed for smaller pore sizes. A contact layer with a thickness in the order of 2 nm is identified. The contact layer exhibits a phase transition at a temperature 30 K lower than the solid-to-liquid-crystalline phase transition observed for the neat ILC. For applications within the "supported ionic liquid phase (SILP)" concept, the experiments show that in pores of diameter 50 nm a pore filling of α>0.4 is sufficient to reproduce the phase transitions of the neat ILC.

  19. Quinolinium ionic liquid-modified silica as a novel stationary phase for high-performance liquid chromatography.

    PubMed

    Sun, Min; Feng, Juanjuan; Luo, Chuannan; Liu, Xia; Jiang, Shengxiang

    2014-04-01

    A novel stationary phase based on quinolinium ionic liquid-modified silica was prepared and evaluated for high-performance liquid chromatography. The stationary phase was investigated via normal-phase (NP), reversed-phase (RP), and anion-exchange (AE) chromatographic modes, respectively. Polycyclic aromatic hydrocarbons, phthalates, parabens, phenols, anilines, and inorganic anions were used as model analytes in chromatographic separation. Using the newly established column, organic compounds were separated successfully by both NP and RP modes, and inorganic anions were also separated completely by AE mode. The obtained results indicated that the stationary phase could be applied in different chromatographic modes, with multiple-interaction mechanism including van der Waals forces (dipole-dipole, dipole-induced dipole interactions), hydrophobic, π-π stacking, electrostatic forces, hydrogen bonding, anion-exchange interactions, and so on. The column packed with the stationary phase was applied to analyze phthalates and parabens in hexane extracts of plastics. Tap water and bottled water were also analyzed by the column, and nitrate was detected as 20.1 and 13.8 mg L(-1), respectively. The results illustrated that the stationary phase was potential in practical applications.

  20. Electron phase coherence in mesoscopic normal metal wires

    NASA Astrophysics Data System (ADS)

    Trionfi, Aaron James

    Corrections to the classically predicted electrical conductivity in normal metals arise due to the quantum mechanical properties of the conduction electrons. These corrections provide multiple experimental tests of the conduction electrons' quantum phase coherence. I consider if independent measurements of the phase coherence via different corrections are quantitatively consistent, particularly in systems with spin-orbit or magnetic impurity scattering. More precisely, do independent quantum corrections to the classically predicted conductivity depend identically on the ubiquitous dephasing mechanisms in normal metals? I have inferred the coherence lengths from the weak localization magnetoresistance, magnetic field-dependence of time-dependent universal conductance fluctuations, and magnetic field-dependent universal conductance fluctuations, three observable quantum corrections, in quasi one- and two-dimensional AuPd wires and quasi-1D Ag and Au wires between 2 and 20 K. While the coherence lengths inferred from weak localization and time-dependent universal conductance fluctuations are in excellent quantitative agreement in AuPd, the strong quantitative agreement is apparently lost below a critical temperature in both Ag and Au. Such a disagreement is inconsistent with current theory and must be explained. I developed a hypothesis attributing the coherence length discrepancy seen in Ag and Au to a crossover from the saturated to unsaturated time-dependent conductance fluctuation regime. Two experimental tests were then employed to test this hypothesis. One test examined the effects of a changing spin-flip scattering rate in Au while the second examined how passivation of the two level systems responsible for time-dependent conductance fluctuations at the surface of a Au nanowire affects the inferred coherence lengths. The results of the two tests strongly indicate that the observed disagreement in Au (and likely Ag) is indeed due to a crossover from saturated to

  1. Methods of liquid phase microextraction for the determination of cadmium in environmental samples.

    PubMed

    Pires Santos, Analú; das Graças Andrade Korn, Maria; Azevedo Lemos, Valfredo

    2017-08-09

    Liquid phase microextraction (LPME) has been widely used in extraction and preconcentration systems as an excellent alternative to conventional liquid phase extraction. In this work, a critical review is presented on liquid phase microextraction techniques used in the determination of cadmium in environmental samples. LPME techniques are classified into three main groups: single-drop liquid phase microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME). Methods involving these liquid phase microextraction techniques are described, addressing advantages and disadvantages, samples, figures of merit, and trends.

  2. The effects of three-body dispersion interactions on liquid-liquid phase equilibrium

    NASA Astrophysics Data System (ADS)

    McMahon, P. D.

    1989-02-01

    Using perturbation theory, we show that three-body dispersion interactions influence the phase diagrams of partially miscible liquid mixtures. In our model mixtures, the argon-like particles interact through Maitland-Smith pair potentials and Axilrod-Teller three-body potentials. We find that ternary liquid-liquid coexistence curves are sensitive to vABC, the strength of the Axilrod-Teller interaction appearing for the first time in the ternary mixture. Effective pair potentials predict the ternary phase diagrams well if vABC satisfies Tang's rule.

  3. Cephalic phase responses, craving and food intake in normal subjects.

    PubMed

    Nederkoorn, C; Smulders, F T; Jansen, A

    2000-08-01

    Cephalic phase responses (CPRs) are elicited during exposure to food cues. They gear up the body to optimize digestion or they compensate for unwanted changes during a meal. The cue reactivity model of binge eating predicts that CPRs are experienced as craving for food, thereby increasing food intake and playing a role in abnormal eating behaviour. The present experiment was designed to measure CPRs in normal women and to examine its relationship with craving, food intake and restraint. Results show that normal subjects do react to food exposure with changes in heart rate, heart rate variability (HRV), salivation, blood pressure, skin conductance and gastric activity. These CPRs presumably gear up the body and presumably do not reflect compensatory responses. Significant correlations between restraint and blood pressure, between blood pressure and craving, and between craving and food intake were also found. These results are in line with the cue reactivity model and suggest that research into physiological CPRs and craving in the field of eating disorders is valuable. Copyright 2000 Academic Press.

  4. Liquid jet impingement normal to a disk in zero gravity

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Dewitt, K. J.

    1978-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular jets impinging normal to sharp-edged disks in zero gravity. Experiments conducted in a zero gravity drop tower yielded three distinct flow patterns which were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane. The resulting nonlinear equations were solved numerically and comparisons were made with the experimental data for the inertia dominated regime.

  5. Effects of bubble–liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactor.

    PubMed

    Liu, Yang; Li, Fanxing; Hu, Weiwei; Wiltberger, Kelly; Ryll, Thomas

    2014-01-01

    According to recent experimental studies on sparged bioreactors, significant cell damage may occur at the gas inlet region near the sparger. Although shear stress was proposed to be one of the potential causes for cell damage, detailed hydrodynamic studies at the gas inlet region of gas–liquid bioreactors have not been performed to date. In this work, a second-order moment (SOM) bubble–liquid two-phase turbulent model based on the two-fluid continuum approach is used to investigate the gas–liquid hydrodynamics in the bubble column reactor and their potential impacts on cell viability, especially at the gas inlet region. By establishing fluctuation velocity and bubble–liquid two-phase fluctuation velocities correlation transport equations, the anisotropy of two-phase stresses and the bubble– liquid interactions are fully considered. Simulation results from the SOM model indicate that shear and normal stresses, turbulent energy dissipation rate, and the turbulent kinetic energy are generally smaller at the gas inlet region when compared with those in the fully developed region. In comparison, a newly proposed correlation expression, stress-induced turbulent energy production (STEP), is found to correlate well with the unusually high cell death rate at the gas inlet region. Therefore, STEP, which represents turbulent energy transfer to a controlled volume induced by a combination of shear and normal stresses, has the potential to provide better explanation for increased cell death at the sparger region.

  6. Vibrational energy dynamics of normal and deuterated liquid benzene.

    PubMed

    Seong, Nak-Hyun; Fang, Ying; Dlott, Dana D

    2009-02-26

    Ultrafast Raman spectroscopy with infrared (IR) excitation is used to study vibrational energy dynamics of ambient temperature liquids benzene and benzene-d(6). After IR pumping of a CH-stretch or CD-stretch parent excitation, the redistribution of vibrational energy is probed with anti-Stokes Raman. Ten benzene or 12 benzene-d(6) vibrations out of 30 total have large enough cross sections to be observed. The pathways, quantum yields, and lifetimes for energy transfer among these vibrations are quantified. Using a CCl(4) molecular thermometer, we demonstrate an ultrafast Raman calorimetry method which allows measurement of the rate that benzene vibrational energy is dissipated into the bath. On the basis of energy conservation, we then determine the time-dependent dissipation of aggregate vibrational energy from the unobserved, "invisible" vibrations. During the approximately 1 ps IR excitation process, vibrational energy is coherently redistributed to several vibrational modes ("coherently" means the rate is faster than (T(2))(-1) of the pumped transition). This energy is then further redistributed in an incoherent intramolecular vibrational relaxation process with a 6 ps T(1) time constant. The subsequent dynamics involve energy transfer processes accompanied by vibrational energy dissipation to the bath. This vibrational cooling process has a half-life of 30 ps in benzene and 20 ps in benzene-d(6), and thermalization is complete in approximately 100 ps. The observed strongly Raman-active vibrations have about the same amount of energy per mode as the invisible vibrations. The invisible vibrational energy in benzene decays somewhat faster than the observed energy. These two decay rates are about the same in benzene-d(6).

  7. Nature of the first-order liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Tan, X. M.

    2015-08-01

    The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.

  8. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  9. Investigation of Dielectric Properties of Liquid Crystals near Phase Transitions

    NASA Astrophysics Data System (ADS)

    Kordell, Michael; Lawson, Tracy; Prayaga, Chandra; Ujj, Laszlo

    2010-03-01

    Precise capacitance measurement has been performed near the phase transitions of scientifically important liquid crystals such as 8-CB. The details of the measurements to get high precision data on dielectric constant and its temperature dependence will be presented. The results show significant changes of the dielectric properties of the liquid crystal near the smectic-to-nematic and nematic-to-liquid phase transitions attributed to structural changes of the relevant phases. In order to measure the details of the functional dependence near the phase transition, the temperature was varied with milliKelvin precision. The data was obtained using a self-assembled RC circuit with phase sensitive lock-in amplifier detection. Calibration of the device was made by measuring known standard capacitances. In order to get high accuracy the measurement was completely computer controlled. The Method applied here will contribute to the better understanding of thermodynamic behavior of liquid crystals and can be routinely used to characterize novel materials showing phase transitions.

  10. The Molecular Structure of the Liquid Ordered Phase

    NASA Astrophysics Data System (ADS)

    Lyman, Edward

    2014-03-01

    Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μsec all-atom trajectory of liquid-ordered/liquid-disordered coexistence (Lo/Ld) , are composed of saturated hydrocarbon chains packed with local hexagonal order, and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the Lo phase are in excellent agreement with 2H NMR measurements; the local hexagonal packing is also consistent with 1H-MAS NMR spectra of the Lo phase, NMR diffusion experiments, and small angle X-ray- and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the Lo regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.

  11. Polarization effects in reconfigurable liquid crystal phase holograms

    NASA Astrophysics Data System (ADS)

    Komarčević, Miloš; Manolis, Ilias G.; Wilkinson, Timothy D.; Crossland, William A.

    2005-01-01

    An improved configuration for achieving true polarization insensitive reconfigurable phase holograms for optical switches using homogeneously aligned nematic liquid crystal devices is presented. Previous experimental results have been analyzed and explained using numerical modeling of the nematic liquid crystal orientation and associated optical modulation. Twisting of the liquid crystal optical axis from the optimal 45° orientation from the quarter waveplate is shown to degrade the polarization insensitive performance. The alternative direction of surface alignment perpendicular to the long pixel edge eliminates the twist of the director during switching. True polarization insensitivity is predicted with our model for this mode of operation.

  12. Electro-optic phase modulation by polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Vicari, L.

    1997-05-01

    We present a mathematical model to describe the optical phase shift induced by polymer dispersed liquid crystals (PDLCs) on light impinging transversely on the sample. PDLCs are dispersions of liquid crystal microdroplets in a polymeric binder. Droplets appear as optically uniaxial spheres randomly oriented so that the material is optically isotropic. The application of an external electric field results in a reorientation of the liquid crystal and therefore in an electrically controllable optical uniaxicity of the material. The model is discussed by comparison with experimental data and with previous theory [F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48, 432 (1993)].

  13. Nematic-like stable glasses without equilibrium liquid crystal phases.

    PubMed

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M D

    2017-02-07

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼10(5) times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  14. Nematic-like stable glasses without equilibrium liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gómez, Jaritza; Gujral, Ankit; Huang, Chengbin; Bishop, Camille; Yu, Lian; Ediger, M. D.

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ˜105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  15. Nematic-like stable glasses without equilibrium liquid crystal phases

    DOE Data Explorer

    Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  16. Protein microarrays using liquid phase fractionation of cell lysates.

    PubMed

    Yan, Fang; Sreekumar, Arun; Laxman, Bharathi; Chinnaiyan, Arul M; Lubman, David M; Barder, Timothy J

    2003-07-01

    We describe an approach in which protein microarrays are produced using a two-dimensional (2-D) liquid phase fractionation of cell lysates. The method involves a pI-based fractionation using chromatofocusing in the first dimension followed by nonporous reversed-phase high-performance liquid chromatography (HPLC) of each pI fraction in the second dimension. This allows fractionation of cellular proteins in the liquid phase that could then be arrayed on nitrocellulose slides and used to study humoral response in cancer. Protein microarrays have been used to identify potential serum biomarkers for prostate cancer. It is shown that specific fractions are immunoreactive against prostate cancer serum but not against serum from healthy individuals. These proteins could serve as sero-diagnostic markers for prostate cancer. Importantly, this method allows for use of post-translationally modified proteins as baits for detection of humoral response. Proteins eliciting an immune response are identified using the molecular mass and peptide sequence data obtained using mass spectrometric analysis of the liquid fractions. The fractionation of proteins in the liquid phase make this method amenable to automation.

  17. Nanoparticle microstructures templated by liquid crystal phase-transition dynamics

    NASA Astrophysics Data System (ADS)

    Riahinasab, Sheida T.; Elbaradei, Ahmed; Keshavarz, Amir; Stokes, Benjamin J.; Hirst, Linda S.

    2017-02-01

    Liquid crystal (LC) phase transition dynamics can be used as a powerful tool to control the assembly of dispersed nanoparticles. Tailored mesogenic ligands can both enhance and tune particle dispersion in the liquid crystal phase to create liquid crystal nano-composites - a novel type of material. Soft nanocomposites have recently risen to prominence for their potential usage in a variety of industrial applications such as photovoltaics, photonic materials, and the liquid crystal laser. Our group has developed a novel phase-transition-templating process for the generation of micron-scale, vesicle-like nanoparticle shells stabilized by mesogenic ligand-ligand interactions. The mesogenic ligand's flexible arm structure enhances ligand alignment with the local LC director, providing control over the dispersion and stabilization of nanoparticles in liquid crystal phases. In this paper we explore the capsule formation process in detail, generating QD-based capsules over a surprisingly wide range of radii. We demonstrate that the initial nanoparticle concentration and cooling rate are important parameters influencing capsule size. By increasing particle concentration of nanoparticles and reducing the cooling rate we developed large shells up to 96+/-19 μm in diameter whereas decreasing concentration and increasing the cooling rate produces shells as small as 4+/-1 μm.

  18. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  19. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Rosenberger, Franz

    1997-08-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (w/v) NaCl at pH=4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  20. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  1. Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Duderstadt, Frank; Hantke, Maren; Warnecke, Gerald

    2012-11-01

    In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

  2. Cluster Monte Carlo and numerical mean field analysis for the water liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.; Stokely, Kevin; Strekalova, Elena G.; Stanley, H. Eugene; Franzese, Giancarlo

    2009-04-01

    Using Wolff's cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allow us to study the thermodynamic behavior of water at temperatures, where other numerical approaches - both Monte Carlo and molecular dynamics - are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid-liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.

  3. Diffractive devices based on blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Li, Yan; Huang, Shuaijia; Su, Yikai

    2016-09-01

    Blue phase liquid crystal (BPLC) has been attractive for display and photonic applications for its sub-millisecond response time, no need for surface alignment, and an optically isotropic dark state. Because of these advantages, diffractive devices based on blue phase liquid crystals have great potential for wide applications. In this work, we present several BPLC diffractive devices. The operation principles, fabrication and experimental measurements will be discussed in details for two BPLC gratings realized by holographic method and a BPLC Fresnel lens using a spatial light modulator projector. All of these devices exhibit several attractive features such as sub-millisecond response, relatively high spatial resolution and polarization-independence.

  4. Two phase flow of liquids in a narrow gap: Phase interference and hysteresis

    NASA Astrophysics Data System (ADS)

    Raza, Salim; Hejazi, S. Hossein; Gates, Ian D.

    2016-07-01

    Co-current flow of two immiscible liquids, such as oil and water in a planar fracture, exhibits nonlinear structures which become important in many natural and engineering systems such as subsurface flows, multiphase flows in lubrication joints, and coating flows. In this context, co-current flow of oil and water with variable rates is experimentally studied in a Hele-Shaw cell, various flow regimes are classified, and relative permeabilities for the phases are analysed thoroughly. Similar to multiphase pipe flows, multiphase flow in planar gaps shows various flow regimes, each having different flow rate/pressure gradient behaviour. As well as recovering the known results in the immiscible displacements in Hele-Shaw cell where the fluid-fluid interface remains stable/unstable for favorable/adverse viscosity ratios, it is found that the co-current flow of two fluids with different viscosities results in three distinct flow regimes. Before breakthrough of non-wetting phase, i.e, water, a "linear displacement" flow regime initially establishes at very low water injection rates. This stable movement turns into a "fingering advancement" flow regime at high water flow rates and Saffman-Taylor instability develops normal to the direction of the flow. After the breakthrough, a "droplet formation" flow regime is identified where the droplets of wetting phase, oil, are trapped in the water phase. For subsurface flow applications, we quantify these regimes through relative permeability curves. It is reported that as the water flow rate increases, the relative permeabilities and flow channels become smooth and regular. This behaviour of relative permeability and saturations shows dominance of capillary forces at low flow rates and viscous forces at higher flow rates. Variable injection rates provide the interface structures for both drainage and imbibition process, where the wetting phase saturation decreases and increases respectively. It is shown that relative permeability

  5. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  6. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  7. Phases formed during rapid quenching of liquid carbon

    NASA Astrophysics Data System (ADS)

    Basharin, A. Yu.; Dozhdikov, V. S.; Dubinchuk, V. T.; Kirillin, A. V.; Lysenko, I. Yu.; Turchaninov, M. A.

    2009-05-01

    Pulsed laser action upon a sample of highly oriented pyrolytic graphite (HOPG) in a gasostat filled with helium at a pressure above that corresponding to the triple point of carbon, followed by rapid quenching of the liquid phase at a rate of about 106 K/s leads to the formation of a crater with a periodic spatial structure at the surface. The composition and structure of nongraphite carbon phases in the near-surface region of the crater have been studied using the Raman scattering spectroscopy, electron microdiffraction, and energy-dispersive X-ray analysis. It is established that rapidly quenched carbon possesses predominantly a hybrid structure of glassy carbon formed as a result of the high-temperature treatment, with inclusions of crystalline carbyne, chaoite, and a hybrid cubic phase of ultradense carbon (C8). The hybrid phases of glassy carbon and C8 had not been reported until now as possible products of solidification of liquid carbon.

  8. Fluorescence Spectrum and Decay Measurement for Hsil VS Normal Cytology Differentiation in Liquid Pap Smear Supernatant

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Juodkazis, S.; Jursenas, S.; Miasojedovas, S.; Kurtinaitiene, R.; Rimiene, J.; Vaitkus, J.

    2009-06-01

    Cervical smear material contains endo and exocervical cells, mucus and inflammative, immune cells in cases of pathology. Just not destroyed keratinocytes lay on the glass for microscopy. Liquid cytology supernatant apart other diagnostics could be used for photodiagnostic. The spectroscopic parameters suitable for Normal and HSIL cytology groups supernatant differentiation are demonstrated. The dried liquid PAP supernatant fractions—sediment and liquid were investigated. Excitation and emission matrices (EEM), supernatant fluorescence decay measured under 280 nm diode short pulse excitation and fluorescence spectroscopy by excitation with 355 nm laser light were analyzed. The differences between Normal and HSIL groups were statistically proven in the certain spectral regions. Fluorescence decay peculiarities show spectral regions consisting of few fluorophores. Obtained results on fluorescence differences in Normal and HSIL groups' supernatant shows the potency of photodiagnosis application in cervical screening.

  9. Spatial Normalization of Reverse Phase Protein Array Data

    PubMed Central

    Kaushik, Poorvi; Molinelli, Evan J.; Miller, Martin L.; Wang, Weiqing; Korkut, Anil; Liu, Wenbin; Ju, Zhenlin; Lu, Yiling; Mills, Gordon; Sander, Chris

    2014-01-01

    Reverse phase protein arrays (RPPA) are an efficient, high-throughput, cost-effective method for the quantification of specific proteins in complex biological samples. The quality of RPPA data may be affected by various sources of error. One of these, spatial variation, is caused by uneven exposure of different parts of an RPPA slide to the reagents used in protein detection. We present a method for the determination and correction of systematic spatial variation in RPPA slides using positive control spots printed on each slide. The method uses a simple bi-linear interpolation technique to obtain a surface representing the spatial variation occurring across the dimensions of a slide. This surface is used to calculate correction factors that can normalize the relative protein concentrations of the samples on each slide. The adoption of the method results in increased agreement between technical and biological replicates of various tumor and cell-line derived samples. Further, in data from a study of the melanoma cell-line SKMEL-133, several slides that had previously been rejected because they had a coefficient of variation (CV) greater than 15%, are rescued by reduction of CV below this threshold in each case. The method is implemented in the R statistical programing language. It is compatible with MicroVigene and SuperCurve, packages commonly used in RPPA data analysis. The method is made available, along with suggestions for implementation, at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src. PMID:25501559

  10. Gas-Liquid Two-Phase Flow Distribution Using Phase Separation Method

    NASA Astrophysics Data System (ADS)

    Zhang, B. D.; Liu, D.; Wang, D.

    2010-03-01

    A method for gas-liquid two-phase flow distribution is proposed in this study, which can be called the phase separation method. The advantage of the new method is that it converts two-phase flow distribution into single-phase distribution, which overcomes the problem of phase splitting in the distribution process of two-phase flow radically, and an equal quality distribution is guaranteed. At first, separate the mixture of gas and liquid into single or near single phase fluids by enhancing phase splitting in distributor, then distribute the single gas and liquid flow respectively as required, finally recombine each couple of gas and liquid stream respectively to form a two phase stream exiting a branch. Experiments were conducted in an air-water multiphase flow test loop. The flow pattern in the experiments included stratified flow, wave flow, slug flow and a part of annular flow. The experimental results show that the phase separation method and apparatus could be feasible to make an equal quality distribution and the deviation of stream quality among the branches is less than 1.6%.

  11. Harmonic strain-optical response revealed in the isotropic (liquid) phase of liquid crystals

    NASA Astrophysics Data System (ADS)

    Kahl, P.; Baroni, P.; Noirez, L.

    2015-08-01

    A strong optical birefringence is observed when applying a small amplitude oscillatory strain to the liquid phase of a liquid crystal. This unpredicted birefringence is found to oscillate at the same frequency as the driving frequency, with frequencies down to 0.01 Hz. This birefringence is visible up to 15 °C above the liquid crystal transition. This opto-dynamic property is interpreted as a result of a coupling of the orientational pretransitional fluctuations existing in the isotropic phase and long range elastic interactions recently identified in liquids. The conversion of the mechanical wave in an optical response is shapeable. Two examples of synchronized periodic signals are shown: the sine and the square waves. The optimization of the signal is analyzed using a Heaviside-step shear test. This optical property is immediately exploitable to design low energy on/off switching materials.

  12. Dimensionless ratios: Characteristics of quantum liquids and their phase transitions

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Cong; Chen, Yang-Yang; Lin, Hai-Qing; Römer, Rudolf A.; Guan, Xi-Wen

    2016-11-01

    Dimensionless ratios of physical properties can characterize low-temperature phases in a wide variety of materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio, and the Wiedemann-Franz law capture essential features of Fermi liquids in metals, heavy fermions, etc. Here we prove that the phases of many-body interacting multicomponent quantum liquids in one dimension (1D) can be described by WRs based on the compressibility, susceptibility, and specific heat associated with each component. These WRs arise due to additivity rules within subsystems reminiscent of the rules for multiresistor networks in series and parallel—a novel and useful characteristic of multicomponent Tomonaga-Luttinger liquids (TLL) independent of microscopic details of the systems. Using experimentally realized multispecies cold atomic gases as examples, we prove that the Wilson ratios uniquely identify phases of TLL, while providing universal scaling relations at the boundaries between phases. Their values within a phase are solely determined by the stiffnesses and sound velocities of subsystems and identify the internal degrees of freedom of said phase such as its spin degeneracy. This finding can be directly applied to a wide range of 1D many-body systems and reveals deep physical insights into recent experimental measurements of the universal thermodynamics in ultracold atoms and spins.

  13. Adiabatic nucleation in the liquid-vapor phase transition

    NASA Astrophysics Data System (ADS)

    de Sá, Elon M.; Meyer, Erich; Soares, Vitorvani

    2001-05-01

    The fundamental difference between classical (isothermal) nucleation theory (CNT) and adiabatic nucleation theory (ANT) is discussed. CNT uses the concept of isothermal heterophase fluctuations, while ANT depends on common fluctuations of the thermodynamic variables. Applications to the nonequilibrium liquid to vapor transition are shown. However, we cannot yet calculate nucleation frequencies. At present, we can only indicate at what temperatures and pressures copious homogeneous nucleation is expected in the liquid to vapor phase transition. It is also explained why a similar general indication cannot be made for the inverse vapor to liquid transition. Simultaneously, the validity of Peng-Robinson's equation of state [D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)] is confirmed for highly supersaturated liquids.

  14. Mass spectral evaluation of column bleeding for imidazolium-based ionic liquids as GC liquid phases.

    PubMed

    Shashkov, M V; Sidelnikov, V N

    2012-07-01

    Mass spectra were obtained to evaluate the use of numerous single-cation and dicationic ionic liquids as stationary liquid phases in GC/MS at high temperature. Background mass spectra and product ion mass spectra of several ions in the background spectrum were obtained. Fragmentation mechanisms were propounded, including the detailed fragmentation pathway of the 1,2-dimethyl-3-propylimidazole cation. The relation between temperature and the main signals in the mass spectra of ILs was studied.

  15. In situ monitoring of liquid phase electroepitaxial growth

    NASA Technical Reports Server (NTRS)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  16. CHARACTERIZATION AND REMEDIATION TECHNOLOGIES FOR LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Light nonaqueous phase liquids (LNAPLs), principally petroleum products, affect ground-water quality at numerous sites across this country and throughout the world. Petroleum products are typically multi-component organic mixtures composed of chemicals with a wide range of solubi...

  17. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  18. CHARACTERIZATION AND REMEDIATION TECHNOLOGIES FOR LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Light nonaqueous phase liquids (LNAPLs), principally petroleum products, affect ground-water quality at numerous sites across this country and throughout the world. Petroleum products are typically multi-component organic mixtures composed of chemicals with a wide range of solubi...

  19. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    SciTech Connect

    Lan, S.; Ma, J. L.; Fan, J.; Blodgett, M.; Kelton, K. F.; Wang, X.-L.

    2016-05-23

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ∼1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  20. Liquid-phase reactions induced by atmospheric pressure glow discharge with liquid electrode

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Shirai, Naoki; Uchida, Satoshi

    2014-12-01

    We experimentally investigated some of the initial reactions in a liquid induced by electron or positive-ion irradiation from an atmospheric-pressure dc glow discharge in contact with the liquid. We used an H-shaped glass reactor to observe the effects of electron irradiation and positive-ion irradiation on the liquid-phase reaction separately and simultaneously. Aqueous solutions of NaCl, AgNO3, HAuCl4, and FeCl2 are used as the electrolyte. Solutions of AgNO3 and HAuCl4 are used for the generation of Ag and Au nanoparticles, respectively. Solution of FeCl2 is used for the generation of ferromagnetic particles. Experimental results showed that electron irradiation of the liquid surface generates OH- in water and that positive-ion irradiation of the liquid surface generates H+ in water even without the dissolution of gas-phase nitrogen oxide. A possible reaction process is qualitatively discussed. We also showed that the control of reductive and oxidative environment in the liquid is possible not only by the gas composition for the plasma generation but also by the liquid composition.

  1. Novel mode of liquid-phase microextraction: A magnetic stirrer as the extractant phase holder.

    PubMed

    Luo, Zhi-Yuan; Liu, Hai-Yan; Shi, Zhi-Guo

    2016-01-01

    In the present study, a novel configuration of liquid-phase microextraction was proposed, in which a magnetic stirrer with a groove was used as the extractant phase holder. It was termed as magnetic stirrer liquid-phase microextraction. In this way, the stability of the organic solvent was much improved under high stirring speed; the extraction efficiency was enhanced due to the enormously enlarged contact area between the organic solvent and aqueous phase. The extraction performance of the magnetic stirrer liquid-phase microextraction was studied using chlorobenzenes as the probe analytes. A wide linearity range (20 pg/mL to 200 ng/mL) with a satisfactory linearity coefficient (r(2) > 0.998) was obtained. Limits of detection ranged from 9.0 to 12.0 pg/mL. Good reproducibility was achieved with intra- and inter-day relative standard deviations <4.8%. The proposed magnetic stirrer liquid-phase microextraction was simple, environmentally friendly and efficient; compared to single-drop microextraction, it had obvious advantages in terms of reproducibility and extraction efficiency. It is a promising miniaturized liquid-phase technology for real applications.

  2. Chromatographic behaviour of synthetic high pressure high temperature diamond in aqueous normal phase chromatography.

    PubMed

    Peristyy, Anton; Paull, Brett; Nesterenko, Pavel N

    2016-10-28

    The chromatographic properties of high pressure high temperature synthesised diamond (HPHT) are investigated under the conditions of hydrophilic interaction liquid chromatography (HILIC). A 50×4.6mm ID stainless steel column packed with HPHT particles of mean diameter 1.6μm and specific surface area 5.1m(2)g(-1) is used. According to the results of acid-base titration with NaOH the purified HPHT batch contains 4.59μeqg(-1) of protogenic, mainly carboxyl- and hydroxyl-, groups, which make this polar adsorbent suitable for use as a stationary phase in HILIC. The retention behaviour of several classes of polar compounds including benzoic and benzenesulfonic acids, nitro- and chlorophenols, various organic bases, and quaternary ammonium compounds are studied using acetonitrile and methanol based mobile phases containing 5-30v/v% of water. The effects of the buffer pH and concentration, column temperature and organic solvent content on retention of model compounds are also investigated. It is shown that both pH and acetonitrile/methanol ratio in the mobile phase can be used to vary the separation selectivity. Molecular adsorption mechanism (related to aqueous normal phase mode), rather than partitioning is established to be responsible for the retention.

  3. Solid-liquid phase changes in simulated isoenergetic Ar13

    NASA Astrophysics Data System (ADS)

    Jellinek, Julius; Beck, Thomas L.; Berry, R. Stephen

    1986-03-01

    Simulations by molecular dynamics of 13-particle clusters of argon display distinct nonrigid, liquid-like and near-rigid, solid-like ``phases.'' The simulations, conducted at constant total energy, display a low-energy region in which only the solid-like form appears, a high-energy region in which only the liquid-like form appears, and an intermediate band of energy—a ``coexistence region''— in which clusters exhibit both forms. The intervals of time spent in each phase in the two-form coexistence region are long compared with the intervals required to establish equilibrium-like properties distinctive of each form, such as mean square displacement and power spectrum, so that well-defined phases can be said to exist. The fraction of time spent in each phase is a function of the energy. When a long simulation is separated into regions of solid-like and liquid-like behavior, the curve of the derived caloric equation of state is double valued in the two-phase range of energy, forming two well-defined, smooth branches. When, instead, the caloric curve is constructed from averages over all of a long run, its form is smooth and monotonic showing no trace of the ``loop'' that had been reported for earlier treatments with much shorter molecular dynamics runs, and which we could also reproduce with short runs.

  4. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1976-01-01

    An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

  5. Crystal growth in a three-phase system: Diffusion and liquid-liquid phase separation in lysozyme crystal growth

    NASA Astrophysics Data System (ADS)

    Heijna, M. C. R.; van Enckevort, W. J. P.; Vlieg, E.

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick’s second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  6. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    PubMed

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  7. Microstructure evolution and densification of alumina in liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Dong, Weimin

    The microstructure evolution and densification of alumina during liquid phase sintering were quantified. Quantification included the evolution of pore-size distribution, the redistribution of liquid phase, the densification kinetics, and the fraction of closed and open pores. The results revealed that the small and large pores were filled simultaneously. This is inconsistent with Shaw's model in which liquid fills preferentially the smaller low-coordination-number pores in order to reach a low-energy configuration. The results also recommended that the pressure build-up of the trapped gases in pores due to the closure of open pores might have a significantly negative contribution to the driving force, and consequently cause the termination of the densification of alumina. To demonstrate whether the trapped gases played an important role in the microstructure evolution and the densification of alumina during liquid phase sintering, the following two experiments have been conducted. First, alumina preforms containing artificial pores were penetrated by glass. The results indicated that the trapped gases in pores had a considerable influence on the pore filling process, and ultimately caused the termination of the densification of the alumina preforms. Second, alumina compacts containing different amount of glass were sintered in vacuum. The alumina compact containing 20 vol. % reached full density during vacuum sintering, indicating that the pressure build-up of the trapped gases in pores was the main factor causing the termination of the densification of alumina in the final stage of liquid phase sintering. The limiting relative densities of compacts were calculated theoretically on the basis of a comprehensive analysis of the variation of the capillary pressure and gas pressure in pores with pore size and pore number. The capillary pressure and gas pressure in alumina compact during liquid phase sintering were analyzed on the basis of the above theoretical models

  8. Curvature induced phase stability of an intensely heated liquid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel

    2014-06-01

    We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

  9. Anomalous properties and the liquid-liquid phase transition in gallium

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.

  10. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    PubMed

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  11. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  12. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-11-10

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  13. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  14. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  15. Quantification of sesquiterpene lactones in Parthenium hyterophorous by normal-phase HPLC.

    PubMed

    Chib, Renu; Shah, Bhahwal Ali; Andotra, Samar Singh; Bharadwaj, Vikram; Gupta, Rajinder Kumar; Taneja, Subhash Chandra; Khajuria, Ravi Kant

    2013-01-01

    This paper describes the development of a normal-phase liquid chromatography ultraviolet-diode array detection method for the simultaneous quantification of parthenin and coronopilin in the leaves and flowers of Parthenium hysterophorous. The compounds were analyzed on a Merck Si60 silica column (5 µm, 250 × 4 mm) using an isocratic 15:85 mixture of isopropyl alcohol and hexane. The calibration curves resulting from the reference compounds in the concentration range of 200-2,000 ng exhibited acceptable linearity (r > 0.999). The method was developed to study the levels of parthenin and coronopilin in the leaves and flowers of P. hysterophorous collected during different seasons, and the method was validated by analyzing the spiked samples.

  16. String theory, quantum phase transitions, and the emergent Fermi liquid.

    PubMed

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  17. 4He glass phase: A model for liquid elements

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.; Bossy, Jacques

    2016-08-01

    The specific heat of liquid helium confined under pressure in nanoporous material and the formation, in these conditions, of a glass phase accompanied by latent heat are known. These properties are in good agreement with a recent model predicting, in liquid elements, the formation of ultrastable glass having universal thermodynamic properties. The third law of thermodynamics involves that the specific heat decreases at low temperatures and consequently the effective transition temperature of the glass increases up to the temperature where the frozen enthalpy becomes equal to the predicted value. The glass residual entropy is about 23.6% of the melting entropy.

  18. Two Spin Liquid phases in the anisotropic triangular Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sorella, Sandro

    2005-03-01

    Recently there have been rather clean experimental realizations of the quantum spin 1/2 Heisenberg Hamiltonian on a 2D triangular lattice geometry in systems like Cs2Cu Cl4 and organic compounds like k-(ET)2Cu2(CN)3. These materials are nearly two dimensional and are characterized by an anisotropic antiferromagnetic superexchange. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these interesting phenomena we have studied, by Quantum Monte Carlo methods, the triangular lattice Heisenberg model as a function of the strength of this anisotropy, represented by the ratio r between the intra-chain nearest neighbor coupling J' and the inter-chain one J. We have found evidence of two spin liquid regions, well represented by projected BCS wave functions[1,2] of the type proposed by P. W. Anderson at the early stages of High temperature superconductivity [3]. The first spin liquid phase is stable for small values of the coupling r 0.6 and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid, very similar to the one realized in the quantum dimer model in the triangular lattice[4]. It is characterized by a spin gap and a finite correlation length, and appears energetically favored in the region 0.6 r 0.9. The various phases are in good agreement with the experimental findings and supports the existence of spin liquid phases in 2D quantum spin-half systems. %%%%%%%%%%%%%%%%%% 1cm *[1] L. Capriotti F. Becca A. Parola and S. Sorella , Phys. Rev. Letters 87, 097201 (2001). *[2] S. Yunoki and S. Sorella Phys. Rev. Letters 92, 15003 (2004). *[3] P. W. Anderson, Science 235, 1186 (1987). *[4] P. Fendley, R. Moessner, and S. L. Sondhi Phys. Rev. B 66, 214513 (2002).

  19. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.

  20. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  1. Glass and liquid phase diagram of a polyamorphic monatomic system.

    PubMed

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass

  2. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  3. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  4. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  5. Liquid-Liquid Phase Separation of a Monoclonal Antibody and Nonmonotonic Influence of Hofmeister Anions

    PubMed Central

    Mason, Bruce D.; Zhang-van Enk, Jian; Zhang, Le; Remmele, Richard L.; Zhang, Jifeng

    2010-01-01

    Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody. PMID:21112304

  6. Use of the electrically driven emulsion-phase contactor for a biphasic liquid-liquid enzyme system

    SciTech Connect

    Scott, T.C.; Cosgrove, J.M.; DePaoli, D.W.

    1995-12-31

    An alternative approach to the operation of bioprocessing systems within non-aqueous environments would require the development of reaction systems that would provide effective interfacial contact between the biocatalyst, contained within an aqueous phase, and the organic phase containing the substrate. A biphasic liquid-liquid (BLL) reactor that provides for intimate liquid-liquid contact would be the most probable approach for this application. For the BLL reactions considered in this work, the overall effectiveness of the system will depend on both compatibility of the biocatalyst with the chemical species present and intrinsic reaction and interfacial transport phenomena typically involved with liquid-liquid operations. The focus of this article is to investigate the removal and oxidation of p-cresol dissolved in toluene by aqueous-phase horseradish peroxidase. Contacting of the liquid-liquid biphasic enzyme system is carried out in an advanced solvent extraction contacting device, the electrically driven emulsion-phase contactor (EPC).

  7. Dynamics of a discotic liquid crystal in the isotropic phase

    NASA Astrophysics Data System (ADS)

    Li, Jie; Fruchey, Kendall; Fayer, M. D.

    2006-11-01

    Optically heterodyne-detected optical Kerr effect (OHD-OKE) experiments are conducted to study the orientational dynamics of a discotic liquid crystal 2,3,6,7,10,11-hexakis(pentyloxy)triphenylene (HPT) in the isotropic phase near the columnar-isotropic (C-I) phase transition. The OHD-OKE signal of HPT is characterized by an intermediate power law t-0.76±0.02 at short times (a few picoseconds), a von Schweidler power law t-0.26±0.01 at intermediate times (hundreds of picoseconds), and an exponential decay at long times (tens of nanoseconds). The exponential decay has Arrhenius temperature dependence. The functional form of the total time dependent decay is identical to the one observed previously for a large number of molecular supercooled liquids. The mode coupling theory schematic model based on the Sjögren [Phys. Rev. A 33, 1254 (1986)] model is able to reproduce the HPT data over a wide range of times from <1ps to tens of nanoseconds. The studies indicate that the HPT C-I phase transition is a strong first order transition, and the dynamics in the isotropic phase display a complex time dependent profile that is common to other molecular liquids that lack mesoscopic structure.

  8. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    PubMed

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO < 4, with HFarn(EO)2 exhibiting an inverse hexagonal (H(II)) phase stable to dilution. The phase diagram of HFarn(EO)3 displays both the gyroid (Ia3d) and double diamond (Pn3m) inverse bicontinuous cubic phases, with the latter being thermodynamically stable in excess water within the physiological regime. There is a strong preference for planar bilayer structures at intermediate headgroup ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  9. Switchable water: microfluidic investigation of liquid-liquid phase separation mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Abolhasani, Milad; Bennett, Darla; Chase, Preston; Günther, Axel; Kumacheva, Eugenia

    2014-08-27

    Increase in the ionic strength of water that is mediated by the reaction of carbon dioxide (CO2) with nitrogenous bases is a promising approach toward phase separation in mixtures of water with organic solvents and potentially water purification. Conventional macroscale studies of this complicated process are challenging, due to its occurrence via several consecutive and concurrent steps, mass transfer limitation, and lack of control over gas-liquid interfaces. We report a new microfluidic strategy for fundamental studies of liquid-liquid phase separation mediated by CO2 as well as screening of the efficiency of nitrogenous agents. A single set of microfluidic experiments provided qualitative and quantitative information on the kinetics and completeness of water-tetrahydrofuran phase separation, the minimum amount of CO2 required to complete phase separation, the total CO2 uptake, and the rate of CO2 consumption by the liquid mixture. The efficiency of tertiary diamines with different lengths of alkyl chain was examined in a time- and labor-efficient manner and characterized with the proposed efficiency parameter. A wealth of information obtained using the MF methodology can facilitate the development of new additives for switchable solvents in green chemistry applications.

  10. Computer Simulation Evidence for a Liquid-Liquid Phase Transition in Gallium: Bulk and Nanodroplets

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Jara, Diego; Michelon, Mateus; de Koning, Maurice

    2010-03-01

    Over the last decade, there has been an increasing interest in the first-order liquid-liquid phase transition (LLPT) between liquids of the same chemical composition. While LLPT has been speculated to occur in several liquids that exhibit anomalies in their thermodynamic properties, so far in only two cases it has been experimentally verified. This lack of evidence stems from difficult experimental conditions, since in many cases the LLPT is expected to occur in the metastable supercooled regime. Gallium is a very promising substance for the study of LLPT, since it has low melting point (303 K), displays anomalous behavior, and can be kept liquid about 100 K below its melting temperature. In this work, we report on molecular dynamics simulations of liquid Ga that provide theoretical evidence of a LLPT from a high density to a low density liquid in bulk [1] and nanodroplets. Our results indicate a reduction in the temperature and latent heat of the LLPT as the size of the system decreases. [1] D. A. C. Jara, M. F. MIchelon, A. Antonelli, and M. de Koning, Journal of Chemical Physics 130, 221101 (2009).

  11. Dynamical and structural heterogeneities close to liquid-liquid phase transitions: The case of gallium

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Cajahuaringa, Samuel; de Koning, Maurice

    2013-03-01

    Liquid-liquid phase transitions (LLPT) have been proposed in order to explain the thermodynamic anomalies exhibited by some liquids. Recently, it was found, through molecular dynamics simulations, that liquid elemental gallium, described by a modified embedded-atom model, exhibits a LLPT between a high-density liquid (HDL) and a low-density liquid (LDL), about 60 K below the melting temperature. In this work, we studied the dynamics of supercooled liquid gallium close to the LLPT. Our results show a large increase in the plateau of the self-intermediate scattering function (β-relaxation process) and in the non-Gaussian parameter, indicating a pronounced dynamical heterogeneity upon the onset of the LLPT. The dynamical heterogeneity of the LDL is closely correlated to its structural heterogeneity, since the fast diffusing atoms belong to high-density domains of predominantly 9-fold coordinated atoms, whereas the slow diffusing ones are mostly in low-density domains of 8-fold coordinated atoms. The energetics suggests that the reason for the sluggish dynamics of LDL is due to its larger cohesive energy as compared to that of the HDL. Work supported by FAPESP, CNPq, CAPES, and FAEPEX/UNICAMP

  12. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  13. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  14. Liquid–liquid separation in solutions of normal and sickle cell hemoglobin

    PubMed Central

    Galkin, Oleg; Chen, Kai; Nagel, Ronald L.; Hirsch, Rhoda Elison; Vekilov, Peter G.

    2002-01-01

    We show that in solutions of human hemoglobin (Hb)—oxy- and deoxy-Hb A or S—of near-physiological pH, ionic strength, and Hb concentration, liquid–liquid phase separation occurs reversibly and reproducibly at temperatures between 35 and 40°C. In solutions of deoxy-HbS, we demonstrate that the dense liquid droplets facilitate the nucleation of HbS polymers, whose formation is the primary pathogenic event for sickle cell anemia. In view of recent results that shifts of the liquid–liquid separation phase boundary can be achieved by nontoxic additives at molar concentrations up to 30 times lower than the protein concentrations, these findings open new avenues for the inhibition of the HbS polymerization. PMID:12070342

  15. Liquid phase oxidation chemistry in continuous-flow microreactors.

    PubMed

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  16. Densification and shape distortion in liquid-phase sintering

    SciTech Connect

    Liu, J.; German, R.M.

    1999-12-01

    Densification and dimensional control are important aspects of liquid-phase sintering. The capillary force and the solid bonding affect both densification and shape preservation. Capillarity, which is orientated isotropically, causes uniform shrinkage and holds grains together to preserve the component shape in the early stage of sintering. On the other hand, solid bonding resists viscous flow and inhibits densification and shape distortion. The capillary force decreases with densification and approaches zero as pores are eliminated. Thus, shape retention eventually requires solid-grain bonding. The solid-grain bonding provides compact rigidity, which is represented by compact strength. Shape distortion occurs when the compact loses its strength. For every situation, there is a critical compact strength above which no shape distortion occurs. Distortion in liquid-phase sintering indicates that the compact strength passed below a critical level.

  17. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  18. Liquid-phase sintering of iron aluminide-bonded ceramics

    SciTech Connect

    Schneibel, J.H.; Carmichael, C.A.

    1995-12-31

    Iron aluminide intermetallics exhibit excellent oxidation and sulfidation resistance and are therefore considered as the matrix in metal matrix composites, or the binder in hard metals or cermets. In this paper the authors discuss the processing and properties of liquid-phase sintered iron aluminide-bonded ceramics. It is found that ceramics such as TiB{sub 2}, ZrB{sub 2}, TiC, and WC may all be liquid phase-sintered. nearly complete densification is achieved for ceramic volume fractions ranging up to 60%. Depending on the composition, room temperature three point-bend strengths and fracture toughnesses reaching 1,500 MPa and 30 MPa m{sup 1/2}, respectively, have been found. Since the processing was carried out in a very simple manner, optimized processing is likely to result in further improvements.

  19. ENHANCED SOURCE REMOVAL OF NONAQUEOUS PHASE LIQUID CONTAMINANTS BY CHEMICAL-BASED FLOODING

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLs) such as gasoline and halogenated solvents (trichloroethylene (TCE) and teterachloroethylene (PCE), etc) enter the subsurface after a spill, or from leaking underground storage tanks. The presence of residual dense nonaqueous phase liquids (DNAPL) ...

  20. Nonaqueous phase liquids: Remediation of chlorinated and recalcitrant compounds

    SciTech Connect

    1998-12-31

    Nonaqueous phase liquids, especially DNAPLs, are among the most challenging contaminants facing environmental remediation professionals. Difficult to detect and stubborn to remove, DNAPLs are a problem at thousands of contaminated sites worldwide. This book brings together the latest research and field studies to present a systematic overview of the current state of the art in DNAPL recovery systems, simulation of DNAPL multiphase flow and transport, DNAPL movement and subsurface behavior, fractured media, and NAPL remediation.

  1. Confinement-Driven Phase Separation of Quantum Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Pantalei, C.; Kaiser, H.; Sokol, P. E.

    2012-08-01

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure He4 adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of He3-He4 mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ˜2.3nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.

  2. Phase-locked measurements of gas-liquid horizontal flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2014-11-01

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  3. A fundamental study of liquid phase particle breakup. Revision

    NASA Astrophysics Data System (ADS)

    1984-12-01

    Combustion efficiency of aluminized propellants in solid rocket motors is reduced by incomplete aluminum combustion and two-phase nozzle flow losses. Combustion of these propellants can produce large Al/Al2O3 agglomerates. As a direct result of agglomerate breakup, the aluminum combustion rate is increased, and the thermal energy released is more efficiently transferred into exhaust kinetic energy. This research sought to obtain physical data to characterize the mechanisms of aerodynamic droplet breakup. Experiments have been completed in which conventional liquids and a liquid metal (mercury) was studied. The primary goal of the conventional liquid experiments was to examine the effect of liquid properties (viscosity and surface tension) on the breakup mechanism, time scale, and fragment size distribution. The goal of the mercury experiments was to examine the effect of the much higher surface tension more characteristic of liquid aluminum. A key element of the experimental effort is the use of nonintrusive laser diagnostics including pulsed laser holography (PLH) and laser Doppler velocimetry (LDV). The exceptional temporal and spatial resolution of PLH provided the ability to resolve the mechanism of breakup and the size distribution of the fragments. LDV was used to determine drop velocity distributions along the nozzle revealing the rapid acceleration of the flattened droplets and then, surprisingly, the milder acceleration of the fragments.

  4. Storing solar energy by liquid phase Diels-Alder reactions

    SciTech Connect

    Sparks, B.G.; Thompson, P.F.; Poling, B.E.

    1981-01-01

    Using chemical reactions to store energy is not a new concept. But the idea of using chemical reactions entirely in the liquid phase at low temperatures for relatively small scale storage applications, i.e., for space heating, is relatively undeveloped. In this study, the method of how chemical reactions could be used to store energy without generation and storage of new phases is described. Criteria a reaction must satisfy to successfully store energy are presented and several Diels-Alder reactions are evaluated in terms of these criteria. All this time, no reactions have been identified that meet all the criteria. 6 refs.

  5. Perhydroazulene-based liquid-crystalline materials with smectic phases.

    PubMed

    Hussain, Zakir; Hopf, Henning; Eichhorn, S Holger

    2012-01-01

    New liquid-crystalline materials with a perhydroazulene core were synthesized and the stereochemistry of these compounds was investigated. The mesomorphic properties of the new LC compounds were investigated by differential scanning colorimetry, polarizing optical microscopy and X-ray diffraction. We report here on the LC properties of nonchiral materials, which predominantly exhibit smectic phases and display nematic phases only within narrow temperature ranges. The dependence of the mesogenic behavior of the new materials on the stereochemistry of the core system was also investigated. All newly synthesized compounds were fully characterized by the usual spectroscopic and analytical methods.

  6. TWRS privatization phase I liquid effluent transfer systems engineering study

    SciTech Connect

    Parazin, R.J.

    1996-09-30

    The DOE-RL is pursuing a new business strategy of hiring private contractors for treatment of Hanford tank waste. This `privatization` initiative includes design, permitting, construction, operations, deactivation and decommissioning of tank waste treatment facilities. The TWRS Privatization Infrastructure Project is part of the first phase of the initiative. It consists of several sub-projects which will provide key physical interfaces and services needed to support the phase I mission. One sub-project is to provide transfer systems integrated with 200 Area liquid effluent facilities to service the private contractors. This study deals with transfer systems requirements, alternatives and identifies a preferred alternative.

  7. Terraces in the cholesteric phase of DNA liquid crystals

    NASA Astrophysics Data System (ADS)

    Van Winkle, David H.; Davidson, Michael W.; Rill, Randolph L.

    1992-10-01

    Near the transition to the columnar phase, the cholesteric liquid crystal phase in an aqueous solution of DNA fragments with contour lengths approximating the persistence length undergoes an unwinding of the cholesteric pitch. Unwinding of the cholesteric with planar alignment of the fragments was studied by polarized light microscopy. Terraces or ``Grandjean planes'' of cholesteric are seen as uniformly birefringent fields of distinct hues (typically blue), bounded by lines which moved as the local concentration of DNA increased. These lines are interpreted as disclination lines, bounding regions of different total twist, which move as the intrinsic pitch of the cholesteric varies with concentration.

  8. Terraces in the cholesteric phase of DNA liquid crystals

    SciTech Connect

    Van Winkle, D.H. ); Davidson, M.W. ); Rill, R.L. )

    1992-10-15

    Near the transition to the columnar phase, the cholesteric liquid crystal phase in an aqueous solution of DNA fragments with contour lengths approximating the persistence length undergoes an unwinding of the cholesteric pitch. Unwinding of the cholesteric with planar alignment of the fragments was studied by polarized light microscopy. Terraces or Grandjean planes'' of cholesteric are seen as uniformly birefringent fields of distinct hues (typically blue), bounded by lines which moved as the local concentration of DNA increased. These lines are interpreted as disclination lines, bounding regions of different total twist, which move as the intrinsic pitch of the cholesteric varies with concentration.

  9. D2-D1 phase transition of columnar liquid crystals

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Swift, J.

    1986-04-01

    The D2-D1 phase transition in columnar liquid crystals of the HAT series [e.g., HAT11 (triphenelene hexa-n-dodecanoate)] is discussed within the framework of Landau theory. The order parameters which describe the transition are abstracted from a tensor density function, and are associated with two irreducible representations of the symmetry group of the high-temperature D2 phase. A mechanism for a first-order transition is then suggested in accordance with both theoretical considerations and the experimental result for the D2-D1 transition. Two possible arrangements of the herringbone structure of the D1 phase are obtained, each of which gives six orientational states in the low-temperature D1 phase.

  10. Vortex motion phase separator for zero gravity liquid transfer

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor); Fraser, Wilson M., Jr. (Inventor)

    1989-01-01

    A vortex motion phase separator is disclosed for transferring a liquid in a zero gravity environment while at the same time separating the liquid from vapors found within either the sender or the receiving tanks. The separator comprises a rigid sender tank having a circular cross-section and rigid receiver tank having a circular cross-section. A plurality of ducts connects the sender tank and the receiver tank. Disposed within the ducts connecting the receiver tank and the sender tank is a pump and a plurality of valves. The pump is powered by an electric motor and is adapted to draw either the liquid or a mixture of the liquid and the vapor from the sender tank. Initially, the mixture drawn from the sender tank is directed through a portion of the ductwork and back into the sender tank at a tangent to the inside surface of the sender tank, thereby creating a swirling vortex of the mixture within the sender tank. As the pumping action increases, the speed of the swirling action within the sender tank increases creating an increase in the centrifugal force operating on the mixture. The effect of the centrifugal force is to cause the heavier liquid to migrate to the inside surface of the sender tank and to separate from the vapor. When this separation reaches a predetermined degree, control means is activated to direct the liquid conveyed by the pump directly into the receiver tank. At the same time, the vapor within the receiver tank is directed from the receiver tank back into the sender tank. This flow continues until substantially all of the liquid is transferred from the sender tank to the receiver tank.

  11. Dynamic evolution of liquid-liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, S. D.; Gibbs, P. J.; Katz, M. R.; Ott, T. J.; Patterson, B. M.; Lee, W. -K.; Fezzaa, K.; Cooley, J. C.; Clarke, A. J.

    2015-03-01

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography has been used to observe liquideliquid phase separation in Al90In10 prior to solidification. Quantitative image analysis has been used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  12. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect

    Dr. Paul A. Lessing

    2012-03-01

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  13. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, S. B.

    1997-01-01

    The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.

  14. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.

    1998-01-01

    The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.

  15. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins.

  16. Device for measuring the liquid portion of a two-phase flow of gas and liquid

    SciTech Connect

    Schleimann-Jensen, A.H.

    1986-09-02

    A device is described for measuring the liquid portion of a two-phase flow of gas and liquid, particularly in conveying a liquid by means of a gas, in which two-phase flow the ratio of mixture between gas and liquid is widely varying. The device consists of a tubular housing and a turbine wheel with axial throw-flow rotatably mounted therein, the turbine wheel being provided with at least one magnetic element at a radially outward portion thereof, the element having limited extent axially and peripherally of the turbine wheel. The device furthermore consists of magnetic pick-up means adapted to emit output signals responsive to the rotary speed of the turbine wheel, the wheel being mounted for axial movement in the direction of flow from an initial position against a biassing force, characterized in that pick-up means are arranged axially spaced along the housing for allowing a measuring of rotary speed of the turbine wheel at various positions of movement within the housing responsive to density as well as speed changes of the flow and hence a determination of the liquid portion thereof by means of a converting device connected to all of the pick-up means. The tubular housing preferably is mounted vertically with the turbine wheel in its initial position being located lowermost.

  17. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  18. Normal Impingement of a Circular Liquid Jet onto a Screen in a Weightless Environment

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1976-01-01

    The normal impingement of a circular liquid jet onto a fine-mesh screen in a weightless environment was investigated. Equations were developed to predict the velocity of the emerging jet on the downstream side of the screen as a function of screen and liquid parameters and of the velocity of the impinging jet. Additionally, the stability of the emerging jet was found to be Weber number dependent. In general, excepting at high velocities, the screen behaved much as a baffle, deflecting the major portion of the impinging flow.

  19. Analysis of heat transfer for a normally impinging liquid-metal slot jet

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1973-01-01

    A two-dimensional liquid-metal slot jet that is impinging normally against a uniformly heated flat plate is analyzed. The distributions of wall temperature and heat-transfer coefficient are obtained as functions of position along the plate. The liquid-metal assumptions are made that the jet is inviscid and that molecular condition is dominating heat diffusion. The solution is obtained by mapping the jet flow region into a potential plane where it occupies a strip of uniform width. The energy equation is transformed into potential coordinates, and an exact solution obtained in the strip region. Conformal mapping is then used to transform the solution into the physical plane.

  20. Pressure dependence of quantum zero sound attenuation in normal liquid3He

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Ikegami, Toru; Karaki, Koichi; Okuda, Yuichi

    1996-01-01

    In the Fermi liquid theory Landau predicted that sound quanta are absorbed and emitted by directly creating and annihilating quasiparticle-quasihole pairs in normal liquid3He, when the angular frequency of ultrasound satisfies the condition Ћω> kT. In this regime sound attenuation remains finite at absolute zero temperature. We studied this quantum absorption limit as a function of pressure using an ultrasound of 389.1 MHz and have verified that this quantum zero sound absorption does exist.

  1. [Comparison of extracted proteins of human stomach tumor and normal tissues with liquid chromatography-multistage mass spectrometry].

    PubMed

    Luo, Fuwen; Tao, Dingyin; Zhao, Peng; Zhang, Lingyi; Jia, Yujie; Zhang, Weibing

    2010-01-01

    Screening of tumor markers by proteomic technology is the research focus and key of early diagnosis of stomach cancer study. Aiming at the complexity of the extracted proteins from biological tissue, reversed-phase high performance liquid chromatography (RP-HPLC) was employed as one of the most efficient chromatographic methods. Based on the difference of hydrophobicity, RP-HPLC separation was performed to reduce the complexity of stomach cancer tissue and normal tissue samples, separately. By comparing the chromatograms, different components were collected. The fractions with the retention times from 45 min to 47 min were digested and identified by liquid chromatography-multistage mass spectrometry (LC-MS/MS). Nine common proteins were found in both tumor tissue and normal tissue. Six specific proteins were screened in normal tissue and seventeen specific proteins were found in tumor tissue under the same conditions. Two proteins with higher abundance in tumor tissue were selected for further investigation. These proteins provide more information for future drug target and drug pathway research by the analysis of biological information.

  2. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  3. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    NASA Astrophysics Data System (ADS)

    Schirò, Giorgio; Fomina, Margarita; Cupane, Antonio

    2013-09-01

    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.

  4. Mechanism of phase transition, from vapor to solid: Transient liquid phase is between the two

    NASA Astrophysics Data System (ADS)

    Mahapatra, A. K.; Wang, Junyong; Zhang, Hongwei; Han, Min

    2016-08-01

    The mechanism of phase transition, from vapor to solid, is studied by producing non-stoichiometric ZnO and CdS nanoclusters (NCs) by low-energy cluster beam deposition technique, and examining their morphological and compositional evolution over a long span of time. It is concluded that the transition of vapor to solid goes through a transient liquid phase: coagulation of a large number of atomic clusters first forms liquid NCs which then solidify. The nature of the material and the experimental conditions determine crystallinity and shape of the NCs during the solidification process.

  5. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  6. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    SciTech Connect

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs.

  7. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation

    NASA Astrophysics Data System (ADS)

    Pawar, Nisha; Bohidar, H. B.

    2010-09-01

    Liquid-liquid phase separation leading to complex coacervation in a ternary system (oppositely charged polyion and macroion in a solvent) is discussed within the framework of a statistical thermodynamics model. The polyion and the macroion in the ternary system interact to form soluble aggregates (complexes) in the solvent, which undergoes liquid-liquid phase separation. Four necessary conditions are shown to drive the phase separation: (i) (σ23)3r/Φ23c≥((64)/(9α2))(χ23Φ3)2 , (ii) r≥[(64(χ23Φ3)2)/(9α2σ233)]1/2 , (iii) χ23≥((2χ231-1))/(Φ23cΦ3) , and (iv) (σ23)2/I≥(8)/(3α)(2χ231-1) (where σ23 is the surface charge on the complex formed due to binding of the polyelectrolyte and macroion, Φ23c is the critical volume fraction of the complex, χ23 is the Flory interaction parameter between polyelectrolyte and macroion, χ231 is the same between solvent and the complex, Φ3 is the volume fraction of the macroions, I is the ionic strength of the solution, α is electrostatic interaction parameter and r is typically of the order of molecular weight of the polyions). It has been shown that coacervation always requires a hydrated medium. In the case of a colloidal macroion and polyelectrolyte coacervation, molecular weight of polyelectrolyte must satisfy the condition r≥103Da to exhibit liquid-liquid phase separation. This model has been successfully applied to study the coacervation phenomenon observed in aqueous Laponite (macroion)-gelatin (polyion) system where it was found that the coacervate volume fraction, δΦ23˜χ2312 (where δΦ23 is the volume fraction of coacervates formed during phase separation). The free energy and entropy of this process have been evaluated, and a free-energy landscape has been drawn for this system that maps the pathway leading to phase separation.

  8. Preconcentration of aqueous dyes through phase-transfer liquid-phase microextraction with a room-temperature ionic liquid.

    PubMed

    Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo

    2012-09-12

    In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    PubMed

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  10. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  11. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases.

    PubMed

    Bouwstra, J A; Gooris, G S; Dubbelaar, F E; Ponec, M

    2001-11-01

    The lipid regions in the outermost layer of the skin (stratum corneum) form the main barrier for diffusion of substances through the skin. In this layer the main lipid classes are ceramides, cholesterol (CHOL), and FFA. Previous studies revealed a coexistence of two crystalline lamellar phases with periodicities of approximately 13 nm (referred to as long periodicity phase) and 6 nm (short periodicity phase). Additional studies showed that lipid mixtures prepared with isolated pig ceramides (pigCER) mimic lipid phase behavior in stratum corneum closely. Because the molecular structure of pigCER differs in some important aspects from that of human ceramides (HCER), in the present study the phase behavior of mixtures prepared with HCER has been examined. Phase behavior studies of mixtures based on HCER revealed that in CHOL:HCER mixtures the long periodicity phase dominates. In the absence of HCER1 the short periodicity phase is dominant. Addition of FFA promotes the formation of the short periodicity phase and induces a transition from a hexagonal sublattice to an orthorhombic sublattice. Furthermore, the presence of FFA promotes the formation of a liquid phase. Finally, cholesterol sulfate, a minor but important lipid in the stratum corneum, reduces the amount of cholesterol that phase separates in crystalline domains. From these observations it can be concluded that the phase behavior of mixtures prepared from HCER differs in some important aspects from that prepared from pigCER. The most prevalent differences are the following: i) the addition of FFA promotes the formation of the short periodicity phase; and ii) liquid lateral packing is obviously present in CHOL:HCER:FFA mixtures. These changes in phase behavior might be due to a larger amount of linoleic acid moiety in HCER mixtures compared with that in pigCER mixtures.

  12. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  13. Amphitropic liquid crystal phases from polyhydroxy sugar surfactants: Fundamental studies

    NASA Astrophysics Data System (ADS)

    Abou Zied, Osama K.; Hashim, Rauzah; Timimi, B. A.

    2015-03-01

    The self-assembly phenomena on a special class of poly-hydroxy sugar surfactant have been studied extensively. This class of material is classified as amphitropic liquid crystals since they exhibit both thermotropic and lyotropic liquid crystalline properties. Hence the potential applications of these non-ionic surfactants are more versatile than those from the conventional lyotropic liquid crystals including those from thermotropic phases, but the latters are yet to be realized. Unfortunately, due to the lack of interest (or even awareness), fundamental studies in thermotropic glycolipids are scanty to support application development, and any tangible progress is often mired by the complexity of the sugar stereochemistry. However, some applications may be pursued from these materials by taking the advantage of the sugar chirality and the tilted structure of the lipid organization which implies ferroelectric behavior. Here, we present our studies on the stereochemical diversity of the sugar units in glycosides that form the thermotropic/lyotropic phases. The structure to property relationship compares different chain designs and other popular polyhydroxy compounds, such as monooleins and alkylpolyglucosides. Different structural properties of these glycosides are discussed with respect to their self-assembly organization and potential applications, such as delivery systems and membrane mimetic study.

  14. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction.

    PubMed

    Pedersen-Bjergaard, Stig; Rasmussen, Knut Einar

    2008-03-14

    Since 1999, substantial research has been devoted to the development of liquid-phase microextraction (LPME) based on porous hollow fibers. With this technology, target analytes are extracted from aqueous samples, through a thin supported liquid membrane (SLM) sustained in the pores in the wall of a porous hollow fiber, and further into a microL volume of acceptor solution placed inside the lumen of the hollow fiber. After extraction, the acceptor solution is directly subjected to a final chemical analysis by liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis (CE), or mass spectrometry (MS). In this review, LPME will be discussed with focus on extraction principles, historical development, fundamental theory, and performance. Also, major applications have been compiled, and recent forefront developments will be discussed.

  15. Isopropylammonium Formate as a Mobile Phase Modifier for Liquid Chromatography

    PubMed Central

    Collins, Matthew P.; Zhou, Ling; Camp, Suzanne E.; Danielson, Neil D.

    2012-01-01

    Isopropylammonium formate (IPAF), a new alkylammonium formate (AAF) room temperature ionic liquid, has been synthesized from isopropylamine and formic acid and characterized as an organic solvent mobile phase replacement for reversed-phase liquid chromatography (LC). Characterization of IPAF solvent properties in water such as pH, conductivity, and viscosity, as well as its synthesis, is described. The LC polarity (P′) and the solvent strength (S) parameters are determined to be 6.0 and 2.4, respectively, similar to those same parameters for methanol and acetonitrile. Application of this RTIL is demonstrated as an organic solvent replacement for reversed-phase LC to separate a test mixture of niacinamide, acetophenone and p-nitroaniline. The van Deemter plot profile for several columns of different dimensions, particle size, pore size and stationary phase are compared using an IPAF–water mobile phase. At flow rates above 2 mL/min, on-line mixing of the viscous IPAF with water appears not to be uniform. A flattening of the van Deemter profile is noted for particularly short (50 mm) wide bore (4.6 mm) columns packed with larger particles (10 µm). Small particle longer columns likely facilitated mixing at the beginning of the column generating typical linearly increasing van Deemeter curves. IPAF has been further shown as a function of temperature to be a non-denaturing modifier solvent for the separation of the protein cytochrome c from tryptophan compared to methanol. This is important to show, because the semi-preparative separation of native proteins using AAF mobile phases is the long-term goal of this research program. PMID:22718743

  16. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  17. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  18. Supercritical phenomenon of hydrogen beyond the liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Chen, Ji; Li, Xinzheng; Wang, Enge; Xu, Limei

    2015-06-01

    Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressibility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of these response functions shows a maximum, the location of which is different for different response functions. As temperature decreases, the loci of these maxima asymptotically converge to a line of zero ordering field, known as the Widom line along which the magnitude of the response function maxima becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides a possible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with weak interactions but also true for highly condensed system with strong inter-atomic interactions.

  19. The liquid crystalline phase behavior of dimerizing hard spherocylinders

    NASA Astrophysics Data System (ADS)

    McGrother, Simon C.; Sear, Richard P.; Jackson, George

    1997-05-01

    The phase behavior of dimerizing (associating) rigid particles is studied by both theory and computer simulation. The model molecule comprises a hard spherocylinder of length L and diameter D with a terminal square well bonding site embedded in one of the hemispherical caps. This model mimics the properties of simple hydrogen bonding mesogens; for example, mesogens with a carboxylic acid end group which are capable of forming dimers. A recently proposed theory of the isotropic (I)-nematic (N) phase transition for long hard spherocylinders with an attractive site at one end [R. P. Sear and G. Jackson, Mol. Phys. 82, 473 (1994)] is extended to shorter molecules. In the original theory the free energy is truncated at the level of the second virial coefficient. We now include the higher virial coefficients in an approximate manner with a Parsons type scaling. The accuracy of the theory is demonstrated by comparison with novel Monte Carlo simulation data for the same model. Excellent agreement is found for densities, pressures and degrees of association especially at the liquid crystalline phase transition. In comparing the results for the L/D=5 associating system with those for its nonassociating analogue, the nematic phase is seen to be stabilized relative to the isotropic phase, while the nematic (N)-smectic-A (SmA) transition occurs at approximately the same density. The I-N transition for the dimerizing system is clearly first order, while the N-SmA is essentially continuous. The smectic-A phase has a monolayer structure which is similar to that formed by the nonassociating system. Furthermore, a system of otherwise nonmesogenic molecules with L/D=3 has a stable liquid crystal phase when dimerization is made possible with the inclusion of the terminal bonding sites. Rather than being a nematic phase, this phase is surprisingly found to have the layered structure of a smectic-A phase. We discuss our results in terms of the increase in the `effective' aspect ratio as

  20. Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase

    PubMed Central

    2014-01-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami–Erofeev model. We determined an effective rate constant of k = 0.056 min–1 with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min–1. PMID:24579729

  1. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  2. Liquid phase epitaxial growth of bismuth based superconductors

    NASA Astrophysics Data System (ADS)

    Takemoto, J.; Miyashita, S.; Inoue, T.; Komatsu, H.

    1996-05-01

    The liquid phase epitaxial growth of superconducting films of Bi 2Sr 2CaCu 2O y (2212 phase) and Bi 2Sr 2CuO z (2201 phase) were carried out on three types of substrates; SrTiO 3, LaAlO 3 and NdGaO 3. Twinning structures of the 2212 phase were observed in the films grown on the SrTiO 3 (100) and LaAlO 3 (100) substrates which belong to the cubic crystal system, while nearly twin-free structures were obtained when the film was grown on the NdGaO 3 (001) substrate (orthorhombic system). Atomic force microscopy revealed a 2201 phase film with a reasonably flat area (several μm 2) grown on the LaAlO 3 (100) substrate. It was observed that the 2212 phase nucleated on the substrate following the Volmer-Weber type mechanism (three-dimensional island growth mode). The enlarging processes of the island layers were discussed.

  3. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  4. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  5. Partitioning and phase equilibria of PEGylated excipients in fluorinated liquids.

    PubMed

    Paul, Alison; Talbot, Gemma L; Bowles, James W; James, Jennifer; Griffiths, Peter C; Rogueda, Philippe G

    2010-03-15

    Mixtures of common polymeric excipients and hydrofluoroalkane (HFA) liquids show rich and complex phase behaviour. Phase diagrams and phase compositions are reported for poly(ethylene glycol)s with varying levels of end-group methylation in mixed solvent systems consisting of the model propellant 2H,3H-perfluoropentane (HPFP) and the fully fluorinated analogue perfluoropentane (PFP). Studies have been performed as a function of molecular weight as well as end group chemistry (monomethyl, MM; dimethyl, DM; and dihydroxyl, DH), and for binary polymer mixtures in HPFP/PFP solvent systems. The solvent composition required to induce phase separation by addition of the non-hydrogen bonding PFP is strongly dependent on end-group concentrations. It shows a linear increase with increasing methylation, whilst remaining insensitive to OH group concentration in dihydroxylated PEG systems. For single polymer systems it is observed that strong partitioning of the polymer is observed, and changes in polymer concentration occurring across the phase diagram are a result of changing solvent partitioning between upper and lower phases. These solvent effects are dependent on the composition (wt% PFP) in the solvent mixture. The linear dependence of solvent composition required to induce phase separation at fixed polymer concentration on end group concentrations can be used to predict the phase behaviour for mixtures of monomethylated PEG with either dimethyl or dihydroxyl PEGs, whereas mixtures of dihydroxyl with dimethyl end-capped PEGs show a deviation from linear behaviour with dominance of the dihydroxyl end groups, which is reflected in the obtained phase diagrams. This study hence progresses understanding of factors that influence solubility of PEG-type polymers in HFAs and will facilitate the identification of predictive methodologies for formulation.

  6. Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration.

    PubMed

    Reiche, Katharina; Hartl, Josef; Blume, Alfred; Garidel, Patrick

    2017-01-01

    Liquid-liquid phase separation (LLPS) of a monoclonal antibody solution was investigated at low ionic strength in the presence of oligovalent anions, such as citrate, trimellitate, pyromellitate and mellitate. Phase separation was observed at the isoelectric point of the antibody at pH8.7 as well as in more acidic pH regions in the presence of the tested oligovalent ions. This can be attributed to charge neutralization via binding of the oligovalent anions to the positively charged antibody. The influence of the anion concentration on liquid-liquid phase separation with respect to the net charge of the antibody was examined. Similarities to the formation of a complex coacervate were shown to apply. These findings enable us to understand the usage of excipients to rationally induce or avoid liquid-liquid phase separation at low ionic strength. Furthermore we present a method to directly examine the competition of different ions for the solvation shell, called buffer equilibration.

  7. Disappearance of Widom Line for Liquid-Liquid Phase Transition with Horizontal Coexistence Line

    NASA Astrophysics Data System (ADS)

    Luo, Jiayuan; Xu, Limei; Buldyrev, Sergey; Angell, Austen; Stanley, Gene

    2012-02-01

    The study of spherically symmetric two-scale Jagla model with both repulsive and attractive ramps has been very successful in demonstrating the anomalous behavior of liquids (especially water) and its relation with respect to the existence of a liquid-liquid (LL) critical point. However, the co-existence line of Jagla model shows a positive slope, which is opposite to what has been found in the simulations of water. To more convincingly link the result of the study on Jagla model with that of water, we applied discrete molecular dynamics to Gibson and Wilding's modified Jagla model and found that by shrinking both the attractive and repulsive ramps, the slope of the coexistence line can be reduced to zero. However, at these values of the parameters, the LL critical point becomes completely unstable with respect to crystal and glass. We further studied the Widom line, defined as extreme of response functions and also continuation of the coexistence line into one phase region, and found Widom line disappeared in the case of zero slope of the coexistence line, due to the equal enthalpy of low-density liquid (LDL) and high-density liquid (HDL).

  8. Supersolidus Liquid Phase Sintering Modeling of Inconel 718 Superalloy

    NASA Astrophysics Data System (ADS)

    Levasseur, David; Brochu, Mathieu

    2016-02-01

    Powder metallurgy of Inconel 718 superalloy is advantageous as a near-net shape process for complex parts to reduce the buy-to-fly ratio and machining cost. However, sintering Inconel 718 requires the assistance of supersolidus liquid formation to achieve near full density and involves the risk of distortion at high temperatures. The present work is focused on modeling the onset of sintering and distortion as a function of temperature, grain size, and part geometry for Inconel 718. Using experimental sintering results and data available in the literature, the supersolidus liquid phase sintering of Inconel 718 was modeled. The model was used to define a processing window where part distortion would be avoided.

  9. Normal Gravity Testing of a Microchannel Phase Separator for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; McQuillen, John (Technical Monitor)

    2001-01-01

    A microchannel separator, with 2.7 millimeters as the smallest dimension, was tested, and a pore throat structure captured and removed liquid from a gas-liquid stream. The microchannel device was tested over a of gas and liquid flow rates ranging from 0.0005 up to 0. 14 volume fraction of liquid. Four liquids were tested with air. The biggest factor affecting the throughput is the capacity of liquid flow through the pore throat, which is dictated by permeability, liquid viscosity, flow area, pore throat thickness, and pressure difference across the pore throat. Typically, complete separation of gas and liquid fractions was lost when the liquid flow rate reached about 40 to 60% of the pore throat capacity. However, this could occur over a range of 10 to 90% utilization of pore throat capacity. Breakthrough occurs in the microchannel phase separator at conditions similar to the annular to plug flow transition of two-phase microgravity pipe flow implying that operating in the proper flow regime is crucial. Analysis indicates that the Bond number did not affect performance, supporting the premise that hydrodynamic, interfacial, and capillary forces are more important than gravity. However, the relative importance of gravity is better discerned through testing under reduced gravity conditions.

  10. Effect of Foam on Liquid Phase Mobility in Porous Media

    NASA Astrophysics Data System (ADS)

    Eftekhari, A. A.; Farajzadeh, R.

    2017-03-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.

  11. Effect of Foam on Liquid Phase Mobility in Porous Media

    PubMed Central

    Eftekhari, A. A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795

  12. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  13. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  14. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  15. Emergent spinless Weyl semimetals between the topological crystalline insulator and normal insulator phases with glide symmetry

    NASA Astrophysics Data System (ADS)

    Kim, Heejae; Murakami, Shuichi

    2016-05-01

    We construct a theory describing phase transitions between the spinless topological crystalline insulator phase with glide symmetry and a normal insulator phase. We show that a spinless Weyl semimetal phase should intervene between these two phases. Here, because all the bands are free from degeneracy in general, a gap closing between a single conduction band and a single valence band at phase transition generally gives rise to a pair creation of Weyl nodes; hence the Weyl semimetal phase naturally appears. We show the relationship between the change of the Z2 topological number when the system goes through the Weyl semimetal phase, and the trajectory of the Weyl nodes.

  16. Investigating materials formation with liquid-phase and cryogenic TEM

    NASA Astrophysics Data System (ADS)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  17. Dense nonaqueous phase liquid tracer tests: experimental results.

    PubMed

    Burt, R A; Christians, G L; Williams, S P; Wilson, D J

    2001-12-01

    Two dense nonaqueous phase liquid (DNAPL) tracer tests were carried out in a shallow aquifer north of Fort Worth, TX. i-Propanol was used as the nonpartitioning tracer: n-hexanol and n-octanol were the partitioning tracers. Field data, mathematical modeling, the results of column tests, and field tracer tests with NaCl were used in designing the DNAPL tracer tests. The results indicated the presence of DNAPL at both sites tested; semi-quantitative estimates of the amounts of DNAPL present were obtained by mathematical modeling. Interpretation was complicated by heterogeneity of the aquifer and mass transport effects.

  18. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  19. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  20. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  1. Blue phase liquid crystals stabilized by linear photo-polymerization

    NASA Astrophysics Data System (ADS)

    Xu, Daming; Yuan, Jiamin; Schadt, Martin; Wu, Shin-Tson

    2014-08-01

    Stabilizing a photopolymer-embedded blue phase liquid crystal precursor with linearly polarized UV light is investigated experimentally. When the UV polarization axis is perpendicular to the stripe electrodes of an in-plane-switching cell, anisotropic polymer networks are formed through the linear photo-polymerization process and the electrostriction effect is suppressed. As a result, the measured hysteresis is dramatically reduced from 6.95% to 0.36% and the response time shortened by ˜2× compared to unpolarized UV exposure. To induce larger anisotropy in polymer networks for mitigating the electrostriction effect, high-intensity linearly polarized UV exposure is preferred.

  2. Containerless liquid-phase processing of ceramic materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. R.; Nordine, P. C.

    1994-01-01

    Containerless melting and solidification provides a powerful tool for investigation and synthesis of ceramic and glass materials. The work described in this article explored and extended the limits of ground-based experimentation by using aero-acoustic and aerodynamic levitation in combination with laser beam heating and melting to investigate ceramic and glass processing. Results of liquid-phase processing experiments on calcia-gallia and calcia-gallia-silica glass-forming mixtures, aluminum oxide, and ceramic superconductors are summarized. The work is discussed in the context of low gravity experimental and materials synthesis requirements and opportunities.

  3. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  4. Three-dimensional colloidal crystals in liquid crystalline blue phases

    PubMed Central

    Ravnik, Miha; Alexander, Gareth P.; Yeomans, Julia M.; Žumer, Slobodan

    2011-01-01

    Applications for photonic crystals and metamaterials put stringent requirements on the characteristics of advanced optical materials, demanding tunability, high Q factors, applicability in visible range, and large-scale self-assembly. Exploiting the interplay between structural and optical properties, colloidal lattices embedded in liquid crystals (LCs) are promising candidates for such materials. Recently, stable two-dimensional colloidal configurations were demonstrated in nematic LCs. However, the question as to whether stable 3D colloidal structures can exist in an LC had remained unanswered. We show, by means of computer modeling, that colloidal particles can self-assemble into stable, 3D, periodic structures in blue phase LCs. The assembly is based on blue phases providing a 3D template of trapping sites for colloidal particles. The particle configuration is determined by the orientational order of the LC molecules: Specifically, face-centered cubic colloidal crystals form in type-I blue phases, whereas body-centered crystals form in type-II blue phases. For typical particle diameters (approximately 100 nm) the effective binding energy can reach up to a few 100 kBT, implying robustness against mechanical stress and temperature fluctuations. Moreover, the colloidal particles substantially increase the thermal stability range of the blue phases, for a factor of two and more. The LC-supported colloidal structure is one or two orders of magnitude stronger bound than, e.g., water-based colloidal crystals. PMID:21368186

  5. Dynamic phase coexistence in glass-forming liquids.

    PubMed

    Pastore, Raffaele; Coniglio, Antonio; Ciamarra, Massimo Pica

    2015-07-09

    One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.

  6. Molecular simulation studies of reversed-phase liquid chromatography.

    PubMed

    Lindsey, Rebecca K; Rafferty, Jake L; Eggimann, Becky L; Siepmann, J Ilja; Schure, Mark R

    2013-04-26

    Over the past 20 years, molecular simulation methods have been applied to the modeling of reversed-phase liquid chromatography (RPLC). The purpose of these simulations was to provide a molecular-level understanding of: (i) the structure and dynamics of the bonded phase and its interface with the mobile phase, (ii) the interactions of analytes with the bonded phase, and (iii) the retention mechanism for different analytes. However, the investigation of chromatographic systems poses significant challenges for simulations with respect to the accuracy of the molecular mechanics force fields and the efficiency of the sampling algorithms. This review discusses a number of aspects concerning molecular simulation studies of RPLC systems including the historical development of the subject, the background needed to understand the two prevalent techniques, molecular dynamics (MD) and Monte Carlo (MC) methods, and the wealth of insight provided by these simulations. Examples from the literature employing MD approaches and from the authors' laboratory using MC methods are discussed. The former can provide information on chain dynamics and transport properties, whereas the latter techniques are uniquely suited for the investigation of phase and sorption equilibria that underly RPLC retention, and both can be used to elucidate the bonded-chain conformations and solvent distributions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The effect of macroscopic parameters and medium composition on the kinetics of phase transitions in liquids

    NASA Astrophysics Data System (ADS)

    Novikova, V. I.; Novikov, P. A.; Pavlov, B. M.; Sharonov, N. F.; Malenko, G. L.

    1985-07-01

    The evaporation kinetics of water in helium, nitrogen, argon, carbon dioxide, and Freon-22 is investigated experimentally in the pressure range 1300-6700 Pa. Expressions are obtained which relate the evaporation rate to the pressure and temperature of the ambient atmosphere, the temperature of the evaporation surface, the molecular weight of the inert gas, and the normalized molecular weight of the vapor-gas mixture. The reasons for the discrepancies in the literature concerning the effect of inert gases on the kinetics of phase transitions in liquids are examined.

  8. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  9. Espresso coffee foam delays cooling of the liquid phase.

    PubMed

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  10. Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals.

    PubMed

    Gharbi, Mohamed Amine; Manet, Sabine; Lhermitte, Julien; Brown, Sarah; Milette, Jonathan; Toader, Violeta; Sutton, Mark; Reven, Linda

    2016-03-22

    Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials.

  11. Influences of misfit strains on liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng

    2017-10-01

    Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.

  12. Volume phase transitions of cholesteric liquid crystalline gels

    SciTech Connect

    Matsuyama, Akihiko

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  13. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    PubMed

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  14. On inferring liquid-liquid phase boundaries and tie lines from ternary mixture light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2012-07-01

    We investigate the possibility of using light scattering data in the single-phase regions of a ternary liquid mixture phase diagram to infer ternary mixture coexistence curves, and to infer tie lines joining the compositions of isotropic liquid phases in thermodynamic equilibrium. Previous analyses of a nonlinear light scattering partial differential equation (LSPDE) show that it provides for reconstruction of ternary [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008), 10.1063/1.2937902; C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034201 (2012), 10.1063/1.4731694] and quaternary [C. Wahle, D. Ross, and G. Thurston, J. Chem. Phys. 137, 034202 (2012)] mixing free energies from light scattering data, and that if the coexistence curves are already known, it can also yield ternary tie lines and triangles [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008), 10.1063/1.2937902]. Here, we show that the LSPDE can be used more generally, to infer phase boundaries and tie lines from light scattering data in the single-phase region, without prior knowledge of the coexistence curve, if the single-phase region is connected. The method extends the fact that the reciprocal light scattering intensity approaches zero at the thermodynamic spinodal. Expressing the free energy as the sum of ideal and excess parts leads to a natural family of Padé approximants for the reciprocal Rayleigh ratio. To test the method, we evaluate the single-phase reciprocal Rayleigh ratio resulting from the mean-field, regular solution model on a fine grid. We then use a low-order approximant to extrapolate the reciprocal Rayleigh ratio into metastable and unstable regions. In the metastable zone, the extrapolation estimates light scattering prior to nucleation and growth of a new phase. In the unstable zone, the extrapolation produces a negative function that in the present context is a computational convenience. The original and extrapolated reciprocal

  15. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  16. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

  17. Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal.

    PubMed

    Yan, Jing; Xing, Yufei; Li, Qing

    2015-10-01

    Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal is demonstrated by controlling its driving scheme. High efficiencies of 35.3% for the small-period phase grating and 28.7% for the large-period phase grating have been achieved because of the rectangular-like phase profile which shows good agreement with the simulation results. The diffraction angle can be alternatively tuned, as well as the diffraction efficiency. Moreover, this device also possesses polarization independency and fast response with a rise time of 826 μs and a decay time of 1.143 ms which shows great potential for diffractive optics.

  18. Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Jau, Hung-Chang; Lin, Tsung-Hsien

    2013-02-01

    This work demonstrates a polymer-stabilized blue phase (PSBP) liquid crystal phase grating, which is made of hybrid PSBPs with two different Kerr constants. The Kerr constant of a PSBP is related to the morphology of the polymer network which can be controlled by the phase separation temperature. Owing to the non-patterned electrode and the optical isotropy of the PSBP, the diffraction effect can be completely switched off when the voltage is absent. The diffraction intensity increases when a uniform applied electrical field induces the phase difference in the hybrid PSBP. The phase grating is completely independent of the polarization of the incident light. Furthermore, the response time to switching is in the sub-millisecond range.

  19. Behavior of solute adsorbed at the liquid-liquid interface during solvent extraction with porous-membrane phase separators

    SciTech Connect

    Persaud, G.; Xiu-min, T.; Cantwell, F.F.

    1987-01-01

    Porous membranes are used effectively as phase separators in analytical solvent extraction. When the solute involved can be adsorbed at the liquid-liquid interface, it is found that more vigorous agitation of the mixture causes a decrease in concentration of solute in the liquid flowing through the porous membrane. It is shown experimentally for the interfacially adsorbed component methylene blue perchlorate that the distribution isotherm between chloroform and water is the same in stirred and unstirred mixtures. This suggests that the interfacially adsorbed solute remains at the interface and does not enter the bulk liquid phases during the membrane-induced coalescence and phase separation. Hydrodynamic and diffusion rate calculations confirm this conclusion by showing that the residence time of the solute deposited at the liquid-liquid interface near the membrane (0.1 s) is too short for solute to diffuse through the stagnant Nernst diffusion layer.

  20. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    PubMed Central

    Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

    2009-01-01

    Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

  1. Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

    DTIC Science & Technology

    1994-03-01

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY N"m A.R. TURNER AND A. WHITE...TO biEPROOU.; AND SELL THIS REPORT Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography A.R...8217/......... .. Availability Cooes Dist Avaiardlo A-i Determination of Stabiliser Contents in Advanced Gun Propellants by Reverse Phase High Performance Liquid Chromatography

  2. Liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase for the extraction of phenoxyacetic acids prior to liquid chromatography detection.

    PubMed

    Chen, Chung-Chiang; Melwanki, Mahaveer B; Huang, Shang-Da

    2006-02-03

    A simple liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase (LLLME/AMADP) technique is described for the quantitative determination of five phenoxyacetic acids in water using a disposable and ready to use hollow fiber. The target compounds were extracted from the acidified sample solution (donor phase) into the organic solvent residing in the pores of the hollow fiber and then back extracted into the alkaline solution (acceptor phase) inside the lumen of the hollow fiber. The fiber was held by a conventional 10-microl syringe. The acceptor phase was sandwiched between the plunger and a small volume of the organic solvent (microcap). The acceptor solution was repeatedly moved in and out of the hollow fiber assisted by a programmable syringe pump. This repeated movement provides a fresh acceptor phase to come in-contact with the organic phase and thus enhancing extraction kinetics leading to high enrichment of the analytes. The microcap separates the aqueous acceptor phase and the donor phase in addition of being partially responsible for mass transfer of the analytes from donor solution (moving in and out of the hollow fiber from the open end of the fiber) to the acceptor solution. Separation and quantitative analyses were then performed using liquid chromatography (LC) with ultraviolet (UV) detection at 280 nm. Various parameters affecting the extraction efficiency viz. type of organic solvent used for immobilization in the pores of the hollow fiber, extraction time, stirring speed, effect of sodium chloride, and concentration of donor and acceptor phases were studied. Repeatability (RSD, 3.2-7.4%), correlation coefficient (0.996-0.999), detection limit (0.2-2.8 ng ml(-1)) and enrichment factors (129-240) were also investigated. Relative recovery (87-101%) and absolute recoveries (4.6-13%) have also been calculated. The developed method was applied for the analysis of river water.

  3. Two-dimensional high-performance thin-layer chromatography of tryptic bovine albumin digest using normal- and reverse-phase systems with silanized silica stationary phase.

    PubMed

    Gwarda, Radosław Łukasz; Dzido, Tadeusz Henryk

    2013-10-18

    Among many advantages of planar techniques, two-dimensional (2D) separation seems to be the most important for analysis of complex samples. Here we present quick, simple and efficient two-dimensional high-performance thin-layer chromatography (2D HPTLC) of bovine albumin digest using commercial HPTLC RP-18W plates (silica based stationary phase with chemically bonded octadecyl ligands of coverage density 0.5μmol/m(2) from Merck, Darmstadt). We show, that at low or high concentration of water in the mobile phase comprised methanol and some additives the chromatographic systems with the plates mentioned demonstrate normal- or reversed-phase liquid chromatography properties, respectively, for separation of peptides obtained. These two systems show quite different separation selectivity and their combination into 2D HPTLC process provides excellent separation of peptides of the bovine albumin digest. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  5. Surface confined ionic liquid as a stationary phase for HPLC

    SciTech Connect

    Wang, Qian; Baker, Gary A; Baker, Sheila N; Colon, Luis

    2006-01-01

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.

  6. Dynamic headspace time-extended helix liquid-phase microextraction.

    PubMed

    Huang, Shih-Pin; Chen, Pai-Shan; Huang, Shang-Da

    2009-05-15

    Liquid-phase microextraction (LPME) has been proved to be a fast, inexpensive and effective sample pre-treatment technique for the analyses of pesticides and many other compounds. In this investigation, a new headspace microextraction technique, dynamic headspace time-extended helix liquid-phase microextraction (DHS-TEH-LPME), is presented. In this work, use of a solvent cooling system, permits the temperature of the extraction solvent to be lowered. Lowering the temperature of the extraction solvent not only reduces solvent loss but also extends the feasible extraction time, thereby improving extraction efficiency. Use of a larger volume of the solvent not only extends the feasible extraction time but also, after extraction, leaves a larger volume to be directly injected into the gas chromatography (GC) to increase extraction efficiency and instrument signal. The DHS-TEH-LPME technique was used to extract six organochlorine pesticides (OCPs) from 110ml water samples that had been spiked with the analytes at ng/l levels, and stirred for 60min. The proposed method attained enrichments up to 2121 fold. The effects of extraction solvent identity, sample agitation, extraction time, extraction temperature, and salt concentration on extraction performance were also investigated. The method detection limits (MDLs) varied from 0.2 to 25ng/l. The calibration curves were linear for at least 2 orders of magnitude with R(2)>==0.996. Relative recoveries in river water were more than 86%.

  7. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    PubMed

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  8. Biodegradation of naphthalene from nonaqueous-phase liquids

    SciTech Connect

    Ghoshal, S.; Luthy, R.G.; Ramaswami, A.

    1995-12-31

    Dissolution of polycyclic aromatic hydrocarbons (PAHs) from a non-aqueous-phase liquid (NAPL) to the aqueous phase renders these compounds bioavailable to microorganisms. Subsequent biodegradation of organic phase PAH then results in a depletion of PAH from the NAPL. This study focuses on identifying the rate-controlling processes affecting naphthalene biomineralization from a complex multicomponent NAPL, coal tar, and a simple two-component NAPL. A simplified dissolution degradation model is presented to identify quantitative criteria to assess whether mass transfer or biokinetic limitations control the overall rate of biotransformation of PAH compounds. Results show that the rate of mass transfer may control the overall rate of biotransformation in certain systems. Mass transfer does not limit biodegradation in slurry systems when coal tar is distributed in the micropores of a large number of small microporous silica particles. The end points of naphthalene degradation from the NAPLs have been evaluated, and results suggest that depletion of a significant mass of naphthalene from the NAPL phase is possible.

  9. Phase-Shifting Liquid Crystal Point-Diffraction Interferometry

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Kenneth L.; Mercer, Carolyn R.

    2000-01-01

    , the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at

  10. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system

    NASA Technical Reports Server (NTRS)

    Glickman, M. E.; Fradkov, V. E.

    1995-01-01

    A new powerful experimental technique based on holographic observations, developed at the NASA Marshall Space Flight Center, now permits observation of small liquid droplets coarsening. This technique was developed and used for mixed-dimensional coarsening studies. Experiments were conducted on an isopycnic two-phase alloy of succinonitrile and water, annealed isothermally over a four-month period. The succinonitrile-rich droplets precipitate from a water-rich liquid matrix having a density very close to that of the droplets. The matrix and droplets, however, have different optical indices. The results of these experiments, along with the results of computer simulation based on the quasi-static diffusion approximation developed at Rensselaer are reported. These results were published recently. Copies of these papers are attached to this report.

  11. Multiwave out-of-normal band-edge lasing in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Shtykov, N. M.; Umanskii, B. A.; Barnik, M. I.

    2012-07-01

    We have investigated the lasing effect in dye-doped cholesteric liquid crystals, where the photonic stop-band for light propagating along the helical axis coinciding with the layer normal is strongly shifted to longer wavelengths with respect to the luminescence band of the dye. In the absence of overlapping of the photonic and luminescence bands, the well-known lasing effect along the normal at the stop-band edges is forbidden. However, the lasing is still allowed for out-of-normal directions, for which the photonic band is shifted to shorter wavelengths corresponding to the luminescence band. Despite of the out-of-normal light propagation, the positive feedback necessary for the lasing is still available in a case of the monodomain cholesteric layer, when its thickness is much less than the optical pumping aperture. We have observed a significantly increased energy threshold for the out-of-normal lasing modes despite they are characterized by lower threshold gain compared to the modes propagating along the helix axis. The increased energy threshold is explained in terms of continuous distribution of the lasing emission over a large angular sector and energy leakage caused by the leaky lasing into the substrates.

  12. Liquid-Liquid Phase Equilibria and Interactions between Droplets in Water-in-Oil Microemulsions.

    PubMed

    Yin, Tianxiang; Wang, Mingjie; Tao, Xiaoyi; Shen, Weiguo

    2016-12-20

    The liquid-liquid phase equilibria of [water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-decane] with the molar ratio w0 of water to AOT being 37.9 and [water/AOT/ethoxylated-2,5,8,11-tetramethyl-6-dodecyne-5,8-diol(Dynol-604)/n-decane] with w0 = 37.9 and the mole fraction α of Dynol-604 in the total surfactants being 0.158 were measured in this study. From the data collected in the critical region, the critical exponent β corresponding to the width of the coexistence curve was determined, which showed good agreement with the 3D-Ising value. A thermodynamic approach based on the Carnahan-Starling-van der Waals type equation was proposed to describe the coexistence curves and to deduce the interaction properties between droplets in the microemulsions. The interaction enthalpies were found to be positive for the studied systems, which evidenced that the entropy effect dominated the phase separations as the temperature increased. The addition of Dynol-604 into the (water/AOT/n-decane) microemulsion resulted in the decrease in the critical temperature and the interaction enthalpy. Combining the liquid-liquid equilibrium data for (water/AOT/n-decane) microemulsions with various w0 values determined previously, it was shown that the interaction enthalpy decreased with w0 and tended to change its sign at low w0, which coincided with the results from the isothermal titration calorimetry investigation. All of these behaviors were interpreted by the effects of entropy and enthalpy and their competition, which resulted from the release of solvent molecules entrapped in the interface of microemulsion droplets and were dependent on the rigidity of the surfactant layers and the size of the droplet.

  13. A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension

    NASA Astrophysics Data System (ADS)

    Fechter, Stefan; Munz, Claus-Dieter; Rohde, Christian; Zeiler, Christoph

    2017-05-01

    The numerical approximation of non-isothermal liquid-vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  14. Morphology and crystal phase evolution of GeO 2 in liquid phase deposition process

    NASA Astrophysics Data System (ADS)

    Jing, Chengbin; Sun, Wei; Wang, Wei; Li, Yi; Chu, Junhao

    2012-01-01

    Morphology and crystal phase evolution of GeO 2 in liquid phase deposition (LPD) process is investigated. Rod-like solid phases precipitate out of solution ahead of truncated cube-like phases. SEM, XRD and TEM analyses reveal that the two sorts of solid phases are tetragonal GeO 2 and hexagonal GeO 2, respectively. The tetragonal GeO 2 phases start to experience a re-dissolving process as soon as the hexagonal phases come into being. The prior precipitation of the rod-like phase arises from a relatively low solute saturation of tetragonal GeO 2. Fast growth of a tetragonal GeO 2 phase along [111] direction leads to development of a rod-like shape. The re-dissolving phenomenon does not agree with the classic growth kinetics of crystals but is strongly favored by our calculations based on thermodynamics. The GeO 2 solutes are released in a fluctuant way by germanate ions, which promotes the occurrence of the re-dissolution phenomenon. The current researches open a door for room-temperature LPD growth of not only the hexagonal GeO 2 particles and film but also the one-dimensional tetragonal GeO 2 product.

  15. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  16. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  17. How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases.

    PubMed

    Lamouroux, C; Foglia, G; Le Rouzo, G

    2011-05-20

    This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: "what were the most important interactions for the separation of ionic liquids?". The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional diol columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a sucessful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated.

  18. Transport coefficients of normal liquid helium-4 calculated by path integral centroid molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Imaoka, Haruna; Kinugawa, Kenichi

    2017-03-01

    Thermal conductivity, shear viscosity, and bulk viscosity of normal liquid 4He at 1.7-4.0 K are calculated using path integral centroid molecular dynamics (CMD) simulations. The calculated thermal conductivity and shear viscosity above lambda transition temperature are on the same order of magnitude as experimental values, while the agreement of shear viscosity is better. Above 2.3 K the CMD well reproduces the temperature dependences of isochoric shear viscosity and of the time integral of the energy current and off-diagonal stress tensor correlation functions. The calculated bulk viscosity, not known in experiments, is several times larger than shear viscosity.

  19. A novel approach for normalizing the photoreflectance spectrum by using polymer-dispersed liquid crystal.

    PubMed

    Liao, Y F; Chang, C C; Wang, D P; Tseng, B H; Liao, Y D; Lin, C H

    2012-10-01

    This study developed a novel type of normalization procedure for modulation reflectance spectroscopy experiments to obtain the relative change in the reflectance spectrum, ΔR/R. This technique uses a polymer-dispersed liquid crystal to ensure that the dc component of the signal from the detector remained constant by varying the intensity of the light striking the sample. This method is particularly useful for photoreflectance measurement, which may encounter background problems because of scattered pump light and/or photoluminescence. It does not require a change in the gain of the detector or the use of a variable neutral density filter mounted on a servo-motor.

  20. A novel approach for normalizing the photoreflectance spectrum by using polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Liao, Y. F.; Chang, C. C.; Wang, D. P.; Tseng, B. H.; Liao, Y. D.; Lin, C. H.

    2012-10-01

    This study developed a novel type of normalization procedure for modulation reflectance spectroscopy experiments to obtain the relative change in the reflectance spectrum, ΔR/R. This technique uses a polymer-dispersed liquid crystal to ensure that the dc component of the signal from the detector remained constant by varying the intensity of the light striking the sample. This method is particularly useful for photoreflectance measurement, which may encounter background problems because of scattered pump light and/or photoluminescence. It does not require a change in the gain of the detector or the use of a variable neutral density filter mounted on a servo-motor.

  1. Normal viscous force of pendular liquid bridge between two relatively moving particles.

    PubMed

    Washino, Kimiaki; Chan, Ei L; Matsumoto, Taku; Hashino, Seiji; Tsuji, Takuya; Tanaka, Toshitsugu

    2017-05-15

    In this work, Direct Numerical Simulations (DNS) of a pendular liquid bridge formed between two relatively moving particles are performed to evaluate the normal component of the viscous force exerted on the particles. The viscous force obtained are non-dimensionalised in order to clarify the parameters which can affect the dimensionless force. The DNS results are compared with the viscous force models in literature which are commonly used in DEM simulations. It is found that these models cannot be used with large inter-particle separation distance. A new and more accurate viscous force model is proposed from the DNS results which can be directly implemented in the DEM framework.

  2. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.

    PubMed

    Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B

    2014-05-05

    Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions.

  3. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  4. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  5. Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation.

    PubMed

    Zhang, Zichen; Yang, Haining; Robertson, Brian; Redmond, Maura; Pivnenko, Mike; Collings, Neil; Crossland, William A; Chu, Daping

    2012-06-10

    A method to measure the optical response across the surface of a phase-only liquid crystal on silicon device using binary phase gratings is described together with a procedure to compensate its spatial optical phase variation. As a result, the residual power between zero and the minima of the first diffraction order for a binary grating can be reduced by more than 10 dB, from -15.98 dB to -26.29 dB. This phase compensation method is also shown to be useful in nonbinary cases. A reduction in the worst crosstalk by 5.32 dB can be achieved when quantized blazed gratings are used.

  6. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    SciTech Connect

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure.

  7. Thickness Mismatch of Coexisting Liquid Phases in Non-Canonical Lipid Bilayers

    PubMed Central

    Bleecker, Joan V.; Cox, Phillip A.; Foster, Rami N.; Litz, Jonathan P.; Blosser, Matthew C.; Castner, David G.; Keller, Sarah L.

    2016-01-01

    Lipid composition dictates membrane thickness, which in turn can influence membrane protein activity. Lipid composition also determines whether a membrane demixes into coexisting liquid-crystalline phases. Previous direct measurements of demixed lipid membranes have always found a liquid-ordered phase that is thicker than the liquid-disordered phase. Here we investigated non-canonical ternary lipid mixtures designed to produce bilayers with thicker disordered phases than ordered phases. The membranes were comprised of short, saturated (ordered) lipids; long, unsaturated (disordered) lipids; and cholesterol. We found that few of these systems yield coexisting liquid phases above 10 °C. For membranes that do demix into two liquid phases, we measured the thickness mismatch between the phases by atomic force microscopy and found that not one of the systems yields thicker disordered than ordered phases under standard experimental conditions. We found no monotonic relationship between demixing temperatures of these ternary systems and either estimated thickness mismatches between the liquid phases or the physical parameters of single-component membranes comprised of the individual lipids. These results highlight the robustness of a membrane’s liquid-ordered phase to be thicker than the liquid-disordered phase, regardless of the membrane’s lipid composition. PMID:26890258

  8. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  9. Chromatic aberration control with liquid crystal spatial phase modulators.

    PubMed

    Martinez, Jose L; Fernandez, Enrique J; Prieto, Pedro M; Artal, Pablo

    2017-05-01

    The chromatic behavior of diffractive optical elements, exhibiting 2π-wrapped phase profiles, implemented into liquid crystal spatial light modulators (LC-SLM) is described. A wrapped phase map is only equivalent to the original continuous profile for the design wavelength while at other wavelengths there are unwanted phase jumps and the profile does not correspond to a pure defocus. For those conditions the wrapped profile behaves as a multiple order lens (multi-focal lens). The optical power dispersion for each order is linearly proportional to the wavelength, while the energy of each order depends on the design wavelength and the material dispersion. For practical purposes, for most of the visible range only first order (main defocus) is relevant but two other orders may also be considered depending on the actual PSF of the system. As an application, we demonstrate that the longitudinal chromatic aberration of the eye can be compensated by the diffractive lens dispersion when the appropriate defocus is programmed into the SLM.

  10. A phase-stepped point diffraction interferometer using liquid crystals

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Creath, Katherine; Rashidnia, Nasser

    1995-01-01

    A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with high data density and with automated data reduction. The design of the LCPDI is briefly discussed. An algorithm is presented for eliminating phase measurement error caused by object beam intensity variation from frame-to-frame. The LCPDI is demonstrated by measuring the temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to independently measured results and show excellent agreement with them. It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly in space based applications where autonomy, robustness, and compactness are desirable qualities. It should also be useful for the testing of optical elements, provided a master is available for comparison.

  11. Structure analysis of turbulent liquid phase by POD and LSE techniques

    SciTech Connect

    Munir, S. Muthuvalu, M. S.; Siddiqui, M. I.; Heikal, M. R. Aziz, A. Rashid A.

    2014-10-24

    In this paper, vortical structures and turbulence characteristics of liquid phase in both single liquid phase and two-phase slug flow in pipes were studied. Two dimensional velocity vector fields of liquid phase were obtained by Particle image velocimetry (PIV). Two cases were considered one single phase liquid flow at 80 l/m and second slug flow by introducing gas at 60 l/m while keeping liquid flow rate same. Proper orthogonal decomposition (POD) and Linear stochastic estimation techniques were used for the extraction of coherent structures and analysis of turbulence in liquid phase for both cases. POD has successfully revealed large energy containing structures. The time dependent POD spatial mode coefficients oscillate with high frequency for high mode numbers. The energy distribution of spatial modes was also achieved. LSE has pointed out the coherent structured for both cases and the reconstructed velocity fields are in well agreement with the instantaneous velocity fields.

  12. Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study.

    PubMed

    Ciarella, Simone; Gang, Oleg; Sciortino, Francesco

    2016-12-01

    We evaluate the phase diagram of a model of tetrameric particles where the arms of the tetrahedra are made by six hard cylinders. An interacting site is present on each one of the four vertices allowing the particles to form a bonded network. These model particles provide a coarse-grained but realistic representation of recently synthesised DNA origami tetrahedra. We show that the resulting network is sufficiently empty to allow for partial interpenetration and it is sufficiently flexible to avoid crystallisation (at least on the numerical time scale), satisfying both criteria requested for the observation of a liquid-liquid critical point in tetrahedrally coordinated particles. Grand-canonical simulations provide evidence that, in silico, the model is indeed characterised, in addition to the gas-liquid transition, by a transition between two distinct liquid phases. Our results suggest that an experimental observation of a liquid-liquid transition in a colloidal system can be achieved in the near future.

  13. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    PubMed

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  14. Single Lipid Extraction: The Anchoring Strength of Cholesterol in Liquid-Ordered and Liquid-Disordered Phases

    PubMed Central

    Stetter, Frank W.S.; Cwiklik, Lukasz; Jungwirth, Pavel; Hugel, Thorsten

    2014-01-01

    Cholesterol is important for the formation of microdomains in supported lipid bilayers and is enriched in the liquid-ordered phase. To understand the interactions leading to this enrichment, we developed an AFM-based single-lipid-extraction (SLX) approach that enables us to determine the anchoring strength of cholesterol in the two phases of a phase-separated lipid membrane. As expected, the forces necessary for extracting a single cholesterol molecule from liquid-ordered phases are significantly higher than for extracting it from the liquid-disordered phases. Interestingly, application of the Bell model shows two energy barriers that correlate with the head and full length of the cholesterol molecule. The resulting lifetimes for complete extraction are 90 s and 11 s in the liquid-ordered and liquid-disordered phases, respectively. Molecular dynamics simulations of the very same experiment show similar force profiles and indicate that the stabilization of cholesterol in the liquid-ordered phase is mainly due to nonpolar contacts. PMID:25185552

  15. Thermal conductivity of alternative refrigerants in the liquid phase

    SciTech Connect

    Yata, J.; Hori, M.; Kobayashi, K.; Minamiyama, T.

    1996-05-01

    Measurements of the thermal conductivity of five alternative refrigerants, namely, difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,1-trifluorethane (HFC-143a), and dichloropentafluoropropanes (HCFC-225ca and HCFC-225cb), are carried out in the liquid phase. The range of temperature is 253-324 K for HFC-32, 257-305 K for HFC-125, 268-314 K for HFC-134a, 267-325 K for HCF-225ca, and 286-345 K for HCFC-225cb. The pressure range is from saturation to 30 MPa. The reproducibility of the data is better than 0.5%, and the accuracy of the data is estimated to be of the order of 1%. The experimental results for the thermal conductivity of each substance are correlated by an equation which is a function of temperature and pressure. A short discussion is given to the comparison of the present results with literature values for HFC-125. The saturated liquid thermal conductivity values of HFC-32, HFC-125, and HFC-143a are compared with those of chlorodifluoromethane (HCFC-22) and tetrafluoroethane (HFC-134a) and it is shown that the value of HFC-32 is highest, while that of HFC-125 is lowest, among these substances. The dependence of thermal conductivity on number of fluorine atoms among the refrigerants with the same number of carbon and hydrogen atoms is discussed.

  16. Non-aqueous phase liquid spreading during soil vaporextraction

    SciTech Connect

    Kneafsey, Timothy J.; Hunt, James R.

    2000-06-27

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  17. Non-aqueous phase liquid spreading during soil vapor extraction

    PubMed Central

    Kneafsey, Timothy J.; Hunt, James R.

    2010-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243

  18. Non-Fermi liquid phase in metallic Skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Parameswaran, Siddharth; Raghu, Srinivas; Vishwanath, Ashvin

    2014-03-01

    Motivated by reports of a non-Fermi liquid state in MnSi, we examine the effect of coupling phonons of an incommensurate skyrmion crystal (SkX) to conduction electrons. We find that non-Fermi liquid behavior emerges in both two and three dimensions over the entire phase, due to an anomalous electron-phonon coupling that is linked to the net skyrmion density. A small parameter, the spiral wave vector in lattice units, allows us to exercise analytic control and ignore Landau damping of phonons over a wide energy range. At the lowest energy scales the problem is similar to electrons coupled to a gauge field. The best prospects for realizing these effects is in short period skyrmion lattice systems such as MnGe or epitaxial MnSi films. We also compare our results with the unusual T 3 / 2 scaling of temperature dependent resistivity seen in high pressure experiments on MnSi. We acknowledge support from the NSF via Grant DMR-0645691, the DOE Office of Basic Energy Sciences via contract DE-AC02-76SF00515, and the Simons, Templeton, and Alfred P. Sloan Foundations.

  19. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  20. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zolot'ko, A. S.; Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-01

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  1. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    SciTech Connect

    Zolot’ko, A. S. Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-15

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  2. Transient liquid-phase bonding of ODS steels

    NASA Astrophysics Data System (ADS)

    Noto, H.; Ukai, S.; Hayashi, S.

    2011-10-01

    The use of transient liquid-phase bonding of 9CrODS steels using Fe-3B-2Si-0.5C filler was investigated for bonding temperature of 1180 °C and hold times of 0.5-4.0 h. The sequential process, consisting of isothermal melting, solidification and homogenization, was confirmed for bonding the 9CrODS steel. The precipitation of chromium boride found in 19CrODS steel is avoided in 9CrODS steel due to the lower Cr content. Silicon tends to be slightly enriched inside the bonding zone. Agglomeration and coarsening of Y 2O 3 particles in 9CrODS steel lead to softening inside the bonding zone formed by incipient melting of the foil bonding alloy, and in a diffusion affected zone (DAZ) adjacent to the bonding zone.

  3. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    SciTech Connect

    Shen, H.C. ); Weng, H.S. )

    1990-05-01

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reaction rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.

  4. Fluoride waveguide lasers grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Starecki, Florent; Bolaños, Western; Brasse, Gurvan; Benayad, Abdelmjid; Doualan, Jean-Louis; Braud, Alain; Moncorgé, Richard; Camy, Patrice

    2013-03-01

    High optical quality rare-earth-doped LiYF4 (YLF) epitaxial layers were grown on pure YLF substrates by liquid phase epitaxy (LPE). Thulium, praseodymium and ytterbium YLF crystalline waveguides co-doped with gadolinium and/or lutetium were obtained. Spectroscopic and optical characterization of these rare-earth doped waveguides are reported. Internal propagation losses as low as 0.11 dB/cm were measured on the Tm:YLF waveguide and the overall spectroscopic characteristics of the epitaxial layers were found to be comparable to bulk crystals. Laser operation was achieved at 1.87 μm in the Tm3+ doped YLF planar waveguide with a very good efficiency of 76% with respect to the pump power. Lasing was also demonstrated in a Pr3+ doped YLF waveguide in the red and orange regions and in a Yb3+:YLF planar waveguide at 1020 nm and 994 nm.

  5. Few-Layer Antimonene by Liquid-Phase Exfoliation.

    PubMed

    Gibaja, Carlos; Rodriguez-San-Miguel, David; Ares, Pablo; Gómez-Herrero, Julio; Varela, Maria; Gillen, Roland; Maultzsch, Janina; Hauke, Frank; Hirsch, Andreas; Abellán, Gonzalo; Zamora, Félix

    2016-11-07

    We report on a fast and simple method to produce highly stable isopropanol/water (4:1) suspensions of few-layer antimonene by liquid-phase exfoliation of antimony crystals in a process that is assisted by sonication but does not require the addition of any surfactant. This straightforward method generates dispersions of few-layer antimonene suitable for on-surface isolation. Analysis by atomic force microscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy confirmed the formation of high-quality few-layer antimonene nanosheets with large lateral dimensions. These nanolayers are extremely stable under ambient conditions. Their Raman signals are strongly thickness-dependent, which was rationalized by means of density functional theory calculations. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems.

    PubMed

    Comert, Fatih; Dubin, Paul L

    2017-01-01

    The coacervation of systems containing colloids (e.g. proteins or micelles) and polyelectrolytes (notably ionic polysaccharides) is often accompanied by precipitation. This can introduce inhomogeneity, irreversibility and irreproducible kinetics in applications in food science and bioengineering, with negative impact on texture and stability of food products, and unpredictable delivery of active "payloads." The relationship between coacervation and precipitation is obscure in that coacervates might be intermediates in the formation of precipitates, or else the two phenomena might proceed by different but possibly simultaneous mechanisms. This review will summarize the recent literature on coacervation/precipitation in protein-polyelectrolyte systems for which reports are most abundant, particularly in the context of food science. We present current findings and opinions about the relationship between the two types of phase separation. Results vary considerably depending not only on the protein-polyelectrolyte pairs chosen, but also on conditions including macromolecular concentrations and ionic strength. Nevertheless, we offer some general approaches that could explain a variety of observations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dynamic single-interface hollow fiber liquid phase microextraction of Cr(VI) using ionic liquid containing supported liquid membrane.

    PubMed

    Pimparu, Rungaroon; Nitiyanontakit, Sira; Miró, Manuel; Varanusupakul, Pakorn

    2016-12-01

    The concept of dynamic single-interface hollow fiber membrane liquid-phase microextraction (HF-LPME), where the target analyte was extracted on-line and eluted inside the lumen of the HF membrane, was explored. An ionic liquid containing supported liquid membrane was used for the trace determination of Cr(VI) as a model compound. Since the extraction took place on-line inside the hollow fiber membrane, the mass transfer behavior was described and discussed in comparison with the conventional HF-LPME. The extraction efficiency was improved by a recirculation configuration of the sample solution at relatively high sampling flow rates as a result of the increased effective contact area. The positive pressure observed to be built up during extraction was overcome by a flow-balancing pressure design. The dynamic single-interface HF-LPME method with an enrichment factor of 41, a detection limit of 1.2µgL(-1) and determination limit of 4.0µgL(-1) was successfully applied to the reliable determination of Cr(VI) from environmental water samples. The quantification limit is below the maximum contaminant level in drinking water, set at 10µgL(-1) of hexavalent chromium by the California Environmental Protection Agency.

  8. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  9. Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.

    PubMed

    Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T

    2017-08-16

    We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO2 and CS2 in all leached samples. Our results suggested that the CS2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.

  10. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    PubMed Central

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  11. Hydrophobic polymer monoliths as novel phase separators: application in continuous liquid-liquid extraction systems.

    PubMed

    Peroni, Daniela; Vanhoutte, Dominique; Vilaplana, Francisco; Schoenmakers, Peter; de Koning, Sjaak; Janssen, Hans-Gerd

    2012-03-30

    Hydrophobic macroporous polymer monoliths are shown to be interesting materials for the construction of "selective solvent gates". With the appropriate surface chemistry and porous properties the monoliths can be made permeable only for apolar organic solvents and not for water. Different poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA-EDMA) and poly(styrene-co-divinylbenzene) (PS-DVB) monoliths prepared with tailored chemistries and porosities were evaluated for this purpose. After extensive characterization, the PS-DVB monoliths were selected due to their higher hydrophobicity and their more suitable flow characteristics. BMA-EDMA monoliths are preferred for mid-polarity solvents such as ethyl acetate, for which they provide efficient separation from water. Breakthrough experiments confirmed that the pressures necessary to generate flow of organic solvents through PS-DVB monoliths were substantially lower than for water. A phase separator was constructed using the monoliths as the flow selector. This device was successfully coupled on-line with a chip-based continuous liquid-liquid-extraction (LLE) system with segmented flow. Efficient separation of different solvents was obtained across a wide range of flow rates (0.5-4.0 mL min(-1)) and aqueous-to-organic flow ratios (β=1-10). Good robustness and long life-time were also confirmed. The suitability of the device to perform simple, cheap, and reliable phase separation in a continuous LLE system prior to gas-chromatographic analysis was proven for some selected real-life applications.

  12. Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures

    NASA Astrophysics Data System (ADS)

    Balázsi, Gábor; Cornell-Bell, Ann H.; Moss, Frank

    2003-06-01

    Stochastic synchronization analysis is applied to intracellular calcium oscillations in astrocyte cultures prepared from epileptic human temporal lobe. The same methods are applied to astrocyte cultures prepared from normal rat hippocampus. Our results indicate that phase-repulsive coupling in epileptic human astrocyte cultures is stronger, leading to an increased synchronization in epileptic human compared to normal rat astrocyte cultures.

  13. Onset of Convection in Two Liquid Layers with Phase Change

    SciTech Connect

    McFadden, G B; Coriell, S R; Gurski, K F; Cotrell, D L

    2006-09-14

    We perform linear stability calculations for horizontal fluid bilayers that can undergo a phase transformation, taking into account both buoyancy effects and thermocapillary effects in the presence of a vertical temperature gradient. We compare the familiar case of the stability of two immiscible fluids in a bilayer geometry with the less-studied case that the two fluids represent different phases of a single-component material, e.g., the water-steam system. The two cases differ in their interfacial boundary conditions: the condition that the interface is a material surface is replaced by the continuity of mass flux across the interface, together with an assumption of thermodynamic equilibrium that in the linearized equations represents the Clausius-Clapeyron relation relating the interfacial temperature and pressures. For the two-phase case, we find that the entropy difference between the phases plays a crucial role in determining the stability of the system. For small values of the entropy difference between the phases, the two-phase system can be linearly unstable to either heating from above or below. The instability is due to the Marangoni effect in combination with the effects of buoyancy (for heating from below). For larger values of the entropy difference the two-phase system is unstable only for heating from below, and the Marangoni effect is masked by effects of the entropy difference. To help understand the mechanisms driving the instability on heating from below we have performed both long-wavelength and short-wavelength analyses of the two-phase system. The short-wavelength analysis shows that the instability is driven by a coupling between the flow normal to the interface and the latent heat generation at the interface. The mechanism for the large wavelength instability is more complicated, and the detailed form of the expansion is found to depend on the Crispation and Bond numbers as well as the entropy difference. The two-phase system allows a

  14. Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid-liquid phase separation.

    PubMed

    Nakano, Koji; Fujie, Ryuhei; Shintani, Ryo; Nozaki, Kyoko

    2013-10-18

    A simple and efficient catalyst removal system has been developed in the cobalt-salen-catalyzed copolymerization of propylene oxide with carbon dioxide. The present system requires no prior modification of the catalyst, and the removal is achieved by simple addition of myristic acid, followed by organic liquid-liquid phase separation.

  15. Low Density Phases in a Uniformly Charged Liquid

    NASA Astrophysics Data System (ADS)

    Knüpfer, Hans; Muratov, Cyrill B.; Novaga, Matteo

    2016-07-01

    This paper is concerned with the macroscopic behavior of global energy minimizers in the three-dimensional sharp interface unscreened Ohta-Kawasaki model of diblock copolymer melts. This model is also referred to as the nuclear liquid drop model in the studies of the structure of highly compressed nuclear matter found in the crust of neutron stars, and, more broadly, is a paradigm for energy-driven pattern forming systems in which spatial order arises as a result of the competition of short-range attractive and long-range repulsive forces. Here we investigate the large volume behavior of minimizers in the low volume fraction regime, in which one expects the formation of a periodic lattice of small droplets of the minority phase in a sea of the majority phase. Under periodic boundary conditions, we prove that the considered energy {Γ}-converges to an energy functional of the limit "homogenized" measure associated with the minority phase consisting of a local linear term and a non-local quadratic term mediated by the Coulomb kernel. As a consequence, asymptotically the mass of the minority phase in a minimizer spreads uniformly across the domain. Similarly, the energy spreads uniformly across the domain as well, with the limit energy density minimizing the energy of a single droplet per unit volume. Finally, we prove that in the macroscopic limit the connected components of the minimizers have volumes and diameters that are bounded above and below by universal constants, and that most of them converge to the minimizers of the energy divided by volume for the whole space problem.

  16. Silica hydride based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development.

    PubMed

    Appulage, Dananjaya K; Schug, Kevin A

    2017-07-21

    Silica hydride, or Type C silica, has been developed as an alternative chromatographic support material for liquid chromatography. There are various bonded phases available with this new support. For four such phases (Cholesterol, Bidentate C18, Diamond Hydride, and Diol), retention and selectivity behavior were investigated using liquid chromatography coupled with triple quadrupole mass spectrometry. A set of small molecules from several chemical classes of interest, and varying in their physicochemical properties, were chromatographed under both reversed-phase and aqueous normal phase modes. To screen the columns, column switching was performed using an automated platform controlled by associated software and an additional valve. A typical scouting gradient was implemented. The separation conditions were not further optimized since the goal was simply to evaluate the variable retention behavior of the phases and selectivity under generic conditions. Further, retention of the analytes were evaluated under isocratic conditions with varying percentages of organic phase to visualize the potential for dual retention modes on the same column for certain analytes. Four analytes (fentanyl, hydrocodone, hydromorphone, and matrine) showed dual mode retention behavior with all four phases. Especially, fentanyl exhibited dramatic "U-shaped" retention profiles on Cholesterol and Bidentate C18 phases. Overall, changes in the retention order between reversed phase and aqueous normal phases emphasized the potential for altered selectivity. Results showed that the Cholesterol phase provided the highest retention for most analytes compared to the other phases. The more polar Diol phase still provided good retention in reversed phase mode. Retention and selectivity were all highly reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  18. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective.

  19. Preparation and Characterization of Low Molecular Weight Heparin by Liquid Phase Plasma Method.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Kim, Byung Hoon; Park, Young-Kwon; Lee, Heon; Park, Sung Hoon; Jung, Sang-Chul

    2015-08-01

    An liquid phase plasma process system was applied to the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing liquid phase plasma treatment time. The abscission of the chemical bonds between the constituents of heparin by liquid phase plasma reaction did not alter the characteristics of heparin. Formation of any by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the liquid phase plasma reaction.

  20. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    PubMed Central

    Popa-Nita, Vlad; Gerlič, Ivan; Kralj, Samo

    2009-01-01

    We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described. PMID:19865529

  1. The study of diffractive lenses displayed in a phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Si-jin; Panezai, Spozmai; Wang, Da-yong; Wang, Yun-xin; Rong, Lu

    2013-08-01

    Phase-only spatial light modulator (SLM) based on liquid crystal on silicon (LCOS) is a kind of device based on electrically controlled birefringence effect to realize phase modulation. Due to its low cost, programmable, high resolution, fast response time, LCOS has been widely used in multi-channel imaging, adaptive optics, diffraction optical elements (DOEs), dynamic holographic, optical tweezers and other fields. It is necessary to numerically evaluate the modulation characterization of LCOS before application. Firstly, the phase modulation characterization of the LCOS (PLUTO HED6010XXX by Holoeye Company) was measured based on the Twyman-Green interferometer, and the curves of both phase shift and normalized intensity as grey level functions were obtained. Experimental results indicated that phase modulation of the LCOS could be achieved to 3.99π, and the root-mean-square value (RMS) of normalized intensity was less than 0.01, which demonstrated that LCOS could be regarded as a phase-only modulation device. This method is also suitable for the evaluation of modulation characterization of other LCOS devices. Secondly, a phase pattern of thin lens written onto LCOS was demonstrated. Because of the pixel structure of LCOS, the theory of discretization of lenses was studied. Both simulation and experimental results were obtained. The experimental results proved that the convergence character of the lens written onto LCOS was similar to optical lenses. In the experiment, the measured focal length was in a good agreement to the theoretical deduction, and the relative error (RE) of which was below 1%. Both simulation and experimental results showed that LCOS could be used as lens to converge the plane wave, and replace the optical lens successfully.

  2. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles.

    PubMed

    Uversky, Vladimir N

    2017-01-01

    It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Graphene via sonication assisted liquid-phase exfoliation.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2014-01-07

    Graphene, the 2D form of carbon based material existing as a single layer of atoms arranged in a honeycomb lattice, has set the science and technology sectors alight with interest in the last decade in view of its astounding electrical and thermal properties, combined with its mechanical stiffness, strength and elasticity. Two distinct strategies have been undertaken for graphene production, i.e. the bottom-up and the top-down. The former relies on the generation of graphene from suitably designed molecular building blocks undergoing chemical reaction to form covalently linked 2D networks. The latter occurs via exfoliation of graphite into graphene. Bottom-up techniques, based on the organic syntheses starting from small molecular modules, when performed in liquid media, are both size limited, because macromolecules become more and more insoluble with increasing size, and suffer from the occurrence of side reactions with increasing molecular weight. Because of these reasons such a synthesis has been performed more and more on a solid (ideally catalytically active) surface. Substrate-based growth of single layers can be done also by chemical vapor deposition (CVD) or via reduction of silicon carbide, which unfortunately relies on the ability to follow a narrow thermodynamic path. Top-down approaches can be accomplished under different environmental conditions. Alongside the mechanical cleavage based on the scotch tape approach, liquid-phase exfoliation (LPE) methods are becoming more and more interesting because they are extremely versatile, potentially up-scalable, and can be used to deposit graphene in a variety of environments and on different substrates not available using mechanical cleavage or growth methods. Interestingly, LPE can be applied to produce different layered systems exhibiting different compositions such as BN, MoS2, WS2, NbSe2, and TaS2, thereby enabling the tuning of numerous physico-chemical properties of the material. Furthermore, LPE can be

  4. The viscosity and the thermal conductivity of normal liquid Helium 3 in the LOCV frame-work

    NASA Astrophysics Data System (ADS)

    Modarres, M.; Rahmat, M.

    2017-01-01

    The lowest order constrained variational (LOCV) method is used to evaluate the transport properties of normal liquid Helium-3 (3 He) within the Landau-Abrikosov-Khalatnikov (LAK) formalism. The LOCV effective two-body interaction of the liquid Helium 3 is used to calculate the differential cross-section and the scattering probability, which is needed to solve the LAK equations. It is shown that, the choice of effective mass has crucial role on the resulting viscosity and thermal conductivity of normal liquid 3 He. Our LOCV-LAK calculations are compared with the other theoretical and experimental results.

  5. Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity

    NASA Astrophysics Data System (ADS)

    Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

    2012-04-01

    In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O

  6. Hidden Fermi liquid: Self-consistent theory for the normal state of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Casey, Philip A.

    The anomalous "strange metal" properties of the normal, non-superconducting state of the high-Tc cuprate superconductors have been extensively studied for over two decades. The resistivity is robustly T-linear at high temperatures, while at low T it appears to maintain linearity near optimal doping and is T2 at higher doping. The inverse Hall angle is strictly T2 and hence has a distinct scattering lifetime from the resistivity. The transport scattering lifetime is highly anisotropic as directly measured by angle-dependent magnetoresistance (ADMR) and indirectly in more traditional transport experiments. The IR conductivity exhibits a non-integer power-law in frequency, which we take as a defining characteristic of the "strange metal". A phenomenological theory of the transport and spectroscopic properties at a self-consistent and predictive level has been much sought after, yet elusive. Hidden Fermi liquid theory (HFL) explicitly accounts for the effects of Gutzwiller projection in the t-J Hamiltonian, widely believed to contain the essential physics of the high-Tc superconductors. We show this theory to be the first self-consistent description for the normal state of the cuprates based on transparent, fundamental assumptions. Our well-defined formalism also serves as a guide for further experimental confirmation. Chapter 1 reviews the "strange metal" properties and the relevant aspects of competing models. Chapter 2 presents the theoretical foundations of the formalism. Chapters 3 and 4 derive expressions for the entire normal state relating many of the properties, for example: angle-resolved photoemission, IR conductivity, resistivity, Hall angle, and by generalizing the formalism to include the Fermi surface topology---ADMR. Self-consistency is demonstrated with experimental comparisons, including the most recent laser-ARPES and ADMR. Chapter 5 discusses entropy transport, as in the thermal conductivity, thermal Hall conductivity, and consequent metrics of non

  7. Tertiary phase diagram of cellulose, ionic liquid and organic solvent

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Henderson, Doug; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert M.; Wang, Howard

    Cellulose is the most abundant natural polymer on earth, and widely used in products from clothing to paper. Fundamental understanding of molecular solutions of cellulose is the key to realize advanced technologies beyond cellulose fibers. It has been reported that certain ionic liquid/organic solvent mixtures dissolve cellulose. In this study, the tertiary phase diagram of microcrystalline cellulose, 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and dimethylformamide (DMF) mixtures has been determined using optical cloud point method and small angle neutron scattering (SANS). Data indicate that a molar ratio of EMIMAc to cellulose repeating unit equal or greater than 3 is necessary but not sufficient in forming one-phase homogeneous solutions. A miscibility gap exists in the dilute regime, where a minimum of 5 mol% of EMIM Ac in DMF is needed to form homogenous solutions. SANS show that cellulose chains adopt Gaussian-like conformation in homogenous solutions. The solutions exhibit the characteristics of upper critical solution temperature. Clustering of cellulose chains occurs at low EMIMAc/DMF or EMIMAc/cellulose ratio, or at low temperatures. The mechanism of cellulose dissolution in tertiary mixture is discussed.

  8. Liquid-phase synthesis of cobalt oxide nanoparticles.

    PubMed

    Sinkó, Katalin; Szabó, Géza; Zrínyi, Miklós

    2011-05-01

    Various liquid-phase syntheses of CoO and Co3O4 nanoparticles have been studied. The experiments focus on two synthesis routes: the coprecipitation and the sol-gel methods combined with thermal decomposition. The effect of synthesis route, the type of precursors (cobalt nitrate/chloride) and precipitation agent (carbonate, hydroxide, oxalic acid, and ammonia), the chemical compositions, pH, application of surfactants (PDMS, Triton X-100, NaDS, NaDBS, TTAB, ethyl acetate, citric acid), and the heat treatments on the properties of particles were investigated. The particle size and distribution have been determined by dynamic light scattering (DLS). The phases and the morphology of products have been analysed by XRD and SEM. The coprecipitation technique is less able to shape the particles than sol-gel technique. PDMS can be applied efficiently as surfactant in preparation methods. The finest particles (around 85 nm) with narrow polydispersity (70-100 nm) and spherical shape could be achieved by using sol-gel technique in medium of 1-propanol and ethyl acetate.

  9. Liquid-phase syntheses of cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sinkó, Katalin; Manek, Enikő; Meiszterics, Anikó; Havancsák, Károly; Vainio, Ulla; Peterlik, Herwig

    2012-06-01

    The aim of the present study was to synthesize cobalt-ferrite (CoFe2O4) nanoparticles using various liquid phase methods; sol-gel route, co-precipitation process, and microemulsion technique. The effects of experimental parameters on the particle size, size distribution, morphology, and chemical composition have been studied. The anions of precursors (chloride and nitrate), the solvents (water, n-propanol, ethanol, and benzyl alcohol), the precipitating agent (ammonia, sodium carbonate, and oxalic acid), the surfactants (polydimethylsiloxane, ethyl acetate, citric acid, cethyltrimethylammonium bromide, and sodium dodecil sulfate), their concentrations, and heat treatments were varied in the experiments. The smallest particles (around 40 nm) with narrow polydispersity and spherical shape could be achieved by a simple, fast sol-gel technique in the medium of propanol and ethyl acetate. The size characterization methods have also been investigated. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and scanning electron microscopy (SEM) provide the comparison of methods. The SAXS data correspond with the sizes detected by SEM and differ from DLS data. The crystalline phases, morphology, and chemical composition of the particles with different shapes have been analyzed by X-ray diffraction, SEM, and energy dispersive X-ray spectrometer.

  10. An overview of multidimensional liquid phase separations in food analysis.

    PubMed

    Franco, Maraíssa Silva; Padovan, Rodrigo Nogueira; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2016-07-01

    Food safety is a priority public health concern that demands analytical methods capable to detect low concentration level of contaminants (e.g. pesticides and antibiotics) in different food matrices. Due to the high complexity of these matrices, a sample preparation step is in most cases mandatory to achieve satisfactory results being usually tedious, lengthy, and prone to the introduction of errors. For this reason, many research groups have focused efforts on the development of online systems capable to do the cleanup, concentration, and separation steps at once through multidimensional separation techniques (MDS). Among several possible setups, the most popular are the multidimensional chromatographic techniques (MDC) that consist in combining more than one mobile and/or stationary phase to provide a satisfactory separation. In the present review, we selected a variety of multidimensional separation systems used for food contaminant analysis in order to discuss the instrumentation aspects, the concept of orthogonality, column approaches used in these systems, and new materials that can be used in these columns. Selected classes of contaminants present in food matrices are introduced and discussed as example of the potential applications of multidimensional liquid phase separation techniques in food safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  12. Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films

    SciTech Connect

    Deki, Shigehito; Beleke, Alexis Bienvenu; Kotani, Yuki; Mizuhata, Minoru

    2009-09-15

    Hexagonal molybdenum trioxide thin films with good crystallinity and high purity have been fabricated by the liquid phase deposition (LPD) technique using molybdic acid (H{sub 2}MoO{sub 4}) dissolved in 2.82% hydrofluoric acid (HF) and H{sub 3}BO{sub 3} as precursors. The crystal was found to belong to a hexagonal hydrate system MoO{sub 3}.nH{sub 2}O (napprox0.56). The unit cell lattice parameters are a=10.651 A, c=3.725 A and V=365.997 A{sup 3}. Scanning electron microscope (SEM) images of the as-deposited samples showed well-shaped hexagonal rods nuclei that grew and where the amount increased with increase in reaction time. X-ray photon electron spectroscopy (XPS) spectra showed a Gaussian shape of the doublet of Mo 3d core level, indicating the presence of Mo{sup 6+} oxidation state in the deposited films. The deposited films exhibited an electrochromic behavior by lithium intercalation and deintercalation, which resulted in coloration and bleaching of the film. Upon dehydration at about 450 deg. C, the hexagonal MoO{sub 3}.nH{sub 2}O was transformed into the thermodynamically stable orthorhombic phase. - Abstract: SEM photograph of typical h-MoO{sub 3}.nH{sub 2}O thin film nuclei obtained after 36 h at 40 deg. C by the LPD method. Display Omitted

  13. Impedance Spectroscopy of Liquid-Phase Sintered Silicon Carbide

    SciTech Connect

    McLachlan, D.S.; Sauti, G.; Vorster, A.; Hermann, M.

    2004-02-26

    Liquid-Phase Sintered Silicon Carbide (LPSSiC) materials were produced with different Y2O3: Al2O3 and Y2O3: SiO2 sintering additive ratios. Densification was achieved by hot pressing (HP). The ratio of the polytypes and the amount and crystalline composition of the grain boundary phases was determined using Rietveld analysis. Microstructures of the materials were related to the mechanical properties (hardness, fracture toughness and strength), which are not presented. The impedance Spectroscopy measurements were made at temperatures between 100 deg. C and 400 deg. C and analyzed using Effective Media Theories and the Brick Layer Model. In some cases, in order to correctly fit the results, it was necessary to use or model the frequency dependence of the conductivity or dielectric constant of the SiC grains using various theoretical models. The impedance arcs for the SiC grains in the different samples varied widely, probably more due to the 'semiconductor' doping of the grains or nonstoichiometry, than the SiC polytypes in the grains. The SiC grains all showed an Arrhenius behavior with energy gaps in the range 0.3 to 0.5eV.

  14. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    PubMed

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M

    2015-02-09

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  15. Design of single phase liquid argon detectors for dark matter searches

    NASA Astrophysics Data System (ADS)

    Gastler, Daniel E.

    2012-05-01

    Within our current understanding of the makeup of the universe, dark matter makes up 25% of the total energy and over 80% of the matter in the universe. Little is known about the makeup of dark matter, but its existence has been indirectly measured using the rotation curves of galaxies, clusters of galaxies, and the Cosmic Microwave Background. To gain a greater understanding of this component of the universe, direct detection of dark matter is a major objective in particle astrophysics. One popular candidate for dark matter is the weakly interacting massive particle, or WIMP. The allowed rate of interaction between a WIMP and normal matter is extremely low, requiring new detection technologies with greater sensitivity to be explored. Though several experiments have already been conducted, no direct detection experiment has unambiguously identified a dark matter signal. This work explores the use of noble liquids, in a single liquid phase design, to detect single scatters of dark matter particles. The goal of current experiments is to investigate matter-dark-matter interaction cross-sections down to 10--45cm2. With that in mind, the MiniCLEAN detector has been designed with a 500 kg liquid argon detector volume and will be viewed by a spherical 4pi configuration of 92 photo-multiplier tubes. In order to determine the ability for single phase noble liquid to detect nuclear recoils from dark matter, several R&D experiments have been performed. These experiments undertook the measurement of how dark-matter-like nuclear recoils and background-like electronic recoils behave in liquid argon. In addition to reviewing the measurements of pulse shape discrimination and other noble liquid properties, my measurement of the scintillation efficiency is described. The scintillation efficiency characterizes the differing energy responses for nuclear and electron recoils. This was the first measurement of the scintillation efficiency in liquid argon for nuclear recoils over a wide

  16. Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator.

    PubMed

    Joo, Kyung-Il; Park, Chang-Sub; Park, Min-Kyu; Park, Kyung-Woo; Park, Ji-Sub; Seo, Youngmin; Hahn, Joonku; Kim, Hak-Rin

    2012-05-10

    Optical profilometry is widely applied for measuring the morphology of objects by projecting predetermined patterns on them. In this technique, the compact size is one of the interesting issues for practical applications. The generation of pattern by the interference of coherent light sources has a potential to reduce the dimension of the illumination part. Moreover, this method can make fine patterns without projection optics, and the illumination part is free of restriction from the numerical aperture of the projection optics. In this paper, a phase-shifting profilometry is implemented by using a single liquid crystal (LC) cell. The LC phase modulator is designed to generate the interference patterns with several different spatial frequencies by changing selection of the spacing between the micro-pinholes. We manufactured the LC phase modulator and calibrated it by measuring the phase modulation amount depending on an applied voltage. Our optical profilometry using the single LC cell can generate multi-spatial frequency patterns as well as four steps of the phase-shifted patterns. This method can be implemented compactly, and the reconstructed depth profile is obtained without a phase-unwrapping algorithm.

  17. Ionic liquid expedites partition of curcumin into solid gel phase but discourages partition into liquid crystalline phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes.

    PubMed

    El Khoury, Elsy D; Patra, Digambara

    2013-08-22

    The hydrolysis of curcumin in alkaline and neutral buffer conditions is of interest because of the therapeutic applicability of curcumin. We show that hydrolysis of curcumin can be remarkably suppressed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes. The fluorescence of curcumin sensitively detects the phase transition temperature of liposomes. However, at greater concentrations, curcumin affects the phase transition temperature, encouraging fusion of two membrane phases. The interaction of curcumin with DMPC is found to be strong, with a partition coefficient value of Kp = 2.78 × 10(5) in the solid gel phase, which dramatically increases in the liquid crystalline phase to Kp = 1.15 × 10(6). The importance of ionic liquids as green solvents has drawn interest because of their toxicological effect on human health; however, the impact of ionic liquids (ILs) on liposomes is not yet understood. The present study establishes that ILs such as 1-methyl-3-octylimidazolium chloride (moic) affect the permeability and fluidity of liposomes and thus influence parition of curcumin into DMPC liposomes, helping in the solid gel phase but diminishing in the liquid crystalline phase. The Kp value of curcumin does not change appreciably with moic concentration in the solid gel state but decreases with moic concentration in the liquid crystalline phase. Curcumin, a rotor sensitive to detect phase transition temperature, is applied to investigate the influence of ionic liquids such as 1-methyl-3-octylimidazolium chloride, 1-buytl-3-methyl imadazolium tetrafluoroborate, and 1-benzyl-3-methyl imidazolium tetrafluoroborate on DMPC liposome properties. 1-Methyl-3-octylimidazolium chloride lowers the phase transition temperature, but 1-buytl-3-methyl imidazolium tetrafluoroborate and 1-benzyl-3-methyl imidazolium tetrafluoroborate do not perceptibly modify the phase transition temperature; rather, they broaden the phase transition.

  18. Theory of a Fermi-liquid to non-Fermi-liquid quantum phase transition in dimensions d>1.

    PubMed

    Kirkpatrick, T R; Belitz, D

    2012-02-24

    We develop a theory for a generic instability of a Fermi liquid in dimension d>1 against the formation of a Luttinger-liquid-like state. The density of states at the Fermi level is the order parameter for the ensuing quantum phase transition, which is driven by the effective interaction strength. A scaling theory in conjunction with an effective field theory for clean electrons is used to obtain the critical behavior of observables. In the Fermi-liquid phase the order-parameter susceptibility, which is measurable by tunneling, is predicted to diverge for 1

  19. Free volume and phase transitions of 1-butyl-3-methylimidazolium based ionic liquids from positron lifetime spectroscopy.

    PubMed

    Yu, Yang; Beichel, Witali; Dlubek, Günter; Krause-Rehberg, Reinhard; Paluch, Marian; Pionteck, Jürgen; Pfefferkorn, Dirk; Bulut, Safak; Friedrich, Christian; Pogodina, Natalia; Krossing, Ingo

    2012-05-21

    Positron annihilation lifetime spectroscopy (PALS) was used to study a series of ionic liquids (ILs) with the 1-butyl-3-methylimidazolium cation ([C4MIM](+)) but different anions [Cl](-), [BF4](-), [PF6](-), [OTf](-), [NTf2](-), and [B(hfip)4](-) with increasing anion volumes. Changes of the ortho-positronium (o-Ps) lifetime parameters with temperature were observed for crystalline and amorphous (glass, supercooled, and normal liquid) states. Evidence for distinct phase transitions, e.g. melting, crystallization and solid-solid transitions, was observed in several PALS experiments. The o-Ps mean lifetime τ3 showed smaller values in the crystalline phase due to dense packing of the material compared to the amorphous phase. The o-Ps lifetime intensity I3 in the liquid state is clearly smaller than in the crystallized state. This behaviour can be attributed to a solvation of e(+) by the anions, which reduces the Ps formation probability in the normal and supercooled liquid. These phenomena were observed for the first time when applying the PALS technique to ionic liquids by us in one preliminary and in this work. Four of the ionic liquids investigated in this work ([BF4](-), [NTf2](-), [PF6](-) and [Cl](-) ILs) exhibit supercooled phases. The specific hole densities and occupied volumes of those ILs were obtained by comparing the local free volume with the specific volume from pressure-volume-temperature (PVT) experiments. From the o-Ps lifetime, the mean size vh of free volume holes of the four samples was calculated and compared with that calculated according to Fürth's hole theory. The hole volumes from both methods agree well. From the Cohen-Turnbull fitting of viscosity and conductivity against PALS/PVT results, the influence of the free volume on molecular transport properties was investigated.

  20. Ion-transfer- and photo-electrochemistry at liquid|liquid|solid electrode triple phase boundary junctions: perspectives.

    PubMed

    Marken, Frank; Watkins, John D; Collins, Andrew M

    2011-06-07

    Ion transfer at liquid|liquid junctions is one of the most fundamental processes in nature. It occurs coupled to simultaneous electron transfer at the line junction (or triple phase boundary) formed by the two liquids in contact to an electrode surface. The triple phase boundary can be assembled from a redox active microdroplet deposit of a water-immiscible liquid on a suitable electrode surface immersed into aqueous electrolyte. Ion transfer voltammetry measurements at this type of electrode allow both thermodynamic and kinetic parameters for coupled ion and electron transfer processes to be obtained. This overview summarises some recent advances in understanding and application of triple phase boundary redox processes at organic liquid|aqueous electrolyte|working electrode junctions. The design of novel types of electrodes is considered based on (i) extended triple phase boundaries, (ii) porous membrane processes, (iii) hydrodynamic effects, and (iv) generator-collector triple phase boundary systems. Novel facilitated ion transfer processes and photo-electrochemical processes at triple phase boundary electrodes are proposed. Potential future applications of triple phase boundary redox systems in electrosynthesis, sensing, and light energy harvesting are indicated.

  1. Two-Phase Model of Liquid-Liquid Interactions With Interface Capturing: Application to Water Assisted Injection Molding

    NASA Astrophysics Data System (ADS)

    Silva, Luisa; Lanrivain, Rodolphe; Zerguine, Walid; Rodriguez-Villa, Andrès; Coupez, Thierry

    2007-05-01

    In this paper, a two phase model to compute liquid-liquid flows is presented. We consider that one phase is a highly viscous thermodependent liquid (polymer phase), whereas the second one is a low viscosity low temperature fluid (water). The first part of this paper concerns capture of the interface between the water and the polymer (or determination of the phase field function). Classical VOF and Level set techniques have been implemented and were ameliorated using mesh adaptation techniques. To accurately determine the velocity field, a two-phase formulation is considered, based in the theory of mixtures, and we introduce a scalar parameter, the phase fraction quantifying the presence of each phase in each point of the computational domain. A friction type coupling between both phases is retained. Using the mixed finite element method within an eulerian framework, we calculate in a single system the whole kinematic variables for both liquids (velocity and pressure of each phase). Results are shown, for 2D and 3D parts.

  2. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples.

  3. Magnetic field effects on liquid-phase reactive sintering of MnBi

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Abematsu, Ken-ichi; Umetsu, Rie Y.; Takahashi, Kohki; Koyama, Keiichi

    2016-02-01

    Magnetic fields effects on liquid-phase reaction sintering on MnBi were investigated. The liquid-phase reaction was so fast even in a zero field that the fraction of in-field sintered ferromagnetic MnBi phase was independent of the external magnetic field. However, the ferromagnetic MnBi crystals in the in-field sintered sample were oriented along the external magnetic field direction. The Lotgering factor of the in-field sintered sample was 0.99. This result indicated that almost completely anisotropic MnBi phase could be obtained by in-field liquid phase reactive sintering.

  4. Blue phase liquid crystal: strategies for phase stabilization and device development

    PubMed Central

    Rahman, M D Asiqur; Mohd Said, Suhana; Balamurugan, S

    2015-01-01

    The blue phase liquid crystal (BPLC) is a highly ordered liquid crystal (LC) phase found very close to the LC–isotropic transition. The BPLC has demonstrated potential in next-generation display and photonic technology due to its exceptional properties such as sub-millisecond response time and wide viewing angle. However, BPLC is stable in a very small temperature range (0.5–1 °C) and its driving voltage is very high (∼100 V). To overcome these challenges recent research has focused on solutions which incorporate polymers or nanoparticles into the blue phase to widen the temperature range from around few °C to potentially more than 60 °C. In order to reduce the driving voltage, strategies have been attempted by modifying the device structure by introducing protrusion or corrugated electrodes and vertical field switching mechanism has been proposed. In this paper the effectiveness of the proposed solution will be discussed, in order to assess the potential of BPLC in display technology and beyond. PMID:27877782

  5. Effect of liquid phase on coarsening behavior in porous single-phase and duplex microstructures

    NASA Astrophysics Data System (ADS)

    Alves, Fernando Jorge Lino

    1997-11-01

    A systematic investigation of the influence of different glass volume fractions (Vsb{f}) on the grain growth behavior of single-phase alumina (Alsb2Osb3), c-zirconia (c-ZrOsb2) and duplex Alsb2Osb3+50 vol.% c-ZrOsb2 (AZ50), has been conducted. Grain growth was studied for porous single-phase alumina and c-zirconia for one glass (anorthite) composition and different Vsb{f}. Grain growth on dense single-phase alumina and c-zirconia was also studied and compared with the results obtained for porous samples. It was observed that glass additions to porous (≈1 vol.% porosity) single-phase alumina or c-zirconia increase the grain growth rate constant (K) up to a critical Vsb{f}, above which further glass additions decrease K. This behavior is contrary to that of dense single-phase materials, for which K decreases continuously with Vsb{f}. This can be explained by the fact that very small amounts of glass can coat pore surfaces with a very thin (nanometer scale) liquid film, which promotes a faster diffusion path for atoms, thereby increasing K. However, as Vsb{f} increases, glass pockets are continuously enlarged, the diffusion distances across these pockets thus increase as well, and hence K starts to decrease. The grain growth rate equation for the final stage of sintering was adapted to describe the kinetic behavior observed in porous single-phase materials, for small amounts of glass. Special emphasis was given to the residual porosity, the microstructural features of alumina and c-zirconia grains, and to the grain growth controlling mechanism(s). Grain growth was studied for AZ50 for two glass compositions and different Vsb{f}. Unlike dense single-phase materials, glass additions to AZ50 were shown to promote grain growth. K increases continuously with Vsb{f} because the grain growth rate in duplex systems is controlled by long range diffusion which is enhanced by the presence of the liquid phase. As Vsb{f} increases, glass pockets are continuously enlarged and K

  6. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Wang, Zhe; Chen, Sow-Hsin

    2015-10-01

    The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the ( P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the "low-density liquid" (LDL) and "high-density liquid" (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature T W as the ( P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.

  7. Facile synthesis and properties of CdSe quantum dots in a novel two-phase liquid/liquid system

    NASA Astrophysics Data System (ADS)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Ke, Dandan; Zheng, Yue; Han, Shumin

    2017-10-01

    High-quantity CdSe QDs were synthesized in a novel two-phase liquid/liquid system. This system, ODE/water was stable and as-used solvents were almost nontoxic. The methodology leading to the successful synthesis of CdSe QDs was a typical, one-pot approach and the obtained CdSe QDs with zinc-blende phase structure exhibited excellent optical properties, narrow size distribution, higher particle uniformity and crystallinity. The mechanism of nucleation and growth of CdSe QDs were discussed by the possible thermodynamic equilibrium existing in ODE/water interface. This two-phase liquid/liquid system would broaden the synthesis of other semiconductor QDs.

  8. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  9. Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Labus, T. L.

    1977-01-01

    The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.

  10. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  11. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Astrophysics Data System (ADS)

    Bousman, W. Scott; McQuillen, John B.

    1994-08-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  12. Phase behavior of metastable liquid silicon at negative pressure: Ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Yan, J. L.; Ding, M. C.; Zhao, X. G.; Wang, H. Y.

    2016-04-01

    Extensive first-principle molecular dynamics simulations are performed to study the phase behavior of metastable liquid Si at negative pressure. Our results show that the high-density liquid (HDL) and HDL-vapor spinodals indeed form a continuous reentrant curve and the liquid-liquid critical point seems to just coincide with its minimum. The line of density maxima also has a strong tendency to pass through this minimum. The phase behaviour of metastable liquid Si therefore tends to be a critical-point-free scenario rather than a second-critical-point one based on SW potential.

  13. Microwave-immobilized polybutadiene stationary phase for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2004-03-19

    Polybutadiene (PBD) has been immobilized on high-performance liquid chromatography (HPLC) silica by microwave radiation at various power levels (52-663 W) and actuation times (3-60 min). Columns prepared from these reversed-phase HPLC materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (%C) and infrared spectroscopy. A microwave irradiation of 20 min at 663 W gives a layer of immobilized PBD that presented good performance. Longer irradiation times give thicker immobilized layers having less favorable chromatographic properties.

  14. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    NASA Astrophysics Data System (ADS)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  15. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    PubMed

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively.

  16. Water quantitatively induces the mucoadhesion of liquid crystalline phases of glyceryl monooleate.

    PubMed

    Lee, J; Young, S A; Kellaway, I W

    2001-05-01

    The possible role of water in the mucoadhesion phenomenon exhibited by the liquid crystalline phases of glyceryl monooleate was investigated using an in-vitro tensile strength technique. The mucoadhesion of the liquid crystalline phases of glyceryl monooleate was found to occur following uptake of water. The mucoadhesive force of the cubic phase was consistent since it is not capable of taking up additional water. An increase in pre-load period greatly facilitated the mucoadhesion of glyceryl monooleate (0% w/w initial water content), suggesting that the mucoadhesion is dependent upon the extent of the dehydration of the substrate. A good linear relationship between initial water content of the liquid crystalline phases and mucoadhesive force led to the conclusion that the mucoadhesive force increased with decreasing initial water concentration. Rheological properties of the liquid crystalline phases were also studied to allow a correlation between physical changes and mucoadhesion of the liquid crystalline phases, revealing that higher water concentrations in the liquid crystalline phases led to a more ordered structure that showed less mucoadhesion. The results of this study indicated that the mucoadhesive force of the liquid crystalline phases of glyceryl monooleate is determined by the capability to take up water from a water-rich environment. It may, therefore, be advantageous to use the lamellar phase as a buccal drug carrier as opposed to the relatively less mucoadhesive cubic phase.

  17. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  18. Liquid-vapor phase equilibrium in a tin-selenium system

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.

    2014-12-01

    Based on the pressure of the saturated vapor and components over liquid alloys in a tin-selenium system, determined using the boiling points approach (isothermal variant), its boiling point and corresponding vapor phase composition are calculated in the region of liquid solutions. The phase diagram is supple-mented with the liquid-vapor phase transition under atmospheric pressure and in vacuums of 100 and 10 Pa with the boundaries of the region in which the regions of liquid and vapor coexist being determined.

  19. Phase Transition and Dynamics in Imidazolium-Based Ionic Liquid Crystals through a Metastable Highly Ordered Smectic Phase.

    PubMed

    Nozaki, Yoko; Yamaguchi, Keito; Tomida, Kenji; Taniguchi, Natsumi; Hara, Hironori; Takikawa, Yoshinori; Sadakane, Koichiro; Nakamura, Kenji; Konishi, Takashi; Fukao, Koji

    2016-06-16

    The phase transition behavior and dynamics of ionic liquid crystals, 1-methyl-3-alkylimidazolium tetrafluoroborate with various alkyl chain lengths, were investigated by X-ray scattering, differential scanning calorimetry, optical microscopy, and dielectric relaxation spectroscopy to elucidate the mechanism of their structural and phase changes. A metastable phase was found to appear via a supercooled smectic phase on cooling. In the metastable phase, disorder in the smectic phase is partially frozen; thus, the phase has order higher than that of the smectic phase but lower than that of the crystalline phase. During the subsequent heating process, the frozen disorder activates, and a crystalline phase appears in the supercooled smectic phase before entering the smectic phase. The relationship between the phase behavior and the dynamics of charge carriers such as ions is also discussed.

  20. Simultaneous determination of drugs in human autopsy material using phase-optimized liquid chromatography.

    PubMed

    Oertel, R; Pietsch, J; Arenz, N; Zeitz, S G; Goltz, L; Kirch, W

    2012-12-01

    In legal medicine in many cases drugs are detected in autopsy material without connection to the cause of death, and until now no further investigations have taken place. In our study more than 50 drugs were measured directly in several compartments. The deceased had received continual therapeutic treatment, treatment during an operation or an unsuccessful emergency therapy. Liquid-liquid extraction and an LC-MS/MS method were developed for the determination of these drug concentrations. When measuring many transitions in a biological matrix, two problems should be excluded: ion suppression and too few measurement points per peak. A relatively short operation time and sufficient separation were achieved by column, eluent and gradient optimization with POPLC (phase-optimized liquid chromatography). Various autopsy materials from about 170 cases were investigated. In particular, in nine cases with four or more simultaneously determined drugs, their distribution in the compartments is very interesting for pharmacokinetic examinations. The distribution patterns of the drugs in the compartments of one individual deceased were compared. This meant that the great differences between subjects that are normally encountered these studies could be excluded. Measurements of drug concentrations in human autopsy material deepens knowledge of the respective drugs' pharmacokinetics. Copyright © 2012 John Wiley & Sons, Ltd.