Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C
2014-01-01
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.
Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.
2014-01-01
Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296
Intracranial hypertension: classification and patterns of evolution
Iencean, SM
2008-01-01
Intracranial hypertension (ICH) was systematized in four categories according to its aetiology and pathogenic mechanisms: parenchymatous ICH with an intrinsic cerebral cause; vascular ICH, which has its aetiology in disorders of cerebral blood circulation; ICH caused by disorders of cerebro–spinal fluid dynamics and idiopathic ICH. The increase of intracranial pressure is the first to happen and then intracranial hypertension develops from this initial effect becoming symptomatic; it then acquires its individuality, surpassing the initial disease. The intracranial hypertension syndrome corresponds to the stage at which the increased intracranial pressure can be compensated and the acute form of intracranial hypertension is equivalent to a decompensated ICH syndrome. The decompensation of intracranial hypertension is a condition of instability and appears when the normal intrinsic ratio of intracranial pressure – time fluctuation is changed. The essential conditions for decompensation of intracranial hypertension are: the speed of intracranial pressure increase over normal values, the highest value of abnormal intracranial pressure and the duration of high ICP values. Medical objectives are preventing ICP from exceeding 20 mm Hg and maintaining a normal cerebral blood flow. The emergency therapy is the same for the acute form but each of the four forms of ICH has a specific therapy, according to the pathogenic mechanism and if possible to aetiology. PMID:20108456
Mechanisms of hydrocarbon migration in Mahakam delta, Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, B.; Bessereau, G.; Ungerer, P.H.
1986-05-01
In the Mahakam delta, hydrocarbons formed from landplant debris, either dispersed in clays or concentrated in coal levels. The hydrocarbon zone is located partly or entirely in overpressured zones. Hydrocarbon migration is primarily a polyphasic mechanism, i.e., water and hydrocarbons move in separate phases. When hydrocarbon generation occurs in normally pressured zones, hydrocarbons are easily expelled to close carrier beds. Then they migrate toward the top of structures through a network of abundant interconnected sand bodies. However, most hydrocarbons are generated in overpressured zones, in which they move preferentially toward the structural highs. Simultaneously, excess pressure is transmitted to themore » top of the structures because of the sedimentary load in the synclines, which results in a high pressure gradient at the top. This pressure gradient facilitates hydrocarbon filtration from overpressured zones to normally pressured zones, or it may cause hydraulic fracturing, which provides avenues for migration. Gas-rich hydrocarbons formed in deep overpressured zones, probably in a single phase owing to high temperature and pressures. The passage from overpressured zones to normally pressured zones resulted in decreased temperature and pressure, which produced several hydrocarbon phases by retrograde condensation. Finally, lighter hydrocarbons pooled above the heaviest ones. These mechanisms have been simulated by a numerical model of basin evolution, including a two-phase migration modulus, and by a numerical model of retrograde condensation.« less
Normal-Pressure Tests of Circular Plates with Clamped Edges
NASA Technical Reports Server (NTRS)
Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel
1942-01-01
A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness form 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of the permanent set as a function of the dimensions of the plate and the tensile properties of the material.
NASA Technical Reports Server (NTRS)
Haut, R. C.; Adcock, J. B.
1976-01-01
The steady normal shock wave solutions of parahydrogen at various total pressures and total temperatures were numerically determined by iterating the upstream Mach number and by using a modified interval halving technique. The results obtained are compared with the ideal diatomic gas values and are presented in tabulated form.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
The derivative-free Fourier shell identity for photoacoustics.
Baddour, Natalie
2016-01-01
In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.
Cravo, Sergio L; Campos, Ruy R; Colombari, Eduardo; Sato, Mônica A; Bergamaschi, Cássia M; Pedrino, Gustavo R; Ferreira-Neto, Marcos L; Lopes, Oswaldo U
2009-09-01
Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.
Vortex dynamics and surface pressure fluctuations on a normal flat plate
NASA Astrophysics Data System (ADS)
Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.; Ferrari, Simon W.; Hu, Yaoping
2016-11-01
The effect of vortex formation and interactions on surface pressure fluctuations is examined in the wake of a normal flat plate by analyzing Direct Numerical Simulations at Re =1200. A novel local maximum score-based 3D method is used to track vortex development in the region close to the plate where the major contributions to the surface pressure are generated. Three distinct vortex shedding regimes are identified by changes in the lift and drag fluctuations. The instances of maximum drag coincide with impingement of newly formed vortices on the plate. This results in large and concentrated areas of rotational and strain contributions to generation of pressure fluctuations. Streamwise vortex straining and chordwise stretching are correlated with the large ratios of streamwise to chordwise normal stresses and regions of significant rotational contribution to the pressure. In contrast at the minimum drag, the vorticity field close to the plate is disorganized, and vortex roll-up occurs farther downstream. This leads to a uniform distribution of pressure. This study was supported by Alberta Innovates Technology Futures (AITF) and Natural Sciences and Engineering Research Council of Canada (NSERC).
Wang, Ningli; Xie, Xiaobin; Yang, Diya; Xian, Junfang; Li, Yong; Ren, Ruojin; Peng, Xiaoxia; Jonas, Jost B; Weinreb, Robert N
2012-10-01
Low cerebrospinal fluid pressure (CSF-P) may be involved in the pathogenesis of glaucoma. We measured the optic nerve subarachnoid space width (ONSASW) as a surrogate for orbital CSF-P in patients with primary open-angle glaucoma (POAG) with normal and high pressure and a control group. Prospective observational study. The study included 39 patients with POAG; 21 patients had normal pressure (intraocular pressure [IOP] 21 mmHg), and 18 patients had high pressure (IOP >21 mmHg); 21 subjects formed the control group. By using magnetic resonance imaging (MRI) with fat-suppressed fast recovery fast spin echo (FRFSE) T2-weighted sequence, we determined the ONSASW at 3, 9, and 15 mm posterior to the globe. The ONSASW and optic nerve diameter. At all 3 measurement locations of 3, 9, and 15 mm, the ONSASW was significantly (P<0.001, P<0.001, and P = 0.003, respectively) narrower in the normal-pressure group (0.67±0.16, 0.55±0.09, and 0.51±0.12 mm, respectively) than in the high-pressure group (0.93±0.21, 0.70±0.12, and 0.62±0.11 mm, respectively) or the control group (0.87±0.15, 0.67±0.07, and 0.61±0.07 mm, respectively). The high-pressure and control groups did not vary significantly at 3, 9, and 15 mm (P = 0.31, P = 0.39, and P = 0.44, respectively). At all 3 measurement locations, ONSASW was narrower in the normal-pressure group compared with the high-pressure and control groups after adjustment for optic nerve diameter (P<0.01). Correspondingly, the width of the optic nerve subarachnoid space measured at 3, 9, and 15 mm behind the globe, respectively, was significantly (all P<0.05) associated with IOP after adjustment for optic nerve diameter and visual field defect. The narrower orbital optic nerve subarachnoid space in patients with POAG with normal pressure compared with high pressure suggests a lower orbital CSF-P in patients with POAG with normal pressure. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Transient interaction between a reaction control jet and a hypersonic crossflow
NASA Astrophysics Data System (ADS)
Miller, Warrick A.; Medwell, Paul R.; Doolan, Con J.; Kim, Minkwan
2018-04-01
This paper presents a numerical study that focuses on the transient interaction between a reaction control jet and a hypersonic crossflow with a laminar boundary layer. The aim is to better understand the underlying physical mechanisms affecting the resulting surface pressure and control force. Implicit large-eddy simulations were performed with a round, sonic, perfect air jet issuing normal to a Mach 5 crossflow over a flat plate with a laminar boundary layer, at a jet-to-crossflow momentum ratio of 5.3 and a pressure ratio of 251. The pressure distribution induced on the flat plate is unsteady and is influenced by vortex structures that form around the jet. A horseshoe vortex structure forms upstream and consists of six vortices: two quasi-steady vortices and two co-rotating vortex pairs that periodically coalesce. Shear-layer vortices shed periodically and cause localised high pressure regions that convect downstream with constant velocity. A longitudinal counter-rotating vortex pair is present downstream of the jet and is formed from a series of trailing vortices which rotate about a common axis. Shear-layer vortex shedding causes periodic deformation of barrel and bow shocks. This changes the location of boundary layer separation which also affects the normal force on the plate.
Helmet latching and attaching ring
NASA Technical Reports Server (NTRS)
Chase, E. W.; Viikinsalo, S. J. (Inventor)
1970-01-01
A neck ring releasably secured to a pressurized garment carries an open-ended ring normally in the engagement position fitted into an annular groove and adapted to fit into a complementary annular groove formed in a helmet. Camming means formed on the inner surface at the end of the helmet engages the open-ended ring to retract the same and allow for one motion donning even when the garment is pressurized. A projection on the end of the split ring is engageable to physically retract the split ring.
Device for accurately measuring mass flow of gases
Hylton, J.O.; Remenyik, C.J.
1994-08-09
A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.
Device for accurately measuring mass flow of gases
Hylton, James O.; Remenyik, Carl J.
1994-01-01
A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.
Localization and molecular forms of galanin in human adrenals: elevated levels in pheochromocytomas.
Bauer, F E; Hacker, G W; Terenghi, G; Adrian, T E; Polak, J M; Bloom, S R
1986-12-01
Galanin immunoreactivity was measured by RIA, using antibodies directed against both the non-C- and C-terminal positions of porcine galanin, in tissue extracts of normal adrenals and pheochromocytomas and also in the plasma of normal subjects and patients with pheochromocytomas. No C-terminal galanin-like immunoreactivity was detected in plasma or tissue, suggesting differences in the amino acid sequence of human compared with porcine galanin. A non-C-terminally directed antibody was, therefore, used to characterize human galanin immunoreactivity by gel permeation chromatography and reverse phase high pressure liquid chromatography and to localize it by immunocytochemistry. The galanin content of whole adrenal gland was 2.6 +/- 0.9 (+/- SEM) pmol/g (n = 5). In contrast, however, pheochromocytomas had much greater concentrations (21 +/- 2.3 pmol/g; n = 16). Gel chromatography and reverse phase high pressure liquid chromatography revealed 2 molecular forms of galanin immunoreactivity with identical elution positions in both normal adrenals and tumors. The concentration of galanin in plasma from both normal subjects and pheochromocytoma patients was below the detection limit of the assay (less than 10 pmol/liter). Using immunocytochemistry, galanin was localized to scattered cells or clusters of tumor cells in 5 of 11 pheochromocytomas and only a few chromaffin cells and cortical nerve fibers in normal adrenals.
ARC DISCHARGE AND METHOD OF PRODUCING THE SAME
Neidigh, R.V.
1960-03-15
A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.
49 CFR 179.100-8 - Tank heads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a... hot formed at a temperature exceeding 1700 °F., must be normalized after forming by heating to a temperature between 1550° and 1700 °F., by holding at that temperature for at least 1 hour per inch of...
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
Inflammation in Chronic Wounds
Zhao, Ruilong; Liang, Helena; Clarke, Elizabeth; Jackson, Christopher; Xue, Meilang
2016-01-01
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research. PMID:27973441
Inflammation in Chronic Wounds.
Zhao, Ruilong; Liang, Helena; Clarke, Elizabeth; Jackson, Christopher; Xue, Meilang
2016-12-11
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.
Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Spanogle, J A; Hicks, C W; Foster, H H
1934-01-01
The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.
Foot pressures during gait: a comparison of techniques for reducing pressure points.
Lawless, M W; Reveal, G T; Laughlin, R T
2001-07-01
Various methods have been used to redistribute plantar surface foot pressure in patients with foot ulcers. This study was conducted to determine the effectiveness of four modalities (fracture walker, fracture walker with insert, and open and closed toe total contact casts) in reducing plantar foot pressure. Ten healthy, normal volunteer subjects had an F-scan sensor (ultra thin shoe insert pressure monitor) placed under the right foot. They then ambulated on a flat surface, maintaining their normal gait. Dynamic plantar pressures were averaged over 10 steps at four different sites (plantar surface of great toe, first metatarsal head, base of fifth metatarsal, and plantar heel). All subjects repeated this sequence under five different testing conditions (barefoot, with a fracture walker, fracture walker with arch support insert, open and closed toe total contact cast). Each subject's barefoot pressures were then compared with the pressures during the different modalities. All four treatment modalities significantly reduced (p < 0.05) plantar pressure at the first metatarsal head (no method was superior). The fracture walker, fracture walker with insert, and open toe total contact cast significantly reduced pressure at the heel. Pressures at the base of the fifth metatarsal and great toe were not significantly reduced with any treatment form. The fracture walker, with and without arch support, and total contact cast can effectively reduce plantar pressure at the heel and first metatarsal head.
Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua
1991-08-01
This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.
Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi
2016-01-01
Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567
Pressure Distribution Over Thick Tapered Airfoils, NACA 81, USA 27c Modified and USA 35
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1926-01-01
At the request of the United States Army Air Service, the tests reported herein were conducted in the 5-foot atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory. The object was the measurment of pressures over three representative thick, tapered airfoils which are being used on existing or forthcoming army airplanes. The results are presented in the form of pressure maps, cross-plan load and normal force coefficient curves and load contours. The pressure distribution along the chord was found very similar to that for thin wings, but with a tendency toward greater negative pressures. The characteristics of the loading across the span of the U. S. A. 27 C modified are inferior to those of the other two wings; in the latter the distribution is almost exactly elliptical throughout the usual range of flying angles. The form of tip incorporated in these models is not completely satisfactory and a modification is recommended. (author)
Chinnakkannu, Panneerselvam; Samanna, Venkatesababa; Cheng, Guangmao; Ablonczy, Zsolt; Baicu, Catalin F; Bethard, Jennifer R; Menick, Donald R; Kuppuswamy, Dhandapani; Cooper, George
2010-07-09
In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac alpha- and beta-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration by MAP4, suggesting greater MAP4 affinity for microtubules. Because the major determinant of this affinity is site-specific MAP4 dephosphorylation, we characterized this in hypertrophied myocardium and then assessed the functional significance of each dephosphorylation site found by mimicking it in normal cardiocytes. We first isolated MAP4 from normal and pressure overload-hypertrophied feline myocardium; volume-overloaded myocardium, which has an equal degree and duration of hypertrophy but normal functional and cytoskeletal properties, served as a control for any nonspecific growth-related effects. After cloning cDNA-encoding feline MAP4 and obtaining its deduced amino acid sequence, we characterized by mass spectrometry any site-specific MAP4 dephosphorylation. Solely in pressure overload-hypertrophied myocardium, we identified striking MAP4 dephosphorylation at Ser-472 in the MAP4 N-terminal projection domain and at Ser-924 and Ser-1056 in the assembly-promoting region of the C-terminal microtubule-binding domain. Site-directed mutagenesis of MAP4 cDNA was then used to switch each serine to non-phosphorylatable alanine. Wild-type and mutated cDNAs were used to construct adenoviruses; microtubule network density, stability, and MAP4 decoration were assessed in normal cardiocytes following an equivalent level of MAP4 expression. The Ser-924 --> Ala MAP4 mutant produced a microtubule phenotype indistinguishable from that seen in pressure overload hypertrophy, such that Ser-924 MAP4 dephosphorylation during pressure overload hypertrophy may be central to this cytoskeletal abnormality.
Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy
NASA Astrophysics Data System (ADS)
Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei
2017-12-01
A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.
1979-02-15
fracture along which there has been displacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface crust is...sized particles. Psa. Pm, S2 Limestone and Dolomite . Composed predominantly of carbonate material. Ph, Cau, S3 Shale. Composed predominantly of clay...METAMORPHIC (UNDIFFERENTIATED). Rocks formed through alteration of igneous orgn sedimentary rock material by pressure , heat, or chemical changes below the
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1989
1989-01-01
Discusses a visual database of information about chemical elements. Uses a single sided 12-inch, 30-minute, CAV-type videodisk. Contains a picture of almost every element in its stable form at room temperature and normal atmospheric pressure. Can be used with the video controller from "KC? Discoverer." (MVL)
Sandstone-filled normal faults: A case study from central California
NASA Astrophysics Data System (ADS)
Palladino, Giuseppe; Alsop, G. Ian; Grippa, Antonio; Zvirtes, Gustavo; Phillip, Ruy Paulo; Hurst, Andrew
2018-05-01
Despite the potential of sandstone-filled normal faults to significantly influence fluid transmissivity within reservoirs and the shallow crust, they have to date been largely overlooked. Fluidized sand, forcefully intruded along normal fault zones, markedly enhances the transmissivity of faults and, in general, the connectivity between otherwise unconnected reservoirs. Here, we provide a detailed outcrop description and interpretation of sandstone-filled normal faults from different stratigraphic units in central California. Such faults commonly show limited fault throw, cm to dm wide apertures, poorly-developed fault zones and full or partial sand infill. Based on these features and inferences regarding their origin, we propose a general classification that defines two main types of sandstone-filled normal faults. Type 1 form as a consequence of the hydraulic failure of the host strata above a poorly-consolidated sandstone following a significant, rapid increase of pore fluid over-pressure. Type 2 sandstone-filled normal faults form as a result of regional tectonic deformation. These structures may play a significant role in the connectivity of siliciclastic reservoirs, and may therefore be crucial not just for investigation of basin evolution but also in hydrocarbon exploration.
Periodic oscillation of intracranial pressure in ventricular dilation: a preliminary report.
Kuchiwaki, H; Misu, N; Kageyama, N; Ishiguri, H; Takada, S
1987-12-01
Artificial pressure waves (PWs) were generated by manual inflation of a balloon in the trigonum of the lateral ventricle in seven adult mongrel dogs with normal cerebrospinal fluid (CSF) circulation. In 14 of 16 series of continuous appearances of artificial PWs, local shifts of the brain were successfully monitored using small strain-gauge sensors at the periventricular structures in these animals. Of the 14 series, 13 showed displacements of the periventricular structures, suggesting ventricular dilation. These results did not always correlate with macroscopic findings. They are thought to be due largely to periventricular oedemas and, in part, non-uniform dilations of the ventricles during PWs. We conclude that a water hammer formed by reflection of an increased pulse pressure of PWs at the site of CSF absorption causes a shift of CSF from the ventricle to the periventricular structures through the wall of the ventricle. This phenomenon appears amplified in patients with impaired CSF absorption. Thus, PWs have a pathological role in the progress of ventricular dilation in patients with normal pressure hydrocephalus.
Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.
Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan
2013-01-01
Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in prosthetic ankle-foot complex compared to normal one. The predicted plantar pressures and von Misses stress distributions for a normal foot were consistent with other FE models given in the literature. The present study is aimed to open new approaches for the development of ankle prosthesis.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. The present results are applicable to shock tube flows and to freeflight conditions for a blunt body at high velocities. Working charts illustrating idealized shock tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Thermal contraints on high-pressure granulite metamorphism of supracrustal rocks
NASA Technical Reports Server (NTRS)
Ashwal, L. D.; Morgan, P.; Leslie, W. W.
1983-01-01
The circumstances leading to the formation and exposure at the Earth's surface of supracrustal granulites are examined. These are defined as sediments, volcanics, and other rock units which originally formed at the surface of the Earth, were metamorphosed to high-pressure granulite facies (T = 700-900 C, P = 5-10 kbar), and reexposed at the Earth's surface, in many cases underlain by normal thicknesses of continental crust (30-40 km). Five possible heating mechanisms to account for granulite metamorphism of supracrustal rocks are discussed: magnetic heating, thermal relaxation of perturbed temperature profiles following underthrusting of the continental crust, thermal relaxation after underthrusting of thin slivers of supracrustal rocks below continental crust of normal thickness, major preheating of the upper plate, and shear heating caused by frictional stress along the thrust plane.
NASA Technical Reports Server (NTRS)
Ferris, J. C.
1973-01-01
The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.
Coupled NASTRAN/boundary element formulation for acoustic scattering
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.
1987-01-01
A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.
Yamada, S; Ishikawa, M; Yamamoto, K
2016-07-01
CSF volumes in the basal cistern and Sylvian fissure are increased in both idiopathic normal pressure hydrocephalus and Alzheimer disease, though the differences in these volumes in idiopathic normal pressure hydrocephalus and Alzheimer disease have not been well-described. Using CSF segmentation and volume quantification, we compared the distribution of CSF in idiopathic normal pressure hydrocephalus and Alzheimer disease. CSF volumes were extracted from T2-weighted 3D spin-echo sequences on 3T MR imaging and quantified semi-automatically. We compared the volumes and ratios of the ventricles and subarachnoid spaces after classification in 30 patients diagnosed with idiopathic normal pressure hydrocephalus, 10 with concurrent idiopathic normal pressure hydrocephalus and Alzheimer disease, 18 with Alzheimer disease, and 26 control subjects 60 years of age or older. Brain to ventricle ratios at the anterior and posterior commissure levels and 3D volumetric convexity cistern to ventricle ratios were useful indices for the differential diagnosis of idiopathic normal pressure hydrocephalus or idiopathic normal pressure hydrocephalus with Alzheimer disease from Alzheimer disease, similar to the z-Evans index and callosal angle. The most distinctive characteristics of the CSF distribution in idiopathic normal pressure hydrocephalus were small convexity subarachnoid spaces and the large volume of the basal cistern and Sylvian fissure. The distribution of the subarachnoid spaces in the idiopathic normal pressure hydrocephalus with Alzheimer disease group was the most deformed among these 3 groups, though the mean ventricular volume of the idiopathic normal pressure hydrocephalus with Alzheimer disease group was intermediate between that of the idiopathic normal pressure hydrocephalus and Alzheimer disease groups. The z-axial expansion of the lateral ventricle and compression of the brain just above the ventricle were the common findings in the parameters for differentiating idiopathic normal pressure hydrocephalus from Alzheimer disease. © 2016 by American Journal of Neuroradiology.
Fuentes, Ramón; Engelke, Wilfried; Flores, Tania; Navarro, Pablo; Borie, Eduardo; Curiqueo, Aldo; Salamanca, Carlos
2015-01-01
Under normal conditions, the oral cavity presents a perfect system of equilibrium between teeth, soft tissues and tongue. The equilibrium of soft tissues forms a closed capsular matrix, generating differences with the atmospheric environment. This difference is known as intraoral pressure. Negative intraoral pressure is fundamental to the stabilization of the soft palate and tongue, reducing neuromuscular activity for the permeability of the respiratory tract. Thus, the aim of this study was to describe the variations of intraoral pressure of the sub-palatal space (SPS) under different physiological conditions and biofunctional phases. A case series was conducted with 20 individuals aged between 18 and 25. The intraoral pressures were measured through a system of cannulae connected to a digital pressure meter in the SPS during seven biofunctional phases. Descriptive statistics were used based on the mean and standard deviation. The data recorded pressure variations under physiological conditions, reaching 65 mbar as the intraoral peak in forced inspiration. In the swallowing phase, peaks reached -91.9 mbar. No pressure variations were recorded in terms of atmospheric changes with the mouth open and semi-open. The data obtained during the swallowing and forced inspiration phases indicated forced lingual activity. In the swallowing phase, the adequate position of the tongue creates negative intraoral pressure, which represents a fundamental mechanism for the physical stabilization of the soft palate. This information could contribute to subsequent research into the treatment of primary roncopathies.
Vaegter, Henrik B; Graven-Nielsen, Thomas
2016-07-01
Pain biomarkers are warranted for individualized pain management. Based on different pain modulatory phenotypes, the objectives of this study were to explore the existence of subgroups within patients with nonmalignant chronic pain and to investigate differences in clinical pain and pain hypersensitivity between subgroups. Cuff algometry was performed on lower legs in 400 patients with chronic pain to assess pressure pain threshold, pressure pain tolerance, temporal summation of pain (TSP: increase in pain scores to 10 repeated stimulations), and conditioned pain modulation (CPM: increase in cuff pressure pain threshold during cuff pain conditioning on the contralateral leg). Heat detection and heat pain thresholds at clinical painful and nonpainful body areas were assessed. Based on TSP and CPM, 4 distinct groups were formed: group 1 (n = 85) had impaired CPM and facilitated TSP; group 2 (n = 148) had impaired CPM and normal TSP; group 3 (n = 45) had normal CPM and facilitated TSP; and group 4 (n = 122) had normal CPM and normal TSP. Group 1 showed more pain regions than the other 3 groups (P < 0.001), indicating that impaired CPM and facilitated TSP play an important role in widespread pain. Groups 1 and 2 compared with group 4 had lower heat pain threshold at nonpainful areas and lower cuff pressure pain tolerance (P < 0.02), indicating that CPM plays a role for widespread hyperalgesia. Moreover, group 1 demonstrated higher clinical pain scores than group 4 (P < 0.05). Although not different between subgroups, patients were profiled on demographics, disability, pain catastrophizing, and fear of movement. Future research should investigate interventions tailored towards these subgroups.
Chinnakkannu, Panneerselvam; Samanna, Venkatesababa; Cheng, Guangmao; Ablonczy, Zsolt; Baicu, Catalin F.; Bethard, Jennifer R.; Menick, Donald R.; Kuppuswamy, Dhandapani; Cooper, George
2010-01-01
In severe pressure overload-induced cardiac hypertrophy, a dense, stabilized microtubule network forms that interferes with cardiocyte contraction and microtubule-based transport. This is associated with persistent transcriptional up-regulation of cardiac α- and β-tubulin and microtubule-stabilizing microtubule-associated protein 4 (MAP4). There is also extensive microtubule decoration by MAP4, suggesting greater MAP4 affinity for microtubules. Because the major determinant of this affinity is site-specific MAP4 dephosphorylation, we characterized this in hypertrophied myocardium and then assessed the functional significance of each dephosphorylation site found by mimicking it in normal cardiocytes. We first isolated MAP4 from normal and pressure overload-hypertrophied feline myocardium; volume-overloaded myocardium, which has an equal degree and duration of hypertrophy but normal functional and cytoskeletal properties, served as a control for any nonspecific growth-related effects. After cloning cDNA-encoding feline MAP4 and obtaining its deduced amino acid sequence, we characterized by mass spectrometry any site-specific MAP4 dephosphorylation. Solely in pressure overload-hypertrophied myocardium, we identified striking MAP4 dephosphorylation at Ser-472 in the MAP4 N-terminal projection domain and at Ser-924 and Ser-1056 in the assembly-promoting region of the C-terminal microtubule-binding domain. Site-directed mutagenesis of MAP4 cDNA was then used to switch each serine to non-phosphorylatable alanine. Wild-type and mutated cDNAs were used to construct adenoviruses; microtubule network density, stability, and MAP4 decoration were assessed in normal cardiocytes following an equivalent level of MAP4 expression. The Ser-924 → Ala MAP4 mutant produced a microtubule phenotype indistinguishable from that seen in pressure overload hypertrophy, such that Ser-924 MAP4 dephosphorylation during pressure overload hypertrophy may be central to this cytoskeletal abnormality. PMID:20436166
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
Exercise Blood Pressure Guidelines: Time to Re-evaluate What is Normal and Exaggerated?
Currie, Katharine D; Floras, John S; La Gerche, Andre; Goodman, Jack M
2018-03-24
Blood pressure responses to graded exercise testing can provide important diagnostic and prognostic information. While published guidelines outline what constitutes a "normal" and "abnormal" (i.e., exaggerated) blood pressure response to exercise testing, the widespread use of exaggerated blood pressure responses as a clinical tool is limited due to sparse and inconsistent data. A review of the original sources from these guidelines reveals an overall lack of empirical evidence to support both the normal blood pressure responses and their upper limits. In this current opinion, we critically evaluate the current exercise blood pressure guidelines including (1) the normal blood pressure responses to graded exercise testing; (2) the upper limits of this normal response; (3) the blood pressure criteria for test termination; and (4) the thresholds for exaggerated blood pressure responses. We provide evidence that exercise blood pressure responses vary according to subject characteristics, and subsequently a re-evaluation of what constitutes normal and abnormal responses is necessary to strengthen the clinical utility of this assessment.
A model for hydrostatic consolidation of Pierre shale
Savage, W.Z.; Braddock, W.A.
1991-01-01
This paper presents closed-form solutions for consolidation of transversely isotropic porous media under hydrostatic stress. The solutions are applied to model the time variation of pore pressure, volume strain and strains parallel and normal to bedding, and to obtain coefficients of consolidation and permeability, as well as other properties, and the bulk modulus resulting from hydrostatic consolidation of Pierre shale. It is found that the coefficients consolidation and permeability decrease and the bulk moduli increase with increasing confining pressure, reflecting the closure of voids in the rock. ?? 1991.
Characteristics of random inlet pressure fluctuations during flights of F-111A airplane
NASA Technical Reports Server (NTRS)
Costakis, W. G.
1977-01-01
Compressor face dynamic total pressures from four F-111 flights were analyzed. Statistics of the nonstationary data were investigated by analyzing the data in a quasi-stationary manner. Changes in the character of the dynamic signal are investigated as functions of flight conditions, time in flight, and location at the compressor face. The results, which are presented in the form of rms values, histograms, and power spectrum plots, show that the shape of the power spectra remains relatively flat while the histograms have an approximate normal distribution.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1974-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.
Nelson, Phillip H.; Gianoutsos, Nicholas J.
2011-01-01
Departures of resistivity logs from a normal compaction gradient indicate that overpressure previously extended north of the present-day overpressured zone. These indicators of paleopressure, which are strongest in the deep basin, are mapped to the Kansas-Oklahoma border in shales of Desmoinesian age. The broad area of paleopressure has contracted to the deep basin, and today the overpressured deep basin, as determined from drillstem tests, is bounded on the north by strata with near normal pressures (hydrostatic), grading to the northwest to pressures that are less than hydrostatic (underpressured). Thus the pressure regime in the northwest portion of the Anadarko Basin has evolved from paleo-overpressure to present-day underpressure. Using pressure data from drillstem tests, we constructed cross sections and potentiometric maps that illustrate the extent and nature of present-day underpressuring. Downcutting and exposure of Lower Permian and Pennsylvanian strata along, and east of, the Nemaha fault zone in central Oklahoma form the discharge locus where pressure reaches near atmospheric. From east to west, hydraulic head increases by several hundred feet in each rock formation, whereas elevation increases by thousands of feet. The resulting underpressuring of the aquifer-supported oil and gas fields, which also increases from east to west, is a consequence of the vertical separation between surface elevation and hydraulic head. A 1,000-ft thick cap of Permian evaporites and shales isolates the underlying strata from the surface, preventing re-establishment of a normal hydrostatic gradient. Thus, the present-day pressure regime of oil and gas reservoirs, overpressured in the deep basin and underpressured on the northwest flank of the basin, is the result of two distinct geologic events-rapid burial and uplift/erosion-widely separated in time.
Cao, Xia; Xie, Xiumei; Xu, Guo; Yuan, Hong; Chen, Zhiheng
2014-06-01
To investigate the relationship between high-normal blood pressure and chronic kidney disease (CKD) in occupational physical examination population in Changsha. With a convenient sampling method, a cross-sectional survey of representative sample of 11 274 white collar workers was conducted in Changsha between March 2011 and May 2011 in a large comprehensive hospital. All subjects were assigned into 4 groups: a normal blood pressure group, a high-normal blood pressure group, an undiagnosed hypertension group, and a diagnosed hypertension group. Anthropometry, blood pressure, blood sample and urine sample were measured with standard instruments and methodology for all the subjects. Multiple logistic regression analysis was used to identify risk factors for CKD. The prevalence of CKD in the normal blood pressure, high-normal blood pressure, undiagnosed hypertension, and diagnosed hypertension were 3.31%, 6.60%, 11.78%, and 17.35%, respectively. The prevalence of CKD in males was significantly higher than that in females (P<0.01). For males with high-normal blood pressure, the CKD risk was significantly greater (OR, 1.30; 95% CI:1.03 - 1.63) than those with optimal blood pressure. The logistic regression analysis showed that there was an additive effect of hyperuricemia on CKD risk in men with high-normal blood pressure compared with men with optimal blood pressure (OR, 2.25; 95% CI, 1.59 - 3.19; P<0.05). The prevalence of CKD in people with the high-normal blood pressure is 6.60% in occupational physical examination population in Changsha. CKD is a high risk for men with highnormal blood pressure and hyperuricemia is an independent risk factor.
Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.
Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng
2007-12-01
Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.
Xu, Ling-Ling; Xiang, Hong-Ding; Zhang, Li-Hong; Chen, Wei; Fang, Jing-Hui
2009-08-01
To investigate the changes of insulin resistance and islet beta cells function in subjects with euglycemia and high-normal blood pressure. Total 423 subjects were divided into normal blood pressure group and high-normal blood pressure group. Body height, weight, waist and hip circumference, and biochemical data were measured. Homeostasis model assessment of insulin resistance (HOMA-IR), insulin sensitivity index (ISI)-composite, and first-phase (1 PH) Stumvoll index were calculated. Results Waist circumference, total cholesterol, triglyceride, low-density lipoprotein cholesterol, HOMA-IR were significantly higher and IPH Stumvoll index and ISI-composite were significantly lower in high-normal blood pressure group than in normal blood pressure group (P < 0.05). Systolic blood pressure (SBP) was positively correlated with HOMA-IR (r = 0.122) and negatively correlated with 1PH Stumvoll index (r = -0. 159) and ISI-composite (r = -0.131) (P < 0.05). SBP and triglyceride were independent factors for IPH Stumvoll index. Insulin resistance and islet dysfunction may exist in subjects with high-normal blood pressure.
On the Normal Force Mechanotransduction of Human Umbilical Vein Endothelial Cells
NASA Astrophysics Data System (ADS)
Vahabikashi, Amir; Wang, Qiuyun; Wilson, James; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a cellular biomechanics study to examine the normal force mechanotransduction of Human Umbilical Vein Endothelial Cells (HUVECs) with their implications on hypertension. Endothelial cells sense mechanical forces and adjust their structure and function accordingly. The mechanotransduction of normal forces plays a vital role in hypertension due to the higher pressure buildup inside blood vessels. Herein, HUVECs were cultured to full confluency and then exposed to different mechanical loadings using a novel microfluidic flow chamber. One various pressure levels while keeps the shear stress constant inside the flow chamber. Three groups of cells were examined, the control group (neither shear nor normal stresses), the normal pressure group (10 dyne/cm2 of shear stress and 95 mmHg of pressure), and the hypertensive group (10 dyne/cm2 of shear stress and 142 mmHg of pressure). Cellular response characterized by RT-PCR method indicates that, COX-2 expressed under normal pressure but not high pressure; Mn-SOD expressed under both normal and high pressure while this response was stronger for normal pressure; FOS and e-NOS did not respond under any condition. The differential behavior of COX-2 and Mn-SOD in response to changes in pressure, is instrumental for better understanding the pathogenesis of hypertensive cardiovascular diseases. This research was supported by the National Science Foundation under Award #1511096.
Conroy, Nicole E; Krishnakumar, Ambika; Leone, Janel M
2015-07-01
This study problematizes the literature's conceptualization of sexual compliance, predominantly defined as willing participation in, and consent to, unwanted sexual activity in the absence of immediate partner pressure. Using a feminist theoretical framework, we argue that covert forms of social coercion, including normalized expectations for heterosexual women to participate in sexual activity and maintain relationship satisfaction, ultimately pressure women into participating in unwanted sexual activity. In other words, immediate partner pressure is not necessary for a sexually coercive experience to occur. Results of the current study indicate that relationship control and media influence significantly predict sexual acquiescence, and women acquiesce to unwanted sexual activity in an effort to maintain relationships and partner satisfaction as well as to avoid negative outcomes. Women cite various forms of social coercion, such as fulfilling sexual scripts and relationship obligations, as primary reasons for participating in unwanted sexual activity without resisting their partners. © The Author(s) 2014.
A general low frequency acoustic radiation capability for NASTRAN
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.
1986-01-01
A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.
Bryant, Ginelle A.; Haack, Sally L.; North, Andrew M.
2013-01-01
Objective. To compare student accuracy in measuring normal and high blood pressures using a simulator arm. Methods. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. Results. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Conclusions. Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign. PMID:23788809
Bottenberg, Michelle M; Bryant, Ginelle A; Haack, Sally L; North, Andrew M
2013-06-12
To compare student accuracy in measuring normal and high blood pressures using a simulator arm. In this prospective, single-blind, study involving third-year pharmacy students, simulator arms were programmed with prespecified normal and high blood pressures. Students measured preset normal and high diastolic and systolic blood pressure using a crossover design. One hundred sixteen students completed both blood pressure measurements. There was a significant difference between the accuracy of high systolic blood pressure (HSBP) measurement and normal systolic blood pressure (NSBP) measurement (mean HSBP difference 8.4 ± 10.9 mmHg vs NSBP 3.6 ± 6.4 mmHg; p<0.001). However, there was no difference between the accuracy of high diastolic blood pressure (HDBP) measurement and normal diastolic blood pressure (NDBP) measurement (mean HDBP difference 6.8 ± 9.6 mmHg vs. mean NDBP difference 4.6 ± 4.5 mmHg; p=0.089). Pharmacy students may need additional instruction and experience with taking high blood pressure measurements to ensure they are able to accurately assess this important vital sign.
Flame surface statistics of constant-pressure turbulent expanding premixed flames
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2014-04-01
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1979-01-01
Analytical solutions are derived which incorporate additional physical effects as higher order terms for the case when the sonic line is very close to the wall. The functional form used for the undisturbed velocity profile is described to indicate how various parameters will be calculated for later comparison with experiment. The basic solutions for the pressure distribution are derived. Corrections are added for flow along a wall having longitudinal curvature and for flow in a circular pipe, and comparisons with available experimental data are shown.
Klebanoff, Leonard E.
2001-01-01
A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.
Method for preparing hydride configurations and reactive metal surfaces
Silver, Gary L.
1988-08-16
A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.
Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets
NASA Technical Reports Server (NTRS)
Fukuda, M. K.; Reshotko, E.; Hingst, W. R.
1975-01-01
An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.
Sound Emission of Rotor Induced Deformations of Generator Casings
NASA Technical Reports Server (NTRS)
Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)
2001-01-01
The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-mazur@mail.ru
The structural, electronic, phonon, and other characteristics of the normal phases of phosphorus hydrides with stoichiometry PH{sub k} are analyzed. The properties of the initial substance, namely, diphosphine are calculated. In contrast to phosphorus hydrides with stoichiometry PH{sub 3}, a quasi-two-dimensional phosphorus-stabilized lattice of metallic hydrogen can be formed in this substance during hydrostatic compression at a high pressure. The formed structure with H–P–H elements is shown to be locally stable in phonon spectrum, i.e., to be metastable. The properties of diphosphine are compared with the properties of similar structures of sulfur hydrides.
The Influence of Tip Shape on the Wing Load Distribution as Determined by Flight Tests
NASA Technical Reports Server (NTRS)
Rhode, Richard V
1935-01-01
Pressure measurements were made in flight on the right upper wing of an M-3 airplane. The effects of tip plan form, washout, and transverse camber were investigated with eight tip forms in unyawed conditions through the range of positive lift coefficients from zero lift to the stall. The conclusion is that the tip plan form does not influence the span distribution of the coefficients of normal force and moment. It is shown inferentially that temperature, humidity, and the aging of the wood and fabric wing structure used on the M-3 airplane have an appreciable influence on the load distribution.
Winds, waves and shorelines from ancient martian seas
NASA Astrophysics Data System (ADS)
Banfield, Don; Donelan, Mark; Cavaleri, Luigi
2015-04-01
We consider under what environmental conditions water waves (and thus eventually shorelines) should be expected to be produced on hypothetical ancient martian seas and lakes. For winds and atmospheric pressures that are too small, no waves should be expected, and thus no shorelines. If the winds and atmospheric pressure are above some threshold, then waves can be formed, and shorelines are possible. We establish these criteria separating conditions under which waves will or will not form on an ancient martian open body of water. We consider not only atmospheric pressure and wind, but also temperature and salinity, but find these latter effects to be secondary. The normal criterion for the onset of water waves under terrestrial conditions is extended to recognize the greater atmospheric viscous boundary layer depth for low atmospheric pressures. We used terrestrial wave models to predict the wave environment expected for reasonable ranges of atmospheric pressure and wind for end-member cases of ocean salinity. These models were modified only to reflect the different fluids considered at Mars, the different martian surface gravity, and the varying atmospheric pressure, wind and fetch. The models were favorably validated against one another, and also against experiments conducted in a wave tank in a pressure controlled wind tunnel (NASA Ames MARSWIT). We conclude that if wave-cut shorelines can be confirmed on Mars, this can constrain the range of possible atmospheric pressures and wind speeds that could have existed when the open water was present on Mars.
High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure
NASA Astrophysics Data System (ADS)
Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.
2014-01-01
At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.
Complex hydrides for hydrogen storage
Zidan, Ragaiy
2006-08-22
A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.
The ligation of the male reproductive organs and the role of the spermatic cyst.
Kuwahara, M; Frick, J
1975-01-01
The effects of ligation of the vas deferens, the corpus epididymis and the vasa efferentia on spermatozoa and testicular morphology were studied in sexually mature rats. Following the ligation of the vas deferens, headless and immotile spermatozoa were observed on the second day in the vas deferens. Decapitation occured in more than ninty per cent of the spermatozoa on the sixth day and the motility became almost zero. On the contrary, in the epididymis normal spermatozoa were observed for a relatively long period. Even three weeks after the vas ligation, more than ninty per cent of spermatozoa showed normal morphology. Spermatic cyst formation was observed so early as four days following ligation of the vas. By the third week cysts were observed in most rats, either unilaterally or bilaterally. In addition, ligation of the corpus epididymis resulted also in the formation of a spermatic cyst on the proximal site of the ligature. A strong correlation was observed between spermatic cyst formation and the occurrence of morphological changes in the testis, as well as the motility and the normality of spermatozoa. When the spermatic cyst was formed, the testis showed almost normal morphology for a long period as well as spermatozoa in the ductal system. When a spermatic cyst was not formed, degenerative changes took place promptly and abnormal spermatozoa were observed in the ductal system. These observations suggest that the seminiferous tubules may be very sensitivie to the increase in intratubular pressure and in such instances the spermatic cyst acts as a "shock absorber" to prevent the abnormal increase of pressure within the ductal system, especially the seminiferous tubules. In addition, the result suggests further that a need for caution and careful follow-up are necessary in the vasectomized man.
[The effect of work-related stress on the occurrence of increased blood pressure].
Budaj, A; Cybulski, J; Kułakowski, P; Makowska, E; Rezler, J; Lange, J; Gorzkowska, J; Abramowski, S
In 546 officials the arterial blood pressure was measured twice at the beginning and at the end of a working day, filling also an inquiry form. As hypertension systolic BP over 160 mm Hg (21.3 kPa) or more, and diastolic BP 96 mm Hg (12.7 kPa) or more were accepted. In 90 subjects (16.5%) above normal pressure values were found. Hypertension had been diagnosed previously in 50 subjects in this group (55.5%) but only 13 of them (26%) were treated systematically. Excessive stress of work was complained of by 62.6% of the subjects. Increased blood pressure was found significantly more frequently in the group perceiving excessive stress of work (19.9%) as compared to those not experiencing this stress (10.8%, p less than 0.1). In the group in managerial posts these proportions were 24.8% and 14.4% respectively (p less than 0.1). Blood pressure rise to abnormal levels during the working day occurred also significantly more frequently in the group experiencing it this was noted only in 1.6% of cases (p less than 0.5). The knowledge of own hypertension was very low in this group. These results indicate the necessity of increasing prophylactic measures in the form of greater frequency of control measurements of the blood pressure, better health education, and limitation of stress situations in working environment.
Flying with a pneumothorax: a model of altitude limitations due to gas expansion.
Fitz-Clarke, John; Quinlan, David; Valani, Rahim
2013-08-01
Pneumothorax(PTX) is considered an absolute contraindication to flying. Guidelines for recovery time are arbitrary and fail to acknowledge that some passengers with PTX have flown without incident. One concern is pleural air expansion, causing extrinsic lung compression, increased intrathoracic pressure, and the subsequent risk of tension pneumothorax. We used a model to investigate critical endpoints resulting from PTX expansion at altitude. Pneumothorax expansion was investigated using physiological simulation in the form of a mathematical model comprising elastic lungs, rib cage, hemidiaphragms, mediastinum, and abdomen. Compliance curves were assigned to each compartment based on published data. Cyclical muscle pressures drive normal ventilation. Initial sea-level pleural air volumes were set in the range from 10 to 60% pneumothorax. Pressures, volumes, and mediastinal shift were tracked during ascent to cruising altitude at 8000 ft (2438 m) and during cabin depressurization to 30,000 ft (9144 m). Pleural pressure oscillations during normal breathing became less negative during ascent. Positive pleural pressure was encountered at cabin altitude only if sea-level PTX exceeded 45%. Corresponding peak pressure gradient across the mediastinum did not exceed 5 cm H2O. Our results provide insight into the mechanics of pneumothorax expansion during flight. Sea-level PTX up to 45% would be tolerable in otherwise healthy persons if positive intrathoracic pressure is the dominant mechanism causing respiratory discomfort. Critical limitation in our model is more likely due to hypoxemia caused by altitude and pulmonary shunt from lung collapse. Studies of PTX tolerance to altitude should be conducted with caution.
2014-01-01
Background Left pulmonary artery sling (LPAS) is a rare but severe congenital anomaly, in which the stenoses are formed in the trachea and/or main bronchi. Multi-detector computed tomography (MDCT) provides useful anatomical images, but does not offer functional information. The objective of the present study is to quantitatively analyze the airflow in the trachea and main bronchi of LPAS subjects through computational fluid dynamics (CFD) simulation. Methods Five subjects (four LPAS patients, one normal control) aging 6-19 months are analyzed. The geometric model of the trachea and the two main bronchi is extracted from the MDCT images. The inlet velocity is determined based on the body weight and the inlet area. Both the geometric model and personalized inflow conditions are imported into CFD software, ANSYS. The pressure drop, mass flow ratio through two bronchi, wall pressure, flow velocity and wall shear stress (WSS) are obtained, and compared to the normal control. Results Due to the tracheal and/or bronchial stenosis, the pressure drop for the LPAS patients ranges 78.9 - 914.5 Pa, much higher than for the normal control (0.7 Pa). The mass flow ratio through the two bronchi does not correlate with the sectional area ratio if the anomalous left pulmonary artery compresses the trachea or bronchi. It is suggested that the C-shaped trachea plays an important role on facilitating the air flow into the left bronchus with the inertia force. For LPAS subjects, the distributions of velocities, wall pressure and WSS are less regular than for the normal control. At the stenotic site, high velocity, low wall pressure and high WSS are observed. Conclusions Using geometric models extracted from CT images and the patient-specified inlet boundary conditions, CFD simulation can provide vital quantitative flow information for LPAS. Due to the stenosis, high pressure drops, inconsistent distributions of velocities, wall pressure and WSS are observed. The C-shaped trachea may facilitate a larger flow of air into the left bronchus under the inertial force, and decrease the ventilation of the right lung. Quantitative and personalized information may help understand the mechanism of LPAS and the correlations between stenosis and dyspnea, and facilitate the structural and functional assessment of LPAS. PMID:24957947
Composite overwrapped metallic tanks
NASA Technical Reports Server (NTRS)
Caudill, C. L.; Kirlin, R. L.
1972-01-01
Work is reported for fabricating and testing the fiberglass overwrapped titanium pressure vessel for cryogenic service. Difficulties encountered in the tank liner fabrication phase involved explosive forming, vacuum annealing, chemical milling and electron beam welding. While each of these processes and the nondestructive test methods employed are normally considered to be individually reliable, the combination of poor material together with fabrication and development reversals prevented the full achievement of the desired end results. Eight tanks plus a prototype and tool proofing article were produced. Six of the vessels failed during the hydrostatic sizing operation. One of the remaining tanks was hydrostatically pressurized to burst and the other was pressurized repeatedly at 75 F from 100 psi to the operating pressure until failure occurred. As a result, it is not possible to draw firm conclusions as to the true value of the design concept due to the problems encountered in the program.
NASA Technical Reports Server (NTRS)
1976-01-01
The University of Miami School of Medicine asked the Research Triangle Institute for assistance in improvising the negative pressure technique to relieve respiratory distress in infants. Marshall Space Flight Center and Johnson Space Center engineers adapted this idea to the lower-body negative-pressure system seals used during the Skylab missions. Some 20,000 babies succumb to respiratory distress in the U.S. each year, a condition in which lungs progressively lose their ability to oxygenate blood. Both positive and negative pressure techniques have been used - the first to force air into lungs, the second to keep infant's lungs expanded. Negative pressure around chest helps the baby expand his lungs and maintain proper volume of air. If doctors can keep the infant alive for four days, the missing substance in the lungs will usually form in sufficient quantity to permit normal breathing. The Skylab chamber and its leakproof seals were adapted for medical use.
[Lower urinary tract dysfunction in normal pressure hydrocephalus: Review of the literature].
Bey, E; Nicot, B; Casez, O; Le Normand, L
2016-12-01
Lower urinary tract dysfunction in normal pressure hydrocephalus has received little attention from the scientific community. The aim of this review article was to discuss diagnostic and therapeutic options for these patients. A literature review of MedLine publications on urinary incontinence in normal pressure hydrocephalus was conducted. The following keywords were used: "hydrocephalus, normal pressure" and "bladder dysfunction" or "urinary incontinence" or "overactive bladder" or "urinary bladder, neurogenic". Prospective and retrospective studies as well as previous reviews were analyzed. Urinary symptoms in normal pressure hydrocephalus are mainly represented by overactive bladder, which is a significant burden for the concerned patients. Isolated overactive bladder is more frequent (64%) than urinary incontinence (57%). Detrusor overactivity is seen in 95.2% of the cases. Neuro-surgery is efficient on urinary symptoms for 61.5% of the patients. Bladder recovery after surgery relates with increased mid-cingulate perfusion, probably linked with a functional restoration of the mid-cingulate that normally inhibits the micturition reflex. Medical options, added or not to surgery, include anticholinergic drugs unable to pass through the blood-brain barrier, Transcutaneous Electrical Nerve Stimulation and sacral neuromodulation. There is actually an insufficient concern about urinary symptoms in normal pressure hydrocephalus. This article highlights the importance of a harmonization of neuro-urological practices in the pre-therapeutic evaluation of patients suffering from normal pressure hydrocephalus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Effect of pressure on the α relaxation in glycerol and xylitol
NASA Astrophysics Data System (ADS)
Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.
2002-06-01
The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.
NASA Technical Reports Server (NTRS)
Ousterhout, D. S.
1972-01-01
An experimental program was undertaken to determine the pressure distribution induced on aerodynamic bodies by a subsonic cold jet exhausting normal to the body surface and into a subsonic free stream. The investigation was limited to two bodies with single exhaust jets a flat plate at zero angle of attack with respect to the free-stream flow and a cylinder, fitted with a conical nose, with the longitudinal axis alined with the free-stream flow. Experimental data were obtained for free-stream velocity to jet velocity ratios between 0.3 and 0.5. The experimental data are presented in tabular form with appropriate graphs to indicate pressure coefficient contours, pressure coefficient decay, pitching-moment characteristics, and lift characteristics.
EXPERIMENTAL ATHEROSCLEROSIS AND BLOOD PRESSURE IN THE RABBIT
Dominguez, R.
1927-01-01
1. Van Leersum's range for the normal blood pressure in the rabbit, as recorded by his method, is confirmed. 2. Van Leersum's conclusion concerning the influence of a liver diet on the blood pressure of the rabbit is not substantiated by his data, since the fluctuations of blood pressure he obtained do not surpass his own recorded figures for normal animals. 3. Fluctuations of systolic blood pressure beyond the "normal" range are not necessary for the production of experimental atherosclerosis of the aorta in rabbits. Inversely, egg yolk feeding experiments in rabbits in which atherosclerosis of varying degree, even extreme, is obtained, are not accompanied by an elevation of blood pressure outside the "normal" range. 4. The fluctuations of blood pressure observed during experimental atherosclerosis do not simulate the condition of essential hypertension in man. PMID:19869349
Dynamic formation and magnetic support of loop or arcade prominences
NASA Technical Reports Server (NTRS)
Vanhoven, Gerard; Mok, Y.; Drake, J. F.
1992-01-01
The results of model dynamic simulations of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of a confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of a normal polarity Kippenhahn-Schlueter type) is formed, which supports the prominence at or near the field apex.
Verification Study - Wah Wah Valley, Utah. Volume I. Synthesis.
1981-03-24
Paleozoic limestone and dolomite , with lesser amounts of Precambrian and Cambrian quartzites and phyllites. Tertiary volcanic rocks, consisting of...of fracture along which there has been gdisplacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface crust...sample (ASTM D 2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an
Mu, Jian-Jun; Liu, Zhi-Quan; Yang, Jun; Ren, Jie; Liu, Wei-Min; Xu, Xiang-Lin; Xiong, Su-E
2008-03-01
Essential hypertension may begin at childhood. The aim of this study is to identify the risk factors of hypertension and detect the evolvement tracking of blood pressure in childhood. In this study, we followed up blood pressure changes in 4623 school children (6 - 15 years-old) from 1987 to 2005 in Hanzhong rural area. A total of 152 children were grouped to higher blood pressure group [systolic blood pressure (P(SBP)) >or= 75(th) (P(75))] and 140 children grouped to normal blood pressure group [P(SBP) < 50(th) (P(50))] and their blood pressure were re-measure 18-years later. The total follow-up rate was 70.2%. Follow-up blood pressure was significantly higher in higher blood pressure group at baseline than that in normal blood pressure group at baseline (P < 0.05). The hypertension rate at follow up was significantly higher in higher blood pressure group at baseline than that in normal blood pressure group at baseline (28.0% vs. 4.1%, P < 0.01). The risk for hypertension was 6.88 greater in higher blood pressure group at baseline than that in normal blood pressure group at baseline. Higher blood pressure at childhood is a risk of developing hypertension at adulthood.
Adsorption properties of argon on Ti doped SBA-15.
Kim, Euikwoun; Lee, Sang-Hwa; Kim, Jaeyong
2014-11-01
Thermodynamic properties of argon on Ti doped Santa barbara amorphous No. 15 (SBA-15) were investigated in the temperature range of 77-89 K to understand the interaction of gas molecules with porous materials. When the total amount of adsorbed molecules is plotted as a function of the equilibrium vapor pressure of the adsorbed Ar, the results exhibit two distinct isotherm steps. The first step appears at the beginning of the isotherm while the second step locates at 0.7 of the normalized pressure. The existence of the second isotherm step which spanned in the normalized pressure from 0.7 to 0.9 is confirmed when the isotherm data were plotted in terms of the 2-dimensional compressibility values. The total amount of adsorbed molecules forming the second isotherm step is 2.5 times greater than the one for the first step. These adsorption behaviors are typical patterns noted from porous materials and far different from the ones observed from non-pore materials. Our observations demonstrate that most of adsorbed molecules reside in the pores and the height of the second isotherm step is strongly associated with filling pores with gas molecules.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves into hydrogen-helium mixtures representative of postulated outer planet atmospheres. These results are presented in four volumes and the volmetric compositions of the mixtures are 0.95H2-0.05He in Volume 1, 0.90H2-0.10He in Volume 2, 0.85H2-0.15He in Volume 3, and 0.75H2-0.25He in Volume 4. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 4 to 70 km/sec for a range of initial pressure of 5 N/sq m to 100 kN/sq m. Results are applicable to shock-tube flows and for determining flow conditions behind the normal portion of the bow shock about a blunt body at high velocities in postulated outer planet atmospheres. The document is a revised version of the original edition of NASA SP-3085 published in 1974.
Code of Federal Regulations, 2010 CFR
2010-10-01
... devices must be provided for each low-pressure and high-pressure breakout tank. (e) For normal/emergency... and vacuum-relieving devices installed on high pressure tanks built to API Standard 2510 (incorporated.../emergency venting or pressure/vacuum relief for aboveground breakout tanks. 195.264 Section 195.264...
Bateman, Grant A
2015-12-01
Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Probing star formation relations of mergers and normal galaxies across the CO ladder
NASA Astrophysics Data System (ADS)
Greve, Thomas R.
We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1974-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves into helium-hydrogen mixtures representative of proposed outer planet atmospheres. The volumetric compositions of these mixtures are 0.35He-0.65H2, 0.20He-0.80H2, and 0.05He-0.95H2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 4 to 70 km/sec for a range of initial pressure of 5 N/sq m to 100 kN/sq m. The present results are applicable to shock-tube flows and to free-flight conditions for a blunt body at high velocities. A working chart illustrating idealized shock-tube performance with a 0.20He-0.80H2 test gas and heated helium driver gas is also presented.
Passive shut-down heat removal system
Hundal, Rolv; Sharbaugh, John E.
1988-01-01
An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.
Accelerated degradation of polyetheretherketone and its composites in the deep sea
NASA Astrophysics Data System (ADS)
Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-04-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.
Cerebral spinal fluid (CSF) collection
... establish the diagnosis of normal pressure hydrocephalus. Normal Results Normal values typically range as follows: Pressure: 70 ... measurements or may test different specimens. What Abnormal Results Mean If the CSF looks cloudy, it could ...
[Character of brain interhemispheric relation in children at forming labile arterial hypertension].
Koroleva, N V; Kolesnikov, S I; Bugun, O V; Dolgikh, V V
2010-01-01
Electroencephalography investigations were carried out twice in 26 schoolchildren in the age of 7-8 years and in the age of 9-10 years. The control group included healthy children: the research group included children in whom in the age of 7-8 years the normal level of arterial pressure was registered, and in whom in the age of 9-10 years labile arterial hypertension was revealed. It is revealed, that in children of younger school age forming of the labile form of arterial hypertension is connected whit infringement of processes of age changes of intercortical and cortical-subcortical interrelations and forming of rigidly integrated system of interhemispheric relations. Its mechanism of realization is carried out due to hyperactivation of the right hemisphere and it is incorporated on preclinical stage.
Bret, P; Chazal, J
1995-12-01
"Normal pressure" hydrocephalus (NPH) is generally considered to be a disorder of the adult and geriatric population. Only a few reports have described the possible occurrence of this condition in children. A series of 16 patients aged less than 20 years forms the basis of the present report. Among these 16 patients, 11 had a clearly identified etiologic factor and 7 had had a shunt previously implanted. The majority of patients exhibited at least two elements of the adult's triad of psychomotor retardation (14 cases) and/or psychotic-like symptoms (4 cases), gait anomalies (8 cases), and sphincter disturbances (3 cases). Six patients had their intracranial pressure (ICP) monitored. ICP values were estimated to be within the normal limits for age. All the 16 patients underwent shunting or shunt revision. Surgical results were as follows (mean follow-up 20 +/- 17.2 months): a good response to shunting was obtained in 12 cases ("cured": 5, improved: 7), while the other 4 patients failed to improve. It seems likely that associated parenchymal disorders have played a major role in therapeutic failures. In children showing ventricular dilation on computed tomographic (CT) analysis and a clinical picture of subtle psychomotor deterioration, it may be difficult to distinguish an active disorder of the CSF dynamics from "arrested hydrocephalus." Since intracranial manometry cannot be undertaken as a routine procedure, less invasive methods such as cerebrospinal fluid (CSF) tap test, psychometric, or urodynamic tests deserve special attention as reliable predictors of outcome after shunting. Because most patients undergo shunting without prior assessment of their CSF pressure, the term "chronic hydrocephalus" is proposed as an alternative designation to "NPH," since there is little argument for maintaining an instrumentally based definition of the syndrome.
Surface deformation in volcanic rift zones
Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.
1983-01-01
The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.
A survey of blood pressure in Lebanese children and adolescence
Merhi, Bassem Abou; Al-Hajj, Fatima; Al-Tannir, Mohamad; Ziade, Fouad; El-Rajab, Mariam
2011-01-01
Background: Blood pressure varies between populations due to ethnic and environmental factors. Therefore, normal blood pressure values should be determined for different populations. Aims: The aim of this survey was to produce blood pressure nomograms for Lebanese children in order to establish distribution curves of blood pressure by age and sex. Subjects and Methods: We conducted a survey of blood pressure in 5710 Lebanese schoolchildren aged 5 to 15 years (2918 boys and 2792 girls), and studied the distribution of systolic and diastolic blood pressure in these children and adolescents. Blood pressure was measured with a mercury sphygmomanometer using a standardized technique. Results: Both systolic and diastolic blood pressure had a positive correlation with weight, height, age, and body mass index (r= 0.648, 0.643, 0.582, and 0.44, respectively) (P < .001). There was no significant difference in the systolic and diastolic blood pressure in boys compared to girls of corresponding ages. However, the average annual increase in systolic blood pressure was 2.86 mm Hg in boys and 2.63 mm Hg in girls, whereas the annual increase in diastolic blood pressure was 1.72 mm Hg in boys and 1.48 mm Hg in girls. The prevalence of high and high-normal blood pressure at the upper limit of normal (between the 90th and 95th percentile, at risk of future hypertension if not managed adequately), was 10.5% in boys and 6.9% in girls, with similar distributions among the two sexes. Conclusions: We present the first age-specific reference values for blood pressure of Lebanese children aged 5 to 15 years based on a good representative sample. The use of these reference values should help pediatricians identify children with normal, high-normal and high blood pressure. PMID:22540059
A survey of blood pressure in Lebanese children and adolescence.
Merhi, Bassem Abou; Al-Hajj, Fatima; Al-Tannir, Mohamad; Ziade, Fouad; El-Rajab, Mariam
2011-01-01
Blood pressure varies between populations due to ethnic and environmental factors. Therefore, normal blood pressure values should be determined for different populations. The aim of this survey was to produce blood pressure nomograms for Lebanese children in order to establish distribution curves of blood pressure by age and sex. We conducted a survey of blood pressure in 5710 Lebanese schoolchildren aged 5 to 15 years (2918 boys and 2792 girls), and studied the distribution of systolic and diastolic blood pressure in these children and adolescents. Blood pressure was measured with a mercury sphygmomanometer using a standardized technique. Both systolic and diastolic blood pressure had a positive correlation with weight, height, age, and body mass index (r= 0.648, 0.643, 0.582, and 0.44, respectively) (P < .001). There was no significant difference in the systolic and diastolic blood pressure in boys compared to girls of corresponding ages. However, the average annual increase in systolic blood pressure was 2.86 mm Hg in boys and 2.63 mm Hg in girls, whereas the annual increase in diastolic blood pressure was 1.72 mm Hg in boys and 1.48 mm Hg in girls. The prevalence of high and high-normal blood pressure at the upper limit of normal (between the 90(th) and 95(th) percentile, at risk of future hypertension if not managed adequately), was 10.5% in boys and 6.9% in girls, with similar distributions among the two sexes. We present the first age-specific reference values for blood pressure of Lebanese children aged 5 to 15 years based on a good representative sample. The use of these reference values should help pediatricians identify children with normal, high-normal and high blood pressure.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.; Dolling, David S.
1992-01-01
A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.
[Importance of ambulatory blood pressure monitoring in adolescent hypertension].
Páll, Dénes; Juhász, Mária; Katona, Eva; Lengyel, Szabolcs; Komonyi, Eva; Fülesdi, Béla; Paragh, György
2009-12-06
The prevalence of adolescent hypertension is increasing. The national epidemiological study found 2.5% prevalence, while it is 4.5% according to the newest international survey. Repeated casual blood pressure measurements, but not ambulatory blood pressure monitoring is needed for the diagnosis of adolescent hypertension on the basis of the presently available European guideline. At the last decade growing evidence came into light for ambulatory blood pressure monitoring in adolescence. These data show better correlation with end-organ damages than casual measurements. In patients with hypertension diagnosed based on repeated casual blood pressure measurements, 24-hour monitoring showed normal blood pressure in 21-47%, so this is the rate of white coat hypertension. Masked hypertension can also be diagnosed with the help of this method, which has a prevalence of 7-11%. We can also get useful data for secondary forms of hypertension. Until the appearance of the new European guidelines, more frequent use of ambulatory blood pressure monitoring is affordable. The confirmation of the diagnosis based on elevated casual blood pressure data is important. Ambulatory blood pressure monitoring is suggested in cases suspicious for white coat or masked hypertension, in cases of target organ damages or therapy resistant hypertension. Before administration of pharmaceutical therapy in adolescence hypertension - according to author's opinion - ambulatory blood pressure monitoring is absolutely necessary.
Periodically Relieving Ischial Sitting Load to Decrease the Risk of Pressure Ulcers
Makhsous, Mohsen; Rowles, Diane M.; Rymer, William Z.; Bankard, James; Nam, Ellis K.; Chen, David; Lin, Fang
2010-01-01
Objective To investigate the relieving effect on interface pressure of an alternate sitting protocol involving a sitting posture that reduces ischial support. Design Repeated measures in 2 protocols on 3 groups of subjects. Setting Laboratory. Participants Twenty able-bodied persons, 20 persons with paraplegia, and 20 persons with tetraplegia. Interventions Two 1-hour protocols were used: alternate and normal plus pushup. In the alternate protocol, sitting posture was alternated every 10 minutes between normal (sitting upright with ischial support) and with partially removed ischial support (WO-BPS) postures; in the normal plus pushup protocol, sitting was in normal posture with pushups (lifting the subject off the seat) performed every 20 minutes. Main Outcome Measure Interface pressure on seat and backrest. Results In WO-BPS posture, the concentrated interface pressure observed around the ischia in normal posture was significantly repositioned to the thighs. By cyclically repositioning the interface pressure, the alternate protocol was superior to the normal plus pushup protocol in terms of a significantly lower average interface pressure over the buttocks. Conclusions A sitting protocol periodically reducing the ischial support helps lower the sitting load on the buttocks, especially the area close to ischial tuberosities. PMID:17601466
Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure.
Lahiri, Shouri; Schlick, Konrad H; Padrick, Matthew M; Rinsky, Brenda; Gonzalez, Nestor; Jones, Heather; Mayer, Stephan A; Lyden, Patrick D
2018-01-01
Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P < .0001). This finding was consistent in sensitivity analysis that compared right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations. Copyright © 2017 by the American Society of Neuroimaging.
Pulsating Hydrodynamic Instability in a Dynamic Model of Liquid-Propellant Combustion
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
1999-01-01
Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the disturbance-wavenumber/ pressure-sensitivity plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.
NASA Technical Reports Server (NTRS)
Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)
1999-01-01
Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a non-zero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a non-steady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.
Measurement of anal pressure and motility.
Hancock, B D
1976-01-01
A fine open perfused system and a closed balloon system for the measurement of anal pressure and motility have been compared. Measurements were made in 40 normal subjects and 84 patients with haemorrhoids. The rate of perfusion had a marked effect on the recorded pressure and motility details. The motility pattern was seen most clearly with the balloon probe and the pressure recorded was reproducible and easy to measure, making this a convenient method for recording activity of the internal anal sphincter. Anal motility in normal subjects was characterised by slow pressure waves (10-20/min). The frequency was fastest in the distal anal canal and this frequency gradient may represent a normal mechanism to keep the anal canal empty. Ultra slow pressure waves (0-6-1-9/min) were seen in 42% of patients with haemorrhoids and 5% of normal subjects and arose from a synchronous contraction of the whole internal sphincter. Images Fig. 1 PMID:976803
Fuel cell system shutdown with anode pressure control
Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.
2002-01-01
A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2000-01-01
OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.
Wavelet entropy characterization of elevated intracranial pressure.
Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao
2008-01-01
Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.
NASA Technical Reports Server (NTRS)
Van Dresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
NASA Technical Reports Server (NTRS)
Vandresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence
2005-03-01
2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.
Focus on prevention, diagnosis and treatment of hypertension in children and adolescents
2013-01-01
The European Society of Hypertension has recently published its recommendations on prevention, diagnosis and treatment of high blood pressure in children and adolescents. Taking this contribution as a starting point the Study Group of Hypertension of the Italian Society of Pediatrics together with the Italian Society of Hypertension has conducted a reappraisal of the most recent literature on this subject. The present review does not claim to be an exhaustive description of hypertension in the pediatric population but intends to provide Pediatricians with practical and updated indications in order to guide them in this often unappreciated problem. This document pays particular attention to the primary hypertension which represents a growing problem in children and adolescents. Subjects at elevated risk of hypertension are those overweight, with low birth weight and presenting a family history of hypertension. However, also children who do not present these risk factors may have elevated blood pressure levels. In pediatric age diagnosis of hypertension or high normal blood pressure is made with repeated office blood pressure measurements that show values exceeding the reference values. Blood pressure should be monitored at least once a year with adequate methods and instrumentation and the observed values have to be interpreted according to the most updated nomograms that are adjusted for children’s gender, age and height. Currently other available methods such as ambulatory blood pressure monitoring and home blood pressure measurement are not yet adequately validated for use as diagnostic instruments. To diagnose primary hypertension it is necessary to exclude secondary forms. The probability of facing a secondary form of hypertension is inversely proportional to the child’s age and directly proportional to blood pressure levels. Medical history, clinical data and blood tests may guide the differential diagnosis of primary versus secondary forms. The prevention of high blood pressure is based on correct lifestyle and nutrition, starting from childhood age. The treatment of primary hypertension in children is almost exclusively dietary/behavioral and includes: a) reduction of overweight whenever present b) reduction of dietary sodium intake c) increase in physical activity. Pharmacological therapy will be needed rarely and only in specific cases. PMID:23510329
Bonded ultrasonic transducer and method for making
Dixon, Raymond D.; Roe, Lawrence H.; Migliori, Albert
1995-01-01
An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements.
A transparent bending-insensitive pressure sensor
NASA Astrophysics Data System (ADS)
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Normal-pressure hydrocephalus and the saga of the treatable dementias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedland, R.P.
1989-11-10
A case study of a 74-year-old woman is presented which illustrates the difficulty of understanding dementing illnesses. A diagnosis of normal-pressure hydrocephalus (NPH) was made because of the development of abnormal gait, with urinary incontinence and severe, diffuse, white matter lesions on the MRI scan. Computed tomographic, MRI scans and positron emission tomographic images of glucose use are presented. The treatable dementias are a large, multifaceted group of illnesses, of which NPH is one. The author proposes a new term for this disorder commonly known as NPH because the problem with the term normal-pressure hydrocephalus is that the cerebrospinal fluidmore » pressure is not always normal in the disease.« less
Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.
Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth
2011-10-01
The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.
Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations. PMID:29190788
Ringstad, Geir; Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian
2017-01-01
Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.
2016-01-01
Background: Mankind has always suffered wounds throughout time due to trauma, disease, and lifestyles. Many wounds are non-healing and have continued to be challenging. However, utilizing advanced wound care treatments, such as negative pressure wound treatment with instillation and dwell time (NPWTi-d), has proven beneficial. NPWTi-d is indicated in a variety of wounds, such as trauma, surgical, acute, pressure injuries, diabetic foot ulcers, and venous leg ulcers. Bacteria and bioburden interrupts wound healing by increasing the metabolic needs, ingesting, and robbing the necessary nutrients and oxygen. Instillation therapy is the technique of intermittently washing out a wound with a liquid solution. The mechanism of action is instilling fluid into the wound bed, soaking for a determined time, loosening and cleaning of exudate, contaminants, and/or infection, removing fluid via negative pressure, thus promoting tissue growth. Case study: The patient was diagnosed with a large lymphedema mass on the right upper thigh. Surgical removal of the lymphedema mass was indicated due to interference with quality of life. After a failed flap and surgical debridement, NPWTi-d with normal saline was implemented. Results: The patient had excellent results, with obvious forming of red, beefy granulation, epithelization tissue development, and a cleaner, healthier wound bed. Settings for the NPWTi-d was 18 minutes dwell time, every 2.5 hours with a constant pressure of 125 mm/hg pressure. Conclusion: The NPWTi-d demonstrated to be an instrumental treatment in supporting and stimulating healing. Early application of the treatment with normal saline as the instillation fluid prepared the previously failed wound for quicker healing. PMID:28070472
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Blade Pressure Distribution for a Moderately Loaded Propeller.
1980-09-01
lifting surface, ft 2 s chordwise location as fraction of chord length t time , sec t maximum thickness of blade, ft0 U free stream velocity, ft/sec (design...developed in Reference 1, it takes into account the quadratic form of the Bernoulli equation, since the pertubation velocities are some- times of the...normal derivatives at the loading and control point, respectively. It should be noted that the time factor has been eliminated from both sides of Eq. (3
Graphite pellicles, methods of formation and properties
NASA Astrophysics Data System (ADS)
Topala, P.; Marin, L.; Besliu, V.; Stoicev, P.; Ojegov, A.; Cosovschii, P.
2015-11-01
The paper presents the results of experimental investigations aimed at the establishing the composition and the functional properties of the graphite pellicles formed on the metal surfaces by the action of plasma in the air media at normal pressure applying electrical discharges in impulse (EDI). It shows that they have the same behavior characteristics as fullerene, avoiding the stick effect between metal surfaces and between metal and liquid glass at temperatures of the order of 400-1200 °C.
1981-03-24
north-south trending alluvial basin. The Wah Wah Mountains to the east consist principally of Paleozoic limestones, dolomites , and quartzites with minor...zone of fracture along which there has been displacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface...sample (ASTM D 2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic
Measurement of /sup 14/C emission rates from a pressurized heavy water reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, M.L.; Ramamirtham, B.; Soman, S.D.
Carbon-14 is produced in pressurized heavy water reactors (PHWR), mainly as an activation product in the fuel. It is also produced in the heavy water used as the primary coolant and moderator, and is produced in the air in the annular space between the pressure tube and calandria tubes as well as in the free space in the calandria vault. The production rates in different systems of a PHWR are calculated on the basis of design parameters. During a period of 3 y, /sup 14/C released through the gaseous route has been measured at Rajasthan Atomic Power Station, Kota, India,more » a PHWR unit. These releases have been found to be mainly /sup 14/CO/sub 2/. This reduced form of /sup 14/C is less than 5% of the releases. The normalized releases of /sup 14/C have a geometric mean of 5.17 TBq GWe-1 y-1 and a geometric standard deviation of 1.52. The /sup 14/C present in the form of carbonates in liquid effluents has also been measured and is 0.14% of the gaseous releases.« less
Fluorescence Imaging Study of Impinging Underexpanded Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.
2008-01-01
An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.
Computational Discovery of New Materials Under Pressure
NASA Astrophysics Data System (ADS)
Zurek, Eva
The pressure variable opens the door towards the synthesis of materials with unique properties, ie. superconductivity, hydrogen storage media, high-energy density and superhard materials, to name a few. Indeed, recently superconductivity has been observed below 203 K and 103 K in samples of compressed sulfur dihydride and phosphine, respectively. Under pressure elements that would not normally combine may form stable compounds, or may mix in novel proportions. As a result using our chemical intuition developed at 1 atm to theoretically predict stable phases is bound to fail. In order to enable our search for superconducting hydrogen-rich systems under pressure, we have developed XtalOpt, an open-source evolutionary algorithm for crystal structure prediction. New advances in XtalOpt that enable the prediction of unit cells with greater complexity will be described. XtalOpt has been employed to find the most stable structures of hydrides with unique stoichiometries under pressure. The electronic structure and bonding of the predicted phases has been analyzed by detailed first-principles calculations based on density functional theory. The results of our computational experiments are helping us to build chemical and physical intuition for compressed solids.
Relationships between blood pressure and health and fitness-related variables in obese women.
Shin, Jeong Yeop; Ha, Chang Ho
2016-10-01
[Purpose] The present study aimed to separately compare systolic blood pressure and diastolic blood pressure with health and fitness-related variables among Asian obese and normal weight middle-aged women. [Subjects and Methods] The study included 1,201 women aged 30-59 years. The participants were classified into obese and normal weight groups. The blood pressure and health and fitness-related variables of all participants were assessed. [Results] Significant interaction effects were observed for most blood pressure and health and fitness-related variables between the groups. However, significant interaction effects were not observed for standard weight, basal metabolic rate, and heart rate. Blood pressure showed significant positive correlations with weight, body fat, fat weight, core fat, body mass index, and basal metabolic rate in both groups. Systolic blood pressure was significantly correlated with muscular endurance, power, and agility in the obese group and with VO2max and flexibility in the normal weight group. Diastolic blood pressure was significantly correlated with muscular endurance and power in the obese group and with VO2max in the normal weight group. [Conclusion] The relationships between systolic blood pressure and heart rate, muscle endurance, power, and agility are stronger than the relationships between diastolic blood pressure and these variables.
NASA Astrophysics Data System (ADS)
Kishor, Ram; Kushvah, Badam Singh
2017-09-01
For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold-Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range 0<μ<μ1=\\bar{μc} due to failure of the Arnold-Moser theorem. However, perturbation parameters affect the values of μ at which D4=0, significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future.
Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia
2016-10-03
Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yano, Yuichiro; Sato, Yuji; Fujimoto, Shouichi; Konta, Tsuneo; Iseki, Kunitoshi; Moriyama, Toshiki; Yamagata, Kunihiro; Tsuruya, Kazuhiko; Yoshida, Hideaki; Asahi, Koichi; Kurahashi, Issei; Ohashi, Yasuo; Watanabe, Tsuyoshi
2012-01-01
OBJECTIVE To examine whether there is a difference in the association between high pulse pressure and proteinuria, independent of other blood pressure (BP) indices, such as systolic or diastolic BP, among subjects with diabetes, prediabetes, or normal glucose tolerance. RESEARCH DESIGN AND METHODS Using a nationwide health checkup database of 228,778 Japanese aged ≥20 years (mean 63.2 years; 39.3% men; none had pre-existing cardiovascular disease), we examined the association between high pulse pressure, defined as the highest quintile of pulse pressure (≥63 mmHg, n = 40,511), and proteinuria (≥1+ on dipstick, n = 12,090) separately in subjects with diabetes (n = 27,913), prediabetes (n = 100,214), and normal glucose tolerance (n = 100,651). RESULTS The prevalence of proteinuria was different among subjects with diabetes, prediabetes, and normal glucose tolerance (11.3 vs. 5.0 vs. 3.9%, respectively; P < 0.001). In subjects with diabetes, but not those with prediabetes or normal glucose tolerance, high pulse pressure was associated with proteinuria independently of significant covariates, including systolic BP (odds ratio 1.15 [95% CI 1.04–1.28]) or diastolic or mean BP (all P < 0.01). In patients with diabetes, a +1 SD increase of pulse pressure (+13 mmHg) was associated with proteinuria, even after adjustment for systolic BP (1.07 [1.00–1.13]) or diastolic or mean BP (all P < 0.05). CONCLUSIONS Among the Japanese general population, there was a significant difference in the association between high pulse pressure and proteinuria among subjects with diabetes, prediabetes, and normal glucose tolerance. Only in diabetes was high pulse pressure associated with proteinuria independent of systolic, diastolic, or mean BP levels. PMID:22474041
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
Acharya, Rajendra; Tan, Peck Ha; Subramaniam, Tavintharan; Tamura, Toshiyo; Chua, Kuang Chua; Goh, Seach Chyr Ernest; Lim, Choo Min; Goh, Shu Yi Diana; Chung, Kang Rui Conrad; Law, Chelsea
2008-02-01
Diabetes is a disorder of metabolism-the way our bodies use digested food for growth and energy. The most common form of diabetes is Type 2 diabetes. Abnormal plantar pressures are considered to play a major role in the pathologies of neuropathic ulcers in the diabetic foot. The purpose of this study was to examine the plantar pressure distribution in normal, diabetic Type 2 with and without neuropathy subjects. Foot scans were obtained using the F-scan (Tekscan USA) pressure measurement system. Various discrete wavelet coefficients were evaluated from the foot images. These extracted parameters were extracted using the discrete wavelet transform (DWT) and presented to the Gaussian mixture model (GMM) and a four-layer feed forward neural network for classification. We demonstrated a sensitivity of 100% and a specificity of more than 85% for the classifiers.
Accelerated degradation of polyetheretherketone and its composites in the deep sea
Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-01-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed. PMID:29765645
Accelerated degradation of polyetheretherketone and its composites in the deep sea.
Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-04-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.
Ultrafast eclogite formation via melting-induced overpressure
NASA Astrophysics Data System (ADS)
Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng
2017-12-01
The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.
Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. Ferri's Clinical Advisor 2016 . Philadelphia, PA: Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders of cerebrospinal fluid circulation. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yrjas, P.; Hupa, M.
1997-12-31
In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less
Huang, Ling; Xie, Chen; Zhang, Lifeng; Meng, Liying; Li, Guizheng; Li, Yang; Huang, Bing; Pan, Linghui; Tang, Zhanhong
2017-01-01
To discuss the influence of intermittently monitoring on endotracheal tube cuff pressure using handheld pressure gauge, and to provide some reference for the clinical work. The experiment was carried out on the model of the glass tube, which was divided into three parts. Each part of the experiment was divided into normal pressure group and high pressure group according to the different inflation pressure target value. The endotracheal tube cuff pressure was determined intermittently by using the transparent tracheal models which had a static diameter of 2 cm. The target press value of normal pressure group was 32 cmH 2 O (1 cmH 2 O = 0.098 kPa) while that of high pressure group was 40 cmH 2 O. The handheld pressure gauge was connected with the indicated cuff through a tee joint, and the pressure in the cuff in both groups was determined. The pressure loss caused by intermittent measurement of the two groups was compared. By switching the tee joint, the pressure loss through the gauge self-structure and the pressure loss when connecting and disconnecting the indicated cuff were determined to analyze the causes of pressure loss caused by intermittent measurement of pressure gauge. The pressure loss caused by intermittent measurement of high pressure group was significantly higher than that of normal pressure group (cmH 2 O: 15.10±0.43 vs. 10.19±0.45) with statistical significance (t = -24.875, P = 0.000). The pressure loss through the gauge self-structure of high pressure group was also significantly higher than that of normal pressure group (cmH 2 O: 13.91±0.48 vs. 8.77±0.53), which showed a statistics significance (t = -22.854, P = 0.000). The pressure loss when connecting and disconnecting the indicated cuff of the normal pressure and high pressure groups were (1.33±0.49) cmH 2 O and (1.23±0.55) cmH 2 O, respectively, without statistics significance (t = 0.445, P = 0.662). It was figured that the total pressure loss caused by intermittent measurement of the endotracheal intubation cuff was approximately equal to the value of the pressure loss caused by the pressure gauge self-structure and the pressure loss when the indicated cuff was connected and disconnected [normal pressure group: (10.19±0.45) cmH 2 O ≍ (8.77±0.53) cmH 2 O + (1.33±0.49) cmH 2 O, high pressure group: (15.10±0.43) cmH 2 O ≍ (13.91±0.48) cmH 2 O + (1.23±0.55) cmH 2 O]. The intermittently monitoring on endotracheal tube cuff pressure is the main cause of the pressure loss. The total pressure loss consists of the pressure leak from the cuff to the gauge and the pressure leak when connecting and disconnecting the gauge and the indicated cuff during each test. When the pressure in the cuff is increased, it will cause more pressure loss.
Superconducting energy storage magnet
NASA Technical Reports Server (NTRS)
Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)
1993-01-01
A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.
Efficiency at Sorting Cards in Compressed Air
Poulton, E. C.; Catton, M. J.; Carpenter, A.
1964-01-01
At a site where compressed air was being used in the construction of a tunnel, 34 men sorted cards twice, once at normal atmospheric pressure and once at 3½, 2½, or 2 atmospheres absolute pressure. An additional six men sorted cards twice at normal atmospheric pressure. When the task was carried out for the first time, all the groups of men performing at raised pressure were found to yield a reliably greater proportion of very slow responses than the group of men performing at normal pressure. There was reliably more variability in timing at 3½ and 2½ atmospheres absolute than at normal pressure. At 3½ atmospheres absolute the average performance was also reliably slower. When the task was carried out for the second time, exposure to 3½ atmospheres absolute pressure had no reliable effect. Thus compressed air affected performance only while the task was being learnt; it had little effect after practice. No reliable differences were found related to age, to length of experience in compressed air, or to the duration of the exposure to compressed air, which was never less than 10 minutes at 3½ atmospheres absolute pressure. PMID:14180485
Smith, R L; Lin, J; Trindade, M C; Shida, J; Kajiyama, G; Vu, T; Hoffman, A R; van der Meulen, M C; Goodman, S B; Schurman, D J; Carter, D R
2000-01-01
The normal loading of joints during daily activities causes the articular cartilage to be exposed to high levels of intermittent hydrostatic pressure. This study quantified effects of intermittent hydrostatic pressure on expression of mRNA for important extracellular matrix constituents. Normal adult bovine articular chondrocytes were isolated and tested in primary culture, either as high-density monolayers or formed aggregates. Loaded cells were exposed to 10 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for periods of 2, 4, 8, 12, and 24 hrs. Other cells were intermittently loaded for a period of 4 hrs per day for 4 days. Semiquantitative reverse transcription polymerase chain reaction assays were used to assess mRNA signal levels for collagen types II and I and aggrecan. The results showed that type II collagen mRNA signal levels exhibited a biphasic pattern, with an initial increase of approximately five-fold at 4 and 8 hrs that subsequently decreased by 24 hrs. In contrast, aggrecan mRNA signal increased progressively up to three-fold throughout the loading period. Changing the loading profile to 4 hrs per day for 4 days increased the mRNA signal levels for type II collagen nine-fold and for aggrecan twenty-fold when compared to unloaded cultures. These data suggest that specific mechanical loading protocols may be required to optimally promote repair and regeneration of diseased joints.
Huang, P-Y; Lin, C-F; Kuo, L-C; Liao, J-C
2011-12-01
This study evaluates foot pressure and center of pressure (COP) patterns in individuals with ankle instability during running and lateral shuffling. Eleven participants with ankle instability (AI) and 11 normal subjects (Normal) performed running and lateral shuffling tasks. The outcome measures were foot progression angle, peak pressure, and displacement of COP during stance phase. During running, the foot progression angle, that is, the angle of foot abduction, was lower in the AI group (Normal: 13.46° ± 4.45°; AI: 8.78° ± 3.91°), and the 1st metatarsal contact pressure (Normal: 0.76 ± 0.47 N/cm(2)·kg; AI: 1.05 ± 0.70 N/cm(2)·kg) and the 3rd metatarsal peak pressure were higher in the AI (Normal: 0.96 ± 0.60 N/cm(2)·kg; AI: 1.54 ± 0.68 N/cm(2)·kg). The medial-lateral (M-L) COP in the late-stance phase of running for the AI group transferred faster from lateral to medial foot than the Normal group. For lateral shuffling, the AI group had greater peak pressure at the 1st (Normal: 0.76 ± 0.67 N/cm(2)·kg; AI: 1.49 ± 1.04 N/cm(2)·kg), 2nd (Normal: 0.57 ± 0.39 N/cm(2)·kg; AI: 0.87 ± 0.68 N/cm(2)·kg), 3rd (Normal: 0.70 ± 0.54 N/cm(2)·kg; AI: 1.42 ± 0.87 N/cm(2)·kg), and 4th (Normal: 0.52 ± 0.38 N/cm(2)·kg; AI: 1.12 ± 0.78 N/cm(2)·kg) metatarsal areas than the Normal group. The M-L COP located more laterally from the early to mid-stance phase in the AI compared with the Normal group. The findings suggest that COP displacement during lateral shuffle may be a factor in ankle instability while the foot progression angle during running may be a compensatory strategy. © 2011 John Wiley & Sons A/S.
Lü, Xilin; Zhai, Xinle; Huang, Maosong
2017-11-01
This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gravitational Influences on Flame Propagation Through Non-Uniform, Premixed Gas Systems
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Easton, John; Marchese, Anthony; Hovermann, Fred
2003-01-01
Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized recently and in previous Microgravity Workshop papers, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our recent findings on gravitational effects on layered combustion along a floor, in which the fuel concentration gradient exists normal to the direction of flame spread. In an effort to understand the mechanism by which the flames spread faster in microgravity (and much faster, in laboratory coordinates, than the laminar burning velocity for uniform mixtures), we have begun making pressure measurements across the spreading flame front that are described here. Earlier researchers, testing in 1g, claimed that hydrostatic pressure differences could account for the rapid spread rates. Additionally, we present the development of a new apparatus to study flame spread in free (i.e., far from walls), non-homogeneous fuel layers formed in a flow tunnel behind an airfoil that has been tested in normal gravity.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
Polymer thick-film conductors and dielectrics for membrane switches and flexible circuitry
NASA Technical Reports Server (NTRS)
Nazarenko, N.
1983-01-01
The fabrication and operation of membrane switches are discussed. The membrane switch functions as a normally open, momentary contact, low-voltage pressure-sensitive device. Its design is a three-layer sandwich usually constructed of polyester film. Conductive patterns are deposited onto the inner side of top and bottom sheets by silk screening. The center spacer is then placed between the two circuit layers to form a sandwich, generally held together by an adhesive. When pressure is applied to the top layer, it flexes through the punched openings of the spacer to establish electrical contact between conductive pads of the upper and lower sheets, momentarily closing the circuit. Upon release of force the top sheet springs back to its normal open position. The membrane touch switch is being used in a rapidly expanding range of applications, including instrumentation, appliances, electronic games and keyboards. Its board acceptance results from its low cost, durability, ease of manufacture, cosmetic appeal and design flexibility. The principal electronic components in the membrane switch are the conductor and dielectric.
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Harding, G. C.; Diskin, G. S.
2001-01-01
An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.
Entropy in Spacetime and Topological Hair
NASA Astrophysics Data System (ADS)
Hyun, Young-Hwan; Kim, Yoonbai
2018-01-01
Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.
Pengpid, Supa; Peltzer, Karl; Skaal, Linda
2014-06-06
In persons 15 years and above in South Africa the prevalence of pre-diabetes and diabetes has been estimated at 9.1% and 9.6%, respectively, and the prevalence of systolic prehypertension and hypertension, 38.2% and 24.6%, respectively. Elevated blood glucose and elevated blood pressure are prototype of preventable chronic cardiovascular disease risk factors.Lifestyle interventions have been shown to control high normal blood pressure and/or high normal blood glucose. This study proposes to evaluate the efficacy of a community (church)-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members in a randomized controlled trial in Gauteng, South Africa. The objectives are to: (1) measure non-communicable diseases profile, including hypertension and diabetes, health behaviours, weight management and psychological distress of church members; (2) measure the reduction of blood glucose and blood pressure levels after the intervention; (3) prevent the development of impaired glucose tolerance; (4) compare health behaviours, weight management and psychological distress, blood glucose and blood pressure levels between intervention and control groups, and within group during 6, 12, 24 and 36 months during and post intervention. The study will use a group-randomized design, recruiting 300 church members from 12 churches. Churches will be randomly assigned to experimental and control conditions. Lifestyle interventions may prevent from the development of high blood pressure and/or diabetes. The findings will impact public health and will enable the health ministry to formulate policy related to lifestyle interventions to control blood pressure and glucose. PACTR201105000297151.
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
Hypergeometric Equation in Modeling Relativistic Isotropic Sphere
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Ragel, F. C.
2014-04-01
We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.
Bonded ultrasonic transducer and method for making
Dixon, R.D.; Roe, L.H.; Migliori, A.
1995-11-14
An ultrasonic transducer is formed as a diffusion bonded assembly of piezoelectric crystal, backing material, and, optionally, a ceramic wear surface. The mating surfaces of each component are silver films that are diffusion bonded together under the application of pressure and heat. Each mating surface may also be coated with a reactive metal, such as hafnium, to increase the adhesion of the silver films to the component surfaces. Only thin silver films are deposited, e.g., a thickness of about 0.00635 mm, to form a substantially non-compliant bond between surfaces. The resulting transducer assembly is substantially free of self-resonances over normal operating ranges for taking resonant ultrasound measurements. 12 figs.
An investigation of the flow characteristics in the blade endwall corner region
NASA Technical Reports Server (NTRS)
Hazarika, Birinchi K.; Raj, Rishi S.
1987-01-01
Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.
NASA Astrophysics Data System (ADS)
Bakulin, V. N.; Danilkin, E. V.; Nedbai, A. Ya.
2018-05-01
A study has been made of the dynamic stability of a cylindrical orthotropic shell stiffened with a hollow cylinder and inhomogeneous longitudinal diaphragms under the action of axial forces and pulsating external pressure. The influence of the cylinder and diaphragms on the stability of the shell was taken account of in the form of elastic foundations whose moduli of subgrade reaction are determined from the equations of a three-dimensional theory of elasticity and the Timoshenko model respectively. A solution to the equation of motion of the shell has been found in the form of a trigonometric circumferential-coordinate series. To construct the principal region of instability of the shell, a binomial approximation was used in the obtained Mathieu-Hill equations. As a result, the problem was reduced to a system of two algebraic equations for normal displacement of the shell at diaphragm installation sites. For uniformly spaced identical diaphragms, a solution has been obtained in explicit form. The dependences of the principal region of instability of the shell on the number and rigidity of the diaphragms have been determined at different radii of the cylinder channel.
Preparation of powders suitable for conversion to useful .beta.-aluminas
Morgan, Peter E. D.
1982-01-01
A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION
The Influence of Backrest Inclination on Buttock Pressure
Park, Un Jin
2011-01-01
Objective To assess the effects of backrest inclination of a wheelchair on buttock pressures in spinal cord injured (SCI) patients and normal subjects. Method The participants were 22 healthy subjects and 22 SCI patients. Buttock pressures of the participants were measured by a Tekscan® pressure sensing mat and software while they were sitting in a reclining wheelchair. Buttock pressures were recorded for 90°, 100°, 110°, 120° and 130° seat-to-back angles at the ischial tuberosity (IT) and sacrococcygeal (SC) areas. Recordings were made at each angle over four seconds at a sampling rate of 10 Hz. Results The side-to-side buttock pressure differences in the IT area for the SCI patients was significantly greater than for the normal subjects. There was no significant difference between the SCI patients and the normal subjects in the buttock pressure change pattern of the IT area. Significant increases in pressure on the SC area were found as backrest inclination angle was changed to 90°, 100° and 110° in the normal subjects, but no significant differences were found in the SCI patients. Conclusion Most of the SCI patients have freeform posture in wheelchairs, and this leads to an uneven distribution of buttock pressure. In the SCI patients, the peak pressure in the IT area reduced as the backrest angle was increased, but peak pressure at the SC area remained relatively unchanged. To reduce buttock pressure and prevent pressure ulcers and enhance ulcer healing, it can be helpful for tetraplegic patients, to have wheelchair seat-to-back angles above 120°. PMID:22506220
Wang, Guangye; Huang, Wenjun; Song, Qi; Liang, Jinfeng
2017-11-01
This study aims to analyze the contact areas and pressure distributions between the femoral head and mortar during normal walking using a three-dimensional finite element model (3D-FEM). Computed tomography (CT) scanning technology and a computer image processing system were used to establish the 3D-FEM. The acetabular mortar model was used to simulate the pressures during 32 consecutive normal walking phases and the contact areas at different phases were calculated. The distribution of the pressure peak values during the 32 consecutive normal walking phases was bimodal, which reached the peak (4.2 Mpa) at the initial phase where the contact area was significantly higher than that at the stepping phase. The sites that always kept contact were concentrated on the acetabular top and leaned inwards, while the anterior and posterior acetabular horns had no pressure concentration. The pressure distributions of acetabular cartilage at different phases were significantly different, the zone of increased pressure at the support phase distributed at the acetabular top area, while that at the stepping phase distributed in the inside of acetabular cartilage. The zones of increased contact pressure and the distributions of acetabular contact areas had important significance towards clinical researches, and could indicate the inductive factors of acetabular osteoarthritis. Copyright © 2016. Published by Elsevier Taiwan.
Physical Activity, BMI, and Blood Pressure in US Youth: NHANES 2003-2006.
Betz, Heather Hayes; Eisenmann, Joey C; Laurson, Kelly R; DuBose, Katrina D; Reeves, Mathew J; Carlson, Joseph J; Pfeiffer, Karin A
2018-03-15
The objective of this study was to examine the independent and combined association of physical activity and body mass index (BMI) with blood pressure in youth. Youth aged 8-18 years from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) with BMI, blood pressure, and physical activity (accelerometer) were included in the analyses. A total of 2585 subjects (1303 males; 47% of all 8- to 18-year-olds) met these criteria. Obese youth had a systolic blood pressure that was 8 mm Hg higher than normal weight youth. A significant interaction between BMI and physical activity on blood pressure was found (P < .001), and group differences among the BMI/activity groups showed that the 3 obese groups and the overweight/least active group had significantly higher systolic blood pressure than the normal weight/active group across all analyses. The overweight/least active and normal weight/least active groups had significantly higher diastolic blood pressure than the normal weight/active group as well. This study showed a significant independent and combined association of BMI and physical activity with blood pressure in youth. Interventions need to focus on the reduction of fatness/BMI as a way to reduce the cardiovascular risk in youth.
Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C
2006-01-01
AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803
Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan
2016-02-01
High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. Copyright © 2015 Elsevier B.V. All rights reserved.
Carter, Yvette; Roy, Madhuchhanda; Sippel, Rebecca S.; Chen, Herbert
2012-01-01
Background Primary aldosteronism caused by an aldosterone producing adrenal tumor/aldosteronoma (APA), is a potentially curable form of hypertension, via unilateral adrenalectomy. Resolution of hypertension (HTN) is not as prevalent after tumor resection, as are the normalization of aldosterone secretion, hypokalemia, and other metabolic abnormalities. Here, we review the immediate and long term medical outcomes of laparoscopic adrenalectomy in patients with an APA, and attempt to identify any distinctive gender differences in the management of resistant hypertension. Materials and Methods We performed a retrospective review of the prospective Adrenal database at the University of Wisconsin between January 2001 and October 2010. Of the 165 adrenalectomies performed, thirty-two were for the resection of an aldosteronoma (APA). Patients were grouped according to their post-operative hypertension status. Those patients with normal blood pressure (<120/80 mmHg) and on no anti-hypertensive medication (CURE) were compared to those who continued to required medication for blood pressure control (HTN). We evaluated gender, age, body mass index (BMI), tumor size, duration of time with high blood pressure, and the differences in systolic and diastolic blood pressure following adrenalectomy. Statistical analysis was performed utilizing student’s t test. Statistical significance was defined as a p value < 0.05. Results We identified 32 patients with an APA based on biochemical and radiographic studies, two patients were excluded, due to missing data. There were 19 males (63%) and 11 (37%) females, with a mean age was 48.3 ± 2.1 years, and mean tumor size was 24 ± 3 mm. Post-operatively, patients required significantly fewer anti-hypertensive medications (1.5 ± 0.2 vs. 3.3 ± 0.3, p<0.001). Nine patients (31%) had complete resolution of their hypertension, requiring no post-operative anti-hypertensive medication. The only significant difference between the genders, was a lower BMI in women (27.6 ± 1.7 versus 33.4 ± 2.1 kg/m2, p=0.04). 90% of the cohort had at least a 20 mmHg decline in their systolic blood pressure post-operatively, placing them in the pre-hypertensive or normal blood pressure categories. 66% of the CURE patients required at least six months for resolution of their hypertension. All twenty patients who presented with hypokalemia, had immediate resolution post-operatively, and did not require continuance of the pre-operative spironolactone or potassium supplementation. Conclusions Laparoscopic adrenalectomy for aldosterone producing adenoma results in the normalization of, or more readily manageable blood pressure in 90% of patients, within six months. Metabolic disturbances are immediately corrected with tumor resection. Weight is an important contributing factor in resolving hypertension. PMID:22921664
Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice
NASA Astrophysics Data System (ADS)
Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng
2014-03-01
The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.
Kim, Y I; Fluckiger, L; Hoffman, M; Lartaud-Idjouadiene, I; Atkinson, J; Maincent, P
1997-02-01
1. The therapeutic use of nifedipine is limited by the rapidity of the onset of its action and its short biological half-life. In order to produce a form devoid of these disadvantages we made nanoparticles of nifedipine from three different polymers, poly-epsilon-caprolactone (PCL), polylactic and glycolic acid (1:1) copolymers (PLAGA), and Eudragit RL/RS (Eudragit). Nifedipine in polyethylene glycol 400 (PEG) solution was used as a control. 2. The average diameters of the nanoparticles ranged from 0.12 to 0.21 micron; the encapsulation ratio was 82% to 88%. 3. In spontaneously hypertensive rats (SHR), the initial rapid fall in systolic arterial blood pressure following oral administration of nifedipine in PEG solution (from 193 +/- 3 to 102 +/- 2 mmHg) was not seen following administration of the same dose in Eudragit nanoparticles (from 189 +/- 2 to 156 +/- 2 mmHg); with PCL and PLAGA nanoparticles the initial fall in blood pressure was significantly reduced (nadirs PCL 124 +/- 2 and PLAGA 113 +/- 2 mmHg). Ten hours following administration, blood pressure in rats administered the nifedipine/PEG preparation had returned to normal (183 +/- 3 mmHg) whereas that of animals given nifedipine in nanoparticles (PCL 170 +/- 3, PLAGA 168 +/- 2, Eudragit 160 +/- 3 mmHg) was still significantly reduced. 4. All of the nanoparticle dosage forms decreased Cmax and increased Tmax and the mean residence time (MRT) values. Relative bioavailability was significantly increased with Eudragit nanoparticles compared to the nifedipine/PEG solution. 5. There was an inverse linear correlation between the fall in blood pressure and plasma nifedipine concentration with all preparations. 6. The nanoparticle nifedipine preparations represent sustained release forms with increased bioavailability, a less pronounced initial antihypertensive effect and a long-lasting action.
The effect of continuous positive airway pressure on middle ear pressure.
Lin, Fred Y; Gurgel, Richard K; Popelka, Gerald R; Capasso, Robson
2012-03-01
While continuous positive airway pressure (CPAP) is commonly used for obstructive sleep apnea treatment, its effect on middle ear pressure is unknown. The purpose of this study was to measure the effect of CPAP on middle ear pressure and describe the correlation between CPAP levels and middle ear pressures. Retrospective review of normal tympanometry values and a prospective cohort evaluation of subjects' tympanometric values while using CPAP at distinct pressure levels. A total of 3,066 tympanograms were evaluated to determine the normal range of middle ear pressures. Ten subjects with no known history of eustachian tube dysfunction or obstructive sleep apnea had standard tympanometry measurements while wearing a CPAP device. Measurements were taken at baseline and with CPAP air pressures of 0, 5, 10, and 15 cm H(2)O. The percentage of normal control patients with middle ear pressures above 40 daPa was 0.03%. In the study population, prior to a swallowing maneuver to open the eustachian tube, average middle ear pressures were 21.67 daPa, 22.63 daPa, 20.42, daPa, and 21.58 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2) 0, respectively. After swallowing, average middle ear air pressures were 18.83 daPa, 46.75 daPa, 82.17 daPa, and 129.17 daPa with CPAP pressures of 0, 5, 10, and 15 cm H(2)0, respectively. The postswallow Pearson correlation coefficient correlating CPAP and middle ear pressures was 0.783 (P < 0.001). Middle ear air pressure is directly proportional to CPAP air pressure in subjects with normal eustachian tube function. Middle ear pressure reaches supraphysiologic levels at even minimal CPAP levels. Although further investigation is necessary, there may be otologic implications for patients who are chronically CPAP dependent. These findings may also influence the perioperative practice of otologic and skull base surgeons. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Modulation of apelin and APJ receptor in normal and preeclampsia-complicated placentas.
Cobellis, L; De Falco, M; Mastrogiacomo, A; Giraldi, D; Dattilo, D; Scaffa, C; Colacurci, N; De Luca, A
2007-01-01
Apelin is an endogenous ligand of the human orphan receptor APJ. This peptide is produced through processing from the C-terminal portion in the pre-pro-protein consisting of 77 amino acid residues and exists in multiple molecular forms. Although the main physiological functions of apelin have not yet been clarified, it is known that apelin is involved in the regulation of blood pressure, blood flow and central control of body fluid homeostasis in different organs. Since human placenta is a tissue where vasculogenesis, blood pressure and flow are dramatically important to allow a normal embryonic and fetal growth and development, the aim of the present study was to investigate the immunohistochemical distribution of apelin and APJ in normal placentas throughout pregnancy and in preeclampsia-complicated placentas. Specifically, we observed that in normal placentas the expression levels of apelin decreased from the first to the third trimester of gestation in both cytotrophoblast and syncytiotrophoblast cells and in the stroma of placental villi, in contrast with increased expression levels of APJ in the cytoplasm of cytotrophoblast cells and in the cytoplasm of endothelial cells of normal placenta samples. In contrast, in preeclampsia-complicated pregnancies, we observed a very strong increase of expression levels of both apelin and APJ receptor in all the placental compartments, cytotrophoblast, syncytiotrophoblast and stroma with a particular increase in endothelial cells inside preeclamptic placental villi. Our data seem to indicate an important role of apelin and APJ in the regulation of fetal development through a correct regulation of human placenta formation during pregnancy. Moreover, the strong expression levels of apelin and APJ in preeclamptic placentas, suggest their possible involvement in the onset of this pathology.
Rihácek, I; Frána, P; Schwarz, D; Plachý, M; Soucek, M
2010-09-01
Ambulatory blood pressure monitoring provides an opportunity to evaluate 24-hour efficacy of once daily preparations. To evaluate 24-hour efficacy of losartan in patients with newly diagnosed hypertension and metabolic syndrome using the parametric population RDH index and normalized smoothness index. Twenty seven patients with newly diagnosed hypertension and with metabolic syndrome, sufficiently responding to blood pressure therapy with losartan, assessed using sphygmomanometer. 18 men, 9 women, mean age of 48 years, body mass index of 32.6 kg.m(-2), before and after 1 year of therapy with losartan in the mean dose of 69 mg once a day. Blood pressure measured with sphygmomanometer and 24-hour ambulatory monitoring (SpaceLabs 90207) according to the European Society of Hypertension criteria. Hypertension was defined as sphygmomanometer-measured blood pressure values of more than or equal to 130 and/or 85 mm Hg. Fulfilment of at least 3 criteria of metabolic syndrome according to the definition by The Adult Treatment Panel III. The population normalized smoothness index of losartan (+/- standard error of the mean) was 1.10 +/- 0.13 for systolic pressure, 0.81 +/- 0.11 for diastolic pressure and 1.00 +/- 0.14 for mean arterial blood pressure. The parametric population RDH index of 24, 24, 0 for systolic pressure and 24, 24, 0 for diastolic pressure. Losartan at a mean dose of 69 mg once daily showed an adequate 24-hour efficacy in patients with newly diagnosed hypertension and metabolic syndrome responding to treatment when blood pressure was measured using sphygmomanometer and the effect expressed as the parametric population RDH index for systolic as well as diastolic pressure and when evaluating normalized smoothness index based on systolic blood pressure value and mean arterial pressure.
Intra-ocular pressure normalization technique and equipment
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1979-01-01
A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-biassed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.
Microstrucutral Modeling of Hot Spot and Failure Mechanisms in RDX Energetic Aggregates
2014-01-01
with applications to disposable blood pressure cuffs . He graduated cum laude with a Bachelors of Science degree in Mechanical Engineering in May of...35 Figure 4.2. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d...39 Figure 4.6. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d) Accumulated plastic shear
NASA Technical Reports Server (NTRS)
Hunton, Lynn W.; Dew, Joseph K.; Salisbury, Ralph D.
1949-01-01
Wind-tunnel tests at low Mach number of a Republic F-84C airplane were conducted to determine by pressure-distribution measurements the air loads on wing-tip tanks and the change in wing load distribution due to the presence of tip tanks. Measurements of the aeroelastic twist of the wing were also obtained. Results are presented in the form of loading coefficient, center-of- pressure location, pitching-moment coefficient, aerodynamic-center location, and aeroelastic twist. The investigation revealed that the redistributions in loading brought about by either the tip tanks or elastic deformation of the wing were relatively small when compared with the chnnges in loading normally associated with the deflection of an aileron.
NASA Technical Reports Server (NTRS)
2000-01-01
This document reports on the progress in developing hybrid sensors for the simultaneous measurement of pressure and shear stress. The key feature for the success of the proposed hybrid sensor array is the ability to deposit Cu-Ni alloy with proper composition (55 - 45) on a silicon wafer to form a strain gage. This alloy strain gage replaces the normally used Si strain gages in MEMS, which are highly nonlinear and temperature dependent. The copper nickel, with proper composition (55 - 45), was successfully deposited on a silicon wafer with a few trials during this period of the project. Pictures of the Cu-Ni alloy strain gage and the x-ray spectra indicating the composition are shown. The planned tests are also reviewed.
Fission gas release restrictor for breached fuel rod
Kadambi, N. Prasad; Tilbrook, Roger W.; Spencer, Daniel R.; Schwallie, Ambrose L.
1986-01-01
In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.
Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study
NASA Astrophysics Data System (ADS)
Wong, Jerry T.; Molloi, Sabee
2008-07-01
Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.
Peng, Jie; Zhao, Yingxin; Zhang, Hua; Liu, Zhendong; Wang, Zhihao; Tang, Mengxiong; Zhong, Ming; Lu, Fanghong; Zhang, Wei
2015-02-01
High-normal blood pressure is considered a precursor of stage 1 hypertension that is associated with metabolic disorders. This study aims to investigate whether the pharmacologic treatment of high-normal blood pressure affects metabolism, especially in abdominally obese individuals, and the pharmacoeconomics of two antihypertensive agents, telmisartan and indapamide. Subjects with high-normal blood pressure were randomly assigned to receive telmisartan, indapamide or placebo for 3 years. All the subjects were instructed to modify their lifestyle to reduce blood pressure throughout the study. A total of 221 subjects were randomly assigned to telmisartan, 213 to indapamide and 230 to placebo. After the 3-year intervention, blood pressure was lower in the telmisartan and indapamide groups (P<0.05), FPG in the telmisartan group was lower during the first 2 years (P<0.05) and no characteristic differences were found in those with abdominal obesity among the three groups (P>0.05). The percentage of subjects with metabolic syndrome was significantly decreased in the telmisartan and indapamide groups (P<0.05), but was only significantly decreased in the telmisartan group for subjects with abdominal obesity (P<0.05). The acquisition cost for telmisartan was ~1.86 times higher than for indapamide for a similar antihypertensive effect. The intervention for high-normal blood pressure with telmisartan and indapamide appeared to be feasible and reduced the risk of metabolic syndrome. Telmisartan was more effective, whereas indapamide had better pharmacoeconomic benefits.
Hozawa, Atsushi; Ohkubo, Takayoshi; Obara, Taku; Metoki, Hirohito; Kikuya, Masahiro; Asayama, Kei; Totsune, Kazuhito; Hashimoto, Junichiro; Hoshi, Haruhisa; Arai, Yumiko; Satoh, Hiroshi; Hosokawa, Toru; Imai, Yutaka
2006-11-01
To explore the effect of personality on screening blood pressures measured in clinical settings and home blood pressure measurements. From 1997 to 1999, 699 participants underwent screening and home blood pressure measurements and completed the Japanese version of the short-form Eysenck personality questionnaire. An increased screening blood pressure was defined as screening blood pressure > or = 140/90 mmHg and an increased home blood pressure was defined as home blood pressure > or = 135/85 mmHg. Participants with lower extroversion scores (i.e., introversion) showed a greater difference between screening and home systolic blood pressure. The association between introversion and differences was statistically significant, even after adjustment for other possible factors (younger age, female, wide screening pulse pressure, never smoked, and no antihypertensive medication). The adjusted means of SBP differences were 7.3 and 4.4 mmHg among the lowest and highest extroversion quartiles, respectively (P for trend = 0.02). Other personality scores (psychoticism or neuroticism) were not associated with screening and home blood pressure differences. The incorporation of an extroversion score in the basic model consisting of the above factors that affected the difference between screening and home blood pressure slightly improved the prediction of a high home blood pressure. The area under the receiver operating characteristic curve increased by 0.037 among participants with high screening blood pressure and 0.006 for those with normal screening blood pressure compared with the basic model. Physicians may need to be aware of 'introverted' patients who have high blood pressure in clinic settings, because they have the potential for 'white-coat' hypertension.
NASA Astrophysics Data System (ADS)
Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.
2014-12-01
During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized ore bodies by the single action of fluid overpressure fluctuations, undergoing changes in local stress distribution and (iii) a final tectonic activation of fault linked to last basinal fluid and hydrocarbon migration during which shear stress restoration on fault plane is faster than fluid pressure build-up.
Reversible grasp reflexes in normal pressure hydrocephalus.
Thomas, Rhys H; Bennetto, Luke; Silva, Mark T
2009-05-01
We present two cases of normal pressure hydrocephalus in combination with grasp reflexes. In both cases the grasp reflexes disappeared following high volume cerebrospinal fluid removal. In one of the cases the grasp reflexes returned over a period of weeks but again resolved following definitive cerebrospinal fluid shunting surgery, and remained absent until final follow up at 9 months. We hypothesise that resolving grasp reflexes following high volume CSF removal has both diagnostic and prognostic value in normal pressure hydrocephalus, encouraging larger studies on the relevance of primitive reflexes in NPH.
Komotar, Ricardo J; Zacharia, Brad E; Mocco, J; Kaiser, Michael G; Frucht, Stephen J; McKhann, Guy M
2008-10-01
In this case report, we present a patient with normal pressure hydrocephalus in whom a lumbar drainage trial yielded a false-negative result secondary to cervical spondylosis. An 80-year-old woman presented with classic symptoms of normal pressure hydrocephalus as well as evidence of cervical myelopathy. Magnetic resonance imaging of the brain and spine showed enlarged ventricles and single-level cervical canal narrowing. An initial lumbar drainage trial was performed, which revealed negative results. The patient then underwent cervical decompression and fusion. Despite this procedure, the patient's symptoms continued to worsen. A repeat lumbar drainage trial was performed with positive results. Subsequently, a ventriculoperitoneal shunt was placed, resulting in significant improvement of her symptoms. This case report illustrates how altered cerebrospinal fluid flow dynamics may impact the accuracy of the lumbar spinal drainage trial in patients with normal pressure hydrocephalus.
NASA Technical Reports Server (NTRS)
Covell, P. F.
1982-01-01
A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.
Pressure and kinetic energy transport across the cavity mouth in resonating cavities.
Bailey, Peter Roger; Abbá, Antonella; Tordella, Daniela
2013-01-01
Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which could be observed in simulations where the full compressible formulation is used. The flow is studied by means of a sequence of direct numerical simulations in the Reynolds number range 25-2900. This allows the study to span across the steady laminar regime up to a first coarse turbulent regime. These results are confirmed by the good agreement with a set of laboratory results obtained at a Reynolds number one order of magnitude larger in a different cavity geometry [M. Gharib and A. Roshko, J. Fluid Mech. 177, 501 (1987)]. This leaves room for a certain degree of qualitative universality to be associated with the present findings.
Prominence condensation and magnetic levitation in a coronal loop
NASA Technical Reports Server (NTRS)
Van Hoven, G.; Mok, Y.; Drake, J. F.
1992-01-01
The results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of the normal-polarity Kippenhahn-Schlueter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, elucidates the various contributions to the nonlinear dynamics of prominence condensation and levitation.
Lower Blood Pressure-Induced Renal Hypoperfusion Promotes Cisplatin-Induced Nephrotoxicity.
Mizuno, Tomohiro; Hayashi, Takahiro; Shimabukuro, Yuka; Murase, Maho; Hayashi, Hiroki; Ishikawa, Kazuhiro; Takahashi, Kazuo; Yuzawa, Yukio; Yamada, Shigeki; Nagamatsu, Tadashi
2016-01-01
Cisplatin-induced nephrotoxicity primarily occurs in the proximal tubules, and tubular injuries reduce glomerular filtration rates. Lower blood pressure causes renal hypoperfusion, which promotes ischemic acute kidney injury (AKI). Our study examined the relationship between lower blood pressure-induced renal hypoperfusion and cisplatin-induced nephrotoxicity. The relationship between cisplatin use and hypoalbuminemia is not clear. This study consisted of Japanese patients who received cisplatin as the first-line chemotherapy at Fujita Health University Hospital from April 2006 to December 2012. Hypoalbuminemia was defined as serum albumin levels ≤3.5 mg/dl. Patients who experienced lower blood pressure during chemotherapy were included in the lower blood pressure group (n = 229), and those who did not were included in the normal blood pressure group (n = 743). Total cisplatin dose in the normal blood pressure and lower blood pressure groups was 58.9 ± 23.8 and 55.0 ± 20.4 mg/m2, respectively. The rate of severe nephrotoxicity was higher and overall survival was shorter in the lower blood pressure group than in the normal blood pressure group. In a multivariable analysis, lower blood pressure significantly correlated with hypoalbuminemia. To prevent ischemic AKI, nutrition and cachexia controlling are important parts of cancer treatment. © 2016 S. Karger AG, Basel.
Columnar phase of pyramidic amphiphiles spread at the air-water interface
NASA Astrophysics Data System (ADS)
El Abed, A.; Muller, P.; Peretti, P.; Gallet, F.; Billard, J.
1993-06-01
Two compounds, forming thermotropic liquid-crystalline phases in the bulk, were spread at the air-water interface. For both compounds, the surface pressure versus molecular area diagrams exhibit a large domain of molecular areas where the surface pressure of the film is quasi-constant. This plateau region of the isotherms corresponds to a transition from a monolayer in a liquid-expanded phase to a metastable condensed monolayer in which the molecules may adopt an “edge-on” arrangement. In this arrangement, the base of the pyramidic core is normal to the air-water interface. The film was also observed by means of fluorescence and polarizing microscopy. These techniques allowed us to show the formation of anisotropic slowly growing multilayered domains from the “edge-on” monolayer. An original method, based on the light reflectivity of the domains, was developed to measure their thickness and their optical anisotropy. The results show that these domains are formed by an arrangement of the molecules in rectilinear columns for one compound and in spiral columns for the other compound.
Portal hypertension: a review of portosystemic collateral pathways and endovascular interventions.
Pillai, A K; Andring, B; Patel, A; Trimmer, C; Kalva, S P
2015-10-01
The portal vein is formed at the confluence of the splenic and superior mesenteric vein behind the head of the pancreas. Normal blood pressure within the portal system varies between 5 and 10 mmHg. Portal hypertension is defined when the gradient between the portal and systemic venous blood pressure exceeds 5 mmHg. The most common cause of portal hypertension is cirrhosis. In cirrhosis, portal hypertension develops due to extensive fibrosis within the liver parenchyma causing increased vascular resistance. In addition, the inability of the liver to metabolise certain vasodilators leads to hyperdynamic splanchnic circulation resulting in increased portal blood flow. Decompression of the portal pressure is achieved by formation of portosystemic collaterals. In this review, we will discuss the pathophysiology, anatomy, and imaging findings of spontaneous portosystemic collaterals and clinical manifestations of portal hypertension with emphasis on the role of interventional radiology in the management of complications related to portal hypertension. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
A Classic Test of the Hubbert-Rubey Weakening Mechanism: M7.6 Thrust-Belt Earthquake Taiwan
NASA Astrophysics Data System (ADS)
Yue, L.; Suppe, J.
2005-12-01
The Hubbert-Rubey (1959) fluid-pressure hypothesis has long been accepted as a classic solution to the problem of the apparent weakness of long thin thrust sheets. This hypothesis, in its classic form argues that ambient high pore-fluid pressures, which are common in sedimentary basins, reduce the normalized shear traction on the fault τb/ρ g H = μb(1-λb) where λb=Pf/ρ g H is the normalized pore-fluid pressure and μb is the coefficient of friction. Remarkably, there have been few large-scale tests of this classic hypothesis. Here we document ambient pore-fluid pressures surrounding the active frontal thrusts of western Taiwan, including the Chulungpu thrust that slipped in the 1999 Mw7.6 Chi-Chi earthquake. We show from 3-D mapping of these thrusts that they flatten to a shallow detachment at about 5 km depth in the Pliocene Chinshui Shale. Using critical-taper wedge theory and the dip of the detachment and surface slope we constrain the basal shear traction τb/ρ g H ≍ 0.1 which is substantially weaker than common lab friction values of of Byerlee's law (μb= 0.85-0.6). We have determined the pore-fluid pressures as a function of depth in 76 wells, based on in-situ formation tests, sonic logs and mud densities. Fluid pressures are regionally controlled stratigraphically by sedimentary facies. The top of overpressures is everywhere below the base of the Chinshui Shale, therefore the entire Chinshui thrust system is at ambient hydrostatic pore-fluid pressures (λb ≍ 0.4). According to the classic Hubbert-Rubey hypothesis the required basal coefficient of friction is therefore μb ≍ 0.1-0.2. Therefore the classic Hubbert & Rubey mechanism involving static ambient excess fluid pressures is not the cause of extreme fault weakening in this western Taiwan example. We must look to other mechanisms of large-scale fault weakening, many of which are difficult to test.
CFD Tools for Design and Simulation of Transient Flows in Hypersonic Facilities
2010-03-24
Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...OF ABSTRACT SAR 18. NUMBER OF PAGES 78 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE ...R ρR ( 75 ) and a pressure flux p 1 2 = p+L + p − R (76) and a normal-momentum flux (ρu2) 1 2 as a blend of AUSMV and AUSMD fluxes (ρu2)AUSMV = u+L ρL
Porosity variations in and around normal fault zones: implications for fault seal and geomechanics
NASA Astrophysics Data System (ADS)
Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra
2015-04-01
Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a clear lithofacies control on the Vp-porosity and the Vs-Vp relationships for faulted limestones. Using porosity patterns quantified in naturally deformed rocks we have modelled their effect on the mechanical stability of fluid-saturated fault zones in the subsurface. Poroelasticity theory predicts that variations in fluid pressure could influence fault stability. Anisotropic patterns of porosity in and around fault zones can - depending on their orientation and intensity - lead to an increase in fault stability in response to a rise in fluid pressure, and a decrease in fault stability for a drop in fluid pressure. These predictions are the exact opposite of the accepted role of effective stress in fault stability. Our work has provided new data on the spatial and statistical variation of porosity in fault zones. Traditionally considered as an isotropic and scalar value, porosity and pore networks are better considered as anisotropic and as scale-dependent statistical distributions. The geological processes controlling the evolution of porosity are complex. Quantifying patterns of porosity variation is an essential first step in a wider quest to better understand deformation processes in and around normal fault zones. Understanding porosity patterns will help us to make more useful predictive tools for all agencies involved in the study and management of fluids in the subsurface.
Statistics of indicated pressure in combustion engine.
NASA Astrophysics Data System (ADS)
Sitnik, L. J.; Andrych-Zalewska, M.
2016-09-01
The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.
NASA Astrophysics Data System (ADS)
Aghaei Jouybari, Mostafa; Yuan, Junlin
2017-11-01
Direct numerical simulations of turbulent channel flows are carried out over two surfaces: a synthesized sand-grain surface and a realistic turbine roughness that is characterized by more prominent large-scale surface features. To separate the effects of wall-normal variation of the roughness area fraction from the (true) variation of flow statistics, the governing equations are area-averaged using intrinsic averaging, contrary to the usually practice based on the total area (i.e., superficial averaging). Additional terms appear in the mean-momentum equation resulted from the wall-normal variation of the solid fraction and play a role in the near-wall balance. Results from surfaces with a step solidity function (e.g., cubes) will also be discussed. Compared to the sand grains, the turbine surface generates stronger form-induced fluctuations, despite weaker dispersive shear stress. This is associated with more significant form-induced productions (comparable to shear production) in Reynolds stress budgets, weaker pressure work, and, consequently, more anisotropic redistribution of turbulent kinetic energy in the roughness sublayer, which potentially leads to different turbulent responses between the two surfaces in non-equilibrium flows.
Analysis of the nonlinearity of Asian summer monsoon intraseasonal variability using spherical PDFs
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Hannachi, Abdel
2013-04-01
The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this paper the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading EOFs of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using a Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). Relationship to large scale flow are also investigated and discussed.
NASA Astrophysics Data System (ADS)
Geng, Lin; Zhang, Xiao-Zheng; Bi, Chuan-Xing
2015-05-01
Time domain plane wave superposition method is extended to reconstruct the transient pressure field radiated by an impacted plate and the normal acceleration of the plate. In the extended method, the pressure measured on the hologram plane is expressed as a superposition of time convolutions between the time-wavenumber normal acceleration spectrum on a virtual source plane and the time domain propagation kernel relating the pressure on the hologram plane to the normal acceleration spectrum on the virtual source plane. By performing an inverse operation, the normal acceleration spectrum on the virtual source plane can be obtained by an iterative solving process, and then taken as the input to reconstruct the whole pressure field and the normal acceleration of the plate. An experiment of a clamped rectangular steel plate impacted by a steel ball is presented. The experimental results demonstrate that the extended method is effective in visualizing the transient vibration and sound radiation of an impacted plate in both time and space domains, thus providing the important information for overall understanding the vibration and sound radiation of the plate.
A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.
Brighenti, Chiara; Gnudi, Gianni; Avanzolini, Guido
2003-05-01
This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.
Elstad, C A; Meadows, G G
1993-01-01
We previously showed that restriction of tyrosine (Tyr) and phenylalanine (Phe) in vivo dramatically suppresses the metastatic phenotype of B16-BL6 (BL6) murine melanoma. Present results indicate a direct effect of Tyr and Phe restriction on the tumor in the absence of host selection pressures. Lung colonizing ability of BL6 is dramatically suppressed after one passage in vitro in media containing low levels of Tyr and Phe. This antimetastatic effect is immediate, stable for at least 5 in vitro passages in Tyr and Phe restricted media, and evident event after levels of Tyr and Phe are restored to normal. Heterogeneity for lung colonizing ability is suppressed, as evidence by fewer tumor colonies formed by clones following i.v. inoculation into mice fed normal diet. This suppression of BL6 metastatic phenotype is not due to differential clearance and retention in the lung or to decreased growth, but is specific for these two amino acids. As the mechanism(s) for the antitumor effects of Tyr and Phe restriction are detailed, the relevance of Tyr and Phe restriction as an early adjuvant to effective cancer treatment can be explored.
Axial-Force Reduction by Interference Between Jet and Neighboring Afterbody
NASA Technical Reports Server (NTRS)
Pitts, William C.; Wiggins, Lyle E.
1960-01-01
Experimental results are presented for an exploratory investigation of the effectiveness of interference between jet and afterbody in reducing the axial force on an afterbody with a neighboring jet. In addition to the interference axial force., measurements are presented of the interference normal force and the center of pressure of the interference normal force. The free-stream Mach number was 2.94, the jet-exit Mach number was 2.71, and the Reynolds number was 0.25 x 10, based on body diameter. The variables investigated include static-pressure ratio of the jet (up to 9), nacelle position relative to afterbody, angle of attack (-5 deg to 10 deg), and afterbody shape. Two families of afterbody shapes were tested. One family consisted of tangent-ogive bodies of revolution with varying length and base areas. The other family was formed by taking a planar slice off a circular cylinder with varying angle between the plane and cylinder. The trends with these variables are shown for conditions near maximum jet-afterbody interference. The interference axial forces are large and favorable. For several configurations the total afterbody axial force is reduced to zero by the interference.
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.
1993-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modem turbine blades. This experimental program is one part of the NASA Hot Section Technology (HOST) Initiative, which has as its overall objective the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. The objective of this program was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. The experimental work was broken down into two phases. Phase 1 consists of experiments conducted in a smooth wall large scale heat transfer model. A detailed discussion of these results was presented in volume 1 of a NASA Report. In Phase 2 the large scale model was modified to investigate the effects of skewed and normal passage turbulators. The results of Phase 2 along with comparison to Phase 1 is the subject of this Volume 2 NASA Report.
Koto, A; Rosenberg, G; Zingesser, L H; Horoupian, D; Katzman, R
1977-01-01
A patient with clinical features of idiopathic normal pressure hydrocephalus, who responded dramatically to shunting, was found a necropsy to have a severe hypertensive and arteriosclerotic vasculopathy with multiple lacunar infarcts. There was no pathological evidence of thickened leptomeninges, fibrosis of the arachnoid villi, or Alzheimer's disease. An abnormal absorption mechanism was demonstrated with cisternography and by an increase in the concentration of homovanillic acid in the cerebrospinal fluid. It is suggested that vascular changes may play an important role in the pathophysiology in some cases of normal pressure hydrocephalus. Images PMID:845610
Nakajima, Masatoshi; Hosaka, Keiichi; Yamauti, Monica; Foxton, Richard M; Tagami, Junji
2006-06-01
To evaluate the bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure. 18 extracted human molars with occlusal caries were used. Their occlusal dentin surfaces were ground flat to expose normal and caries-affected dentin using #600 SiC paper under running water. Clearfil SE Bond was placed on the dentin surface including the caries-affected dentin according to the manufacturer's instructions and then the crowns were built up with resin composite (Clearfil AP-X) under either a pulpal pressure of 15 cm H2O or none (control). The bonded specimens were stored in 100% humidity for 1 day (control) or for 1 week and 1 month with hydrostatic pulpal pressure. After storage, the specimens were serially sectioned into 0.7 mm-thick slabs and trimmed to an hour-glass shape with a 1 mm2 cross-section, isolated by normal or caries-affected dentin, and then subjected to the micro-tensile bond test. Data were analyzed by two-way ANOVA and Tukey's test (P< 0.05). Hydrostatic pulpal pressure significantly reduced the bond strength to normal dentin after 1-month storage (P< 0.05), but did not affect the bond strength to caries-affected dentin.
Insole-pressure distribution for normal children in different age groups.
Liu, Xue-Cheng; Lyon, Roger; Thometz, John G; Curtin, Brian; Tarima, Serge; Tassone, Channing
2011-09-01
In measuring plantar pressures during gait, earlier methods have used a platform system that does not take into account the interactions feet have with orthotics and shoe wearing. The purpose of the study was to provide normal insole plantar pressure parameter data during stance phase using the Pedar pressure insole system. Twenty-nine normal children, age 6 to 16 years, were recruited and walked along the 25 m walkway at self-selected speeds. Patients were divided into 2 separate groups for statistical analysis--juniors (< 12 y old) and teenagers (> 13 y old). The pressure map was divided into 8 regions (masks) determined by anatomic landmarks and a total of 7 pressure parameters were analyzed of each mask. We did not detect significant differences in foot pressures between juniors and teenagers when regarding sex, or left and right feet for 7 parameters measured. This normative data will provide a basis with which to more accurately assess pediatric pathologic foot deformities and to distinguish dynamic foot deformities from anatomic foot deformities. THE LEVEL OF EVIDENCE: Level II.
Chen, Z H; Zhang, M; Li, Y C; Zhao, Z P; Zhang, X; Huang, Z J; Li, C; Wang, L M
2018-05-10
Objective: To study the relationship between blood pressure level and major risk factors for cardiovascular diseases in adults in China. Methods: A total of 179 347 adults aged ≥18 years were recruited from 298 surveillance points in 31 provinces in China in 2013 through complex multistage stratified sampling. The survey included face to face interview and physical examination to collect information about risk factors, such as smoking, drinking, diet pattern, physical activity, overweight or obesity, and the prevalence of hypertension. The blood pressure was classified into 6 levels (ideal blood pressure, normal blood pressure, normal high blood pressure and hypertension phase Ⅰ, Ⅱ and Ⅲ). The relationship between the prevalence or co-prevalence of risk factors for cardiovascular disease and blood pressure was analyzed. Results: The adults with ideal blood pressure, normal blood pressure, normal high pressure, hypertension phase Ⅰ, Ⅱ and Ⅲ accounted for 36.14 % , 22.77 % , 16.22 % , 16.43 % , 5.97 % and 2.48 % , respectively. Among them, the blood pressure was higher in men, people in Han ethnic group and those married, and the blood pressure was higher in those with older age, lower income level and lower education level, the differences were all significant ( P <0.05). Whether taking antihypertensive drug or not, co-prevalence of risk factors influenced the blood pressure levels of both sexes ( P <0.05), and the blood pressure levels of those taking no antihypertensive drug was influenced more by the co-prevalence of risk factors. Finally, multiple logistic analysis showed that the risks for high blood pressure in adults with 1, 2 and ≥3 risk factors were 1.36, 1.79 and 2.38 times higher, respectively, than that of the adults without risk factor. Conclusion: The more the risk factors for cardiovascular disease in adults, the higher their blood pressure were. It is necessary to conduct comprehensive behavior intervention targeting ≥ 2 risk factors for the better control of blood pressure in general population.
Blood pressure normalization post-jugular venous balloon angioplasty.
Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael
2015-05-01
This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the association between blood pressure deviation and internal jugular veins narrowing, and whether blood pressure normalization affects Patient's clinical outcomes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Spine immobilization apparatus
NASA Technical Reports Server (NTRS)
Lambson, K. H.; Vykukal, H. C. (Inventor)
1981-01-01
The apparatus makes use of a normally flat, flexible bladder filled with beads or micro-balloons that form a rigid mass when the pressure within the bladder is decreased below ambient through the use of a suction pump so that the bladder can be conformed to the torso of the victim and provide the desired restraint. The bladder is strapped to the victim prior to being rigidified by an arrangement of straps which avoid the stomach area. The bladder is adapted to be secured to a rigid support, i.e., a rescue chair, so as to enable removal of a victim after the bladder has been made rigid. A double sealing connector is used to connect the bladder to the suction pump and a control valve is employed to vary the pressure within the bladder so as to soften and harden the bladder as desired.
Synchronized oscillations and acoustic fluidization in confined granular materials
NASA Astrophysics Data System (ADS)
Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.
2018-01-01
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
Tracing the evolution of the two energy gaps in magnesium diboride under pressure
NASA Astrophysics Data System (ADS)
Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.
2015-04-01
We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.
Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N
2006-12-01
The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
Neonatal Treatment with Antiserum to Prolactin Lowers Blood Pressure in Rats
NASA Astrophysics Data System (ADS)
Mills, David E.; Buckman, Maire T.; Peake, Glenn T.
1982-07-01
Prolactin administration reportedly increases blood pressure in rats and rabbits. To study the effects of prolactiin deficiency on blood pressure, rats were given saline, normal rabbit serum, or rabbit antiserum to rat prolactin on postnatal days 2 to 5. Both males and females given antiserum had significantly lower blood pressure at 14 weeks than rats given saline or normal rabbit serum. Blood pressure differences between females given antiserum and females given saline disappeared during and following pregnancy. The antiserum also lowered the concentration of prolactin in plasma 49 percent in males and decreased the prolactin response to ether stress in both sexes. These results suggest that endogenous prolactin is involved in blood pressure regulation.
Plasma lipid profile in Nigerians with high--normal blood pressure.
Saidu, Hadiza; Karaye, Kamilu Musa; Okeahialam, Basil N
2014-12-18
High blood pressure levels have been associated with elevated atherogenic blood lipid fraction, but epidemiological surveys often give inconsistent results across population sub-groups. To determine the extent to which there are differences in lipid profile based on blood pressure levels, we assessed lipid profile of subjects with high-normal blood pressure and compared with those of hypertensives and optimally normal blood pressure. The study was a cross-sectional comparative study conducted at Aminu Kano Teaching Hospital, Kano, Nigeria. Fasting lipid levels were examined among randomly selected patients with optimally normal blood pressure (group 1), high-normal blood pressure (group 2) and those with hypertension (group 3). Optimal blood pressure was defined as systolic blood pressure (SBP) of <120 mmHg/or diastolic blood pressure (DBP) of <80 mmHg; and high-normal blood pressure as SBP of 130-139 mmHg and/or DBP of 85-89 mmHg. A total of 300 subjects were studied, 100 in each group. The mean age of subjects in group 1 was 27.32±8.20 years and 60% were female, while that of group 2 was 34.04±6.25 years, and 53% were female, and that for group 3 was 52.81±13.3 years and 56% were female. The mean total cholesterol (TC) for subjects in group1 (3.96±0.40 mmol/L) was significantly lower than levels in group2 (4.55±1.01 mmol/L); P=<0.001. Subjects in group 3 (5.20±1.88 mmol/L), however had statistically significant higher mean TC when compared with group 2; (P=0.03). The difference between the groups for low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) followed the same pattern as that of TC, with statistically significant increasing trend across the blood pressure categories. Levels of high density lipoprotein cholesterol (HDL-C) were however similar across the three groups (group 2 versus group 1; P=0.49, group 2 versus group 3; P=0.9). Increased TC (>5.2 mmol/L) was absent in group1, but found among 11% of group2 subjects and 40% of those in group 3 (P-value for trend<0.001). Mean fasting plasma glucose (FPG) was 3.8±0.4 mmol/L, 4.7±1.1 mmol/L, 5.1±1.9 mmol/L and for subjects in groups 1, 2 and 3 respectively (p>0.05 for groups 2 Vs 1 and p<0.001 for groups 2 Vs 3). The differences in mean body mass index (BMI) between the groups followed a similar trend as that of FPG. Multivariate logistic regression analysis showed that FPG, TG and BMI were the strongest predictors of prehypertension [odds ratio (OR) 10.14, 95% CI (confidence interval) 3.63-28.33, P=0.000; OR 5.75, 95% CI 2.20-15.05, P=0.000; and OR 2.03, 95% CI 1.57-2.62, P=0.000 respectively]. The study has shown a significant increase in plasma TC, LDL-C and TG values as blood pressure levels increased from optimally normal, across high-normal to hypertensive levels. There was a similar trend for FPG and BMI, demonstrating the central role that blood pressure plays in these metabolic disorders in Nigerians. These findings are relevant in terms of both prevention and treatment of cardiovascular morbidities and mortality.
NASA Technical Reports Server (NTRS)
Stahlberg, R.; Cosgrove, D. J.
1995-01-01
Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100 mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40 mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40 kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite Px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic 'wound' responses, which occur independently of the short-distance or direct wound responses.
NASA Astrophysics Data System (ADS)
Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi
2018-05-01
Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.
Viscous pressure correction in the irrotational flow outside Prandtl's boundary layer
NASA Astrophysics Data System (ADS)
Joseph, Daniel; Wang, Jing
2004-11-01
We argue that boundary layers on solid with irrotational motion outside are like a gas bubble because the shear stress vanishes at the edge of the boundary layer but the irrotational shear stress does not. This discrepancy induces a pressure correction and an additional drag which can be advertised as due to the viscous dissipation of the irrotational flow. Typically, this extra correction to the drag would be relatively small. A much more interesting implication of the extra pressure theory arises from the consideration of the effects of viscosity on the normal stress on a solid boundary which are entirely neglected in Prandtl's theory. It is very well known and easily demonstrated that as a consequence of the continuity equation the viscous normal stress must vanish on a rigid solid. It follows that all the greatly important effects of viscosity on the normal stress are buried in the pressure and the leading order effects of viscosity on the normal stress can be obtained from the viscous correction of viscous potential flow.
Normal forms for Hopf-Zero singularities with nonconservative nonlinear part
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh; Sanders, Jan A.
In this paper we are concerned with the simplest normal form computation of the systems x˙=2xf(x,y2+z2), y˙=z+yf(x,y2+z2), z˙=-y+zf(x,y2+z2), where f is a formal function with real coefficients and without any constant term. These are the classical normal forms of a larger family of systems with Hopf-Zero singularity. Indeed, these are defined such that this family would be a Lie subalgebra for the space of all classical normal form vector fields with Hopf-Zero singularity. The simplest normal forms and simplest orbital normal forms of this family with nonzero quadratic part are computed. We also obtain the simplest parametric normal form of any non-degenerate perturbation of this family within the Lie subalgebra. The symmetry group of the simplest normal forms is also discussed. This is a part of our results in decomposing the normal forms of Hopf-Zero singular systems into systems with a first integral and nonconservative systems.
Asari, Yusa; Yamasaki, Yoshioki; Tsuchida, Kosei; Suzuki, Kengo; Akashi, Yoshihiro J; Okazaki, Takahiro; Ozaki, Shoichi; Yamada, Hidehiro; Kawahata, Kimito
2018-05-18
To clarify whether patients with connective tissue disease (CTD)-associated borderline mean pulmonary artery pressure (mPAP) have distinctive hemodynamic characteristics from those with normal mPAP and whether pathogenesis is as heterogeneous as manifest pulmonary hypertension (PH). Seventy-five CTD patients who underwent right heart catheterization (RHC) from 2008 through 2016 were retrospectively analyzed. We compared between-group differences in clinical and hemodynamic findings: normal mPAP (n = 35), borderline mPAP (n = 15), and PH (n = 25). A therapeutic intervention trial based on RHC results was performed in nine patients. The values of tricuspid regurgitation pressure gradient (TRPG) in patients with borderline mPAP were comparable at rest but became higher after exercise compared to those with a normal mPAP (P = 0.01). Pulmonary artery wedge pressure in patients with borderline mPAP was higher than in those with normal mPAP (P < 0.0001) and comparable to those with PH. Each of the three patients was treated for pre-capillary and post-capillary disease and two for interstitial lung disease (ILD). During the mean follow-up period of 40 months, mPAP or TRPG normalized in all patients treated for pre-capillary and post-capillary disease. One patient with severe ILD developed to PH and died from it. CTD patients with borderline mPAP, the underlining pathogenesis of which is heterogeneous as PH, have distinctive hemodynamic characteristics from those with normal mPAP. Whether a specific treatment targeting the inflammatory process or local hemodynamics may alter the clinical course to PH is a topic for future research.
Estimating Blade Section Airloads from Blade Leading-Edge Pressure Measurements
NASA Technical Reports Server (NTRS)
vanAken, Johannes M.
2003-01-01
The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind (DNW) Tunnel acquired blade pressure data for forward flight test conditions of a tiltrotor in helicopter mode. Chordwise pressure data at seven radial locations were integrated to obtain the blade section normal force. The present investigation evaluates the use of linear regression analysis and of neural networks in estimating the blade section normal force coefficient from a limited number of blade leading-edge pressure measurements and representative operating conditions. These network models are subsequently used to estimate the airloads at intermediate radial locations where only blade pressure measurements at the 3.5% chordwise stations are available.
Normal-pressure Tests of Circular Plates with Clamped Edges
NASA Technical Reports Server (NTRS)
Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel
1942-01-01
A fixture is described for making normal-pressure tests of flat plates 5 inches in diameter in which particular care was taken to obtain rigid clamping at the edges. Results are given for 19 plates, ranging in thickness from 0.015 to 0.072 inch. The center deflections and the extreme-fiber stresses at low pressures were found to agree with theoretical values; the center deflections at high pressures were 4 to 12 percent greater than the theoretical values. Empirical curves are derived of the pressure for the beginning of permanent set as a function of the dimensions of the plate and the tensile properties of the material.
Petrisor, Bradley; Sun, Xin; Bhandari, Mohit; Guyatt, Gordon; Jeray, Kyle J; Sprague, Sheila; Tanner, Stephanie; Schemitsch, Emil; Sancheti, Parag; Anglen, Jeff; Tornetta, Paul; Bosse, Michael; Liew, Susan; Walter, Stephen
2011-09-01
Open fractures are an important source of morbidity and are associated with delayed union, nonunion, and infection. Preventing infection through meticulous irrigation and debridement is an important goal in management, and different lavage fluids and irrigation techniques (e.g., high- or low-pressure lavage) have been described for this purpose. However, there are a limited number of randomized trials comparing irrigating solutions or irrigating technique. We compared the use of castile soap versus normal saline and high- versus low-pressure pulsatile lavage on the rates of reoperations and complications in patients with open fracture wounds. We conducted a multicenter, blinded, randomized 2 × 2 factorial pilot trial of 111 patients in whom an open fracture wound was treated with either castile soap solution or normal saline and either high- or low-pressure pulsatile lavage. The primary composite outcome of reoperation, measured at 12 months after initial operative procedure, included infection, wound healing problems, and nonunion. Planned reoperations were not included. Secondary outcomes included all infection, all wound healing problems, and nonunion as well as functional outcomes scores (EuroQol-5 dimensions and short form-12). Eighty-nine patients completed the 1-year follow-up. Among all patients, 13 (23%) in the castile soap group and 13 (24%) in the saline group had a primary outcome event (hazard ratio, 0.91, 95% confidence interval: 0.42-2.00, p = 0.52). Sixteen patients (28%) in the high-pressure group and 10 patients (19%) in the low-pressure group had a primary outcome event (hazard ratio 0.55, 95% confidence interval: 0.24-1.27, p = 0.17). Functional outcome scores showed no significant differences at any time point between groups. The fluid lavage of open wounds pilot randomized controlled trial demonstrated the possibility that the use of low pressure may decrease the reoperation rate for infection, wound healing problems, or nonunion. We have demonstrated the desirability and feasibility of a definitive trial examining the effects of alternative irrigation approaches.
Savolainen, S; Paljärvi, L; Vapalahti, M
1999-01-01
During 1991-1995, 223 patients were investigated in the Department of Neurosurgery, Kuopio University Hospital because of a clinical and CT diagnosis of NPH. All patients underwent intracranial pressure measurements and were formed into 3 biopsy groups. Group A included incidentally biopsied patients (104 patients, 34 biopsies) seen during 1991-1992; Group B was a prospective study group from 1993-1995 (all 51 patients biopsied); and Group C patients excluded from Group B (68 patients, 34 biopsies) by age and concomitant diseases. A cortical biopsy was taken before intracranial pressure recording altogether in 118 of the 223 patients. The biopsy revealed normal brain tissue in 66 patients. Prevalence of Alzheimer's disease (AD) in biopsied patients was 42% in Group A, 31.3% in Group B and 50% in Group C. A shunt was placed according to pressure measurement in 110 patients; of these, 8 had both AD and raised ICP. Two patients with both AD and raised ICP improved after shunt placement during the first follow-up year, 4 patients deteriorated and the condition of 2 was similar to that before shunting. The frequency of haematomas after biopsy was 2.9% in groups A and C; in Group B patients had no postoperative haematomas. There was no difference in the incidence of complications in patients who had or did not have a biopsy. The relatively high prevalence of AD in patients with NPH may explain the unsuccessful recovery of many patients after shunt placement. Cortical biopsy is an effective and safe method for finding the co-existence of AD and thus improving the diagnosis of NPH and may prevent unnecessary shunt surgery.
Scott, Bonnie M; Maye, Jacqueline; Jones, Jacob; Thomas, Kelsey; Mangal, Paul C; Trifilio, Erin; Hass, Chris; Marsiske, Michael; Bowers, Dawn
2016-07-01
Exercise "stress tests" are widely used to assess cardiovascular function and to detect abnormalities. In line with the view of exercise as a stressor, the present study examined the relationship between cognitive function and cardiovascular activity before and after light physical exercise in a sample of 84 non-demented community-dwelling older adults. Based on known relationships between hypertension, executive function and cerebral white matter changes, we hypothesized that greater post-exercise reactivity, as indexed by higher pulse pressure, would be more related to worse performance on frontal-executive tasks than pre-exercise physiologic measures. All participants were administered a comprehensive neuropsychological battery and underwent a Six Minute Walk Test (6MWT), with blood pressure (BP) measures obtained immediately before and after the walk. Pulse pressure (PP) was derived from BP as an indicator of vascular auto-regulation and composite scores were computed for each cognitive domain assessed. As predicted, worse executive function scores exhibited a stronger relationship with post-exercise PP than pre-exercise PP. Results suggest that PP following system stress in the form of walking may be more reflective of the state of vascular integrity and associated executive dysfunction in older adults than baseline physiologic measures.
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Postigo Pozo, Sergio
2017-01-01
Tire characteristics and behavior are of great importance in vehicle dynamics since the forces transmitted in the tire-road contact are the main contributors to global vehicle performance. Several research groups have focused on the study and modeling of tires. Some of the most important factors that need to be known are tread characteristics and pressure distribution in the tire-ground contact patch. In this work, a test bench has been used to adequately determine the aforementioned factors. The measurement principle of the test bench is the frustration of total internal reflection (FTIR) of light. It makes use of a laterally illuminated glass on which the tire leans. An interposed plastic interface between them causes the reflection of light. Finally, a video camera captures the bright image formed through the glass. The brightness level in each pixel of the image is related to existing normal pressure. A study of the parameters that affect the test bench calibration such as type of interface material used, diffuse light, hysteresis, creep and transverse light absorption is performed. Experimental tests are conducted to relate tire inflation pressure and camber angle to the pressure distribution. Furthermore, the test bench is used to detect and evaluate the influence of defects in the tire on the contact pressures. PMID:28353674
Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Postigo Pozo, Sergio
2017-03-29
Tire characteristics and behavior are of great importance in vehicle dynamics since the forces transmitted in the tire-road contact are the main contributors to global vehicle performance. Several research groups have focused on the study and modeling of tires. Some of the most important factors that need to be known are tread characteristics and pressure distribution in the tire-ground contact patch. In this work, a test bench has been used to adequately determine the aforementioned factors. The measurement principle of the test bench is the frustration of total internal reflection (FTIR) of light. It makes use of a laterally illuminated glass on which the tire leans. An interposed plastic interface between them causes the reflection of light. Finally, a video camera captures the bright image formed through the glass. The brightness level in each pixel of the image is related to existing normal pressure. A study of the parameters that affect the test bench calibration such as type of interface material used, diffuse light, hysteresis, creep and transverse light absorption is performed. Experimental tests are conducted to relate tire inflation pressure and camber angle to the pressure distribution. Furthermore, the test bench is used to detect and evaluate the influence of defects in the tire on the contact pressures.
P-T phase diagram and structural transformations of molten P2O5 under pressure
NASA Astrophysics Data System (ADS)
Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.
2014-03-01
The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number
Normal blood pressure is important for proper blood flow to the body's organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...
... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...
Quader, Farhan; Reddy, Chanakyaram; Patel, Amit; Gyawali, C Prakash
2017-07-01
Elevated integrated relaxation pressure (IRP) on esophageal high-resolution manometry (HRM) identifies obstructive processes at the esophagogastric junction (EGJ). Our aim was to determine whether intrabolus pressure (IBP) can identify structural EGJ processes when IRP is normal. In this observational cohort study, adult patients with dysphagia and undergoing HRM were evaluated for endoscopic evidence of structural EGJ processes (strictures, rings, hiatus hernia) in the setting of normal IRP. HRM metrics [IRP, distal contractile integral (DCI), distal latency (DL), IBP, and EGJ contractile integral (EGJ-CI)] were compared among 74 patients with structural EGJ findings (62.8 ± 1.6 yr, 67.6% women), 27 patients with normal EGD (52.9 ± 3.2 yr, 70.3% women), and 21 healthy controls (27.6 ± 0.6 yr, 52.4% women). Findings were validated in 85 consecutive symptomatic patients to address clinical utility. In the primary cohort, mean IBP (18.4 ± 0.9 mmHg) was higher with structural EGJ findings compared with dysphagia with normal EGD (13.5 ± 1.1 mmHg, P = 0.002) and healthy controls (10.9 ± 0.9 mmHg, P < 0.001). However, mean IRP, DCI, DL, and EGJ-CI were similar across groups ( P > 0.05 for each comparison). During multiple rapid swallows, IBP remained higher in the structural findings group compared with controls ( P = 0.02). Similar analysis of the prospective validation cohort confirmed IBP elevation in structural EGJ processes, but correlation with dysphagia could not be demonstrated. We conclude that elevated IBP predicts the presence of structural EGJ processes even when IRP is normal, but correlation with dysphagia is suboptimal. NEW & NOTEWORTHY Integrated relaxation pressure (IRP) above the upper limit of normal defines esophageal outflow obstruction using high-resolution manometry. In patients with normal IRP, elevated intrabolus pressure (IBP) can be a surrogate marker for a structural restrictive or obstructive process at the esophagogastric junction (EGJ). This has the potential to augment the clinical value of esophageal HRM by raising suspicion for a structural EGJ process when IBP is elevated.
Jonas, Jost B; Wang, Ningli; Yang, Diya
2016-01-01
The main proven risk factor for glaucomatous optic neuropathy (GON) is an intraocular pressure (IOP) higher than the pressure sensibility of the optic nerve head allows. Fulfilling Koch postulates, numerous studies have shown that the presence of high IOP leads to GON, that lowering IOP stops the progression of GON, and that a re-increase in IOP again causes the progression of GON. There are, however, many patients with glaucoma who have statistically normal or low IOP, and despite low IOP values, they develop progressing GON. These observations led to findings that IOP is only 1 of 2 determinants of the translamina cribrosa pressure difference (TLCPD), which is the main pressure-related parameter for the physiology and pathophysiology of the optic nerve head. The second parameter influencing TLCPD is orbital cerebrospinal fluid pressure (CSFP) as the counter pressure against IOP across the lamina cribrosa. Recent experimental and clinical studies have suggested that a low CSFP could be associated with GON in normal-pressure glaucoma. These investigations included studies with an experimental long-term reduction in CSFP in monkeys, population-based studies, and clinical retrospective and prospective investigations on patients with normal-pressure glaucoma. Besides TLCPD, other ocular parameters influenced by CSFP may be choroidal thickness, retinal vein pressure and diameter, occurrence of retinal vein occlusions, and occurrence and severity of diabetic retinopathy.
Glaucoma and Alzheimer Disease: A Single Age-Related Neurodegenerative Disease of the Brain.
Mancino, Raffaele; Martucci, Alessio; Cesareo, Massimo; Giannini, Clarissa; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo
2017-12-06
Open Angle Glaucoma is one of the leading causes of irreversible blindness worldwide. Elevated intraocular pressure is considered an important risk factor for glaucoma, however a subset of patients experience disease progression even in presence of normal intraocular pressure values. This implies that risk factors other than intraocular pressure are involved in the pathogenesis of glaucoma. A possible relationship between glaucoma and neurodegenerative diseases such as Alzheimer Disease has been suggested. In this regard, we have recently described a high prevalence of alterations typical of glaucoma, using Heidelberg Retinal Tomograph-3 (HRT-3), in a group of patients with Alzheimer Disease. Interestingly, these alterations were not associated with elevated intraocular pressure or abnormal Central Corneal Thickness values. Alzheimer Disease is the most common form of dementia associated with progressive deterioration of memory and cognition. Complaints related to vision are common among Alzheimer Disease patients. Features common to both diseases, including risk factors and pathophysiological mechanisms, gleaned from the recent literature do suggest that Alzheimer Disease and glaucoma can be considered age-related neurodegenerative diseases that may co-exist in the elderly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cowan, F; Thoresen, M
1985-06-01
A pulsed Doppler bidirectional ultrasound system has been used to measure alterations in the blood velocities in the superior sagittal sinus of the healthy term newborn infant in response to unilateral and bilateral jugular venous occlusion. These maneuvers were performed with the baby lying in different positions: supine, prone, and on the side (both left and right), the neck flexed or extended, and with the head in the midline or turned 90 degrees to the side (both left and right). Transfontanel pressure was also measured in these positions during occlusions. Results show that turning the head effectively occludes the jugular vein on the side to which the head is turned and that occluding the other jugular vein does not force blood through this functional obstruction. The effect of different forms of external pressure to the head on the superior sagittal sinus velocities was also examined. Alterations in velocities were frequently profound although they varied considerably from baby to baby. This work shows how readily large fluctuations in cranial venous velocities and pressures can occur in the course of normal handling of babies.
NASA Astrophysics Data System (ADS)
Brennan, D. P.; Finn, J. M.
2014-10-01
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.
Fluid overpressures and strength of the sedimentary upper crust
NASA Astrophysics Data System (ADS)
Suppe, John
2014-12-01
The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Hernández-Pérez, Francisco E.; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P. H.
2017-09-01
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.
Buldt, Andrew K; Forghany, Saeed; Landorf, Karl B; Levinger, Pazit; Murley, George S; Menz, Hylton B
2018-03-05
Variations in foot posture, such as pes planus (low medial longitudinal arch) or pes cavus (high medial longitudinal arch) are associated with some lower limb injuries. However, the mechanism that links foot posture to injury is not clear. Research question The aim of this study was to compare plantar pressure between healthy individuals with normal, planus or cavus feet. Ninety-two healthy volunteers (aged 18 to 45) were classified as either normal (n = 35), pes planus (n = 31) or pes cavus (n = 26) based on the Foot Posture Index, Arch Index and normalised navicular height truncated. Barefoot walking trials were conducted using an emed ® -x400 plantar pressure system (Novel GmbH, Munich, Germany). An 11 region mask was used that included the medial heel, lateral heel, midfoot, 1st, 2nd, 3rd, 4th and 5th metatarsophalangeal joints, hallux, 2nd toe, and the 3rd, 4th and 5th toes. Peak pressure, pressure-time integral, maximum force, force-time integral and contact area were calculated for each region. One way analyses of variance and effect sizes were used to compare the three foot posture groups. Overall, the largest differences were between the planus and cavus foot groups in forefoot pressure and force. In particular, peak pressures at the 4th and 5th MTPJs in the planus foot group were lower compared to the normal and cavus foot groups, and displayed the largest effect sizes. Significance This study confirms that foot posture does influence plantar pressures, and that each foot posture classification displays unique plantar pressure characteristics. Copyright © 2018 Elsevier B.V. All rights reserved.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Gardinier, Joseph D; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L
2014-06-01
During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm 2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis.
Gardinier, Joseph D.; Gangadharan, Vimal; Wang, Liyun; Duncan, Randall L.
2014-01-01
During physiological activities, osteoblasts experience a variety of mechanical forces that stimulate anabolic responses at the cellular level necessary for the formation of new bone. Previous studies have primarily investigated the osteoblastic response to individual forms of mechanical stimuli. However in this study, we evaluated the response of osteoblasts to two simultaneous, but independently controlled stimuli; fluid flow-induced shear stress (FSS) and static or cyclic hydrostatic pressure (SHP or CHP, respectively). MC3T3-E1 osteoblasts-like cells were subjected to 12dyn/cm2 FSS along with SHP or CHP of varying magnitudes to determine if pressure enhances the anabolic response of osteoblasts during FSS. For both SHP and CHP, the magnitude of hydraulic pressure that induced the greatest release of ATP during FSS was 15 mmHg. Increasing the hydraulic pressure to 50 mmHg or 100 mmHg during FSS attenuated the ATP release compared to 15 mmHg during FSS. Decreasing the magnitude of pressure during FSS to atmospheric pressure reduced ATP release to that of basal ATP release from static cells and inhibited actin reorganization into stress fibers that normally occurred during FSS with 15 mmHg of pressure. In contrast, translocation of nuclear factor kappa B (NFκB) to the nucleus was independent of the magnitude of hydraulic pressure and was found to be mediated through the activation of phospholipase-C (PLC), but not src kinase. In conclusion, hydraulic pressure during FSS was found to regulate purinergic signaling and actin cytoskeleton reorganization in the osteoblasts in a biphasic manner, while FSS alone appeared to stimulate NFκB translocation. Understanding the effects of hydraulic pressure on the anabolic responses of osteoblasts during FSS may provide much needed insights into the physiologic effects of coupled mechanical stimuli on osteogenesis. PMID:24910719
Dynamics of bacteriophage genome ejection in vitro and in vivo
NASA Astrophysics Data System (ADS)
Panja, Debabrata; Molineux, Ian J.
2010-12-01
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml-1. This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many—though often isolated and/or contradictory—aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.
Renormalization group methods for the Reynolds stress transport equations
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1992-01-01
The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.
Borsje, Petra; Arts, Theo; van De Vosse, Frans N.
2006-01-01
The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105
Coenen, L; Brouwers, J
1990-03-01
In a toe transplantation in a child with symbrachydactyly the authors were faced with a no-reflow phenomenon. The medication they used in prophylaxis was not an absolute guarantee to prevent this problem. Success also depends on some general measures, as a stable blood pressure, a constant blood volume, normal body temperature, short operation time, and an early revision in case of a no-reflow phenomenon. Some questions about the appearance of spasm still remain: are they provoked by pain, stress, medication as anaesthetics, or is a congenital structural vessel problem responsible?
Time-History Data of Maneuvers Performed by an F-86A Airplane During Squadron Operational Training
NASA Technical Reports Server (NTRS)
Henderson, Campbell; Thornton, James; Mayo, Alton
1952-01-01
Preliminary results of one phase of a control-motion study program are presented in the form of plots of load factor.and angular acceleration against indicated airspeed and of time histories of several measured quantities. The results were obtained from 197 maneuvers performed by an F-86A jet-fighter airplane during normal squadron operational training. Most of the tactical maneuver8 of which the F-86A is capable were performed at pressure altitudes ranging from 0 to 32,000 feet and at indicated airspeeds ranging from 95 to 650 miles per hour.
Flow fields and acoustics in a unilateral scarred vocal fold model.
Murugappan, Shanmugam; Khosla, Sid; Casper, Keith; Oren, Liran; Gutmark, Ephraim
2009-01-01
From prior work in an excised canine larynx model, it has been shown that intraglottal vortices form between the vocal folds during the latter part of closing. It has also been shown that the vortices generate a negative pressure between the folds, producing a suction force that causes sudden, rapid closing of the folds. This rapid closing will produce increased loudness and increased higher harmonics. We used a unilateral scarred excised canine larynx model to determine whether the intraglottal vortices and resulting acoustics were changed, compared to those of normal larynges. Acoustic, flow field, and high-speed imaging measurements from 5 normal and 5 unilaterally scarred canine larynges are presented in this report. Scarring was produced by complete resection of the vocal fold mucosa and superficial layer of the lamina propria on the right vocal fold only. Two months later, these dogs were painlessly sacrificed, and testing was done on the excised larynges during phonation. High-speed video imaging was then used to measure vocal fold displacement during different phases. Particle image velocimetry and acoustic measurements were used to describe possible acoustic effects of the vortices. A higher phonation threshold was required to excite the motion of the vocal fold in scarred larynges. As the subglottal pressure increased, the strength of the vortices and the higher harmonics both consistently increased. However, it was seen that increasing the maximum displacement of the scarred fold did not consistently increase the higher harmonics. The improvements that result from increasing subglottal pressure may be due to a combination of increasing the strength of the intraglottal vortices and increasing the maximum displacement of the vocal fold; however, the data in this study suggest that the vortices play a much more important role. The current study indicates that higher subglottal pressures may excite higher harmonics and improve loudness for patients with unilateral vocal fold scarring. This finding implies that therapies that raise the subglottal pressure may be helpful in improving voice quality.
The relationship of subepidermal moisture and early stage pressure injury by visual skin assessment.
Kim, Chul-Gyu; Park, Seungmi; Ko, Ji Woon; Jo, Sungho
2018-05-08
The purpose of this study was to examine the relationship of subepidermal moisture and early stage pressure injury by visual skin assessment in elderly Korean. Twenty-nine elderly participated at a particular nursing home. Data were collected for 12 weeks by one wound care nurse. Visual skin assessment and subepidermal moisture value were measured at both buttocks, both ischia, both trochanters, sacrum, and coccyx of each subject once a week. Subepidermal moisture value of stage 1 pressure injury was significantly higher than that of no injury and blanching erythema. After adjustment with covariates, odds ratios of blanching erythema to normal skin and stage 1 pressure injury to blanching erythema/normal skin were statistically significant (p < 0.05). Odds ratio of blanching erythema to normal skin was 1.003 (p = .047) by 1-week prior subepidermal moisture value, and that of concurrent subepidermal moisture value was 1.004 (p = .011). Odds ratio of stage 1 pressure injury to normal skin/blanching erythema was 1.003 (p = .005) by 1-week prior subepidermal moisture value, and that for concurrent subepidermal moisture value was 1.007 (p = .030). Subepidermal moisture was associated with concurrent and future (1 week later) skin damage at both trochanters. Subepidermal moisture would be used to predict early skin damage in clinical nursing field for the effective pressure injury prevention. Copyright © 2018. Published by Elsevier Ltd.
Zhu, Xiangping; Lin, Zhengmei; Wu, Zhihao; Li, Jiandong; You, Feng
2017-10-01
The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at three-cell stage and cytokinesis only occurred in the blastomere containing DNA. The result of chromosome counting showed that the tetraploidization rate of B group was only 7%. To summarize what had been mentioned above, mechanisms on chromosome set doubling of tetraploid induction would be different with different initiation time of hydrostatic pressure treatment. Chromosome set doubling was mainly due to inhibition of the second mitosis when hydrostatic pressure treatment was performed at prometaphase. Otherwise, chromosome set doubling was mainly due to inhibition of the first nuclear division when hydrostatic pressure treatment was performed at anaphase. Induction efficiency of tetraploidization resulted from inhibition of the second cleavage was higher than which resulted from inhibition of the first nuclear division. This study was the first to reveal biological mechanisms on the two viewpoints of chromosome set doubling through effect of initiation time of hydrostatic pressure treatment on chromosome set doubling in tetraploid induction.
Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L.
2012-01-01
Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551
NASA Astrophysics Data System (ADS)
Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng
2018-07-01
Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.
Incidence and Determinants of Port Occlusions in Cancer Outpatients: A Prospective Cohort Study.
Milani, Alessandra; Mazzocco, Ketti; Gandini, Sara; Pravettoni, Gabriella; Libutti, Livio; Zencovich, Claudia; Sbriglia, Ada; Pari, Chiara; Magon, Giorgio; Saiani, Luisa
Normal saline is considered a safe alternative for heparin as a locking solution in totally implantable venous access devices. The incidence rate of partial occlusion with the use of normal saline (easy injection, impossible aspiration) is estimated at 4%. The aim of this study was to investigate determinants of partial occlusions with the use of normal saline solution and the maintenance of positive pressure in the catheter. We enrolled 218 patients with different solid tumors who underwent pharmacologic treatment through the port with different frequencies: from once every week to at least once every month. The port was flushed with normal saline solution keeping a positive pressure in the catheter. We performed 4111 observations and documented normal port functioning in 99% of observations (n = 4057) and partial occlusions in 1% of observations (n = 54). Partial occlusions were significantly associated with frequency of port flushing (P < .05), chemotherapy (P < .001), and blood sample collection (P < .001). The use of positive pressure in addition to normal saline reduces the incidence rate of partial occlusions. The type of treatment, blood sample collection, and treatment schedule are important determinants of partial occlusions. Nurses play a key role in maintaining a functioning port using positive pressure during the flushing techniques. Certain risk factors must be monitored to prevent partial occlusions, and certain patients are more likely to present with port-related problems.
Il Kim, Young; Fluckiger, Laurence; Hoffman, Maurice; Lartaud-Idjouadiene, Isabelle; Atkinson, Jeffrey; Maincent, Philippe
1997-01-01
The therapeutic use of nifedipine is limited by the rapidity of the onset of its action and its short biological half-life. In order to produce a form devoid of these disadvantages we made nanoparticles of nifedipine from three different polymers, poly-ε-caprolactone (PCL), polylactic and glycolic acid (1 : 1) copolymers (PLAGA), and Eudragit RL/RS (Eudragit). Nifedipine in polyethylene glycol 400 (PEG) solution was used as a control.The average diameters of the nanoparticles ranged from 0.12 to 0.21 μm; the encapsulation ratio was 82% to 88%.In spontaneously hypertensive rats (SHR), the initial rapid fall in systolic arterial blood pressure following oral administration of nifedipine in PEG solution (from 193±3 to 102±2 mmHg) was not seen following administration of the same dose in Eudragit nanoparticles (from 189±2 to 156±2 mmHg); with PCL and PLAGA nanoparticles the initial fall in blood pressure was significantly reduced (nadirs PCL 124±2 and PLAGA 113±2 mmHg). Ten hours following administration, blood pressure in rats administered the nifedipine/PEG preparation had returned to normal (183±3 mmHg) whereas that of animals given nifedipine in nanoparticles (PCL 170±3, PLAGA 168±2, Eudragit 160±3 mmHg) was still significantly reduced.All of the nanoparticle dosage forms decreased Cmax and increased Tmax and the mean residence time (MRT) values. Relative bioavailability was significantly increased with Eudragit nanoparticles compared to the nifedipine/PEG solution.There was an inverse linear correlation between the fall in blood pressure and plasma nifedipine concentration with all preparations.The nanoparticle nifedipine preparations represent sustained release forms with increased bioavailability, a less pronounced initial antihypertensive effect and a long-lasting action. PMID:9031742
NASA Astrophysics Data System (ADS)
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George
2018-04-01
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
A documentation of two- and three-dimensional shock-separated turbulent boundary layers
NASA Technical Reports Server (NTRS)
Brown, J. D.; Brown, J. L.; Kussoy, M. I.
1988-01-01
A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.
Phaeochromocytoma in a 86-year-old patient presenting with reversible myocardial dysfunction.
Szwench, Elżbieta; P Czkowska, Mariola; Marczewski, Krzysztof; Klisiewicz, Anna; Micha Owska, Ilona; Ciuba, Iwona; Januszewicz, Magdalena; Prejbisz, Aleksander; Hoffman, Piotr; Januszewicz, Andrzej
2011-12-01
BACKGROUND. Phaeochromocytomas and paragangliomas are rare, mostly benign catecholamine-producing tumours of chromaffin cells of the adrenal medulla or of extra-adrenal paraganglia. Phaeochromocytoma may occur at any age, the greatest frequency being in the fourth and fifth decades. Only on extremely rare occasions does the tumour develop in the very old patients. METHODS. We are describing an 86-year-old patient with phaeochromocytoma, presenting with reversible myocardial dysfunction. RESULTS. This very old patient with phaeochromocytoma had hypertension characterized by labile blood pressure values and increased daytime blood pressure variability. This patient exhibited reversible myocardial dysfunction suggestive for "catecholaminergic cardiomyopathy", as the complication of phaeochromocytoma. After surgical removal of the tumour, recovery of left ventricular function was documented by echocardiography showing normalization of systolic function and improvement of diastolic function. CONCLUSION. Phaeochromocytomas are rare forms of secondary hypertension, but should be considered in the differential diagnosis, regardless of age, even in very old patients.
Musaeva, Z A; Khapaev, B A; Fedotova, A V; Oknin, V Iu
1999-01-01
Clinical-psychologic study, spectral analysis of heart rate variability, 24-h monitoring of arterial pressure (AP) were performed in 20 patients with chronic constitutional arterial hypotension and in 18 patients with neurogenic syncopal states. Both groups were characterised by considerable manifestations of the syndrome of autonomic dystonia, by emotional-personal disorders that correlated with elevated level of slow-waves of the second order in heart rhythms' spectrum. That testified activation of supersegmental sympathetic-adrenal systems. Disorders in sympathetic-parasympathetic correlations were specific in each group. In patients with arterial hypotension disorder of circadian rhythm was observed in the form of superfluous decrease of diastolic AP during sleep. Circadian rhythms in patients with neurogenic syncopes have parameters characteristic for normals showing a preverved chronobiologic AP regulation. A role of the alterations revealed in pathogenesis of arterial hypotensionis discussed.
Development of spiral-groove self-acting seals for helicopter engines
NASA Technical Reports Server (NTRS)
Obrien, M.
1979-01-01
A spiral-groove, self-acting face seal was rig tested at advanced gas turbine operating conditions to determine wear and leakage rates. The spiral-groove, self-acting geometry was located in the rotating seal seat. Seal component wear induced by start-stop operation was measured after subjecting the test seal to 176 start-stop cycles. Wear occurring during normal operation was documented throughout a 75-hour endurance test. Seal air leakage was also measured. During endurance operation, the seal was subjected to operating conditions bounded by the values surface speed - 244 m/s (800 ft/sec), air pressure - 148 N/sq cm abs (215 psia), and air temperature - 622 K (660 F). The post-test condition of the seal components was documented. Wear data is presented in tabular form, while seal air leakage is presented graphically, as a function of pressure and speed.
NASA Astrophysics Data System (ADS)
Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan
2018-01-01
Be-C-W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.
Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life
NASA Astrophysics Data System (ADS)
Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier
2014-08-01
International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.
Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George
2018-04-28
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.
Makhsous, Mohsen; Priebe, Michael; Bankard, James; Rowles, Diana; Zeigler, Mary; Chen, David; Lin, Fang
2007-01-01
Background/Objective: To study the effect on tissue perfusion of relieving interface pressure using standard wheelchair pushups compared with a mechanical automated dynamic pressure relief system. Design: Repeated measures in 2 protocols on 3 groups of subjects. Participants: Twenty individuals with motor-complete paraplegia below T4, 20 with motor-complete tetraplegia, and 20 able-bodied subjects. Methods: Two 1-hour sitting protocols: dynamic protocol, sitting configuration alternated every 10 minutes between a normal sitting configuration and an off-loading configuration; wheelchair pushup protocol, normal sitting configuration with standard wheelchair pushup once every 20 minutes. Main Outcome Measures: Transcutaneous partial pressures of oxygen and carbon dioxide measured from buttock overlying the ischial tuberosity and interface pressure measured at the seat back and buttocks. Perfusion deterioration and recovery times were calculated during changes in interface pressures. Results: In the off-loading configuration, concentrated interface pressure during the normal sitting configuration was significantly diminished, and tissue perfusion was significantly improved. Wheelchair pushups showed complete relief of interface pressure but incomplete recovery of tissue perfusion. Conclusions: Interface pressure analysis does not provide complete information about the effectiveness of pressure relief maneuvers. Measures of tissue perfusion may help establish more effective strategies. Relief achieved by standard wheelchair pushups may not be sufficient to recover tissue perfusion compromised during sitting; alternate maneuvers may be necessary. The dynamic seating system provided effective pressure relief with sustained reduction in interface pressure adequate for complete recovery of tissue perfusion. Differences in perfusion recovery times between subjects with spinal cord injury (SCI) and controls raise questions about the importance of changes in vascular responses to pressure after SCI. PMID:18092567
In-Shoe Plantar Pressures and Ground Reaction Forces during Overweight Adults' Overground Walking
ERIC Educational Resources Information Center
de Castro, Marcelo P.; Abreu, Sofia C.; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo
2014-01-01
Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during…
7 CFR 301.50-10 - Treatments and management method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... be treated with methyl bromide at normal atmospheric pressure with 48 g/m3 (3 lb/1000 ft3) for 16... garlands. Cut pine Christmas trees and raw pine materials for pine wreaths and garlands may be treated with methyl bromide at normal atmospheric pressure as follows: Temperature Dosage: pounds per 1000 feet 3...
Stokes-Einstein relation in liquid iron-nickel alloy up to 300 GPa
NASA Astrophysics Data System (ADS)
Cao, Q.-L.; Wang, P.-P.
2017-05-01
Molecular dynamic simulations were applied to investigate the Stokes-Einstein relation (SER) and the Rosenfeld entropy scaling law (ESL) in liquid Fe0.9Ni0.1 over a sufficiently broad range of temperatures (0.70 < T/Tm < 1.85 Tm is melting temperature) and pressures (from 50 GPa to 300 GPa). Our results suggest that the SER and ESL hold well in the normal liquid region and break down in the supercooled region under high-pressure conditions, and the deviation becomes larger with decreasing temperature. In other words, the SER can be used to calculate the viscosity of liquid Earth's outer core from the self-diffusion coefficients of iron/nickel and the ESL can be used to predict the viscosity and diffusion coefficients of liquid Earth's outer core form its structural properties. In addition, the pressure dependence of effective diameters cannot be ignored in the course of using the SER. Moreover, ESL provides a useful, structure-based probe for the validity of SER, while the ratio of the self-diffusion coefficients of the components cannot be used as a probe for the validity of SER.
Coupled BE/FE/BE approach for scattering from fluid-filled structures
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.
1990-01-01
NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.
Role of target thickness in proton acceleration from near-critical mass-limited plasmas
NASA Astrophysics Data System (ADS)
Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik
2017-07-01
The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moll
1944-05-03
The idea was that, since the water vapor in the ovens under normal conditions was kept fluid at 700 atmospheres/450/sup 0/C, the inorganic salts would dissolve. This proposal was based on information published in a couple of technical journals and observations of silicification of turbine blades in steam turbine operations and quartz veins in geological formations. The articles dealt with solubility of salts such as BaCl/sub 2/, KCl, Na/sub 2/SO/sub 4/, and NaOH. Unfortunately, measurements stopped in the area of critical pressure. Results purported, however, that inorganic salts, rather concentrated, were soluble by highly superheated steam, and solubility improved asmore » pressure increased. It was anticipated that this process could be applied to hydrogenation ovens since there was water present in the operation. Proposed was researching a method of getting the salts to form a mud instead of crystallizing and precipitating into the oven. The writer said that research should be conducted since high pressure techniques were available as well as required apparatus.« less
NASA Astrophysics Data System (ADS)
Suitchmezian, Viktor; Jeß, Inke; Näther, Christian
2006-11-01
Two new solvates of triamcinolone diacetate were found in addition, to those reported previously. The acetonitrile solvate (form E) crystallizes monoclinic in space group P2 1, whereas the methylene chloride solvate (form F) crystallizes orthorhombic in space group P2 12 12 1. In all forms the triamcinolone diacetate molecules are linked by intermolecular hydrogen bonding. From this arrangement channels are formed in which the solvent molecules are embedded. Both forms were investigated by differential thermoanalysis and thermogravimetry. On heating, for each form a mass loss is observed, which is accompanied with endothermic events in the DTA curve. Mass spectroscopic investigations clearly shows that in this step the solvent molecules are emitted. In these measurements one cannot differ between desolvation and melting. If the residues formed after the first TG steps are investigated by X-ray powder diffraction, only amorphous samples are obtained. If the solvents are removed at room temperature under normal pressure or in vacuum the commercial available form of triamcinolone diacetate is obtained which is also used in therapy. If the acetonitrile solvate is tempered at 80 °C for several days significant changes in the powder pattern are observed, which may indicate the formation of a new polymorphic form.
Intra-ocular pressure normalization technique and equipment
NASA Technical Reports Server (NTRS)
Mcgannon, W. J. (Inventor)
1980-01-01
A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.
Notch signalling in T cell lymphoblastic leukaemia/lymphoma and other haematological malignancies
Aster, Jon C.; Blacklow, Stephen C.; Pear, Warren S.
2010-01-01
Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle yet important roles in other forms of hematologic malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye toward targeted therapeutics. PMID:20967796
Rehder, R S; Ducharme, N G; Hackett, R P; Nielan, G J
1995-03-01
To determine whether abnormal airway pressures have a role in development of dorsal displacement of the soft palate (DDSP), measurements of tracheal and pharyngeal pressures were correlated with nasopharyngeal morphology in exercising horses. Exercising videoendoscopy and measurement of tracheal and pharyngeal pressures were used in 14 clinically normal horses and 19 horses with intermittent DDSP. The pressure signals were superimposed on the videoendoscope image, and both images were saved simultaneously on a videocassette for slow motion analysis to determine the instant displacement occurred in the respiratory cycle. Horses were submitted to an escalating 8-minute high-speed test with a maximal speed of 14 m/s. Compared with clinically normal horses, horses with intermittent DDSP did not have excessively negative inspiratory pressures during exercise. Eight horses displaced the soft palate during inspiration, 4 horses displaced it during expiration, and 7 displaced it by swallowing. Some horses displaced the soft palate at the beginning of the exercise trial, before reaching maximal speed, some horses displaced it at the peak speed, and some horses displaced it when slowing down. Epiglottic size in horses with DDSP was within normal limits, ruling out epiglottic hypoplasia as a cause of DDSP during exercise. Airway pressures were significantly (P < 0.002) altered after DDSP. Pharyngeal and tracheal inspiratory pressures were less negative, whereas pharyngeal expiratory pressure became less positive and tracheal expiratory pressure became more positive after displacement, suggesting a decrease in airflow and an increase in expiratory resistance in the upper airway.
Ground Impingement of a Fan Jet Exhaust Plume
1978-05-01
ground plane to avoid a possible interaction between the ground-deflected exhaust and the fan j .t engine inlet. Two pitot pressure rakes , shown on the...Pressure signals from the two rakes (total of 18 pitot tubes) were read sequentially with a Scannivalve system, time-averaged, and displayed on a pen...taken from the inner anid outer rakes with the ground plane normal to the flow at h/d f 2. Pitot pressures from each rake were normalized by the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.
Zahedi, Edmond; Sohani, Vahid; Ali, M A Mohd; Chellappan, Kalaivani; Beng, Gan Kok
2015-01-01
The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was selected as the reference model. Results show that the proposed model is able to faithfully reproduce CBPN (mean fitness = 85.2% ± 2.5%) from the radial PPG for all 15 segments during the five recording days. The low CV value of 3.35% suggests a stable model valid for different recording days.
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Yanzhong; Zhang, Feini; Ma, Yuan
2015-12-01
Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the understanding of the no-vent fill performance and may guide the design of on-orbit no-vent fill system.
Flotation process for removal of precipitates from electrochemical chromate reduction unit
DeMonbrun, James R.; Schmitt, Charles R.; Williams, Everett H.
1976-01-01
This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.
Influence of Total Knee Arthroplasty on Patellar Kinematics and Patellofemoral Pressure.
Tanikawa, Hidenori; Tada, Mitsunori; Harato, Kengo; Okuma, Kazunari; Nagura, Takeo
2017-01-01
Patellofemoral complications are one of the main problems after total knee arthroplasty (TKA). The design of the TKA component may affect the patellar biomechanics, which may be associated with this postoperative complication. The purpose of this study was to assess the influence of TKA and prosthesis designs on the patellar kinematics and patellofemoral pressure. Using fresh-frozen cadavers, we measured the patellofemoral pressure, patella offset, and patella tilt in the following 4 conditions: normal knee (patella replacement only), cruciate-retaining TKA, condylar-stabilizing TKA, and posterior-stabilized TKA. The patellofemoral pressure increased significantly after the cruciate-retaining TKA and condylar-stabilizing TKA compared with the normal knee. The patella offset in the normal knee decreased with increasing knee flexion angles, while the patella offset in the TKA knees did not change significantly through the full range of motion. The amount of lateral patella tilt in the normal knee was significantly larger than the TKA knees in the full range of motion. Although the femoral components are designed to reproduce an anatomical patellar tracking, the physiological patellar kinematics were not observed. Relatively high patellofemoral pressure and kinematic change after TKA may be associated with postoperative complications such as the anterior knee pain. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Connell, Deborah; Hirst, A. M.; Packer, J. R.; Simms, M. S.; Mann, V. M.; Frame, F. M.; Maitland, N. J.
2016-09-01
Atmospheric pressure plasmas have shown considerable promise as a potential cancer therapy. An atmospheric pressure plasma driven with kHz kV excitation, operated with helium and oxygen admixtures is used to investigate the interaction with prostate cancer cells. The cytopathic effect was verified first in two commonly used prostate cancer cell lines (BPH-1 and PC-3 cells) and further extended to examine the effects in paired normal and tumour prostate epithelial cells cultured directly from patient tissues. Through the formation of reactive species in cell culture media, and potentially other plasma components, we observed high levels of DNA damage, together with reduced cell viability and colony-forming ability. We observed differences in response between the prostate cell lines and primary cells, particularly in terms of the mechanism of cell death. The primary cells ultimately undergo necrotic cell death in both the normal and tumour samples, in the complete absence of apoptosis. In addition, we provide the first evidence of an autophagic response in primary cells. This work highlights the importance of studying primary cultures in order to gain a more realistic insight into patient efficacy. EPSRC EP/H003797/1 & EP/K018388/1, Yorkshire Cancer Research: YCR Y257PA.
Cytoskeletal mechanics in pressure-overload cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th
1997-01-01
We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on the cardiocyte contractile apparatus in pressure-overload cardiac hypertrophy.
Kawaguchi, Y
1985-04-01
QRS deflection area vector (Aqrs), T deflection area vector (At) and ventricular gradient (G) in right ventricular hypertrophy were studied in 53 subjects divided on the basis of cardiac catheterization data into four subgroups; normal controls, mild MS group, right ventricular pressure overload group and right ventricular volume overload group. Aqrs, At and G of the four subgroups were calculated using a microcomputer and compared. Aqrs in right ventricular pressure overload group and volume overload group was shifted to the right and slightly anteriorly from that in normal control group. At in right ventricular pressure overload group and volume overload group was shifted slightly upwards and significantly posteriorly from that in the normal control and mild MS groups. G in right ventricular pressure overload group and volume overload group was shifted to the right and significantly posteriorly from that in normal control and mild MS groups. Using multivariative analysis, we developed criteria for diagnosing right ventricular hypertrophy with At: 0.059At(Z) - 0.0145 [At] - 0.2608 less than or equal to 0. Application of this criteria achieved 82.4% (28 of 34) sensitivity in the patients with right ventricular hypertrophy and 90.9% (10 of 11) specificity in the normal control subjects.
Genetics and blood pressure response to exercise, and its interactions with adiposity.
Rankinen, T; Bouchard, C
2002-01-01
Regular aerobic exercise has the potential to induce several beneficial health effects, including a decrease in blood pressure level, especially in hypertensive patients and in subjects with high-normal blood pressure. However, it is also well documented that some people show more pronounced blood pressure responses to endurance training than others, despite identical training programs and similar initial blood pressure levels. This kind of variation is an example of normal biologic diversity and most likely originates from interactions with genetic factors. Data from genetic epidemiologic studies indicate that there is a genetic component that affects both resting blood pressure and blood pressure responses to acute exercise. Evidence from molecular genetic studies is scarce, but the first reports suggest that DNA sequence variation in the hypertension candidate genes, such as angiotensinogen, also modify blood pressure responses to endurance training. The current knowledge regarding the role of genetic factors in the modification of blood pressure responses to endurance training will be summarized and discussed. Copyright 2002 CHF, Inc.
Control rod drive hydraulic system
Ose, Richard A.
1992-01-01
A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Graves, R. A., Jr.
1973-01-01
A method for the rapid calculation of the inviscid shock layer about blunt axisymmetric bodies at an angle of attack of 0 deg has been developed. The procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The flow field solution procedure is programed at the Langley Research Center for the Control Data 6600 computer. The geometries specified in the program are sphores, ellipsoids, paraboloids, and hyperboloids which may conical afterbodies. The normal momentum equation is replaced with an approximate algebraic expression. This simplification significantly reduces machine computation time. Comparisons of the present results with shock shapes and surface pressure distributions obtained by the more exact methods indicate that the program provides reasonably accurate results for smooth bodies in axisymmetric flow. However, further research is required to establish the proper approximate form of the normal momentum equation for the two-dimensional case.
DiBona, G F; Sawin, L L
2001-08-01
Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.
Eaton, William P.; Staple, Bevan D.; Smith, James H.
2000-01-01
A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).
Worden, Richard H.; Morad, Sadoon; Spötl, C.; Houseknecht, D.W.; Riciputi, L.R.
2000-01-01
The Spiro Sandstone, a natural gas play in the central Arkoma Basin and the frontal Ouachita Mountains preserves excellent porosity in chloritic channel-fill sandstones despite thermal maturity levels corresponding to incipient metamorphism. Some wells, however, show variable proportions of a late-stage, non-syntaxial quartz cement, which post-dated thermal cracking of liquid hydrocarbons to pyrobitumen plus methane. Temperatures well in excess of 150°C and possibly exceeding 200°C are also suggested by (i) fluid inclusions in associated minerals; (ii) the fact that quartz post-dated high-temperature chlorite polytype IIb; (iii) vitrinite reflectance values of the Spiro that range laterally from 1.9 to ≥ 4%; and (iii) the occurrence of late dickite in these rocks. Oxygen isotope values of quartz cement range from 17.5 to 22.4‰ VSMOW (total range of individual in situ ion microprobe measurements) which are similar to those of quartz cement formed along high-amplitude stylolites (18.4–24.9‰). We favour a model whereby quartz precipitation was controlled primarily by the availability of silica via deep-burial stylolitization within the Spiro Sandstone. Burial-history modelling showed that the basin went from a geopressured to a normally pressured regime within about 10–15 Myr after it reached maximum burial depth. While geopressure and the presence of chlorite coats stabilized the grain framework and inhibited nucleation of secondary quartz, respectively, stylolites formed during the subsequent high-temperature, normal-pressured regime and gave rise to high-temperature quartz precipitation. Authigenic quartz growing along stylolites underscores their role as a significant deep-burial silica source in this sandstone.
Pressure-flow characteristics of normal and disordered esophageal motor patterns.
Singendonk, Maartje M J; Kritas, Stamatiki; Cock, Charles; Ferris, Lara F; McCall, Lisa; Rommel, Nathalie; van Wijk, Michiel P; Benninga, Marc A; Moore, David; Omari, Taher I
2015-03-01
To perform pressure-flow analysis (PFA) in a cohort of pediatric patients who were referred for diagnostic manometric investigation. PFA was performed using purpose designed Matlab-based software. The pressure-flow index (PFI), a composite measure of bolus pressurization relative to flow and the impedance ratio, a measure of the extent of bolus clearance failure were calculated. Tracings of 76 pediatric patients (32 males; 9.1 ± 0.7 years) and 25 healthy adult controls (7 males; 36.1 ± 2.2 years) were analyzed. Patients mostly had normal motility (50%) or a category 4 disorder and usually weak peristalsis (31.5%) according to the Chicago Classification. PFA of healthy controls defined reference ranges for PFI ≤142 and impedance ratio ≤0.49. Pediatric patients with pressure-flow (PF) characteristics within these limits had normal motility (62%), most patients with PF characteristics outside these limits also had an abnormal Chicago Classification (61%). Patients with high PFI and disordered motor patterns all had esophagogastric junction outflow obstruction. Disordered PF characteristics are associated with disordered esophageal motor patterns. By defining the degree of over-pressurization and/or extent of clearance failure, PFA may be a useful adjunct to esophageal pressure topography-based classification. Copyright © 2015 Elsevier Inc. All rights reserved.
Mirhashemi, S; Messmer, K; Intaglietta, M
1987-01-01
Normovolemic hemodilution on a whole body basis is studied by means of a steady flow, hydraulic analogue simulation of the cardiovascular system, based on the Casson's model and current hemodynamic and rheological data. The vasculature is divided into serially connected compartments whose hydraulic resistance is characterized by the average diameter, length, number of vessels, and the corresponding rheological properties of blood formulated by Dintenfass (1971) and Lipowsky et al. (1980). This model computes the pressure distributions in all compartments, where the calculated venous pressure modulates the cardiac function according to the Starling mechanism for cardiac performance. The alterations of flow induced by the action of the heart are added to the effects due to changes in peripheral vascular resistance as a result of hematocrit variation. This model shows that when the response of heart to the changes of venous pressure is impaired, the maximum oxygen carrying capacity occurs at 40% hematocrit (H) where it is 1% higher than normal hematocrit (H = 44%). The normal cardiac response to the changes of venous pressure, causes the maximum oxygen carrying capacity to occur at 32% H where it is 12% greater than that at normal hematocrit. Mean arteriolar pressure and capillary pressure increase while venular pressure is slightly reduced during normovolemic hemodilution.
Taylor, Brent C; Wilt, Timothy J; Welch, H Gilbert
2011-07-01
The National Heart, Lung and Blood Institute currently defines a blood pressure under 120/80 as "normal." To examine the independent effects of diastolic (DBP) and systolic blood pressure (SBP) on mortality and to estimate the number of Americans affected by accounting for these effects in the definition of "normal." DESIGN, PARTICIPANTS AND MEASURES: Data on adults (age 25-75) collected in the early 1970s in the first National Health and Nutrition Examination Survey were linked to vital status data through 1992 (N = 13,792) to model the relationship between blood pressure and mortality rate adjusting for age, sex, race, smoking status, BMI, cholesterol, education and income. To estimate the number of Americans in each blood pressure category, nationally representative data collected in the early 1960s (as a proxy for the underlying distribution of untreated blood pressure) were combined with 2008 population estimates from the US Census. The mortality rate for individuals over age 50 began to increase in a stepwise fashion with increasing DBP levels of over 90. However, adjusting for SBP made the relationship disappear. For individuals over 50, the mortality rate began to significantly increase at a SBP ≥ 140 independent of DBP. In individuals ≤ 50 years of age, the situation was reversed; DBP was the more important predictor of mortality. Using these data to redefine a normal blood pressure as one that does not confer an increased mortality risk would reduce the number of American adults currently labeled as abnormal by about 100 million. DBP provides relatively little independent mortality risk information in adults over 50, but is an important predictor of mortality in younger adults. Conversely, SBP is more important in older adults than in younger adults. Accounting for these relationships in the definition of normal would avoid unnecessarily labeling millions of Americans as abnormal.
Relationship between Clinic and Ambulatory Blood-Pressure Measurements and Mortality.
Banegas, José R; Ruilope, Luis M; de la Sierra, Alejandro; Vinyoles, Ernest; Gorostidi, Manuel; de la Cruz, Juan J; Ruiz-Hurtado, Gema; Segura, Julián; Rodríguez-Artalejo, Fernando; Williams, Bryan
2018-04-19
Evidence for the influence of ambulatory blood pressure on prognosis derives mainly from population-based studies and a few relatively small clinical investigations. This study examined the associations of blood pressure measured in the clinic (clinic blood pressure) and 24-hour ambulatory blood pressure with all-cause and cardiovascular mortality in a large cohort of patients in primary care. We analyzed data from a registry-based, multicenter, national cohort that included 63,910 adults recruited from 2004 through 2014 in Spain. Clinic and 24-hour ambulatory blood-pressure data were examined in the following categories: sustained hypertension (elevated clinic and elevated 24-hour ambulatory blood pressure), "white-coat" hypertension (elevated clinic and normal 24-hour ambulatory blood pressure), masked hypertension (normal clinic and elevated 24-hour ambulatory blood pressure), and normotension (normal clinic and normal 24-hour ambulatory blood pressure). Analyses were conducted with Cox regression models, adjusted for clinic and 24-hour ambulatory blood pressures and for confounders. During a median follow-up of 4.7 years, 3808 patients died from any cause, and 1295 of these patients died from cardiovascular causes. In a model that included both 24-hour and clinic measurements, 24-hour systolic pressure was more strongly associated with all-cause mortality (hazard ratio, 1.58 per 1-SD increase in pressure; 95% confidence interval [CI], 1.56 to 1.60, after adjustment for clinic blood pressure) than the clinic systolic pressure (hazard ratio, 1.02; 95% CI, 1.00 to 1.04, after adjustment for 24-hour blood pressure). Corresponding hazard ratios per 1-SD increase in pressure were 1.55 (95% CI, 1.53 to 1.57, after adjustment for clinic and daytime blood pressures) for nighttime ambulatory systolic pressure and 1.54 (95% CI, 1.52 to 1.56, after adjustment for clinic and nighttime blood pressures) for daytime ambulatory systolic pressure. These relationships were consistent across subgroups of age, sex, and status with respect to obesity, diabetes, cardiovascular disease, and antihypertensive treatment. Masked hypertension was more strongly associated with all-cause mortality (hazard ratio, 2.83; 95% CI, 2.12 to 3.79) than sustained hypertension (hazard ratio, 1.80; 95% CI, 1.41 to 2.31) or white-coat hypertension (hazard ratio, 1.79; 95% CI, 1.38 to 2.32). Results for cardiovascular mortality were similar to those for all-cause mortality. Ambulatory blood-pressure measurements were a stronger predictor of all-cause and cardiovascular mortality than clinic blood-pressure measurements. White-coat hypertension was not benign, and masked hypertension was associated with a greater risk of death than sustained hypertension. (Funded by the Spanish Society of Hypertension and others.).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Intent To Prepare an Environmental Impact Statement for the Proposed Normally Pressured Lance Natural Gas...) Natural Gas Development Project and by this notice are announcing the beginning of the scoping process to... the NPL Natural Gas Development Project by any of the following methods: E-mail: [email protected
NASA Technical Reports Server (NTRS)
Kirsch, K.
1981-01-01
A Spacelab experiment is described which proposes to obtain data on the degree of engorgement of the cephalad circulation during weightlessness by recording central venous pressure. Of practical importance is the question of how close the astronauts are to pulmonary edema and whether the pressure falls toward normal during the time of the mission. Another experiment to investigate deviations from normal fluid and mineral metabolism, possibly initiated by the central engorgement of the low pressure system, is discussed. Hormones responsible for the control of water and mineral balance (vasopressin, catecholamines, renin, aldosterone, corticosteroids, and prostaglandin E1) will be analyzed from blood samples.
A normal shock-wave turbulent boundary-layer interaction at transonic speeds
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Brosh, A.; Viegas, J. R.
1976-01-01
Experimental results, including surveys of the mean and fluctuating flow, and measurements of surface pressure, skin friction, and separation length, are compared with solutions to the Navier-Stokes equations utilizing various algebraic eddy viscosity models to describe the Reynolds shear stresses. The experimental data, obtained at a free-stream Mach number of 1.5 and Reynolds numbers between 10 million and 80 million, show that a separated zone forms near the foot of the shock and that its length is proportional to the initial boundary-layer thickness; that a supersonic region forms downstream of the shock; and that the shear stress increases significantly through the interaction and subsequently decays downstream. The computations adequately represent the qualitative features of the flow field throughout the interaction but quantitatively underpredict the extent of separation and the downstream level of skin friction.
NASA Astrophysics Data System (ADS)
Céolin, René; Rietveld, Ivo B.
2017-04-01
The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.
NASA Astrophysics Data System (ADS)
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.
Nemcok, M.; Moore, J.N.; Allis, R.; McCulloch, J.
2004-01-01
Karaha-Telaga Bodas, a vapour-dominated geothermal system located in an active volcano in western Java, is penetrated by more than two dozen deep geothermal wells reaching depths of 3 km. Detailed paragenetic and fluid-inclusion studies from over 1000 natural fractures define the liquid-dominated, transitional and vapour-dominated stages in the evolution of this system. The liquid-dominated stage was initiated by ashallow magma intrusion into the base of the volcanic cone. Lava and pyroclastic flows capped a geothermal system. The uppermost andesite flows were only weakly fractured due to the insulating effect of the intervening altered pyroclastics, which absorbed the deformation. Shear and tensile fractures that developed were filled with carbonates at shallow depths, and by quartz, epidote and actinolite at depths and temperatures over 1 km and 300??C. The system underwent numerous cycles of overpressuring, documented by subhorizontal tensile fractures, anastomosing tensile fracture patterns and implosion breccias. The development of the liquidsystem was interrupted by a catastrophic drop in fluid pressures. As the fluids boiled in response to this pressure drop, chalcedony and quartz were selectively deposited in fractures that had the largest apertures and steep dips. The orientations of these fractures indicate that the escaping overpressured fluids used the shortest possible paths to the surface. Vapour-dominated conditions were initiated at this time within a vertical chimney overlying the still hot intrusion. As pressures declined, these conditions spread outward to form the marginal vapour-dominated region encountered in the drill holes. Downward migration of the chimney, accompanied by growth of the marginal vapour-dominated regime, occurred as the intrusion cooled and the brittle-ductile transition migrated to greater depths. As the liquids boiled off, condensate that formed at the top of the vapour-dominated zone percolated downward and low-salinity meteoric water entered the marginal parts of the system. Calcite, anhydrite and fluorite precipitated in fractures on heating. Progressive sealing of the fractures resulted in the downward migration of the cap rock. In response to decreased pore pressure in the expanding vapour zone, walls of the fracture system within the vapour-dominated reservoir progressively collapsed. It left only residual permeability in the remaining fracture volume, with apertures supported only by asperities or propping breccia. In places where normal stresses acting on the fracture walls exceeded the compressive strength of the wall rock, the fractures have completely collapsed. Fractures within the present-day cap rock include strike- and oblique-slip faults, normal faults and tensile fractures, all controlled by a strike-slip stress regime. The reservoir is characterized by normal faults and tensile fractures controlled by a normal-fault stress regime. The fractures show no evidence that the orientation of the stress field has changed since fracture propagation began. Fluid migration in the lava and pyroclastic flows is controlled by fractures. Matrix permeability controls fluid flow in the sedimentary sections of the reservoir. Productive fractures are typically roughly perpendicular to the minimum compressive stress, ??3, and are prone to slip and dilation within the modern stress regime. ?? The Geological Society of London 2004.
THE FORMATION OF MACROCYTES AND MICROCYTES FROM RED CORPUSCLES IN HANGING DROP PREPARATIONS
Auer, John
1932-01-01
In hanging drop preparations of normal blood from various species of animals including man, the following processes were directly observed for the first time: 1. The process of fusion between two red corpuscles so as to form a round or slightly oval macrocyte with normal hemoglobin content, a diameter of 10µ± and no delle. These macrocytes appear to be slightly thicker in the centre than at the periphery. No thickness measurements could be made. 2. The process of fusion between two microcytes each 5µ± in diameter, so as to form a red corpuscle of approximately normal size but with dense hemoglobin and no delle. 3. The process of fusion between a red corpuscle and a microcyte, forming a macrocyte slightly larger than a normal red corpuscle and exhibiting a normal hemoglobin tint but no delle. 4. The process of microcyte formation from red corpuscles was seen occurring in four different ways: (a) By the intermittent compression of a single red corpuscle by the pull of three or more fibrin threads attached to the corpuscle. (b) By the steady, continuous compression of a single red corpuscle by the pull of two polar fibrin threads, (c) By intermittent rises of intracorpuscular pressure in a red corpuscle due to trauma, (d) By avulsion and retraction or contraction of the hemoglobin stroma from the intact surface layer of a red corpuscle. Thickness measurements in single microcytes were made in rabbit blood. 5. The process of a typical microcyte with dense hemoglobin and no delle changing back to a fairly large red corpuscle with practically normal hemoglobin tint and with a delle. 6. Macrocytes were seen expelling their hemoglobin in a fraction of a second and turning into shadows which were often paler than the background, but without any decrease in the visible surface area or change in the contour. 7. Extensibility and retractibility (or perhaps relaxation and contraction) may be exhibited by the corpuscle as a whole, by local sections of both surface layer and stroma, or retractility (contractility (?)) may be shown by the hemoglobin stroma alone. On the basis of observational evidence it is inferred that: 1. The surface layer of a red corpuscle is probably a condensed stroma rather than an anatomically defined membrane. 2. A pigment, probably hemoglobin, is present in the surface layer. 3. The surface layer of red corpuscles becomes rigid before or during spontaneous hemolysis. 4. Hemoglobin exists in an undissolved form in the intact red corpuscle. 5. The transverse diameter of microcytes (5µ±) represents the maximal shortening of which this diameter is capable in normal red corpuscles of man, rabbit and guinea pig under the conditions studied. 6. Fusing red corpuscle are destroyed by repeated washings with Ringer solution. 7. In stagnating blood there is no increase in fusion forms, nor in the production of microcytes. PMID:19870085
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1986-01-01
The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.
Spontaneous nasal cerebrospinal fluid leaks and empty sella syndrome: a clinical association.
Schlosser, Rodney J; Bolger, William E
2003-01-01
Spontaneous, idiopathic nasal meningoencephaloceles are herniations of arachnoid/dura and cerebrospinal fluid (CSF) through anatomically fragile sites within the skull base. Empty sella syndrome occurs when intracranial contents herniate through the sellar diaphragm filling the sella turcica with CSF and giving the radiographic appearance of an absent pituitary gland. The objective of this study was to examine the association between spontaneous encephaloceles/CSF leaks and empty sella syndrome because of their similar clinical features and potential common pathophysiology. Retrospective. Sixteen patients were treated for spontaneous encephaloceles between 1996 and 2001. All 16 patients had associated CSF leaks. Five patients had multiple simultaneous encephaloceles. Fifteen patients with imaging of the sella turcica had empty (10 patients) or partially empty (5 patients) sellas. One patient did not have complete imaging of the sella. Three patients had lumbar punctures with measurement of CSF pressure during computed tomography cisternograms because of multiple skull base defects. Mean CSF pressure was 28.3 cm of water (range, 19-34 cm; normal, 0-15 cm). Thirteen of 16 patients (81%) were obese women (mean body mass index 35.9 kg/m2; normal, <25 kg/m2). Mean follow-up was 14.2 months with 100% success in closure of the defects after one procedure. Spontaneous meningoencephaloceles and CSF leaks are strongly associated with radiographic findings of an empty sella and suggest a common pathophysiology. The underlying condition probably represents a form of intracranial hypertension that exerts hydrostatic pressure at anatomically weakened sites within the skull base. Otolaryngologists should be familiar with this disease entity and the implications intracranial hypertension has on patient management.
Min, Kyunghun; Lee, Jungkwan; Kim, Jin-Cheol; Kim, Sang Gyu; Kim, Young Ho; Vogel, Steven; Trail, Frances; Lee, Yin-Won
2010-01-01
Head blight, caused by Gibberella zeae, is a significant disease among cereal crops, including wheat, barley, and rice, due to contamination of grain with mycotoxins. G. zeae is spread by ascospores forcibly discharged from sexual fruiting bodies forming on crop residues. In this study, we characterized a novel gene, ROA, which is required for normal sexual development. Deletion of ROA (Δroa) resulted in an abnormal size and shape of asci and ascospores but did not affect vegetative growth. The Δroa mutation triggered round ascospores and insufficient cell division after spore delimitation. The asci of the Δroa strain discharged fewer ascospores from the perithecia but achieved a greater dispersal distance than those of the wild-type strain. Turgor pressure within the asci was calculated through the analysis of osmolytes in the epiplasmic fluid. Deletion of the ROA gene appeared to increase turgor pressure in the mutant asci. The higher turgor pressure of the Δroa mutant asci and the mutant spore shape contributed to the longer distance dispersal. When the Δroa mutant was outcrossed with a Δmat1-2 mutant, a strain that contains a green fluorescence protein (GFP) marker in place of the MAT1-2 gene, unusual phenotypic segregation occurred. The ratio of GFP to non-GFP segregation was 1:1; however, all eight spores had the same shape. Taken together, the results of this study suggest that ROA plays multiple roles in maintaining the proper morphology and discharge of ascospores in G. zeae. PMID:20802018
Functional buckling behavior of silicone rubber shells for biomedical use.
van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J
2013-12-01
The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Controlled short residence time coal liquefaction process
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-04
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.
Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2014-01-01
A fluid flow tool includes an airfoil structure and a support arm. The airfoil structure's high-pressure side and low-pressure side are positioned in a conduit by the support arm coupled to the conduit. The high-pressure and low-pressure sides substantially face opposing walls of the conduit. At least one measurement port is formed in the airfoil structure at each of its high-pressure side and low-pressure side. A first manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the high-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit. A second manifold, formed in the airfoil structure and in fluid communication with each measurement port so-formed at the low-pressure side, extends through the airfoil structure and support arm to terminate and be accessible at the exterior wall of the conduit.
Gray, Robert J; Voegeli, David; Bader, Dan L
2016-02-01
Impaired lymph formation and clearance has previously been proposed as a contributory factor in the development of pressure ulcers. The present study has been designed to trial fluorescence lymphangiography for establishing how lymphatic function is altered under a clinically relevant form of mechanical loading. Lymph formation and clearance was traced in both forearms by an intradermal injection of indocyanine green (ICG) (50 μl, 0.05%w/v), imaged using a commercial near-infrared fluorescence imaging unit (Fluobeam(®) 800). External uniaxial loading equivalent to a pressure of 60 mmHg was applied for 45 min in one arm using a custom-built indenter. Loading was associated with a decreased frequency of normal directional drainage (DD) of ICG within delineated vessels, both immediately after loading and 45 min thereafter. Loading was also associated with non-directional drainage (NDD) of ICG within the interstitium. Signal intensity within NDD was often greatest at areas of stress concentration, producing a 'halo pattern', corresponding to the rounded edges of the indenter. These results suggest that loading skin with a clinically relevant magnitude of pressure alters both lymph formation and clearance. Further work to quantify impaired clearance under mechanical loading could provide valuable insight into their involvement in the development of pressure ulcers. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.
Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf
2017-08-22
The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Walsby, A E
1994-01-01
The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173
Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production
ERIC Educational Resources Information Center
Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.
2016-01-01
Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…
Determination of Phonation Instability Pressure and Phonation Pressure Range in Excised Larynges
ERIC Educational Resources Information Center
Zhang, Yu; Reynders, William J.; Jiang, Jack J.; Tateya, Ichiro
2007-01-01
Purpose: The present study was a methodological study designed to reveal the dynamic mechanisms of phonation instability pressure (PIP) using bifurcation analysis. Phonation pressure range (PPR) was also proposed for assessing the pressure range of normal vocal fold vibrations. Method: The authors first introduced the concept of bifurcation on the…
46 CFR 109.421 - Report of repairs to boilers and pressure vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...
High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol
NASA Astrophysics Data System (ADS)
Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh
High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.
Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril
2015-01-01
Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p < 0.05). The difference in the OPP between these groups varied between 8.84 and 17.9 mm Hg. The results of this study suggest that although the systemic hypertensive patients have a higher OPP in comparison to normal patients, this increase does not mean that they also have a higher OBF (as measured by POBF tonograph). This may be caused by chronic changes in the vascular network and in the blood hemodynamics in patients with systemic hypertension. How to cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
Akasaka, Kazuyuki; Maeno, Akihiro; Murayama, Taichi; Tachibana, Hideki; Fujita, Yuzo; Yamanaka, Hitoki; Nishida, Noriyuki; Atarashi, Ryuichiro
2014-01-01
The crucial step for the fatal neurodegenerative prion diseases involves the conversion of a normal cellular protein, PrP(C), into a fibrous pathogenic form, PrP(Sc), which has an unusual stability against heat and resistance against proteinase K digestion. A successful challenge to reverse the reaction from PrP(Sc) into PrP(C) is considered valuable, as it would give a key to dissolving the complex molecular events into thermodynamic and kinetic analyses and may also provide a means to prevent the formation of PrP(Sc) from PrP(C) eventually in vivo. Here we show that, by applying pressures at kbar range, the "proteinase K-resistant" fibrils (rHaPrP(res)) prepared from hamster prion protein (rHaPrP [23-231]) by seeding with brain homogenate of scrapie-infected hamster, becomes easily digestible. The result is consistent with the notion that rHaPrP(res) fibrils are dissociated into rHaPrP monomers under pressure and that the formation of PrP(Sc) from PrP(C) is thermodynamically controlled. Moreover, the efficient degradation of prion fibrils under pressure provides a novel means of eliminating infectious PrP(Sc) from various systems of pathogenic concern.
46 CFR 58.30-25 - Accumulators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pressure vessel in which energy is stored under high pressure in the form of a gas or a gas and hydraulic... pressures not exceeding the maximum allowable working pressures. When an accumulator forms an integral part...
Pressure effect on the superconducting and the normal state of β -B i2Pd
NASA Astrophysics Data System (ADS)
Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.
2018-04-01
The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .
NASA Astrophysics Data System (ADS)
Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.
2018-06-01
Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic films that consisted of densely packed 30-50 nm nanoparticles. The GI-PLD films possessed a greater density of catalytically active sites with a distinct local atomic configuration including edge sites of the layered MoS2 nanophase and diverse S ligands in the amorphous phase, which contained Mo3-S clusters. At a modest loading of ∼300 μg/cm2 on glassy carbon substrates and an overpotential of -140 mV, these films activated H2 production with geometric current densities up to -10 mA/cm2.
Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Hsu, Ching-Sheng; Omari, Taher I
2013-06-01
Patients with non-obstructive dysphagia (NOD) report symptoms of impaired esophageal bolus transit without evidence of bolus stasis. In such patients, manometric investigation may diagnose esophageal motility disorders; however, many have normal motor patterns. We hypothesized that patients with NOD would demonstrate evidence of high flow-resistance during bolus passage which in turn would relate to the reporting of bolus hold up perception. Esophageal pressure-impedance recordings of 5 mL liquid and viscous swallows from 18 NOD patients (11 male; 19-71 years) and 17 control subjects (9 male; 25-60 years) were analyzed. The relationship between intrabolus pressure and bolus flow timing in the esophagus was assessed using the pressure flow index (PFI). Bolus perception was assessed swallow by swallow using standardized descriptors. NOD patients were characterized by a higher PFI than controls. The PFI defined a pressure-flow abnormality in all patients who appeared normal based on the assessment esophageal motor patterns and bolus clearance. The PFI was higher for individual swallows during which subjects reported perception of bolus passage. Bolus flow-resistance is higher in NOD patients compared with controls as well as higher in relation to perception of bolus transit, suggesting the presence of an esophageal motility disorder despite normal findings on conventional analysis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Inflatable bladder provides accurate calibration of pressure switch
NASA Technical Reports Server (NTRS)
Smith, N. J.
1965-01-01
Calibration of a pressure switch is accurately checked by a thin-walled circular bladder. It is placed in the pressure switch and applies force to the switch diaphragm when expanded by an external pressure source. The disturbance to the normal operation of the switch is minimal.
49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...
49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Mancinelli, Rocco L.; Kern, Roger G.; Rothschild, Lynn J.; McKay, Christopher P.
2003-01-01
Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars. c2003 Elsevier Inc. All rights reserved.
Rectification of pulsatile stress on soft tissues: a mechanism for normal-pressure hydrocephalus
NASA Astrophysics Data System (ADS)
Jalikop, Shreyas; Hilgenfeldt, Sascha
2011-11-01
Hydrocephalus is a pathological condition of the brain that occurs when cerebrospinal fluid (CSF) accumulates excessively in the brain cavities, resulting in compression of the brain parenchyma. Counter-intuitively, normal-pressure hydrocephalus (NPH) does not show elevated pressure differences across the compressed parenchyma. We investigate the effects of nonlinear tissue mechanics and periodic driving in this system. The latter is due to the cardiac cycle, which provides significant intracranial pressure and volume flow rate fluctuations. Nonlinear rectification of the periodic driving within a model of fluid flow in poroelastic material can lead to compression or expansion of the parenchyma, and this effect does not rely on changes in the mean intracranial pressure. The rectification effects can occur gradually over several days, in agreement with clinical studies of NPH.
Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing
NASA Astrophysics Data System (ADS)
Sun, K.; Chao, X.; Sur, R.; Jeffries, J. B.; Hanson, R. K.
2013-03-01
A general model for 1 f-normalized wavelength modulation absorption spectroscopy with nf detection (i.e., WMS- nf) is presented that considers the performance of injection-current-tuned diode lasers and the reflective interference produced by other optical components on the line-of-sight (LOS) transmission intensity. This model explores the optimization of sensitive detection of optical absorption by species with structured spectra at elevated pressures. Predictions have been validated by comparison with measurements of the 1 f-normalized WMS- nf (for n = 2-6) lineshape of the R(11) transition in the 1st overtone band of CO near 2.3 μm at four different pressures ranging from 5 to 20 atm, all at room temperature. The CO mole fractions measured by 1 f-normalized WMS-2 f, 3 f, and 4 f techniques agree with calibrated mixtures within 2.0 %. At conditions where absorption features are significantly broadened and large modulation depths are required, uncertainties in the WMS background signals due to reflective interference in the optical path can produce significant error in gas mole fraction measurements by 1 f-normalized WMS-2 f. However, such potential errors can be greatly reduced by using the higher harmonics, i.e., 1 f-normalized WMS- nf with n > 2. In addition, less interference from pressure-broadened neighboring transitions has been observed for WMS with higher harmonics than for WMS-2 f.
Liver transplantation in children with Alagille syndrome--a study of twelve cases.
Cardona, J; Houssin, D; Gauthier, F; Devictor, D; Losay, J; Hadchouel, M; Bernard, O
1995-08-27
Cholestasis associated with Alagille syndrome may, in a few cases, be extremely severe and result in major impairment in the quality of life during early childhood and end up in cirrhosis eventually. We report the results of liver transplantation in 12 children with a severe hepatic form of Alagille syndrome. All children presented with cholestatic jaundice from birth, peculiar facies, stenosis of the peripheral pulmonary artery, and posterior embryotoxon; butterfly-like vertebrae were present in 9 children. At the time of transplantation (mean age 7 years 10 months) refractory pruritus was present in 9 children, xanthoma in 11, and height and weight retardation in 11. Total serum bilirubin ranged from 116 to 322 mumol/L and total serum cholesterol from 3.5 to 29 mmol/L. Systolic right ventricular pressure was moderately raised (36 to 48 mmHg) in 5 children; mean creatinine clearance was 99 ml/min/1.73 m2. Histologic examination of the removed livers showed cirrhosis, severe annular fibrosis, and moderate portal fibrosis in 4 children each. Follow-up in the 11 survivors has ranged from 14 months to 5 1/2 years. All lead normal lives. Pruritus and xanthomas disappeared. Increase in height was observed in 8 of the 10 survivors who had growth retardation prior to transplantation. School level is normal in 4 (median age at LT: 5 yr 9 mo) and below normal in 6 (median age at OLT: 9 yr 9 mo). Liver function tests are normal in 10 children. Mean creatinine clearance is 101 ml/min/1.73 m2. These results indicate that the quality of life can be considerably improved after liver transplantation in children with a severe hepatic form of Alagille syndrome and suggest that it could be carried out before these children attend elementary school.
An Improved Theoretical Aerodynamic Derivatives Computer Program for Sounding Rockets
NASA Technical Reports Server (NTRS)
Barrowman, J. S.; Fan, D. N.; Obosu, C. B.; Vira, N. R.; Yang, R. J.
1979-01-01
The paper outlines a Theoretical Aerodynamic Derivatives (TAD) computer program for computing the aerodynamics of sounding rockets. TAD outputs include normal force, pitching moment and rolling moment coefficient derivatives as well as center-of-pressure locations as a function of the flight Mach number. TAD is applicable to slender finned axisymmetric vehicles at small angles of attack in subsonic and supersonic flows. TAD improvement efforts include extending Mach number regions of applicability, improving accuracy, and replacement of some numerical integration algorithms with closed-form integrations. Key equations used in TAD are summarized and typical TAD outputs are illustrated for a second-stage Tomahawk configuration.
On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.
Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo
2005-04-07
One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals
NASA Astrophysics Data System (ADS)
Frejlich, Pedro; Mărcuț, Ioan
2018-03-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Pope, K.E.
1959-12-15
This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.
Features of self-organized plasma physics in tokamaks
NASA Astrophysics Data System (ADS)
Razumova, K. A.
2018-01-01
The history of investigations the role of self-organization processes in tokamak plasma confinement is presented. It was experimentally shown that the normalized pressure profile is the same for different tokamaks. Instead of the conventional Fick equation, where the thermal flux is proportional to a pressure gradient, processes in the plasma are well described by the Dyabilanin’s energy balance equation, in which the heat flux is proportional to the difference of normalized gradients for self-consistent and real pressure profiles. The transport coefficient depends on the values of heat flux, which compensates distortion of the pressure profile with external impacts. Radiative cooling of the plasma edge decreases the heat flux and improves the confinement.
Quantifying force application to a newborn manikin during simulated cardiopulmonary resuscitation.
Solevåg, Anne Lee; Cheung, Po-Yin; Li, Elliott; Aziz, Khalid; O'Reilly, Megan; Fu, Bo; Zheng, Bin; Schmölzer, Georg
2016-01-01
To assess utility of the FingerTPS™ system in measuring chest compression (CC) rate and force. Five minutes of CC was performed in a neonatal manikin without (n = 29) and with (n = 30) a metronome. The FingerTPS™ force (lbs.) was compared to pressure (mmHg) in a 50-mL normal-saline bag inside the manikin. FingerTPS™ CC rate and the time until a 20% decline from baseline force and pressure were calculated. The normal-saline pressure declined earlier than the FingerTPS™ force. Metronome use did not influence CC rate, force or pressure. The FingerTPS™ can be used to measure CC rate and force.
... treatment, you sit inside a special chamber. The air pressure inside the chamber is about two and a half times greater than the normal pressure in the atmosphere. This pressure helps ... -- pulling the air out of a closed dressing, creating a vacuum. ...
Neutral pressure behavior for diverted discharges in the Wendelstein 7-AS Stellarator
NASA Astrophysics Data System (ADS)
McCormick, K.; Grigull, P.; Burhenn, R.; Ehmler, H.; Feng, Y.; Giannone, L.; Haas, G.; Sardei, F.; NBI-, ECRH-; W7-AS Teams
2005-03-01
On the W7-AS stellarator, the subdivertor neutral pressure in an up-down divertor pair as well as at two points in the vicinity of a lower divertor module in the main chamber are measured. Results are presented for ι=5/9 island divertor discharges under conditions of normal confinement (NC) and the HDH-mode for: n˜0.1-4×1020 m-3, Pecrh = 0.5-1.5 MW, Pnbi = 2 MW, and H + and D + plasmas, with both normal- and reversed- Bt for H +. Subdivertor pressures are in the range 1-2 × 10 -3 mbar for HDH conditions. For plasma detachment at the target plates a strong up-down pressure asymmetry arises, with pup/ pdown ⩽ 5. The asymmetry reverses with reversed Bt. Main vessel pressures are a factor of 5-10 lower than the average subdivertor pressure for H +, with D + plasmas exhibiting still lower values.
Dynamic calibration of fast-response probes in low-pressure shock tubes
NASA Astrophysics Data System (ADS)
Persico, G.; Gaetani, P.; Guardone, A.
2005-09-01
Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.
The cerebral hemodynamics of normotensive hypovolemia during lower-body negative pressure
NASA Technical Reports Server (NTRS)
Giller, C. A.; Levine, B. D.; Meyer, Y.; Buckey, J. C.; Lane, L. D.; Borchers, D. J.
1992-01-01
Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to -50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% +/- 4% (mean +/- standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% +/- 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.
Ali, Achmet; Altun, Demet; Sivrikoz, Nukhet; Yornuk, Mesut; Turgut, Namigar; Akıncı, İbrahim Özkan
2018-04-01
The Supreme™ laryngeal mask airway (SLMA) is a supra glottic airway (SGA) device that is used as an alternative to endotracheal tubes. In the present study, we aimed to compare the use of the SLMA with normal cuff pressure and low cuff pressure, primarily for haemodynamic response. In the present study, 120 patients diagnosed with hypertension and scheduled for varicose vein or inguinal hernia operation were enrolled and 99 patients finished. Using randomization, patients were divided into two groups according to cuff pressure as a low-pressure group (Group L, 45 cm H 2 O) and a normal-pressure group (Group N, 60 cm H 2 O). Demographics, Mallampati score and the type and duration of surgery, heart rate (HR), mean arterial pressure (MAP), percentage of tidal volume leakage, Ppeak, Pmean, etCO 2 , seal pressure, fibreoptic scores and postoperative adverse effects of all patients were recorded. MAP and HR values immediately and 2 minutes after SLMA insertion were significantly lower in Group L (p<0.001). In Group L and Group N, the seal pressures were 24.1±3.1 cm H 2 O and 26.2±3.9 cm H 2 O, respectively (p=0.003). Also, blood staining and sore throat occurred less frequently in Group L (p<0.05). The fibreoptic average score, insertion features and ventilation parameters were similar between the groups (p>0.05). SLMA use with a cuff pressure of 45 cm H 2 O significantly decreases haemodynamic response and post-operative side effects compared with a normal cuff pressure. Therefore, except for some specific surgeries that require higher seal pressures, we recommend the use of the SLMA with cuff pressures as low as 45 cm H 2 O.
The Shear Properties of Langmuir-Blodgett Layers
NASA Astrophysics Data System (ADS)
Briscoe, B. J.; Evans, D. C. B.
1982-04-01
The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact pressure but to decrease linearly with temperature in the ranges studied. The influence of sliding velocity is more complex. In the case where intermittent motion is detected the mean maximum values decrease linearly with the logarithm of the velocity.
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
Analysis of 3D face forms for proper sizing and CAD of spectacle frames.
Kouchi, Makiko; Mochimaru, Masaaki
2004-11-01
Three-dimensional morphological variations in the human face were analysed using digital models of the human face, and the usefulness of such analysis in designing industrial products was demonstrated by validating spectacle frame designs based on an original sizing system developed based on the analysis. A normalized model of the three-dimensional face form was made for each of 56 young adult Japanese males. The morphological distances between subjects were defined, and subjects were divided into four groups based on analysis of the distance matrix. A prototype spectacle frame was designed for the average form of each of the four groups. Tightening force of the prototype frames was adjusted using the materialized average forms with soft material placed at the nasal bridge and side of the head. Four prototype frames as well as a conventional frame were evaluated using sensory evaluation and physical measurement of the pressure and slip in 38 young adult male subjects. For each of the 38 subjects, prototype frames were ranked according to the morphological similarity of the subjects and the average form of the four groups: the frame designed for the average form of the group most similar to the subject was #1, the frame designed for the average form of the next most similar group was #2, and so on. For the groups with smaller or narrower faces, new frame #1 was most preferred and had the best overall fit, smallest slip sensation and largest pressure sensation. The groups with larger or wider faces preferred tighter frames than new frame #1, because they were concerned that the frames might slip, although the frames did not. Most of the subjects habitually wore spectacles, and the reason that groups with larger or wider faces preferred tighter frames was thought to be that they were accustomed to tighter fitting frames.
Senanayake, Gamarallage V K; Banigesh, Ali; Wu, Lingyun; Lee, Paul; Juurlink, Bernhard H J
2012-02-01
Our previous studies have shown that broccoli sprouts high in the glucosinolate glucoraphanin decreases renal and vascular oxidative stress and inflammation as well as blood pressure in spontaneously hypertensive stroke-prone (SHRSP) rats. The objective of this study was to determine whether the metabolite of glucoraphanin, sulforaphane, was responsible for this improved blood pressure and whether this is associated with normalization of renal methylated DNA. Sulforaphane was given by gavage to SHRSP and Sprague Dawley (SD) rats over 4 months and blood pressure measured under anesthesia just before euthanasia. Renovascular morphology was determined by histology and methylated deoxycytosine levels analyzed using high-performance liquid chromatography. Mean arterial pressure was 20% higher in vehicle-treated SHRSP when compared to SD. Sulforaphane administration to SHRSP improved blood pressure and lowered this difference to 11%. Vehicle-treated SHRSP had significantly increased wall:lumen ratios in renal arteries, increased numbers of vascular smooth muscle cells (VSMCs), increased renal protein nitration, and decreased (11%) renal DNA methylation compared to SD. Sulforaphane administration to SHRSP significantly lowered arterial wall:lumen ratio by 35%, reduced the number of VSMCs, reduced the level of protein nitration, and increased methylated deoxycytosine levels by 14%. Sulforaphane administration rectified pathological abnormalities in SHRSP kidneys and significantly improved blood pressure. This was associated with normalization of global kidney DNA methylation suggesting that DNA methylation could be associated with hypertension.
Compression stiffening of brain and its effect on mechanosensing by glioma cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna; Chin, LiKang; Georges, Penelope C.; Byfield, FitzRoy J.; Bucki, Robert; Kim, Richard; Weaver, Michael; Wells, Rebecca G.; Marcinkiewicz, Cezary; Janmey, Paul A.
2014-07-01
Many cell types, including neurons, astrocytes and other cells of the central nervous system, respond to changes in the extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states, including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic and other tumors is not known. In this study we show that glioma cells, like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli in the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of the collagen-rich extracellular matrix, but from pressure gradients that form within the tumors in vivo.
Gasdynamic Inlet Isolation in Rotating Detonation Engine
2010-12-01
2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum operating pressure. 195.406 Section 195...
49 CFR 195.406 - Maximum operating pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum operating pressure. 195.406 Section 195...
29 CFR 1926.804 - Definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure, and a second exposure to compressed air does not occur until at least 12 consecutive hours of exposure to normal atmospheric pressure has elapsed since the employee has been under pressure. (k... decompression time exceeds 75 minutes. (q) Working chamber—The space or compartment under air pressure in which...
Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu
2015-12-01
To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.
NASA Astrophysics Data System (ADS)
Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.
2017-09-01
Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.
Jiang, Shudong; Pogue, Brian W; Laughney, Ashley M; Kogel, Christine A; Paulsen, Keith D
2009-04-01
Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found to be linearly related to recovered mean hemoglobin concentration (Hb(T)) values (R(2)=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0-55 kPa depending on breast density. The recovered human data indicate that Hb(T) was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum Hb(T) decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (S(t)O(2)) or water percentage (H(2)O) across the range of BMI values studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Shudong; Pogue, Brian W.; Laughney, Ashley M.
2009-04-01
Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found tomore » be linearly related to recovered mean hemoglobin concentration (HbT) values (R{sup 2}=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0-55 kPa depending on breast density. The recovered human data indicate that HbT was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum HbT decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (StO2) or water percentage (H2O) across the range of BMI values studied.« less
Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model
Devine, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.
2016-01-01
Objective Type II thyroplasty is an alternative treatment for spasmodic dysphonia, addressing hyperadduction by incising and lateralizing the thyroid cartilage. We quantified the effect of lateralization width on phonatory physiology using excised canine larynges. Methods Normal closure, hyperadduction, and type II thyroplasty (lateralized up to 5mm at 1mm increments with hyperadducted arytenoids) were simulated in excised larynges (N=7). Aerodynamic, acoustic, and videokymographic data were recorded at three subglottal pressures relative to phonation threshold pressure (PTP). One-way repeated measures ANOVA assessed effect of condition on aerodynamic parameters. Random intercepts linear mixed effects models assessed effects of condition and subglottal pressure on acoustic and videokymographic parameters. Results PTP differed across conditions (p<0.001). Condition affected percent shimmer (p<0.005) but not percent jitter. Both pressure (p<0.03) and condition (p<0.001) affected fundamental frequency. Pressure affected vibratory amplitude (p<0.05) and intra-fold phase difference (p<0.05). Condition affected phase difference between the vocal folds (p<0.001). Conclusions Hyperadduction increased PTP and worsened perturbation compared to normal, with near normal physiology restored with 1mm lateralization. Further lateralization deteriorated voice quality and increased PTP. Acoustic and videokymographic results indicate that normal physiologic relationships between subglottal pressure and vibration are preserved at optimal lateralization width, but then degrade with further lateralization. The 1mm optimal width observed here is due to the small canine larynx size. Future human trials would likely demonstrate a greater optimal width, with patient-specific value potentially determined based on larynx size and symptom severity. PMID:27223665
NASA Astrophysics Data System (ADS)
Cai, Mingyi; Wu, Qingming; Liu, Xiande; Yao, Cuiluan; Chen, Qingkai; Wang, Zhiyong
2010-07-01
The present study investigated conditions for inducing mito-gynogenetic (endomitosis) diploids by hydrostatic pressure in the large yellow croaker Pseudosciaena crocea. In haploid control groups, the development of eggs was activated with ultraviolet radiated semen. All fry presented typical haploid syndrome in the haploid control groups, and were verified as haploids using cytometry. After hydrostatic pressure treatment, morphologically normal fry reappeared at different frequencies according to the intensity and time of pressure shock. Fry with normal appearance in the pressure treated groups were verified as gynogenetic double haploids (GDHs), containing only one allele from the female parent at all four diagnostic microsatellite loci. For a fixed duration of 3 min, the optimal intensity of blocking the first mitosis was determined to be 40 Mpa, which was similar to that of blocking the second meiosis. There was a “window” of starting time, from 36.1 min to 38.1 min post-insemination at 25.0±1.0°C, within which the production of GDHs was not significantly different. Maximum production of morphologically normal fries, 9.36%±2.97% of developed eggs, was found when the eggs were shocked with hydrostatic pressure at 40 Mpa for 3 min, starting from 38.1 min post insemination at 25.0±1.0°C.
Ochiai, Hiroko; Ikei, Harumi; Song, Chorong; Kobayashi, Maiko; Takamatsu, Ako; Miura, Takashi; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-02-25
Time spent walking and relaxing in a forest environment ("forest bathing" or "forest therapy") has well demonstrated anti-stress effects in healthy adults, but benefits for ill or at-risk populations have not been reported. The present study assessed the physiological and psychological effects of forest therapy (relaxation and stress management activity in the forest) on middle-aged males with high-normal blood pressure. Blood pressure and several physiological and psychological indices of stress were measured the day before and approximately 2 h following forest therapy. Both pre- and post-treatment measures were conducted at the same time of day to avoid circadian influences. Systolic and diastolic blood pressure (BP), urinary adrenaline, and serum cortisol were all significantly lower than baseline following forest therapy (p<0.05). Subjects reported feeling significantly more "relaxed" and "natural" according to the Semantic Differential (SD) method. Profile of Mood State (POMS) negative mood subscale scores for "tension-anxiety," "confusion," and "anger-hostility," as well as the Total Mood Disturbance (TMD) score were significantly lower following forest therapy. These results highlight that forest is a promising treatment strategy to reduce blood pressure into the optimal range and possibly prevent progression to clinical hypertension in middle-aged males with high-normal blood pressure.
González-Camarena, Pedro Iván; San-Juan, Daniel; González-Olhovich, Irene; Rodríguez-Arévalo, David; Lozano-Elizondo, David; Trenado, Carlos; Anschel, David J
2017-03-01
To describe the dynamic changes of the intraocular pressure (IOP) and intracranial pressure (ICP) with normal or pathological values (intracranial hypertension) in nonglaucomatous neurological patients during lumbar punction (LP). Case-control study, prospective measurement of tonometry in both groups referred for LP. Intraocular pressure, ICP and translaminar pressure difference (TPD) were compared pre- and post-LP. Thirty-six patients (72 eyes) with mean age of 38.5 (16-64) years and BMI of 26.81 kg/m 2 were analysed. The initial mean ICP was 12.81 (± 6.6) mmHg. The mean TPD before and after the LP was 1.48 mmHg and 0.65 mmHg, respectively. The mean IOP of both eyes decreased to 0.8 mmHg post-LP in patients with pathological ICP (p = 0.0193) and normal ICP (p = 0.006). We found a statistically significant decrease of the IOP post-LP compared to the pre-LP in both groups, being higher in patients with pathological ICP. There were no significant differences of the IOP in patients with normal versus pathological ICP pre-LP/post-LP; neither was found a correlation between ICP and IOP. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Hayashi, Ken; Yoshida, Motoaki; Manabe, Shin-Ichi; Yoshimura, Koichi
2014-01-01
To compare changes in intraocular pressure (IOP) immediately after clear corneal incision (CCI) cataract surgery between eyes in which IOP was adjusted to a high or normal range at the conclusion of surgery. Hayashi Eye Hospital, Fukuoka, Japan. Comparative case series. Either eye of patients scheduled for phacoemulsification was randomized to 1 of 2 groups as follows: eyes that were to be adjusted to (1) high IOP (22 to 40 mm Hg) or (2) normal IOP (10 to 21 mm Hg). The IOP was measured using a rebound tonometer preoperatively; at the conclusion of surgery; and 15, 30, 60, 120, and 180 minutes and 24 hours postoperatively. The Seidel test and anterior segment optical coherence tomography (AS-OCT) were performed. The mean IOP at the conclusion of surgery was 31.3 mm Hg in the high IOP group and 17.1 mm Hg in the normal IOP group. The IOP decreased to approximately 15 mm Hg by 15 minutes and did not change until 60 minutes in either group. The mean IOP did not differ significantly between groups throughout the observation period (P ≥.0634). Hypotony of 5 mm Hg or less was not detected in any eye. The Seidel test was negative and based on AS-OCT, the wound was closed at 60 minutes in all eyes. After adjusting IOP to a high or normal range, the IOP normalized within 15 minutes postoperatively and was stable for 24 hours. The wound was closed within 60 minutes postoperatively. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus.
Bradley, W G
2015-05-01
CSF normally flows back and forth through the aqueduct during the cardiac cycle. During systole, the brain and intracranial vasculature expand and compress the lateral and third ventricles, forcing CSF craniocaudad. During diastole, they contract and flow through the aqueduct reverses. Hyperdynamic CSF flow through the aqueduct is seen when there is ventricular enlargement without cerebral atrophy. Therefore, patients presenting with clinical normal pressure hydrocephalus who have hyperdynamic CSF flow have been found to respond better to ventriculoperitoneal shunting than those with normal or decreased CSF flow. Patients with normal pressure hydrocephalus have also been found to have larger intracranial volumes than sex-matched controls, suggesting that they may have had benign external hydrocephalus as infants. While their arachnoidal granulations clearly have decreased CSF resorptive capacity, it now appears that this is fixed and that the arachnoidal granulations are not merely immature. Such patients appear to develop a parallel pathway for CSF to exit the ventricles through the extracellular space of the brain and the venous side of the glymphatic system. This pathway remains functional until late adulthood when the patient develops deep white matter ischemia, which is characterized histologically by myelin pallor (ie, loss of lipid). The attraction between the bare myelin protein and the CSF increases resistance to the extracellular outflow of CSF, causing it to back up, resulting in hydrocephalus. Thus idiopathic normal pressure hydrocephalus appears to be a "2 hit" disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. © 2015 by American Journal of Neuroradiology.
The Pressure-Induced Polymorphic Transformations in Fluconazole.
Gorkovenko, Ekaterina A; Kichanov, Sergey E; Kozlenko, Denis P; Belushkin, Alexandr V; Wąsicki, Jan; Nawrocik, Wojciech; Mielcarek, Jadwiga; Dubrovinsky, Leonid S; Lathe, Christian; Savenko, Boris N
2015-12-01
The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Preconditioning cycle means any cycle that includes a fill, circulation, and drain to ensure that the water lines... truncated normal cycle without a test load if the dishwasher does not heat water in the normal cycle. 2.6.2... water temperatures encountered in the test cycle. 3.4 Water pressure gauge. The water pressure gauge...
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Wagner, R. D.
1972-01-01
Disturbance levels were measured in the test section of a Mach 5 blowdown jet using a constant-current, hot-wire anemometer and a pressure transducer. The disturbance levels, measured by the two instruments and normalized by local mean values, agreed within about 30%, with the pitot data higher than the hot-wire data. The rms disturbance levels measured with the hot-wire anemometer and converted to pitot pressures using a quasi-steady flow analysis, were about two-thirds the levels measured with the pitot probe. The variation of the normalized rms disturbance levels with stagnation pressure indicated that transition occurred in the boundary layer on the nozzle wall and influenced the outputs of the instruments located at the exit of the nozzle when the total pressure was about 35 N/sq cm. Below this pressure the disturbance levels decreased markedly. At higher pressures the disturbances were predominantly aerodynamic noise generated by the turbulent boundary layer on the nozzle wall.
Kuznetsova, Tatiana; D’hooge, Jan; Kloch-Badelek, Malgorzata; Sakiewicz, Wojciech; Thijs, Lutgarde; Staessen, Jan A.
2013-01-01
Background To understand better the mechanism of left ventricular (LV) remodeling related to hypertension, it is important to evaluate LV function in relation to the changes in loading conditions. The aim of this study was to investigate changes in conventional ventricular-arterial coupling indexes, LV strain, and a new index reflecting regional myocardial work assessed noninvasively at rest and during isometric exercise in a random sample including participants with normal blood pressure and those with hypertension. Methods A total of 148 participants (53.4% women; mean age, 52.0 years; 39.2% with hypertension) underwent simultaneous echocardiographic and arterial data acquisition at rest and during increased afterload (handgrip exercise). End-systolic pressure was determined from the carotid pulse wave. Arterial elastance (Ea) and LV elastance (Ees) were calculated as end-systolic pressure/stroke volume and end-systolic pressure/end-systolic volume. Doppler tissue imaging and two-dimensional speckle tracking were used to derive LV longitudinal strain. Regional myocardial work (ejection work density [EWD]) was the area of the pressure-strain loop during ejection. Results At rest, with adjustments applied, Ees (3.06 vs 3.71 mmHg/mL,P = .0003), Ea/Ees (0.54 vs 0.47,P=.002) and EWD (670 vs 802 Pa/m2, P = .0001) differed significantly between participants with normal blood pressure and those with hypertension. During handgrip exercise, Ea and Ea/Ees significantly increased (P < .0001) in both groups. Doppler tissue imaging and two-dimensional LV strain decreased in participants with hypertension (P ≤ .008). Only in subjects with normal blood pressure EWD significantly increased (+14.7%, P = .0009). Conclusions Although patients with hypertension compared with those with normal blood pressure have increased LV systolic stiffness and regional myocardial work to match arterial load at rest, they might have diminished cardiac reserve to increase myocardial performance, as estimated by EWD during isometric exercise. PMID:22622108
Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing
2018-06-01
This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (p<0.05). One month after operation, blood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (p<0.05). Incidence of complications at 1 and 3 months after operation was significantly lower in the normal groups than that in the corresponding abnormal groups (p<0.05). Postoperative recovery was significantly better in the normal groups than that in the corresponding abnormal groups (p<0.05). Logistic regression analysis showed that the incidence of postoperative complications was related to fasting blood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (p<0.05). The results show that, control of blood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.
Kądziela, Jacek; Januszewicz, Andrzej; Prejbisz, Aleksander; Michałowska, Ilona; Januszewicz, Magdalena; Florczak, Elżbieta; Kalińczuk, Łukasz; Norwa-Otto, Bożena; Warchoł, Ewa; Witkowski, Adam
2013-01-01
The aim of our study was to determine a potential relationship between resting translesional pressures ratio (Pd/Pa ratio), renal fractional flow reserve (rFFR) and blood pressure response after renal artery stenting. Thirty five hypertensive patients (49% males, mean age 64 years) with at least 60% stenosis in angiography, underwent renal artery stenting. Translesional systolic pressure gradient (TSPG), Pd/Pa ratio (the ratio of mean distal to lesion and mean proximal pressures) and hyperemic rFFR - after intrarenal administration of papaverine - were measured before stent implantation. Ambulatory blood pressure measurements (ABPM) were recorded before the procedure and after 6 months. The ABPM results were presented as blood pressure changes in subgroups of patients with normal (≥ 0.9) vs. abnormal (< 0.9) Pd/Pa ratio and normal (≥ 0.8) vs. abnormal (< 0.8) rFFR. Median Pd/Pa ratio was 0.84 (interquartile range 0.79-0.91) and strongly correlated with TSPG (r = -0.89, p < 0.001), minimal lumen diameter (MLD; r = 0.53, p < 0.005) and diameter stenosis (DS; r = -0.51, p < 0.005). Median rFFR was 0.78 (0.72-0.82). Similarly, significant correlation between rFFR and TSPG (r = -0.86, p < 0.0001), as well as with MLD (r = 0.50, p < 0.005) and DS (r = -0.51, p < 0.005) was observed. Procedural success was obtained in all patients. Baseline Pd/Pa ratio and rFFR did not predict hypertension response after renal artery stenting. Median changes of 24-h systolic/diastolic blood pressure were comparable in patients with abnormal vs. normal Pd/Pa ratio (-4/-3 vs. 0/2 mm Hg; p = NS) and with abnormal vs. normal rFFR (-2/-1 vs. -2/-0.5 mm Hg, respectively). Physiological assessment of renal artery stenosis using Pd/Pa ratio and papaverine- induced renal fractional fl ow reserve did not predict hypertension response after renal artery stenting.
NASA Astrophysics Data System (ADS)
Gerya, Taras
2014-05-01
On the one hand, the principle of lithostatic pressure is habitually used in metamorphic geology to calculate paleo-depths of metamorphism from mineralogical pressure estimates given by geobarometry. On the other hand, it is obvious that this lithostatic (hydrostatic) pressure principle should only be valid for an ideal case of negligible deviatoric stresses during the long-term development of the entire tectono-metamorphic system - the situation, which newer comes to existence in natural lithospheric processes. The question is therefore not "Do non-lithostatic pressure variations exist?" but " What is the magnitude of long-term non-lithostatic pressure variations in various lithospheric processes, which can be recorded by mineral equilibria of respective metamorphic rocks?". The later question is, in particular, relevant for various types of high-pressure (HP) and ultrahigh-pressure (UHP) rocks, which are often produced in convergent plate boundary settings (e.g., Hacker and Gerya, 2013). This question, can, in particular, be answered with the use of thermo-mechanical models of subduction/collision processes employing realistic P-T-stress-dependent visco-elasto-brittle/plastic rheology of rocks. These models suggest that magnitudes of pressure deviations from lithostatic values can range >50% underpressure to >100% overpressure, mainly in the regions of bending of rheologically strong mantle lithosphere (Burg and Gerya, 2005; Li et al., 2010). In particular, strong undepresures along normal faults forming within outer rise regions of subducting plates can be responsible for downward water suction and deep hydration of oceanic slabs (Faccenda et al., 2009). Weaker HP and UHP rocks of subduction/collision channels are typically subjected to lesser non-lithostatic pressure variations with characteristic magnitudes ranging within 10-20% from the lithostatic values (Burg and Gerya, 2005; Li et al., 2010). The strength of subducted crustal rocks and the degree of confinement of the subduction/collision channel are the key factors controlling this magnitude (Burg and Gerya, 2005; Li et al., 2010). High-temperature (>700 C) UHP rocks formed by continental crust subduction typically demonstrate negligible non-lithostatic pressure variations at peak metamorphic conditions, although these variations can be larger at the prograde stage (Gerya et al., 2008; Li et al., 2010). However, the variability of tectonic mechanisms by which UHP rocks can form (e.g., Sizova et al., 2012; Hacker and Gerya, 2013) precludes generalization of this result for all types of UHP-complexes. References Burg, J.-P., Gerya, T.V. (2005) Viscous heating and thermal doming in orogenic metamorphism: numerical modeling and geological implications. J. Metamorph. Geol., 23, 75-95. Faccenda, M., Gerya, T.V., Burlini, L. (2009) Deep slab hydration induced by bending related variations in tectonic pressure. Nature Geoscience, 2, 790-793. Gerya T.V., Perchuk, L.L., Burg J.-P. (2008) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high temperature crust-mantle associations in collision belts. Lithos, 103, 236-256. Hacker, B., Gerya, T.V. (2013) Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 603, 79-88. Li, Z., Gerya, T.V., Burg, J.P. (2010) Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling. J. Metamorphic Geol., 28, 227-247. Sizova, E., Gerya, T., Brown M. (2012) Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. Journal of Metamorphic Geology, 30, 927-955.
Local bifurcations in differential equations with state-dependent delay.
Sieber, Jan
2017-11-01
A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.
a Recursive Approach to Compute Normal Forms
NASA Astrophysics Data System (ADS)
HSU, L.; MIN, L. J.; FAVRETTO, L.
2001-06-01
Normal forms are instrumental in the analysis of dynamical systems described by ordinary differential equations, particularly when singularities close to a bifurcation are to be characterized. However, the computation of a normal form up to an arbitrary order is numerically hard. This paper focuses on the computer programming of some recursive formulas developed earlier to compute higher order normal forms. A computer program to reduce the system to its normal form on a center manifold is developed using the Maple symbolic language. However, it should be stressed that the program relies essentially on recursive numerical computations, while symbolic calculations are used only for minor tasks. Some strategies are proposed to save computation time. Examples are presented to illustrate the application of the program to obtain high order normalization or to handle systems with large dimension.
Long-term changes in body weight are associated with changes in blood pressure levels.
Markus, M R P; Ittermann, T; Baumeister, S E; Troitzsch, P; Schipf, S; Lorbeer, R; Aumannn, N; Wallaschofski, H; Dörr, M; Rettig, R; Völzke, H
2015-03-01
Hypertension and obesity are highly prevalent in Western societies. We investigated the associations of changes in body weight with changes in blood pressure and with incident hypertension, incident cardiovascular events, or incident normalization of blood pressure in patients who were hypertensive at baseline, over a 5-year period. Data of men and women aged 20-81 years of the Study of Health in Pomerania were used. Changes in body weight were related to changes in blood pressure by linear regression (n = 1875) adjusted for cofounders. Incident hypertension, incident cardiovascular events, or incident blood pressure normalization in patients who were hypertensive at baseline were investigated using Poisson regression (n = 3280) models. A change of 1 kg in body weight was positively associated with a change of 0.45 mm Hg (95% confidence interval (CI): 0.34-0.55 mm Hg) in systolic blood pressure, 0.32 mm Hg (95% CI: 0.25-0.38 mm Hg) in diastolic blood pressure, and 0.36 mm Hg (95% CI: 0.29-0.43 mm Hg) in mean arterial pressure (all p-values <0.001). A 5% weight loss reduced the relative risk (RR) of incident hypertension (RRs 0.84 (95% CI: 0.79-0.89)) and incident cardiovascular events (RRs 0.81 (95% CI: 0.68-0.98)) and increased the chance of incident blood pressure normalization in patients who were hypertensive at baseline by 15% (95% CI: 7-23%). Absolute and relative changes in body weight are positively associated with changes in blood pressure levels and also affect the risk of cardiovascular events. Copyright © 2014 Elsevier B.V. All rights reserved.
Tomczyk, Rita; Ociepka, Agnieszka; Kiałka, Marta; Milewicz, Tomasz; Migacz, Kamila; Kowalczuk, Aleksandra; Klocek, Marek
2015-01-01
The aim of our study was to assess the value of blood pressure and heart rate using the 24-hour blood pressure monitoring (ABPM) before and after treatment with metformin to patients with polycystic ovary syndrome (PCOS) and normal lean. 5 patients received metformin 1500 mg per day in three divided doses. ABPM was performed to each patient with PCOS twice: before and after 6 months of treatment with metformin. In patients with PCOS and normal lean after treatment with metformin we observed: statistically significant lower systolic blood pressure (120.2 ± 22.33 mmHg vs 113.22 ± 21.43 mm Hg, p = 0.0248); lower systolic blood pressure of daily measurements (127.1 ± 32.13 mmHg vs 116.1 ± 22.08 mmHg, p = 0.0062); reduction in average arterial pressure MAP in the measurement of the day (95.52 ± 22.76 mmHg vs 88.36 ± 16.41 mmHg, p = 0.048); oscillometric pressure reduction (96.27 ± 27.93 mmHg vs 87.82 ± 21.61, p = 0.0004 mmHg); oscillometric pressure reduction of daily measurements (102.1 ± 27.93 mmHg vs 91.85 ± 21.61 mmHg, p = 0.0032); oscillometric pressure reduction in the measure- ment of the night (88.81 ± 24.85 mmHg vs 82.22 ± 20.54 mmHg, p = 0.0089). In women after treatment with metformin has also been observed higher average heart rate (65.82 ± 13.48 / min vs. 70.71 ± 16.04 min; p < 0.01). The calculations included 500 measurements. Treatment with metformin in patients with PCOS and normal lean leads to lower blood pressure and increases the frequency of heart rate.
Quark Matter May Not Be Strange.
Holdom, Bob; Ren, Jing; Zhang, Chen
2018-06-01
If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.
Quark Matter May Not Be Strange
NASA Astrophysics Data System (ADS)
Holdom, Bob; Ren, Jing; Zhang, Chen
2018-06-01
If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u , d , and s quarks. The possibility of quark matter with only u and d quarks (u d QM ) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that u d QM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, u d QM can be the ground state of baryonic matter only for baryon number A >Amin with Amin≳300 . This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.
The influence of age and diabetes on the skin blood flow response to local pressure.
Petrofsky, Jerrold S; Bains, Gurinder S; Prowse, Michelle; Mc Lellan, Katie; Ethiraju, Gomathi; Lee, Scott; Gunda, Shashi; Lohman, Everett; Schwab, Ernie
2009-07-01
Previous data has shown that when pressure is applied to the skin of the ankle and on the foot, there is a reactive increase in circulation. In the present investigation, these studies were expanded to look at the response of the hand, back, and foot to applied pressure. Ten young subjects whose average age was 26.5+/-3.3 yrs, 10 older subjects whose average age was 73.3+/-19.7 yrs and 10 people with diabetes whose average age was 60.1+/-5.7 yrs participated in the study. There was no statistical difference in the height or weight of the subjects. Hemoglobin A1c of the group with Diabetes averaged 6.98+/-1.15% with the mean duration of diabetes 13.6+/-9.5 yrs. An infrared laser Doppler flow meter was used to measure circulation on the hand, lower back, and on the bottom of the foot during applications of pressure at 15, 30, 45, and 60 kPa. For all three areas of the body, circulation was significantly less in the group with diabetes than the other two groups (p<0.05). When pressure was applied at 15 kPa, the blood flow to the skin initially decreased, but then increased in the younger subjects and in the older subjects but did not increase in subjects with diabetes for any area of the body. Further, after pressure was released, for any of the four pressures examined here, while the younger subjects showed a pronounced reactive hyperemia, subjects with diabetes showed a diminished hyperemia not proportional to the pressure that was applied. It appears that the normal protective mechanism of a pressure induced hyperemia is absent or diminished in patients with diabetes with more effect on the periphery than on the core area of the body. More importantly, after pressure was applied and released, subjects with diabetes lacked a proportional hyperemia to recovery form the transient ischemia of the pressure.
Holmboe, Sarah; Andersen, Asger; Jensen, Rebekka V; Kimose, Hans Henrik; Ilkjær, Lars B; Shen, Lei; Clapp, Lucie H; Nielsen-Kudsk, Jens Erik
2017-01-01
Prostacyclins are vasodilatory agents used in the treatment of pulmonary arterial hypertension. The direct effects of prostacyclins on right heart function are still not clarified. The aim of this study was to investigate the possible direct inotropic properties of clinical available prostacyclin mimetics in the normal and the pressure-overloaded human right atrium. Trabeculae from the right atrium were collected during surgery from chronic thromboembolic pulmonary hypertension (CTEPH) patients with pressure-overloaded right hearts, undergoing pulmonary thromboendarterectomy (n = 10) and from patients with normal right hearts operated by valve replacement or coronary bypass surgery (n = 9). The trabeculae were placed in an organ bath, continuously paced at 1 Hz. They were subjected to increasing concentrations of iloprost, treprostinil, epoprostenol, or MRE-269, followed by isoprenaline to elicit a reference inotropic response. The force of contraction was measured continuously. The expression of prostanoid receptors was explored through quantitative polymerase chain reaction (qPCR). Iloprost, treprostinil, epoprostenol, or MRE-269 did not alter force of contraction in any of the trabeculae. Isoprenaline showed a direct inotropic response in both trabeculae from the pressure-overloaded right atrium and from the normal right atrium. Control experiments on ventricular trabeculae from the pig failed to show an inotropic response to the prostacyclin mimetics. qPCR demonstrated varying expression of the different prostanoid receptors in the human atrium. In conclusion, prostacyclin mimetics did not increase the force of contraction of human atrial trabeculae from the normal or the pressure-overloaded right heart. These data suggest that prostacyclin mimetics have no direct inotropic effects in the human right atrium.
ten Brink, Fia; Duke, Trevor; Evans, Janine
2013-09-01
The aim of this study was to compare the use of high-flow nasal prong oxygen therapy to nasopharyngeal continuous positive airway pressure in a PICU at a tertiary hospital; to understand the safety and effectiveness of high-flow nasal prong therapy; in particular, what proportion of children require escalation of therapy, whether any bedside monitoring data predict stability or need for escalation, and complications of the therapies. This was a prospective observational study of the first 6 months after the introduction of high-flow nasal prong oxygen therapy at the Royal Children's Hospital in Melbourne. Data were collected on all children who were managed with either high-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure. The mode of respiratory support was determined by the treating medical staff. Data were collected on each patient before the use of high-flow nasal prong or nasopharyngeal continuous positive airway pressure, at 2 hours after starting the therapy, and the children were monitored and data collected until discharge from the ICU. Therapy was considered to be escalated if children on high-flow nasal prong required a more invasive form or higher level of respiratory support, including nasopharyngeal continuous positive airway pressure or mask bilevel positive airway pressure or endotracheal intubation and mechanical ventilation. Therapy was considered to be escalated if children on nasopharyngeal continuous positive airway pressure required bilevel positive airway pressure or intubation and mechanical ventilation. As the first mode of respiratory support, 72 children received high-flow nasal prong therapy and 37 received nasopharyngeal continuous positive airway pressure. Forty-four patients (61%) who received high-flow nasal prong first were weaned to low-flow oxygen or to room air and 21 (29%) required escalation of respiratory support, compared with children on nasopharyngeal continuous positive airway pressure: 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.
Silk fibroin nanostructured materials for biomedical applications
NASA Astrophysics Data System (ADS)
Mitropoulos, Alexander N.
Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.
Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire
2012-10-14
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.
Flow derivatives and curvatures for a normal shock
NASA Astrophysics Data System (ADS)
Emanuel, G.
2018-03-01
A detached bow shock wave is strongest where it is normal to the upstream velocity. While the jump conditions across the shock are straightforward, many properties, such as the shock's curvatures and derivatives of the pressure, along and normal to a normal shock, are indeterminate. A novel procedure is introduced for resolving the indeterminacy when the unsteady flow is three-dimensional and the upstream velocity may be nonuniform. Utilizing this procedure, normal shock relations are provided for the nonunique orientation of the flow plane and the corresponding shock's curvatures and, e.g., the downstream normal derivatives of the pressure and the velocity components. These algebraic relations explicitly show the dependence of these parameters on the shock's shape and the upstream velocity gradient. A simple relation, valid only for a normal shock, is obtained for the average curvatures. Results are also obtained when the shock is an elliptic paraboloid shock. These derivatives are both simple and proportional to the average curvature.
Performance of 1.15-pressure-ratio fan stage at several rotor blade setting angles with reverse flow
NASA Technical Reports Server (NTRS)
Kovich, G.; Moore, R. D.
1976-01-01
A 51 cm diameter low pressure ratio fan stage was tested in reverse flow. Survey flow data were taken over the range of rotative speed from 50 percent to 100 percent design speed at several rotor blade setting angles through both flat and feather pitch. Normal flow design values of pressure ratio and weight flow were 1.15 and 29.9 kg/sec with a rotor tip speed of 243.8 m/sec. The maximum thrust in reverse flow was 52.5 percent of design thrust in normal flow.
Gomes de Souza Pegorare, Ana Beatriz; Gonçalves, Marco Antonio; Martiniano de Oliveira, Alessandra; Rodrigues Junior, Antonio Antunes; Tucci, Silvio; Suaid, Haylton Jorge
2014-04-01
To evaluate the effect of diabetes mellitus and of sildenafil citrate on female urethral function. Twenty nine female rats were divided into four groups: G1 - (n=9), normal rats; G2 - (n=6), normal rats treated with sildenafil citrate; G3 - (n=9) rats with alloxan-induced diabetes; G4 - (n=5) rats with alloxan-induced diabetes treated with sildenafil citrate. Under anesthesia, urodynamic evaluation was performed by cystometry and urethral pressure simultaneously. A significant increase in urethral pressure was observed during micturition. Sildenafil citrate can partially reduced urethral pressure in diabetic female rats.
Schoene, R B; Roach, R C; Hackett, P H; Harrison, G; Mills, W J
1985-03-01
Breathing against positive expiratory pressure has been used to improve gas exchange in many forms of pulmonary edema, and forced expiration against resistance during exercise has been advocated for climbing at high altitude as a method to optimize performance. To evaluate the effect of expiratory positive airway pressure (EPAP) on climbers with high altitude pulmonary edema (HAPE) and on exercise at high altitude, we studied four climbers with HAPE at rest and 13 healthy climbers during exercise on a bicycle ergometer at 4400 m. We measured minute ventilation (VI, L/min), arterial oxygen saturation (SaO2 percent), end-tidal carbon dioxide (PACO2, mm Hg), respiratory rate (RR), and heart rate (HR) during the last minute of a five minute interval at rest in the climbers with HAPE, and at rest, 300, and 600 kpm/minute workloads on a bicycle ergometer in the healthy subjects. The HAPE subjects demonstrated an increased SaO2 percent, no change in HR or VI, and a decrease in RR on EPAP as compared to control. In normal subjects, SaO2 percent, VI, and heart rate were significantly higher on EPAP 10 cm H2O than 0 cm H2O control (p less than 0.01, 0.01, and 0.05, respectively). The RR and PaCO2 were not significantly different. In summary, EPAP improves gas exchange in HAPE subjects at rest. The EPAP in normal subjects at high altitude resulted in a higher SaO2 percent at the expense of a higher VI and higher HR. These results suggest that the work of breathing is higher and the stroke volume lower on EPAP. The positive pressure mask may be an effective temporizing measure for victims of HAPE who cannot immediately go to a lower altitude.
Heat release effects in a turbulent, reacting shear layer
NASA Astrophysics Data System (ADS)
Hermanson, James Carl
The effects of heat release were studied in a planar, gaseous reacting mixing layer formed between free streams containing hydrogen and fluorine in inert diluents. Sufficiently high concentrations of reactants were employed to produce adiabatic flame temperature rises of up to 940 K (1240 K absolute). The Reynolds number at the measuring station, based on velocity difference, 1% temperature thickness and cold kinematic viscosity was approximately 6x10^4. The temperature field was measured with cold wire resistance thermometers and thermocouples. Flow visualization was accomplished by schlieren spark and motion picture photography. Mean velocity information was extracted from mean pitot probe dynamic pressure measurements.Though the displacement thickness of the layer, for zero streamwise pressure gradient, increased with increasing heat release, the actual growth rate of the layer did not increase, but instead decreased slightly. The overall entrainment into the layer was seen to be substantially reduced as a consequence of heat release. Calculations showed that the decrease in layer growth rate can be accounted for by a corresponding reduction in turbulent shear stress.The mean temperature rise profiles, normalized by the adiabatic flame temperature rise, were not greatly changed in shape by heat release. A small decrease in normalized mean temperature rise with heat release was observed. Large scale coherent structures were observed to persist at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease exceeded the rate of layer growth rate reduction, and suggests that the mechanisms of vortex amalgamation were, to some extent, inhibited by heat release.Imposition of a favorable pressure gradient resulted in additional thinning of the layer, and caused a slight increase in the mixing and amount of chemical product formation. The change in layer growth rate can be shown to be related to a change in free stream velocity ratio induced by pressure gradient.
A closed form slug test theory for high permeability aquifers.
Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph
2005-01-01
We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.
Shunting for normal pressure hydrocephalus (NPH).
Esmonde, T; Cooke, S
2002-01-01
Since the condition was first described in 1965, the syndrome of normal pressure hydrocephalus (NPH) has conventionally been managed by placement of a cerebrospinal fluid (CSF) shunt. To determine the effectiveness of shunting procedures in promoting stability or improvement in the neurological symptoms and signs of NPH. The trials were identified from a search of the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group on 26 June 2001 using the terms 'shunt*' and 'normal pressure hydrocephalus'. Studies included for analysis were those involving the placement of a CSF shunt for the treatment of NPH as part of a randomized controlled trial. No data matching the selection criteria were found. No randomized controlled trials of shunt placement versus no shunt were found. There is no evidence to indicate whether placement of a shunt is effective in the management of NPH.
AFFF (Aqueous Film-Forming Foam) Testing of U.S. Air Force Penetrator Nozzle.
1986-05-01
Aqueous Film - Forming Foam ( AFFF ), halon, or PKP) flows between this shaft... Film - Forming Foam ( AFFF ). The results showed that increasing the nozzle pressure to 150 psi from the more common fireground pressures of 50 or 100 psi... Forming Foam ( AFFF ) as the fire extinguishing agent. The test plan was designed to determine the optimum nozzle operating pressure considering its effect
High-pressure high-temperature phase diagram of organic crystal paracetamol
Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2016-01-06
High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less
High-pressure high-temperature phase diagram of organic crystal paracetamol
NASA Astrophysics Data System (ADS)
Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.
2016-01-01
High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.
Effect of environmental parameters on habitat structural weight and cost
NASA Technical Reports Server (NTRS)
Bock, E.; Lambrou, F., Jr.; Simon, M.
1979-01-01
Space-settlement conceptual designs were previously accomplished using earth-normal physiological conditions. The habitat weight and cost penalties associated with this conservative design approach are quantified. These penalties are identified by comparison of conservative earth-normal designs with habitats designed to less than earth-normal conditions. Physiological research areas are also recommended as a necessary prerequisite to realizing these potential weight and cost savings. Major habitat structural elements, that is, pressure shell and radiation shielding, for populations of 100, 10,000, and 1,000,000, are evaluated for effects of atmospheric pressure, pseudogravity level, radiation shielding thickness, and habitat configuration.
Orthogonal P-wave morphology is affected by intra-atrial pressures.
Petersson, Richard; Smith, J Gustav; Larsson, David A; Reitan, Öyvind; Carlson, Jonas; Platonov, Pyotr; Holmqvist, Fredrik
2017-12-06
It has previously been shown that the morphology of the P-wave neither depends on atrial size in healthy subjects with physiologically enlarged atria nor on the physiological anatomical variation in transverse orientation of the left atrium. The present study aimed to investigate if different pressures in the left and right atrium are associated with different P-wave morphologies. 38 patients with isolated, increased left atrial pressure, 51 patients with isolated, increased right atrial pressure and 76 patients with biatrially increased pressure were studied. All had undergone right heart catheterization and had 12-lead electrocardiographic recordings, which were transformed into vectorcardiograms for detailed P-wave morphology analysis. Normal P-wave morphology (type 1) was more common in patients with isolated increased pressure in the right atrium while abnormal P-wave morphology (type 2) was more common in the groups with increased left atrial pressure (P = 0.032). Moreover, patients with increased left atrial pressure, either isolated or in conjunction with increased right atrial pressure, had significantly more often a P-wave morphology with a positive deflection in the sagittal plane (P = 0.004). Isolated elevated right atrial pressure was associated with normal P-wave morphology while left-sided atrial pressure elevation, either isolated or in combination with right atrial pressure elevation, was associated with abnormal P-wave morphology.
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech
ERIC Educational Resources Information Center
Searl, Jeff; Evitts, Paul M.
2013-01-01
Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…
Hermieu, Jean François
2007-11-01
INDICATIONS FOR URODYNAMIC ASSESSMENT IN WOMEN: Urodynamic assessment is not useful for the diagnosis of female urinary incontinence which remains a clinical diagnosis. Before any form of surgery for pure stress urinary incontinence, evaluation of bladder emptying by determination of maximum flow rate and residual urine is recommended. In the presence of pure stress urinary incontinence with no other associated clinical symptoms, a complete urodynamic assessment is not mandatory, but can be helpful to define the prognosis and inform the patient about her vesicosphincteric function. On the other hand, a complete urodynamic assessment is recommended to investigate complex or complicated urinary incontinence, mainly in the case of: history of surgery for urinary incontinence. urgency with or without urine leakage, severe urinary incontinence, voiding abnormalities, negative cough test, decreased bladder capacity, suspected obstruction or decreased bladder contractility, failure of first-line treatment. PATIENT PREPARATION: The patient should be thoroughly informed about the examination procedure and its possible consequences. The patient should be advised to attend the examination with a normal desire to urinate. Urodynamic assessment must not be performed in the presence of untreated urinary tract infection. Antibiotic prophylaxis is not recommended. UROFLOWMETRY: The flowmeter must be regularly calibrated and must be installed in a quiet room. Whenever possible, uroflowmetry should be performed before cystometry with a normal desire to urinate. The patient should be advised to urinate normally without straining and by staying as relaxed as possible. During voiding, all of the stream must enter the flowmeter. The main parameters recorded are Qmax (expressed in ml/s), the voided volume (expressed in ml), and the appearance of the curve. The examination must be interpreted manually without taking into account the automated interpretation. GUIDELINES CONCERNING CYSTOMETRY EQUIPMENT: A three pressure line configuration is recommended. Bladder filling must be performed with a sterile liquid; filling with gas is no longer recommended. Bladder filling is ideally performed by a pump ensuring a sufficiently slow flow rate to avoid modifying bladder behaviour (< 50 ml/min). It is essential to determine and check the volume infused into the bladder. When a peristaltic pump is used, the bladder filling catheter must be adapted to the pump. Water or electronic transducers can be used to measure bladder pressure. Balloon catheters filled with air appear to be sufficiently precise to perform pressure measurements in a manometric chamber (during cystometry) but not in a virtual cavity such as the urethra (during the urethral pressure profile). Measurement of abdominal pressure is recommended, either via the infusion catheter or preferably by a rectal balloon catheter. GUIDELINES ON THE PRACTICAL CONDITIONS OF CYSTOMETRY: The equipment must be regularly calibrated. Make sure that the bladder is empty before starting cystometry. Transducers are zeroed at the superior extremity of the pubic symphysis for infused transducers and at atmospheric pressure for electronic and air transducers. Tubings must be correctly connected without kinks, bubbles or leaks. The catheter must be selected according to its technical characteristics, particularly its pressure loss. After filling for one or two minutes, the patient is asked to cough to ensure a similar increase in both abdominal pressure and bladder pressure. The following parameters are recorded: baseline detrusor pressure, first desire to void, detrusor activity, bladder capacity and bladder compliance. Measurement of bladder pressure during voiding is used to confirm whether or not the bladder is contractile, assess obstruction in the case of low urine flow rate with high bladder pressure, and detect abdominal straining. Good test conditions must be ensured in order to obtain good quality voiding. In the case of incoherent results, the bladder should be re-filled after checking the equipment. MEASUREMENT AND INTERPRETATION OF URETHRAL PRESSURE: To obtain a reliable measurement of urethral pressure, it is recommended to: Define the normal values used. Use a catheter smaller than 12 F. Perform a circumferential measurement. Use a catheter with an infusion rate of 2 ml/min. Remove the catheter at a rate of 1 mm/s. Perform the examination in the seating or supine position with a half-full bladder after reducing any prolapse. Repeat the measurements. THE FOLLOWING ELEMENTS MUST BE TAKEN INTO ACCOUNT WHEN INTERPRETING AN URETHRAL PRESSURE PROFILE: The functional urethral length is neither a diagnostic criterion nor a prognostic criterion of urinary incontinence. The urethral pressure profile cannot be considered to be a useful test for the diagnosis of female urinary incontinence. However, in combination with clinical criteria, it is predictive of the results of female stress urinary incontinence surgical repair techniques. The pressure transmission ratio is neither a diagnostic criterion nor a prognostic criterion of urinary incontinence.
Microbial production of metabolites and associated enzymatic reactions under high pressure.
Dong, Yongsheng; Jiang, Hua
2016-11-01
High environmental pressure exerts an external stress on the survival of microorganisms that are commonly found under normal pressure. In response, many growth traits alter, including cell morphology and physiology, cellular structure, metabolism, physical and chemical properties, the reproductive process, and defense mechanisms. The high-pressure technology (HP) has been industrially utilized in pressurized sterilization, synthesis of stress-induced products, and microbial/enzymatic transformation of chemicals. This article reviews current research on pressure-induced production of metabolites in normal-pressure microbes and their enzymatic reactions. Factors that affect the production of such metabolites are summarized, as well as the effect of pressure on the performance of microbial fermentation and the yield of flavoring compounds, different categories of induced enzymatic reactions and their characteristics in the supercritical carbon dioxide fluid, effects on enzyme activity, and the selection of desirable bacterial strains. Technological challenges are discussed, and future research directions are proposed. Information presented here will benefit the research, development, and application of the HP technology to improve microbial fermentation and enzymatic production of biologically active substances, thereby help to meet their increasing demand from the ever-expanding market.
Radial pressure profiles in a cold‐flow gas‐solid vortex reactor
Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.
2015-01-01
A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827
NASA Astrophysics Data System (ADS)
Threadgill, James; Doerhmann, Adam; Little, Jesse
2017-11-01
A detailed experimental investigation of an impinging oblique Shock/Boundary Layer Interaction (SBLI) with 30° sweep in Mach 2.3 flow has been conducted. Despite its non-dimensional form, this canonical SBLI configuration has attracted little attention and remains poorly understood. Using a 12 .5° shock generator mounted in the freestream over a turbulent boundary layer, the interaction has been characterized with oil flow visualization, fast-response pressure transducers, and particle image velocimetry. Velocity vectors are used to extract the 3D interaction structure. These data are compared to wall pressure measurements and surface skin-friction streamlines. A local collapse of data normal to separation indicates a swept equivalence to Free Interaction Theory, albeit at a lower angle of sweep than imposed by the shock generator. Conditions at reattachment align with the imposed shock. Low-frequency shock motion near separation is observed, analogous to unswept SBLIs, with significant correlations that indicate spanwise traveling ripples in the shock foot. However, the magnitude of wall-pressure unsteadiness in this location is lower and shifted to higher frequencies than observed in equivalent unswept SBLI counterparts. Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430).
Dimensional correlates of left ventricular dilation in the presence of hypertrophy.
Al-Nouri, M B; Ford, L E; Wix, H
1983-01-01
Twelve normal subjects, 50 patients with valvular heart disease, and 14 with hypertension were studied. Those with valvular disease were divided into two groups: 28 with angiographically measured ejection fractions greater than or equal to 0.6 and 22 with ejection fractions less than 0.6. The echocardiographically measured ventricular thickness divided by radius ratio (t/r) was approximately proportional to peak systolic pressure (P) in all groups having ejection fractions greater than or equal to 0.6, so that the t/r divided by P ratios were nearly the same. Patients with ejection fractions less than 0.6 had significantly lower t/r divided by P values. No single component of the t/r divided by P ratio would identify the patients with lower ejection fractions. The t/r divided by P ratios in 14 hypertensive patients were nearly identical to the ratios in six patients with aortic stenosis and ejection fractions greater than or equal to 0.6, indicating that an aortic valve gradient does not cause a grossly abnormal form of pressure hypertrophy. The t/r ratio is thus a double sensitive, noninvasive index of dilation when correlated with systolic pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, D. P.; Finn, J. M.
2014-10-15
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reducedmore » resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.« less
NASA Astrophysics Data System (ADS)
Chernomordik, Boris David
Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally stoichiometric kesterite CZTS. The ~2 nm nanocrystals synthesized at 150 °C exhibit quantum confinement, with a band gap of 1.67 eV. Larger nanocrystals have the expected bulk CZTS band gap of 1.5 eV. Several micron thick films deposited by drop casting colloidal dispersions of ~40 nm CZTS nanocrystals were crack-free, while those cast using 5 nm nanocrystals had micron-scale cracks. We showed the applicability of these nanocrystal coatings for thin film solar cells by demonstrating a CZTS thin film solar cell using coatings annealed in a sulfur atmosphere. We conducted a systematic study of the factors controlling crystal growth and microstructure development during sulfidation annealing of films cast from colloidal dispersions of CZTS nanocrystals. The film microstructure is controlled by concurrent normal and abnormal grain growth. At 600 °C to 800 °C and low sulfur pressures (50 Torr), abnormal CZTS grains up to 10 microm in size grow on the surface of the CZTS nanocrystal film via transport of material from the nanocrystals to the abnormal grains. Meanwhile, the nanocrystals coarsen, sinter, and undergo normal grain growth. The driving force for abnormal grain growth is the reduction in total energy associated with the high surface area nanocrystals. The eventual coarsening of the CZTS nanocrystals reduces the driving force for abnormal crystal growth. Increasing the sulfur pressure by an order of magnitude to 500 Torr accelerates both normal and abnormal crystal growth though sufficient acceleration of the former eventually reduces the latter by reducing the driving force for abnormal grain growth. For example, at high temperatures (700-800 oC) and sulfur pressures (500 Torr) normal grains quickly grow to ~500 nm which significantly reduces abnormal grain growth. The use of soda lime glass as the substrate, instead of quartz, accelerates normal grain growth. Normal grains grow to ~500 nm at lower temperatures and sulfur pressures (i.e., 600 °C and 50 Torr) than those required to grow the same size grains on quartz (700 °C and 500 Torr). Moreover, carbon is removed by volatilization from films where normal crystal growth is fast. There are significant differences in the chemistry and in the thermodynamics involved during selenization and sulfidation of CZTS colloidal nanocrystal coatings to form CZTSSe or CZTS thin films, respectively. To understand these differences, the roles of vapor pressure, annealing temperature, and heating rate in the formation of different microstructures of CZTSSe films were investigated. Selenization produced a bi-layer microstructure where a large CZTSSe-crystal layer grew on top of a nanocrystalline carbon-rich bottom layer. Differences in the chemistry of carbon and selenium and that of carbon and sulfur account for this segregation of carbon during selenization. For example, CSe 2 and CS2, both volatile species, may form as a result of chalcogen interactions with carbon during annealing. Unlike CS2, however, CSe2 may readily polymerize at room temperature and one atmosphere. Carbon segregation may be occurring only during selenization due to the formation of a Cu-Se polymer [i.e., (CSe 2-x)] within the nanocrystal film. The (CSe2-x) inhibits sintering of nanocrystals in the bottom layer. Additionally, a fast heating rate results in temperature variations that lead to transient condensation of selenium on the film. This is observed only during selenization because the equilibrium vapor pressure of selenium is lower than that of sulfur. The presence of liquid selenium during sintering accelerates coarsening and densification of the normal crystal layer (no abnormal crystal layer) by liquid phase sintering. Carbon segregation does not occur where liquid selenium was present.
Idiopathic normal pressure hydrocephalus: theoretical concept of a spinal etiology.
Hamlat, Abderrahmane; Abderrahmane, Hamlat; Sid-Ahmed, Seddik; Seddik, Sid-Ahmed; Adn, Mahmoudreza; Mahmoudreza, Adn; Askar, Brahim; Brahim, Askar; Pasqualini, Edouardo; Edouardo, Pasqualini
2006-01-01
Normal pressure hydrocephalus (NPH) is an adult syndrome characterised by a combination of gait disturbance, varying degrees of cognitive decline, urinary incontinence, ventricular enlargement and normal mean intracranial pressure. Since this syndrome was first described, its pathophysiology has been a matter of great debate, although it is now considered that NPH could be divided into two groups: cases with unknown etiology (idiopathic normal pressure hydrocephalus, or INPH) and those which develop from several known causes (such as trauma, meningitis or subarachnoid haemorrhage). The pathophysiology of INPH is still unclear and a matter of debate. In this manuscript, the current pathophysiological conditions of INPH are analysed and the authors put forward the theory that the disease is a dynamic syndrome which occurs in patients who have suffered a significant loss of spinal compliance over time. Consequently, intracranial pressure increases more during systole in INPH patients because it cannot be compensated for by the escape of CSF into the spinal canal as effectively, due to the reduced volume or lack of distension of the spinal canal. This leads to an increase in ventricular size and causes cumulative brain damage over a long period of time and accounts for the slow, progressive nature of NPH. The loss of spinal compliance with age is fundamental to the proposed theory which provides a theoretical justification for studying the spinal canal in INPH and investigating the relationship between the progressive narrowing of the spinal canal and the compensating ability of the craniospinal system.
Bifurcation Analysis of 1D Steady States of the Bénard Problem in the Long Wavelength Limit
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra
2015-11-01
We investigate the character and stability of stationary states of the (1 + 1) D evolution equation ∂t h +
Code of Federal Regulations, 2012 CFR
2012-01-01
... water heating to above 120 °F in at least one wash phase of the normal cycle. 2.Testing conditions: 2... dishwasher does not heat water in the normal cycle. 2.6.2Non-soil-sensing dishwashers to be tested at a... cycle. 3.4Water pressure gauge. The water pressure gauge must have a resolution of one pound per square...
[Idiopathic normal pressure hydrocephalus: High incidence in people over 80 years of age].
Aragonès, Josep Maria; Altimiras, Jacint; Alonso, Francisco; Roura, Pere; Alfonso, Sebastián; Bajo, Lorena
Idiopathic normal pressure hydrocephalus is usually observed in adults over 60 years of age. The highest incidence of cases is between 70 and 80 years-old, and it could be under-diagnosed in over 80 year-olds. A description is presented on the overall incidence and age group incidence, the delay in the diagnosis, and main outcomes. A descriptive study was performed on patients with idiopathic normal pressure hydrocephalus, in the population of Osona County during the years 2010-2015. The annual incidence rate was 4.43 per 100,000 inhabitants. The incidence increased with age; from 8.09 per 100,000 in the 60 to 69 years age group, to 23.61 per 100,000 in the 70-79 years age group of, and to 37.02 per 100,000 in the 80-89 years age. The delay in the diagnosis was 15.01 ± 10.35 months. All the patients improved after surgery, but only 73.3% of the patients maintained the improvement after one year. Idiopathic normal pressure hydrocephalus is an age related disease and probably underdiagnosed in the elderly. An early diagnosis and a clinical suspicion are essential in patients over 80 years old. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.
Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won
2014-12-01
In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.
de Wardener, H E
1996-09-01
Over several million years the human race was programmed to eat a diet which contained about 15 mmol of sodium (1 g of sodium chloride) per day. It is only five to ten thousand years ago that we became addicted to salt. Today we eat about 150 mmol of sodium (9-12 g of salt) per day. It is now apparent that this sudden rise in sodium intake (in evolutionary terms) is the most likely cause for the rise in blood pressure with age that occurs in the majority of the world's population. Those which consume less than 60 mmol/day do not develop hypertension. The reason for the rise in sodium intake is not known but it is probable that an important stimulus was the discovery that meat could be preserved by immersion into a concentrated salt solution. This seemingly miraculous power endowed salt with such magical and medicinal qualities that it became a symbol of goodness and health. It was not until 1904 Ambard and Beaujard suggested that on the contrary dietary salt could be harmful and raise the blood pressure. At first the idea did not prosper and it continues to be opposed by a diminishing band. The accumulated evidence that sodium intake is related to the blood pressure in normal man and animals and in inherited forms of hypertension has been obtained from experimental manipulations and studies of human populations. The following observation links sodium and hypertension. An increase in sodium intakes raises the blood pressure of the normal rat, dog, rabbit, baboon, chimpanzee and man. Population studies have demonstrated a significant correlation between sodium intake and the customary rise in blood pressure with age. The development of hypertensive strains of rats has revealed that the primary genetic lesion which gives rise to hypertension resides in the kidney where it impairs the urinary excretion of sodium. There is similar but less convincing evidence in essential hypertension. The kidney in both essential hypertension and hypertensive strains of rats share a number of functional abnormalities most of which are capable of impairing sodium excretion. Essential hypertension would appear to be as much a renal disturbance related to the intake of sodium as hypertension secondary to renal disease.
Characterization of Hall effect thruster propellant distributors with flame visualization
NASA Astrophysics Data System (ADS)
Langendorf, S.; Walker, M. L. R.
2013-01-01
A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.
Lemcke, J; Meier, U; Müller, C; Fritsch, M; Eymann, R; Kiefer, M; Kehler, U; Langer, N; Rohde, V; Ludwig, H-Ch; Weber, F; Remenez, V; Schuhmann, M; Stengel, D
2010-01-01
Overdrainage is a common complication observed after shunting patients with idiopathic normal-pressure hydrocephalus (iNPH), with an estimated incidence up to 25%. Gravitational units that counterbalance intracranial pressure changes were developed to overcome this problem. We will set out to investigate whether the combination of a programmable valve and a gravitational unit (proGAV, Aesculap/Miethke, Germany) is capable of reducing the incidence of overdrainage and improving patient-centered outcomes compared to a conventional programmable valve (Medos-Codman, Johnson & Johnson, Germany). SVASONA is a pragmatic randomized controlled trial conducted at seven centers in Germany. Patients with a high probability of iNPH (based on clinical signs and symptoms, lumbar infusion and/or tap test, cranial computed tomography [CCT]) and no contraindications for surgical drainage will randomly be assigned to receive (1) a shunt assistant valve (proGAV) or (2) a conventional, programmable shunt valve (programmable Medos-Codman).We will test the primary hypothesis that the experimental device reduces the rate of overdrainage from 25% to 10%. As secondary analyses, we will measure iNPH-specific outcomes (i.e., the Black grading scale and the NPH Recovery Rate), generic quality of life (Short Form 36), and complications and serious adverse events (SAE). One planned interim analysis for safety and efficacy will be performed halfway through the study. To detect the hypothesized difference in the incidence of overdrainage with a type I error of 5% and a type II error of 20%, correcting for multiple testing and an anticipated dropout rate of 10%, 200 patients will be enrolled.The presented trial is currently recruiting patients, with the first results predicted to be available in late 2008.
Understand Centrifugal Compressor stage curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, E.L.
1986-08-01
Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less
Design, development and evaluation of Stanford/Ames EVA prehensors
NASA Technical Reports Server (NTRS)
Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.
1988-01-01
Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.
Neuronal machinery of sleep homeostasis in Drosophila.
Donlea, Jeffrey M; Pimentel, Diogo; Miesenböck, Gero
2014-02-19
Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Role of Fluids in Mechanics of Overthrust Faulting on Titan
NASA Astrophysics Data System (ADS)
Liu, Z.; Radebaugh, J.; Harris, R. A.; Christiansen, E. H.
2013-12-01
Since Cassini has unveiled Titan's surface, its mountains have been commonly associated with contractional tectonism. However, in order to form contractional structures on icy satellites, relatively large stresses are required. The stress required to form contractional structures on Ganymede and Europa is 3-8 times that required for extensional features. Sources of such stresses probably do not exist for most icy satellites. Therefore, a paradox has emerged, wherein no stress source is known that is large enough to produce the contractional structures observed on Titan. A possible solution for the strength paradox is inspired by Hubbert and Rubey (1959) who demonstrated how high fluid pressures reduce the normal stress along a fault plane, therefore significantly reducing frictional resistance to thrusting. Since liquid hydrocarbons have been identified on Titan's surface and may flow in the subsurface, we speculate that fluid pressures associated with liquid hydrocarbons in the subsurface significantly reduce the shear strength of the icy crust and enable contractional structures to form without the requiring large stresses. We use critical wedge theory, which is a mechanism for driving fold-and-thrust belt formation, to test if the slope angles of mountains and crustal conditions with estimated fluid pressures favor the formation of fold-thrust belts on Titan. We evaluated 6 mountain belts with available Cassini SARTopo data using critical wedge calculations. The slopes of 10 traces from valley floors to summits are between 0.4 and 2.5 degrees. We use the measured slopes with varying friction coefficients and fluid pressures to calculate the range of dip angles. The results yielded 840 dip angle values, 689 (82%) of which were in a reasonable range, and consistent with fold belt formation in critical wedge settings. We conclude that crustal liquids have played a key role in Titan's tectonic history. Our results highlight the significance of fluids in planetary lithospheres and have implications for tectonics on all solid bodies that may have fluid in their lithospheres, now or in the past. Reference: Hubbert, M. K. & Rubey, W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 70, 2, 115-166 (1959).
Martín-Láez, Rubén; Vázquez-Barquero, Alfonso
Despite the existence of published guidelines for more than a decade, there is still a substantial variation in the management of idiopathic normal pressure hydrocephalus due to its diagnostic and therapeutic complexity. The diagnostic and therapeutic protocol for the management of idiopathic normal pressure hydrocephalus in use at the Department of Neurosurgery of the University Hospital Marqués de Valdecilla is presented. The diagnostic process includes neuropsychological testing, phase contrast cine MRI, urodynamic evaluation, continuous intracranial pressure monitoring, cerebrospinal fluid hydrodynamics by means of lumbar infusion testing, and intra-abdominal pressure measurement. A patient is considered a surgical candidate if any of the following criteria is met: mean intracranial pressure >15mmHg, or B-waves present in >10% of overnight recording; pressure-volume index <15ml, or resistance to cerebrospinal fluid outflow (R OUT ) >4.5mmHg/ml/min in bolus infusion test; R OUT >12mmHg/ml/min, intracranial pressure >22mmHg, or high amplitude B-waves in the steady-state of the continuous rate infusion test; or a clinical response to high-volume cerebrospinal fluid withdrawal. The implementation of a diagnostic and therapeutic protocol for idiopathic normal pressure hydrocephalus management could improve various aspects of patient care. It could reduce variability in clinical practice, optimise the use of health resources, and help in identifying scientific uncertainty areas, in order to direct research efforts in a more appropriate way. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.
Short residence time coal liquefaction process including catalytic hydrogenation
Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.
1982-05-18
Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.
Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.
2007-01-01
Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and <250 ??C. The presence of similar structures elsewhere indicates that the brittle structural sequence is typical of the San Juan nappes. Sustained HP-LT conditions are possible only if structures formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.
NASA Astrophysics Data System (ADS)
Castillo, Martin
2016-07-01
Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.
Chauhan, Ashutosh; Thomas, Shaji; Bishnoi, Prem Kumar; Hadke, Niladhar S
2007-01-01
Increased maximum resting anal pressures (MRAP) have been found in patients with large prolapsed hemorrhoids undergoing hemorrhoidectomy, but their pathogenic role is controversial especially in view of the sphincteric damage that occurs with open and stapled procedures. This prospective randomized clinical trial was conducted to compare anal pressure changes in early symptomatic hemorrhoidal disease before and after successful treatment with band ligation or injection sclerotherapy, and to compare these pressures with those in normal asymptomatic controls. 32 patients with symptomatic grade II hemorrhoids were randomized to treatment with either band ligation or injection sclerotherapy. Anal manometry was done before treatment and 8 weeks after completion of treatment, and compared with 20 normal age-matched controls. The pretreatment values in both study groups were similar to each other (69.38 cm H(2)O, 95% CI 58.67-80.08, vs. 67.75 cm H(2)O, 95% CI 56.86-78.64; p = 0.790), but were significantly higher (p = 0.0001 in both groups) than in the controls (45.25 cm H(2)O, 95% CI 38.36-52.14). After successful completion of treatment, there was a highly significant drop in the MRAP in both study groups (p = 0.0001 in group A, and p = 0.001 in group B) reaching normal values. Our study shows that even in early-stage hemorrhoids, the anal pressures are significantly raised, but after successful treatment with band ligation or injection sclerotherapy, these pressures return to normal, showing that they do not play a pathogenic role but are secondary to the congested hemorrhoidal cushions. Copyright (c) 2007 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1979-01-01
The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.
NASA Astrophysics Data System (ADS)
Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.
2018-04-01
The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.
Log-Normality and Multifractal Analysis of Flame Surface Statistics
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2013-11-01
The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.
Makagon, Maja M; Funayama, E Sumie; Owren, Michael J
2008-07-01
Relatively few empirical data are available concerning the role of auditory experience in nonverbal human vocal behavior, such as laughter production. This study compared the acoustic properties of laughter in 19 congenitally, bilaterally, and profoundly deaf college students and in 23 normally hearing control participants. Analyses focused on degree of voicing, mouth position, air-flow direction, temporal features, relative amplitude, fundamental frequency, and formant frequencies. Results showed that laughter produced by the deaf participants was fundamentally similar to that produced by the normally hearing individuals, which in turn was consistent with previously reported findings. Finding comparable acoustic properties in the sounds produced by deaf and hearing vocalizers confirms the presumption that laughter is importantly grounded in human biology, and that auditory experience with this vocalization is not necessary for it to emerge in species-typical form. Some differences were found between the laughter of deaf and hearing groups; the most important being that the deaf participants produced lower-amplitude and longer-duration laughs. These discrepancies are likely due to a combination of the physiological and social factors that routinely affect profoundly deaf individuals, including low overall rates of vocal fold use and pressure from the hearing world to suppress spontaneous vocalizations.
Bombardini, Tonino; Mulieri, Louis A; Salvadori, Stefano; Costantino, Marco Fabio; Scali, Maria Chiara; Marzilli, Mario; Picano, Eugenio
2017-02-01
The variation between rest and peak stress end-systolic pressure-volume relation is an afterload-independent index of left ventricular contractility. Whether and to what extent it depends on end-diastolic volume remains unclear. The aim of this study was to assess the dependence of the delta rest-stress end-systolic pressure-volume relation on end-diastolic volume in patients with negative stress echo and all ranges of resting left ventricular function. We analyzed interpretable data obtained in 891 patients (593 men, age 63 ± 12 years) with ejection fraction 47% ± 12%: 338 were normal or near-normal or hypertensive; 229 patients had coronary artery disease; and 324 patients had ischemic or nonischemic dilated cardiomyopathy. They were studied with exercise (n = 172), dipyridamole (n = 482) or dobutamine (n = 237) stress echocardiography. The end-systolic pressure-volume relation was evaluated at rest and peak stress from raw measurement of systolic arterial pressure by cuff sphygmomanometer and end-systolic volume by biplane Simpson rule 2-dimensional echocardiography. Absolute values of delta rest-stress end-systolic pressure-volume relation were higher for exercise and dobutamine than for dipyridamole. In the overall population, an inverse relationship between end-systolic pressure-volume relation and end-diastolic volume was present at rest (r 2 = 0.69, P < .001) and peak stress (r 2 = 0.56, P < .001), but was absent if the delta rest-stress end-systolic pressure-volume relation was considered (r 2 = 0.13). Left ventricular end-diastolic volume does not affect the rest-stress changes in end-systolic pressure-volume relation in either normal or abnormal left ventricles during physical or pharmacological stress. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets
NASA Astrophysics Data System (ADS)
Tamburini, Christian; Goutx, Madeleine; Guigue, Catherine; Garel, Marc; Lefèvre, Dominique; Charrière, Bruno; Sempéré, Richard; Pepa, Stéphane; Peterson, Michael L.; Wakeham, Stuart; Lee, Cindy
2009-08-01
We used a new experimental device called PASS (PArticle Sinking Simulator) during MedFlux to simulate changes in in situ hydrostatic pressure that particles experience sinking from mesopelagic to bathypelagic depths. Particles, largely fecal pellets, were collected at 200 m using a settling velocity NetTrap (SV NetTrap) in Ligurian Sea in April 2006 and incubated in high-pressure bottles (HPBs) of the PASS system under both atmospheric and continuously increasing pressure conditions, simulating the pressure change experienced at a sinking rate of 200 m d -1. Chemical changes over time were evaluated by measuring particulate organic carbon (POC), carbohydrates, transparent exopolymer particles (TEP), amino acids, lipids, and chloropigments, as well as dissolved organic carbon (DOC) and dissolved carbohydrates. Microbial changes were evaluated microscopically, using diamidinophenylindole (DAPI) stain for total cell counts and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) for phylogenetic distinctions. Concentrations (normalized to POC) of particulate chloropigments, carbohydrates and TEP decreased under both sets of incubation conditions, although less under the increasing pressure regime than under atmospheric conditions. By contrast, dissolved carbohydrates (normalized to DOC) were higher after incubation and significantly higher under atmospheric conditions, suggesting they were produced at the expense of the particulate fraction. POC-normalized particulate wax/steryl esters increased only under pressure, suggesting biochemical responses of prokaryotes to the increasing pressure regime. The prokaryotic community initially consisted of 43% Bacteria, 12% Crenarchaea and 11% Euryarchaea. After incubation, Bacteria dominated (˜90%) the prokaryote community in all cases, with γ- Proteobacteria comprising the greatest fraction, followed by the Cytophaga-Flavobacter cluster and α -Proteobacteria group. Using the PASS system, we obtained chemical and microbial evidence that degradation by prokaryotes associated with fecal pellets sinking through mesopelagic waters is limited by the increasing pressure they experience.
Choi, Won Seok; Kim, Tae Wan; Kim, Ja Hyun; Lee, Sang Hyuk; Hur, Woon Je; Choe, Young Gil; Lee, Sang Hyuk; Park, Jung Ho; Sohn, Chong Il
2013-10-01
Globus is a foreign body sense in the throat without dysphagia, odynophagia, esophageal motility disorders, or gastroesophageal reflux. The etiology is unclear. Previous studies suggested that increased upper esophageal sphincter pressure, gastroesophageal reflux and hypertonicity of esophageal body were possible etiologies. This study was to quantify the upper esophageal sphincter (UES) pressure, contractile front velocity (CFV), proximal contractile integral (PCI), distal contractile integral (DCI) and transition zone (TZ) in patient with globus gastroesophageal reflux disease (GERD) without globus, and normal controls to suggest the correlation of specific high-resolution manometry (HRM) findings and globus. Fifty-seven globus patients, 24 GERD patients and 7 normal controls were studied with HRM since 2009. We reviewed the reports, and selected 5 swallowing plots suitable for analysis in each report, analyzed each individual plot with ManoView. The 5 parameters from each plot in 57 globus patients were compared with that of 24 GERD patients and 7 normal controls. There was no significant difference in the UES pressure, CFV, PCI and DCI. TZ (using 30 mmHg isobaric contour) in globus showed significant difference compared with normal controls and GERD patients. The median values of TZ were 4.26 cm (interquartile range [IQR], 2.30-5.85) in globus patients, 5.91 cm (IQR, 3.97-7.62) in GERD patients and 2.26 cm (IQR, 1.22-2.92) in normal controls (P = 0.001). HRM analysis suggested that UES pressure, CFV, PCI and DCI were not associated with globus. Instead increased length of TZ may be correlated with globus. Further study comparing HRM results in globus patients within larger population needs to confirm their correlation.
Choi, Won Seok; Kim, Tae Wan; Kim, Ja Hyun; Lee, Sang Hyuk; Hur, Woon Je; Choe, Young Gil; Lee, Sang Hyuk; Park, Jung Ho
2013-01-01
Background/Aims Globus is a foreign body sense in the throat without dysphagia, odynophagia, esophageal motility disorders, or gastroesophageal reflux. The etiology is unclear. Previous studies suggested that increased upper esophageal sphincter pressure, gastroesophageal reflux and hypertonicity of esophageal body were possible etiologies. This study was to quantify the upper esophageal sphincter (UES) pressure, contractile front velocity (CFV), proximal contractile integral (PCI), distal contractile integral (DCI) and transition zone (TZ) in patient with globus gastroesophageal reflux disease (GERD) without globus, and normal controls to suggest the correlation of specific high-resolution manometry (HRM) findings and globus. Methods Fifty-seven globus patients, 24 GERD patients and 7 normal controls were studied with HRM since 2009. We reviewed the reports, and selected 5 swallowing plots suitable for analysis in each report, analyzed each individual plot with ManoView. The 5 parameters from each plot in 57 globus patients were compared with that of 24 GERD patients and 7 normal controls. Results There was no significant difference in the UES pressure, CFV, PCI and DCI. TZ (using 30 mmHg isobaric contour) in globus showed significant difference compared with normal controls and GERD patients. The median values of TZ were 4.26 cm (interquartile range [IQR], 2.30-5.85) in globus patients, 5.91 cm (IQR, 3.97-7.62) in GERD patients and 2.26 cm (IQR, 1.22-2.92) in normal controls (P = 0.001). Conclusions HRM analysis suggested that UES pressure, CFV, PCI and DCI were not associated with globus. Instead increased length of TZ may be correlated with globus. Further study comparing HRM results in globus patients within larger population needs to confirm their correlation. PMID:24199007
Jimenez-Corona, Aida; Lopez-Ridaura, Ruy; Stern, Michael P; Gonzalez-Villalpando, Clicerio
2007-01-01
BACKGROUND Blood pressure (BP) levels below the pre-hypertension category may be associated with the risk of developing hypertension. We estimated the incidence rates of hypertension in low-income Mexican population according to several subcategories of baseline BP within normal and pre-hypertension categories. METHODS A total of 1572 nonhypertensive men (n=632) and non-pregnant women (n=940), aged 35 to 64 years at baseline, were followed for a median of 5.8 years. Hypertension was defined as systolic blood pressure (SBP) ≥140 mm Hg, diastolic blood pressure (DBP) ≥90 mm Hg, or self-reported physician diagnosis with anti-hypertensive medications. RESULTS During follow-up, 267 subjects developed hypertension, of whom 83 were men and 184 were women. Age-adjusted incidence rate was higher in women (37.1 per 1000 person-years) than in men (23.7 per 1000 person-years). There was a significant association between BP levels at baseline and hypertension incidence even within the normal category. For the upper levels of normal SBP (110-119 mm Hg), the HR (95%CI) was 2.43 (1.50-3.93) in women and 2.44 (1.05-5.69) in men, compared with SBP <110 mm Hg. For the upper levels of normal DBP (70-79 mm Hg), the HR (95%CI) was 2.33 (1.65-3.31) in women and 1.80 (0.92-3.52) in men, compared with DBP <70 mm Hg, after adjustment for recognized predictors. CONCLUSIONS High risk of hypertension incidence was associated with levels of BP even within the normal category. This information could help define a population at high risk of progression to hypertension, in order to establish preventive measures. PMID:17765131
Jiang, H J; Zhang, J M; Fu, W M; Zheng, Z; Luo, W; Zheng, Y X; Zhu, J M
2016-06-07
To investigate some important issues for diagnosis and treatment of idiopathic normal-pressure hydrocephalus (iNPH), such as standardized pre-operative assessment, initial pressure value of diverter pump, and pressure regulation during follow-up. Twenty six iNPH patients (21 males) who treated in Department of Neurosurgery of 2nd Affiliated Hospital of Zhejiang University School of Medicine from 2011 to 2015 were analyzed retrospectively. The average age was 60.5 year. The analysis focused on the treatment process of iNPH, initial pressure value of diverter pump, choice of diverter pump, and pressure regulation during follow-up. As a result, 24 cases (92.3%) had a good prognosis based on their imaging and clinical manifestations. Based on the literature and their clinical experiences, this department established a diagnosis and treatment procedure of iNPH and a pressure regulation procedure for the follow-up of iNPH. Moreover, it is proposed that choosing an anti-gravity diverter pump and making an initial pressure value 20 mmH2O less than pre-surgical cerebrospinal pressure may be beneficial for the prognosis. This standardized diagnosis and treatment procedure for iNPH is practical and effective.
Taylor, Adam G.
2018-01-01
New solutions of potential functions for the bilinear vertical traction boundary condition are derived and presented. The discretization and interpolation of higher-order tractions and the superposition of the bilinear solutions provide a method of forming approximate and continuous solutions for the equilibrium state of a homogeneous and isotropic elastic half-space subjected to arbitrary normal surface tractions. Past experimental measurements of contact pressure distributions in granular media are reviewed in conjunction with the application of the proposed solution method to analysis of elastic settlement in shallow foundations. A numerical example is presented for an empirical ‘saddle-shaped’ traction distribution at the contact interface between a rigid square footing and a supporting soil medium. Non-dimensional soil resistance is computed as the reciprocal of normalized surface displacements under this empirical traction boundary condition, and the resulting internal stresses are compared to classical solutions to uniform traction boundary conditions. PMID:29892456
Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salak, A.N., E-mail: salak@ua.pt; Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk; Pushkarev, A.V.
Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of themore » BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in BiFeO{sub 3} at ambient pressure is about 15 at%. • R3c → Pnma → C2/c phase sequence in high-pressure prepared BiFe{sub 1-y}Sc{sub y}O{sub 3} ceramics. • The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases formed under high pressure are metastable.« less
Effect of initial conditions on combustion generated loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tieszen, S.R.
1991-01-01
This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less
Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin
2013-01-01
The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623
Effect of revised high-heeled shoes on foot pressure and static balance during standing.
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-04-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance.
Effect of revised high-heeled shoes on foot pressure and static balance during standing
Bae, Young-Hyeon; Ko, Mansoo; Park, Young-Soul; Lee, Suk-Min
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of revised high-heeled shoes on the foot pressure ratio and static balance during standing. [Subjects and Methods] A single-subject design was used, 15 healthy women wearing revised high-heeled shoes and general high-heeled shoes in a random order. The foot pressure ratio and static balance scores during standing were measured using a SpaceBalance 3D system. [Results] Forefoot and rearfoot pressures were significantly different between the 2 types of high-heeled shoes. Under the 3 conditions tested, the static balance score was higher for the revised high-heeled shoes than for the general high-heeled shoes, but this difference was not statistically significant. [Conclusion] Revised high-heeled shoes are preferable to general high-heeled shoes, as they result in normalization of normalized foot pressure and a positive effect on static balance. PMID:25995572
[Factors for postoperative persistent hypertension in patients with aldosterone-producing adenoma].
Liu, D; Zheng, C; Chen, Q
1997-07-01
We determined the factors for postoperative persistent hypertension in the patients with aldosterone-producing adrenal adenoma (APA) in 53 patients with APA who were followed up for average 3.1 years. All had normal serum potassium concentration postoperatively. Blood pressure was normal in 37 patients (69.8%) but 18.7/12.7 kPa or more in 16 patients (30.2%) with persistent hypertension. Also compared were sex, age, history of hypertension, effect of reducing blood pressure to antisterone, preoperative blood pressure, time of persistent hypertension, serum potassium concentration, aldosterone concentration in 24 hour urine, amount of PRA, and the type of operation. The results showed that an APA patient aged 50 years or more appears to have a great chance of persistent hypertension than an APA patient under age of 40 years, and the odds ratio is 3:1. There was a significant difference between the mean age for persistent hypertension and for normal blood pressure, and varioas response of reducing blood pressure to antisterone (P < 0.05). It is suggested that for an older APA patient and the patient without of reducing blood pressure to antisterone, there are other factors for hypertension such as renal veinlet change or renal interstitial lesions except for hyperaldosteronism. We recommend renal biopsy (using kidney puncture) at the operating table for those patients in order to understand pathological change and guide treatment after operation.
14 CFR 23.365 - Pressurized cabin loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...
46 CFR 61.10-5 - Pressure vessels in service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...
46 CFR 61.10-5 - Pressure vessels in service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...
46 CFR 61.10-5 - Pressure vessels in service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...
46 CFR 61.10-5 - Pressure vessels in service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...
The use of normal forms for analysing nonlinear mechanical vibrations
Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea
2015-01-01
A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917
Distortion in fingerprints: a statistical investigation using shape measurement tools.
Sheets, H David; Torres, Anne; Langenburg, Glenn; Bush, Peter J; Bush, Mary A
2014-07-01
Friction ridge impression appearance can be affected due to the type of surface touched and pressure exerted during deposition. Understanding the magnitude of alterations, regions affected, and systematic/detectable changes occurring would provide useful information. Geometric morphometric techniques were used to statistically characterize these changes. One hundred and fourteen prints were obtained from a single volunteer and impressed with heavy, normal, and light pressure on computer paper, soft gloss paper, 10-print card stock, and retabs. Six hundred prints from 10 volunteers were rolled with heavy, normal, and light pressure on soft gloss paper and 10-print card stock. Results indicate that while different substrates/pressure levels produced small systematic changes in fingerprints, the changes were small in magnitude: roughly the width of one ridge. There were no detectable changes in the degree of random variability of prints associated with either pressure or substrate. In conclusion, the prints transferred reliably regardless of pressure or substrate. © 2014 American Academy of Forensic Sciences.
Leung, Ting-Kai; Chen, Chien-Ho; Tsai, Shih-Ying; Hsiao, George; Lee, Chi-Ming
2012-10-31
The present study examined the effects of BIOCERAMIC on psychological stress-conditioned elevated heart rate, blood pressure and oxidative stress-suppressed cardiac contractility using in vivo and in vitro animal models. We investigated the effects of BIOCERAMIC on the in vivo cardiovascular hemodynamic parameters of rats by monitoring their heart rates, systolic blood pressure, mean blood pressure and diastolic blood pressure. Thereafter, we assayed its effects on the heart rate in an isolated frog heart with and without adrenaline stimulation, and on cardiac contractility under oxidative stress. BIOCERAMIC caused significant decreases in heart rates and systolic and mean blood pressure in the stress-conditioned heart rate rat models (P < 0.05), as well as in the experimental models of an isolated frog heart with and without adrenaline stimulation (P < 0.05), and normalized cardiac contractility under oxidative stress (P < 0.05). BIOCERAMIC may, therefore, normalize the effects of psychological stress and oxidative stress conditions.
Influence of the softness of the parietal pleura on respiratory sliding mechanisms
Kim, Jae Hun; Butler, James P.; Loring, Stephen H.
2011-01-01
The pleural surfaces of the lung and chest wall slide against each other with low friction. Normal load support can be effected either by a combination of quasi-static fluid pressure and solid-solid contacts of relatively stiff asperities, or by shear-induced hydrodynamic pressures in the pleural fluid layer. To distinguish between these mechanisms, we measured surface topography and spatial distribution of stiffness of rat parietal pleura using atomic force microscopy. The topography of the pleural surface has unevenness at length scales smaller than the thickness of pleural fluid, similar to mesothelial cell diameters. The estimated maximum normal contact pressure that could be borne by asperities of the soft pleura is much less than that required to support a substantial difference between pleural fluid pressure and the pleural surface pressure. These results suggest that during sliding motion, unevenness of the pleural surface is smoothed by local hydrodynamic pressure, preventing any significant contribution of solid-solid contacts. PMID:21473935
2010-08-01
Pressurization Simulations ....................................................................................18 3.2 NVT Uniaxial Strain... Simulations .................................................................................26 3.3 Stacking Mismatch Simulations ...13 Figure 2. Pressure versus normalized volume. Circles are simulation results
Gong, Yi; Cao, Kai-wu; Xu, Jin-song; Li, Ju-xiang; Hong, Kui; Cheng, Xiao-shu; Su, Hai
2015-01-01
This study aimed to establish a normal range for ankle systolic blood pressure (SBP). A total of 948 subjects who had normal brachial SBP (90-139 mmHg) at investigation were enrolled. Supine BP of four limbs was simultaneously measured using four automatic BP measurement devices. The ankle-arm difference (An-a) on SBP of both sides was calculated. Two methods were used for establishing normal range of ankle SBP: the 99% method was decided on the 99% reference range of actual ankle BP, and the An-a method was the sum of An-a and the low or up limits of normal arm SBP (90-139 mmHg). Whether in the right or left side, the ankle SBP was significantly higher than the arm SBP (right: 137.1 ± 16.9 vs 119.7 ± 11.4 mmHg, P<0.05). Based on the 99% method, the normal range of ankle SBP was 94~181 mmHg for the total population, 84~166 mmHg for the young (18-44 y), 107~176 mmHg for the middle-aged(45-59 y) and 113~179 mmHg for the elderly (≥ 60 y) group. As the An-a on SBP was 13 mmHg in the young group and 20 mmHg in both middle-aged and elderly groups, the normal range of ankle SBP on the An-a method was 103-153 mmHg for young and 110-160 mmHg for middle-elderly subjects. A primary reference for normal ankle SBP was suggested as 100-165 mmHg in the young and 110-170 mmHg in the middle-elderly subjects.
Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.
Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation
NASA Astrophysics Data System (ADS)
Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro
1996-08-01
Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.
Gül, Ülkü; Kaçar Bayram, Ayşe; Kendirci, Mustafa; Hatipoğlu, Nihal; Okdemir, Deniz; Gümüş, Hakan; Kurtoğlu, Selim
2016-01-01
Gonadotropin-releasing hormone analogues are common treatment option in central precocious puberty in childhood as well as in endometriosis, infertility, and prostate cancer in adults. Pseudotumor cerebri is a rare side effect observed in adults. We present the case of a girl with precocious puberty treated with triptorelin acetate who developed pseudotumor cerebri after the 4th dose. She had headaches, and her blood pressure was detected to be above the 99 percentile. There were no causes underlying of hypertension such as cardiac, renal, or endocrine. Neurological examination was normal except bilateral papilledema. Cranial magnetic resonance imaging was normal. Cerebrospinal fluid (CSF) opening pressure was elevated. Triptorelin therapy was ceased and acetazolamide was applied; CSF pressure returned to normal. We observed pseudotumor cerebri after precocious puberty treatment, a finding for the first time ever seen in childhood. PMID:27087351
Sugimoto, Seiichiro; Sugimoto, Akiko; Saita, Kazuko; Kishi, Masahiko; Shioya, Keiichi; Higa, Toshinobu
2008-08-01
A 67-year-old woman developed gait disturbance, dysarthria, cognitive impairment and incontinence at age 65, and became bedridden. She showed mutism, stupor and lower limb spasticity. Cranial CT and MRI revealed marked ventricular enlargement and a cerebellopontine angle tumor. CSF study showed normal pressure (125 mmH2O) and elevated protein (143 mg/dl). Radionuclide cisternography showed redistribution of radionuclide to the ventricles and intraventricular residual radionuclide after 72 hours, which allowed a diagnosis of normal pressure hydrocephalus. After removal of the tumor, ventricle size and CSF protein decreased, and the symptoms of cognitive impairment and motor dysfunction resolved. Histological examination showed acoustic neurinoma. Over the half of hydrocephalus following acoustic neurinoma shows a tendency to improve by surgical resection of the tumor. Neurologists who see cognitively impaired spastic bedridden patients should not overlook this pathology.
Cerebral hemodynamics before and after shunting in normal pressure hydrocephalus.
Bakker, S L M; Boon, A J W; Wijnhoud, A D; Dippel, D W J; Delwel, E J; Koudstaal, P J
2002-09-01
To study the relationship between cerebral hemodynamics and clinical performance in normal pressure hydrocephalus (NPH), before and after surgery. Ten patients were studied prospectively before and 3 months after shunt surgery by means of transcranial Doppler (TCD). Clinical performance was scored by means of an NPH scale and the modified Rankin scale. Peak systolic and mean cerebral blood flow velocity (MCV) were lower and cerebrovascular CO2 reactivity was higher after shunt surgery. The three patients with clinical improvement had higher preoperative end diastolic cerebral blood flow velocity and MCV. All postoperative cerebral blood flow velocities were higher in patients with clinical improvement. Our data suggest that higher cerebral blood flow velocity before surgery in patients with NPH is related to clinical improvement after shunt surgery. Cerebral hemodynamic parameters may develop into predictors of successful shunt surgery in patients with normal pressure hydrocephalus.
Normal stress effects on Knudsen flow
NASA Astrophysics Data System (ADS)
Eu, Byung Chan
2018-01-01
Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.
Padurariu, Simona; de Greef, Daniël; Jacobsen, Henrik; Nlandu Kamavuako, Ernest; Dirckx, Joris J; Gaihede, Michael
2016-10-01
The tympanic membrane (TM) represents a pressure buffer, which contributes to the overall pressure regulation of the middle ear (ME). This buffer capacity is based on its viscoelastic properties combined with those of the attached ossicular chain, muscles and ligaments. The current work presents a set of in vivo recordings of the ME pressure variations normally occurring in common life: elevator motion. This is defined as a situation of smooth ambient pressure increase or decrease on a limited range and at a low rate of pressure change. Based on these recordings, the purpose was a quantitative analysis of the TM buffer capacity including the TM compliance. The pressure changes in seven normal adult ME's with intact TM's were continuously recorded directly inside the ME cavity during four different elevator trips using a high precision instrument. The TM buffer capacity was determined by the ratio between the changes in ME and the ambient pressure. Further, the ME volumes were calculated by Boyle's Law from pressure recordings during inflation-deflation tests; subsequently the TM compliance could also be calculated. Finally, the correlation between the ME volume and buffer function was determined. Twenty-one elevator trips could be used for the analysis. The overall mean TM pressure buffering capacity was 23.3% (SEM = 3.4), whereas the mean overall compliance was 28.9 × 10 -3 μL/Pa (SEM = 4.8). A strong negative linear correlation was found between the TM buffer capacity and the ME volumes (R 2 = 0.92). These results were in fair agreement with the literature obtained in clinical as well as temporal bone experiments, and they provide an in vivo reference for the normal ME function as well as for ME modeling. The TM buffer capacity was found more efficient in smaller mastoids. Possible clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Nguyen, N Q; Holloway, R H; Smout, A J; Omari, T I
2013-03-01
Automated integrated analysis of impedance and pressure signals has been reported to identify patients at risk of developing dysphagia post fundoplication. This study aimed to investigate this analysis in the evaluation of patients with non-obstructive dysphagia (NOD) and normal manometry (NOD/NM). Combined impedance-manometry was performed in 42 patients (27F : 15M; 56.2 ± 5.1 years) and compared with that of 24 healthy subjects (8F : 16M; 48.2 ± 2.9 years). Both liquid and viscous boluses were tested. MATLAB-based algorithms defined the median intrabolus pressure (IBP), IBP slope, peak pressure (PP), and timing of bolus flow relative to peak pressure (TNadImp-PP). An index of pressure and flow (PFI) in the distal esophagus was derived from these variables. Diagnoses based on conventional manometric assessment: diffuse spasm (n = 5), non-specific motor disorders (n = 19), and normal (n = 11). Patients with achalasia (n = 7) were excluded from automated impedance-manometry (AIM) analysis. Only 2/11 (18%) patients with NOD/NM had evidence of flow abnormality on conventional impedance analysis. Several variables derived by integrated impedance-pressure analysis were significantly different in patients as compared with healthy: higher PNadImp (P < 0.01), IBP (P < 0.01) and IBP slope (P < 0.05), and shorter TNadImp_PP (P = 0.01). The PFI of NOD/NM patients was significantly higher than that in healthy (liquid: 6.7 vs 1.2, P = 0.02; viscous: 27.1 vs 5.7, P < 0.001) and 9/11 NOD/NM patients had abnormal PFI. Overall, the addition of AIM analysis provided diagnoses and/or a plausible explanation in 95% (40/42) of patients who presented with NOD. Compared with conventional pressure-impedance assessment, integrated analysis is more sensitive in detecting subtle abnormalities in esophageal function in patients with NOD and normal manometry. © 2012 Blackwell Publishing Ltd.
De Palma, Anna; Cheleschi, Sara; Pascarelli, Nicola Antonio; Giannotti, Stefano; Galeazzi, Mauro; Fioravanti, Antonella
2018-01-03
Mechanical stimuli and hydrostatic pressure (HP) play an important role in the regulation of chondrocytes metabolism. Growing evidence demonstrated the ability of mechanical loading to modulate the expression of microRNA (miRNA) involved in chondrocytes homeostasis and in the pathogenesis of osteoarthritis (OA). The expression of miR-155, miR-181a and miR-223 in normal and OA chondrocyte cultures, and their potential modifications following exposure to three hours of a cyclic HP (1-5 MPa, frequency 0.25 Hz) were investigated. Also evaluated the expression of Chuk, regulator of the NF-kB pathway activation, which is a target gene of miR-223, was evaluated. Chondrocytes were collected immediately after pressurization (T0), and following 12, 24, and 48 h. Total RNA was extracted, reverse transcribed and used for real-time PCR. At basal condition, a significant increase of miR-155 and miR-181a was observed in OA in comparison to normal cells; on the contrary, no differences in miR-223 and Chuk expression levels were detected between normal and OA chondrocytes. miR-155 and miR-181a resulted significantly downregulated immediately after pressurization (T0) in OA cells. The pressure effect on miR-155 and miR-181a levels was maintained over time. No modifications of miR-223 were observed in response to HP, while Chuk levels resulted significantly reduced at T0 and after 12 h. Pressurization did not cause any modifications in normal cells. In conclusion, HP was able to modulate the expression of miRNA associated to OA pathogenesis. The preliminary results about Chuk response to pressure raised interest in its involvement in the possible HP induced NF-kB pathway modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrodynamics based transfection in normal and fibrotic rats
Yeikilis, Rita; Gal, Shunit; Kopeiko, Natalia; Paizi, Melia; Pines, Mark; Braet, Filip; Spira, Gadi
2006-01-01
AIM: Hydrodynamics based transfection (HBT), the injection of a large volume of naked plasmid DNA in a short time is a relatively simple, efficient and safe method for in vivo transfection of liver cells. Though used for quite some time, the mechanism of gene transfection has not yet been elucidated. METHODS: A luciferase encoding plasmid was injected using the hydrodynamics based procedure into normal and thioacetamide-induced fibrotic Sprague Dawley rats. Scanning and transmission electron microscopy images were taken. The consequence of a dual injection of Ringer solution and luciferase pDNA was followed. Halofuginone, an anti collagen type I inhibitor was used to reduce ECM load in fibrotic rats prior to the hydrodynamic injection. RESULTS: Large endothelial gaps formed as soon as 10’ following hydrodynamic injection; these gradually returned to normal 10 d post injection. Hydrodynamic administration of Ringer 10 or 30 m prior to moderate injection of plasmid did not result in efficient transfection suggesting that endothelial gaps by themselves are not sufficient for gene expression. Gene transfection following hydrodynamic injection in thioacetamide induced fibrotic rats was diminished coinciding with the level of fibrosis. Halofuginone, a specific collagen typeIinhibitor, alleviated this effect. CONCLUSION: The hydrodynamic pressure formed following HBT results in the formation of large endothelial gaps. These gaps, though important in the transfer of DNA molecules from the blood to the space of Disse are not enough to provide the appropriate conditions for hepatocyte transfection. Hydrodynamics based injection is applicable in fibrotic rats provided that ECM load is reduced. PMID:17036386
High-temperature-measuring device
Not Available
1981-01-27
A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
Localized structures in vibrated emulsions
NASA Astrophysics Data System (ADS)
Falcón, Claudio; Bruggeman, Jake; Pasquali, Matteo; Deegan, Robert D.
2012-04-01
We report our observations of localized structures in a thin layer of an emulsion subjected to vertical oscillations. We observe persistent holes, which are voids that span the layer depth, and kinks, which are fronts between regions with and without fluid. These structures form in response to a finite amplitude perturbation. Combining experimental and rheological measurements, we argue that the ability of these structures to withstand the hydrostatic pressure of the surrounding fluid is due to convection within their rim. For persistent holes the oscillatory component of the convection generates a normal stress which opposes contraction, while for kinks the steady component of the convection generates a shear stress which opposes the hydrostatic stress of the surrounding fluid.
Statefinder analysis of the superfluid Chaplygin gas model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V.A., E-mail: vladipopov@mail.ru
2011-10-01
The statefinder indices are employed to test the superfluid Chaplygin gas (SCG) model describing the dark sector of the universe. The model involves Bose-Einstein condensate (BEC) as dark energy (DE) and an excited state above it as dark matter (DM). The condensate is assumed to have a negative pressure and is embodied as an exotic fluid with the Chaplygin equation of state. Excitations forms the normal component of superfluid. The statefinder diagrams show the discrimination between the SCG scenario and other models with the Chaplygin gas and indicates a pronounced effect of the DM equation of state and an indirectmore » interaction between their two components on statefinder trajectories and a current statefinder location.« less
Statefinder analysis of the superfluid Chaplygin gas model
NASA Astrophysics Data System (ADS)
Popov, V. A.
2011-10-01
The statefinder indices are employed to test the superfluid Chaplygin gas (SCG) model describing the dark sector of the universe. The model involves Bose-Einstein condensate (BEC) as dark energy (DE) and an excited state above it as dark matter (DM). The condensate is assumed to have a negative pressure and is embodied as an exotic fluid with the Chaplygin equation of state. Excitations forms the normal component of superfluid. The statefinder diagrams show the discrimination between the SCG scenario and other models with the Chaplygin gas and indicates a pronounced effect of the DM equation of state and an indirect interaction between their two components on statefinder trajectories and a current statefinder location.
High temperature measuring device
Tokarz, Richard D.
1983-01-01
A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.
Nagel, Thomas; Kelly, Daniel J
2013-04-01
The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.
Li, Sujiao; Zhang, Zhengxiang; Wang, Jue
2014-01-01
Prevention of pressure sores remains a significant problem confronting spinal cord injury patients and the elderly with limited mobility. One vital aspect of this subject concerns the development of cushions to decrease pressure ulcers for seated patients, particularly those bound by wheelchairs. Here, we present a novel cushion system that employs interface pressure distribution between the cushion and the buttocks to design custom contoured foam cushion. An optimized normalization algorithm was proposed, with which interface pressure distribution was transformed into the carving depth of foam cushions according to the biomechanical characteristics of the foam. The shape and pressure-relief performance of the custom contoured foam cushions was investigated. The outcomes showed that the contoured shape of personalized cushion matched the buttock contour very well. Moreover, the custom contoured cushion could alleviate pressure under buttocks and increase subjective comfort and stability significantly. Furthermore, the fabricating method not only decreased the unit production cost but also simplified the procedure for manufacturing. All in all, this prototype seat cushion would be an effective and economical way to prevent pressure ulcers.
NASA Technical Reports Server (NTRS)
Micol, John R.
1992-01-01
Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.
[Arterial sequelae of pregnancy hypertension. Detection by carotid piezogram].
Meyer-Heine, A; Asquer, J C; Lagrue, G
1989-01-01
High blood pressure (HTA) is characterized by elevation of pression, but also by modifications of arterial pulse wave. Carotid piezograms were used to evaluate arterial pulse wave. Diastolic blood pressure is significantly correlated with dicrotic notch pressure. The duration of dicrotic notch is negatively correlated with arterial wall elasticity. Thus by carotid piezogram analysis one can determine the respective participation of arterial wall elasticity, peripheral resistance and cardiac factors in blood pressure elevation. Carotid piezograms were measured in 97 women (mean age 27, 8 y), with previous hypertensive pregnancy and apparently cured (mean blood pressure 122-74 mmHg at time of examination). 25 women only had normal piezogram drawing. Abnormalities similar to that of permanent hypertensive disease were observed in most cases. Dicrotic notch duration was significantly reduced and dicrotic notch pressure enhanced; in 34 women both of these abnormalities were present. In conclusion, among women previously hypertensive during pregnancy, even when blood pressure is returned to normal, abnormalities of arterial pulse wave may be present, suggesting that these women are prone to subsequent permanent hypertension.
Gait analysis in hallux valgus.
Blomgren, M; Turan, I; Agadir, M
1991-01-01
The solar pressure zones were analyzed in the feet of 66 patients suffering from hallux valgus, together with 60 normal subjects. The EMED Gait Analysis System was used. In the hallux valgus group, the maximum pressure was found to be increased significantly in the small toe region and more proximally situated, close to the metatarsophalangeal joint. In the normal subjects, the maximum pressure was increased significantly in the first, second, third, and fourth metatarsal and heel regions. In general, the hallux valgus group had smaller contact areas compared to the control group. The increased pressure in the small toe region, together with the smaller contact areas manifested by the hallux valgus group, were interpreted in this work as being the possible causes of the metatarsalgia seen in patients with the deformity.
Absence of nocturnal fall in blood pressure in elderly persons with Alzheimer-type dementia.
Otsuka, A; Mikami, H; Katahira, K; Nakamoto, Y; Minamitani, K; Imaoka, M; Nishide, M; Ogihara, T
1990-09-01
Circadian changes of the blood pressure and heart rate in elderly normotensive bedridden patients with severe dementia of the Alzheimer type (group D) were compared with those in elderly normotensive bedridden patients without dementia (group R), normotensive subjects with normal daily activity (group N), and hypertensive patients with normal daily activity (group H). In groups R, N, and H, the blood pressure increased in the afternoon and decreased at midnight; in group D, however, although it increased in the afternoon, it did not decrease at night. The circadian changes of the heart rate were similar in all four groups, showing maxima in the afternoon and minima at midnight. Thus, a specific alteration was found in the circadian rhythm of the blood pressure in patients with Alzheimer-type dementia.
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1992-01-01
The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.
Turbine blade with contoured chamfered squealer tip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang
2014-12-30
A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less
Céolin, R; Rietveld, I B
2015-01-01
A topological pressure-temperature phase diagram involving the phase relationships of ritonavir forms I and II has been constructed using experimental calorimetric and volumetric data available from the literature. The triple point I-II-liquid is located at a temperature of about 407 K and a pressure as extraordinarily small as 17.5 MPa (175 bar). Thus, the less soluble solid phase (form II) will become metastable on increasing pressure. At room temperature, form I becomes stable around 100 MPa indicating that form II may turn into form I at a relatively low pressure of 1000 bar, which may occur under processing conditions such as mixing or grinding. This case is a good example for which a proper thermodynamic evaluation trumps "rules of thumb" such as the density rule. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure
NASA Technical Reports Server (NTRS)
Spanarkel, Robert; Drew, Malcolm C.
2002-01-01
The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.
Liquid Nitrogen Subcooler Pressure Vessel Engineering Note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1997-04-24
The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.
Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D.
2003-12-01
The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.
NASA Technical Reports Server (NTRS)
Tanaka, Kunihiko; Waldie, James; Steinbach, Gregory C.; Webb, Paul; Tourbier, Dietmar; Knudsen, Jeffrey; Jarvis, Christine W.; Hargens, Alan R.
2002-01-01
INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.
Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B
2016-01-30
The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D
2010-04-01
To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.
Delwel, E J; de Jong, D A; Avezaat, C J J
2005-10-01
It is difficult to predict which patients with symptoms and radiological signs of normal pressure hydrocephalus (NPH) will benefit from a shunting procedure and which patients will not. Risk of this procedure is also higher in patients with NPH than in the overall population of hydrocephalic patients. The aim of this study is to investigate which clinical characteristics, CT parameters and parameters of cerebrospinal fluid dynamics could predict improvement after shunting. Eighty-three consecutive patients with symptoms and radiological signs of NPH were included in a prospective study. Parameters of the cerebrospinal fluid dynamics were measured by calculation of computerised data obtained by a constant-flow lumbar infusion test. Sixty-six patients considered candidates for surgery were treated with a medium-pressure Spitz-Holter valve; in seventeen patients a shunting procedure was not considered indicated. Clinical and radiological follow-up was performed for at least one year postoperatively. The odds ratio, the sensitivity and specificity as well as the positive and negative predictive value of individual and combinations of measured parameters did not show a statistically significant relation to clinical improvement after shunting. We conclude that neither individual parameters nor combinations of measured parameters show any statistically significant relation to clinical improvement following shunting procedures in patients suspected of NPH. We suggest restricting the term normal pressure hydrocephalus to cases that improve after shunting and using the term normal pressure hydrocephalus syndrome for patients suspected of NPH and for patients not improving after implantation of a proven well-functioning shunt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.
2000-01-12
The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less
Continuous 24-hour measurement of middle ear pressure.
Tideholm, B; Jönsson, S; Carlborg, B; Welinder, R; Grenner, J
1996-07-01
A new method was developed for continuous measurement of the middle ear pressure during a 24-h period. The equipment consisted of a piezo-electric pressure device and a digital memory. To allow continuous pressure recordings during normal every-day activities the equipment was made light and portable. The measurement accuracy of the equipment as well as the base-line and temperature stability were tested and found to meet to our requirements satisfactorily. In 4 volunteers with different middle ear conditions, a small perforation was made through the tympanic membrane. A rubber stopper containing a small polyethylene tube was fitted into the external ear canal. Tubal function tests were made to establish the equipment's ability to monitor fast pressure changes. The tests were well in accordance with other methods of direct pressure measurements. The equipment was carried by the volunteers for 24 h to monitor any slow or rapid dynamic pressure changes in the middle ear. Four continuous 24-h measurements are presented. The method was found to be suitable for valid measurements of dynamic pressure changes in the middle ear during normal every-day activities. It may become a useful instrument in the search for a better understanding of the development of chronic middle ear disease.
O'Brien, Davida Louise; Tyndyk, Magdalena
2014-01-01
Several factors have been associated with the presence of abnormally high plantar foot pressure including: (i) increased body weight, (ii) foot structure and (iii) walking strategy. It is predicted that the biomechanics of the foot is influenced by the structure of the foot, primarily the Medial Longitudinal Arch. The objective of this study was to examine if Body Mass Index and the foot arch have a direct effect on dynamic peak plantar pressure for healthy subjects. Following a clinical lower limb examination, the Tekscan HR mat was utilised for this study, plantar pressure was profiled at specific events during stance phase of gait including heel strike, midstance and toe off. Results indicated to the preferable normal arch as this produced a low plantar pressure distribution in all cases. The 2nd and 3rd metatarsal head region recorded the highest pressure for all arch types during dynamic analysis. The lowest pressure for the normal and overweight BMI was at toe-off. While the obese BMI group showed highest pressure during toe-off. The obese BMI flat arch subcategory indicated to functional ambulation differences. Future work involves comparing this healthy database to a demographically matched diabetic group.
Bárcena, A; Mestre, C; Cañizal, J M; Rivero, B; Lobato, R D
1997-01-01
This investigation has been undertaken to analyze the findings with both the cerebrospinal fluid (CSF) pressure (Pcsf) and CSF pulse pressure (PP) in order to predict the outcome of patients with the syndrome of idiopathic normal pressure hydrocephalus (NPH). Accordingly, a prospective clinical study was planned in which two groups of patients with NPH, having analogous prevalence of several matched clinical and radiological parameters, were separated on the basis of their positive or negative response to shunting. Both the resting Pcsf and CSF PP profiles were compared in these two groups, and between them and normal controls. CSF PP amplitude and CSF PP latency correlated directly in conditions associated with either normal or high compliance (controls and patients with Alzheimer-like disorders), whereas this correlation was inverse in states of low compliance (NPH). On the other hand, shunt-responders showed a resting Pcsf significantly higher than both non-responders and controls. The following conclusions were obtained: 1) CSF PP is a high-amplitude and relative low-latency wave in NPH when compared with controls: 2) CSF PP amplitude and latency correlate directly in normal subjects and in those with primary cerebral atrophy; 3) a non-reversible stage of NPH could be conceived in contradistinction to the reversible one, in both of which an inverse correlation between the amplitude and the latency takes place, the main difference between them being the resting Pcsf, which is significantly lower in the former than in the latter, depending on the degree of atrophic changes developed.
Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun
2014-01-01
It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.
[Evaluation of velopharyngeal closing pressure during trumpet play with high-resolution manometry].
Kühn, Daniela; Ptok, Martin; Jungheim, Michael
2018-05-01
In about one-third of brass instrumentalists, there are stress-related insufficiencies of velopharyngeal closure (VPC), i. e. the intraoral pressure exceeds the barrier formed by the VPC. Here, it was the aim to measure the VPC closing pressure while playing a trumpet and to evaluate the influence of a 30 minute stress sequence on the muscular activities in the VPC. Sample: 6 healthy volunteers; task: to play the sound h1 for 5 seconds with 85 dB(A) and with 100 dB(A). High-resolution manometry (HRM). t0: measurement without warm up phase t1 after 30 min trumpet play; practice phase with predefined pieces of music. mean (p mit ), minimum (p min ) and maximum pressure (p max ) in the VPA at t0 and t1. testing for normal distribution, t-test. All measured pressures in the VPC decreased from t0 to t1 for tones produced at 85 dB(A). For 100 dB(A) tones only the p min decreased significantly. The pressures in the VPA were higher at 100 dB(A) tones overall compared to 85 dB(A) tones, significant differences were found for p min and p max at t0. Tones played at louder volumes require a stronger muscular contraction in the VPC. The lower VPC pressure after the exercise phase (t1) can either result from a physiological muscular adaptation to the pressure level necessary for a sufficient VPC or already be a sign of muscular fatigue. These findings may be important to assess the work ability of wind instrumentalists by HRM. As shown for the phonation, the VPC pressure profile for the trumpet play can also be described with a three-phase model consisting of an initiation, a stable phase and a termination. © Georg Thieme Verlag KG Stuttgart · New York.
Pilot Emergency Tutoring System for F-4 Aircraft Fuel System Malfunction Using Means-Ends Analysis
1990-06-01
pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for looked_at(INDICATOR) type set...cb internal wing transfer is pulled , and wing transfer pressure is normal. What operator do you choose? For example: type look_at INDICATOR for...at, external transfer is off, internal wing transfer is stop trans, refuel probe is extended, cb internal wing transfer is pulled ,and wing
An echocardiographic study of healthy Border Collies with normal reference ranges for the breed.
Jacobson, Jake H; Boon, June A; Bright, Janice M
2013-06-01
The objectives of this study were to obtain standard echocardiographic measurements from healthy Border Collies and to compare these measurements to those previously reported for a general population of dogs. Standard echocardiographic data were obtained from twenty apparently healthy Border Collie dogs. These data (n = 20) were compared to data obtained from a general population of healthy dogs (n = 69). Border Collies were deemed healthy based on normal history, physical examination, complete blood count, serum biochemical profile, electrocardiogram, and blood pressure, with no evidence of congenital or acquired heart disease on echocardiographic examination. Standard two dimensional, M-mode, and Doppler echocardiographic measurements were obtained and normal ranges determined. The data were compared to data previously obtained at our hospital from a general population of normal dogs. Two dimensional, M-mode, and Doppler reference ranges for healthy Border Collies are presented in tabular form. Comparison of the weight adjusted M-mode echocardiographic means from Border Collies to those from the general population of dogs showed Border Collies to have larger left ventricular systolic and diastolic dimensions, smaller interventricular septal thickness, and lower fractional shortening. There are differences in some echocardiographic parameters between healthy Border Collies and the general dog population, and the echocardiographic reference ranges provided in this study should be used as breed specific reference values for Border Collies. Copyright © 2013 Elsevier B.V. All rights reserved.
Anisotropic swim stress in active matter with nematic order
NASA Astrophysics Data System (ADS)
Yan, Wen; Brady, John F.
2018-05-01
Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.
Ceravolo, Graziela S; Franco, Maria C P; Carneiro-Ramos, Marcela S; Barreto-Chaves, Maria L M; Tostes, Rita C A; Nigro, Dorothy; Fortes, Zuleica B; Carvalho, Maria Helena C
2007-01-30
Epidemiological studies suggest that intrauterine undernutrition plays an important role in the development of arterial hypertension and endothelial dysfunction in adulthood. We have evaluated the effect of the Renin Angiotensin System inhibition on the blood pressure and the mesenteric arteriolar reactivity of the intrauterine undernourished rats. Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. In this study only the male offspring was used. At 16 weeks of age, the rats were used for the study of blood pressure, microvascular reactivity studied in vivo-in situ to Angiotensin II (Ang II), Bradykinin (Bk) and Acetylcholine (Ach) before and after either losartan (10 mg/kg/15 days) or enalapril (15 mg/kg/21 days) treatment. We also evaluated the mesenteric and plasmatic Angiotensin Converting Enzyme (ACE), renal function, lipid plasmatic content, and insulin and glucose metabolism. Intrauterine undernutrition induced hypertension and increased response of mesenteric arterioles to Ang II and decreased vasodilation to Bk and Ach. The treatments with losartan or enalapril normalized the blood pressure levels and significantly improved the arteriolar responses to Bk, Ach and reduced the response to Ang II. No differences have been detected to ACE activity, renal function, lipid content and insulin and glucose metabolism. This study shows for the first time that Renin Angiotensin System inhibitors can normalize the cardiovascular alterations induced by intrauterine undernutrition.
Girgin, Sadullah; Gedik, Ercan; Ozturk, Hayrettin; Akpolat, Veysi; Akbulut, Veysi; Kale, Ebru; Buyukbayram, Huseyin; Celik, Salih
2009-04-01
An experimental study was designed to investigate the effect of combined pulse electromagnetic field (PEMF) stimulation plus glutamine administration on colonic anastomosis. Anastomosis of the left colon was performed in 28 rats, which were divided into four groups; Group 1: normal resection anastomosis plus oral 50 mg/kg/day glutamine; Group 2: normal resection anastomosis plus PEMF stimulation plus oral 50 mg/kg/day glutamine; Group 3: normal resection anastomosis plus PEMF stimulation; Group 4: normal resection anastomosis. On the seventh postoperative day, the animals were killed and the bursting pressure and tissue hydroxyproline concentration of the anastomosis were analyzed and compared. The mean anastomotic bursting pressure in Group 2 was significantly higher than in Groups 1 and 4. On the other hand, the mean anastomotic bursting pressure in Group 1 was significantly higher than in Group 4. The collagen deposition and the fibroblast infiltration were significantly increased on the seventh day in Group 3 compared the other groups. On the other hand, Groups 1 and 2 had higher scores for collagen deposition and fibroblast infiltration than Group 4. In conclusion, burst pressures, hydroxyproline, and histologic features (fibroblast infiltration and collagen deposition) were improved in the PEMF group, and both PEMF and glutamine-enriched nutrition provide a significant gain in the strength of colonic anastomoses in rats.
Sleight, Peter; Yusuf, Salim
2003-09-01
We reviewed the drug treatment of hypertension in the light of recent trials. beta-Blockers and diuretics clearly reduce mortality, strokes, and coronary heart disease (CHD) in hypertension. Recent trials assessed whether newer agents that block the renin-angiotensin-aldosterone system, or calcium blockers, offer any additional advantage, or have benefits in high-risk individuals with conventionally 'normal' blood pressure. The recent ALLHAT study claimed no differences in CHD or mortality when chlorthalidone, amlodipine, and lisinopril were compared. However, the decrease in blood pressure was not the same with the three agents, and a substantial proportion of patients enrolled did not have clinical disease. In contrast, the LIFE study (comparing losartan and a beta-blocker) and the ANBP-2 study [comparing angiotensin-converting enzyme (ACE) inhibition and a diuretic] reduced blood pressure similarly, yet demonstrated benefits in favour of angiotensin II type 1 receptor blockers (ARBs) and ACE inhibitors. Other trials indicated similar advantages of ACE inhibitors or ARBs in patients with diabetic nephropathy. Among high-risk patients with initial blood pressure in the 'normal' range, ACE inhibitors significantly reduce clinical events (mortality, strokes, and myocardial infarction), despite modest decreases in blood pressure, suggesting that additional mechanisms are responsible. Recent results of the Prospective Studies Collaboration show lower risk, even in the normal blood pressure range; high-risk patients will benefit further from ACE inhibitors and ARBs (and beta-blockers after myocardial infarction). Data for other blood pressure decreasing agents are unavailable in such populations. We conclude that blood pressure decreasing per se is of clinical benefit, but drugs that block the renin-angiotensin system offer additional advantages. Drug choice is best determined by the patient's clinical condition.
40 CFR 63.1657 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pressure drop across each baghouse cell, or across the baghouse if it is not possible to monitor each cell individually, to ensure the pressure drop is within the normal operating range identified in the baghouse... detection system if the furnace primary and/or tapping emissions are ducted to a negative pressure baghouse...
USDA-ARS?s Scientific Manuscript database
Isoflavones, having chemical structures similar to estrogens, are believed to stimulate nitric oxide production and thus lower blood pressure. The efficacy of soy isoflavone supplementation to stimulate nitric oxide production and lower blood pressure in menopausal women with high normal blood press...
Improved egg crack detection algorithm for modified pressure imaging system
USDA-ARS?s Scientific Manuscript database
Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...
Hot granules medium pressure forming process of AA7075 conical parts
NASA Astrophysics Data System (ADS)
Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying
2015-05-01
High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.
Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid
2013-06-01
Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scuderi, M. M.; Collettini, C.; Marone, C.
2017-11-01
It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.
Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations
NASA Astrophysics Data System (ADS)
Collettini, Cristiano; Scuderi, Marco; Marone, Chris
2017-04-01
Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.
NASA Astrophysics Data System (ADS)
Shevchenko, I. I.
2008-05-01
The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.
Polyamorphism in tetrahedral substances: Similarities between silicon and ice
NASA Astrophysics Data System (ADS)
Garcez, K. M. S.; Antonelli, A.
2015-07-01
Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
NASA Astrophysics Data System (ADS)
Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.
2009-02-01
We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.
Nonlinear pressure-flow relationships for passive microfluidic valves.
Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R
2009-09-21
An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.
An Investigation Into Low Fuel Pressure Warnings on a Macchi-Viper Aircraft
1988-05-01
was sufficient To activate the low pressure warning light. The pressure switch is normally set to a differential of between 2.5 - 3 psi. Partial...only a 2.1 psig margin for light illumination, if the pressure switch is set at 3 psig, and gives little scope for extra pipe or filter losses when... pressure switch is set between 2.5 - 3 psig. Any untoward pressure resistance in the fuel delivery line and filtering system would soon erode this
Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A
2005-04-01
The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction factor for this well chamber is insufficient in accounting for the change in chamber response with air pressure for low-energy (<100 keV) photon and low-energy (<0.75 MeV)beta sources.
Blood pressure dynamics during exercise rehabilitation in heart failure patients.
Hecht, Idan; Arad, Michael; Freimark, Dov; Klempfner, Robert
2017-05-01
Background Patients suffering from heart failure (HF) may demonstrate an abnormal blood pressure response to exercise (ABPRE), which may revert to a normal one following medical treatment. It is assumed that this change correlates positively with prognosis and functional aspects. The aim of this study was to characterize patients with ABPRE and assess ABPRE normalization and the correlation with clinical and functional outcomes. Methods In the study, 651 patients with HF who underwent cardiac rehabilitation (CR) were examined. Patients who presented an ABPRE during stress testing were identified and divided into those who corrected their initial ABPRE following CR and those who did not. Results Pre-rehabilitation ABPRE was present in 27% of patients, 68% of whom normalized their ABPRE following CR. Two parameters were independently predictive of failure to normalize the blood pressure response: female gender (odds ratio (OR) 3.5; 95% confidence interval (CI) 1.4-9.0) and decreased systolic function (OR 3.2; 95% CI 1.0-9.4). Patients with hypertrophic cardiomyopathy demonstrated higher rates of ABPRE normalization than patients with other causes of HF (93% vs. 62%, respectively, P = 0.03). The research population exhibited an average improvement in exercise capacity (4.7 to 6.4 metabolic equivalents (METS), P < .001), ejection fraction (35.4% to 37.7%, P < .001) and percentage of patients with New York Heart Association (NYHA) class 3-4 (50% to 43.4%, P = .123). The group who normalized their ABPRE exhibited greater improvement. Conclusions Amongst a population of patients suffering from HF, an ABPRE was normalized following CR in two thirds of patients. Female gender and a reduced systolic function independently predicted the failure to correct the ABPRE, while patients with hypertrophic cardiomyopathy demonstrated exceptionally high rates of normalization.
MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya
2015-04-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which factors drive these dynamics in the space environment of Mars.
Volume-preserving normal forms of Hopf-zero singularity
NASA Astrophysics Data System (ADS)
Gazor, Majid; Mokhtari, Fahimeh
2013-10-01
A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a nonzero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any nondegenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified Rössler and generalized Kuramoto-Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple.
Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Dayman, B., Jr.; Hammitt, A. G.; Holway, H. P.; Tucker, C. E., Jr.; Vardy, A. E.
1979-01-01
The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system.
Factors determining the level and changes in intra-articular pressure in the knee joint of the dog.
Nade, S; Newbold, P J
1983-01-01
Intra-articular pressure levels were determined for joint positions throughout the normal physiological range of movement of dogs' knee joints. Change in joint position resulted in change in intra-articular pressure. It was demonstrated that intra-articular pressure is highest with the joint in the fully flexed position. Minimum pressure was recorded at a position between 80 degrees and 120 degrees. Minimum pressures were usually subatmospheric. The rate of change of joint position affected intra-articular pressure. The relationship of intra-articular pressure and joint position before and after full flexion demonstrated a hysteresis effect; the pressures were lower than for the same joint position before flexion. Maintenance of the joint in the fully flexed position for increasing periods of time between repeated movement cycles resulted in a similar reduction, of constant magnitude, in pressure between joint positions before and after each period of flexion. However, there was also a progressive decrease in pressure for all joint angles over the total number of movement cycles. There is a contribution to intra-articular pressure of joint capsular compliance and fluid movement into and out of the joint (both of which are time-dependent). The recording of intra-articular pressure in conscious, upright dogs revealed similar pressure levels to those measured in anaesthetized supine dogs. The major determinants of intra-articular pressure in normal dog knee joints include joint size, synovial fluid volume, position of joint, peri-articular tissue and joint anatomy, membrane permeability, capsular compliance, and movement of fluid into and out of the joint. Images Fig. 1 PMID:6875957
Influence of mental stress on the plasma homocysteine level and blood pressure change in young men.
Sawai, Asuka; Ohshige, Kenji; Kura, Naoki; Tochikubo, Osamu
2008-04-01
Objective. This study aimed to determine whether mental stress influences the plasma total homocysteine level or blood pressure in young men. Method. Twenty-seven male university students were assigned to a normal blood pressure group (24-h systolic blood pressure <125 mmHg and diastolic blood pressure <75 mmHg; 13 subjects) or a high blood pressure group (24-h systolic blood pressure > or =125 mmHg, or 24-h diastolic blood pressure > or =75 mmHg; 14 subjects). Wearing an ambulatory blood pressure monitoring device, subjects rested for 30 minutes, underwent an arithmetic test for 15 minutes, and rested again for 15 minutes. Blood samples were taken before and after the test. Plasma total homocysteine levels were measured. Heart rate, blood pressure, and sympathovagal balance were determined during the test. Results. The mean total homocysteine level at rest in the high blood pressure group was slightly, but not significantly, higher than that in the normal blood pressure group. The resting total homocysteine level was significantly higher in subjects with parental history of hypertension than in those without (p < 0.01). Blood pressure, heart rate, and the plasma total homocysteine level were increased significantly by mental stress (p < 0.05). The change in total homocysteine correlated significantly with the changes in systolic blood pressure and sympathovagal balance (p < 0.05). Conclusion. Resting total homocysteine level was significantly higher in male students with a parental history of hypertension than in those without. It was shown that mental stress elevates heart rate, blood pressure, sympathovagal activity, and the plasma total homocysteine level in young men.
Capture of liquid hydrogen boiloff with metal hydride absorbers
NASA Technical Reports Server (NTRS)
Rosso, M. J.; Golben, P. M.
1984-01-01
A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.
Genetic Decreases in Atrial Natriuretic Peptide and Salt-Sensitive Hypertension
NASA Astrophysics Data System (ADS)
John, Simon W. M.; Krege, John H.; Oliver, Paula M.; Hagaman, John R.; Hodgin, Jeffrey B.; Pang, Stephen C.; Flynn, T. Geoffrey; Smithies, Oliver
1995-02-01
To determine if defects in the atrial natriuretic peptide (ANP) system can cause hypertension, mice were generated with a disruption of the proANP gene. Homozygous mutants had no circulating or atrial ANP, and their blood pressures were elevated by 8 to 23 millimeters of mercury when they were fed standard (0.5 percent sodium chloride) and intermediate (2 percent sodium chloride) salt diets. On standard salt diets, heterozygotes had normal amounts of circulating ANP and normal blood pressures. However, on high (8 percent sodium chloride) salt diets they were hypertensive, with blood pressures elevated by 27 millimeters of mercury. These results demonstrate that genetically reduced production of ANP can lead to salt-sensitive hypertension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beilis, I. I.
Experiments in the last decade showed that for cathode spots in a magnetic field that obliquely intercepts the cathode surface, the current per spot increased with the transverse component of the magnetic field and decreased with the normal component. The present work analyzes the nature of cathode spot splitting in an oblique magnetic field. A physical model for cathode spot current splitting was developed, which considered the relation between the plasma kinetic pressure, self-magnetic pressure, and applied magnetic pressure in a current carrying cathode plasma jet. The current per spot was calculated, and it was found to increase with themore » tangential component of the magnetic field and to decrease with the normal component, which agrees well with the experimental dependence.« less
Pulse wave velocity in patients with severe head injury a pilot study.
Shahsavari, S; McKelvey, T; Rydenhag, B; Ritzén, C Eriksson
2010-01-01
The study aimed to determine the potential of pulse wave velocity measurements to reflect changes in compliant cerebral arteries/arterioles in head injured patients. The approach utilizes the electrocardiogram and intracranial pressure signals to measure the wave transit time between heart and cranial cavity. Thirty five clinical records of nineteen head injured patients, with different levels of cerebrovascular pressure-reactivity response, were investigated through the study. Results were compared with magnitude of normalized transfer function at the fundamental cardiac frequency. In patients with intact cerebrovascular pressure-reactivity, magnitude of normalized transfer function at the fundamental cardiac component was found to be highly correlated with pulse wave transit time.