Sample records for normal probability model

  1. Bivariate categorical data analysis using normal linear conditional multinomial probability model.

    PubMed

    Sun, Bingrui; Sutradhar, Brajendra

    2015-02-10

    Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Statistical validation of normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Normal probability plots with confidence.

    PubMed

    Chantarangsi, Wanpen; Liu, Wei; Bretz, Frank; Kiatsupaibul, Seksan; Hayter, Anthony J; Wan, Fang

    2015-01-01

    Normal probability plots are widely used as a statistical tool for assessing whether an observed simple random sample is drawn from a normally distributed population. The users, however, have to judge subjectively, if no objective rule is provided, whether the plotted points fall close to a straight line. In this paper, we focus on how a normal probability plot can be augmented by intervals for all the points so that, if the population distribution is normal, then all the points should fall into the corresponding intervals simultaneously with probability 1-α. These simultaneous 1-α probability intervals provide therefore an objective mean to judge whether the plotted points fall close to the straight line: the plotted points fall close to the straight line if and only if all the points fall into the corresponding intervals. The powers of several normal probability plot based (graphical) tests and the most popular nongraphical Anderson-Darling and Shapiro-Wilk tests are compared by simulation. Based on this comparison, recommendations are given in Section 3 on which graphical tests should be used in what circumstances. An example is provided to illustrate the methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A stochastic model for the normal tissue complication probability (NTCP) and applicationss.

    PubMed

    Stocks, Theresa; Hillen, Thomas; Gong, Jiafen; Burger, Martin

    2017-12-11

    The normal tissue complication probability (NTCP) is a measure for the estimated side effects of a given radiation treatment schedule. Here we use a stochastic logistic birth-death process to define an organ-specific and patient-specific NTCP. We emphasize an asymptotic simplification which relates the NTCP to the solution of a logistic differential equation. This framework is based on simple modelling assumptions and it prepares a framework for the use of the NTCP model in clinical practice. As example, we consider side effects of prostate cancer brachytherapy such as increase in urinal frequency, urinal retention and acute rectal dysfunction. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  5. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  6. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seied Rabi Mehdi

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-basedmore » treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal

  7. Normal tissue complication probability modeling of radiation-induced hypothyroidism after head-and-neck radiation therapy.

    PubMed

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with α/β = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D(50) estimated from the models was approximately 44 Gy. The implemented normal tissue complication probability models showed a parallel architecture for the

  8. Bivariate normal, conditional and rectangular probabilities: A computer program with applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.; Ashwworth, G. R.; Winter, W. R.

    1980-01-01

    Some results for the bivariate normal distribution analysis are presented. Computer programs for conditional normal probabilities, marginal probabilities, as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.

  9. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  10. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    PubMed

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Development of a normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism in nasopharyngeal carcinoma patients.

    PubMed

    Luo, Ren; Wu, Vincent W C; He, Binghui; Gao, Xiaoying; Xu, Zhenxi; Wang, Dandan; Yang, Zhining; Li, Mei; Lin, Zhixiong

    2018-05-18

    The objectives of this study were to build a normal tissue complication probability (NTCP) model of radiation-induced hypothyroidism (RHT) for nasopharyngeal carcinoma (NPC) patients and to compare it with other four published NTCP models to evaluate its efficacy. Medical notes of 174 NPC patients after radiotherapy were reviewed. Biochemical hypothyroidism was defined as an elevated level of serum thyroid-stimulating hormone (TSH) value with a normal or decreased level of serum free thyroxine (fT4) after radiotherapy. Logistic regression with leave-one-out cross-validation was performed to establish the NTCP model. Model performance was evaluated and compared by the area under the receiver operating characteristic curve (AUC) in our NPC cohort. With a median follow-up of 24 months, 39 (22.4%) patients developed biochemical hypothyroidism. Gender, chemotherapy, the percentage thyroid volume receiving more than 50 Gy (V 50 ), and the maximum dose of the pituitary (P max ) were identified as the most predictive factors for RHT. A NTCP model based on these four parameters were developed. The model comparison was made in our NPC cohort and our NTCP model performed better in RHT prediction than the other four models. This study developed a four-variable NTCP model for biochemical hypothyroidism in NPC patients post-radiotherapy. Our NTCP model for RHT presents a high prediction capability. This is a retrospective study without registration.

  12. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.

    PubMed

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David

    2018-07-01

    To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP

  13. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for γ-knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Ma, Lijun

    2001-11-01

    A recent multi-institutional clinical study suggested possible benefits of lowering the prescription isodose lines for stereotactic radiosurgery procedures. In this study, we investigate the dependence of the normal brain integral dose and the normal tissue complication probability (NTCP) on the prescription isodose values for γ-knife radiosurgery. An analytical dose model was developed for γ-knife treatment planning. The dose model was commissioned by fitting the measured dose profiles for each helmet size. The dose model was validated by comparing its results with the Leksell gamma plan (LGP, version 5.30) calculations. The normal brain integral dose and the NTCP were computed and analysed for an ensemble of treatment cases. The functional dependence of the normal brain integral dose and the NCTP versus the prescribing isodose values was studied for these cases. We found that the normal brain integral dose and the NTCP increase significantly when lowering the prescription isodose lines from 50% to 35% of the maximum tumour dose. Alternatively, the normal brain integral dose and the NTCP decrease significantly when raising the prescribing isodose lines from 50% to 65% of the maximum tumour dose. The results may be used as a guideline for designing future dose escalation studies for γ-knife applications.

  14. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  15. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cella, Laura, E-mail: laura.cella@cnr.it; Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples; Liuzzi, Raffaele

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under themore » receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.« less

  16. Pretest probability of a normal echocardiography: validation of a simple and practical algorithm for routine use.

    PubMed

    Hammoudi, Nadjib; Duprey, Matthieu; Régnier, Philippe; Achkar, Marc; Boubrit, Lila; Preud'homme, Gisèle; Healy-Brucker, Aude; Vignalou, Jean-Baptiste; Pousset, Françoise; Komajda, Michel; Isnard, Richard

    2014-02-01

    Management of increased referrals for transthoracic echocardiography (TTE) examinations is a challenge. Patients with normal TTE examinations take less time to explore than those with heart abnormalities. A reliable method for assessing pretest probability of a normal TTE may optimize management of requests. To establish and validate, based on requests for examinations, a simple algorithm for defining pretest probability of a normal TTE. In a retrospective phase, factors associated with normality were investigated and an algorithm was designed. In a prospective phase, patients were classified in accordance with the algorithm as being at high or low probability of having a normal TTE. In the retrospective phase, 42% of 618 examinations were normal. In multivariable analysis, age and absence of cardiac history were associated to normality. Low pretest probability of normal TTE was defined by known cardiac history or, in case of doubt about cardiac history, by age>70 years. In the prospective phase, the prevalences of normality were 72% and 25% in high (n=167) and low (n=241) pretest probability of normality groups, respectively. The mean duration of normal examinations was significantly shorter than abnormal examinations (13.8 ± 9.2 min vs 17.6 ± 11.1 min; P=0.0003). A simple algorithm can classify patients referred for TTE as being at high or low pretest probability of having a normal examination. This algorithm might help to optimize management of requests in routine practice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu ZhiYong; Department of Oncology, Shanghai Medical School, Fudan University, Shanghai; Liang Shixiong

    Purpose: To describe the probability of RILD by application of the Lyman-Kutcher-Burman normal-tissue complication (NTCP) model for primary liver carcinoma (PLC) treated with hypofractionated three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: A total of 109 PLC patients treated by 3D-CRT were followed for RILD. Of these patients, 93 were in liver cirrhosis of Child-Pugh Grade A, and 16 were in Child-Pugh Grade B. The Michigan NTCP model was used to predict the probability of RILD, and then the modified Lyman NTCP model was generated for Child-Pugh A and Child-Pugh B patients by maximum-likelihood analysis. Results: Of all patients, 17 developedmore » RILD in which 8 were of Child-Pugh Grade A, and 9 were of Child-Pugh Grade B. The prediction of RILD by the Michigan model was underestimated for PLC patients. The modified n, m, TD{sub 5} (1) were 1.1, 0.28, and 40.5 Gy and 0.7, 0.43, and 23 Gy for patients with Child-Pugh A and B, respectively, which yielded better estimations of RILD probability. The hepatic tolerable doses (TD{sub 5}) would be MDTNL of 21 Gy and 6 Gy, respectively, for Child-Pugh A and B patients. Conclusions: The Michigan model was probably not fit to predict RILD in PLC patients. A modified Lyman NTCP model for RILD was recommended.« less

  18. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: Normal tissue complication probability modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Stephanie; Hoogeman, Mischa S.; Heemsbergen, Wilma D.

    2006-09-01

    Purpose: To analyze whether inclusion of predisposing clinical features in the Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model improves the estimation of late gastrointestinal toxicity. Methods and Materials: This study includes 468 prostate cancer patients participating in a randomized trial comparing 68 with 78 Gy. We fitted the probability of developing late toxicity within 3 years (rectal bleeding, high stool frequency, and fecal incontinence) with the original, and a modified LKB model, in which a clinical feature (e.g., history of abdominal surgery) was taken into account by fitting subset specific TD50s. The ratio of these TD50s is the dose-modifyingmore » factor for that clinical feature. Dose distributions of anorectal (bleeding and frequency) and anal wall (fecal incontinence) were used. Results: The modified LKB model gave significantly better fits than the original LKB model. Patients with a history of abdominal surgery had a lower tolerance to radiation than did patients without previous surgery, with a dose-modifying factor of 1.1 for bleeding and of 2.5 for fecal incontinence. The dose-response curve for bleeding was approximately two times steeper than that for frequency and three times steeper than that for fecal incontinence. Conclusions: Inclusion of predisposing clinical features significantly improved the estimation of the NTCP. For patients with a history of abdominal surgery, more severe dose constraints should therefore be used during treatment plan optimization.« less

  19. Probability theory for 3-layer remote sensing radiative transfer model: univariate case.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2012-04-23

    A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America

  20. Radiobiological Impact of Planning Techniques for Prostate Cancer in Terms of Tumor Control Probability and Normal Tissue Complication Probability

    PubMed Central

    Rana, S; Cheng, CY

    2014-01-01

    Background: The radiobiological models describe the effects of the radiation treatment on cancer and healthy cells, and the radiobiological effects are generally characterized by the tumor control probability (TCP) and normal tissue complication probability (NTCP). Aim: The purpose of this study was to assess the radiobiological impact of RapidArc planning techniques for prostate cancer in terms of TCP and normal NTCP. Subjects and Methods: A computed tomography data set of ten cases involving low-risk prostate cancer was selected for this retrospective study. For each case, two RapidArc plans were created in Eclipse treatment planning system. The double arc (DA) plan was created using two full arcs and the single arc (SA) plan was created using one full arc. All treatment plans were calculated with anisotropic analytical algorithm. Radiobiological modeling response evaluation was performed by calculating Niemierko's equivalent uniform dose (EUD)-based Tumor TCP and NTCP values. Results: For prostate tumor, the average EUD in the SA plans was slightly higher than in the DA plans (78.10 Gy vs. 77.77 Gy; P = 0.01), but the average TCP was comparable (98.3% vs. 98.3%; P = 0.01). In comparison to the DA plans, the SA plans produced higher average EUD to bladder (40.71 Gy vs. 40.46 Gy; P = 0.03) and femoral heads (10.39 Gy vs. 9.40 Gy; P = 0.03), whereas both techniques produced NTCP well below 0.1% for bladder (P = 0.14) and femoral heads (P = 0.26). In contrast, the SA plans produced higher average NTCP compared to the DA plans (2.2% vs. 1.9%; P = 0.01). Furthermore, the EUD to rectum was slightly higher in the SA plans (62.88 Gy vs. 62.22 Gy; P = 0.01). Conclusion: The SA and DA techniques produced similar TCP for low-risk prostate cancer. The NTCP for femoral heads and bladder was comparable in the SA and DA plans; however, the SA technique resulted in higher NTCP for rectum in comparison with the DA technique. PMID:24761232

  1. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD).

    PubMed

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-07

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.

  2. Extrapolation of Normal Tissue Complication Probability for Different Fractionations in Liver Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai An; Erickson, Beth; Li, X. Allen

    2009-05-01

    Purpose: The ability to predict normal tissue complication probability (NTCP) is essential for NTCP-based treatment planning. The purpose of this work is to estimate the Lyman NTCP model parameters for liver irradiation from published clinical data of different fractionation regimens. A new expression of normalized total dose (NTD) is proposed to convert NTCP data between different treatment schemes. Method and Materials: The NTCP data of radiation- induced liver disease (RILD) from external beam radiation therapy for primary liver cancer patients were selected for analysis. The data were collected from 4 institutions for tumor sizes in the range of of 8-10more » cm. The dose per fraction ranged from 1.5 Gy to 6 Gy. A modified linear-quadratic model with two components corresponding to radiosensitive and radioresistant cells in the normal liver tissue was proposed to understand the new NTD formalism. Results: There are five parameters in the model: TD{sub 50}, m, n, {alpha}/{beta} and f. With two parameters n and {alpha}/{beta} fixed to be 1.0 and 2.0 Gy, respectively, the extracted parameters from the fitting are TD{sub 50}(1) = 40.3 {+-} 8.4Gy, m =0.36 {+-} 0.09, f = 0.156 {+-} 0.074 Gy and TD{sub 50}(1) = 23.9 {+-} 5.3Gy, m = 0.41 {+-} 0.15, f = 0.0 {+-} 0.04 Gy for patients with liver cirrhosis scores of Child-Pugh A and Child-Pugh B, respectively. The fitting results showed that the liver cirrhosis score significantly affects fractional dose dependence of NTD. Conclusion: The Lyman parameters generated presently and the new form of NTD may be used to predict NTCP for treatment planning of innovative liver irradiation with different fractionations, such as hypofractioned stereotactic body radiation therapy.« less

  3. Normal Tissue Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a Novel Oral Mucosal Surface Organ at Risk.

    PubMed

    Dean, J A; Welsh, L C; Wong, K H; Aleksic, A; Dunne, E; Islam, M R; Patel, A; Patel, P; Petkar, I; Phillips, I; Sham, J; Schick, U; Newbold, K L; Bhide, S A; Harrington, K J; Nutting, C M; Gulliford, S L

    2017-04-01

    A normal tissue complication probability (NTCP) model of severe acute mucositis would be highly useful to guide clinical decision making and inform radiotherapy planning. We aimed to improve upon our previous model by using a novel oral mucosal surface organ at risk (OAR) in place of an oral cavity OAR. Predictive models of severe acute mucositis were generated using radiotherapy dose to the oral cavity OAR or mucosal surface OAR and clinical data. Penalised logistic regression and random forest classification (RFC) models were generated for both OARs and compared. Internal validation was carried out with 100-iteration stratified shuffle split cross-validation, using multiple metrics to assess different aspects of model performance. Associations between treatment covariates and severe mucositis were explored using RFC feature importance. Penalised logistic regression and RFC models using the oral cavity OAR performed at least as well as the models using mucosal surface OAR. Associations between dose metrics and severe mucositis were similar between the mucosal surface and oral cavity models. The volumes of oral cavity or mucosal surface receiving intermediate and high doses were most strongly associated with severe mucositis. The simpler oral cavity OAR should be preferred over the mucosal surface OAR for NTCP modelling of severe mucositis. We recommend minimising the volume of mucosa receiving intermediate and high doses, where possible. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Radiobiological Impact of Reduced Margins and Treatment Technique for Prostate Cancer in Terms of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Ingelise, E-mail: inje@rn.d; Carl, Jesper; Lund, Bente

    2011-07-01

    Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on themore » Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications.« less

  5. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution

    PubMed Central

    Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2014-01-01

    Summary Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students’ understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference. PMID:25419016

  6. Technology-enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution.

    PubMed

    Dinov, Ivo D; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like What is the chance of event A occurring, given that event B was observed? This generic question arises in discussions of many intriguing scientific questions such as What is the probability that an adolescent weighs between 120 and 140 pounds given that they are of average height? and What is the probability of (monetary) inflation exceeding 4% and housing price index below 110? To address such problems, learning some applied, theoretical or cross-disciplinary probability concepts is necessary. Teaching such courses can be improved by utilizing modern information technology resources. Students' understanding of multivariate distributions, conditional probabilities, correlation and causation can be significantly strengthened by employing interactive web-based science educational resources. Independent of the type of a probability course (e.g. majors, minors or service probability course, rigorous measure-theoretic, applied or statistics course) student motivation, learning experiences and knowledge retention may be enhanced by blending modern technological tools within the classical conceptual pedagogical models. We have designed, implemented and disseminated a portable open-source web-application for teaching multivariate distributions, marginal, joint and conditional probabilities using the special case of bivariate Normal distribution. A real adolescent height and weight dataset is used to demonstrate the classroom utilization of the new web-application to address problems of parameter estimation, univariate and multivariate inference.

  7. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Jensen, Ingelise; Carl, Jesper; Lund, Bente; Larsen, Erik H; Nielsen, Jane

    2011-01-01

    Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on the Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. Optimizing the parameters of the Lyman-Kutcher-Burman, Källman, and Logit+EUD models for the rectum - a comparison between normal tissue complication probability and clinical data

    NASA Astrophysics Data System (ADS)

    Trojková, Darina; Judas, Libor; Trojek, Tomáš

    2014-11-01

    Minimizing the late rectal toxicity of prostate cancer patients is a very important and widely-discussed topic. Normal tissue complication probability (NTCP) models can be used to evaluate competing treatment plans. In our work, the parameters of the Lyman-Kutcher-Burman (LKB), Källman, and Logit+EUD models are optimized by minimizing the Brier score for a group of 302 prostate cancer patients. The NTCP values are calculated and are compared with the values obtained using previously published values for the parameters. χ2 Statistics were calculated as a check of goodness of optimization.

  9. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    ERIC Educational Resources Information Center

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  10. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defraene, Gilles, E-mail: gilles.defraene@uzleuven.be; Van den Bergh, Laura; Al-Mamgani, Abrahim

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including themore » most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions

  11. Probability of regenerating a normal limb after bite injury in the Mexican axolotl (Ambystoma mexicanum)

    PubMed Central

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L.

    2014-01-01

    Abstract Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls (Ambystoma mexicanum) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary‐housed males and group‐housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury probably explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury. PMID:25745564

  12. Aggregate and individual replication probability within an explicit model of the research process.

    PubMed

    Miller, Jeff; Schwarz, Wolf

    2011-09-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by obtaining either a statistically significant result in the same direction or any effect in that direction. We analyze both the probability of successfully replicating a particular experimental effect (i.e., the individual replication probability) and the average probability of successful replication across different studies within some research context (i.e., the aggregate replication probability), and we identify the conditions under which the latter can be approximated using the formulas of Killeen (2005a, 2007). We show how both of these probabilities depend on parameters of the research context that would rarely be known in practice. In addition, we show that the statistical uncertainty associated with the size of an initial observed effect would often prevent accurate estimation of the desired individual replication probability even if these research context parameters were known exactly. We conclude that accurate estimates of replication probability are generally unattainable.

  13. Normal Tissue Complication Probability (NTCP) modeling of late rectal bleeding following external beam radiotherapy for prostate cancer: A Test of the QUANTEC-recommended NTCP model.

    PubMed

    Liu, Mitchell; Moiseenko, Vitali; Agranovich, Alexander; Karvat, Anand; Kwan, Winkle; Saleh, Ziad H; Apte, Aditya A; Deasy, Joseph O

    2010-10-01

    Validating a predictive model for late rectal bleeding following external beam treatment for prostate cancer would enable safer treatments or dose escalation. We tested the normal tissue complication probability (NTCP) model recommended in the recent QUANTEC review (quantitative analysis of normal tissue effects in the clinic). One hundred and sixty one prostate cancer patients were treated with 3D conformal radiotherapy for prostate cancer at the British Columbia Cancer Agency in a prospective protocol. The total prescription dose for all patients was 74 Gy, delivered in 2 Gy/fraction. 159 3D treatment planning datasets were available for analysis. Rectal dose volume histograms were extracted and fitted to a Lyman-Kutcher-Burman NTCP model. Late rectal bleeding (>grade 2) was observed in 12/159 patients (7.5%). Multivariate logistic regression with dose-volume parameters (V50, V60, V70, etc.) was non-significant. Among clinical variables, only age was significant on a Kaplan-Meier log-rank test (p=0.007, with an optimal cut point of 77 years). Best-fit Lyman-Kutcher-Burman model parameters (with 95% confidence intervals) were: n = 0.068 (0.01, +infinity); m =0.14 (0.0, 0.86); and TD50 = 81 (27, 136) Gy. The peak values fall within the 95% QUANTEC confidence intervals. On this dataset, both models had only modest ability to predict complications: the best-fit model had a Spearman's rank correlation coefficient of rs = 0.099 (p = 0.11) and area under the receiver operating characteristic curve (AUC) of 0.62; the QUANTEC model had rs=0.096 (p= 0.11) and a corresponding AUC of 0.61. Although the QUANTEC model consistently predicted higher NTCP values, it could not be rejected according to the χ(2) test (p = 0.44). Observed complications, and best-fit parameter estimates, were consistent with the QUANTEC-preferred NTCP model. However, predictive power was low, at least partly because the rectal dose distribution characteristics do not vary greatly within this patient

  14. Normal tissue complication probability model parameter estimation for xerostomia in head and neck cancer patients based on scintigraphy and quality of life assessments

    PubMed Central

    2012-01-01

    Background With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman–Kutcher–Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Methods Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson’s chi-squared test, Nagelkerke’s R2, the area under the receiver operating characteristic curve, and the Hosmer–Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson’s chi-squared test was used to test the goodness of fit and association. Results Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50) and the slope of the dose–response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Conclusions Our study shows the agreement between the NTCP

  15. Normal tissue complication probability model parameter estimation for xerostomia in head and neck cancer patients based on scintigraphy and quality of life assessments.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Hung-Yu; Hsu, Hsuan-Chih; Chang, PaoShu; Chen, Wen-Cheng

    2012-12-04

    With advances in modern radiotherapy (RT), many patients with head and neck (HN) cancer can be effectively cured. However, xerostomia is a common complication in patients after RT for HN cancer. The purpose of this study was to use the Lyman-Kutcher-Burman (LKB) model to derive parameters for the normal tissue complication probability (NTCP) for xerostomia based on scintigraphy assessments and quality of life (QoL) questionnaires. We performed validation tests of the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) guidelines against prospectively collected QoL and salivary scintigraphic data. Thirty-one patients with HN cancer were enrolled. Salivary excretion factors (SEFs) measured by scintigraphy and QoL data from self-reported questionnaires were used for NTCP modeling to describe the incidence of grade 3+ xerostomia. The NTCP parameters estimated from the QoL and SEF datasets were compared. Model performance was assessed using Pearson's chi-squared test, Nagelkerke's R2, the area under the receiver operating characteristic curve, and the Hosmer-Lemeshow test. The negative predictive value (NPV) was checked for the rate of correctly predicting the lack of incidence. Pearson's chi-squared test was used to test the goodness of fit and association. Using the LKB NTCP model and assuming n=1, the dose for uniform irradiation of the whole or partial volume of the parotid gland that results in 50% probability of a complication (TD50) and the slope of the dose-response curve (m) were determined from the QoL and SEF datasets, respectively. The NTCP-fitted parameters for local disease were TD50=43.6 Gy and m=0.18 with the SEF data, and TD50=44.1 Gy and m=0.11 with the QoL data. The rate of grade 3+ xerostomia for treatment plans meeting the QUANTEC guidelines was specifically predicted, with a NPV of 100%, using either the QoL or SEF dataset. Our study shows the agreement between the NTCP parameter modeling based on SEF and QoL data, which gave a

  16. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  17. Approximating Multivariate Normal Orthant Probabilities. ONR Technical Report. [Biometric Lab Report No. 90-1.

    ERIC Educational Resources Information Center

    Gibbons, Robert D.; And Others

    The probability integral of the multivariate normal distribution (ND) has received considerable attention since W. F. Sheppard's (1900) and K. Pearson's (1901) seminal work on the bivariate ND. This paper evaluates the formula that represents the "n x n" correlation matrix of the "chi(sub i)" and the standardized multivariate…

  18. Probability based models for estimation of wildfire risk

    Treesearch

    Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit

    2004-01-01

    We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...

  19. A probability space for quantum models

    NASA Astrophysics Data System (ADS)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  20. Probabilities of Dilating Vesicoureteral Reflux in Children with First Time Simple Febrile Urinary Tract Infection, and Normal Renal and Bladder Ultrasound.

    PubMed

    Rianthavorn, Pornpimol; Tangngamsakul, Onjira

    2016-11-01

    We evaluated risk factors and assessed predicted probabilities for grade III or higher vesicoureteral reflux (dilating reflux) in children with a first simple febrile urinary tract infection and normal renal and bladder ultrasound. Data for 167 children 2 to 72 months old with a first febrile urinary tract infection and normal ultrasound were compared between those who had dilating vesicoureteral reflux (12 patients, 7.2%) and those who did not. Exclusion criteria consisted of history of prenatal hydronephrosis or familial reflux and complicated urinary tract infection. The logistic regression model was used to identify independent variables associated with dilating reflux. Predicted probabilities for dilating reflux were assessed. Patient age and prevalence of nonEscherichia coli bacteria were greater in children who had dilating reflux compared to those who did not (p = 0.02 and p = 0.004, respectively). Gender distribution was similar between the 2 groups (p = 0.08). In multivariate analysis older age and nonE. coli bacteria independently predicted dilating reflux, with odds ratios of 1.04 (95% CI 1.01-1.07, p = 0.02) and 3.76 (95% CI 1.05-13.39, p = 0.04), respectively. The impact of nonE. coli bacteria on predicted probabilities of dilating reflux increased with patient age. We support the concept of selective voiding cystourethrogram in children with a first simple febrile urinary tract infection and normal ultrasound. Voiding cystourethrogram should be considered in children with late onset urinary tract infection due to nonE. coli bacteria since they are at risk for dilating reflux even if the ultrasound is normal. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Predicting Grade 3 Acute Diarrhea During Radiation Therapy for Rectal Cancer Using a Cutoff-Dose Logistic Regression Normal Tissue Complication Probability Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, John M., E-mail: jrobertson@beaumont.ed; Soehn, Matthias; Yan Di

    Purpose: Understanding the dose-volume relationship of small bowel irradiation and severe acute diarrhea may help reduce the incidence of this side effect during adjuvant treatment for rectal cancer. Methods and Materials: Consecutive patients treated curatively for rectal cancer were reviewed, and the maximum grade of acute diarrhea was determined. The small bowel was outlined on the treatment planning CT scan, and a dose-volume histogram was calculated for the initial pelvic treatment (45 Gy). Logistic regression models were fitted for varying cutoff-dose levels from 5 to 45 Gy in 5-Gy increments. The model with the highest LogLikelihood was used to developmore » a cutoff-dose normal tissue complication probability (NTCP) model. Results: There were a total of 152 patients (48% preoperative, 47% postoperative, 5% other), predominantly treated prone (95%) with a three-field technique (94%) and a protracted venous infusion of 5-fluorouracil (78%). Acute Grade 3 diarrhea occurred in 21%. The largest LogLikelihood was found for the cutoff-dose logistic regression model with 15 Gy as the cutoff-dose, although the models for 20 Gy and 25 Gy had similar significance. According to this model, highly significant correlations (p <0.001) between small bowel volumes receiving at least 15 Gy and toxicity exist in the considered patient population. Similar findings applied to both the preoperatively (p = 0.001) and postoperatively irradiated groups (p = 0.001). Conclusion: The incidence of Grade 3 diarrhea was significantly correlated with the volume of small bowel receiving at least 15 Gy using a cutoff-dose NTCP model.« less

  2. Probability density function of non-reactive solute concentration in heterogeneous porous formations.

    PubMed

    Bellin, Alberto; Tonina, Daniele

    2007-10-30

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide

  3. Towards a model-based patient selection strategy for proton therapy: External validation of photon-derived Normal Tissue Complication Probability models in a head and neck proton therapy cohort

    PubMed Central

    Blanchard, P; Wong, AJ; Gunn, GB; Garden, AS; Mohamed, ASR; Rosenthal, DI; Crutison, J; Wu, R; Zhang, X; Zhu, XR; Mohan, R; Amin, MV; Fuller, CD; Frank, SJ

    2017-01-01

    Objective To externally validate head and neck cancer (HNC) photon-derived normal tissue complication probability (NTCP) models in patients treated with proton beam therapy (PBT). Methods This prospective cohort consisted of HNC patients treated with PBT at a single institution. NTCP models were selected based on the availability of data for validation and evaluated using the leave-one-out cross-validated area under the curve (AUC) for the receiver operating characteristics curve. Results 192 patients were included. The most prevalent tumor site was oropharynx (n=86, 45%), followed by sinonasal (n=28), nasopharyngeal (n=27) or parotid (n=27) tumors. Apart from the prediction of acute mucositis (reduction of AUC of 0.17), the models overall performed well. The validation (PBT) AUC and the published AUC were respectively 0.90 versus 0.88 for feeding tube 6 months post-PBT; 0.70 versus 0.80 for physician rated dysphagia 6 months post-PBT; 0.70 versus 0.80 for dry mouth 6 months post-PBT; and 0.73 versus 0.85 for hypothyroidism 12 months post-PBT. Conclusion While the drop in NTCP model performance was expected in PBT patients, the models showed robustness and remained valid. Further work is warranted, but these results support the validity of the model-based approach for treatment selection for HNC patients. PMID:27641784

  4. Normal probabilities for Vandenberg AFB wind components - monthly reference periods for all flight azimuths, 0- to 70-km altitudes

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1975-01-01

    Vandenberg Air Force Base (AFB), California, wind component statistics are presented to be used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as a statistical model to represent component winds at Vandenberg AFB. Head tail, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99.865 percent for each month. The results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Vandenberg AFB.

  5. Normal probabilities for Cape Kennedy wind components: Monthly reference periods for all flight azimuths. Altitudes 0 to 70 kilometers

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    This document replaces Cape Kennedy empirical wind component statistics which are presently being used for aerospace engineering applications that require component wind probabilities for various flight azimuths and selected altitudes. The normal (Gaussian) distribution is presented as an adequate statistical model to represent component winds at Cape Kennedy. Head-, tail-, and crosswind components are tabulated for all flight azimuths for altitudes from 0 to 70 km by monthly reference periods. Wind components are given for 11 selected percentiles ranging from 0.135 percent to 99,865 percent for each month. Results of statistical goodness-of-fit tests are presented to verify the use of the Gaussian distribution as an adequate model to represent component winds at Cape Kennedy, Florida.

  6. Convergence of Transition Probability Matrix in CLVMarkov Models

    NASA Astrophysics Data System (ADS)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.

    2018-04-01

    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  7. Constructing inverse probability weights for continuous exposures: a comparison of methods.

    PubMed

    Naimi, Ashley I; Moodie, Erica E M; Auger, Nathalie; Kaufman, Jay S

    2014-03-01

    Inverse probability-weighted marginal structural models with binary exposures are common in epidemiology. Constructing inverse probability weights for a continuous exposure can be complicated by the presence of outliers, and the need to identify a parametric form for the exposure and account for nonconstant exposure variance. We explored the performance of various methods to construct inverse probability weights for continuous exposures using Monte Carlo simulation. We generated two continuous exposures and binary outcomes using data sampled from a large empirical cohort. The first exposure followed a normal distribution with homoscedastic variance. The second exposure followed a contaminated Poisson distribution, with heteroscedastic variance equal to the conditional mean. We assessed six methods to construct inverse probability weights using: a normal distribution, a normal distribution with heteroscedastic variance, a truncated normal distribution with heteroscedastic variance, a gamma distribution, a t distribution (1, 3, and 5 degrees of freedom), and a quantile binning approach (based on 10, 15, and 20 exposure categories). We estimated the marginal odds ratio for a single-unit increase in each simulated exposure in a regression model weighted by the inverse probability weights constructed using each approach, and then computed the bias and mean squared error for each method. For the homoscedastic exposure, the standard normal, gamma, and quantile binning approaches performed best. For the heteroscedastic exposure, the quantile binning, gamma, and heteroscedastic normal approaches performed best. Our results suggest that the quantile binning approach is a simple and versatile way to construct inverse probability weights for continuous exposures.

  8. Probability of Regenerating a Normal Limb After Bite Injury in the Mexican Axolotl (Ambystoma mexicanum).

    PubMed

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L; Voss, S Randal

    2014-06-01

    Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls ( Ambystoma mexicanum ) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary-housed males and group-housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury likely explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury.

  9. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  10. Modeling pore corrosion in normally open gold- plated copper connectors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less

  11. On the radiobiological impact of metal artifacts in head-and-neck IMRT in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Kim, Yusung; Tomé, Wolfgang A

    2007-11-01

    To investigate the effects of distorted head-and-neck (H&N) intensity-modulated radiation therapy (IMRT) dose distributions (hot and cold spots) on normal tissue complication probability (NTCP) and tumor control probability (TCP) due to dental-metal artifacts. Five patients' IMRT treatment plans have been analyzed, employing five different planning image data-sets: (a) uncorrected (UC); (b) homogeneous uncorrected (HUC); (c) sinogram completion corrected (SCC); (d) minimum-value-corrected (MVC); and (e) streak-artifact-reduction including minimum-value-correction (SAR-MVC), which has been taken as the reference data-set. The effects on NTCP and TCP were evaluated using the Lyman-NTCP model and the Logistic-TCP model, respectively. When compared to the predicted NTCP obtained using the reference data-set, the treatment plan based on the original CT data-set (UC) yielded an increase in NTCP of 3.2 and 2.0% for the spared parotid gland and the spinal cord, respectively. While for the treatment plans based on the MVC CT data-set the NTCP increased by a 1.1% and a 0.1% for the spared parotid glands and the spinal cord, respectively. In addition, the MVC correction method showed a reduction in TCP for target volumes (MVC: delta TCP = -0.6% vs. UC: delta TCP = -1.9%) with respect to that of the reference CT data-set. Our results indicate that the presence of dental-metal-artifacts in H&N planning CT data-sets has an impact on the estimates of TCP and NTCP. In particular dental-metal-artifacts lead to an increase in NTCP for the spared parotid glands and a slight decrease in TCP for target volumes.

  12. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  13. CAN'T MISS--conquer any number task by making important statistics simple. Part 2. Probability, populations, samples, and normal distributions.

    PubMed

    Hansen, John P

    2003-01-01

    Healthcare quality improvement professionals need to understand and use inferential statistics to interpret sample data from their organizations. In quality improvement and healthcare research studies all the data from a population often are not available, so investigators take samples and make inferences about the population by using inferential statistics. This three-part series will give readers an understanding of the concepts of inferential statistics as well as the specific tools for calculating confidence intervals for samples of data. This article, Part 2, describes probability, populations, and samples. The uses of descriptive and inferential statistics are outlined. The article also discusses the properties and probability of normal distributions, including the standard normal distribution.

  14. Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian

    NASA Astrophysics Data System (ADS)

    Teneng, Dean

    2013-09-01

    We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.

  15. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. Copyright © 2015. Published by Elsevier Inc.

  16. The probability heuristics model of syllogistic reasoning.

    PubMed

    Chater, N; Oaksford, M

    1999-03-01

    A probability heuristic model (PHM) for syllogistic reasoning is proposed. An informational ordering over quantified statements suggests simple probability based heuristics for syllogistic reasoning. The most important is the "min-heuristic": choose the type of the least informative premise as the type of the conclusion. The rationality of this heuristic is confirmed by an analysis of the probabilistic validity of syllogistic reasoning which treats logical inference as a limiting case of probabilistic inference. A meta-analysis of past experiments reveals close fits with PHM. PHM also compares favorably with alternative accounts, including mental logics, mental models, and deduction as verbal reasoning. Crucially, PHM extends naturally to generalized quantifiers, such as Most and Few, which have not been characterized logically and are, consequently, beyond the scope of current mental logic and mental model theories. Two experiments confirm the novel predictions of PHM when generalized quantifiers are used in syllogistic arguments. PHM suggests that syllogistic reasoning performance may be determined by simple but rational informational strategies justified by probability theory rather than by logic. Copyright 1999 Academic Press.

  17. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  18. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  19. Modality, probability, and mental models.

    PubMed

    Hinterecker, Thomas; Knauff, Markus; Johnson-Laird, P N

    2016-10-01

    We report 3 experiments investigating novel sorts of inference, such as: A or B or both. Therefore, possibly (A and B). Where the contents were sensible assertions, for example, Space tourism will achieve widespread popularity in the next 50 years or advances in material science will lead to the development of antigravity materials in the next 50 years, or both . Most participants accepted the inferences as valid, though they are invalid in modal logic and in probabilistic logic too. But, the theory of mental models predicts that individuals should accept them. In contrast, inferences of this sort—A or B but not both. Therefore, A or B or both—are both logically valid and probabilistically valid. Yet, as the model theory also predicts, most reasoners rejected them. The participants’ estimates of probabilities showed that their inferences tended not to be based on probabilistic validity, but that they did rate acceptable conclusions as more probable than unacceptable conclusions. We discuss the implications of the results for current theories of reasoning. PsycINFO Database Record (c) 2016 APA, all rights reserved

  20. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  1. Modeling the probability distribution of peak discharge for infiltrating hillslopes

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio; Singh, Vijay P.

    2017-07-01

    Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecedent soil moisture condition (ASMC) significantly affects the rate of infiltration, its effect on the probability distribution of peak discharge is investigated. Application to a watershed in Sicily, Italy, shows that with the increase of probability, the expected effect of ASMC to increase the maximum discharge diminishes. Only for low values of probability, the critical duration of rainfall is influenced by ASMC, whereas its effect on the peak discharge seems to be less for any probability. For a set of parameters, the derived probability distribution of peak discharge seems to be fitted by the gamma distribution well. Finally, an application to a small watershed, with the aim to test the possibility to arrange in advance the rational runoff coefficient tables to be used for the rational method, and a comparison between peak discharges obtained by the GABS model with those measured in an experimental flume for a loamy-sand soil were carried out.

  2. The re-incarnation, re-interpretation and re-demise of the transition probability model.

    PubMed

    Koch, A L

    1999-05-28

    There are two classes of models for the cell cycle that have both a deterministic and a stochastic part; they are the transition probability (TP) models and sloppy size control (SSC) models. The hallmark of the basic TP model are two graphs: the alpha and beta plots. The former is the semi-logarithmic plot of the percentage of cell divisions yet to occur, this results in a horizontal line segment at 100% corresponding to the deterministic phase and a straight line sloping tail corresponding to the stochastic part. The beta plot concerns the differences of the age-at-division of sisters (the beta curve) and gives a straight line parallel to the tail of the alpha curve. For the SC models the deterministic part is the time needed for the cell to accumulate a critical amount of some substance(s). The variable part differs in the various variants of the general model, but they do not give alpha and beta curves with linear tails as postulated by the TP model. This paper argues against TP and for an elaboration of SSC type of model. The main argument against TP is that it assumes that the probability of the transition from the stochastic phase is time invariant even though it is certain that the cells are growing and metabolizing throughout the cell cycle; a fact that should make the transition probability be variable. The SSC models presume that cell division is triggered by the cell's success in growing and not simply the result of elapsed time. The extended model proposed here to accommodate the predictions of the SSC to the straight tailed parts of the alpha and beta plots depends on the existence of a few percent of the cell in a growing culture that are not growing normally, these are growing much slower or are temporarily quiescent. The bulk of the cells, however, grow nearly exponentially. Evidence for a slow growing component comes from experimental analyses of population size distributions for a variety of cell types by the Collins-Richmond technique. These

  3. Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits

    DOE PAGES

    Edwards, Timothy S.

    2014-10-29

    Normal tolerance limits are frequently used in dynamic environments specifications of aerospace systems as a method to account for aleatory variability in the environments. Upper tolerance limits, when used in this way, are computed from records of the environment and used to enforce conservatism in the specification by describing upper extreme values the environment may take in the future. Components and systems are designed to withstand these extreme loads to ensure they do not fail under normal use conditions. The degree of conservatism in the upper tolerance limits is controlled by specifying the coverage and confidence level (usually written inmore » “coverage/confidence” form). Moreover, in high-consequence systems it is common to specify tolerance limits at 95% or 99% coverage and confidence at the 50% or 90% level. Despite the ubiquity of upper tolerance limits in the aerospace community, analysts and decision-makers frequently misinterpret their meaning. The misinterpretation extends into the standards that govern much of the acceptance and qualification of commercial and government aerospace systems. As a result, the risk of a future observation of the environment exceeding the upper tolerance limit is sometimes significantly underestimated by decision makers. This note explains the meaning of upper tolerance limits and a related measure, the upper prediction limit. So, the objective of this work is to clarify the probability of exceeding these limits in flight so that decision-makers can better understand the risk associated with exceeding design and test levels during flight and balance the cost of design and development with that of mission failure.« less

  4. Multivariable normal tissue complication probability model-based treatment plan optimization for grade 2-4 dysphagia and tube feeding dependence in head and neck radiotherapy.

    PubMed

    Kierkels, Roel G J; Wopken, Kim; Visser, Ruurd; Korevaar, Erik W; van der Schaaf, Arjen; Bijl, Hendrik P; Langendijk, Johannes A

    2016-12-01

    Radiotherapy of the head and neck is challenged by the relatively large number of organs-at-risk close to the tumor. Biologically-oriented objective functions (OF) could optimally distribute the dose among the organs-at-risk. We aimed to explore OFs based on multivariable normal tissue complication probability (NTCP) models for grade 2-4 dysphagia (DYS) and tube feeding dependence (TFD). One hundred head and neck cancer patients were studied. Additional to the clinical plan, two more plans (an OF DYS and OF TFD -plan) were optimized per patient. The NTCP models included up to four dose-volume parameters and other non-dosimetric factors. A fully automatic plan optimization framework was used to optimize the OF NTCP -based plans. All OF NTCP -based plans were reviewed and classified as clinically acceptable. On average, the Δdose and ΔNTCP were small comparing the OF DYS -plan, OF TFD -plan, and clinical plan. For 5% of patients NTCP TFD reduced >5% using OF TFD -based planning compared to the OF DYS -plans. Plan optimization using NTCP DYS - and NTCP TFD -based objective functions resulted in clinically acceptable plans. For patients with considerable risk factors of TFD, the OF TFD steered the optimizer to dose distributions which directly led to slightly lower predicted NTCP TFD values as compared to the other studied plans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Impact of Chemotherapy on Normal Tissue Complication Probability Models of Acute Hematologic Toxicity in Patients Receiving Pelvic Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.

    Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) andmore » divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0« less

  6. Probability Modeling and Thinking: What Can We Learn from Practice?

    ERIC Educational Resources Information Center

    Pfannkuch, Maxine; Budgett, Stephanie; Fewster, Rachel; Fitch, Marie; Pattenwise, Simeon; Wild, Chris; Ziedins, Ilze

    2016-01-01

    Because new learning technologies are enabling students to build and explore probability models, we believe that there is a need to determine the big enduring ideas that underpin probabilistic thinking and modeling. By uncovering the elements of the thinking modes of expert users of probability models we aim to provide a base for the setting of…

  7. Modeling Finite-Time Failure Probabilities in Risk Analysis Applications.

    PubMed

    Dimitrova, Dimitrina S; Kaishev, Vladimir K; Zhao, Shouqi

    2015-10-01

    In this article, we introduce a framework for analyzing the risk of systems failure based on estimating the failure probability. The latter is defined as the probability that a certain risk process, characterizing the operations of a system, reaches a possibly time-dependent critical risk level within a finite-time interval. Under general assumptions, we define two dually connected models for the risk process and derive explicit expressions for the failure probability and also the joint probability of the time of the occurrence of failure and the excess of the risk process over the risk level. We illustrate how these probabilistic models and results can be successfully applied in several important areas of risk analysis, among which are systems reliability, inventory management, flood control via dam management, infectious disease spread, and financial insolvency. Numerical illustrations are also presented. © 2015 Society for Risk Analysis.

  8. A new plan-scoring method using normal tissue complication probability for personalized treatment plan decisions in prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie; Chang, Kyung Hwan

    2018-01-01

    The aim of this study was to derive a new plan-scoring index using normal tissue complication probabilities to verify different plans in the selection of personalized treatment. Plans for 12 patients treated with tomotherapy were used to compare scoring for ranking. Dosimetric and biological indexes were analyzed for the plans for a clearly distinguishable group ( n = 7) and a similar group ( n = 12), using treatment plan verification software that we developed. The quality factor ( QF) of our support software for treatment decisions was consistent with the final treatment plan for the clearly distinguishable group (average QF = 1.202, 100% match rate, n = 7) and the similar group (average QF = 1.058, 33% match rate, n = 12). Therefore, we propose a normal tissue complication probability (NTCP) based on the plan scoring index for verification of different plans for personalized treatment-plan selection. Scoring using the new QF showed a 100% match rate (average NTCP QF = 1.0420). The NTCP-based new QF scoring method was adequate for obtaining biological verification quality and organ risk saving using the treatment-planning decision-support software we developed for prostate cancer.

  9. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  10. Accumulative Probability Model for Automated Network Traffic Analyses

    DOT National Transportation Integrated Search

    1972-10-01

    THE REPORT PRESENTS AN ILLUSTRATION OF THE ACCUMULATIVE PROBABILITY MODEL WHICH IS APPLICABLE TO GROUND TRANSPORTATION SYSTEMS WHERE HIGH-SPEED AND CLOSE HEADWAYS ARE A PERFORMANCE REQUIREMENT. THE PAPER DESCRIBES THE MODEL, ILLUSTRATES IT WITH A HYP...

  11. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom.

    PubMed

    Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz

    2018-06-01

    The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Models based on value and probability in health improve shared decision making.

    PubMed

    Ortendahl, Monica

    2008-10-01

    Diagnostic reasoning and treatment decisions are a key competence of doctors. A model based on values and probability provides a conceptual framework for clinical judgments and decisions, and also facilitates the integration of clinical and biomedical knowledge into a diagnostic decision. Both value and probability are usually estimated values in clinical decision making. Therefore, model assumptions and parameter estimates should be continually assessed against data, and models should be revised accordingly. Introducing parameter estimates for both value and probability, which usually pertain in clinical work, gives the model labelled subjective expected utility. Estimated values and probabilities are involved sequentially for every step in the decision-making process. Introducing decision-analytic modelling gives a more complete picture of variables that influence the decisions carried out by the doctor and the patient. A model revised for perceived values and probabilities by both the doctor and the patient could be used as a tool for engaging in a mutual and shared decision-making process in clinical work.

  13. A removal model for estimating detection probabilities from point-count surveys

    USGS Publications Warehouse

    Farnsworth, G.L.; Pollock, K.H.; Nichols, J.D.; Simons, T.R.; Hines, J.E.; Sauer, J.R.

    2000-01-01

    We adapted a removal model to estimate detection probability during point count surveys. The model assumes one factor influencing detection during point counts is the singing frequency of birds. This may be true for surveys recording forest songbirds when most detections are by sound. The model requires counts to be divided into several time intervals. We used time intervals of 2, 5, and 10 min to develop a maximum-likelihood estimator for the detectability of birds during such surveys. We applied this technique to data from bird surveys conducted in Great Smoky Mountains National Park. We used model selection criteria to identify whether detection probabilities varied among species, throughout the morning, throughout the season, and among different observers. The overall detection probability for all birds was 75%. We found differences in detection probability among species. Species that sing frequently such as Winter Wren and Acadian Flycatcher had high detection probabilities (about 90%) and species that call infrequently such as Pileated Woodpecker had low detection probability (36%). We also found detection probabilities varied with the time of day for some species (e.g. thrushes) and between observers for other species. This method of estimating detectability during point count surveys offers a promising new approach to using count data to address questions of the bird abundance, density, and population trends.

  14. Naive Probability: Model-Based Estimates of Unique Events.

    PubMed

    Khemlani, Sangeet S; Lotstein, Max; Johnson-Laird, Philip N

    2015-08-01

    We describe a dual-process theory of how individuals estimate the probabilities of unique events, such as Hillary Clinton becoming U.S. President. It postulates that uncertainty is a guide to improbability. In its computer implementation, an intuitive system 1 simulates evidence in mental models and forms analog non-numerical representations of the magnitude of degrees of belief. This system has minimal computational power and combines evidence using a small repertoire of primitive operations. It resolves the uncertainty of divergent evidence for single events, for conjunctions of events, and for inclusive disjunctions of events, by taking a primitive average of non-numerical probabilities. It computes conditional probabilities in a tractable way, treating the given event as evidence that may be relevant to the probability of the dependent event. A deliberative system 2 maps the resulting representations into numerical probabilities. With access to working memory, it carries out arithmetical operations in combining numerical estimates. Experiments corroborated the theory's predictions. Participants concurred in estimates of real possibilities. They violated the complete joint probability distribution in the predicted ways, when they made estimates about conjunctions: P(A), P(B), P(A and B), disjunctions: P(A), P(B), P(A or B or both), and conditional probabilities P(A), P(B), P(B|A). They were faster to estimate the probabilities of compound propositions when they had already estimated the probabilities of each of their components. We discuss the implications of these results for theories of probabilistic reasoning. © 2014 Cognitive Science Society, Inc.

  15. Gap probability - Measurements and models of a pecan orchard

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI

    1992-01-01

    Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.

  16. A Probability Model for Belady's Anomaly

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel E.; Anderson, Nicole

    2010-01-01

    In demand paging virtual memory systems, the page fault rate of a process varies with the number of memory frames allocated to the process. When an increase in the number of allocated frames leads to an increase in the number of page faults, Belady's anomaly is said to occur. In this paper, we present a probability model for Belady's anomaly. We…

  17. Developing a probability-based model of aquifer vulnerability in an agricultural region

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei

    2013-04-01

    SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.

  18. A removal model for estimating detection probabilities from point-count surveys

    USGS Publications Warehouse

    Farnsworth, G.L.; Pollock, K.H.; Nichols, J.D.; Simons, T.R.; Hines, J.E.; Sauer, J.R.

    2002-01-01

    Use of point-count surveys is a popular method for collecting data on abundance and distribution of birds. However, analyses of such data often ignore potential differences in detection probability. We adapted a removal model to directly estimate detection probability during point-count surveys. The model assumes that singing frequency is a major factor influencing probability of detection when birds are surveyed using point counts. This may be appropriate for surveys in which most detections are by sound. The model requires counts to be divided into several time intervals. Point counts are often conducted for 10 min, where the number of birds recorded is divided into those first observed in the first 3 min, the subsequent 2 min, and the last 5 min. We developed a maximum-likelihood estimator for the detectability of birds recorded during counts divided into those intervals. This technique can easily be adapted to point counts divided into intervals of any length. We applied this method to unlimited-radius counts conducted in Great Smoky Mountains National Park. We used model selection criteria to identify whether detection probabilities varied among species, throughout the morning, throughout the season, and among different observers. We found differences in detection probability among species. Species that sing frequently such as Winter Wren (Troglodytes troglodytes) and Acadian Flycatcher (Empidonax virescens) had high detection probabilities (∼90%) and species that call infrequently such as Pileated Woodpecker (Dryocopus pileatus) had low detection probability (36%). We also found detection probabilities varied with the time of day for some species (e.g. thrushes) and between observers for other species. We used the same approach to estimate detection probability and density for a subset of the observations with limited-radius point counts.

  19. Time‐dependent renewal‐model probabilities when date of last earthquake is unknown

    USGS Publications Warehouse

    Field, Edward H.; Jordan, Thomas H.

    2015-01-01

    We derive time-dependent, renewal-model earthquake probabilities for the case in which the date of the last event is completely unknown, and compare these with the time-independent Poisson probabilities that are customarily used as an approximation in this situation. For typical parameter values, the renewal-model probabilities exceed Poisson results by more than 10% when the forecast duration exceeds ~20% of the mean recurrence interval. We also derive probabilities for the case in which the last event is further constrained to have occurred before historical record keeping began (the historic open interval), which can only serve to increase earthquake probabilities for typically applied renewal models.We conclude that accounting for the historic open interval can improve long-term earthquake rupture forecasts for California and elsewhere.

  20. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    NASA Astrophysics Data System (ADS)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  1. Conflict Probability Estimation for Free Flight

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    1996-01-01

    The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.

  2. The Probability Heuristics Model of Syllogistic Reasoning.

    ERIC Educational Resources Information Center

    Chater, Nick; Oaksford, Mike

    1999-01-01

    Proposes a probability heuristic model for syllogistic reasoning and confirms the rationality of this heuristic by an analysis of the probabilistic validity of syllogistic reasoning that treats logical inference as a limiting case of probabilistic inference. Meta-analysis and two experiments involving 40 adult participants and using generalized…

  3. A simplified model for the assessment of the impact probability of fragments.

    PubMed

    Gubinelli, Gianfilippo; Zanelli, Severino; Cozzani, Valerio

    2004-12-31

    A model was developed for the assessment of fragment impact probability on a target vessel, following the collapse and fragmentation of a primary vessel due to internal pressure. The model provides the probability of impact of a fragment with defined shape, mass and initial velocity on a target of a known shape and at a given position with respect to the source point. The model is based on the ballistic analysis of the fragment trajectory and on the determination of impact probabilities by the analysis of initial direction of fragment flight. The model was validated using available literature data.

  4. Incorporating detection probability into northern Great Plains pronghorn population estimates

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; DePerno, Christopher S.

    2014-01-01

    Pronghorn (Antilocapra americana) abundances commonly are estimated using fixed-wing surveys, but these estimates are likely to be negatively biased because of violations of key assumptions underpinning line-transect methodology. Reducing bias and improving precision of abundance estimates through use of detection probability and mark-resight models may allow for more responsive pronghorn management actions. Given their potential application in population estimation, we evaluated detection probability and mark-resight models for use in estimating pronghorn population abundance. We used logistic regression to quantify probabilities that detecting pronghorn might be influenced by group size, animal activity, percent vegetation, cover type, and topography. We estimated pronghorn population size by study area and year using mixed logit-normal mark-resight (MLNM) models. Pronghorn detection probability increased with group size, animal activity, and percent vegetation; overall detection probability was 0.639 (95% CI = 0.612–0.667) with 396 of 620 pronghorn groups detected. Despite model selection uncertainty, the best detection probability models were 44% (range = 8–79%) and 180% (range = 139–217%) greater than traditional pronghorn population estimates. Similarly, the best MLNM models were 28% (range = 3–58%) and 147% (range = 124–180%) greater than traditional population estimates. Detection probability of pronghorn was not constant but depended on both intrinsic and extrinsic factors. When pronghorn detection probability is a function of animal group size, animal activity, landscape complexity, and percent vegetation, traditional aerial survey techniques will result in biased pronghorn abundance estimates. Standardizing survey conditions, increasing resighting occasions, or accounting for variation in individual heterogeneity in mark-resight models will increase the accuracy and precision of pronghorn population estimates.

  5. Normal peer models and autistic children's learning.

    PubMed Central

    Egel, A L; Richman, G S; Koegel, R L

    1981-01-01

    Present research and legislation regarding mainstreaming autistic children into normal classrooms have raised the importance of studying whether autistic children can benefit from observing normal peer models. The present investigation systematically assessed whether autistic children's learning of discrimination tasks could be improved if they observed normal children perform the tasks correctly. In the context of a multiple baseline design, four autistic children worked on five discrimination tasks that their teachers reported were posing difficulty. Throughout the baseline condition the children evidenced very low levels of correct responding on all five tasks. In the subsequent treatment condition, when normal peers modeled correct responses, the autistic children's correct responding increased dramatically. In each case, the peer modeling procedure produced rapid achievement of the acquisition which was maintained after the peer models were removed. These results are discussed in relation to issues concerning observational learning and in relation to the implications for mainstreaming autistic children into normal classrooms. PMID:7216930

  6. Probabilities and statistics for backscatter estimates obtained by a scatterometer

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    Methods for the recovery of winds near the surface of the ocean from measurements of the normalized radar backscattering cross section must recognize and make use of the statistics (i.e., the sampling variability) of the backscatter measurements. Radar backscatter values from a scatterometer are random variables with expected values given by a model. A model relates backscatter to properties of the waves on the ocean, which are in turn generated by the winds in the atmospheric marine boundary layer. The effective wind speed and direction at a known height for a neutrally stratified atmosphere are the values to be recovered from the model. The probability density function for the backscatter values is a normal probability distribution with the notable feature that the variance is a known function of the expected value. The sources of signal variability, the effects of this variability on the wind speed estimation, and criteria for the acceptance or rejection of models are discussed. A modified maximum likelihood method for estimating wind vectors is described. Ways to make corrections for the kinds of errors found for the Seasat SASS model function are described, and applications to a new scatterometer are given.

  7. Probability model for analyzing fire management alternatives: theory and structure

    Treesearch

    Frederick W. Bratten

    1982-01-01

    A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...

  8. A brief introduction to probability.

    PubMed

    Di Paola, Gioacchino; Bertani, Alessandro; De Monte, Lavinia; Tuzzolino, Fabio

    2018-02-01

    The theory of probability has been debated for centuries: back in 1600, French mathematics used the rules of probability to place and win bets. Subsequently, the knowledge of probability has significantly evolved and is now an essential tool for statistics. In this paper, the basic theoretical principles of probability will be reviewed, with the aim of facilitating the comprehension of statistical inference. After a brief general introduction on probability, we will review the concept of the "probability distribution" that is a function providing the probabilities of occurrence of different possible outcomes of a categorical or continuous variable. Specific attention will be focused on normal distribution that is the most relevant distribution applied to statistical analysis.

  9. Fixation probability in a two-locus intersexual selection model.

    PubMed

    Durand, Guillermo; Lessard, Sabin

    2016-06-01

    We study a two-locus model of intersexual selection in a finite haploid population reproducing according to a discrete-time Moran model with a trait locus expressed in males and a preference locus expressed in females. We show that the probability of ultimate fixation of a single mutant allele for a male ornament introduced at random at the trait locus given any initial frequency state at the preference locus is increased by weak intersexual selection and recombination, weak or strong. Moreover, this probability exceeds the initial frequency of the mutant allele even in the case of a costly male ornament if intersexual selection is not too weak. On the other hand, the probability of ultimate fixation of a single mutant allele for a female preference towards a male ornament introduced at random at the preference locus is increased by weak intersexual selection and weak recombination if the female preference is not costly, and is strong enough in the case of a costly male ornament. The analysis relies on an extension of the ancestral recombination-selection graph for samples of haplotypes to take into account events of intersexual selection, while the symbolic calculation of the fixation probabilities is made possible in a reasonable time by an optimizing algorithm. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Modeling the rejection probability in plant imports.

    PubMed

    Surkov, I V; van der Werf, W; van Kooten, O; Lansink, A G J M Oude

    2008-06-01

    Phytosanitary inspection of imported plants and flowers is a major means for preventing pest invasions through international trade, but in a majority of countries availability of resources prevents inspection of all imports. Prediction of the likelihood of pest infestation in imported shipments could help maximize the efficiency of inspection by targeting inspection on shipments with the highest likelihood of infestation. This paper applies a multinomial logistic (MNL) regression model to data on import inspections of ornamental plant commodities in the Netherlands from 1998 to 2001 to investigate whether it is possible to predict the probability that a shipment will be (i) accepted for import, (ii) rejected for import because of detected pests, or (iii) rejected due to other reasons. Four models were estimated: (i) an all-species model, including all plant imports (136,251 shipments) in the data set, (ii) a four-species model, including records on the four ornamental commodities that accounted for 28.9% of inspected and 49.5% of rejected shipments, and two models for single commodities with large import volumes and percentages of rejections, (iii) Dianthus (16.9% of inspected and 46.3% of rejected shipments), and (iv) Chrysanthemum (6.9 and 8.6%, respectively). All models were highly significant (P < 0.001). The models for Dianthus and Chrysanthemum and for the set of four ornamental commodities showed a better fit to data than the model for all ornamental commodities. Variables that characterized the imported shipment's region of origin, the shipment's size, the company that imported the shipment, and season and year of import, were significant in most of the estimated models. The combined results of this study suggest that the MNL model can be a useful tool for modeling the probability of rejecting imported commodities even with a small set of explanatory variables. The MNL model can be helpful in better targeting of resources for import inspection. The

  11. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  12. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy.

    PubMed

    Kobashi, Keiji; Prayongrat, Anussara; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-03-01

    Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance-covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold.

  13. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities.

    PubMed

    Blöchliger, Nicolas; Keller, Peter M; Böttger, Erik C; Hombach, Michael

    2017-09-01

    The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of < 0.1% applying current EUCAST CBPs. Error rates were > 0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability. © The Author 2017. Published by Oxford University Press on behalf of the British Society

  14. Probability Weighting Functions Derived from Hyperbolic Time Discounting: Psychophysical Models and Their Individual Level Testing.

    PubMed

    Takemura, Kazuhisa; Murakami, Hajime

    2016-01-01

    A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.

  15. How might Model-based Probabilities Extracted from Imperfect Models Guide Rational Decisions: The Case for non-probabilistic odds

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.

    2010-05-01

    This contribution concerns "deep" or "second-order" uncertainty, such as the uncertainty in our probability forecasts themselves. It asks the question: "Is it rational to take (or offer) bets using model-based probabilities as if they were objective probabilities?" If not, what alternative approaches for determining odds, perhaps non-probabilistic odds, might prove useful in practice, given the fact we know our models are imperfect? We consider the case where the aim is to provide sustainable odds: not to produce a profit but merely to rationally expect to break even in the long run. In other words, to run a quantified risk of ruin that is relatively small. Thus the cooperative insurance schemes of coastal villages provide a more appropriate parallel than a casino. A "better" probability forecast would lead to lower premiums charged and less volatile fluctuations in the cash reserves of the village. Note that the Bayesian paradigm does not constrain one to interpret model distributions as subjective probabilities, unless one believes the model to be empirically adequate for the task at hand. In geophysics, this is rarely the case. When a probability forecast is interpreted as the objective probability of an event, the odds on that event can be easily computed as one divided by the probability of the event, and one need not favour taking either side of the wager. (Here we are using "odds-for" not "odds-to", the difference being whether of not the stake is returned; odds of one to one are equivalent to odds of two for one.) The critical question is how to compute sustainable odds based on information from imperfect models. We suggest that this breaks the symmetry between the odds-on an event and the odds-against it. While a probability distribution can always be translated into odds, interpreting the odds on a set of events might result in "implied-probabilities" that sum to more than one. And/or the set of odds may be incomplete, not covering all events. We ask

  16. Improving Conceptual Models Using AEM Data and Probability Distributions

    NASA Astrophysics Data System (ADS)

    Davis, A. C.; Munday, T. J.; Christensen, N. B.

    2012-12-01

    With emphasis being placed on uncertainty in groundwater modelling and prediction, coupled with questions concerning the value of geophysical methods in hydrogeology, it is important to ask meaningful questions of hydrogeophysical data and inversion results. For example, to characterise aquifers using electromagnetic (EM) data, we ask questions such as "Given that the electrical conductivity of aquifer 'A' is less than x, where is that aquifer elsewhere in the survey area?" The answer may be given by examining inversion models, selecting locations and layers that satisfy the condition 'conductivity <= x', and labelling them as aquifer 'A'. One difficulty with this approach is that the inversion model result often be considered to be the only model for the data. In reality it is just one image of the subsurface that, given the method and the regularisation imposed in the inversion, agrees with measured data within a given error bound. We have no idea whether the final model realised by the inversion satisfies the global minimum error, or whether it is simply in a local minimum. There is a distribution of inversion models that satisfy the error tolerance condition: the final model is not the only one, nor is it necessarily the correct one. AEM inversions are often linearised in the calculation of the parameter sensitivity: we rely on the second derivatives in the Taylor expansion, thus the minimum model has all layer parameters distributed about their mean parameter value with well-defined variance. We investigate the validity of the minimum model, and its uncertainty, by examining the full posterior covariance matrix. We ask questions of the minimum model, and answer them in a probabilistically. The simplest question we can pose is "What is the probability that all layer resistivity values are <= a cut-off value?" We can calculate through use of the erf or the erfc functions. The covariance values of the inversion become marginalised in the integration: only the

  17. Re‐estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia

    USGS Publications Warehouse

    Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy

    2013-01-01

    Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.

  18. Normal myocardial perfusion scan portends a benign prognosis independent from the pretest probability of coronary artery disease. Sub-analysis of the J-ACCESS study.

    PubMed

    Imamura, Yosihiro; Fukuyama, Takaya; Nishimura, Sigeyuki; Nishimura, Tsunehiko

    2009-08-01

    We assessed the usefulness of gated stress/rest 99mTc-tetrofosmin myocardial perfusion single photon emission computed tomography (SPECT) to predict ischemic cardiac events in Japanese patients with various estimated pretest probabilities of coronary artery disease (CAD). Of the 4031 consecutively registered patients for a J-ACCESS (Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT) study, 1904 patients without prior cardiac events were selected. Gated stress/rest myocardial perfusion SPECT was performed and segmental perfusion scores and quantitative gated SPECT results were derived. The pretest probability for having CAD was estimated using the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine guideline data for the management of patients with chronic stable angina, which includes age, gender, and type of chest discomfort. The patients were followed up for three years. During the three-year follow-up period, 96 developed ischemic cardiac events: 17 cardiac deaths, 8 nonfatal myocardial infarction, and 71 clinically driven revascularization. The summed stress score (SSS) was the most powerful independent predictor of all ischemic cardiac events (hazard ratio 1.077, CI 1.045-1.110). Abnormal SSS (> 3) was associated with a significantly higher cardiac event rate in patients with an intermediate to high pretest probability of CAD. Normal SSS (< or = 3) was associated with a low event rate in patients with any pretest probability of CAD. Myocardial perfusion SPECT is useful for further risk-stratification of patients with suspected CAD. The abnormal scan result (SSS > 3) is discriminative for subsequent cardiac events only in the groups with an intermediate to high pretest probability of CAD. The salient result is that normal scan results portend a benign prognosis independent from the pretest probability of CAD.

  19. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  20. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling

    PubMed Central

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323

  1. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy

    PubMed Central

    Kobashi, Keiji; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-01-01

    Abstract Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold. PMID:29538699

  2. [Estimating survival of thrushes: modeling capture-recapture probabilities].

    PubMed

    Burskiî, O V

    2011-01-01

    The stochastic modeling technique serves as a way to correctly separate "return rate" of marked animals into survival rate (phi) and capture probability (p). The method can readily be used with the program MARK freely distributed through Internet (Cooch, White, 2009). Input data for the program consist of "capture histories" of marked animals--strings of units and zeros indicating presence or absence of the individual among captures (or sightings) along the set of consequent recapture occasions (e.g., years). Probability of any history is a product of binomial probabilities phi, p or their complements (1 - phi) and (1 - p) for each year of observation over the individual. Assigning certain values to parameters phi and p, one can predict the composition of all individual histories in the sample and assess the likelihood of the prediction. The survival parameters for different occasions and cohorts of individuals can be set either equal or different, as well as recapture parameters can be set in different ways. There is a possibility to constraint the parameters, according to the hypothesis being tested, in the form of a specific model. Within the specified constraints, the program searches for parameter values that describe the observed composition of histories with the maximum likelihood. It computes the parameter estimates along with confidence limits and the overall model likelihood. There is a set of tools for testing the model goodness-of-fit under assumption of equality of survival rates among individuals and independence of their fates. Other tools offer a proper selection among a possible variety of models, providing the best parity between details and precision in describing reality. The method was applied to 20-yr recapture and resighting data series on 4 thrush species (genera Turdus, Zoothera) breeding in the Yenisei River floodplain within the middle taiga subzone. The capture probabilities were quite independent of observational efforts fluctuations

  3. Estimating the Probability of Rare Events Occurring Using a Local Model Averaging.

    PubMed

    Chen, Jin-Hua; Chen, Chun-Shu; Huang, Meng-Fan; Lin, Hung-Chih

    2016-10-01

    In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed. © 2016 Society for Risk Analysis.

  4. Review of Literature for Model Assisted Probability of Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Crawford, Susan L.; Lareau, John P.

    This is a draft technical letter report for NRC client documenting a literature review of model assisted probability of detection (MAPOD) for potential application to nuclear power plant components for improvement of field NDE performance estimations.

  5. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  6. A Skew-Normal Mixture Regression Model

    ERIC Educational Resources Information Center

    Liu, Min; Lin, Tsung-I

    2014-01-01

    A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…

  7. Elastic K-means using posterior probability

    PubMed Central

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756

  8. Elastic K-means using posterior probability.

    PubMed

    Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris

    2017-01-01

    The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.

  9. Interpretation of the results of statistical measurements. [search for basic probability model

    NASA Technical Reports Server (NTRS)

    Olshevskiy, V. V.

    1973-01-01

    For random processes, the calculated probability characteristic, and the measured statistical estimate are used in a quality functional, which defines the difference between the two functions. Based on the assumption that the statistical measurement procedure is organized so that the parameters for a selected model are optimized, it is shown that the interpretation of experimental research is a search for a basic probability model.

  10. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  11. A quantum probability perspective on borderline vagueness.

    PubMed

    Blutner, Reinhard; Pothos, Emmanuel M; Bruza, Peter

    2013-10-01

    The term "vagueness" describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substantial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon. © 2013 Cognitive Science Society, Inc.

  12. Transitional probability-based model for HPV clearance in HIV-1-positive adolescent females.

    PubMed

    Kravchenko, Julia; Akushevich, Igor; Sudenga, Staci L; Wilson, Craig M; Levitan, Emily B; Shrestha, Sadeep

    2012-01-01

    HIV-1-positive patients clear the human papillomavirus (HPV) infection less frequently than HIV-1-negative. Datasets for estimating HPV clearance probability often have irregular measurements of HPV status and risk factors. A new transitional probability-based model for estimation of probability of HPV clearance was developed to fully incorporate information on HIV-1-related clinical data, such as CD4 counts, HIV-1 viral load (VL), highly active antiretroviral therapy (HAART), and risk factors (measured quarterly), and HPV infection status (measured at 6-month intervals). Data from 266 HIV-1-positive and 134 at-risk HIV-1-negative adolescent females from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort were used in this study. First, the associations were evaluated using the Cox proportional hazard model, and the variables that demonstrated significant effects on HPV clearance were included in transitional probability models. The new model established the efficacy of CD4 cell counts as a main clearance predictor for all type-specific HPV phylogenetic groups. The 3-month probability of HPV clearance in HIV-1-infected patients significantly increased with increasing CD4 counts for HPV16/16-like (p<0.001), HPV18/18-like (p<0.001), HPV56/56-like (p = 0.05), and low-risk HPV (p<0.001) phylogenetic groups, with the lowest probability found for HPV16/16-like infections (21.60±1.81% at CD4 level 200 cells/mm(3), p<0.05; and 28.03±1.47% at CD4 level 500 cells/mm(3)). HIV-1 VL was a significant predictor for clearance of low-risk HPV infections (p<0.05). HAART (with protease inhibitor) was significant predictor of probability of HPV16 clearance (p<0.05). HPV16/16-like and HPV18/18-like groups showed heterogeneity (p<0.05) in terms of how CD4 counts, HIV VL, and HAART affected probability of clearance of each HPV infection. This new model predicts the 3-month probability of HPV infection clearance based on CD4 cell counts and other HIV-1-related

  13. An empirical model for earthquake probabilities in the San Francisco Bay region, California, 2002-2031

    USGS Publications Warehouse

    Reasenberg, P.A.; Hanks, T.C.; Bakun, W.H.

    2003-01-01

    The moment magnitude M 7.8 earthquake in 1906 profoundly changed the rate of seismic activity over much of northern California. The low rate of seismic activity in the San Francisco Bay region (SFBR) since 1906, relative to that of the preceding 55 yr, is often explained as a stress-shadow effect of the 1906 earthquake. However, existing elastic and visco-elastic models of stress change fail to fully account for the duration of the lowered rate of earthquake activity. We use variations in the rate of earthquakes as a basis for a simple empirical model for estimating the probability of M ≥6.7 earthquakes in the SFBR. The model preserves the relative magnitude distribution of sources predicted by the Working Group on California Earthquake Probabilities' (WGCEP, 1999; WGCEP, 2002) model of characterized ruptures on SFBR faults and is consistent with the occurrence of the four M ≥6.7 earthquakes in the region since 1838. When the empirical model is extrapolated 30 yr forward from 2002, it gives a probability of 0.42 for one or more M ≥6.7 in the SFBR. This result is lower than the probability of 0.5 estimated by WGCEP (1988), lower than the 30-yr Poisson probability of 0.60 obtained by WGCEP (1999) and WGCEP (2002), and lower than the 30-yr time-dependent probabilities of 0.67, 0.70, and 0.63 obtained by WGCEP (1990), WGCEP (1999), and WGCEP (2002), respectively, for the occurrence of one or more large earthquakes. This lower probability is consistent with the lack of adequate accounting for the 1906 stress-shadow in these earlier reports. The empirical model represents one possible approach toward accounting for the stress-shadow effect of the 1906 earthquake. However, the discrepancy between our result and those obtained with other modeling methods underscores the fact that the physics controlling the timing of earthquakes is not well understood. Hence, we advise against using the empirical model alone (or any other single probability model) for estimating the

  14. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  15. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  16. Statistical Surrogate Models for Estimating Probability of High-Consequence Climate Change

    NASA Astrophysics Data System (ADS)

    Field, R.; Constantine, P.; Boslough, M.

    2011-12-01

    We have posed the climate change problem in a framework similar to that used in safety engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence climate events are perhaps more appropriate than studies focused simply on best estimates. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails of the associated probability distributions. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field, that is, a random variable for every fixed location in the atmosphere at all times. The SSM can be calibrated to available spatial and temporal data from existing climate databases, or to a collection of outputs from general circulation models. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to provide quantitative measures of confidence, via Bayesian credible intervals, to assess these risks. To illustrate the use of the SSM, we considered two collections of NCAR CCSM 3.0 output data. The first collection corresponds to average December surface temperature for years 1990-1999 based on a collection of 8 different model runs obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calibrated the surrogate model to the available model data and make various point predictions. We also analyzed average precipitation rate in June, July, and August over a 54-year period assuming a cyclic Y2K ocean model. We

  17. Bas-Relief Modeling from Normal Images with Intuitive Styles.

    PubMed

    Ji, Zhongping; Ma, Weiyin; Sun, Xianfang

    2014-05-01

    Traditional 3D model-based bas-relief modeling methods are often limited to model-dependent and monotonic relief styles. This paper presents a novel method for digital bas-relief modeling with intuitive style control. Given a composite normal image, the problem discussed in this paper involves generating a discontinuity-free depth field with high compression of depth data while preserving or even enhancing fine details. In our framework, several layers of normal images are composed into a single normal image. The original normal image on each layer is usually generated from 3D models or through other techniques as described in this paper. The bas-relief style is controlled by choosing a parameter and setting a targeted height for them. Bas-relief modeling and stylization are achieved simultaneously by solving a sparse linear system. Different from previous work, our method can be used to freely design bas-reliefs in normal image space instead of in object space, which makes it possible to use any popular image editing tools for bas-relief modeling. Experiments with a wide range of 3D models and scenes show that our method can effectively generate digital bas-reliefs.

  18. Probability distribution functions for unit hydrographs with optimization using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh

    2017-05-01

    A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.

  19. Computer models for predicting the probability of violating CO air quality standards : the model SIMCO.

    DOT National Transportation Integrated Search

    1982-01-01

    This report presents the user instructions and data requirements for SIMCO, a combined simulation and probability computer model developed to quantify and evaluate carbon monoxide in roadside environments. The model permits direct determinations of t...

  20. Normal forms for reduced stochastic climate models

    PubMed Central

    Majda, Andrew J.; Franzke, Christian; Crommelin, Daan

    2009-01-01

    The systematic development of reduced low-dimensional stochastic climate models from observations or comprehensive high-dimensional climate models is an important topic for atmospheric low-frequency variability, climate sensitivity, and improved extended range forecasting. Here techniques from applied mathematics are utilized to systematically derive normal forms for reduced stochastic climate models for low-frequency variables. The use of a few Empirical Orthogonal Functions (EOFs) (also known as Principal Component Analysis, Karhunen–Loéve and Proper Orthogonal Decomposition) depending on observational data to span the low-frequency subspace requires the assessment of dyad interactions besides the more familiar triads in the interaction between the low- and high-frequency subspaces of the dynamics. It is shown below that the dyad and multiplicative triad interactions combine with the climatological linear operator interactions to simultaneously produce both strong nonlinear dissipation and Correlated Additive and Multiplicative (CAM) stochastic noise. For a single low-frequency variable the dyad interactions and climatological linear operator alone produce a normal form with CAM noise from advection of the large scales by the small scales and simultaneously strong cubic damping. These normal forms should prove useful for developing systematic strategies for the estimation of stochastic models from climate data. As an illustrative example the one-dimensional normal form is applied below to low-frequency patterns such as the North Atlantic Oscillation (NAO) in a climate model. The results here also illustrate the short comings of a recent linear scalar CAM noise model proposed elsewhere for low-frequency variability. PMID:19228943

  1. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  2. Probability distribution of financial returns in a model of multiplicative Brownian motion with stochastic diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Silva, Antonio

    2005-03-01

    It is well-known that the mathematical theory of Brownian motion was first developed in the Ph. D. thesis of Louis Bachelier for the French stock market before Einstein [1]. In Ref. [2] we studied the so-called Heston model, where the stock-price dynamics is governed by multiplicative Brownian motion with stochastic diffusion coefficient. We solved the corresponding Fokker-Planck equation exactly and found an analytic formula for the time-dependent probability distribution of stock price changes (returns). The formula interpolates between the exponential (tent-shaped) distribution for short time lags and the Gaussian (parabolic) distribution for long time lags. The theoretical formula agrees very well with the actual stock-market data ranging from the Dow-Jones index [2] to individual companies [3], such as Microsoft, Intel, etc. [] [1] Louis Bachelier, ``Th'eorie de la sp'eculation,'' Annales Scientifiques de l''Ecole Normale Sup'erieure, III-17:21-86 (1900).[] [2] A. A. Dragulescu and V. M. Yakovenko, ``Probability distribution of returns in the Heston model with stochastic volatility,'' Quantitative Finance 2, 443--453 (2002); Erratum 3, C15 (2003). [cond-mat/0203046] [] [3] A. C. Silva, R. E. Prange, and V. M. Yakovenko, ``Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact,'' Physica A 344, 227--235 (2004). [cond-mat/0401225

  3. Trending in Probability of Collision Measurements via a Bayesian Zero-Inflated Beta Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matt; Stamey, James

    2015-01-01

    We investigate the performance of a generalized linear mixed model in predicting the Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log(sub 10) transformation of these probabilities and argue that this transformation yields values that can be considered bounded in practice. Additionally, this bounded random variable, after scaling, is zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and utilize the Bayesian paradigm and the mixed model framework to borrow information from past and current events. This provides a natural way to model the data and provides a basis for answering questions of interest, such as what is the likelihood of observing a probability of collision equal to the effective value of zero on a subsequent observation.

  4. [Prolonged mechanical ventilation probability model].

    PubMed

    Añón, J M; Gómez-Tello, V; González-Higueras, E; Oñoro, J J; Córcoles, V; Quintana, M; López-Martínez, J; Marina, L; Choperena, G; García-Fernández, A M; Martín-Delgado, C; Gordo, F; Díaz-Alersi, R; Montejo, J C; Lorenzo, A García de; Pérez-Arriaga, M; Madero, R

    2012-10-01

    To design a probability model for prolonged mechanical ventilation (PMV) using variables obtained during the first 24 hours of the start of MV. An observational, prospective, multicenter cohort study. Thirteen Spanish medical-surgical intensive care units. Adult patients requiring mechanical ventilation for more than 24 hours. None. APACHE II, SOFA, demographic data, clinical data, reason for mechanical ventilation, comorbidity, and functional condition. A multivariate risk model was constructed. The model contemplated a dependent variable with three possible conditions: 1. Early mortality; 2. Early extubation; and 3. PMV. Of the 1661 included patients, 67.9% (n=1127) were men. Age: 62.1±16.2 years. APACHE II: 20.3±7.5. Total SOFA: 8.4±3.5. The APACHE II and SOFA scores were higher in patients ventilated for 7 or more days (p=0.04 and p=0.0001, respectively). Noninvasive ventilation failure was related to PMV (p=0.005). A multivariate model for the three above exposed outcomes was generated. The overall accuracy of the model in the training and validation sample was 0.763 (95%IC: 0.729-0.804) and 0.751 (95%IC: 0.672-0.816), respectively. The likelihood ratios (LRs) for early extubation, involving a cutoff point of 0.65, in the training sample were LR (+): 2.37 (95%CI: 1.77-3.19) and LR (-): 0.47 (95%CI: 0.41-0.55). The LRs for the early mortality model, for a cutoff point of 0.73, in the training sample, were LR (+): 2.64 (95%CI: 2.01-3.4) and LR (-): 0.39 (95%CI: 0.30-0.51). The proposed model could be a helpful tool in decision making. However, because of its moderate accuracy, it should be considered as a first approach, and the results should be corroborated by further studies involving larger samples and the use of standardized criteria. Copyright © 2011 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  5. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the

  6. Modelling the Probability of Landslides Impacting Road Networks

    NASA Astrophysics Data System (ADS)

    Taylor, F. E.; Malamud, B. D.

    2012-04-01

    During a landslide triggering event, the threat of landslides blocking roads poses a risk to logistics, rescue efforts and communities dependant on those road networks. Here we present preliminary results of a stochastic model we have developed to evaluate the probability of landslides intersecting a simple road network during a landslide triggering event and apply simple network indices to measure the state of the road network in the affected region. A 4000 x 4000 cell array with a 5 m x 5 m resolution was used, with a pre-defined simple road network laid onto it, and landslides 'randomly' dropped onto it. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m2 This statistical distribution was chosen based on three substantially complete triggered landslide inventories recorded in existing literature. The number of landslide areas (NL) selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. NL = 400 landslide areas chosen randomly for each iteration, and was based on several existing triggered landslide event inventories. A simple road network was chosen, in a 'T' shape configuration, with one road 1 x 4000 cells (5 m x 20 km) in a 'T' formation with another road 1 x 2000 cells (5 m x 10 km). The landslide areas were then randomly 'dropped' over the road array and indices such as the location, size (ABL) and number of road blockages (NBL) recorded. This process was performed 500 times (iterations) in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event with 400 landslides over a 400 km2 region, the number of road blocks per iteration, NBL,ranges from 0 to 7. The average blockage area for the 500 iterations (A¯ BL) is about 3000 m

  7. Recent Advances in Model-Assisted Probability of Detection

    NASA Technical Reports Server (NTRS)

    Thompson, R. Bruce; Brasche, Lisa J.; Lindgren, Eric; Swindell, Paul; Winfree, William P.

    2009-01-01

    The increased role played by probability of detection (POD) in structural integrity programs, combined with the significant time and cost associated with the purely empirical determination of POD, provides motivation for alternate means to estimate this important metric of NDE techniques. One approach to make the process of POD estimation more efficient is to complement limited empirical experiments with information from physics-based models of the inspection process or controlled laboratory experiments. The Model-Assisted Probability of Detection (MAPOD) Working Group was formed by the Air Force Research Laboratory, the FAA Technical Center, and NASA to explore these possibilities. Since the 2004 inception of the MAPOD Working Group, 11 meetings have been held in conjunction with major NDE conferences. This paper will review the accomplishments of this group, which includes over 90 members from around the world. Included will be a discussion of strategies developed to combine physics-based and empirical understanding, draft protocols that have been developed to guide application of the strategies, and demonstrations that have been or are being carried out in a number of countries. The talk will conclude with a discussion of future directions, which will include documentation of benefits via case studies, development of formal protocols for engineering practice, as well as a number of specific technical issues.

  8. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  9. Plant calendar pattern based on rainfall forecast and the probability of its success in Deli Serdang regency of Indonesia

    NASA Astrophysics Data System (ADS)

    Darnius, O.; Sitorus, S.

    2018-03-01

    The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.

  10. Correlation between the clinical pretest probability score and the lung ventilation and perfusion scan probability.

    PubMed

    Bhoobalan, Shanmugasundaram; Chakravartty, Riddhika; Dolbear, Gill; Al-Janabi, Mazin

    2013-10-01

    Aim of the study was to determine the accuracy of the clinical pretest probability (PTP) score and its association with lung ventilation and perfusion (VQ) scan. A retrospective analysis of 510 patients who had a lung VQ scan between 2008 and 2010 were included in the study. Out of 510 studies, the number of normal, low, and high probability VQ scans were 155 (30%), 289 (57%), and 55 (11%), respectively. A total of 103 patients underwent computed tomography pulmonary angiography (CTPA) scan in which 21 (20%) had a positive scan, 81 (79%) had a negative scan and one (1%) had an equivocal result. The rate of PE in the normal, low-probability, and high-probability scan categories were: 2 (9.5%), 10 (47.5%), and 9 (43%) respectively. A very low correlation (Pearson correlation coefficient r = 0.20) between the clinical PTP score and lung VQ scan. The area under the curve (AUC) of the clinical PTP score was 52% when compared with the CTPA results. However, the accuracy of lung VQ scan was better (AUC = 74%) when compared with CTPA scan. The clinical PTP score is unreliable on its own; however, it may still aid in the interpretation of lung VQ scan. The accuracy of the lung VQ scan was better in the assessment of underlying pulmonary embolism (PE).

  11. Correlation between the clinical pretest probability score and the lung ventilation and perfusion scan probability

    PubMed Central

    Bhoobalan, Shanmugasundaram; Chakravartty, Riddhika; Dolbear, Gill; Al-Janabi, Mazin

    2013-01-01

    Purpose: Aim of the study was to determine the accuracy of the clinical pretest probability (PTP) score and its association with lung ventilation and perfusion (VQ) scan. Materials and Methods: A retrospective analysis of 510 patients who had a lung VQ scan between 2008 and 2010 were included in the study. Out of 510 studies, the number of normal, low, and high probability VQ scans were 155 (30%), 289 (57%), and 55 (11%), respectively. Results: A total of 103 patients underwent computed tomography pulmonary angiography (CTPA) scan in which 21 (20%) had a positive scan, 81 (79%) had a negative scan and one (1%) had an equivocal result. The rate of PE in the normal, low-probability, and high-probability scan categories were: 2 (9.5%), 10 (47.5%), and 9 (43%) respectively. A very low correlation (Pearson correlation coefficient r = 0.20) between the clinical PTP score and lung VQ scan. The area under the curve (AUC) of the clinical PTP score was 52% when compared with the CTPA results. However, the accuracy of lung VQ scan was better (AUC = 74%) when compared with CTPA scan. Conclusion: The clinical PTP score is unreliable on its own; however, it may still aid in the interpretation of lung VQ scan. The accuracy of the lung VQ scan was better in the assessment of underlying pulmonary embolism (PE). PMID:24379532

  12. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  13. A stochastic model for the probability of malaria extinction by mass drug administration.

    PubMed

    Pemberton-Ross, Peter; Chitnis, Nakul; Pothin, Emilie; Smith, Thomas A

    2017-09-18

    Mass drug administration (MDA) has been proposed as an intervention to achieve local extinction of malaria. Although its effect on the reproduction number is short lived, extinction may subsequently occur in a small population due to stochastic fluctuations. This paper examines how the probability of stochastic extinction depends on population size, MDA coverage and the reproduction number under control, R c . A simple compartmental model is developed which is used to compute the probability of extinction using probability generating functions. The expected time to extinction in small populations after MDA for various scenarios in this model is calculated analytically. The results indicate that mass drug administration (Firstly, R c must be sustained at R c  < 1.2 to avoid the rapid re-establishment of infections in the population. Secondly, the MDA must produce effective cure rates of >95% to have a non-negligible probability of successful elimination. Stochastic fluctuations only significantly affect the probability of extinction in populations of about 1000 individuals or less. The expected time to extinction via stochastic fluctuation is less than 10 years only in populations less than about 150 individuals. Clustering of secondary infections and of MDA distribution both contribute positively to the potential probability of success, indicating that MDA would most effectively be administered at the household level. There are very limited circumstances in which MDA will lead to local malaria elimination with a substantial probability.

  14. Proposal: A Hybrid Dictionary Modelling Approach for Malay Tweet Normalization

    NASA Astrophysics Data System (ADS)

    Muhamad, Nor Azlizawati Binti; Idris, Norisma; Arshi Saloot, Mohammad

    2017-02-01

    Malay Twitter message presents a special deviation from the original language. Malay Tweet widely used currently by Twitter users, especially at Malaya archipelago. Thus, it is important to make a normalization system which can translated Malay Tweet language into the standard Malay language. Some researchers have conducted in natural language processing which mainly focuses on normalizing English Twitter messages, while few studies have been done for normalize Malay Tweets. This paper proposes an approach to normalize Malay Twitter messages based on hybrid dictionary modelling methods. This approach normalizes noisy Malay twitter messages such as colloquially language, novel words, and interjections into standard Malay language. This research will be used Language Model and N-grams model.

  15. Quantum Probability -- A New Direction for Modeling in Cognitive Science

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    Human cognition is still a puzzling issue in research and its appropriate modeling. It depends on how the brain behaves at that particular instance and identifies and responds to a signal among myriads of noises that are present in the surroundings (called external noise) as well as in the neurons themselves (called internal noise). Thus it is not surprising to assume that the functionality consists of various uncertainties, possibly a mixture of aleatory and epistemic uncertainties. It is also possible that a complicated pathway consisting of both types of uncertainties in continuum play a major role in human cognition. For more than 200 years mathematicians and philosophers have been using probability theory to describe human cognition. Recently in several experiments with human subjects, violation of traditional probability theory has been clearly revealed in plenty of cases. Literature survey clearly suggests that classical probability theory fails to model human cognition beyond a certain limit. While the Bayesian approach may seem to be a promising candidate to this problem, the complete success story of Bayesian methodology is yet to be written. The major problem seems to be the presence of epistemic uncertainty and its effect on cognition at any given time. Moreover the stochasticity in the model arises due to the unknown path or trajectory (definite state of mind at each time point), a person is following. To this end a generalized version of probability theory borrowing ideas from quantum mechanics may be a plausible approach. A superposition state in quantum theory permits a person to be in an indefinite state at each point of time. Such an indefinite state allows all the states to have the potential to be expressed at each moment. Thus a superposition state appears to be able to represent better, the uncertainty, ambiguity or conflict experienced by a person at any moment demonstrating that mental states follow quantum mechanics during perception and

  16. An energy-dependent numerical model for the condensation probability, γ j

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerby, Leslie Marie

    The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less

  17. An energy-dependent numerical model for the condensation probability, γ j

    DOE PAGES

    Kerby, Leslie Marie

    2016-12-09

    The “condensation” probability, γ j, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that p j excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γ j were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γ j, one which is energy-dependent and valid for up to 28Mg, andmore » which provides improved fits compared to experimental fragment spectra.« less

  18. Probable autosomal recessive Marfan syndrome.

    PubMed Central

    Fried, K; Krakowsky, D

    1977-01-01

    A probable autosomal recessive mode of inheritance is described in a family with two affected sisters. The sisters showed the typical picture of Marfan syndrome and were of normal intelligence. Both parents and all four grandparents were personally examined and found to be normal. Homocystinuria was ruled out on repeated examinations. This family suggests genetic heterogeneity in Marfan syndrome and that in some rare families the mode of inheritance may be autosomal recessive. Images PMID:592353

  19. Modeling and simulation of normal and hemiparetic gait

    NASA Astrophysics Data System (ADS)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  20. Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.

    2014-12-01

    Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.

  1. Regional Permafrost Probability Modelling in the northwestern Cordillera, 59°N - 61°N, Canada

    NASA Astrophysics Data System (ADS)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2010-12-01

    High resolution (30 x 30 m) permafrost probability models were created for eight mountainous areas in the Yukon and northernmost British Columbia. Empirical-statistical modelling based on the Basal Temperature of Snow (BTS) method was used to develop spatial relationships. Model inputs include equivalent elevation (a variable that incorporates non-uniform temperature change with elevation), potential incoming solar radiation and slope. Probability relationships between predicted BTS and permafrost presence were developed for each area using late-summer physical observations in pits, or by using year-round ground temperature measurements. A high-resolution spatial model for the region has now been generated based on seven of the area models. Each was applied to the entire region, and their predictions were then blended based on a distance decay function from the model source area. The regional model is challenging to validate independently because there are few boreholes in the region. However, a comparison of results to a recently established inventory of rock glaciers for the Yukon suggests its validity because predicted permafrost probabilities were 0.8 or greater for almost 90% of these landforms. Furthermore, the regional model results have a similar spatial pattern to those modelled independently in the eighth area, although predicted probabilities using the regional model are generally higher. The regional model predicts that permafrost underlies about half of the non-glaciated terrain in the region, with probabilities increasing regionally from south to north and from east to west. Elevation is significant, but not always linked in a straightforward fashion because of weak or inverted trends in permafrost probability below treeline. Above treeline, however, permafrost probabilities increase and approach 1.0 in very high elevation areas throughout the study region. The regional model shows many similarities to previous Canadian permafrost maps (Heginbottom

  2. Individual-tree probability of survival model for the Northeastern United States

    Treesearch

    Richard M. Teck; Donald E. Hilt

    1990-01-01

    Describes a distance-independent individual-free probability of survival model for the Northeastern United States. Survival is predicted using a sixparameter logistic function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for variability in annual survival due to species, tree size, site quality, and the tree...

  3. A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal

    2004-01-01

    Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.

  4. The probability distribution model of air pollution index and its dominants in Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    AL-Dhurafi, Nasr Ahmed; Razali, Ahmad Mahir; Masseran, Nurulkamal; Zamzuri, Zamira Hasanah

    2016-11-01

    This paper focuses on the statistical modeling for the distributions of air pollution index (API) and its sub-indexes data observed at Kuala Lumpur in Malaysia. Five pollutants or sub-indexes are measured including, carbon monoxide (CO); sulphur dioxide (SO2); nitrogen dioxide (NO2), and; particulate matter (PM10). Four probability distributions are considered, namely log-normal, exponential, Gamma and Weibull in search for the best fit distribution to the Malaysian air pollutants data. In order to determine the best distribution for describing the air pollutants data, five goodness-of-fit criteria's are applied. This will help in minimizing the uncertainty in pollution resource estimates and improving the assessment phase of planning. The conflict in criterion results for selecting the best distribution was overcome by using the weight of ranks method. We found that the Gamma distribution is the best distribution for the majority of air pollutants data in Kuala Lumpur.

  5. An extended car-following model considering random safety distance with different probabilities

    NASA Astrophysics Data System (ADS)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  6. Protein single-model quality assessment by feature-based probability density functions.

    PubMed

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  7. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Probability models for growth and aflatoxin B1 production as affected by intraspecies variability in Aspergillus flavus.

    PubMed

    Aldars-García, Laila; Berman, María; Ortiz, Jordi; Ramos, Antonio J; Marín, Sonia

    2018-06-01

    The probability of growth and aflatoxin B 1 (AFB 1 ) production of 20 isolates of Aspergillus flavus were studied using a full factorial design with eight water activity levels (0.84-0.98 a w ) and six temperature levels (15-40 °C). Binary data obtained from growth studies were modelled using linear logistic regression analysis as a function of temperature, water activity and time for each isolate. In parallel, AFB 1 was extracted at different times from newly formed colonies (up to 20 mm in diameter). Although a total of 950 AFB 1 values over time for all conditions studied were recorded, they were not considered to be enough to build probability models over time, and therefore, only models at 30 days were built. The confidence intervals of the regression coefficients of the probability of growth models showed some differences among the 20 growth models. Further, to assess the growth/no growth and AFB 1 /no- AFB 1 production boundaries, 0.05 and 0.5 probabilities were plotted at 30 days for all of the isolates. The boundaries for growth and AFB 1 showed that, in general, the conditions for growth were wider than those for AFB 1 production. The probability of growth and AFB 1 production seemed to be less variable among isolates than AFB 1 accumulation. Apart from the AFB 1 production probability models, using growth probability models for AFB 1 probability predictions could be, although conservative, a suitable alternative. Predictive mycology should include a number of isolates to generate data to build predictive models and take into account the genetic diversity of the species and thus make predictions as similar as possible to real fungal food contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mortality Probability Model III and Simplified Acute Physiology Score II

    PubMed Central

    Vasilevskis, Eduard E.; Kuzniewicz, Michael W.; Cason, Brian A.; Lane, Rondall K.; Dean, Mitzi L.; Clay, Ted; Rennie, Deborah J.; Vittinghoff, Eric; Dudley, R. Adams

    2009-01-01

    Background: To develop and compare ICU length-of-stay (LOS) risk-adjustment models using three commonly used mortality or LOS prediction models. Methods: Between 2001 and 2004, we performed a retrospective, observational study of 11,295 ICU patients from 35 hospitals in the California Intensive Care Outcomes Project. We compared the accuracy of the following three LOS models: a recalibrated acute physiology and chronic health evaluation (APACHE) IV-LOS model; and models developed using risk factors in the mortality probability model III at zero hours (MPM0) and the simplified acute physiology score (SAPS) II mortality prediction model. We evaluated models by calculating the following: (1) grouped coefficients of determination; (2) differences between observed and predicted LOS across subgroups; and (3) intraclass correlations of observed/expected LOS ratios between models. Results: The grouped coefficients of determination were APACHE IV with coefficients recalibrated to the LOS values of the study cohort (APACHE IVrecal) [R2 = 0.422], mortality probability model III at zero hours (MPM0 III) [R2 = 0.279], and simplified acute physiology score (SAPS II) [R2 = 0.008]. For each decile of predicted ICU LOS, the mean predicted LOS vs the observed LOS was significantly different (p ≤ 0.05) for three, two, and six deciles using APACHE IVrecal, MPM0 III, and SAPS II, respectively. Plots of the predicted vs the observed LOS ratios of the hospitals revealed a threefold variation in LOS among hospitals with high model correlations. Conclusions: APACHE IV and MPM0 III were more accurate than SAPS II for the prediction of ICU LOS. APACHE IV is the most accurate and best calibrated model. Although it is less accurate, MPM0 III may be a reasonable option if the data collection burden or the treatment effect bias is a consideration. PMID:19363210

  10. Normal uniform mixture differential gene expression detection for cDNA microarrays

    PubMed Central

    Dean, Nema; Raftery, Adrian E

    2005-01-01

    Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807

  11. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  12. An empirical probability model of detecting species at low densities.

    PubMed

    Delaney, David G; Leung, Brian

    2010-06-01

    False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.

  13. Questioning the Relevance of Model-Based Probability Statements on Extreme Weather and Future Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2007-12-01

    We question the relevance of climate-model based Bayesian (or other) probability statements for decision support and impact assessment on spatial scales less than continental and temporal averages less than seasonal. Scientific assessment of higher resolution space and time scale information is urgently needed, given the commercial availability of "products" at high spatiotemporal resolution, their provision by nationally funded agencies for use both in industry decision making and governmental policy support, and their presentation to the public as matters of fact. Specifically we seek to establish necessary conditions for probability forecasts (projections conditioned on a model structure and a forcing scenario) to be taken seriously as reflecting the probability of future real-world events. We illustrate how risk management can profitably employ imperfect models of complicated chaotic systems, following NASA's study of near-Earth PHOs (Potentially Hazardous Objects). Our climate models will never be perfect, nevertheless the space and time scales on which they provide decision- support relevant information is expected to improve with the models themselves. Our aim is to establish a set of baselines of internal consistency; these are merely necessary conditions (not sufficient conditions) that physics based state-of-the-art models are expected to pass if their output is to be judged decision support relevant. Probabilistic Similarity is proposed as one goal which can be obtained even when our models are not empirically adequate. In short, probabilistic similarity requires that, given inputs similar to today's empirical observations and observational uncertainties, we expect future models to produce similar forecast distributions. Expert opinion on the space and time scales on which we might reasonably expect probabilistic similarity may prove of much greater utility than expert elicitation of uncertainty in parameter values in a model that is not empirically

  14. A Box-Cox normal model for response times.

    PubMed

    Klein Entink, R H; van der Linden, W J; Fox, J-P

    2009-11-01

    The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box-Cox transformations for response time modelling are investigated. After an introduction and an outline of a broader framework for analysing responses and response times simultaneously, the performance of a Box-Cox normal model for describing response times is investigated using simulation studies and a real data example. A transformation-invariant implementation of the deviance information criterium (DIC) is developed that allows for comparing model fit between models with different transformation parameters. Showing an enhanced description of the shape of the response time distributions, its application in an educational measurement context is discussed at length.

  15. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    PubMed

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  16. Solving probability reasoning based on DNA strand displacement and probability modules.

    PubMed

    Zhang, Qiang; Wang, Xiaobiao; Wang, Xiaojun; Zhou, Changjun

    2017-12-01

    In computation biology, DNA strand displacement technology is used to simulate the computation process and has shown strong computing ability. Most researchers use it to solve logic problems, but it is only rarely used in probabilistic reasoning. To process probabilistic reasoning, a conditional probability derivation model and total probability model based on DNA strand displacement were established in this paper. The models were assessed through the game "read your mind." It has been shown to enable the application of probabilistic reasoning in genetic diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modelling the probability of ionospheric irregularity occurrence over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Jurua, Edward; Bosco Habarulema, John; Anguma Katrini, Simon

    2015-06-01

    This study presents models of geomagnetically quiet time probability of occurrence of ionospheric irregularities over the African low latitude region. GNSS-derived ionospheric total electron content data from Mbarara, Uganda (0.60°S, 30.74°E, geographic, 10.22°S, magnetic) and Libreville, Gabon (0.35°N, 9.68°E, geographic, 8.05°S, magnetic) during the period 2001-2012 were used. First, we established the rate of change of total electron content index (ROTI) value associated with background ionospheric irregularity over the region. This was done by analysing GNSS carrier-phases at L-band frequencies L1 and L2 with the aim of identifying cycle slip events associated with ionospheric irregularities. We identified at both stations a total of 699 events of cycle slips. The corresponding median ROTI value at the epochs of the cycle slip events was 0.54 TECU/min. The probability of occurrence of ionospheric irregularities associated with ROTI ≥ 0.5 TECU / min was then modelled by fitting cubic B-splines to the data. The aspects the model captured included diurnal, seasonal, and solar flux dependence patterns of the probability of occurrence of ionospheric irregularities. The model developed over Mbarara was validated with data over Mt. Baker, Uganda (0.35°N, 29.90°E, geographic, 9.25°S, magnetic), Kigali, Rwanda (1.94°S, 30.09°E, geographic, 11.62°S, magnetic), and Kampala, Uganda (0.34°N, 32.60°E, geographic, 9.29°S, magnetic). For the period validated at Mt. Baker (approximately, 137.64 km, north west), Kigali (approximately, 162.42 km, south west), and Kampala (approximately, 237.61 km, north east) the percentages of the number of errors (difference between the observed and the modelled probability of occurrence of ionospheric irregularity) less than 0.05 are 97.3, 89.4, and 81.3, respectively.

  18. Human Inferences about Sequences: A Minimal Transition Probability Model

    PubMed Central

    2016-01-01

    The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge. PMID:28030543

  19. Modelling detection probabilities to evaluate management and control tools for an invasive species

    USGS Publications Warehouse

    Christy, M.T.; Yackel Adams, A.A.; Rodda, G.H.; Savidge, J.A.; Tyrrell, C.L.

    2010-01-01

    For most ecologists, detection probability (p) is a nuisance variable that must be modelled to estimate the state variable of interest (i.e. survival, abundance, or occupancy). However, in the realm of invasive species control, the rate of detection and removal is the rate-limiting step for management of this pervasive environmental problem. For strategic planning of an eradication (removal of every individual), one must identify the least likely individual to be removed, and determine the probability of removing it. To evaluate visual searching as a control tool for populations of the invasive brown treesnake Boiga irregularis, we designed a mark-recapture study to evaluate detection probability as a function of time, gender, size, body condition, recent detection history, residency status, searcher team and environmental covariates. We evaluated these factors using 654 captures resulting from visual detections of 117 snakes residing in a 5-ha semi-forested enclosure on Guam, fenced to prevent immigration and emigration of snakes but not their prey. Visual detection probability was low overall (= 0??07 per occasion) but reached 0??18 under optimal circumstances. Our results supported sex-specific differences in detectability that were a quadratic function of size, with both small and large females having lower detection probabilities than males of those sizes. There was strong evidence for individual periodic changes in detectability of a few days duration, roughly doubling detection probability (comparing peak to non-elevated detections). Snakes in poor body condition had estimated mean detection probabilities greater than snakes with high body condition. Search teams with high average detection rates exhibited detection probabilities about twice that of search teams with low average detection rates. Surveys conducted with bright moonlight and strong wind gusts exhibited moderately decreased probabilities of detecting snakes. Synthesis and applications. By

  20. Uncertainty squared: Choosing among multiple input probability distributions and interpreting multiple output probability distributions in Monte Carlo climate risk models

    NASA Astrophysics Data System (ADS)

    Baer, P.; Mastrandrea, M.

    2006-12-01

    Simple probabilistic models which attempt to estimate likely transient temperature change from specified CO2 emissions scenarios must make assumptions about at least six uncertain aspects of the causal chain between emissions and temperature: current radiative forcing (including but not limited to aerosols), current land use emissions, carbon sinks, future non-CO2 forcing, ocean heat uptake, and climate sensitivity. Of these, multiple PDFs (probability density functions) have been published for the climate sensitivity, a couple for current forcing and ocean heat uptake, one for future non-CO2 forcing, and none for current land use emissions or carbon cycle uncertainty (which are interdependent). Different assumptions about these parameters, as well as different model structures, will lead to different estimates of likely temperature increase from the same emissions pathway. Thus policymakers will be faced with a range of temperature probability distributions for the same emissions scenarios, each described by a central tendency and spread. Because our conventional understanding of uncertainty and probability requires that a probabilistically defined variable of interest have only a single mean (or median, or modal) value and a well-defined spread, this "multidimensional" uncertainty defies straightforward utilization in policymaking. We suggest that there are no simple solutions to the questions raised. Crucially, we must dispel the notion that there is a "true" probability probabilities of this type are necessarily subjective, and reasonable people may disagree. Indeed, we suggest that what is at stake is precisely the question, what is it reasonable to believe, and to act as if we believe? As a preliminary suggestion, we demonstrate how the output of a simple probabilistic climate model might be evaluated regarding the reasonableness of the outputs it calculates with different input PDFs. We suggest further that where there is insufficient evidence to clearly

  1. A predictive model to estimate the pretest probability of metastasis in patients with osteosarcoma.

    PubMed

    Wang, Sisheng; Zheng, Shaoluan; Hu, Kongzu; Sun, Heyan; Zhang, Jinling; Rong, Genxiang; Gao, Jie; Ding, Nan; Gui, Binjie

    2017-01-01

    Osteosarcomas (OSs) represent a huge challenge to improve the overall survival, especially in metastatic patients. Increasing evidence indicates that both tumor-associated elements but also on host-associated elements are under a remarkable effect on the prognosis of cancer patients, especially systemic inflammatory response. By analyzing a series prognosis of factors, including age, gender, primary tumor size, tumor location, tumor grade, and histological classification, monocyte ratio, and NLR ratio, a clinical predictive model was established by using stepwise logistic regression involved circulating leukocyte to compute the estimated probabilities of metastases for OS patients. The clinical predictive model was described by the following equations: probability of developing metastases = ex/(1 + ex), x = -2.150 +  (1.680 × monocyte ratio) + (1.533 × NLR ratio), where is the base of the natural logarithm, the assignment to each of the 2 variables is 1 if the ratio >1 (otherwise 0). The calculated AUC of the receiver-operating characteristic curve as 0.793 revealed well accuracy of this model (95% CI, 0.740-0.845). The predicted probabilities that we generated with the cross-validation procedure had a similar AUC (0.743; 95% CI, 0.684-0.803). The present model could be used to improve the outcomes of the metastases by developing a predictive model considering circulating leukocyte influence to estimate the pretest probability of developing metastases in patients with OS.

  2. Modeling highway travel time distribution with conditional probability models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program providesmore » a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).« less

  3. Datamining approaches for modeling tumor control probability.

    PubMed

    Naqa, Issam El; Deasy, Joseph O; Mu, Yi; Huang, Ellen; Hope, Andrew J; Lindsay, Patricia E; Apte, Aditya; Alaly, James; Bradley, Jeffrey D

    2010-11-01

    Tumor control probability (TCP) to radiotherapy is determined by complex interactions between tumor biology, tumor microenvironment, radiation dosimetry, and patient-related variables. The complexity of these heterogeneous variable interactions constitutes a challenge for building predictive models for routine clinical practice. We describe a datamining framework that can unravel the higher order relationships among dosimetric dose-volume prognostic variables, interrogate various radiobiological processes, and generalize to unseen data before when applied prospectively. Several datamining approaches are discussed that include dose-volume metrics, equivalent uniform dose, mechanistic Poisson model, and model building methods using statistical regression and machine learning techniques. Institutional datasets of non-small cell lung cancer (NSCLC) patients are used to demonstrate these methods. The performance of the different methods was evaluated using bivariate Spearman rank correlations (rs). Over-fitting was controlled via resampling methods. Using a dataset of 56 patients with primary NCSLC tumors and 23 candidate variables, we estimated GTV volume and V75 to be the best model parameters for predicting TCP using statistical resampling and a logistic model. Using these variables, the support vector machine (SVM) kernel method provided superior performance for TCP prediction with an rs=0.68 on leave-one-out testing compared to logistic regression (rs=0.4), Poisson-based TCP (rs=0.33), and cell kill equivalent uniform dose model (rs=0.17). The prediction of treatment response can be improved by utilizing datamining approaches, which are able to unravel important non-linear complex interactions among model variables and have the capacity to predict on unseen data for prospective clinical applications.

  4. Assessment of different models for computing the probability of a clear line of sight

    NASA Astrophysics Data System (ADS)

    Bojin, Sorin; Paulescu, Marius; Badescu, Viorel

    2017-12-01

    This paper is focused on modeling the morphological properties of the cloud fields in terms of the probability of a clear line of sight (PCLOS). PCLOS is defined as the probability that a line of sight between observer and a given point of the celestial vault goes freely without intersecting a cloud. A variety of PCLOS models assuming the cloud shape hemisphere, semi-ellipsoid and ellipsoid are tested. The effective parameters (cloud aspect ratio and absolute cloud fraction) are extracted from high-resolution series of sunshine number measurements. The performance of the PCLOS models is evaluated from the perspective of their ability in retrieving the point cloudiness. The advantages and disadvantages of the tested models are discussed, aiming to a simplified parameterization of PCLOS models.

  5. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  6. Fishnet model for failure probability tail of nacre-like imbricated lamellar materials

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bažant, Zdeněk P.

    2017-12-01

    Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying <5% of volume. These properties inspire manmade biomimetic materials. For engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.

  7. An extended car-following model considering the appearing probability of truck and driver's characteristics

    NASA Astrophysics Data System (ADS)

    Rong, Ying; Wen, Huiying

    2018-05-01

    In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.

  8. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  9. Modeling summer month hydrological drought probabilities in the United States using antecedent flow conditions

    USGS Publications Warehouse

    Austin, Samuel H.; Nelms, David L.

    2017-01-01

    Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.

  10. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to

  11. Naive Probability: A Mental Model Theory of Extensional Reasoning.

    ERIC Educational Resources Information Center

    Johnson-Laird, P. N.; Legrenzi, Paolo; Girotto, Vittorio; Legrenzi, Maria Sonino; Caverni, Jean-Paul

    1999-01-01

    Outlines a theory of naive probability in which individuals who are unfamiliar with the probability calculus can infer the probabilities of events in an "extensional" way. The theory accommodates reasoning based on numerical premises, and explains how naive reasoners can infer posterior probabilities without relying on Bayes's theorem.…

  12. Integration of Geophysical Methods By A Generalised Probability Tomography Approach

    NASA Astrophysics Data System (ADS)

    Mauriello, P.; Patella, D.

    In modern science, the propensity interpretative approach stands on the assumption that any physical system consists of two kinds of reality: actual and potential. Also geophysical data systems have potentialities that extend far beyond the few actual models normally attributed to them. Indeed, any geophysical data set is in itself quite inherently ambiguous. Classical deterministic inversion, including tomography, usu- ally forces a measured data set to collapse into a few rather subjective models based on some available a priori information. Classical interpretation is thus an intrinsically limited approach requiring a very deep logical extension. We think that a way to high- light a system full potentiality is to introduce probability as the leading paradigm in dealing with field data systems. Probability tomography has been recently introduced as a completely new approach to data interpretation. Probability tomography has been originally formulated for the self-potential method. It has been then extended to geo- electric, natural source electromagnetic induction, gravity and magnetic methods. Fol- lowing the same rationale, in this paper we generalize the probability tomography the- ory to a generic geophysical anomaly vector field, including the treatment for scalar fields as a particular case. This generalization makes then possible to address for the first time the problem of the integration of different methods by a conjoint probabil- ity tomography imaging procedure. The aim is to infer the existence of an unknown buried object through the analysis of an ad hoc occurrence probability function, blend- ing the physical messages brought forth by a set of singularly observed anomalies.

  13. An evaluation of procedures to estimate monthly precipitation probabilities

    NASA Astrophysics Data System (ADS)

    Legates, David R.

    1991-01-01

    Many frequency distributions have been used to evaluate monthly precipitation probabilities. Eight of these distributions (including Pearson type III, extreme value, and transform normal probability density functions) are comparatively examined to determine their ability to represent accurately variations in monthly precipitation totals for global hydroclimatological analyses. Results indicate that a modified version of the Box-Cox transform-normal distribution more adequately describes the 'true' precipitation distribution than does any of the other methods. This assessment was made using a cross-validation procedure for a global network of 253 stations for which at least 100 years of monthly precipitation totals were available.

  14. The Influence of Normalization Weight in Population Pharmacokinetic Covariate Models.

    PubMed

    Goulooze, Sebastiaan C; Völler, Swantje; Välitalo, Pyry A J; Calvier, Elisa A M; Aarons, Leon; Krekels, Elke H J; Knibbe, Catherijne A J

    2018-03-23

    In covariate (sub)models of population pharmacokinetic models, most covariates are normalized to the median value; however, for body weight, normalization to 70 kg or 1 kg is often applied. In this article, we illustrate the impact of normalization weight on the precision of population clearance (CL pop ) parameter estimates. The influence of normalization weight (70, 1 kg or median weight) on the precision of the CL pop estimate, expressed as relative standard error (RSE), was illustrated using data from a pharmacokinetic study in neonates with a median weight of 2.7 kg. In addition, a simulation study was performed to show the impact of normalization to 70 kg in pharmacokinetic studies with paediatric or obese patients. The RSE of the CL pop parameter estimate in the neonatal dataset was lowest with normalization to median weight (8.1%), compared with normalization to 1 kg (10.5%) or 70 kg (48.8%). Typical clearance (CL) predictions were independent of the normalization weight used. Simulations showed that the increase in RSE of the CL pop estimate with 70 kg normalization was highest in studies with a narrow weight range and a geometric mean weight away from 70 kg. When, instead of normalizing with median weight, a weight outside the observed range is used, the RSE of the CL pop estimate will be inflated, and should therefore not be used for model selection. Instead, established mathematical principles can be used to calculate the RSE of the typical CL (CL TV ) at a relevant weight to evaluate the precision of CL predictions.

  15. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    DOE PAGES

    Zhu, Lin; Dai, Zhenxue; Gong, Huili; ...

    2015-06-12

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less

  16. Logit-normal mixed model for Indian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Dietz, L. R.; Chatterjee, S.

    2014-09-01

    Describing the nature and variability of Indian monsoon precipitation is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Four GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data. The logit-normal model was applied to light, moderate, and extreme rainfall. Findings indicated that physical constructs were preserved by the models, and random effects were significant in many cases. We also found GLMM estimation methods were sensitive to tuning parameters and assumptions and therefore, recommend use of multiple methods in applications. This work provides a novel use of GLMM and promotes its addition to the gamut of tools for analysis in studying climate phenomena.

  17. The effect of 6 and 15 MV on intensity-modulated radiation therapy prostate cancer treatment: plan evaluation, tumour control probability and normal tissue complication probability analysis, and the theoretical risk of secondary induced malignancies

    PubMed Central

    Hussein, M; Aldridge, S; Guerrero Urbano, T; Nisbet, A

    2012-01-01

    Objective The aim of this study was to investigate the effect of 6 and 15-MV photon energies on intensity-modulated radiation therapy (IMRT) prostate cancer treatment plan outcome and to compare the theoretical risks of secondary induced malignancies. Methods Separate prostate cancer IMRT plans were prepared for 6 and 15-MV beams. Organ-equivalent doses were obtained through thermoluminescent dosemeter measurements in an anthropomorphic Aldersen radiation therapy human phantom. The neutron dose contribution at 15 MV was measured using polyallyl-diglycol-carbonate neutron track etch detectors. Risk coefficients from the International Commission on Radiological Protection Report 103 were used to compare the risk of fatal secondary induced malignancies in out-of-field organs and tissues for 6 and 15 MV. For the bladder and the rectum, a comparative evaluation of the risk using three separate models was carried out. Dose–volume parameters for the rectum, bladder and prostate planning target volume were evaluated, as well as normal tissue complication probability (NTCP) and tumour control probability calculations. Results There is a small increased theoretical risk of developing a fatal cancer from 6 MV compared with 15 MV, taking into account all the organs. Dose–volume parameters for the rectum and bladder show that 15 MV results in better volume sparing in the regions below 70 Gy, but the volume exposed increases slightly beyond this in comparison with 6 MV, resulting in a higher NTCP for the rectum of 3.6% vs 3.0% (p=0.166). Conclusion The choice to treat using IMRT at 15 MV should not be excluded, but should be based on risk vs benefit while considering the age and life expectancy of the patient together with the relative risk of radiation-induced cancer and NTCPs. PMID:22010028

  18. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial.

    PubMed

    Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J

    2014-02-01

    Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model

  19. A Minimum Assumption Tornado-Hazard Probability Model.

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph T.; Kelly, Donald L.; Abbey, Robert F.

    1986-12-01

    One of the principle applications of climatological tornado data is in tornado-hazard assessment. To perform such a hazard-potential determination, historical tornado characteristics in either a regional or tom area are complied. A model is then used to determine a site-specific point probability of a tornado greater than a specified intensity occurring. Various models require different climatological input. However, a knowledge of the mean values of tornado track width, tornado track width, tornado affected area and tornado occurrence rate as both a function of tornado intensity and geographic area, along with a violence frequency distribution, enable Mod of the models to be applied.The NSSFC-NRC tornado data base is used to supply input for the determination of these parameters over the United States. This climatic data base has undergone extensive updating and quality control since it was last reported. For track parameters, internally redundant data were used to cheek consistency. Further, reports which derivated significantly from the mean wore individually checked. Intensity data have been compared with the University of Chicago DAPPLE tornado base. All tornadoes whose recorded intensifies differed by more than one category were reclassified by an independent scientist so that the two data sets are consistent.

  20. Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferson, Scott; Nelsen, Roger B.; Hajagos, Janos

    2015-05-01

    This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.

  1. Applying the log-normal distribution to target detection

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    1992-09-01

    Holst and Pickard experimentally determined that MRT responses tend to follow a log-normal distribution. The log normal distribution appeared reasonable because nearly all visual psychological data is plotted on a logarithmic scale. It has the additional advantage that it is bounded to positive values; an important consideration since probability of detection is often plotted in linear coordinates. Review of published data suggests that the log-normal distribution may have universal applicability. Specifically, the log-normal distribution obtained from MRT tests appears to fit the target transfer function and the probability of detection of rectangular targets.

  2. Probabilities and statistics for backscatter estimates obtained by a scatterometer with applications to new scatterometer design data

    NASA Technical Reports Server (NTRS)

    Pierson, Willard J., Jr.

    1989-01-01

    The values of the Normalized Radar Backscattering Cross Section (NRCS), sigma (o), obtained by a scatterometer are random variables whose variance is a known function of the expected value. The probability density function can be obtained from the normal distribution. Models for the expected value obtain it as a function of the properties of the waves on the ocean and the winds that generated the waves. Point estimates of the expected value were found from various statistics given the parameters that define the probability density function for each value. Random intervals were derived with a preassigned probability of containing that value. A statistical test to determine whether or not successive values of sigma (o) are truly independent was derived. The maximum likelihood estimates for wind speed and direction were found, given a model for backscatter as a function of the properties of the waves on the ocean. These estimates are biased as a result of the terms in the equation that involve natural logarithms, and calculations of the point estimates of the maximum likelihood values are used to show that the contributions of the logarithmic terms are negligible and that the terms can be omitted.

  3. A Normalized Direct Approach for Estimating the Parameters of the Normal Ogive Three-Parameter Model for Ability Tests.

    ERIC Educational Resources Information Center

    Gugel, John F.

    A new method for estimating the parameters of the normal ogive three-parameter model for multiple-choice test items--the normalized direct (NDIR) procedure--is examined. The procedure is compared to a more commonly used estimation procedure, Lord's LOGIST, using computer simulations. The NDIR procedure uses the normalized (mid-percentile)…

  4. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  5. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  6. Failure probability under parameter uncertainty.

    PubMed

    Gerrard, R; Tsanakas, A

    2011-05-01

    In many problems of risk analysis, failure is equivalent to the event of a random risk factor exceeding a given threshold. Failure probabilities can be controlled if a decisionmaker is able to set the threshold at an appropriate level. This abstract situation applies, for example, to environmental risks with infrastructure controls; to supply chain risks with inventory controls; and to insurance solvency risks with capital controls. However, uncertainty around the distribution of the risk factor implies that parameter error will be present and the measures taken to control failure probabilities may not be effective. We show that parameter uncertainty increases the probability (understood as expected frequency) of failures. For a large class of loss distributions, arising from increasing transformations of location-scale families (including the log-normal, Weibull, and Pareto distributions), the article shows that failure probabilities can be exactly calculated, as they are independent of the true (but unknown) parameters. Hence it is possible to obtain an explicit measure of the effect of parameter uncertainty on failure probability. Failure probability can be controlled in two different ways: (1) by reducing the nominal required failure probability, depending on the size of the available data set, and (2) by modifying of the distribution itself that is used to calculate the risk control. Approach (1) corresponds to a frequentist/regulatory view of probability, while approach (2) is consistent with a Bayesian/personalistic view. We furthermore show that the two approaches are consistent in achieving the required failure probability. Finally, we briefly discuss the effects of data pooling and its systemic risk implications. © 2010 Society for Risk Analysis.

  7. A model of the normal and null states of pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    1981-12-01

    A solvable three-dimensional polar cap model of pair creation and charged particle acceleration has been derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter determining the acceleration potential difference has been obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition has been identified. The predicted necessary condition for the transition is entirely consistent with observation.

  8. A model of the normal and null states of pulsars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    A solvable three dimensional polar cap model of pair creation and charged particle acceleration is derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter CO determining the acceleration potential difference was obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition is identified. The predicted necessary condition for the transition is entirely consistent with observation.

  9. The perception of probability.

    PubMed

    Gallistel, C R; Krishan, Monika; Liu, Ye; Miller, Reilly; Latham, Peter E

    2014-01-01

    We present a computational model to explain the results from experiments in which subjects estimate the hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a) Subjects do not update their estimate after each outcome; they step from one estimate to another at irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the assumption that a threshold amount of change must be exceeded in order for them to indicate a change in their perception. (c) The mapping of observed probability to the median perceived probability is the identity function over the full range of probabilities. (d) Precision (how close estimates are to the best possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from one observation to the next. (g) Subjects sometimes have second thoughts about a previous change perception, after observing further outcomes. (h) The frequency with which they perceive changes moves in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional parametric assumptions.) The model treats the perception of the current probability as a by-product of the construction of a compact encoding of the experienced sequence in terms of its change points. It illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology of decision making. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  10. Data normalization in biosurveillance: an information-theoretic approach.

    PubMed

    Peter, William; Najmi, Amir H; Burkom, Howard

    2007-10-11

    An approach to identifying public health threats by characterizing syndromic surveillance data in terms of its surprisability is discussed. Surprisability in our model is measured by assigning a probability distribution to a time series, and then calculating its entropy, leading to a straightforward designation of an alert. Initial application of our method is to investigate the applicability of using suitably-normalized syndromic counts (i.e., proportions) to improve early event detection.

  11. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    PubMed

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  12. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    NASA Astrophysics Data System (ADS)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  13. A Skill Score of Trajectory Model Evaluation Using Reinitialized Series of Normalized Cumulative Lagrangian Separation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.

    2017-12-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.

  14. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells.

    PubMed

    Ponomarev, Artem L; George, Kerry; Cucinotta, Francis A

    2014-03-01

    We have developed a model that can simulate the yield of radiation-induced chromosomal aberrations (CAs) and unrejoined chromosome breaks in normal and repair-deficient cells. The model predicts the kinetics of chromosomal aberration formation after exposure in the G₀/G₁ phase of the cell cycle to either low- or high-LET radiation. A previously formulated model based on a stochastic Monte Carlo approach was updated to consider the time dependence of DNA double-strand break (DSB) repair (proper or improper), and different cell types were assigned different kinetics of DSB repair. The distribution of the DSB free ends was derived from a mechanistic model that takes into account the structure of chromatin and DSB clustering from high-LET radiation. The kinetics of chromosomal aberration formation were derived from experimental data on DSB repair kinetics in normal and repair-deficient cell lines. We assessed different types of chromosomal aberrations with the focus on simple and complex exchanges, and predicted the DSB rejoining kinetics and misrepair probabilities for different cell types. The results identify major cell-dependent factors, such as a greater yield of chromosome misrepair in ataxia telangiectasia (AT) cells and slower rejoining in Nijmegen (NBS) cells relative to the wild-type. The model's predictions suggest that two mechanisms could exist for the inefficiency of DSB repair in AT and NBS cells, one that depends on the overall speed of joining (either proper or improper) of DNA broken ends, and another that depends on geometric factors, such as the Euclidian distance between DNA broken ends, which influences the relative frequency of misrepair.

  15. Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

    DOE PAGES

    Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; ...

    2015-09-15

    Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinearmore » normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.« less

  16. Comparison of the Mortality Probability Admission Model III, National Quality Forum, and Acute Physiology and Chronic Health Evaluation IV hospital mortality models: implications for national benchmarking*.

    PubMed

    Kramer, Andrew A; Higgins, Thomas L; Zimmerman, Jack E

    2014-03-01

    To examine the accuracy of the original Mortality Probability Admission Model III, ICU Outcomes Model/National Quality Forum modification of Mortality Probability Admission Model III, and Acute Physiology and Chronic Health Evaluation IVa models for comparing observed and risk-adjusted hospital mortality predictions. Retrospective paired analyses of day 1 hospital mortality predictions using three prognostic models. Fifty-five ICUs at 38 U.S. hospitals from January 2008 to December 2012. Among 174,001 intensive care admissions, 109,926 met model inclusion criteria and 55,304 had data for mortality prediction using all three models. None. We compared patient exclusions and the discrimination, calibration, and accuracy for each model. Acute Physiology and Chronic Health Evaluation IVa excluded 10.7% of all patients, ICU Outcomes Model/National Quality Forum 20.1%, and Mortality Probability Admission Model III 24.1%. Discrimination of Acute Physiology and Chronic Health Evaluation IVa was superior with area under receiver operating curve (0.88) compared with Mortality Probability Admission Model III (0.81) and ICU Outcomes Model/National Quality Forum (0.80). Acute Physiology and Chronic Health Evaluation IVa was better calibrated (lowest Hosmer-Lemeshow statistic). The accuracy of Acute Physiology and Chronic Health Evaluation IVa was superior (adjusted Brier score = 31.0%) to that for Mortality Probability Admission Model III (16.1%) and ICU Outcomes Model/National Quality Forum (17.8%). Compared with observed mortality, Acute Physiology and Chronic Health Evaluation IVa overpredicted mortality by 1.5% and Mortality Probability Admission Model III by 3.1%; ICU Outcomes Model/National Quality Forum underpredicted mortality by 1.2%. Calibration curves showed that Acute Physiology and Chronic Health Evaluation performed well over the entire risk range, unlike the Mortality Probability Admission Model and ICU Outcomes Model/National Quality Forum models. Acute

  17. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  18. Tsunami probability in the Caribbean Region

    USGS Publications Warehouse

    Parsons, T.; Geist, E.L.

    2008-01-01

    We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ???500-year empirical record compiled by O'Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0 - 30% regionally. ?? irkhaueser 2008.

  19. New approach to probability estimate of femoral neck fracture by fall (Slovak regression model).

    PubMed

    Wendlova, J

    2009-01-01

    3,216 Slovak women with primary or secondary osteoporosis or osteopenia, aged 20-89 years, were examined with the bone densitometer DXA (dual energy X-ray absorptiometry, GE, Prodigy - Primo), x = 58.9, 95% C.I. (58.42; 59.38). The values of the following variables for each patient were measured: FSI (femur strength index), T-score total hip left, alpha angle - left, theta angle - left, HAL (hip axis length) left, BMI (body mass index) was calculated from the height and weight of the patients. Regression model determined the following order of independent variables according to the intensity of their influence upon the occurrence of values of dependent FSI variable: 1. BMI, 2. theta angle, 3. T-score total hip, 4. alpha angle, 5. HAL. The regression model equation, calculated from the variables monitored in the study, enables a doctor in praxis to determine the probability magnitude (absolute risk) for the occurrence of pathological value of FSI (FSI < 1) in the femoral neck area, i. e., allows for probability estimate of a femoral neck fracture by fall for Slovak women. 1. The Slovak regression model differs from regression models, published until now, in chosen independent variables and a dependent variable, belonging to biomechanical variables, characterising the bone quality. 2. The Slovak regression model excludes the inaccuracies of other models, which are not able to define precisely the current and past clinical condition of tested patients (e.g., to define the length and dose of exposure to risk factors). 3. The Slovak regression model opens the way to a new method of estimating the probability (absolute risk) or the odds for a femoral neck fracture by fall, based upon the bone quality determination. 4. It is assumed that the development will proceed by improving the methods enabling to measure the bone quality, determining the probability of fracture by fall (Tab. 6, Fig. 3, Ref. 22). Full Text (Free, PDF) www.bmj.sk.

  20. Identifying Chinese Microblog Users With High Suicide Probability Using Internet-Based Profile and Linguistic Features: Classification Model.

    PubMed

    Guan, Li; Hao, Bibo; Cheng, Qijin; Yip, Paul Sf; Zhu, Tingshao

    2015-01-01

    Traditional offline assessment of suicide probability is time consuming and difficult in convincing at-risk individuals to participate. Identifying individuals with high suicide probability through online social media has an advantage in its efficiency and potential to reach out to hidden individuals, yet little research has been focused on this specific field. The objective of this study was to apply two classification models, Simple Logistic Regression (SLR) and Random Forest (RF), to examine the feasibility and effectiveness of identifying high suicide possibility microblog users in China through profile and linguistic features extracted from Internet-based data. There were nine hundred and nine Chinese microblog users that completed an Internet survey, and those scoring one SD above the mean of the total Suicide Probability Scale (SPS) score, as well as one SD above the mean in each of the four subscale scores in the participant sample were labeled as high-risk individuals, respectively. Profile and linguistic features were fed into two machine learning algorithms (SLR and RF) to train the model that aims to identify high-risk individuals in general suicide probability and in its four dimensions. Models were trained and then tested by 5-fold cross validation; in which both training set and test set were generated under the stratified random sampling rule from the whole sample. There were three classic performance metrics (Precision, Recall, F1 measure) and a specifically defined metric "Screening Efficiency" that were adopted to evaluate model effectiveness. Classification performance was generally matched between SLR and RF. Given the best performance of the classification models, we were able to retrieve over 70% of the labeled high-risk individuals in overall suicide probability as well as in the four dimensions. Screening Efficiency of most models varied from 1/4 to 1/2. Precision of the models was generally below 30%. Individuals in China with high suicide

  1. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  2. Pre-Service Mathematics Teachers' Use of Probability Models in Making Informal Inferences about a Chance Game

    ERIC Educational Resources Information Center

    Kazak, Sibel; Pratt, Dave

    2017-01-01

    This study considers probability models as tools for both making informal statistical inferences and building stronger conceptual connections between data and chance topics in teaching statistics. In this paper, we aim to explore pre-service mathematics teachers' use of probability models for a chance game, where the sum of two dice matters in…

  3. Decisions under risk in Parkinson's disease: preserved evaluation of probability and magnitude.

    PubMed

    Sharp, Madeleine E; Viswanathan, Jayalakshmi; McKeown, Martin J; Appel-Cresswell, Silke; Stoessl, A Jon; Barton, Jason J S

    2013-11-01

    Unmedicated Parkinson's disease patients tend to be risk-averse while dopaminergic treatment causes a tendency to take risks. While dopamine agonists may result in clinically apparent impulse control disorders, treatment with levodopa also causes shift in behaviour associated with an enhanced response to rewards. Two important determinants in decision-making are how subjects perceive the magnitude and probability of outcomes. Our objective was to determine if patients with Parkinson's disease on or off levodopa showed differences in their perception of value when making decisions under risk. The Vancouver Gambling task presents subjects with a choice between one prospect with larger outcome and a second with higher probability. Eighteen age-matched controls and eighteen patients with Parkinson's disease before and after levodopa were tested. In the Gain Phase subjects chose between one prospect with higher probability and another with larger reward to maximize their gains. In the Loss Phase, subjects played to minimize their losses. Patients with Parkinson's disease, on or off levodopa, were similar to controls when evaluating gains. However, in the Loss Phase before levodopa, they were more likely to avoid the prospect with lower probability but larger loss, as indicated by the steeper slope of their group psychometric function (t(24) = 2.21, p = 0.04). Modelling with prospect theory suggested that this was attributable to a 28% overestimation of the magnitude of loss, rather than an altered perception of its probability. While pre-medicated patients with Parkinson's disease show risk-aversion for large losses, patients on levodopa have normal perception of magnitude and probability for both loss and gain. The finding of accurate and normally biased decisions under risk in medicated patients with PD is important because it indicates that, if there is indeed anomalous risk-seeking behaviour in such a cohort, it may derive from abnormalities in components of

  4. A Model-Free Machine Learning Method for Risk Classification and Survival Probability Prediction.

    PubMed

    Geng, Yuan; Lu, Wenbin; Zhang, Hao Helen

    2014-01-01

    Risk classification and survival probability prediction are two major goals in survival data analysis since they play an important role in patients' risk stratification, long-term diagnosis, and treatment selection. In this article, we propose a new model-free machine learning framework for risk classification and survival probability prediction based on weighted support vector machines. The new procedure does not require any specific parametric or semiparametric model assumption on data, and is therefore capable of capturing nonlinear covariate effects. We use numerous simulation examples to demonstrate finite sample performance of the proposed method under various settings. Applications to a glioma tumor data and a breast cancer gene expression survival data are shown to illustrate the new methodology in real data analysis.

  5. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.

    PubMed

    Breskin, Alexander; Cole, Stephen R; Westreich, Daniel

    2018-05-01

    Since being introduced to epidemiology in 2000, marginal structural models have become a commonly used method for causal inference in a wide range of epidemiologic settings. In this brief report, we aim to explore three subtleties of marginal structural models. First, we distinguish marginal structural models from the inverse probability weighting estimator, and we emphasize that marginal structural models are not only for longitudinal exposures. Second, we explore the meaning of the word "marginal" in "marginal structural model." Finally, we show that the specification of a marginal structural model can have important implications for the interpretation of its parameters. Each of these concepts have important implications for the use and understanding of marginal structural models, and thus providing detailed explanations of them may lead to better practices for the field of epidemiology.

  6. Time-dependent earthquake probabilities

    USGS Publications Warehouse

    Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.

    2005-01-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.

  7. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Partridge, Mike; Bedford, James L.; Webb, Steve

    2005-03-01

    The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters mf, nf and TD50f are required to replace the m, n and TD50 parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented

  8. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    USGS Publications Warehouse

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  9. Modeling co-occurrence of northern spotted and barred owls: accounting for detection probability differences

    USGS Publications Warehouse

    Bailey, Larissa L.; Reid, Janice A.; Forsman, Eric D.; Nichols, James D.

    2009-01-01

    Barred owls (Strix varia) have recently expanded their range and now encompass the entire range of the northern spotted owl (Strix occidentalis caurina). This expansion has led to two important issues of concern for management of northern spotted owls: (1) possible competitive interactions between the two species that could contribute to population declines of northern spotted owls, and (2) possible changes in vocalization behavior and detection probabilities of northern spotted owls induced by presence of barred owls. We used a two-species occupancy model to investigate whether there was evidence of competitive exclusion between the two species at study locations in Oregon, USA. We simultaneously estimated detection probabilities for both species and determined if the presence of one species influenced the detection of the other species. Model selection results and associated parameter estimates provided no evidence that barred owls excluded spotted owls from territories. We found strong evidence that detection probabilities differed for the two species, with higher probabilities for northern spotted owls that are the object of current surveys. Non-detection of barred owls is very common in surveys for northern spotted owls, and detection of both owl species was negatively influenced by the presence of the congeneric species. Our results suggest that analyses directed at hypotheses of barred owl effects on demographic or occupancy vital rates of northern spotted owls need to deal adequately with imperfect and variable detection probabilities for both species.

  10. Probability-based collaborative filtering model for predicting gene-disease associations.

    PubMed

    Zeng, Xiangxiang; Ding, Ningxiang; Rodríguez-Patón, Alfonso; Zou, Quan

    2017-12-28

    Accurately predicting pathogenic human genes has been challenging in recent research. Considering extensive gene-disease data verified by biological experiments, we can apply computational methods to perform accurate predictions with reduced time and expenses. We propose a probability-based collaborative filtering model (PCFM) to predict pathogenic human genes. Several kinds of data sets, containing data of humans and data of other nonhuman species, are integrated in our model. Firstly, on the basis of a typical latent factorization model, we propose model I with an average heterogeneous regularization. Secondly, we develop modified model II with personal heterogeneous regularization to enhance the accuracy of aforementioned models. In this model, vector space similarity or Pearson correlation coefficient metrics and data on related species are also used. We compared the results of PCFM with the results of four state-of-arts approaches. The results show that PCFM performs better than other advanced approaches. PCFM model can be leveraged for predictions of disease genes, especially for new human genes or diseases with no known relationships.

  11. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  12. TaggerOne: joint named entity recognition and normalization with semi-Markov Models

    PubMed Central

    Leaman, Robert; Lu, Zhiyong

    2016-01-01

    Motivation: Text mining is increasingly used to manage the accelerating pace of the biomedical literature. Many text mining applications depend on accurate named entity recognition (NER) and normalization (grounding). While high performing machine learning methods trainable for many entity types exist for NER, normalization methods are usually specialized to a single entity type. NER and normalization systems are also typically used in a serial pipeline, causing cascading errors and limiting the ability of the NER system to directly exploit the lexical information provided by the normalization. Methods: We propose the first machine learning model for joint NER and normalization during both training and prediction. The model is trainable for arbitrary entity types and consists of a semi-Markov structured linear classifier, with a rich feature approach for NER and supervised semantic indexing for normalization. We also introduce TaggerOne, a Java implementation of our model as a general toolkit for joint NER and normalization. TaggerOne is not specific to any entity type, requiring only annotated training data and a corresponding lexicon, and has been optimized for high throughput. Results: We validated TaggerOne with multiple gold-standard corpora containing both mention- and concept-level annotations. Benchmarking results show that TaggerOne achieves high performance on diseases (NCBI Disease corpus, NER f-score: 0.829, normalization f-score: 0.807) and chemicals (BioCreative 5 CDR corpus, NER f-score: 0.914, normalization f-score 0.895). These results compare favorably to the previous state of the art, notwithstanding the greater flexibility of the model. We conclude that jointly modeling NER and normalization greatly improves performance. Availability and Implementation: The TaggerOne source code and an online demonstration are available at: http://www.ncbi.nlm.nih.gov/bionlp/taggerone Contact: zhiyong.lu@nih.gov Supplementary information: Supplementary data are

  13. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices

    Treesearch

    Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling

    2008-01-01

    The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...

  14. A fault tree model to assess probability of contaminant discharge from shipwrecks.

    PubMed

    Landquist, H; Rosén, L; Lindhe, A; Norberg, T; Hassellöv, I-M; Lindgren, J F; Dahllöf, I

    2014-11-15

    Shipwrecks on the sea floor around the world may contain hazardous substances that can cause harm to the marine environment. Today there are no comprehensive methods for environmental risk assessment of shipwrecks, and thus there is poor support for decision-making on prioritization of mitigation measures. The purpose of this study was to develop a tool for quantitative risk estimation of potentially polluting shipwrecks, and in particular an estimation of the annual probability of hazardous substance discharge. The assessment of the probability of discharge is performed using fault tree analysis, facilitating quantification of the probability with respect to a set of identified hazardous events. This approach enables a structured assessment providing transparent uncertainty and sensitivity analyses. The model facilitates quantification of risk, quantification of the uncertainties in the risk calculation and identification of parameters to be investigated further in order to obtain a more reliable risk calculation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Probable alpha and 14C cluster emission from hyper Ac nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.

    2013-10-01

    A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.

  16. Study on Effects of the Stochastic Delay Probability for 1d CA Model of Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xue, Yu; Chen, Yan-Hong; Kong, Ling-Jiang

    Considering the effects of different factors on the stochastic delay probability, the delay probability has been classified into three cases. The first case corresponding to the brake state has a large delay probability if the anticipant velocity is larger than the gap between the successive cars. The second one corresponding to the following-the-leader rule has intermediate delay probability if the anticipant velocity is equal to the gap. Finally, the third case is the acceleration, which has minimum delay probability. The fundamental diagram obtained by numerical simulation shows the different properties compared to that by the NaSch model, in which there exist two different regions, corresponding to the coexistence state, and jamming state respectively.

  17. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  18. Accuracy of clinicians and models for estimating the probability that a pulmonary nodule is malignant.

    PubMed

    Balekian, Alex A; Silvestri, Gerard A; Simkovich, Suzanne M; Mestaz, Peter J; Sanders, Gillian D; Daniel, Jamie; Porcel, Jackie; Gould, Michael K

    2013-12-01

    Management of pulmonary nodules depends critically on the probability of malignancy. Models to estimate probability have been developed and validated, but most clinicians rely on judgment. The aim of this study was to compare the accuracy of clinical judgment with that of two prediction models. Physician participants reviewed up to five clinical vignettes, selected at random from a larger pool of 35 vignettes, all based on actual patients with lung nodules of known final diagnosis. Vignettes included clinical information and a representative slice from computed tomography. Clinicians estimated the probability of malignancy for each vignette. To examine agreement with models, we calculated intraclass correlation coefficients (ICC) and kappa statistics. To examine accuracy, we compared areas under the receiver operator characteristic curve (AUC). Thirty-six participants completed 179 vignettes, 47% of which described patients with malignant nodules. Agreement between participants and models was fair for the Mayo Clinic model (ICC, 0.37; 95% confidence interval [CI], 0.23-0.50) and moderate for the Veterans Affairs model (ICC, 0.46; 95% CI, 0.34-0.57). There was no difference in accuracy between participants (AUC, 0.70; 95% CI, 0.62-0.77) and the Mayo Clinic model (AUC, 0.71; 95% CI, 0.62-0.80; P = 0.90) or the Veterans Affairs model (AUC, 0.72; 95% CI, 0.64-0.80; P = 0.54). In this vignette-based study, clinical judgment and models appeared to have similar accuracy for lung nodule characterization, but agreement between judgment and the models was modest, suggesting that qualitative and quantitative approaches may provide complementary information.

  19. Lane detection based on color probability model and fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Jo, Kang-Hyun

    2018-04-01

    In the vehicle driver assistance systems, the accuracy and speed of lane line detection are the most important. This paper is based on color probability model and Fuzzy Local Information C-Means (FLICM) clustering algorithm. The Hough transform and the constraints of structural road are used to detect the lane line accurately. The global map of the lane line is drawn by the lane curve fitting equation. The experimental results show that the algorithm has good robustness.

  20. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  1. Identifying Chinese Microblog Users With High Suicide Probability Using Internet-Based Profile and Linguistic Features: Classification Model

    PubMed Central

    Guan, Li; Hao, Bibo; Cheng, Qijin; Yip, Paul SF

    2015-01-01

    Background Traditional offline assessment of suicide probability is time consuming and difficult in convincing at-risk individuals to participate. Identifying individuals with high suicide probability through online social media has an advantage in its efficiency and potential to reach out to hidden individuals, yet little research has been focused on this specific field. Objective The objective of this study was to apply two classification models, Simple Logistic Regression (SLR) and Random Forest (RF), to examine the feasibility and effectiveness of identifying high suicide possibility microblog users in China through profile and linguistic features extracted from Internet-based data. Methods There were nine hundred and nine Chinese microblog users that completed an Internet survey, and those scoring one SD above the mean of the total Suicide Probability Scale (SPS) score, as well as one SD above the mean in each of the four subscale scores in the participant sample were labeled as high-risk individuals, respectively. Profile and linguistic features were fed into two machine learning algorithms (SLR and RF) to train the model that aims to identify high-risk individuals in general suicide probability and in its four dimensions. Models were trained and then tested by 5-fold cross validation; in which both training set and test set were generated under the stratified random sampling rule from the whole sample. There were three classic performance metrics (Precision, Recall, F1 measure) and a specifically defined metric “Screening Efficiency” that were adopted to evaluate model effectiveness. Results Classification performance was generally matched between SLR and RF. Given the best performance of the classification models, we were able to retrieve over 70% of the labeled high-risk individuals in overall suicide probability as well as in the four dimensions. Screening Efficiency of most models varied from 1/4 to 1/2. Precision of the models was generally below 30

  2. Probability of atrial fibrillation after ablation: Using a parametric nonlinear temporal decomposition mixed effects model.

    PubMed

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Ehrlinger, John; Li, Liang; Ishwaran, Hemant; Parides, Michael K

    2018-01-01

    Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases. The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic Surgery Clinical Trials Network.

  3. Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.

    PubMed

    Costello, Fintan; Watts, Paul

    2018-01-01

    We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.

  4. Grammaticality, Acceptability, and Probability: A Probabilistic View of Linguistic Knowledge.

    PubMed

    Lau, Jey Han; Clark, Alexander; Lappin, Shalom

    2017-07-01

    The question of whether humans represent grammatical knowledge as a binary condition on membership in a set of well-formed sentences, or as a probabilistic property has been the subject of debate among linguists, psychologists, and cognitive scientists for many decades. Acceptability judgments present a serious problem for both classical binary and probabilistic theories of grammaticality. These judgements are gradient in nature, and so cannot be directly accommodated in a binary formal grammar. However, it is also not possible to simply reduce acceptability to probability. The acceptability of a sentence is not the same as the likelihood of its occurrence, which is, in part, determined by factors like sentence length and lexical frequency. In this paper, we present the results of a set of large-scale experiments using crowd-sourced acceptability judgments that demonstrate gradience to be a pervasive feature in acceptability judgments. We then show how one can predict acceptability judgments on the basis of probability by augmenting probabilistic language models with an acceptability measure. This is a function that normalizes probability values to eliminate the confounding factors of length and lexical frequency. We describe a sequence of modeling experiments with unsupervised language models drawn from state-of-the-art machine learning methods in natural language processing. Several of these models achieve very encouraging levels of accuracy in the acceptability prediction task, as measured by the correlation between the acceptability measure scores and mean human acceptability values. We consider the relevance of these results to the debate on the nature of grammatical competence, and we argue that they support the view that linguistic knowledge can be intrinsically probabilistic. Copyright © 2016 Cognitive Science Society, Inc.

  5. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    PubMed

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Risk estimation using probability machines

    PubMed Central

    2014-01-01

    Background Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. Results We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. Conclusions The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a “risk machine”, will share properties from the statistical machine that it is derived from. PMID:24581306

  7. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  8. Notes on power of normality tests of error terms in regression models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Střelec, Luboš

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importancemore » of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.« less

  9. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    PubMed

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  10. Probability estimates of seismic event occurrence compared to health hazards - Forecasting Taipei's Earthquakes

    NASA Astrophysics Data System (ADS)

    Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.

    2014-12-01

    Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.

  11. TaggerOne: joint named entity recognition and normalization with semi-Markov Models.

    PubMed

    Leaman, Robert; Lu, Zhiyong

    2016-09-15

    Text mining is increasingly used to manage the accelerating pace of the biomedical literature. Many text mining applications depend on accurate named entity recognition (NER) and normalization (grounding). While high performing machine learning methods trainable for many entity types exist for NER, normalization methods are usually specialized to a single entity type. NER and normalization systems are also typically used in a serial pipeline, causing cascading errors and limiting the ability of the NER system to directly exploit the lexical information provided by the normalization. We propose the first machine learning model for joint NER and normalization during both training and prediction. The model is trainable for arbitrary entity types and consists of a semi-Markov structured linear classifier, with a rich feature approach for NER and supervised semantic indexing for normalization. We also introduce TaggerOne, a Java implementation of our model as a general toolkit for joint NER and normalization. TaggerOne is not specific to any entity type, requiring only annotated training data and a corresponding lexicon, and has been optimized for high throughput. We validated TaggerOne with multiple gold-standard corpora containing both mention- and concept-level annotations. Benchmarking results show that TaggerOne achieves high performance on diseases (NCBI Disease corpus, NER f-score: 0.829, normalization f-score: 0.807) and chemicals (BioCreative 5 CDR corpus, NER f-score: 0.914, normalization f-score 0.895). These results compare favorably to the previous state of the art, notwithstanding the greater flexibility of the model. We conclude that jointly modeling NER and normalization greatly improves performance. The TaggerOne source code and an online demonstration are available at: http://www.ncbi.nlm.nih.gov/bionlp/taggerone zhiyong.lu@nih.gov Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2016. This work is written

  12. Blocking probability in the hose-model optical VPN with different number of wavelengths

    NASA Astrophysics Data System (ADS)

    Roslyakov, Alexander V.

    2017-04-01

    Connection setup with guaranteed quality of service (QoS) in the optical virtual private network (OVPN) is a major goal for the network providers. In order to support this we propose a QoS based OVPN connection set up mechanism over WDM network to the end customer. The proposed WDM network model can be specified in terms of QoS parameter such as blocking probability. We estimated this QoS parameter based on the hose-model OVPN. In this mechanism the OVPN connections also can be created or deleted according to the availability of the wavelengths in the optical path. In this paper we have considered the impact of the number of wavelengths on the computation of blocking probability. The goal of the work is to dynamically provide a best OVPN connection during frequent arrival of connection requests with QoS requirements.

  13. Variation of normal tissue complication probability (NTCP) estimates of radiation-induced hypothyroidism in relation to changes in delineation of the thyroid gland.

    PubMed

    Rønjom, Marianne F; Brink, Carsten; Lorenzen, Ebbe L; Hegedüs, Laszlo; Johansen, Jørgen

    2015-01-01

    To examine the variations of risk-estimates of radiation-induced hypothyroidism (HT) from our previously developed normal tissue complication probability (NTCP) model in patients with head and neck squamous cell carcinoma (HNSCC) in relation to variability of delineation of the thyroid gland. In a previous study for development of an NTCP model for HT, the thyroid gland was delineated in 246 treatment plans of patients with HNSCC. Fifty of these plans were randomly chosen for re-delineation for a study of the intra- and inter-observer variability of thyroid volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Intra-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter-observer variations were insignificantly small, -0.4% (SD ± 6.0) and -0.7% (SD ± 4.8), respectively, but as the SDs show, for some patients the difference in estimated NTCP was large. For the entire study population, the variation in predicted risk of radiation-induced HT in head and neck cancer was small and our NTCP model was robust against observer variations in delineation of the thyroid gland. However, for the individual patient, there may be large differences in estimated risk which calls for precise delineation of the thyroid gland to obtain correct dose and NTCP estimates for optimized treatment planning in the individual patient.

  14. Alternative probability theories for cognitive psychology.

    PubMed

    Narens, Louis

    2014-01-01

    Various proposals for generalizing event spaces for probability functions have been put forth in the mathematical, scientific, and philosophic literatures. In cognitive psychology such generalizations are used for explaining puzzling results in decision theory and for modeling the influence of context effects. This commentary discusses proposals for generalizing probability theory to event spaces that are not necessarily boolean algebras. Two prominent examples are quantum probability theory, which is based on the set of closed subspaces of a Hilbert space, and topological probability theory, which is based on the set of open sets of a topology. Both have been applied to a variety of cognitive situations. This commentary focuses on how event space properties can influence probability concepts and impact cognitive modeling. Copyright © 2013 Cognitive Science Society, Inc.

  15. Modelling of spatial contaminant probabilities of occurrence of chlorinated hydrocarbons in an urban aquifer.

    PubMed

    Greis, Tillman; Helmholz, Kathrin; Schöniger, Hans Matthias; Haarstrick, Andreas

    2012-06-01

    In this study, a 3D urban groundwater model is presented which serves for calculation of multispecies contaminant transport in the subsurface on the regional scale. The total model consists of two submodels, the groundwater flow and reactive transport model, and is validated against field data. The model equations are solved applying finite element method. A sensitivity analysis is carried out to perform parameter identification of flow, transport and reaction processes. Coming from the latter, stochastic variation of flow, transport, and reaction input parameters and Monte Carlo simulation are used in calculating probabilities of pollutant occurrence in the domain. These probabilities could be part of determining future spots of contamination and their measure of damages. Application and validation is exemplarily shown for a contaminated site in Braunschweig (Germany), where a vast plume of chlorinated ethenes pollutes the groundwater. With respect to field application, the methods used for modelling reveal feasible and helpful tools to assess natural attenuation (MNA) and the risk that might be reduced by remediation actions.

  16. Transition probability spaces in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  17. A spatial model of bird abundance as adjusted for detection probability

    USGS Publications Warehouse

    Gorresen, P.M.; Mcmillan, G.P.; Camp, R.J.; Pratt, T.K.

    2009-01-01

    Modeling the spatial distribution of animals can be complicated by spatial and temporal effects (i.e. spatial autocorrelation and trends in abundance over time) and other factors such as imperfect detection probabilities and observation-related nuisance variables. Recent advances in modeling have demonstrated various approaches that handle most of these factors but which require a degree of sampling effort (e.g. replication) not available to many field studies. We present a two-step approach that addresses these challenges to spatially model species abundance. Habitat, spatial and temporal variables were handled with a Bayesian approach which facilitated modeling hierarchically structured data. Predicted abundance was subsequently adjusted to account for imperfect detection and the area effectively sampled for each species. We provide examples of our modeling approach for two endemic Hawaiian nectarivorous honeycreepers: 'i'iwi Vestiaria coccinea and 'apapane Himatione sanguinea. ?? 2009 Ecography.

  18. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  19. Skill of Ensemble Seasonal Probability Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk

    2010-05-01

    In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.

  20. Maxwell and the normal distribution: A colored story of probability, independence, and tendency toward equilibrium

    NASA Astrophysics Data System (ADS)

    Gyenis, Balázs

    2017-02-01

    We investigate Maxwell's attempt to justify the mathematical assumptions behind his 1860 Proposition IV according to which the velocity components of colliding particles follow the normal distribution. Contrary to the commonly held view we find that his molecular collision model plays a crucial role in reaching this conclusion, and that his model assumptions also permit inference to equalization of mean kinetic energies (temperatures), which is what he intended to prove in his discredited and widely ignored Proposition VI. If we take a charitable reading of his own proof of Proposition VI then it was Maxwell, and not Boltzmann, who gave the first proof of a tendency towards equilibrium, a sort of H-theorem. We also call attention to a potential conflation of notions of probabilistic and value independence in relevant prior works of his contemporaries and of his own, and argue that this conflation might have impacted his adoption of the suspect independence assumption of Proposition IV.

  1. Blind Students' Learning of Probability through the Use of a Tactile Model

    ERIC Educational Resources Information Center

    Vita, Aida Carvalho; Kataoka, Verônica Yumi

    2014-01-01

    The objective of this paper is to discuss how blind students learn basic concepts of probability using the tactile model proposed by Vita (2012). Among the activities were part of the teaching sequence "Jefferson's Random Walk", in which students built a tree diagram (using plastic trays, foam cards, and toys), and pictograms in 3D…

  2. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions.

    PubMed

    Dinov, Ivo D; Siegrist, Kyle; Pearl, Dennis K; Kalinin, Alexandr; Christou, Nicolas

    2016-06-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome , which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the

  3. Probability Distributome: A Web Computational Infrastructure for Exploring the Properties, Interrelations, and Applications of Probability Distributions

    PubMed Central

    Dinov, Ivo D.; Siegrist, Kyle; Pearl, Dennis K.; Kalinin, Alexandr; Christou, Nicolas

    2015-01-01

    Probability distributions are useful for modeling, simulation, analysis, and inference on varieties of natural processes and physical phenomena. There are uncountably many probability distributions. However, a few dozen families of distributions are commonly defined and are frequently used in practice for problem solving, experimental applications, and theoretical studies. In this paper, we present a new computational and graphical infrastructure, the Distributome, which facilitates the discovery, exploration and application of diverse spectra of probability distributions. The extensible Distributome infrastructure provides interfaces for (human and machine) traversal, search, and navigation of all common probability distributions. It also enables distribution modeling, applications, investigation of inter-distribution relations, as well as their analytical representations and computational utilization. The entire Distributome framework is designed and implemented as an open-source, community-built, and Internet-accessible infrastructure. It is portable, extensible and compatible with HTML5 and Web2.0 standards (http://Distributome.org). We demonstrate two types of applications of the probability Distributome resources: computational research and science education. The Distributome tools may be employed to address five complementary computational modeling applications (simulation, data-analysis and inference, model-fitting, examination of the analytical, mathematical and computational properties of specific probability distributions, and exploration of the inter-distributional relations). Many high school and college science, technology, engineering and mathematics (STEM) courses may be enriched by the use of modern pedagogical approaches and technology-enhanced methods. The Distributome resources provide enhancements for blended STEM education by improving student motivation, augmenting the classical curriculum with interactive webapps, and overhauling the

  4. [Biometric bases: basic concepts of probability calculation].

    PubMed

    Dinya, E

    1998-04-26

    The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.

  5. Biological mechanisms of normal tissue damage: importance for the design of NTCP models.

    PubMed

    Trott, Klaus-Rüdiger; Doerr, Wolfgang; Facoetti, Angelica; Hopewell, John; Langendijk, Johannes; van Luijk, Peter; Ottolenghi, Andrea; Smyth, Vere

    2012-10-01

    The normal tissue complication probability (NTCP) models that are currently being proposed for estimation of risk of harm following radiotherapy are mainly based on simplified empirical models, consisting of dose distribution parameters, possibly combined with clinical or other treatment-related factors. These are fitted to data from retrospective or prospective clinical studies. Although these models sometimes provide useful guidance for clinical practice, their predictive power on individuals seems to be limited. This paper examines the radiobiological mechanisms underlying the most important complications induced by radiotherapy, with the aim of identifying the essential parameters and functional relationships needed for effective predictive NTCP models. The clinical features of the complications are identified and reduced as much as possible into component parts. In a second step, experimental and clinical data are considered in order to identify the gross anatomical structures involved, and which dose distributions lead to these complications. Finally, the pathogenic pathways and cellular and more specific anatomical parameters that have to be considered in this pathway are determined. This analysis is carried out for some of the most critical organs and sites in radiotherapy, i.e. spinal cord, lung, rectum, oropharynx and heart. Signs and symptoms of severe late normal tissue complications present a very variable picture in the different organs at risk. Only in rare instances is the entire organ the critical target which elicits the particular complication. Moreover, the biological mechanisms that are involved in the pathogenesis differ between the different complications, even in the same organ. Different mechanisms are likely to be related to different shapes of dose effect relationships and different relationships between dose per fraction, dose rate, and overall treatment time and effects. There is good reason to conclude that each type of late

  6. Modelling the regional variability of the probability of high trihalomethane occurrence in municipal drinking water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2015-12-01

    The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1%. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).

  7. High-resolution urban flood modelling - a joint probability approach

    NASA Astrophysics Data System (ADS)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al

  8. Log-Normal Turbulence Dissipation in Global Ocean Models

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  9. Identification of Patient Benefit From Proton Therapy for Advanced Head and Neck Cancer Patients Based on Individual and Subgroup Normal Tissue Complication Probability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Annika, E-mail: Annika.Jakobi@OncoRay.de; Bandurska-Luque, Anna; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden

    Purpose: The purpose of this study was to determine, by treatment plan comparison along with normal tissue complication probability (NTCP) modeling, whether a subpopulation of patients with head and neck squamous cell carcinoma (HNSCC) could be identified that would gain substantial benefit from proton therapy in terms of NTCP. Methods and Materials: For 45 HNSCC patients, intensity modulated radiation therapy (IMRT) was compared to intensity modulated proton therapy (IMPT). Physical dose distributions were evaluated as well as the resulting NTCP values, using modern models for acute mucositis, xerostomia, aspiration, dysphagia, laryngeal edema, and trismus. Patient subgroups were defined based onmore » primary tumor location. Results: Generally, IMPT reduced the NTCP values while keeping similar target coverage for all patients. Subgroup analyses revealed a higher individual reduction of swallowing-related side effects by IMPT for patients with tumors in the upper head and neck area, whereas the risk reduction of acute mucositis was more pronounced in patients with tumors in the larynx region. More patients with tumors in the upper head and neck area had a reduction in NTCP of more than 10%. Conclusions: Subgrouping can help to identify patients who may benefit more than others from the use of IMPT and, thus, can be a useful tool for a preselection of patients in the clinic where there are limited PT resources. Because the individual benefit differs within a subgroup, the relative merits should additionally be evaluated by individual treatment plan comparisons.« less

  10. Time series modeling of pathogen-specific disease probabilities with subsampled data.

    PubMed

    Fisher, Leigh; Wakefield, Jon; Bauer, Cici; Self, Steve

    2017-03-01

    Many diseases arise due to exposure to one of multiple possible pathogens. We consider the situation in which disease counts are available over time from a study region, along with a measure of clinical disease severity, for example, mild or severe. In addition, we suppose a subset of the cases are lab tested in order to determine the pathogen responsible for disease. In such a context, we focus interest on modeling the probabilities of disease incidence given pathogen type. The time course of these probabilities is of great interest as is the association with time-varying covariates such as meteorological variables. In this set up, a natural Bayesian approach would be based on imputation of the unsampled pathogen information using Markov Chain Monte Carlo but this is computationally challenging. We describe a practical approach to inference that is easy to implement. We use an empirical Bayes procedure in a first step to estimate summary statistics. We then treat these summary statistics as the observed data and develop a Bayesian generalized additive model. We analyze data on hand, foot, and mouth disease (HFMD) in China in which there are two pathogens of primary interest, enterovirus 71 (EV71) and Coxackie A16 (CA16). We find that both EV71 and CA16 are associated with temperature, relative humidity, and wind speed, with reasonably similar functional forms for both pathogens. The important issue of confounding by time is modeled using a penalized B-spline model with a random effects representation. The level of smoothing is addressed by a careful choice of the prior on the tuning variance. © 2016, The International Biometric Society.

  11. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Boughalia, A; Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-06-01

    The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy-oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose-volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans

  12. Not Quite Normal: Consequences of Violating the Assumption of Normality in Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George

    2012-01-01

    Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…

  13. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    NASA Astrophysics Data System (ADS)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  14. Ising model versus normal form game

    NASA Astrophysics Data System (ADS)

    Galam, Serge; Walliser, Bernard

    2010-02-01

    The 2-spin Ising model in statistical mechanics and the 2×2 normal form game in game theory are compared. All configurations allowed by the second are recovered by the first when the only concern is about Nash equilibria. But it holds no longer when Pareto optimum considerations are introduced as in the prisoner’s dilemma. This gap can nevertheless be filled by adding a new coupling term to the Ising model, even if that term has up to now no physical meaning. An individual complete bilinear objective function is thus found to be sufficient to reproduce all possible configurations of a 2×2 game. Using this one-to-one mapping new perspectives for future research in both fields can be envisioned.

  15. Probability distributions for multimeric systems.

    PubMed

    Albert, Jaroslav; Rooman, Marianne

    2016-01-01

    We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.

  16. Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS

    PubMed Central

    Nezami Ranjbar, Mohammad R.; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2016-01-01

    We introduce a new method for normalization of data acquired by liquid chromatography coupled with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences but experimental bias. There are different sources of bias including variabilities during sample collection and sample storage, poor experimental design, noise, etc. In addition, instrument variability in experiments involving a large number of LC-MS runs leads to a significant drift in intensity measurements. Although various methods have been proposed for normalization of LC-MS data, there is no universally applicable approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-level information from LC-MS data. Specifically, the proposed method uses peak shapes to model the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated the performance of our method using synthetic and experimental data. In comparison with several existing methods, the proposed BNM and BNMD yielded significant improvement. PMID:26357332

  17. Presenting Thin Media Models Affects Women's Choice of Diet or Normal Snacks

    ERIC Educational Resources Information Center

    Krahe, Barbara; Krause, Christina

    2010-01-01

    Our study explored the influence of thin- versus normal-size media models and of self-reported restrained eating behavior on women's observed snacking behavior. Fifty female undergraduates saw a set of advertisements for beauty products showing either thin or computer-altered normal-size female models, allegedly as part of a study on effective…

  18. Logit-normal mixed model for Indian Monsoon rainfall extremes

    NASA Astrophysics Data System (ADS)

    Dietz, L. R.; Chatterjee, S.

    2014-03-01

    Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.

  19. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  20. Resonances in the cumulative reaction probability for a model electronically nonadiabatic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, J.; Bowman, J.M.

    1996-05-01

    The cumulative reaction probability, flux{endash}flux correlation function, and rate constant are calculated for a model, two-state, electronically nonadiabatic reaction, given by Shin and Light [S. Shin and J. C. Light, J. Chem. Phys. {bold 101}, 2836 (1994)]. We apply straightforward generalizations of the flux matrix/absorbing boundary condition approach of Miller and co-workers to obtain these quantities. The upper adiabatic electronic potential supports bound states, and these manifest themselves as {open_quote}{open_quote}recrossing{close_quote}{close_quote} resonances in the cumulative reaction probability, at total energies above the barrier to reaction on the lower adiabatic potential. At energies below the barrier, the cumulative reaction probability for themore » coupled system is shifted to higher energies relative to the one obtained for the ground state potential. This is due to the effect of an additional effective barrier caused by the nuclear kinetic operator acting on the ground state, adiabatic electronic wave function, as discussed earlier by Shin and Light. Calculations are reported for five sets of electronically nonadiabatic coupling parameters. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Probable levetiracetam-related serum alkaline phosphatase elevation

    PubMed Central

    2012-01-01

    Background Levetiracetam (LEV) is an antiepileptic drug with a favorable tolerability and safety profile with little or no effect on liver function. Case presentation Here, we reported an epileptic pediatric patient who developed a significant elevation in serum alkaline phosphatase level (ALP) during LEV monotherapy. Moreover, the serum ALP level was surprisingly decreased to normal after LEV discontinuation. The Naranjo Adverse Drug Reaction Probability Scale score was 6, indicating firstly LEV was a probable cause for the increased serum ALP. Conclusions Cautious usage and concerns of the LEV-associated potential ALP elevation should be considered when levetiracetam is prescribed to epilepsy patients, especially pediatric patients. PMID:22994584

  2. Multi-scale Characterization and Modeling of Surface Slope Probability Distribution for ~20-km Diameter Lunar Craters

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Robinson, M. S.; Boyd, A. K.

    2013-12-01

    Craters ~20-km diameter and above significantly shaped the lunar landscape. The statistical nature of the slope distribution on their walls and floors dominate the overall slope distribution statistics for the lunar surface. Slope statistics are inherently useful for characterizing the current topography of the surface, determining accurate photometric and surface scattering properties, and in defining lunar surface trafficability [1-4]. Earlier experimental studies on the statistical nature of lunar surface slopes were restricted either by resolution limits (Apollo era photogrammetric studies) or by model error considerations (photoclinometric and radar scattering studies) where the true nature of slope probability distribution was not discernible at baselines smaller than a kilometer[2,3,5]. Accordingly, historical modeling of lunar surface slopes probability distributions for applications such as in scattering theory development or rover traversability assessment is more general in nature (use of simple statistical models such as the Gaussian distribution[1,2,5,6]). With the advent of high resolution, high precision topographic models of the Moon[7,8], slopes in lunar craters can now be obtained at baselines as low as 6-meters allowing unprecedented multi-scale (multiple baselines) modeling possibilities for slope probability distributions. Topographic analysis (Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 2-m digital elevation models (DEM)) of ~20-km diameter Copernican lunar craters revealed generally steep slopes on interior walls (30° to 36°, locally exceeding 40°) over 15-meter baselines[9]. In this work, we extend the analysis from a probability distribution modeling point-of-view with NAC DEMs to characterize the slope statistics for the floors and walls for the same ~20-km Copernican lunar craters. The difference in slope standard deviations between the Gaussian approximation and the actual distribution (2-meter sampling) was

  3. The Finite-Size Scaling Relation for the Order-Parameter Probability Distribution of the Six-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Merdan, Ziya; Karakuş, Özlem

    2016-11-01

    The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.

  4. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  5. Match probabilities in a finite, subdivided population

    PubMed Central

    Malaspinas, Anna-Sapfo; Slatkin, Montgomery; Song, Yun S.

    2011-01-01

    We generalize a recently introduced graphical framework to compute the probability that haplotypes or genotypes of two individuals drawn from a finite, subdivided population match. As in the previous work, we assume an infinite-alleles model. We focus on the case of a population divided into two subpopulations, but the underlying framework can be applied to a general model of population subdivision. We examine the effect of population subdivision on the match probabilities and the accuracy of the product rule which approximates multi-locus match probabilities as a product of one-locus match probabilities. We quantify the deviation from predictions of the product rule by R, the ratio of the multi-locus match probability to the product of the one-locus match probabilities.We carry out the computation for two loci and find that ignoring subdivision can lead to underestimation of the match probabilities if the population under consideration actually has subdivision structure and the individuals originate from the same subpopulation. On the other hand, under a given model of population subdivision, we find that the ratio R for two loci is only slightly greater than 1 for a large range of symmetric and asymmetric migration rates. Keeping in mind that the infinite-alleles model is not the appropriate mutation model for STR loci, we conclude that, for two loci and biologically reasonable parameter values, population subdivision may lead to results that disfavor innocent suspects because of an increase in identity-by-descent in finite populations. On the other hand, for the same range of parameters, population subdivision does not lead to a substantial increase in linkage disequilibrium between loci. Those results are consistent with established practice. PMID:21266180

  6. Modeling the effect of reward amount on probability discounting.

    PubMed

    Myerson, Joel; Green, Leonard; Morris, Joshua

    2011-03-01

    The present study with college students examined the effect of amount on the discounting of probabilistic monetary rewards. A hyperboloid function accurately described the discounting of hypothetical rewards ranging in amount from $20 to $10,000,000. The degree of discounting increased continuously with amount of probabilistic reward. This effect of amount was not due to changes in the rate parameter of the discounting function, but rather was due to increases in the exponent. These results stand in contrast to those observed with the discounting of delayed monetary rewards, in which the degree of discounting decreases with reward amount due to amount-dependent decreases in the rate parameter. Taken together, this pattern of results suggests that delay and probability discounting reflect different underlying mechanisms. That is, the fact that the exponent in the delay discounting function is independent of amount is consistent with a psychophysical scaling interpretation, whereas the finding that the exponent of the probability-discounting function is amount-dependent is inconsistent with such an interpretation. Instead, the present results are consistent with the idea that the probability-discounting function is itself the product of a value function and a weighting function. This idea was first suggested by Kahneman and Tversky (1979), although their prospect theory does not predict amount effects like those observed. The effect of amount on probability discounting was parsimoniously incorporated into our hyperboloid discounting function by assuming that the exponent was proportional to the amount raised to a power. The amount-dependent exponent of the probability-discounting function may be viewed as reflecting the effect of amount on the weighting of the probability with which the reward will be received.

  7. Errors in the estimation of the variance: implications for multiple-probability fluctuation analysis.

    PubMed

    Saviane, Chiara; Silver, R Angus

    2006-06-15

    Synapses play a crucial role in information processing in the brain. Amplitude fluctuations of synaptic responses can be used to extract information about the mechanisms underlying synaptic transmission and its modulation. In particular, multiple-probability fluctuation analysis can be used to estimate the number of functional release sites, the mean probability of release and the amplitude of the mean quantal response from fits of the relationship between the variance and mean amplitude of postsynaptic responses, recorded at different probabilities. To determine these quantal parameters, calculate their uncertainties and the goodness-of-fit of the model, it is important to weight the contribution of each data point in the fitting procedure. We therefore investigated the errors associated with measuring the variance by determining the best estimators of the variance of the variance and have used simulations of synaptic transmission to test their accuracy and reliability under different experimental conditions. For central synapses, which generally have a low number of release sites, the amplitude distribution of synaptic responses is not normal, thus the use of a theoretical variance of the variance based on the normal assumption is not a good approximation. However, appropriate estimators can be derived for the population and for limited sample sizes using a more general expression that involves higher moments and introducing unbiased estimators based on the h-statistics. Our results are likely to be relevant for various applications of fluctuation analysis when few channels or release sites are present.

  8. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  9. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  10. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  11. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  12. 14 CFR 417.224 - Probability of failure analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Probability of failure analysis. 417.224 Section 417.224 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... phase of normal flight or when any anomalous condition exhibits the potential for a stage or its debris...

  13. Vertical changes in the probability distribution of downward irradiance within the near-surface ocean under sunny conditions

    NASA Astrophysics Data System (ADS)

    Gernez, Pierre; Stramski, Dariusz; Darecki, Miroslaw

    2011-07-01

    Time series measurements of fluctuations in underwater downward irradiance, Ed, within the green spectral band (532 nm) show that the probability distribution of instantaneous irradiance varies greatly as a function of depth within the near-surface ocean under sunny conditions. Because of intense light flashes caused by surface wave focusing, the near-surface probability distributions are highly skewed to the right and are heavy tailed. The coefficients of skewness and excess kurtosis at depths smaller than 1 m can exceed 3 and 20, respectively. We tested several probability models, such as lognormal, Gumbel, Fréchet, log-logistic, and Pareto, which are potentially suited to describe the highly skewed heavy-tailed distributions. We found that the models cannot approximate with consistently good accuracy the high irradiance values within the right tail of the experimental distribution where the probability of these values is less than 10%. This portion of the distribution corresponds approximately to light flashes with Ed > 1.5?, where ? is the time-averaged downward irradiance. However, the remaining part of the probability distribution covering all irradiance values smaller than the 90th percentile can be described with a reasonable accuracy (i.e., within 20%) with a lognormal model for all 86 measurements from the top 10 m of the ocean included in this analysis. As the intensity of irradiance fluctuations decreases with depth, the probability distribution tends toward a function symmetrical around the mean like the normal distribution. For the examined data set, the skewness and excess kurtosis assumed values very close to zero at a depth of about 10 m.

  14. Asymptotic Normalization Coefficients in a Potential Model Involving Forbidden States

    NASA Astrophysics Data System (ADS)

    Blokhintsev, L. D.; Savin, D. A.

    2018-03-01

    It is shown that values obtained for asymptotic normalization coefficients by means of a potential fitted to experimental data on elastic scattering depend substantially on the presence and the number n of possible forbidden states in the fitted potential. The present analysis was performed within exactly solvable potential models for various nuclear systems and various potentials without and with allowance for Coulomb interaction. Various methods for changing the number n that are based on the use of various versions of the change in the parameters of the potential model were studied. A compact analytic expression for the asymptotic normalization coefficients was derived for the case of the Hulthén potential. Specifically, the d + α and α + 12C systems, which are of importance for astrophysics, were examined. It was concluded that an incorrect choice of n could lead to a substantial errors in determining the asymptotic normalization coefficients. From the results of our calculations, it also follows that, for systems with a low binding energy and, as a consequence, with a large value of the Coulomb parameter, the inclusion of the Coulomb interaction may radically change the asymptotic normalization coefficients, increasing them sharply.

  15. Bayes classification of terrain cover using normalized polarimetric data

    NASA Technical Reports Server (NTRS)

    Yueh, H. A.; Swartz, A. A.; Kong, J. A.; Shin, R. T.; Novak, L. M.

    1988-01-01

    The normalized polarimetric classifier (NPC) which uses only the relative magnitudes and phases of the polarimetric data is proposed for discrimination of terrain elements. The probability density functions (PDFs) of polarimetric data are assumed to have a complex Gaussian distribution, and the marginal PDF of the normalized polarimetric data is derived by adopting the Euclidean norm as the normalization function. The general form of the distance measure for the NPC is also obtained. It is demonstrated that for polarimetric data with an arbitrary PDF, the distance measure of NPC will be independent of the normalization function selected even when the classifier is mistrained. A complex Gaussian distribution is assumed for the polarimetric data consisting of grass and tree regions. The probability of error for the NPC is compared with those of several other single-feature classifiers. The classification error of NPCs is shown to be independent of the normalization function.

  16. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  17. Bladder cancer mapping in Libya based on standardized morbidity ratio and log-normal model

    NASA Astrophysics Data System (ADS)

    Alhdiri, Maryam Ahmed; Samat, Nor Azah; Mohamed, Zulkifley

    2017-05-01

    Disease mapping contains a set of statistical techniques that detail maps of rates based on estimated mortality, morbidity, and prevalence. A traditional approach to measure the relative risk of the disease is called Standardized Morbidity Ratio (SMR). It is the ratio of an observed and expected number of accounts in an area, which has the greatest uncertainty if the disease is rare or if geographical area is small. Therefore, Bayesian models or statistical smoothing based on Log-normal model are introduced which might solve SMR problem. This study estimates the relative risk for bladder cancer incidence in Libya from 2006 to 2007 based on the SMR and log-normal model, which were fitted to data using WinBUGS software. This study starts with a brief review of these models, starting with the SMR method and followed by the log-normal model, which is then applied to bladder cancer incidence in Libya. All results are compared using maps and tables. The study concludes that the log-normal model gives better relative risk estimates compared to the classical method. The log-normal model has can overcome the SMR problem when there is no observed bladder cancer in an area.

  18. Technology-Enhanced Interactive Teaching of Marginal, Joint and Conditional Probabilities: The Special Case of Bivariate Normal Distribution

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Kamino, Scott; Bhakhrani, Bilal; Christou, Nicolas

    2013-01-01

    Data analysis requires subtle probability reasoning to answer questions like "What is the chance of event A occurring, given that event B was observed?" This generic question arises in discussions of many intriguing scientific questions such as "What is the probability that an adolescent weighs between 120 and 140 pounds given that…

  19. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. On the extinction probability in models of within-host infection: the role of latency and immunity.

    PubMed

    Yan, Ada W C; Cao, Pengxing; McCaw, James M

    2016-10-01

    Not every exposure to virus establishes infection in the host; instead, the small amount of initial virus could become extinct due to stochastic events. Different diseases and routes of transmission have a different average number of exposures required to establish an infection. Furthermore, the host immune response and antiviral treatment affect not only the time course of the viral load provided infection occurs, but can prevent infection altogether by increasing the extinction probability. We show that the extinction probability when there is a time-dependent immune response depends on the chosen form of the model-specifically, on the presence or absence of a delay between infection of a cell and production of virus, and the distribution of latent and infectious periods of an infected cell. We hypothesise that experimentally measuring the extinction probability when the virus is introduced at different stages of the immune response, alongside the viral load which is usually measured, will improve parameter estimates and determine the most suitable mathematical form of the model.

  1. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  2. A Performance Comparison on the Probability Plot Correlation Coefficient Test using Several Plotting Positions for GEV Distribution.

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunjun; Jung, Younghun; Om, Ju-Seong; Heo, Jun-Haeng

    2014-05-01

    It is very important to select the probability distribution in Statistical hydrology. Goodness of fit test is a statistical method that selects an appropriate probability model for a given data. The probability plot correlation coefficient (PPCC) test as one of the goodness of fit tests was originally developed for normal distribution. Since then, this test has been widely applied to other probability models. The PPCC test is known as one of the best goodness of fit test because it shows higher rejection powers among them. In this study, we focus on the PPCC tests for the GEV distribution which is widely used in the world. For the GEV model, several plotting position formulas are suggested. However, the PPCC statistics are derived only for the plotting position formulas (Goel and De, In-na and Nguyen, and Kim et al.) in which the skewness coefficient (or shape parameter) are included. And then the regression equations are derived as a function of the shape parameter and sample size for a given significance level. In addition, the rejection powers of these formulas are compared using Monte-Carlo simulation. Keywords: Goodness-of-fit test, Probability plot correlation coefficient test, Plotting position, Monte-Carlo Simulation ACKNOWLEDGEMENTS This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  3. Fixation Probability in a Haploid-Diploid Population.

    PubMed

    Bessho, Kazuhiro; Otto, Sarah P

    2017-01-01

    Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright-Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. Copyright © 2017 by the Genetics Society of America.

  4. Fixation Probability in a Haploid-Diploid Population

    PubMed Central

    Bessho, Kazuhiro; Otto, Sarah P.

    2017-01-01

    Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright–Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. PMID:27866168

  5. Clinical model to estimate the pretest probability of malignancy in patients with pulmonary focal Ground-glass Opacity.

    PubMed

    Jiang, Long; Situ, Dongrong; Lin, Yongbin; Su, Xiaodong; Zheng, Yan; Zhang, Yigong; Long, Hao

    2013-11-01

    Effective strategies for managing patients with pulmonary focal Ground-glass Opacity (fGGO) depend on the pretest probability of malignancy. Estimating a clinical probability of malignancy in patients with fGGOs can facilitate the selection and interpretation of subsequent diagnostic tests. METHODS : Data from patients with pulmonary fGGO lesions, who were diagnosed at Sun Yat-sen University Cancer Center, was retrospectively collected. Multiple logistic regression analysis was used to identify independent clinical predictors for malignancy and to develop a clinical predictive model to estimate the pretest probability of malignancy in patients with fGGOs.  One hundred and sixty-five pulmonary fGGO nodules were detected in 128 patients. Independent predictors for malignant fGGOs included a history of other cancers (odds ratio [OR], 0.264; 95% confidence interval [CI], 0.072 to 0.970), pleural indentation (OR, 8.766; 95% CI, 3.033-25.390), vessel-convergence sign (OR, 23.626; 95% CI, 6.200 to 90.027) and air bronchogram (OR, 7.41; 95% CI, 2.037 to 26.961). Model accuracy was satisfactory (area under the curve of the receiver operating characteristic, 0.934; 95% CI, 0.894 to 0.975), and there was excellent agreement between the predicted probability and the observed frequency of malignant fGGOs. We have developed a predictive model, which could be used to generate pretest probabilities of malignant fGGOs, and the equation could be incorporated into a formal decision analysis. © 2013 Tianjin Lung Cancer Institute and Wiley Publishing Asia Pty Ltd.

  6. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.

    PubMed

    Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A

    2015-01-15

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets

    PubMed Central

    Gruber, Susan; Logan, Roger W.; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A.

    2014-01-01

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. PMID:25316152

  8. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    PubMed

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  9. Modelling the 2013 North Aegean (Greece) seismic sequence: geometrical and frictional constraints, and aftershock probabilities

    NASA Astrophysics Data System (ADS)

    Karakostas, Vassilis; Papadimitriou, Eleftheria; Gospodinov, Dragomir

    2014-04-01

    The 2013 January 8 Mw 5.8 North Aegean earthquake sequence took place on one of the ENE-WSW trending parallel dextral strike slip fault branches in this area, in the continuation of 1968 large (M = 7.5) rupture. The source mechanism of the main event indicates predominantly strike slip faulting in agreement with what is expected from regional seismotectonics. It was the largest event to have occurred in the area since the establishment of the Hellenic Unified Seismological Network (HUSN), with an adequate number of stations in close distances and full azimuthal coverage, thus providing the chance of an exhaustive analysis of its aftershock sequence. The main shock was followed by a handful of aftershocks with M ≥ 4.0 and tens with M ≥ 3.0. Relocation was performed by using the recordings from HUSN and a proper crustal model for the area, along with time corrections in each station relative to the model used. Investigation of the spatial and temporal behaviour of seismicity revealed possible triggering of adjacent fault segments. Theoretical static stress changes from the main shock give a preliminary explanation for the aftershock distribution aside from the main rupture. The off-fault seismicity is perfectly explained if μ > 0.5 and B = 0.0, evidencing high fault friction. In an attempt to forecast occurrence probabilities of the strong events (Mw ≥ 5.0), estimations were performed following the Restricted Epidemic Type Aftershock Sequence (RETAS) model. The identified best-fitting MOF model was used to execute 1-d forecasts for such aftershocks and follow the probability evolution in time during the sequence. Forecasting was also implemented on the base of a temporal model of aftershock occurrence, different from the modified Omori formula (the ETAS model), which resulted in probability gain (though small) in strong aftershock forecasting for the beginning of the sequence.

  10. Optimizing probability of detection point estimate demonstration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using point estimate method. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. Traditionally largest flaw size in the set is considered to be a conservative estimate of the flaw size with minimum 90% probability and 95% confidence. The flaw size is denoted as α90/95PE. The paper investigates relationship between range of flaw sizes in relation to α90, i.e. 90% probability flaw size, to provide a desired PPD. The range of flaw sizes is expressed as a proportion of the standard deviation of the probability density distribution. Difference between median or average of the 29 flaws and α90 is also expressed as a proportion of standard deviation of the probability density distribution. In general, it is concluded that, if probability of detection increases with flaw size, average of 29 flaw sizes would always be larger than or equal to α90 and is an acceptable measure of α90/95PE. If NDE technique has sufficient sensitivity and signal-to-noise ratio, then the 29 flaw-set can be optimized to meet requirements of minimum required PPD, maximum allowable POF, requirements on flaw size tolerance about mean flaw size and flaw size detectability requirements. The paper provides procedure for optimizing flaw sizes in the point estimate demonstration flaw-set.

  11. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    PubMed

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  12. Characteristic length of the knotting probability revisited

    NASA Astrophysics Data System (ADS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-09-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.

  13. An empirical probability density distribution of planetary ionosphere storms with geomagnetic precursors

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Stanislawska, Iwona; Arikan, Feza; Arikan, Orhan

    The probability of occurrence of the positive and negative planetary ionosphere storms is evaluated using the W index maps produced from Global Ionospheric Maps of Total Electron Content, GIM-TEC, provided by Jet Propulsion Laboratory, and transformed from geographic coordinates to magnetic coordinates frame. The auroral electrojet AE index and the equatorial disturbance storm time Dst index are investigated as precursors of the global ionosphere storm. The superposed epoch analysis is performed for 77 intense storms (Dst≤-100 nT) and 227 moderate storms (-100modeling the average storm profiles for AE and Dst indices, the positive storm probability per map, pW+, and negative storm probability pW- with model parameters determined using Particle Swarm Optimization routine with the best fitting to the data in the least squares sense. The normalized cross-correlation function is used to define lag (time delay) between the probability of positive phase pW+ (W = 3 and 4) and negative phase pW- (W = -3 and -4) of ionosphere storm, versus AE index and Dst index. It is found that AE index better suits to serve as a precursor of the ionosphere storm than Dst index with onset of the average auroral AE storm occurring 6 h before the equatorial Dst storm onset for intense storms and 3 h in advance of moderate Dst storm. The similar space zones advancement of the ionosphere storm is observed with W index (pW+ and pW-) depicting maximum localized in the polar magnetic zone and minimum at magnetic equator. An empirical relation for pW+ and pW- with AE storm precursor is derived which enables the probability of occurrence of the ionosphere storm to be predicted with leading time of 1-2 h for the positive ionosphere storm and 9-10 h for the negative ionosphere storm. The ionosphere storm probability model is validated using data for 2 intense and 20

  14. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  15. Predicting the probability of slip in gait: methodology and distribution study.

    PubMed

    Gragg, Jared; Yang, James

    2016-01-01

    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  16. Rethinking the learning of belief network probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, R.

    Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rotemore » learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neutral networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.« less

  17. Quantum probability rule: a generalization of the theorems of Gleason and Busch

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.; Cresser, James D.; Jeffers, John; Pegg, David T.

    2014-04-01

    Busch's theorem deriving the standard quantum probability rule can be regarded as a more general form of Gleason's theorem. Here we show that a further generalization is possible by reducing the number of quantum postulates used by Busch. We do not assume that the positive measurement outcome operators are effects or that they form a probability operator measure. We derive a more general probability rule from which the standard rule can be obtained from the normal laws of probability when there is no measurement outcome information available, without the need for further quantum postulates. Our general probability rule has prediction-retrodiction symmetry and we show how it may be applied in quantum communications and in retrodictive quantum theory.

  18. Computer simulation of the probability that endangered whales will interact with oil spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, M.; Jayko, K.; Bowles, A.

    1987-03-01

    A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration and diving-surfacing models, and an oil-spill trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The movement of a whale point is governed by a random walk algorithm which stochastically follows a migratory pathway. The oil-spill model, developed under a series of other contracts, accounts for transport and spreading behavior in open water and in the presence of sea ice.more » Historical wind records and heavy, normal, or light ice cover data sets are selected at random to provide stochastic oil-spill scenarios for whale-oil interaction simulations.« less

  19. Examining dental expenditure and dental insurance accounting for probability of incurring expenses.

    PubMed

    Teusner, Dana; Smith, Valerie; Gnanamanickam, Emmanuel; Brennan, David

    2017-04-01

    There are few studies of dental service expenditure in Australia. Although dental insurance status is strongly associated with a higher probability of dental visiting, some studies indicate that there is little variation in expenditure by insurance status among those who attend for care. Our objective was to assess the overall impact of insurance on expenditures by modelling the association between insurance and expenditure accounting for variation in the probability of incurring expenses, that is dental visiting. A sample of 3000 adults (aged 30-61 years) was randomly selected from the Australian electoral roll. Dental service expenditures were collected prospectively over 2 years by client-held log books. Questionnaires collecting participant characteristics were administered at baseline, 12 months and 24 months. Unadjusted and adjusted ratios of expenditure were estimated using marginalized two-part log-skew-normal models. Such models accommodate highly skewed data and estimate effects of covariates on the overall marginal mean while accounting for the probability of incurring expenses. Baseline response was 39%; of these, 40% (n = 438) were retained over the 2-year period. Only participants providing complete data were included in the analysis (n = 378). Of these, 68.5% were insured, and 70.9% accessed dental services of which nearly all (97.7%) incurred individual dental expenses. The mean dental service expenditure for the total sample (those who did and did not attend) for dental care was AUS$788. Model-adjusted ratios of mean expenditures were higher for the insured (1.61; 95% CI 1.18, 2.20), females (1.38; 95% CI 1.06, 1.81), major city residents (1.43; 95% CI 1.10, 1.84) and those who brushed their teeth twice or more a day (1.50; 95% CI 1.15, 1.96) than their respective counterparts. Accounting for the probability of incurring dental expenses, and other explanatory factors, insured working-aged adults had (on average) approximately 60% higher individual

  20. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steven

    2017-01-01

    The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous

  1. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Assessment of pretest probability of pulmonary embolism in the emergency department by physicians in training using the Wells model.

    PubMed

    Penaloza, Andrea; Mélot, Christian; Dochy, Emmanuelle; Blocklet, Didier; Gevenois, Pierre Alain; Wautrecht, Jean-Claude; Lheureux, Philippe; Motte, Serge

    2007-01-01

    Assessment of pretest probability should be the initial step in investigation of patients with suspected pulmonary embolism (PE). In teaching hospitals physicians in training are often the first physicians to evaluate patients. To evaluate the accuracy of pretest probability assessment of PE by physicians in training using the Wells clinical model and to assess the safety of a diagnostic strategy including pretest probability assessment. 291 consecutive outpatients with clinical suspicion of PE were categorized as having a low, moderate or high pretest probability of PE by physicians in training who could take supervising physicians' advice when they deemed necessary. Then, patients were managed according to a sequential diagnostic algorithm including D-dimer testing, lung scan, leg compression ultrasonography and helical computed tomography. Patients in whom PE was deemed absent were followed up for 3 months. 34 patients (18%) had PE. Prevalence of PE in the low, moderate and high pretest probability groups categorized by physicians in training alone was 3% (95% confidence interval (CI): 1% to 9%), 31% (95% CI: 22% to 42%) and 100% (95% CI: 61% to 100%) respectively. One of the 152 untreated patients (0.7%, 95% CI: 0.1% to 3.6%) developed a thromboembolic event during the 3-month follow-up period. Physicians in training can use the Wells clinical model to determine pretest probability of PE. A diagnostic strategy including the use of this model by physicians in training with access to supervising physicians' advice appears to be safe.

  3. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  4. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP)

    PubMed Central

    Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-01-01

    Objective: The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). Methods: 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy–oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose–volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. Results: The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. Conclusion: The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. Advances in knowledge: The g

  5. A More Pedagogically Sound Treatment of Beer's Law: A Derivation Based on a Corpuscular-Probability Model

    NASA Astrophysics Data System (ADS)

    Bare, William D.

    2000-07-01

    An argument is presented which suggests that the commonly seen calculus-based derivations of Beer's law may not be adequately useful to students and may in fact contribute to widely held misconceptions about the interaction of light with absorbing samples. For this reason, an alternative derivation of Beer's law based on a corpuscular model and the laws of probability is presented. Unlike many previously reported derivations, that presented here does not require the use of calculus, nor does it require the assumption of absorption properties in an infinitesimally thin film. The corpuscular-probability model and its accompanying derivation of Beer's law are believed to comprise a more pedagogically effective presentation than those presented previously.

  6. Precipitation intensity probability distribution modelling for hydrological and construction design purposes

    NASA Astrophysics Data System (ADS)

    Koshinchanov, Georgy; Dimitrov, Dobri

    2008-11-01

    The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the

  7. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times.

    PubMed

    Molenaar, Dylan; Bolsinova, Maria

    2017-05-01

    In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  8. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Herzog, James P. (Inventor); Bickford, Randall L. (Inventor)

    2005-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  9. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2006-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  10. Surveillance System and Method having an Adaptive Sequential Probability Fault Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2008-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  11. Modeling absolute differences in life expectancy with a censored skew-normal regression approach

    PubMed Central

    Clough-Gorr, Kerri; Zwahlen, Marcel

    2015-01-01

    Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest. PMID:26339544

  12. How to model a negligible probability under the WTO sanitary and phytosanitary agreement?

    PubMed

    Powell, Mark R

    2013-06-01

    Since the 1997 EC--Hormones decision, World Trade Organization (WTO) Dispute Settlement Panels have wrestled with the question of what constitutes a negligible risk under the Sanitary and Phytosanitary Agreement. More recently, the 2010 WTO Australia--Apples Panel focused considerable attention on the appropriate quantitative model for a negligible probability in a risk assessment. The 2006 Australian Import Risk Analysis for Apples from New Zealand translated narrative probability statements into quantitative ranges. The uncertainty about a "negligible" probability was characterized as a uniform distribution with a minimum value of zero and a maximum value of 10(-6) . The Australia - Apples Panel found that the use of this distribution would tend to overestimate the likelihood of "negligible" events and indicated that a triangular distribution with a most probable value of zero and a maximum value of 10⁻⁶ would correct the bias. The Panel observed that the midpoint of the uniform distribution is 5 × 10⁻⁷ but did not consider that the triangular distribution has an expected value of 3.3 × 10⁻⁷. Therefore, if this triangular distribution is the appropriate correction, the magnitude of the bias found by the Panel appears modest. The Panel's detailed critique of the Australian risk assessment, and the conclusions of the WTO Appellate Body about the materiality of flaws found by the Panel, may have important implications for the standard of review for risk assessments under the WTO SPS Agreement. © 2012 Society for Risk Analysis.

  13. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  14. Multifractals embedded in short time series: An unbiased estimation of probability moment

    NASA Astrophysics Data System (ADS)

    Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie

    2016-12-01

    An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.

  15. Robust Bayesian Analysis of Heavy-tailed Stochastic Volatility Models using Scale Mixtures of Normal Distributions

    PubMed Central

    Abanto-Valle, C. A.; Bandyopadhyay, D.; Lachos, V. H.; Enriquez, I.

    2009-01-01

    A Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of- sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. PMID:20730043

  16. Factors influencing reporting and harvest probabilities in North American geese

    USGS Publications Warehouse

    Zimmerman, G.S.; Moser, T.J.; Kendall, W.L.; Doherty, P.F.; White, Gary C.; Caswell, D.F.

    2009-01-01

    We assessed variation in reporting probabilities of standard bands among species, populations, harvest locations, and size classes of North American geese to enable estimation of unbiased harvest probabilities. We included reward (US10,20,30,50, or100) and control (0) banded geese from 16 recognized goose populations of 4 species: Canada (Branta canadensis), cackling (B. hutchinsii), Ross's (Chen rossii), and snow geese (C. caerulescens). We incorporated spatially explicit direct recoveries and live recaptures into a multinomial model to estimate reporting, harvest, and band-retention probabilities. We compared various models for estimating harvest probabilities at country (United States vs. Canada), flyway (5 administrative regions), and harvest area (i.e., flyways divided into northern and southern sections) scales. Mean reporting probability of standard bands was 0.73 (95 CI 0.690.77). Point estimates of reporting probabilities for goose populations or spatial units varied from 0.52 to 0.93, but confidence intervals for individual estimates overlapped and model selection indicated that models with species, population, or spatial effects were less parsimonious than those without these effects. Our estimates were similar to recently reported estimates for mallards (Anas platyrhynchos). We provide current harvest probability estimates for these populations using our direct measures of reporting probability, improving the accuracy of previous estimates obtained from recovery probabilities alone. Goose managers and researchers throughout North America can use our reporting probabilities to correct recovery probabilities estimated from standard banding operations for deriving spatially explicit harvest probabilities.

  17. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution.

    PubMed

    Li, Ning; Liu, Xueqin; Xie, Wei; Wu, Jidong; Zhang, Peng

    2013-01-01

    New features of natural disasters have been observed over the last several years. The factors that influence the disasters' formation mechanisms, regularity of occurrence and main characteristics have been revealed to be more complicated and diverse in nature than previously thought. As the uncertainty involved increases, the variables need to be examined further. This article discusses the importance and the shortage of multivariate analysis of natural disasters and presents a method to estimate the joint probability of the return periods and perform a risk analysis. Severe dust storms from 1990 to 2008 in Inner Mongolia were used as a case study to test this new methodology, as they are normal and recurring climatic phenomena on Earth. Based on the 79 investigated events and according to the dust storm definition with bivariate, the joint probability distribution of severe dust storms was established using the observed data of maximum wind speed and duration. The joint return periods of severe dust storms were calculated, and the relevant risk was analyzed according to the joint probability. The copula function is able to simulate severe dust storm disasters accurately. The joint return periods generated are closer to those observed in reality than the univariate return periods and thus have more value in severe dust storm disaster mitigation, strategy making, program design, and improvement of risk management. This research may prove useful in risk-based decision making. The exploration of multivariate analysis methods can also lay the foundation for further applications in natural disaster risk analysis. © 2012 Society for Risk Analysis.

  18. The creation and evaluation of a model predicting the probability of conception in seasonal-calving, pasture-based dairy cows.

    PubMed

    Fenlon, Caroline; O'Grady, Luke; Doherty, Michael L; Dunnion, John; Shalloo, Laurence; Butler, Stephen T

    2017-07-01

    Reproductive performance in pasture-based production systems has a fundamentally important effect on economic efficiency. The individual factors affecting the probability of submission and conception are multifaceted and have been extensively researched. The present study analyzed some of these factors in relation to service-level probability of conception in seasonal-calving pasture-based dairy cows to develop a predictive model of conception. Data relating to 2,966 services from 737 cows on 2 research farms were used for model development and data from 9 commercial dairy farms were used for model testing, comprising 4,212 services from 1,471 cows. The data spanned a 15-yr period and originated from seasonal-calving pasture-based dairy herds in Ireland. The calving season for the study herds extended from January to June, with peak calving in February and March. A base mixed-effects logistic regression model was created using a stepwise model-building strategy and incorporated parity, days in milk, interservice interval, calving difficulty, and predicted transmitting abilities for calving interval and milk production traits. To attempt to further improve the predictive capability of the model, the addition of effects that were not statistically significant was considered, resulting in a final model composed of the base model with the inclusion of BCS at service. The models' predictions were evaluated using discrimination to measure their ability to correctly classify positive and negative cases. Precision, recall, F-score, and area under the receiver operating characteristic curve (AUC) were calculated. Calibration tests measured the accuracy of the predicted probabilities. These included tests of overall goodness-of-fit, bias, and calibration error. Both models performed better than using the population average probability of conception. Neither of the models showed high levels of discrimination (base model AUC 0.61, final model AUC 0.62), possibly because of the

  19. Assessment of the probability of contaminating Mars

    NASA Technical Reports Server (NTRS)

    Judd, B. R.; North, D. W.; Pezier, J. P.

    1974-01-01

    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth.

  20. Theoretical Analysis of Rain Attenuation Probability

    NASA Astrophysics Data System (ADS)

    Roy, Surendra Kr.; Jha, Santosh Kr.; Jha, Lallan

    2007-07-01

    Satellite communication technologies are now highly developed and high quality, distance-independent services have expanded over a very wide area. As for the system design of the Hokkaido integrated telecommunications(HIT) network, it must first overcome outages of satellite links due to rain attenuation in ka frequency bands. In this paper theoretical analysis of rain attenuation probability on a slant path has been made. The formula proposed is based Weibull distribution and incorporates recent ITU-R recommendations concerning the necessary rain rates and rain heights inputs. The error behaviour of the model was tested with the loading rain attenuation prediction model recommended by ITU-R for large number of experiments at different probability levels. The novel slant path rain attenuastion prediction model compared to the ITU-R one exhibits a similar behaviour at low time percentages and a better root-mean-square error performance for probability levels above 0.02%. The set of presented models exhibits the advantage of implementation with little complexity and is considered useful for educational and back of the envelope computations.

  1. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  2. Predicting the ocurrence probability of freak waves baed on buoy data and non-stationary extreme value models

    NASA Astrophysics Data System (ADS)

    Tomas, A.; Menendez, M.; Mendez, F. J.; Coco, G.; Losada, I. J.

    2012-04-01

    In the last decades, freak or rogue waves have become an important topic in engineering and science. Forecasting the occurrence probability of freak waves is a challenge for oceanographers, engineers, physicists and statisticians. There are several mechanisms responsible for the formation of freak waves, and different theoretical formulations (primarily based on numerical models with simplifying assumption) have been proposed to predict the occurrence probability of freak wave in a sea state as a function of N (number of individual waves) and kurtosis (k). On the other hand, different attempts to parameterize k as a function of spectral parameters such as the Benjamin-Feir Index (BFI) and the directional spreading (Mori et al., 2011) have been proposed. The objective of this work is twofold: (1) develop a statistical model to describe the uncertainty of maxima individual wave height, Hmax, considering N and k as covariates; (2) obtain a predictive formulation to estimate k as a function of aggregated sea state spectral parameters. For both purposes, we use free surface measurements (more than 300,000 20-minutes sea states) from the Spanish deep water buoy network (Puertos del Estado, Spanish Ministry of Public Works). Non-stationary extreme value models are nowadays widely used to analyze the time-dependent or directional-dependent behavior of extreme values of geophysical variables such as significant wave height (Izaguirre et al., 2010). In this work, a Generalized Extreme Value (GEV) statistical model for the dimensionless maximum wave height (x=Hmax/Hs) in every sea state is used to assess the probability of freak waves. We allow the location, scale and shape parameters of the GEV distribution to vary as a function of k and N. The kurtosis-dependency is parameterized using third-order polynomials and the model is fitted using standard log-likelihood theory, obtaining a very good behavior to predict the occurrence probability of freak waves (x>2). Regarding the

  3. Tailored Testing Theory and Practice: A Basic Model, Normal Ogive Submodels, and Tailored Testing Algorithms

    DTIC Science & Technology

    1983-08-01

    ACCESSION NO «• TITLE (and Sublltle) TAILORED TESTING THEORY AND PRACTICE: A BASIC MODEL , NORMAL OGIVE SUBMODELS, AND TAILORED TESTING ALGORITHMS 7...single common-factor model , the author derives the two- and three-parametir normal ogfve il’^irTr^ functions as submodels. For both of these...PAOEfWiwi Dmia Bnfnd) NPRDC TR 83-32 AUGUST 1983 TAILORED TESTING THEORY AND PRACTICE: A BASIC MODEL , NORMAL OGIVE SUBMODELS, AND TAILORED TESTING

  4. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  5. Local regularity for time-dependent tug-of-war games with varying probabilities

    NASA Astrophysics Data System (ADS)

    Parviainen, Mikko; Ruosteenoja, Eero

    2016-07-01

    We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the normalized p (x , t)-parabolic equation ut = Δu + (p (x , t) - 2) Δ∞N u.

  6. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  7. Bayesian modeling and inference for diagnostic accuracy and probability of disease based on multiple diagnostic biomarkers with and without a perfect reference standard.

    PubMed

    Jafarzadeh, S Reza; Johnson, Wesley O; Gardner, Ian A

    2016-03-15

    The area under the receiver operating characteristic (ROC) curve (AUC) is used as a performance metric for quantitative tests. Although multiple biomarkers may be available for diagnostic or screening purposes, diagnostic accuracy is often assessed individually rather than in combination. In this paper, we consider the interesting problem of combining multiple biomarkers for use in a single diagnostic criterion with the goal of improving the diagnostic accuracy above that of an individual biomarker. The diagnostic criterion created from multiple biomarkers is based on the predictive probability of disease, conditional on given multiple biomarker outcomes. If the computed predictive probability exceeds a specified cutoff, the corresponding subject is allocated as 'diseased'. This defines a standard diagnostic criterion that has its own ROC curve, namely, the combined ROC (cROC). The AUC metric for cROC, namely, the combined AUC (cAUC), is used to compare the predictive criterion based on multiple biomarkers to one based on fewer biomarkers. A multivariate random-effects model is proposed for modeling multiple normally distributed dependent scores. Bayesian methods for estimating ROC curves and corresponding (marginal) AUCs are developed when a perfect reference standard is not available. In addition, cAUCs are computed to compare the accuracy of different combinations of biomarkers for diagnosis. The methods are evaluated using simulations and are applied to data for Johne's disease (paratuberculosis) in cattle. Copyright © 2015 John Wiley & Sons, Ltd.

  8. A cancer survival model that takes sociodemographic variations in "normal" mortality into account: comparison with other models

    PubMed Central

    Kravdal, O

    2002-01-01

    Study objectives: Sociodemographic differentials in cancer survival have occasionally been studied by using a relative survival approach, where all cause mortality among persons with a cancer diagnosis is compared with that among similar persons without such a diagnosis ("normal" mortality). One should ideally take into account that this "normal" mortality not only depends on age, sex, and period, but also various other sociodemographic variables. However, this has very rarely been done. A method that permits such variations to be considered is presented here, as an alternative to an existing technique, and is compared with a relative survival model where these variations are disregarded and two other methods that have often been used. Design, setting, and participants: The focus is on how education and marital status affect the survival from 12 common cancer types among men and women aged 40–80. Four different types of hazard models are estimated, and differences between effects are compared. The data are from registers and censuses and cover the entire Norwegian population for the years 1960–1991. There are more than 100 000 deaths to cancer patients in this material. Main results and conclusions: A model for registered cancer mortality among cancer patients gives results that for most, but not all, sites are very similar to those from a relative survival approach where educational or marital variations in "normal" mortality are taken into account. A relative survival approach without consideration of these sociodemographic variations in "normal" mortality gives more different results, the most extreme example being the doubling of the marital differentials in survival from prostate cancer. When neither sufficient data on cause of death nor on variations in "normal" mortality are available, one may well choose the simplest method, which is to model all cause mortality among cancer patients. There is little reason to bother with the estimation of a relative

  9. A Quantum Theoretical Explanation for Probability Judgment Errors

    ERIC Educational Resources Information Center

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  10. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  11. Asymmetric Spherical Coupled Escape Probability: Model and Results for Optically Thick Cometary Comae

    NASA Astrophysics Data System (ADS)

    Gersch, Alan; A'Hearn, M. F.

    2012-05-01

    We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.

  12. Development of a methodology for probable maximum precipitation estimation over the American River watershed using the WRF model

    NASA Astrophysics Data System (ADS)

    Tan, Elcin

    A new physically-based methodology for probable maximum precipitation (PMP) estimation is developed over the American River Watershed (ARW) using the Weather Research and Forecast (WRF-ARW) model. A persistent moisture flux convergence pattern, called Pineapple Express, is analyzed for 42 historical extreme precipitation events, and it is found that Pineapple Express causes extreme precipitation over the basin of interest. An average correlation between moisture flux convergence and maximum precipitation is estimated as 0.71 for 42 events. The performance of the WRF model is verified for precipitation by means of calibration and independent validation of the model. The calibration procedure is performed only for the first ranked flood event 1997 case, whereas the WRF model is validated for 42 historical cases. Three nested model domains are set up with horizontal resolutions of 27 km, 9 km, and 3 km over the basin of interest. As a result of Chi-square goodness-of-fit tests, the hypothesis that "the WRF model can be used in the determination of PMP over the ARW for both areal average and point estimates" is accepted at the 5% level of significance. The sensitivities of model physics options on precipitation are determined using 28 microphysics, atmospheric boundary layer, and cumulus parameterization schemes combinations. It is concluded that the best triplet option is Thompson microphysics, Grell 3D ensemble cumulus, and YSU boundary layer (TGY), based on 42 historical cases, and this TGY triplet is used for all analyses of this research. Four techniques are proposed to evaluate physically possible maximum precipitation using the WRF: 1. Perturbations of atmospheric conditions; 2. Shift in atmospheric conditions; 3. Replacement of atmospheric conditions among historical events; and 4. Thermodynamically possible worst-case scenario creation. Moreover, climate change effect on precipitation is discussed by emphasizing temperature increase in order to determine the

  13. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  14. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  15. Modeling the probability distribution of positional errors incurred by residential address geocoding.

    PubMed

    Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard

    2007-01-10

    The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  16. Methods for Reducing Normal Tissue Complication Probabilities in Oropharyngeal Cancer: Dose Reduction or Planning Target Volume Elimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, Stuart E.; Eisbruch, Avraham; Vineberg, Karen

    Purpose: Strategies to reduce the toxicities of head and neck radiation (ie, dysphagia [difficulty swallowing] and xerostomia [dry mouth]) are currently underway. However, the predicted benefit of dose and planning target volume (PTV) reduction strategies is unknown. The purpose of the present study was to compare the normal tissue complication probabilities (NTCP) for swallowing and salivary structures in standard plans (70 Gy [P70]), dose-reduced plans (60 Gy [P60]), and plans eliminating the PTV margin. Methods and Materials: A total of 38 oropharyngeal cancer (OPC) plans were analyzed. Standard organ-sparing volumetric modulated arc therapy plans (P70) were created and then modified by eliminatingmore » the PTVs and treating the clinical tumor volumes (CTVs) only (C70) or maintaining the PTV but reducing the dose to 60 Gy (P60). NTCP dose models for the pharyngeal constrictors, glottis/supraglottic larynx, parotid glands (PGs), and submandibular glands (SMGs) were analyzed. The minimal clinically important benefit was defined as a mean change in NTCP of >5%. The P70 NTCP thresholds and overlap percentages of the organs at risk with the PTVs (56-59 Gy, vPTV{sub 56}) were evaluated to identify the predictors for NTCP improvement. Results: With the P60 plans, only the ipsilateral PG (iPG) benefited (23.9% vs 16.2%; P<.01). With the C70 plans, only the iPG (23.9% vs 17.5%; P<.01) and contralateral SMG (cSMG) (NTCP 32.1% vs 22.9%; P<.01) benefited. An iPG NTCP threshold of 20% and 30% predicted NTCP benefits for the P60 and C70 plans, respectively (P<.001). A cSMG NTCP threshold of 30% predicted for an NTCP benefit with the C70 plans (P<.001). Furthermore, for the iPG, a vPTV{sub 56} >13% predicted benefit with P60 (P<.001) and C70 (P=.002). For the cSMG, a vPTV{sub 56} >22% predicted benefit with C70 (P<.01). Conclusions: PTV elimination and dose-reduction lowered the NTCP of the iPG, and PTV elimination lowered the NTCP of the cSMG. NTCP thresholds and the

  17. Directional data analysis under the general projected normal distribution

    PubMed Central

    Wang, Fangpo; Gelfand, Alan E.

    2013-01-01

    The projected normal distribution is an under-utilized model for explaining directional data. In particular, the general version provides flexibility, e.g., asymmetry and possible bimodality along with convenient regression specification. Here, we clarify the properties of this general class. We also develop fully Bayesian hierarchical models for analyzing circular data using this class. We show how they can be fit using MCMC methods with suitable latent variables. We show how posterior inference for distributional features such as the angular mean direction and concentration can be implemented as well as how prediction within the regression setting can be handled. With regard to model comparison, we argue for an out-of-sample approach using both a predictive likelihood scoring loss criterion and a cumulative rank probability score criterion. PMID:24046539

  18. Irradiation of the inguinal lymph nodes in patients of differing body habitus: a comparison of techniques and resulting normal tissue complication probabilities.

    PubMed

    Brown, Paul D; Kline, Robert W; Petersen, Ivy A; Haddock, Michael G

    2004-01-01

    The treatment of the inguinal lymph nodes with radiotherapy is strongly influenced by the body habitus of the patient. The effect of 7 radiotherapy techniques on femoral head doses was studied. Three female patients of differing body habitus (ectomorph, mesomorph, endomorph) were selected. Radiation fields included the pelvis and contiguous inguinal regions and were representative of fields used in the treatment of cancers of the lower pelvis. Seven treatment techniques were compared. In the ectomorph and mesomorph, normal tissue complication probability (NTCP) for the femoral heads was lowest with use of anteroposterior (AP) and modified posteroanterior (PA) field with inguinal electron field supplements (technique 1). In the endomorph, NTCP was lowest with use of AP and modified PA field without electron field supplements (technique 2) or a 4-field approach (technique 6). Technique 1 for ectomorphs and mesomorphs and techniques 2 and 6 for endomorphs were optimal techniques for providing relatively homogeneous dose distributions within the target area while minimizing the dose to the femoral heads.

  19. Current recommendations on the estimation of transition probabilities in Markov cohort models for use in health care decision-making: a targeted literature review.

    PubMed

    Olariu, Elena; Cadwell, Kevin K; Hancock, Elizabeth; Trueman, David; Chevrou-Severac, Helene

    2017-01-01

    Although Markov cohort models represent one of the most common forms of decision-analytic models used in health care decision-making, correct implementation of such models requires reliable estimation of transition probabilities. This study sought to identify consensus statements or guidelines that detail how such transition probability matrices should be estimated. A literature review was performed to identify relevant publications in the following databases: Medline, Embase, the Cochrane Library, and PubMed. Electronic searches were supplemented by manual-searches of health technology assessment (HTA) websites in Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and the UK. One reviewer assessed studies for eligibility. Of the 1,931 citations identified in the electronic searches, no studies met the inclusion criteria for full-text review, and no guidelines on transition probabilities in Markov models were identified. Manual-searching of the websites of HTA agencies identified ten guidelines on economic evaluations (Australia, Belgium, Canada, France, Germany, Ireland, Norway, Portugal, Sweden, and UK). All identified guidelines provided general guidance on how to develop economic models, but none provided guidance on the calculation of transition probabilities. One relevant publication was identified following review of the reference lists of HTA agency guidelines: the International Society for Pharmacoeconomics and Outcomes Research taskforce guidance. This provided limited guidance on the use of rates and probabilities. There is limited formal guidance available on the estimation of transition probabilities for use in decision-analytic models. Given the increasing importance of cost-effectiveness analysis in the decision-making processes of HTA bodies and other medical decision-makers, there is a need for additional guidance to inform a more consistent approach to decision-analytic modeling. Further research should be done to

  20. The formulation and estimation of a spatial skew-normal generalized ordered-response model.

    DOT National Transportation Integrated Search

    2016-06-01

    This paper proposes a new spatial generalized ordered response model with skew-normal kernel error terms and an : associated estimation method. It contributes to the spatial analysis field by allowing a flexible and parametric skew-normal : distribut...

  1. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGES

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  2. Electrofishing capture probability of smallmouth bass in streams

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.

    2007-01-01

    Abundance estimation is an integral part of understanding the ecology and advancing the management of fish populations and communities. Mark-recapture and removal methods are commonly used to estimate the abundance of stream fishes. Alternatively, abundance can be estimated by dividing the number of individuals sampled by the probability of capture. We conducted a mark-recapture study and used multiple repeated-measures logistic regression to determine the influence of fish size, sampling procedures, and stream habitat variables on the cumulative capture probability for smallmouth bass Micropterus dolomieu in two eastern Oklahoma streams. The predicted capture probability was used to adjust the number of individuals sampled to obtain abundance estimates. The observed capture probabilities were higher for larger fish and decreased with successive electrofishing passes for larger fish only. Model selection suggested that the number of electrofishing passes, fish length, and mean thalweg depth affected capture probabilities the most; there was little evidence for any effect of electrofishing power density and woody debris density on capture probability. Leave-one-out cross validation showed that the cumulative capture probability model predicts smallmouth abundance accurately. ?? Copyright by the American Fisheries Society 2007.

  3. A hydroclimatological approach to predicting regional landslide probability using Landlab

    NASA Astrophysics Data System (ADS)

    Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.

    2018-02-01

    We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.

  4. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context.

    PubMed

    Karim, Mohammad Ehsanul; Platt, Robert W

    2017-06-15

    Correct specification of the inverse probability weighting (IPW) model is necessary for consistent inference from a marginal structural Cox model (MSCM). In practical applications, researchers are typically unaware of the true specification of the weight model. Nonetheless, IPWs are commonly estimated using parametric models, such as the main-effects logistic regression model. In practice, assumptions underlying such models may not hold and data-adaptive statistical learning methods may provide an alternative. Many candidate statistical learning approaches are available in the literature. However, the optimal approach for a given dataset is impossible to predict. Super learner (SL) has been proposed as a tool for selecting an optimal learner from a set of candidates using cross-validation. In this study, we evaluate the usefulness of a SL in estimating IPW in four different MSCM simulation scenarios, in which we varied the specification of the true weight model specification (linear and/or additive). Our simulations show that, in the presence of weight model misspecification, with a rich and diverse set of candidate algorithms, SL can generally offer a better alternative to the commonly used statistical learning approaches in terms of MSE as well as the coverage probabilities of the estimated effect in an MSCM. The findings from the simulation studies guided the application of the MSCM in a multiple sclerosis cohort from British Columbia, Canada (1995-2008), to estimate the impact of beta-interferon treatment in delaying disability progression. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Polynomial probability distribution estimation using the method of moments

    PubMed Central

    Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949

  6. Polynomial probability distribution estimation using the method of moments.

    PubMed

    Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.

  7. Probability of identity by descent in metapopulations.

    PubMed Central

    Kaj, I; Lascoux, M

    1999-01-01

    Equilibrium probabilities of identity by descent (IBD), for pairs of genes within individuals, for genes between individuals within subpopulations, and for genes between subpopulations are calculated in metapopulation models with fixed or varying colony sizes. A continuous-time analog to the Moran model was used in either case. For fixed-colony size both propagule and migrant pool models were considered. The varying population size model is based on a birth-death-immigration (BDI) process, to which migration between colonies is added. Wright's F statistics are calculated and compared to previous results. Adding between-island migration to the BDI model can have an important effect on the equilibrium probabilities of IBD and on Wright's index. PMID:10388835

  8. Modelling probabilities of heavy precipitation by regional approaches

    NASA Astrophysics Data System (ADS)

    Gaal, L.; Kysely, J.

    2009-09-01

    Extreme precipitation events are associated with large negative consequences for human society, mainly as they may trigger floods and landslides. The recent series of flash floods in central Europe (affecting several isolated areas) on June 24-28, 2009, the worst one over several decades in the Czech Republic as to the number of persons killed and the extent of damage to buildings and infrastructure, is an example. Estimates of growth curves and design values (corresponding e.g. to 50-yr and 100-yr return periods) of precipitation amounts, together with their uncertainty, are important in hydrological modelling and other applications. The interest in high quantiles of precipitation distributions is also related to possible climate change effects, as climate model simulations tend to project increased severity of precipitation extremes in a warmer climate. The present study compares - in terms of Monte Carlo simulation experiments - several methods to modelling probabilities of precipitation extremes that make use of ‘regional approaches’: the estimation of distributions of extremes takes into account data in a ‘region’ (‘pooling group’), in which one may assume that the distributions at individual sites are identical apart from a site-specific scaling factor (the condition is referred to as ‘regional homogeneity’). In other words, all data in a region - often weighted in some way - are taken into account when estimating the probability distribution of extremes at a given site. The advantage is that sampling variations in the estimates of model parameters and high quantiles are to a large extent reduced compared to the single-site analysis. We focus on the ‘region-of-influence’ (ROI) method which is based on the identification of unique pooling groups (forming the database for the estimation) for each site under study. The similarity of sites is evaluated in terms of a set of site attributes related to the distributions of extremes. The issue of

  9. Incorporating Probability Models of Complex Test Structures to Perform Technology Independent FPGA Single Event Upset Analysis

    NASA Technical Reports Server (NTRS)

    Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.

    2011-01-01

    We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.

  10. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.

    1983-01-01

    Use of previously coded and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main progress. The probability distributions provided include the beta, chi-square, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F. Other mathematical functions include the Bessel function, I sub o, gamma and log-gamma functions, error functions, and exponential integral. Auxiliary services include sorting and printer-plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  11. Computer routines for probability distributions, random numbers, and related functions

    USGS Publications Warehouse

    Kirby, W.H.

    1980-01-01

    Use of previously codes and tested subroutines simplifies and speeds up program development and testing. This report presents routines that can be used to calculate various probability distributions and other functions of importance in statistical hydrology. The routines are designed as general-purpose Fortran subroutines and functions to be called from user-written main programs. The probability distributions provided include the beta, chisquare, gamma, Gaussian (normal), Pearson Type III (tables and approximation), and Weibull. Also provided are the distributions of the Grubbs-Beck outlier test, Kolmogorov 's and Smirnov 's D, Student 's t, noncentral t (approximate), and Snedecor F tests. Other mathematical functions include the Bessel function I (subzero), gamma and log-gamma functions, error functions and exponential integral. Auxiliary services include sorting and printer plotting. Random number generators for uniform and normal numbers are provided and may be used with some of the above routines to generate numbers from other distributions. (USGS)

  12. Normality of raw data in general linear models: The most widespread myth in statistics

    USGS Publications Warehouse

    Kery, Marc; Hatfield, Jeff S.

    2003-01-01

    In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.

  13. Early detection of probable idiopathic Parkinson's disease: I. development of a diagnostic test battery.

    PubMed

    Montgomery, Erwin B; Koller, William C; LaMantia, Theodora J K; Newman, Mary C; Swanson-Hyland, Elizabeth; Kaszniak, Alfred W; Lyons, Kelly

    2000-05-01

    We developed a test battery as an inexpensive and objective aid for the early diagnosis of idiopathic Parkinson's disease (iPD) and its differential diagnoses. The test battery incorporates tests of motor function, olfaction, and mood. In the motor task, a wrist flexion-and-extension task to different targets, movement velocities were recorded. Olfaction was tested with the University of Pennsylvania Smell Identification Test. Mood was assessed with the Beck Depression Inventory. An initial regression model was developed from the results of 19 normal control subjects and 18 patients with early, mild, probable iPD. Prospective application to an independent validation set of 122 normal control subjects and 103 patients resulted in an 88% specificity rate and 69% sensitivity rate, with an area under the Receiver Operator Characteristic curve of 0.87. Copyright © 2000 Movement Disorder Society.

  14. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry

    2009-01-01

    In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.

  15. Probability workshop to be better in probability topic

    NASA Astrophysics Data System (ADS)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  16. Normal versus Noncentral Chi-Square Asymptotics of Misspecified Models

    ERIC Educational Resources Information Center

    Chun, So Yeon; Shapiro, Alexander

    2009-01-01

    The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main…

  17. Probability concepts in quality risk management.

    PubMed

    Claycamp, H Gregg

    2012-01-01

    Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although risk is generally a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management tools are relatively silent on the meaning and uses of "probability." The probability concept is typically applied by risk managers as a combination of frequency-based calculation and a "degree of belief" meaning of probability. Probability as a concept that is crucial for understanding and managing risk is discussed through examples from the most general, scenario-defining and ranking tools that use probability implicitly to more specific probabilistic tools in risk management. A rich history of probability in risk management applied to other fields suggests that high-quality risk management decisions benefit from the implementation of more thoughtful probability concepts in both risk modeling and risk management. Essentially any concept of risk is built on fundamental concepts of chance, likelihood, or probability. Although "risk" generally describes a probability of loss of something of value, given that a risk-generating event will occur or has occurred, it is ironic that the quality risk management literature and guidelines on quality risk management methodologies and respective tools focus on managing severity but are relatively silent on the in-depth meaning and uses of "probability." Pharmaceutical manufacturers are expanding their use of quality risk management to identify and manage risks to the patient that might occur in phases of the pharmaceutical life cycle from drug development to manufacture, marketing to product discontinuation. A probability concept is typically applied by risk managers as a combination of data-based measures of probability and a subjective "degree of belief" meaning of probability. Probability as

  18. Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan

    2017-10-01

    Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.

  19. Establishment probability in newly founded populations.

    PubMed

    Gusset, Markus; Müller, Michael S; Grimm, Volker

    2012-06-20

    Establishment success in newly founded populations relies on reaching the established phase, which is defined by characteristic fluctuations of the population's state variables. Stochastic population models can be used to quantify the establishment probability of newly founded populations; however, so far no simple but robust method for doing so existed. To determine a critical initial number of individuals that need to be released to reach the established phase, we used a novel application of the "Wissel plot", where -ln(1 - P0(t)) is plotted against time t. This plot is based on the equation P(0)t=1-c(1)e(-ω(1t)), which relates the probability of extinction by time t, P(0)(t), to two constants: c(1) describes the probability of a newly founded population to reach the established phase, whereas ω(1) describes the population's probability of extinction per short time interval once established. For illustration, we applied the method to a previously developed stochastic population model of the endangered African wild dog (Lycaon pictus). A newly founded population reaches the established phase if the intercept of the (extrapolated) linear parts of the "Wissel plot" with the y-axis, which is -ln(c(1)), is negative. For wild dogs in our model, this is the case if a critical initial number of four packs, consisting of eight individuals each, are released. The method we present to quantify the establishment probability of newly founded populations is generic and inferences thus are transferable to other systems across the field of conservation biology. In contrast to other methods, our approach disaggregates the components of a population's viability by distinguishing establishment from persistence.

  20. Human factors of flight-deck checklists: The normal checklist

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Although the aircraft checklist has long been regarded as the foundation of pilot standardization and cockpit safety, it has escaped the scrutiny of the human factors profession. The improper use, or the non-use, of the normal checklist by flight crews is often cited as the probable cause or at least a contributing factor to aircraft accidents. An attempt is made to analyze the normal checklist, its functions, format, design, length, usage, and the limitations of the humans who must interact with it. The development of the checklist from the certification of a new model to its delivery and use by the customer are discussed. The influence of the government, particularly the FAA Principle Operations Inspector, the manufacturer's philosophy, the airline's culture, and the end user, the pilot, influence the ultimate design and usage of this device. The effects of airline mergers and acquisitions on checklist usage and design are noted. In addition, the interaction between production pressures and checklist usage and checklist management are addressed. Finally, a list of design guidelines for normal checklists is provided.

  1. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle'smore » position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.« less

  2. A Coupled Natural-Human Modeling of the Land Loss Probability in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Cai, H.; Lam, N.; Zou, L.

    2017-12-01

    The Mississippi River Delta (MRD) is one of the most environmentally threatened areas in the United States. The area has been suffering substantial land loss during the past decades. Land loss in the MRD has been a subject of intense research by many researchers from multiple disciplines, aiming at mitigating the land loss process and its potential damage. A majority of land loss projections were derived solely from the natural processes, such as sea level rise, regional subsidence, and reduced sediment flows. However, sufficient evidence has shown that land loss in the MRD also relates to human-induced factors such as land fragmentation, neighborhood effects, urbanization, energy industrialization, and marine transportation. How to incorporate both natural and human factors into the land loss modeling stays a huge challenge. Using a coupled-natural and human (CNH) approach can help uncover the complex mechanism of land loss in the MRD, and provide more accurate spatiotemporal projection of land loss patterns and probability. This study uses quantitative approaches to investigate the relationships between land loss and a wide range of socio-ecological variables in the MRD. A model of land loss probability based on selected socio-ecological variables and its neighborhood effects will be derived through variogram and regression analyses. Then, we will simulate the land loss probability and patterns under different scenarios such as sea-level rise, changes in storm frequency and strength, and changes in population to evaluate the sustainability of the MRD. The outcome of this study will be a layer of pixels with information on the probability of land-water conversion. Knowledge gained from this study will provide valuable insights into the optimal mitigation strategies of land loss prevention and restoration and help build long-term sustainability in the Mississippi River Delta.

  3. Effects of Delay Duration on the WMS Logical Memory Performance of Older Adults with Probable Alzheimer's Disease, Probable Vascular Dementia, and Normal Cognition.

    PubMed

    Montgomery, Valencia; Harris, Katie; Stabler, Anthony; Lu, Lisa H

    2017-05-01

    To examine how the duration of time delay between Wechsler Memory Scale (WMS) Logical Memory I and Logical Memory II (LM) affected participants' recall performance. There are 46,146 total Logical Memory administrations to participants diagnosed with either Alzheimer's disease (AD), vascular dementia (VaD), or normal cognition in the National Alzheimer's Disease Coordinating Center's Uniform Data Set. Only 50% of the sample was administered the standard 20-35 min of delay as specified by WMS-R and WMS-III. We found a significant effect of delay time duration on proportion of information retained for the VaD group compared to its control group, which remained after adding LMI raw score as a covariate. There was poorer retention of information with longer delay for this group. This association was not as strong for the AD and cognitively normal groups. A 24.5-min delay was most optimal for differentiating AD from VaD participants (47.7% classification accuracy), an 18.5-min delay was most optimal for differentiating AD versus normal participants (51.7% classification accuracy), and a 22.5-min delay was most optimal for differentiating VaD versus normal participants (52.9% classification accuracy). Considering diagnostic implications, our findings suggest that test administration should incorporate precise tracking of delay periods. We recommend a 20-min delay with 18-25-min range. Poor classification accuracy based on LM data alone is a reminder that story memory performance is only one piece of data that contributes to complex clinical decisions. However, strict adherence to the recommended range yields optimal data for diagnostic decisions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations

  5. [Establishment of the mathematic model of total quantum statistical moment standard similarity for application to medical theoretical research].

    PubMed

    He, Fu-yuan; Deng, Kai-wen; Huang, Sheng; Liu, Wen-long; Shi, Ji-lian

    2013-09-01

    The paper aims to elucidate and establish a new mathematic model: the total quantum statistical moment standard similarity (TQSMSS) on the base of the original total quantum statistical moment model and to illustrate the application of the model to medical theoretical research. The model was established combined with the statistical moment principle and the normal distribution probability density function properties, then validated and illustrated by the pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical method for them, and by analysis of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving the Buyanghanwu-decoction extract. The established model consists of four mainly parameters: (1) total quantum statistical moment similarity as ST, an overlapped area by two normal distribution probability density curves in conversion of the two TQSM parameters; (2) total variability as DT, a confidence limit of standard normal accumulation probability which is equal to the absolute difference value between the two normal accumulation probabilities within integration of their curve nodical; (3) total variable probability as 1-Ss, standard normal distribution probability within interval of D(T); (4) total variable probability (1-beta)alpha and (5) stable confident probability beta(1-alpha): the correct probability to make positive and negative conclusions under confident coefficient alpha. With the model, we had analyzed the TQSMS similarities of pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical methods for them were at range of 0.3852-0.9875 that illuminated different pharmacokinetic behaviors of each other; and the TQSMS similarities (ST) of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving Buyanghuanwu-decoction-extract were at range of 0.6842-0.999 2 that showed different constituents

  6. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment.

    PubMed

    Ayotte, Joseph D; Nolan, Bernard T; Nuckols, John R; Cantor, Kenneth P; Robinson, Gilpin R; Baris, Dalsu; Hayes, Laura; Karagas, Margaret; Bress, William; Silverman, Debra T; Lubin, Jay H

    2006-06-01

    We developed a process-based model to predict the probability of arsenic exceeding 5 microg/L in drinking water wells in New England bedrock aquifers. The model is being used for exposure assessment in an epidemiologic study of bladder cancer. One important study hypothesis that may explain increased bladder cancer risk is elevated concentrations of inorganic arsenic in drinking water. In eastern New England, 20-30% of private wells exceed the arsenic drinking water standard of 10 micrograms per liter. Our predictive model significantly improves the understanding of factors associated with arsenic contamination in New England. Specific rock types, high arsenic concentrations in stream sediments, geochemical factors related to areas of Pleistocene marine inundation and proximity to intrusive granitic plutons, and hydrologic and landscape variables relating to groundwater residence time increase the probability of arsenic occurrence in groundwater. Previous studies suggest that arsenic in bedrock groundwater may be partly from past arsenical pesticide use. Variables representing historic agricultural inputs do not improve the model, indicating that this source does not significantly contribute to current arsenic concentrations. Due to the complexity of the fractured bedrock aquifers in the region, well depth and related variables also are not significant predictors.

  7. Probability of survival during accidental immersion in cold water.

    PubMed

    Wissler, Eugene H

    2003-01-01

    Estimating the probability of survival during accidental immersion in cold water presents formidable challenges for both theoreticians and empirics. A number of theoretical models have been developed assuming that death occurs when the central body temperature, computed using a mathematical model, falls to a certain level. This paper describes a different theoretical approach to estimating the probability of survival. The human thermal model developed by Wissler is used to compute the central temperature during immersion in cold water. Simultaneously, a survival probability function is computed by solving a differential equation that defines how the probability of survival decreases with increasing time. The survival equation assumes that the probability of occurrence of a fatal event increases as the victim's central temperature decreases. Generally accepted views of the medical consequences of hypothermia and published reports of various accidents provide information useful for defining a "fatality function" that increases exponentially with decreasing central temperature. The particular function suggested in this paper yields a relationship between immersion time for 10% probability of survival and water temperature that agrees very well with Molnar's empirical observations based on World War II data. The method presented in this paper circumvents a serious difficulty with most previous models--that one's ability to survive immersion in cold water is determined almost exclusively by the ability to maintain a high level of shivering metabolism.

  8. Identification of probabilities.

    PubMed

    Vitányi, Paul M B; Chater, Nick

    2017-02-01

    Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a probabilistic model from a sample. The practical problems of such inference are substantial: the brain has limited data and restricted computational resources. But there is a more fundamental question: is the problem of inferring a probabilistic model from a sample possible even in principle? We explore this question and find some surprisingly positive and general results. First, for a broad class of probability distributions characterized by computability restrictions, we specify a learning algorithm that will almost surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large class of dependent sequences, we specify an algorithm which identifies in the limit a computable measure for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in both cases. We also briefly consider special cases, including language learning, and wider theoretical implications for psychology.

  9. An inexact log-normal distribution-based stochastic chance-constrained model for agricultural water quality management

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2018-05-01

    In this study, an inexact log-normal-based stochastic chance-constrained programming model was developed for solving the non-point source pollution issues caused by agricultural activities. Compared to the general stochastic chance-constrained programming model, the main advantage of the proposed model is that it allows random variables to be expressed as a log-normal distribution, rather than a general normal distribution. Possible deviations in solutions caused by irrational parameter assumptions were avoided. The agricultural system management in the Erhai Lake watershed was used as a case study, where critical system factors, including rainfall and runoff amounts, show characteristics of a log-normal distribution. Several interval solutions were obtained under different constraint-satisfaction levels, which were useful in evaluating the trade-off between system economy and reliability. The applied results show that the proposed model could help decision makers to design optimal production patterns under complex uncertainties. The successful application of this model is expected to provide a good example for agricultural management in many other watersheds.

  10. Back to Normal! Gaussianizing posterior distributions for cosmological probes

    NASA Astrophysics Data System (ADS)

    Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.

    2014-05-01

    We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.

  11. Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data

    NASA Astrophysics Data System (ADS)

    He, Xin; Koch, Julian; Sonnenborg, Torben O.; Jørgensen, Flemming; Schamper, Cyril; Christian Refsgaard, Jens

    2014-04-01

    Geological heterogeneity is a very important factor to consider when developing geological models for hydrological purposes. Using statistically based stochastic geological simulations, the spatial heterogeneity in such models can be accounted for. However, various types of uncertainties are associated with both the geostatistical method and the observation data. In the present study, TProGS is used as the geostatistical modeling tool to simulate structural heterogeneity for glacial deposits in a head water catchment in Denmark. The focus is on how the observation data uncertainty can be incorporated in the stochastic simulation process. The study uses two types of observation data: borehole data and airborne geophysical data. It is commonly acknowledged that the density of the borehole data is usually too sparse to characterize the horizontal heterogeneity. The use of geophysical data gives an unprecedented opportunity to obtain high-resolution information and thus to identify geostatistical properties more accurately especially in the horizontal direction. However, since such data are not a direct measurement of the lithology, larger uncertainty of point estimates can be expected as compared to the use of borehole data. We have proposed a histogram probability matching method in order to link the information on resistivity to hydrofacies, while considering the data uncertainty at the same time. Transition probabilities and Markov Chain models are established using the transformed geophysical data. It is shown that such transformation is in fact practical; however, the cutoff value for dividing the resistivity data into facies is difficult to determine. The simulated geological realizations indicate significant differences of spatial structure depending on the type of conditioning data selected. It is to our knowledge the first time that grid-to-grid airborne geophysical data including the data uncertainty are used in conditional geostatistical simulations in TPro

  12. Probability based remaining capacity estimation using data-driven and neural network model

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2016-05-01

    Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.

  13. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  14. Delay Differential Equation Models of Normal and Diseased Electrocardiograms

    NASA Astrophysics Data System (ADS)

    Lainscsek, Claudia; Sejnowski, Terrence J.

    Time series analysis with nonlinear delay differential equations (DDEs) is a powerful tool since it reveals spectral as well as nonlinear properties of the underlying dynamical system. Here global DDE models are used to analyze electrocardiography recordings (ECGs) in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. To capture distinguishing features of the different data types the number of terms and delays in the model as well as the order of nonlinearity of the DDE model have to be selected. The DDE structure selection is done in a supervised way by selecting the DDE that best separates different data types. We analyzed 24 h of data from 15 young healthy subjects in normal sinus rhythm (NSR) of 15 congestive heart failure (CHF) patients as well as of 15 subjects suffering from atrial fibrillation (AF) selected from the Physionet database. For the analysis presented here we used 5 min non-overlapping data windows on the raw data without any artifact removal. For classification performance we used the Cohen Kappa coefficient computed directly from the confusion matrix. The overall classification performance of the three groups was around 72-99 % on the 5 min windows for the different approaches. For 2 h data windows the classification for all three groups was above 95%.

  15. ProbOnto: ontology and knowledge base of probability distributions.

    PubMed

    Swat, Maciej J; Grenon, Pierre; Wimalaratne, Sarala

    2016-09-01

    Probability distributions play a central role in mathematical and statistical modelling. The encoding, annotation and exchange of such models could be greatly simplified by a resource providing a common reference for the definition of probability distributions. Although some resources exist, no suitably detailed and complex ontology exists nor any database allowing programmatic access. ProbOnto, is an ontology-based knowledge base of probability distributions, featuring more than 80 uni- and multivariate distributions with their defining functions, characteristics, relationships and re-parameterization formulas. It can be used for model annotation and facilitates the encoding of distribution-based models, related functions and quantities. http://probonto.org mjswat@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Grading the probabilities of credit default risk for Malaysian listed companies by using the KMV-Merton model

    NASA Astrophysics Data System (ADS)

    Anuwar, Muhammad Hafidz; Jaffar, Maheran Mohd

    2017-08-01

    This paper provides an overview for the assessment of credit risk specific to the banks. In finance, risk is a term to reflect the potential of financial loss. The risk of default on loan may increase when a company does not make a payment on that loan when the time comes. Hence, this framework analyses the KMV-Merton model to estimate the probabilities of default for Malaysian listed companies. In this way, banks can verify the ability of companies to meet their loan commitments in order to overcome bad investments and financial losses. This model has been applied to all Malaysian listed companies in Bursa Malaysia for estimating the credit default probabilities of companies and compare with the rating given by the rating agency, which is RAM Holdings Berhad to conform to reality. Then, the significance of this study is a credit risk grade is proposed by using the KMV-Merton model for the Malaysian listed companies.

  17. A collision probability analysis of the double-heterogeneity problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebert, A.

    1993-10-01

    A practical collision probability model is presented for the description of geometries with many levels of heterogeneity. Regular regions of the macrogeometry are assumed to contain a stochastic mixture of spherical grains or cylindrical tubes. Simple expressions for the collision probabilities in the global geometry are obtained as a function of the collision probabilities in the macro- and microgeometries. This model was successfully implemented in the collision probability kernel of the APOLLO-1, APOLLO-2, and DRAGON lattice codes for the description of a broad range of reactor physics problems. Resonance self-shielding and depletion calculations in the microgeometries are possible because eachmore » microregion is explicitly represented.« less

  18. Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization

    PubMed Central

    Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.

    2014-01-01

    Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406

  19. TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krafft, S; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Briere, T

    2015-06-15

    Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. Amore » total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP

  20. Economic Choices Reveal Probability Distortion in Macaque Monkeys

    PubMed Central

    Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-01-01

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. PMID:25698750

  1. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam

    2014-03-01

    It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.

  2. Impact of Age on the Risk of Advanced Colorectal Neoplasia in a Young Population: An Analysis Using the Predicted Probability Model.

    PubMed

    Jung, Yoon Suk; Park, Chan Hyuk; Kim, Nam Hee; Lee, Mi Yeon; Park, Dong Il

    2017-09-01

    The incidence of colorectal cancer is decreasing in adults aged ≥50 years and increasing in those aged <50 years. We aimed to establish risk stratification model for advanced colorectal neoplasia (ACRN) in persons aged <50 years. We reviewed the records of participants who had undergone a colonoscopy as part of a health examination at two large medical examination centers in Korea. By using logistic regression analysis, we developed predicted probability models for ACRN in a population aged 30-49 years. Of 96,235 participants, 57,635 and 38,600 were included in the derivation and validation cohorts, respectively. The predicted probability model considered age, sex, body mass index, family history of colorectal cancer, and smoking habits, as follows: Y ACRN  = -8.755 + 0.080·X age  - 0.055·X male  + 0.041·X BMI  + 0.200·X family_history_of_CRC  + 0.218·X former_smoker  + 0.644·X current_smoker . The optimal cutoff value for the predicted probability of ACRN by Youden index was 1.14%. The area under the receiver-operating characteristic curve (AUROC) values of our model for ACRN were higher than those of the previously established Asia-Pacific Colorectal Screening (APCS), Korean Colorectal Screening (KCS), and Kaminski's scoring models [AUROC (95% confidence interval): model in the current study, 0.673 (0.648-0.697); vs. APCS, 0.588 (0.564-0.611), P < 0.001; vs. KCS, 0.602 (0.576-0.627), P < 0.001; and vs. Kaminski's model, 0.586 (0.560-0.612), P < 0.001]. In a young population, a predicted probability model can assess the risk of ACRN more accurately than existing models, including the APCS, KCS, and Kaminski's scoring models.

  3. A new probability distribution model of turbulent irradiance based on Born perturbation theory

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Liu, Min; Hu, Hao; Wang, Qian; Liu, Xiguo

    2010-10-01

    The subject of the PDF (Probability Density Function) of the irradiance fluctuations in a turbulent atmosphere is still unsettled. Theory reliably describes the behavior in the weak turbulence regime, but theoretical description in the strong and whole turbulence regimes are still controversial. Based on Born perturbation theory, the physical manifestations and correlations of three typical PDF models (Rice-Nakagami, exponential-Bessel and negative-exponential distribution) were theoretically analyzed. It is shown that these models can be derived by separately making circular-Gaussian, strong-turbulence and strong-turbulence-circular-Gaussian approximations in Born perturbation theory, which denies the viewpoint that the Rice-Nakagami model is only applicable in the extremely weak turbulence regime and provides theoretical arguments for choosing rational models in practical applications. In addition, a common shortcoming of the three models is that they are all approximations. A new model, called the Maclaurin-spread distribution, is proposed without any approximation except for assuming the correlation coefficient to be zero. So, it is considered that the new model can exactly reflect the Born perturbation theory. Simulated results prove the accuracy of this new model.

  4. Construction and identification of a D-Vine model applied to the probability distribution of modal parameters in structural dynamics

    NASA Astrophysics Data System (ADS)

    Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.

    2018-01-01

    This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.

  5. [Application of Bayes Probability Model in Differentiation of Yin and Yang Jaundice Syndromes in Neonates].

    PubMed

    Mu, Chun-sun; Zhang, Ping; Kong, Chun-yan; Li, Yang-ning

    2015-09-01

    To study the application of Bayes probability model in differentiating yin and yang jaundice syndromes in neonates. Totally 107 jaundice neonates who admitted to hospital within 10 days after birth were assigned to two groups according to syndrome differentiation, 68 in the yang jaundice syndrome group and 39 in the yin jaundice syndrome group. Data collected for neonates were factors related to jaundice before, during and after birth. Blood routines, liver and renal functions, and myocardial enzymes were tested on the admission day or the next day. Logistic regression model and Bayes discriminating analysis were used to screen factors important for yin and yang jaundice syndrome differentiation. Finally, Bayes probability model for yin and yang jaundice syndromes was established and assessed. Factors important for yin and yang jaundice syndrome differentiation screened by Logistic regression model and Bayes discriminating analysis included mothers' age, mother with gestational diabetes mellitus (GDM), gestational age, asphyxia, or ABO hemolytic diseases, red blood cell distribution width (RDW-SD), platelet-large cell ratio (P-LCR), serum direct bilirubin (DBIL), alkaline phosphatase (ALP), cholinesterase (CHE). Bayes discriminating analysis was performed by SPSS to obtain Bayes discriminant function coefficient. Bayes discriminant function was established according to discriminant function coefficients. Yang jaundice syndrome: y1= -21. 701 +2. 589 x mother's age + 1. 037 x GDM-17. 175 x asphyxia + 13. 876 x gestational age + 6. 303 x ABO hemolytic disease + 2.116 x RDW-SD + 0. 831 x DBIL + 0. 012 x ALP + 1. 697 x LCR + 0. 001 x CHE; Yin jaundice syndrome: y2= -33. 511 + 2.991 x mother's age + 3.960 x GDM-12. 877 x asphyxia + 11. 848 x gestational age + 1. 820 x ABO hemolytic disease +2. 231 x RDW-SD +0. 999 x DBIL +0. 023 x ALP +1. 916 x LCR +0. 002 x CHE. Bayes discriminant function was hypothesis tested and got Wilks' λ =0. 393 (P =0. 000). So Bayes

  6. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2017-01-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time. PMID:29270539

  7. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  8. Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph

    PubMed Central

    Lessard, Sabin; Kermany, Amir R.

    2012-01-01

    We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080

  9. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxin; Shields, Michael D.

    2018-01-01

    This paper addresses the problem of uncertainty quantification and propagation when data for characterizing probability distributions are scarce. We propose a methodology wherein the full uncertainty associated with probability model form and parameter estimation are retained and efficiently propagated. This is achieved by applying the information-theoretic multimodel inference method to identify plausible candidate probability densities and associated probabilities that each method is the best model in the Kullback-Leibler sense. The joint parameter densities for each plausible model are then estimated using Bayes' rule. We then propagate this full set of probability models by estimating an optimal importance sampling density that is representative of all plausible models, propagating this density, and reweighting the samples according to each of the candidate probability models. This is in contrast with conventional methods that try to identify a single probability model that encapsulates the full uncertainty caused by lack of data and consequently underestimate uncertainty. The result is a complete probabilistic description of both aleatory and epistemic uncertainty achieved with several orders of magnitude reduction in computational cost. It is shown how the model can be updated to adaptively accommodate added data and added candidate probability models. The method is applied for uncertainty analysis of plate buckling strength where it is demonstrated how dataset size affects the confidence (or lack thereof) we can place in statistical estimates of response when data are lacking.

  10. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  11. Normalization of Gravitational Acceleration Models

    NASA Technical Reports Server (NTRS)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  12. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment

    USGS Publications Warehouse

    Ayotte, J.D.; Nolan, B.T.; Nuckols, J.R.; Cantor, K.P.; Robinson, G.R.; Baris, D.; Hayes, L.; Karagas, M.; Bress, W.; Silverman, D.T.; Lubin, J.H.

    2006-01-01

    We developed a process-based model to predict the probability of arsenic exceeding 5 ??g/L in drinking water wells in New England bedrock aquifers. The model is being used for exposure assessment in an epidemiologic study of bladder cancer. One important study hypothesis that may explain increased bladder cancer risk is elevated concentrations of inorganic arsenic in drinking water. In eastern New England, 20-30% of private wells exceed the arsenic drinking water standard of 10 micrograms per liter. Our predictive model significantly improves the understanding of factors associated with arsenic contamination in New England. Specific rock types, high arsenic concentrations in stream sediments, geochemical factors related to areas of Pleistocene marine inundation and proximity to intrusive granitic plutons, and hydrologic and landscape variables relating to groundwater residence time increase the probability of arsenic occurrence in groundwater. Previous studies suggest that arsenic in bedrock groundwater may be partly from past arsenical pesticide use. Variables representing historic agricultural inputs do not improve the model, indicating that this source does not significantly contribute to current arsenic concentrations. Due to the complexity of the fractured bedrock aquifers in the region, well depth and related variables also are not significant predictors. ?? 2006 American Chemical Society.

  13. Spectral dimension controlling the decay of the quantum first-detection probability

    NASA Astrophysics Data System (ADS)

    Thiel, Felix; Kessler, David A.; Barkai, Eli

    2018-06-01

    We consider a quantum system that is initially localized at xin and that is repeatedly projectively probed with a fixed period τ at position xd. We ask for the probability Fn that the system is detected at xd for the very first time, where n is the number of detection attempts. We relate the asymptotic decay and oscillations of Fn with the system's energy spectrum, which is assumed to be absolutely continuous. In particular, Fn is determined by the Hamiltonian's measurement spectral density of states (MSDOS) f (E ) that is closely related to the density of energy states (DOS). We find that Fn decays like a power law whose exponent is determined by the power-law exponent dS of f (E ) around its singularities E*. Our findings are analogous to the classical first passage theory of random walks. In contrast to the classical case, the decay of Fn is accompanied by oscillations with frequencies that are determined by the singularities E*. This gives rise to critical detection periods τc at which the oscillations disappear. In the ordinary case dS can be identified with the spectral dimension associated with the DOS. Furthermore, the singularities E* are the van Hove singularities of the DOS in this case. We find that the asymptotic statistics of Fn depend crucially on the initial and detection state and can be wildly different for out-of-the-ordinary states, which is in sharp contrast to the classical theory. The properties of the first-detection probabilities can alternatively be derived from the transition amplitudes. All our results are confirmed by numerical simulations of the tight-binding model, and of a free particle in continuous space both with a normal and with an anomalous dispersion relation. We provide explicit asymptotic formulas for the first-detection probability in these models.

  14. a Probability Model for Drought Prediction Using Fusion of Markov Chain and SAX Methods

    NASA Astrophysics Data System (ADS)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Drought is one of the most powerful natural disasters which are affected on different aspects of the environment. Most of the time this phenomenon is immense in the arid and semi-arid area. Monitoring and prediction the severity of the drought can be useful in the management of the natural disaster caused by drought. Many indices were used in predicting droughts such as SPI, VCI, and TVX. In this paper, based on three data sets (rainfall, NDVI, and land surface temperature) which are acquired from MODIS satellite imagery, time series of SPI, VCI, and TVX in time limited between winters 2000 to summer 2015 for the east region of Isfahan province were created. Using these indices and fusion of symbolic aggregation approximation and hidden Markov chain drought was predicted for fall 2015. For this purpose, at first, each time series was transformed into the set of quality data based on the state of drought (5 group) by using SAX algorithm then the probability matrix for the future state was created by using Markov hidden chain. The fall drought severity was predicted by fusion the probability matrix and state of drought severity in summer 2015. The prediction based on the likelihood for each state of drought includes severe drought, middle drought, normal drought, severe wet and middle wet. The analysis and experimental result from proposed algorithm show that the product of this algorithm is acceptable and the proposed algorithm is appropriate and efficient for predicting drought using remote sensor data.

  15. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Yackulic, Charles; Nichols, James D.

    2012-01-01

    1. Understanding the factors affecting species occurrence is a pre-eminent focus of applied ecological research. However, direct information about species occurrence is lacking for many species. Instead, researchers sometimes have to rely on so-called presence-only data (i.e. when no direct information about absences is available), which often results from opportunistic, unstructured sampling. MAXENT is a widely used software program designed to model and map species distribution using presence-only data. 2. We provide a critical review of MAXENT as applied to species distribution modelling and discuss how it can lead to inferential errors. A chief concern is that MAXENT produces a number of poorly defined indices that are not directly related to the actual parameter of interest – the probability of occurrence (ψ). This focus on an index was motivated by the belief that it is not possible to estimate ψ from presence-only data; however, we demonstrate that ψ is identifiable using conventional likelihood methods under the assumptions of random sampling and constant probability of species detection. 3. The model is implemented in a convenient r package which we use to apply the model to simulated data and data from the North American Breeding Bird Survey. We demonstrate that MAXENT produces extreme under-predictions when compared to estimates produced by logistic regression which uses the full (presence/absence) data set. We note that MAXENT predictions are extremely sensitive to specification of the background prevalence, which is not objectively estimated using the MAXENT method. 4. As with MAXENT, formal model-based inference requires a random sample of presence locations. Many presence-only data sets, such as those based on museum records and herbarium collections, may not satisfy this assumption. However, when sampling is random, we believe that inference should be based on formal methods that facilitate inference about interpretable ecological quantities

  16. Estimating soil moisture exceedance probability from antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Kalansky, J.; Stock, J. D.; Collins, B. D.

    2016-12-01

    The first storms of the rainy season in coastal California, USA, add moisture to soils but rarely trigger landslides. Previous workers proposed that antecedent rainfall, the cumulative seasonal rain from October 1 onwards, had to exceed specific amounts in order to trigger landsliding. Recent monitoring of soil moisture upslope of historic landslides in the San Francisco Bay Area shows that storms can cause positive pressure heads once soil moisture values exceed a threshold of volumetric water content (VWC). We propose that antecedent rainfall could be used to estimate the probability that VWC exceeds this threshold. A major challenge to estimating the probability of exceedance is that rain gauge records are frequently incomplete. We developed a stochastic model to impute (infill) missing hourly precipitation data. This model uses nearest neighbor-based conditional resampling of the gauge record using data from nearby rain gauges. Using co-located VWC measurements, imputed data can be used to estimate the probability that VWC exceeds a specific threshold for a given antecedent rainfall. The stochastic imputation model can also provide an estimate of uncertainty in the exceedance probability curve. Here we demonstrate the method using soil moisture and precipitation data from several sites located throughout Northern California. Results show a significant variability between sites in the sensitivity of VWC exceedance probability to antecedent rainfall.

  17. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  18. Economic choices reveal probability distortion in macaque monkeys.

    PubMed

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.

  19. Black-Litterman model on non-normal stock return (Case study four banks at LQ-45 stock index)

    NASA Astrophysics Data System (ADS)

    Mahrivandi, Rizki; Noviyanti, Lienda; Setyanto, Gatot Riwi

    2017-03-01

    The formation of the optimal portfolio is a method that can help investors to minimize risks and optimize profitability. One model for the optimal portfolio is a Black-Litterman (BL) model. BL model can incorporate an element of historical data and the views of investors to form a new prediction about the return of the portfolio as a basis for preparing the asset weighting models. BL model has two fundamental problems, the assumption of normality and estimation parameters on the market Bayesian prior framework that does not from a normal distribution. This study provides an alternative solution where the modelling of the BL model stock returns and investor views from non-normal distribution.

  20. Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models

    NASA Astrophysics Data System (ADS)

    Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.

    2002-10-01

    This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.

  1. Investigating the probability of detection of typical cavity shapes through modelling and comparison of geophysical techniques

    NASA Astrophysics Data System (ADS)

    James, P.

    2011-12-01

    With a growing need for housing in the U.K., the government has proposed increased development of brownfield sites. However, old mine workings and natural cavities represent a potential hazard before, during and after construction on such sites, and add further complication to subsurface parameters. Cavities are hence a limitation to certain redevelopment and their detection is an ever important consideration. The current standard technique for cavity detection is a borehole grid, which is intrusive, non-continuous, slow and expensive. A new robust investigation standard in the detection of cavities is sought and geophysical techniques offer an attractive alternative. Geophysical techniques have previously been utilised successfully in the detection of cavities in various geologies, but still has an uncertain reputation in the engineering industry. Engineers are unsure of the techniques and are inclined to rely on well known techniques than utilise new technologies. Bad experiences with geophysics are commonly due to the indiscriminate choice of particular techniques. It is imperative that a geophysical survey is designed with the specific site and target in mind at all times, and the ability and judgement to rule out some, or all, techniques. To this author's knowledge no comparative software exists to aid technique choice. Also, previous modelling software limit the shapes of bodies and hence typical cavity shapes are not represented. Here, we introduce 3D modelling software (Matlab) which computes and compares the response to various cavity targets from a range of techniques (gravity, gravity gradient, magnetic, magnetic gradient and GPR). Typical near surface cavity shapes are modelled including shafts, bellpits, various lining and capping materials, and migrating voids. The probability of cavity detection is assessed in typical subsurface and noise conditions across a range of survey parameters. Techniques can be compared and the limits of detection distance

  2. Quantum probability and Hilbert's sixth problem

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi

    2018-04-01

    With the birth of quantum mechanics, the two disciplines that Hilbert proposed to axiomatize, probability and mechanics, became entangled and a new probabilistic model arose in addition to the classical one. Thus, to meet Hilbert's challenge, an axiomatization should account deductively for the basic features of all three disciplines. This goal was achieved within the framework of quantum probability. The present paper surveys the quantum probabilistic axiomatization. This article is part of the themed issue `Hilbert's sixth problem'.

  3. A probability model for evaluating the bias and precision of influenza vaccine effectiveness estimates from case-control studies.

    PubMed

    Haber, M; An, Q; Foppa, I M; Shay, D K; Ferdinands, J M; Orenstein, W A

    2015-05-01

    As influenza vaccination is now widely recommended, randomized clinical trials are no longer ethical in many populations. Therefore, observational studies on patients seeking medical care for acute respiratory illnesses (ARIs) are a popular option for estimating influenza vaccine effectiveness (VE). We developed a probability model for evaluating and comparing bias and precision of estimates of VE against symptomatic influenza from two commonly used case-control study designs: the test-negative design and the traditional case-control design. We show that when vaccination does not affect the probability of developing non-influenza ARI then VE estimates from test-negative design studies are unbiased even if vaccinees and non-vaccinees have different probabilities of seeking medical care against ARI, as long as the ratio of these probabilities is the same for illnesses resulting from influenza and non-influenza infections. Our numerical results suggest that in general, estimates from the test-negative design have smaller bias compared to estimates from the traditional case-control design as long as the probability of non-influenza ARI is similar among vaccinated and unvaccinated individuals. We did not find consistent differences between the standard errors of the estimates from the two study designs.

  4. A branching process model for the analysis of abortive colony size distributions in carbon ion-irradiated normal human fibroblasts.

    PubMed

    Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki

    2014-05-01

    A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.

  5. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  6. A normalization model suggests that attention changes the weighting of inputs between visual areas

    PubMed Central

    Cohen, Marlene R.

    2017-01-01

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501

  7. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  8. Malignant induction probability maps for radiotherapy using X-ray and proton beams.

    PubMed

    Timlin, C; Houston, M; Jones, B

    2011-12-01

    The aim of this study was to display malignant induction probability (MIP) maps alongside dose distribution maps for radiotherapy using X-ray and charged particles such as protons. Dose distributions for X-rays and protons are used in an interactive MATLAB® program (MathWorks, Natick, MA). The MIP is calculated using a published linear quadratic model, which incorporates fractionation effects, cell killing and cancer induction as a function of dose, as well as relative biological effect. Two virtual situations are modelled: (a) a tumour placed centrally in a cubic volume of normal tissue and (b) the same tumour placed closer to the skin surface. The MIP is calculated for a variety of treatment field options. The results show that, for protons, the MIP increases with field numbers. In such cases, proton MIP can be higher than that for X-rays. Protons produce the lowest MIPs for superficial targets because of the lack of exit dose. The addition of a dose bath to all normal tissues increases the MIP by up to an order of magnitude. This exploratory study shows that it is possible to achieve three-dimensional displays of carcinogenesis risk. The importance of treatment geometry, including the length and volume of tissue traversed by each beam, can all influence MIP. Reducing the volume of tissue irradiated is advantageous, as reducing the number of cells at risk reduces the total MIP. This finding lends further support to the use of treatment gantries as well as the use of simpler field arrangements for particle therapy provided normal tissue tolerances are respected.

  9. Syntactic error modeling and scoring normalization in speech recognition

    NASA Technical Reports Server (NTRS)

    Olorenshaw, Lex

    1991-01-01

    The objective was to develop the speech recognition system to be able to detect speech which is pronounced incorrectly, given that the text of the spoken speech is known to the recognizer. Research was performed in the following areas: (1) syntactic error modeling; (2) score normalization; and (3) phoneme error modeling. The study into the types of errors that a reader makes will provide the basis for creating tests which will approximate the use of the system in the real world. NASA-Johnson will develop this technology into a 'Literacy Tutor' in order to bring innovative concepts to the task of teaching adults to read.

  10. A Range-Normalization Model of Context-Dependent Choice: A New Model and Evidence

    PubMed Central

    Camerer, Colin

    2012-01-01

    Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms, we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models, the computational resource required by our range-normalization model does not increase exponentially as the set size increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in the brain. PMID:22829761

  11. Computing simulated endolymphatic flow thermodynamics during the caloric test using normal and hydropic duct models.

    PubMed

    Rey-Martinez, Jorge; McGarvie, Leigh; Pérez-Fernández, Nicolás

    2017-03-01

    The obtained simulations support the underlying hypothesis that the hydrostatic caloric drive is dissipated by local convective flow in a hydropic duct. To develop a computerized model to simulate and predict the internal fluid thermodynamic behavior within both normal and hydropic horizontal ducts. This study used a computational fluid dynamics software to simulate the effects of cooling and warming of two geometrical models representing normal and hydropic ducts of one semicircular horizontal canal during 120 s. Temperature maps, vorticity, and velocity fields were successfully obtained to characterize the endolymphatic flow during the caloric test in the developed models. In the normal semicircular canal, a well-defined endolymphatic linear flow was obtained, this flow has an opposite direction depending only on the cooling or warming condition of the simulation. For the hydropic model a non-effective endolymphatic flow was predicted; in this model the velocity and vorticity fields show a non-linear flow, with some vortices formed inside the hydropic duct.

  12. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  13. Probability of identification: a statistical model for the validation of qualitative botanical identification methods.

    PubMed

    LaBudde, Robert A; Harnly, James M

    2012-01-01

    A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.

  14. Extravehicular Mobility Unit Penetration Probability from Micrometeoroids and Orbital Debris: Revised Analytical Model and Potential Space Suit Improvements

    NASA Technical Reports Server (NTRS)

    Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.

    2007-01-01

    The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.

  15. Does Breast Cancer Drive the Building of Survival Probability Models among States? An Assessment of Goodness of Fit for Patient Data from SEER Registries

    PubMed

    Khan, Hafiz; Saxena, Anshul; Perisetti, Abhilash; Rafiq, Aamrin; Gabbidon, Kemesha; Mende, Sarah; Lyuksyutova, Maria; Quesada, Kandi; Blakely, Summre; Torres, Tiffany; Afesse, Mahlet

    2016-12-01

    Background: Breast cancer is a worldwide public health concern and is the most prevalent type of cancer in women in the United States. This study concerned the best fit of statistical probability models on the basis of survival times for nine state cancer registries: California, Connecticut, Georgia, Hawaii, Iowa, Michigan, New Mexico, Utah, and Washington. Materials and Methods: A probability random sampling method was applied to select and extract records of 2,000 breast cancer patients from the Surveillance Epidemiology and End Results (SEER) database for each of the nine state cancer registries used in this study. EasyFit software was utilized to identify the best probability models by using goodness of fit tests, and to estimate parameters for various statistical probability distributions that fit survival data. Results: Statistical analysis for the summary of statistics is reported for each of the states for the years 1973 to 2012. Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared goodness of fit test values were used for survival data, the highest values of goodness of fit statistics being considered indicative of the best fit survival model for each state. Conclusions: It was found that California, Connecticut, Georgia, Iowa, New Mexico, and Washington followed the Burr probability distribution, while the Dagum probability distribution gave the best fit for Michigan and Utah, and Hawaii followed the Gamma probability distribution. These findings highlight differences between states through selected sociodemographic variables and also demonstrate probability modeling differences in breast cancer survival times. The results of this study can be used to guide healthcare providers and researchers for further investigations into social and environmental factors in order to reduce the occurrence of and mortality due to breast cancer. Creative Commons Attribution License

  16. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are < 1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  17. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding

  18. Single, Complete, Probability Spaces Consistent With EPR-Bohm-Bell Experimental Data

    NASA Astrophysics Data System (ADS)

    Avis, David; Fischer, Paul; Hilbert, Astrid; Khrennikov, Andrei

    2009-03-01

    We show that paradoxical consequences of violations of Bell's inequality are induced by the use of an unsuitable probabilistic description for the EPR-Bohm-Bell experiment. The conventional description (due to Bell) is based on a combination of statistical data collected for different settings of polarization beam splitters (PBSs). In fact, such data consists of some conditional probabilities which only partially define a probability space. Ignoring this conditioning leads to apparent contradictions in the classical probabilistic model (due to Kolmogorov). We show how to make a completely consistent probabilistic model by taking into account the probabilities of selecting the settings of the PBSs. Our model matches both the experimental data and is consistent with classical probability theory.

  19. Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Lavier, L. L.; Wallace, L.

    2016-12-01

    Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.

  20. Knot probabilities in random diagrams

    NASA Astrophysics Data System (ADS)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  1. Financial derivative pricing under probability operator via Esscher transfomation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achi, Godswill U., E-mail: achigods@yahoo.com

    2014-10-24

    The problem of pricing contingent claims has been extensively studied for non-Gaussian models, and in particular, Black- Scholes formula has been derived for the NIG asset pricing model. This approach was first developed in insurance pricing{sup 9} where the original distortion function was defined in terms of the normal distribution. This approach was later studied6 where they compared the standard Black-Scholes contingent pricing and distortion based contingent pricing. So, in this paper, we aim at using distortion operators by Cauchy distribution under a simple transformation to price contingent claim. We also show that we can recuperate the Black-Sholes formula usingmore » the distribution. Similarly, in a financial market in which the asset price represented by a stochastic differential equation with respect to Brownian Motion, the price mechanism based on characteristic Esscher measure can generate approximate arbitrage free financial derivative prices. The price representation derived involves probability Esscher measure and Esscher Martingale measure and under a new complex valued measure φ (u) evaluated at the characteristic exponents φ{sub x}(u) of X{sub t} we recuperate the Black-Scholes formula for financial derivative prices.« less

  2. Financial derivative pricing under probability operator via Esscher transfomation

    NASA Astrophysics Data System (ADS)

    Achi, Godswill U.

    2014-10-01

    The problem of pricing contingent claims has been extensively studied for non-Gaussian models, and in particular, Black- Scholes formula has been derived for the NIG asset pricing model. This approach was first developed in insurance pricing9 where the original distortion function was defined in terms of the normal distribution. This approach was later studied6 where they compared the standard Black-Scholes contingent pricing and distortion based contingent pricing. So, in this paper, we aim at using distortion operators by Cauchy distribution under a simple transformation to price contingent claim. We also show that we can recuperate the Black-Sholes formula using the distribution. Similarly, in a financial market in which the asset price represented by a stochastic differential equation with respect to Brownian Motion, the price mechanism based on characteristic Esscher measure can generate approximate arbitrage free financial derivative prices. The price representation derived involves probability Esscher measure and Esscher Martingale measure and under a new complex valued measure φ (u) evaluated at the characteristic exponents φx(u) of Xt we recuperate the Black-Scholes formula for financial derivative prices.

  3. Calibrating random forests for probability estimation.

    PubMed

    Dankowski, Theresa; Ziegler, Andreas

    2016-09-30

    Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests should be updated to make predictions for other centers or at different time points. In this work, we present two approaches for updating random forests for probability estimation. The first method has been proposed by Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called probability machines. The second approach is a new strategy specifically developed for random forests. Using the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assumptions of Elkan's method were not met, the logistic regression-based re-calibration approach for random forests outperformed Elkan's method. It also performed better on the stroke data than Elkan's method. The strength of Elkan's method is its general applicability to any probability machine. However, if the strict assumptions underlying this approach are not met, the logistic regression-based approach is preferable for updating random forests for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  4. Fixation of strategies driven by switching probabilities in evolutionary games

    NASA Astrophysics Data System (ADS)

    Xu, Zimin; Zhang, Jianlei; Zhang, Chunyan; Chen, Zengqiang

    2016-12-01

    We study the evolutionary dynamics of strategies in finite populations which are homogeneous and well mixed by means of the pairwise comparison process, the core of which is the proposed switching probability. Previous studies about this subject are usually based on the known payoff comparison of the related players, which is an ideal assumption. In real social systems, acquiring the accurate payoffs of partners at each round of interaction may be not easy. So we bypass the need of explicit knowledge of payoffs, and encode the payoffs into the willingness of any individual shift from her current strategy to the competing one, and the switching probabilities are wholly independent of payoffs. Along this way, the strategy updating can be performed when game models are fixed and payoffs are unclear, expected to extend ideal assumptions to be more realistic one. We explore the impact of the switching probability on the fixation probability and derive a simple formula which determines the fixation probability. Moreover we find that cooperation dominates defection if the probability of cooperation replacing defection is always larger than the probability of defection replacing cooperation in finite populations. Last, we investigate the influences of model parameters on the fixation of strategies in the framework of three concrete game models: prisoner's dilemma, snowdrift game and stag-hunt game, which effectively portray the characteristics of cooperative dilemmas in real social systems.

  5. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  6. Normal Tissue Complication Probability Modeling of Acute Hematologic Toxicity in Patients Treated With Intensity-Modulated Radiation Therapy for Squamous Cell Carcinoma of the Anal Canal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Luxton, Gary; Mok, Edward C.

    2012-11-01

    Purpose: To identify dosimetric parameters that correlate with acute hematologic toxicity (HT) in patients with squamous cell carcinoma of the anal canal treated with definitive chemoradiotherapy (CRT). Methods and Materials: We analyzed 33 patients receiving CRT. Pelvic bone (PBM) was contoured for each patient and divided into subsites: ilium, lower pelvis (LP), and lumbosacral spine (LSS). The volume of each region receiving at least 5, 10, 15, 20, 30, and 40 Gy was calculated. Endpoints included grade {>=}3 HT (HT3+) and hematologic event (HE), defined as any grade {>=}2 HT with a modification in chemotherapy dose. Normal tissue complication probabilitymore » (NTCP) was evaluated with the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT and dosimetric/clinical parameters. Results: Nine patients experienced HT3+ and 15 patients experienced HE. Constrained optimization of the LKB model for HT3+ yielded the parameters m = 0.175, n = 1, and TD{sub 50} = 32 Gy. With this model, mean PBM doses of 25 Gy, 27.5 Gy, and 31 Gy result in a 10%, 20%, and 40% risk of HT3+, respectively. Compared with patients with mean PBM dose of <30 Gy, patients with mean PBM dose {>=}30 Gy had a 14-fold increase in the odds of developing HT3+ (p = 0.005). Several low-dose radiation parameters (i.e., PBM-V10) were associated with the development of HT3+ and HE. No association was found with the ilium, LP, or clinical factors. Conclusions: LKB modeling confirms the expectation that PBM acts like a parallel organ, implying that the mean dose to the organ is a useful predictor for toxicity. Low-dose radiation to the PBM was also associated with clinically significant HT. Keeping the mean PBM dose <22.5 Gy and <25 Gy is associated with a 5% and 10% risk of HT, respectively.« less

  7. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes.

    PubMed

    Shields, B M; McDonald, T J; Ellard, S; Campbell, M J; Hyde, C; Hattersley, A T

    2012-05-01

    Diagnosing MODY is difficult. To date, selection for molecular genetic testing for MODY has used discrete cut-offs of limited clinical characteristics with varying sensitivity and specificity. We aimed to use multiple, weighted, clinical criteria to determine an individual's probability of having MODY, as a crucial tool for rational genetic testing. We developed prediction models using logistic regression on data from 1,191 patients with MODY (n = 594), type 1 diabetes (n = 278) and type 2 diabetes (n = 319). Model performance was assessed by receiver operating characteristic (ROC) curves, cross-validation and validation in a further 350 patients. The models defined an overall probability of MODY using a weighted combination of the most discriminative characteristics. For MODY, compared with type 1 diabetes, these were: lower HbA(1c), parent with diabetes, female sex and older age at diagnosis. MODY was discriminated from type 2 diabetes by: lower BMI, younger age at diagnosis, female sex, lower HbA(1c), parent with diabetes, and not being treated with oral hypoglycaemic agents or insulin. Both models showed excellent discrimination (c-statistic = 0.95 and 0.98, respectively), low rates of cross-validated misclassification (9.2% and 5.3%), and good performance on the external test dataset (c-statistic = 0.95 and 0.94). Using the optimal cut-offs, the probability models improved the sensitivity (91% vs 72%) and specificity (94% vs 91%) for identifying MODY compared with standard criteria of diagnosis <25 years and an affected parent. The models are now available online at www.diabetesgenes.org . We have developed clinical prediction models that calculate an individual's probability of having MODY. This allows an improved and more rational approach to determine who should have molecular genetic testing.

  8. Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz

    Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor bloodmore » vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.« less

  9. Computing Earthquake Probabilities on Global Scales

    NASA Astrophysics Data System (ADS)

    Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.

    2016-03-01

    Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.

  10. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  11. Cost-effectiveness of treating normal tension glaucoma.

    PubMed

    Li, Emmy Y; Tham, Clement C; Chi, Stanley C; Lam, Dennis S

    2013-05-13

    To assess the long-term cost-effectiveness of treating normal tension glaucoma (NTG). A Markov decision-analytic health model was developed to determine the cost-effectiveness of treating NTG with IOP lowering therapy to prevent progressive visual field loss. Transitional probabilities were derived from the Collaborative Normal Tension Glaucoma Study and cost data obtained from the literature and the Medicare fee schedule. Incremental cost-effectiveness ratios (ICER) of treating all patients with NTG and treating selected individuals with risk factors for disease progression were determined using Monte Carlo simulation. Sensitivity analyses were performed by varying the cost of consultations, medications, laser/surgery, and adjusting utility loss from progressed states. The ICER of treating all patients with NTG over a 10-year period was United States (US) $34,225 per quality-adjusted life year (QALY). The ICER would be reduced when treatment was offered selectively to those with risk factors for disease progression. The ICER for treating NTG patients with disc hemorrhage, migraine, and those who were female were US $24,350, US $25,533, and US $27,000 per QALY, respectively. The cost-effectiveness of treating all NTG patients in this model was sensitive to cost fluctuation of medications, choice of utility score associated with disease progression, and insensitive to cost of consultations and laser/surgery. It is cost-effective, in the long-term, to offer IOP lowering therapy, aiming for a 30% reduction from the baseline, to all NTG patients. The incremental cost-effectiveness ratio of treating all patients with normal tension glaucoma over a 10-year period was $34,225 per quality-adjusted life year and should be offered to individuals in need.

  12. Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability.

    PubMed

    Fakir, Hatim; Hlatky, Lynn; Li, Huamin; Sachs, Rainer

    2013-12-01

    Optimal treatment planning for fractionated external beam radiation therapy requires inputs from radiobiology based on recent thinking about the "five Rs" (repopulation, radiosensitivity, reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individualized, protocols made feasible by progress in image guided radiation therapy and dose conformity. Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects consider "stem-like cancer cells" (SLCC) to be independent, but the authors here propose that SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly for comparing similar protocols. It aims at practical generalizations of previous mathematical models. The authors consider protocols with complete sublethal damage repair between fractions. The authors use customized open-source software and recent mathematical approaches from stochastic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC eradication probabilities. As specific numerical examples, the authors consider predicted TCP results for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in a limited volume to some fractions. In sample calculations with linear quadratic parameters α = 0.3 per Gy, α∕β = 10 Gy, boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per Gy leads to a prediction of almost no improvement when boosting. The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the larger values of α are the ones appropriate for individualized

  13. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities

    USGS Publications Warehouse

    Ellsworth, William L.; Matthews, Mark V.; Nadeau, Robert M.; Nishenko, Stuart P.; Reasenberg, Paul A.; Simpson, Robert W.

    1999-01-01

    A physically-motivated model for earthquake recurrence based on the Brownian relaxation oscillator is introduced. The renewal process defining this point process model can be described by the steady rise of a state variable from the ground state to failure threshold as modulated by Brownian motion. Failure times in this model follow the Brownian passage time (BPT) distribution, which is specified by the mean time to failure, μ, and the aperiodicity of the mean, α (equivalent to the familiar coefficient of variation). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests a provisional generic value of α = 0.5. For this value of α, the hazard function (instantaneous failure rate of survivors) exceeds the mean rate for times > μ⁄2, and is ~ ~ 2 ⁄ μ for all times > μ. Application of this model to the next M 6 earthquake on the San Andreas fault at Parkfield, California suggests that the annual probability of the earthquake is between 1:10 and 1:13.

  14. Comparison between the four-field box and field-in-field techniques for conformal radiotherapy of the esophagus using dose-volume histograms and normal tissue complication probabilities.

    PubMed

    Allaveisi, Farzaneh; Moghadam, Amir Nami

    2017-06-01

    We evaluated and compared the performance of the field-in-field (FIF) to that of the four-field box (4FB) technique regarding dosimetric and radiobiological parameters for radiotherapy of esophageal carcinoma. Twenty patients with esophageal cancer were selected. For each patient, two treatment plans were created: 4FB and FIF. The parameters compared included the conformity index (CI), homogeneity index (HI), D mean , D max , tumor control probability (TCP), V 20Gy and V 30Gy of the heart and lungs, normal tissue complication probability (NTCP), and monitor units per fraction (MU/fr). A paired t-test analysis did not show any significant differences (p > 0.05) between the two techniques in terms of the CI and TCP. However, the HI significantly improved when the FIF was applied. D max of the PTV, lung, and spinal cord were also significantly better with the FIF. Moreover, the lung V 20Gy as well as the NTCPs of the lung and spinal cord significantly reduced when the FIF was used, and the MU/fr was significantly decreased. The FIF showed evident advantages over 4FB: a more homogeneous dose distribution, lower D max values, and fewer required MUs, while it also retained PTV dose conformality. FIF should be considered as a simple technique to use clinically in cases with esophageal malignancies, especially in clinics with no IMRT.

  15. What is normal in normal aging? Effects of Aging, Amyloid and Alzheimer’s Disease on the Cerebral Cortex and the Hippocampus

    PubMed Central

    Fjell, Anders M.; McEvoy, Linda; Holland, Dominic; Dale, Anders M.; Walhovd, Kristine B

    2015-01-01

    What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer’s Disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology. PMID:24548606

  16. PROBABILITY SURVEYS , CONDITIONAL PROBABILITIES AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  17. An improved approximate network blocking probability model for all-optical WDM Networks with heterogeneous link capacities

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar Nawaz

    2017-11-01

    Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National

  18. The probability and severity of decompression sickness

    PubMed Central

    Hada, Ethan A.; Vann, Richard D.; Denoble, Petar J.

    2017-01-01

    Decompression sickness (DCS), which is caused by inert gas bubbles in tissues, is an injury of concern for scuba divers, compressed air workers, astronauts, and aviators. Case reports for 3322 air and N2-O2 dives, resulting in 190 DCS events, were retrospectively analyzed and the outcomes were scored as (1) serious neurological, (2) cardiopulmonary, (3) mild neurological, (4) pain, (5) lymphatic or skin, and (6) constitutional or nonspecific manifestations. Following standard U.S. Navy medical definitions, the data were grouped into mild—Type I (manifestations 4–6)–and serious–Type II (manifestations 1–3). Additionally, we considered an alternative grouping of mild–Type A (manifestations 3–6)–and serious–Type B (manifestations 1 and 2). The current U.S. Navy guidance allows for a 2% probability of mild DCS and a 0.1% probability of serious DCS. We developed a hierarchical trinomial (3-state) probabilistic DCS model that simultaneously predicts the probability of mild and serious DCS given a dive exposure. Both the Type I/II and Type A/B discriminations of mild and serious DCS resulted in a highly significant (p << 0.01) improvement in trinomial model fit over the binomial (2-state) model. With the Type I/II definition, we found that the predicted probability of ‘mild’ DCS resulted in a longer allowable bottom time for the same 2% limit. However, for the 0.1% serious DCS limit, we found a vastly decreased allowable bottom dive time for all dive depths. If the Type A/B scoring was assigned to outcome severity, the no decompression limits (NDL) for air dives were still controlled by the acceptable serious DCS risk limit rather than the acceptable mild DCS risk limit. However, in this case, longer NDL limits were allowed than with the Type I/II scoring. The trinomial model mild and serious probabilities agree reasonably well with the current air NDL only with the Type A/B scoring and when 0.2% risk of serious DCS is allowed. PMID:28296928

  19. Developing a Model and Applications for Probabilities of Student Success: A Case Study of Predictive Analytics

    ERIC Educational Resources Information Center

    Calvert, Carol Elaine

    2014-01-01

    This case study relates to distance learning students on open access courses. It demonstrates the use of predictive analytics to generate a model of the probabilities of success and retention at different points, or milestones, in a student journey. A core set of explanatory variables has been established and their varying relative importance at…

  20. A transition-based joint model for disease named entity recognition and normalization.

    PubMed

    Lou, Yinxia; Zhang, Yue; Qian, Tao; Li, Fei; Xiong, Shufeng; Ji, Donghong

    2017-08-01

    Disease named entities play a central role in many areas of biomedical research, and automatic recognition and normalization of such entities have received increasing attention in biomedical research communities. Existing methods typically used pipeline models with two independent phases: (i) a disease named entity recognition (DER) system is used to find the boundaries of mentions in text and (ii) a disease named entity normalization (DEN) system is used to connect the mentions recognized to concepts in a controlled vocabulary. The main problems of such models are: (i) there is error propagation from DER to DEN and (ii) DEN is useful for DER, but pipeline models cannot utilize this. We propose a transition-based model to jointly perform disease named entity recognition and normalization, casting the output construction process into an incremental state transition process, learning sequences of transition actions globally, which correspond to joint structural outputs. Beam search and online structured learning are used, with learning being designed to guide search. Compared with the only existing method for joint DEN and DER, our method allows non-local features to be used, which significantly improves the accuracies. We evaluate our model on two corpora: the BioCreative V Chemical Disease Relation (CDR) corpus and the NCBI disease corpus. Experiments show that our joint framework achieves significantly higher performances compared to competitive pipeline baselines. Our method compares favourably to other state-of-the-art approaches. Data and code are available at https://github.com/louyinxia/jointRN. dhji@whu.edu.cn. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  2. A GRASS GIS Semi-Stochastic Model for Evaluating the Probability of Landslides Impacting Road Networks in Collazzone, Central Italy

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Santangelo, Michele; Marchesini, Ivan; Malamud, Bruce D.

    2013-04-01

    During a landslide triggering event, the tens to thousands of landslides resulting from the trigger (e.g., earthquake, heavy rainfall) may block a number of sections of the road network, posing a risk to rescue efforts, logistics and accessibility to a region. Here, we present initial results from a semi-stochastic model we are developing to evaluate the probability of landslides intersecting a road network and the network-accessibility implications of this across a region. This was performed in the open source GRASS GIS software, where we took 'model' landslides and dropped them on a 79 km2 test area region in Collazzone, Umbria, Central Italy, with a given road network (major and minor roads, 404 km in length) and already determined landslide susceptibilities. Landslide areas (AL) were randomly selected from a three-parameter inverse gamma probability density function, consisting of a power-law decay of about -2.4 for medium and large values of AL and an exponential rollover for small values of AL; the rollover (maximum probability) occurs at about AL = 400 m.2 The number of landslide areas selected for each triggered event iteration was chosen to have an average density of 1 landslide km-2, i.e. 79 landslide areas chosen randomly for each iteration. Landslides were then 'dropped' over the region semi-stochastically: (i) random points were generated across the study region; (ii) based on the landslide susceptibility map, points were accepted/rejected based on the probability of a landslide occurring at that location. After a point was accepted, it was assigned a landslide area (AL) and length to width ratio. Landslide intersections with roads were then assessed and indices such as the location, number and size of road blockage recorded. The GRASS-GIS model was performed 1000 times in a Monte-Carlo type simulation. Initial results show that for a landslide triggering event of 1 landslide km-2 over a 79 km2 region with 404 km of road, the number of road blockages

  3. Pointwise probability reinforcements for robust statistical inference.

    PubMed

    Frénay, Benoît; Verleysen, Michel

    2014-02-01

    Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  5. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vourdas, A.

    2014-08-15

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H{sub 1},H{sub 2}), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H{sub 1}),P(H{sub 2}), to the subspacesmore » H{sub 1}, H{sub 2}. As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities.« less

  6. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  7. Exact probability distribution functions for Parrondo's games.

    PubMed

    Zadourian, Rubina; Saakian, David B; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  8. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  9. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  10. Validation of a prediction model for predicting the probability of morbidity related to a trial of labour in Quebec.

    PubMed

    Chaillet, Nils; Bujold, Emmanuel; Dubé, Eric; Grobman, William A

    2012-09-01

    Pregnant women with a history of previous Caesarean section face the decision either to undergo an elective repeat Caesarean section (ERCS) or to attempt a trial of labour with the goal of achieving a vaginal birth after Caesarean (VBAC). Both choices are associated with their own risks of maternal and neonatal morbidity. We aimed to determine the external validity of a prediction model for the success of trial of labour after Caesarean section (TOLAC) that could help these women in their decision-making. We used a perinatal database including 185,437 deliveries from 32 obstetrical centres in Quebec between 2007 and 2011 and selected women with one previous Caesarean section who were eligible for a TOLAC. We compared the frequency of maternal and neonatal morbidity between women who underwent TOLAC and those who underwent an ERCS according to the probability of success of TOLAC calculated from a published model of prediction. Of 8508 eligible women, including 3113 who underwent TOLAC, both maternal and neonatal morbidities became less frequent as the predicted chance of VBAC increased (P < 0.05). Women undergoing a TOLAC were more likely to have maternal morbidity than those who underwent an ERCS when the predicted probability of VBAC was less than 60% (relative risk [RR] 2.3; 95% CI 1.4 to 4.0); conversely, maternal morbidity was not different between the two groups when the predicted probability of VBAC was at least 60% (RR 0.8; 95% CI 0.6 to 1.1). Neonatal morbidity was similar between groups when the probability of VBAC success was 70% or greater (RR 1.2; 95% CI 0.9 to 1.5). The use of a prediction model for TOLAC success could be useful in the prediction of TOLAC success and perinatal morbidity in a Canadian population. Neither maternal nor neonatal morbidity are increased with a TOLAC when the probability of VBAC success is at least 70%.

  11. A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts

    USGS Publications Warehouse

    Amundson, Courtney L.; Royle, J. Andrew; Handel, Colleen M.

    2014-01-01

    Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and time-removal model for point-transect surveys that addresses both availability (the probability that an animal is available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal, given that it is available for detection). We developed a hierarchical extension of the combined model that provides an integrated analysis framework for a collection of survey points at which both distance from the observer and time of initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow (Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point

  12. Muscle function may depend on model selection in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill S.

    2008-01-01

    The purpose of this study was to quantify how the predicted muscle function would change in a muscle-driven forward simulation of normal walking when changing the number of degrees of freedom in the model. Muscle function was described by individual muscle contributions to the vertical acceleration of the center of mass (COM). We built a two-dimensional (2D) sagittal plane model and a three-dimensional (3D) model in OpenSim and used both models to reproduce the same normal walking data. Perturbation analysis was applied to deduce muscle function in each model. Muscle excitations and contributions to COM support were compared between the 2D and 3D models. We found that the 2D model was able to reproduce similar joint kinematics and kinetics patterns as the 3D model. Individual muscle excitations were different for most of the hip muscles but ankle and knee muscles were able to attain similar excitations. Total induced vertical COM acceleration by muscles and gravity was the same for both models. However, individual muscle contributions to COM support varied, especially for hip muscles. Although there is currently no standard way to validate muscle function predictions, a 3D model seems to be more appropriate for estimating individual hip muscle function. PMID:18804767

  13. Probability of misclassifying biological elements in surface waters.

    PubMed

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  14. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  15. Characterization of renal response to prolonged immersion in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Denunzio, A. G.; Ramachandran, M.

    1980-01-01

    ?jDuring the initial phase of space flight, there is a translocation of fluid from the lower parts of the body to the central vascular compartment with a resultant natriuresis, diuresis, and weight loss. Because water immersion is regarded as an appropriate model for studying the redistribution of fluid that occurs in weightlessness, an immersion study of relatively prolonged duration was carried out in order to characterize the temporal profile of the renal adaptation to central hypervolemia. Twelve normal male subjects underwent an immersion study of 8-h duration in the sodium-replete state. Immersion resulted in marked natriuresis and diuresis which were sustained throughout the immersion period. The failure of that natriuresis and diuresis of immersion to abate or cease despite marked extracellular fluid volume contraction as evidenced by a mean weight loss of -2.2 + or - 0.3 kg suggests that central blood volume was not restored to normal and that some degree of central hypervolemia probably persisted.

  16. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  17. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  18. Effects of variability in probable maximum precipitation patterns on flood losses

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul

    2018-05-01

    The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.

  19. Combination of a Stressor-Response Model with a Conditional Probability Analysis Approach for Developing Candidate Criteria from MBSS

    EPA Science Inventory

    I show that a conditional probability analysis using a stressor-response model based on a logistic regression provides a useful approach for developing candidate water quality criteria from empirical data, such as the Maryland Biological Streams Survey (MBSS) data.

  20. Extinction probabilities and stationary distributions of mobile genetic elements in prokaryotes: The birth-death-diversification model.

    PubMed

    Drakos, Nicole E; Wahl, Lindi M

    2015-12-01

    Theoretical approaches are essential to our understanding of the complex dynamics of mobile genetic elements (MGEs) within genomes. Recently, the birth-death-diversification model was developed to describe the dynamics of mobile promoters (MPs), a particular class of MGEs in prokaryotes. A unique feature of this model is that genetic diversification of elements was included. To explore the implications of diversification on the longterm fate of MGE lineages, in this contribution we analyze the extinction probabilities, extinction times and equilibrium solutions of the birth-death-diversification model. We find that diversification increases both the survival and growth rate of MGE families, but the strength of this effect depends on the rate of horizontal gene transfer (HGT). We also find that the distribution of MGE families per genome is not necessarily monotonically decreasing, as observed for MPs, but may have a peak in the distribution that is related to the HGT rate. For MPs specifically, we find that new families have a high extinction probability, and predict that the number of MPs is increasing, albeit at a very slow rate. Additionally, we develop an extension of the birth-death-diversification model which allows MGEs in different regions of the genome, for example coding and non-coding, to be described by different rates. This extension may offer a potential explanation as to why the majority of MPs are located in non-promoter regions of the genome. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.

    PubMed

    Reisetter, Anna C; Muehlbauer, Michael J; Bain, James R; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L; Scholtens, Denise M

    2017-02-02

    Metabolomics offers a unique integrative perspective for health research, reflecting genetic and environmental contributions to disease-related phenotypes. Identifying robust associations in population-based or large-scale clinical studies demands large numbers of subjects and therefore sample batching for gas-chromatography/mass spectrometry (GC/MS) non-targeted assays. When run over weeks or months, technical noise due to batch and run-order threatens data interpretability. Application of existing normalization methods to metabolomics is challenged by unsatisfied modeling assumptions and, notably, failure to address batch-specific truncation of low abundance compounds. To curtail technical noise and make GC/MS metabolomics data amenable to analyses describing biologically relevant variability, we propose mixture model normalization (mixnorm) that accommodates truncated data and estimates per-metabolite batch and run-order effects using quality control samples. Mixnorm outperforms other approaches across many metrics, including improved correlation of non-targeted and targeted measurements and superior performance when metabolite detectability varies according to batch. For some metrics, particularly when truncation is less frequent for a metabolite, mean centering and median scaling demonstrate comparable performance to mixnorm. When quality control samples are systematically included in batches, mixnorm is uniquely suited to normalizing non-targeted GC/MS metabolomics data due to explicit accommodation of batch effects, run order and varying thresholds of detectability. Especially in large-scale studies, normalization is crucial for drawing accurate conclusions from non-targeted GC/MS metabolomics data.

  2. Decision making generalized by a cumulative probability weighting function

    NASA Astrophysics Data System (ADS)

    dos Santos, Lindomar Soares; Destefano, Natália; Martinez, Alexandre Souto

    2018-01-01

    Typical examples of intertemporal decision making involve situations in which individuals must choose between a smaller reward, but more immediate, and a larger one, delivered later. Analogously, probabilistic decision making involves choices between options whose consequences differ in relation to their probability of receiving. In Economics, the expected utility theory (EUT) and the discounted utility theory (DUT) are traditionally accepted normative models for describing, respectively, probabilistic and intertemporal decision making. A large number of experiments confirmed that the linearity assumed by the EUT does not explain some observed behaviors, as nonlinear preference, risk-seeking and loss aversion. That observation led to the development of new theoretical models, called non-expected utility theories (NEUT), which include a nonlinear transformation of the probability scale. An essential feature of the so-called preference function of these theories is that the probabilities are transformed by decision weights by means of a (cumulative) probability weighting function, w(p) . We obtain in this article a generalized function for the probabilistic discount process. This function has as particular cases mathematical forms already consecrated in the literature, including discount models that consider effects of psychophysical perception. We also propose a new generalized function for the functional form of w. The limiting cases of this function encompass some parametric forms already proposed in the literature. Far beyond a mere generalization, our function allows the interpretation of probabilistic decision making theories based on the assumption that individuals behave similarly in the face of probabilities and delays and is supported by phenomenological models.

  3. Convergence in High Probability of the Quantum Diffusion in a Random Band Matrix Model

    NASA Astrophysics Data System (ADS)

    Margarint, Vlad

    2018-06-01

    We consider Hermitian random band matrices H in d ≥slant 1 dimensions. The matrix elements H_{xy}, indexed by x, y \\in Λ \\subset Z^d, are independent, uniformly distributed random variable if |x-y| is less than the band width W, and zero otherwise. We update the previous results of the converge of quantum diffusion in a random band matrix model from convergence of the expectation to convergence in high probability. The result is uniformly in the size |Λ| of the matrix.

  4. An Analytical Model for Two-Order Asperity Degradation of Rock Joints Under Constant Normal Stiffness Conditions

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Wu, Wei; Li, Bo

    2018-05-01

    Jointed rock masses during underground excavation are commonly located under the constant normal stiffness (CNS) condition. This paper presents an analytical formulation to predict the shear behaviour of rough rock joints under the CNS condition. The dilatancy and deterioration of two-order asperities are quantified by considering the variation of normal stress. We separately consider the dilation angles of waviness and unevenness, which decrease to zero as the normal stress approaches the transitional stress. The sinusoidal function naturally yields the decay of dilation angle as a function of relative normal stress. We assume that the magnitude of transitional stress is proportionate to the square root of asperity geometric area. The comparison between the analytical prediction and experimental data shows the reliability of the analytical model. All the parameters involved in the analytical model possess explicit physical meanings and are measurable from laboratory tests. The proposed model is potentially practicable for assessing the stability of underground structures at various field scales.

  5. On the probability of cure for heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Hanin, Leonid; Zaider, Marco

    2014-07-01

    The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.

  6. Gravity and count probabilities in an expanding universe

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Hernquist, Lars

    1992-01-01

    The time evolution of nonlinear clustering on large scales in cold dark matter, hot dark matter, and white noise models of the universe is investigated using N-body simulations performed with a tree code. Count probabilities in cubic cells are determined as functions of the cell size and the clustering state (redshift), and comparisons are made with various theoretical models. We isolate the features that appear to be the result of gravitational instability, those that depend on the initial conditions, and those that are likely a consequence of numerical limitations. More specifically, we study the development of skewness, kurtosis, and the fifth moment in relation to variance, the dependence of the void probability on time as well as on sparseness of sampling, and the overall shape of the count probability distribution. Implications of our results for theoretical and observational studies are discussed.

  7. Neurophysiological model of the normal and abnormal human pupil

    NASA Technical Reports Server (NTRS)

    Krenz, W.; Robin, M.; Barez, S.; Stark, L.

    1985-01-01

    Anatomical, experimental, and computer simulation studies were used to determine the structure of the neurophysiological model of the pupil size control system. The computer simulation of this model demonstrates the role played by each of the elements in the neurological pathways influencing the size of the pupil. Simulations of the effect of drugs and common abnormalities in the system help to illustrate the workings of the pathways and processes involved. The simulation program allows the user to select pupil condition (normal or an abnormality), specific site along the neurological pathway (retina, hypothalamus, etc.) drug class input (barbiturate, narcotic, etc.), stimulus/response mode, display mode, stimulus type and input waveform, stimulus or background intensity and frequency, the input and output conditions, and the response at the neuroanatomical site. The model can be used as a teaching aid or as a tool for testing hypotheses regarding the system.

  8. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  9. Probability machines: consistent probability estimation using nonparametric learning machines.

    PubMed

    Malley, J D; Kruppa, J; Dasgupta, A; Malley, K G; Ziegler, A

    2012-01-01

    Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications.

  10. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  11. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states.

    PubMed

    García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  12. UQ for Decision Making: How (at least five) Kinds of Probability Might Come Into Play

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the

  13. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  14. Scale-Invariant Transition Probabilities in Free Word Association Trajectories

    PubMed Central

    Costa, Martin Elias; Bonomo, Flavia; Sigman, Mariano

    2009-01-01

    Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16% of order-2 cycles) implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼7 steps) which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution. PMID:19826622

  15. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  16. The estimation of tree posterior probabilities using conditional clade probability distributions.

    PubMed

    Larget, Bret

    2013-07-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample.

  17. Investigation into the Use of Normal and Half-Normal Plots for Interpreting Results from Screening Experiments.

    DTIC Science & Technology

    1987-03-25

    by Lloyd (1952) using generalized least squares instead of ordinary least squares, and by Wilk, % 20 Gnanadesikan , and Freeny (1963) using a maximum...plot. The half-normal distribution is a special case of the gamma distribution proposed by Wilk, Gnanadesikan , and Huyett (1962). VARIATIONS ON THE... Gnanadesikan , R. Probability plotting methods for the analysis of data. Biometrika, 1968, 55, 1-17. This paper describes and discusses graphical techniques

  18. Exit probability of the one-dimensional q-voter model: Analytical results and simulations for large networks

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2014-05-01

    We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.

  19. Fire-probability maps for the Brazilian Amazonia

    NASA Astrophysics Data System (ADS)

    Cardoso, M.; Nobre, C.; Obregon, G.; Sampaio, G.

    2009-04-01

    Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.

  20. Fire-probability maps for the Brazilian Amazonia

    NASA Astrophysics Data System (ADS)

    Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos

    2010-05-01

    Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.

  1. Comparison of model estimated and measured direct-normal solar irradiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halthore, R.N.; Schwartz, S.E.; Michalsky, J.J.

    1997-12-01

    Direct-normal solar irradiance (DNSI), the energy in the solar spectrum incident in unit time at the Earth{close_quote}s surface on a unit area perpendicular to the direction to the Sun, depends only on atmospheric extinction of solar energy without regard to the details of the extinction, whether absorption or scattering. Here we report a set of closure experiments performed in north central Oklahoma in April 1996 under cloud-free conditions, wherein measured atmospheric composition and aerosol optical thickness are input to a radiative transfer model, MODTRAN 3, to estimate DNSI, which is then compared with measured values obtained with normal incidence pyrheliometersmore » and absolute cavity radiometers. Uncertainty in aerosol optical thickness (AOT) dominates the uncertainty in DNSI calculation. AOT measured by an independently calibrated Sun photometer and a rotating shadow-band radiometer agree to within the uncertainties of each measurement. For 36 independent comparisons the agreement between measured and model-estimated values of DNSI falls within the combined uncertainties in the measurement (0.3{endash}0.7{percent}) and model calculation (1.8{percent}), albeit with a slight average model underestimate ({minus}0.18{plus_minus}0.94){percent}; for a DNSI of 839Wm{sup {minus}2} this corresponds to {minus}1.5{plus_minus}7.9Wm{sup {minus}2}. The agreement is nearly independent of air mass and water-vapor path abundance. These results thus establish the accuracy of the current knowledge of the solar spectrum, its integrated power, and the atmospheric extinction as a function of wavelength as represented in MODTRAN 3. An important consequence is that atmospheric absorption of short-wave energy is accurately parametrized in the model to within the above uncertainties. {copyright} 1997 American Geophysical Union« less

  2. Physical models for the normal YORP and diurnal Yarkovsky effects

    NASA Astrophysics Data System (ADS)

    Golubov, O.; Kravets, Y.; Krugly, Yu. N.; Scheeres, D. J.

    2016-06-01

    We propose an analytic model for the normal Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) and diurnal Yarkovsky effects experienced by a convex asteroid. Both the YORP torque and the Yarkovsky force are expressed as integrals of a universal function over the surface of an asteroid. Although in general this function can only be calculated numerically from the solution of the heat conductivity equation, approximate solutions can be obtained in quadratures for important limiting cases. We consider three such simplified models: Rubincam's approximation (zero heat conductivity), low thermal inertia limit (including the next order correction and thus valid for small heat conductivity), and high thermal inertia limit (valid for large heat conductivity). All three simplified models are compared with the exact solution.

  3. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  4. Models of multidimensional discrete distribution of probabilities of random variables in information systems

    NASA Astrophysics Data System (ADS)

    Gromov, Yu Yu; Minin, Yu V.; Ivanova, O. G.; Morozova, O. N.

    2018-03-01

    Multidimensional discrete distributions of probabilities of independent random values were received. Their one-dimensional distribution is widely used in probability theory. Producing functions of those multidimensional distributions were also received.

  5. Buried landmine detection using multivariate normal clustering

    NASA Astrophysics Data System (ADS)

    Duston, Brian M.

    2001-10-01

    A Bayesian classification algorithm is presented for discriminating buried land mines from buried and surface clutter in Ground Penetrating Radar (GPR) signals. This algorithm is based on multivariate normal (MVN) clustering, where feature vectors are used to identify populations (clusters) of mines and clutter objects. The features are extracted from two-dimensional images created from ground penetrating radar scans. MVN clustering is used to determine the number of clusters in the data and to create probability density models for target and clutter populations, producing the MVN clustering classifier (MVNCC). The Bayesian Information Criteria (BIC) is used to evaluate each model to determine the number of clusters in the data. An extension of the MVNCC allows the model to adapt to local clutter distributions by treating each of the MVN cluster components as a Poisson process and adaptively estimating the intensity parameters. The algorithm is developed using data collected by the Mine Hunter/Killer Close-In Detector (MH/K CID) at prepared mine lanes. The Mine Hunter/Killer is a prototype mine detecting and neutralizing vehicle developed for the U.S. Army to clear roads of anti-tank mines.

  6. Trial type probability modulates the cost of antisaccades

    PubMed Central

    Chiau, Hui-Yan; Tseng, Philip; Su, Jia-Han; Tzeng, Ovid J. L.; Hung, Daisy L.; Muggleton, Neil G.

    2011-01-01

    The antisaccade task, where eye movements are made away from a target, has been used to investigate the flexibility of cognitive control of behavior. Antisaccades usually have longer saccade latencies than prosaccades, the so-called antisaccade cost. Recent studies have shown that this antisaccade cost can be modulated by event probability. This may mean that the antisaccade cost can be reduced, or even reversed, if the probability of surrounding events favors the execution of antisaccades. The probabilities of prosaccades and antisaccades were systematically manipulated by changing the proportion of a certain type of trial in an interleaved pro/antisaccades task. We aimed to disentangle the intertwined relationship between trial type probabilities and the antisaccade cost with the ultimate goal of elucidating how probabilities of trial types modulate human flexible behaviors, as well as the characteristics of such modulation effects. To this end, we examined whether implicit trial type probability can influence saccade latencies and also manipulated the difficulty of cue discriminability to see how effects of trial type probability would change when the demand on visual perceptual analysis was high or low. A mixed-effects model was applied to the analysis to dissect the factors contributing to the modulation effects of trial type probabilities. Our results suggest that the trial type probability is one robust determinant of antisaccade cost. These findings highlight the importance of implicit probability in the flexibility of cognitive control of behavior. PMID:21543748

  7. Evaluation of joint probability density function models for turbulent nonpremixed combustion with complex chemistry

    NASA Technical Reports Server (NTRS)

    Smith, N. S. A.; Frolov, S. M.; Bowman, C. T.

    1996-01-01

    Two types of mixing sub-models are evaluated in connection with a joint-scalar probability density function method for turbulent nonpremixed combustion. Model calculations are made and compared to simulation results for homogeneously distributed methane-air reaction zones mixing and reacting in decaying turbulence within a two-dimensional enclosed domain. The comparison is arranged to ensure that both the simulation and model calculations a) make use of exactly the same chemical mechanism, b) do not involve non-unity Lewis number transport of species, and c) are free from radiation loss. The modified Curl mixing sub-model was found to provide superior predictive accuracy over the simple relaxation-to-mean submodel in the case studied. Accuracy to within 10-20% was found for global means of major species and temperature; however, nitric oxide prediction accuracy was lower and highly dependent on the choice of mixing sub-model. Both mixing submodels were found to produce non-physical mixing behavior for mixture fractions removed from the immediate reaction zone. A suggestion for a further modified Curl mixing sub-model is made in connection with earlier work done in the field.

  8. Probability Forecasting Using Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Duncan, M.; Frisbee, J.; Wysack, J.

    2014-09-01

    collision probability distribution given known, predicted uncertainty. This paper presents the details of the collision probability forecasting method. We examine various conjunction event scenarios and numerically demonstrate the utility of this approach in typical event scenarios. We explore the utility of a probability-based track scenario simulation that models expected tracking data frequency as the tasking levels are increased. The resulting orbital uncertainty is subsequently used in the forecasting algorithm.

  9. Improved Discovery of Molecular Interactions in Genome-Scale Data with Adaptive Model-Based Normalization

    PubMed Central

    Brown, Patrick O.

    2013-01-01

    Background High throughput molecular-interaction studies using immunoprecipitations (IP) or affinity purifications are powerful and widely used in biology research. One of many important applications of this method is to identify the set of RNAs that interact with a particular RNA-binding protein (RBP). Here, the unique statistical challenge presented is to delineate a specific set of RNAs that are enriched in one sample relative to another, typically a specific IP compared to a non-specific control to model background. The choice of normalization procedure critically impacts the number of RNAs that will be identified as interacting with an RBP at a given significance threshold – yet existing normalization methods make assumptions that are often fundamentally inaccurate when applied to IP enrichment data. Methods In this paper, we present a new normalization methodology that is specifically designed for identifying enriched RNA or DNA sequences in an IP. The normalization (called adaptive or AD normalization) uses a basic model of the IP experiment and is not a variant of mean, quantile, or other methodology previously proposed. The approach is evaluated statistically and tested with simulated and empirical data. Results and Conclusions The adaptive (AD) normalization method results in a greatly increased range in the number of enriched RNAs identified, fewer false positives, and overall better concordance with independent biological evidence, for the RBPs we analyzed, compared to median normalization. The approach is also applicable to the study of pairwise RNA, DNA and protein interactions such as the analysis of transcription factors via chromatin immunoprecipitation (ChIP) or any other experiments where samples from two conditions, one of which contains an enriched subset of the other, are studied. PMID:23349766

  10. The 2011 M = 9.0 Tohoku oki earthquake more than doubled the probability of large shocks beneath Tokyo

    USGS Publications Warehouse

    Toda, Shinji; Stein, Ross S.

    2013-01-01

    1] The Kanto seismic corridor surrounding Tokyo has hosted four to five M ≥ 7 earthquakes in the past 400 years. Immediately after the Tohoku earthquake, the seismicity rate in the corridor jumped 10-fold, while the rate of normal focal mechanisms dropped in half. The seismicity rate decayed for 6–12 months, after which it steadied at three times the pre-Tohoku rate. The seismicity rate jump and decay to a new rate, as well as the focal mechanism change, can be explained by the static stress imparted by the Tohoku rupture and postseismic creep to Kanto faults. We therefore fit the seismicity observations to a rate/state Coulomb model, which we use to forecast the time-dependent probability of large earthquakes in the Kanto seismic corridor. We estimate a 17% probability of a M ≥ 7.0 shock over the 5 year prospective period 11 March 2013 to 10 March 2018, two-and-a-half times the probability had the Tohoku earthquake not struck

  11. Development of Thresholds and Exceedance Probabilities for Influent Water Quality to Meet Drinking Water Regulations

    NASA Astrophysics Data System (ADS)

    Reeves, K. L.; Samson, C.; Summers, R. S.; Balaji, R.

    2017-12-01

    Drinking water treatment utilities (DWTU) are tasked with the challenge of meeting disinfection and disinfection byproduct (DBP) regulations to provide safe, reliable drinking water under changing climate and land surface characteristics. DBPs form in drinking water when disinfectants, commonly chlorine, react with organic matter as measured by total organic carbon (TOC), and physical removal of pathogen microorganisms are achieved by filtration and monitored by turbidity removal. Turbidity and TOC in influent waters to DWTUs are expected to increase due to variable climate and more frequent fires and droughts. Traditional methods for forecasting turbidity and TOC require catchment specific data (i.e. streamflow) and have difficulties predicting them under non-stationary climate. A modelling framework was developed to assist DWTUs with assessing their risk for future compliance with disinfection and DBP regulations under changing climate. A local polynomial method was developed to predict surface water TOC using climate data collected from NOAA, Normalized Difference Vegetation Index (NDVI) data from the IRI Data Library, and historical TOC data from three DWTUs in diverse geographic locations. Characteristics from the DWTUs were used in the EPA Water Treatment Plant model to determine thresholds for influent TOC that resulted in DBP concentrations within compliance. Lastly, extreme value theory was used to predict probabilities of threshold exceedances under the current climate. Results from the utilities were used to produce a generalized TOC threshold approach that only requires water temperature and bromide concentration. The threshold exceedance model will be used to estimate probabilities of exceedances under projected climate scenarios. Initial results show that TOC can be forecasted using widely available data via statistical methods, where temperature, precipitation, Palmer Drought Severity Index, and NDVI with various lags were shown to be important

  12. Modeling Electronic Skin Response to Normal Distributed Force.

    PubMed

    Seminara, Lucia

    2018-02-03

    The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride) piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution) is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq's half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  13. Inverse probability weighting to control confounding in an illness-death model for interval-censored data.

    PubMed

    Gillaizeau, Florence; Sénage, Thomas; Le Borgne, Florent; Le Tourneau, Thierry; Roussel, Jean-Christian; Leffondrè, Karen; Porcher, Raphaël; Giraudeau, Bruno; Dantan, Etienne; Foucher, Yohann

    2018-04-15

    Multistate models with interval-censored data, such as the illness-death model, are still not used to any considerable extent in medical research regardless of the significant literature demonstrating their advantages compared to usual survival models. Possible explanations are their uncommon availability in classical statistical software or, when they are available, by the limitations related to multivariable modelling to take confounding into consideration. In this paper, we propose a strategy based on propensity scores that allows population causal effects to be estimated: the inverse probability weighting in the illness semi-Markov model with interval-censored data. Using simulated data, we validated the performances of the proposed approach. We also illustrated the usefulness of the method by an application aiming to evaluate the relationship between the inadequate size of an aortic bioprosthesis and its degeneration or/and patient death. We have updated the R package multistate to facilitate the future use of this method. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays.

    PubMed

    Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv

    2012-12-11

    Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement

  15. Hydrogeologic unit flow characterization using transition probability geostatistics.

    PubMed

    Jones, Norman L; Walker, Justin R; Carle, Steven F

    2005-01-01

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has some advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upward sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids and/or grids with nonuniform cell thicknesses.

  16. Future southcentral US wildfire probability due to climate change

    USGS Publications Warehouse

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  17. Performance of an inverted pendulum model directly applied to normal human gait.

    PubMed

    Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O

    2006-03-01

    In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.

  18. A comparative study of a theoretical neural net model with MEG data from epileptic patients and normal individuals.

    PubMed

    Kotini, A; Anninos, P; Anastasiadis, A N; Tamiolakis, D

    2005-09-07

    The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals. Our experimental study population included 10 epilepsy sufferers and 10 healthy subjects. The recordings were obtained with a one-channel biomagnetometer SQUID in a magnetically shielded room. Using the method of x2-fitting it was found that the MEG amplitudes in epileptic patients and normal subjects had Poisson and Gauss distributions respectively. The Poisson connectivity derived from the theoretical neural model represents the state of epilepsy, whereas the Gauss connectivity represents normal behavior. The MEG data obtained from epileptic areas had higher amplitudes than the MEG from normal regions and were comparable with the theoretical magnetic fields from Poisson and Gauss distributions. Furthermore, the magnetic field derived from the theoretical model had amplitudes in the same order as the recorded MEG from the 20 participants. The approximation of the theoretical neural net model with real MEG data provides information about the structure of the brain function in epileptic and normal states encouraging further studies to be conducted.

  19. Heuristics can produce surprisingly rational probability estimates: Comment on Costello and Watts (2014).

    PubMed

    Nilsson, Håkan; Juslin, Peter; Winman, Anders

    2016-01-01

    Costello and Watts (2014) present a model assuming that people's knowledge of probabilities adheres to probability theory, but that their probability judgments are perturbed by a random noise in the retrieval from memory. Predictions for the relationships between probability judgments for constituent events and their disjunctions and conjunctions, as well as for sums of such judgments were derived from probability theory. Costello and Watts (2014) report behavioral data showing that subjective probability judgments accord with these predictions. Based on the finding that subjective probability judgments follow probability theory, Costello and Watts (2014) conclude that the results imply that people's probability judgments embody the rules of probability theory and thereby refute theories of heuristic processing. Here, we demonstrate the invalidity of this conclusion by showing that all of the tested predictions follow straightforwardly from an account assuming heuristic probability integration (Nilsson, Winman, Juslin, & Hansson, 2009). We end with a discussion of a number of previous findings that harmonize very poorly with the predictions by the model suggested by Costello and Watts (2014). (c) 2015 APA, all rights reserved).

  20. Inherent limitations of probabilistic models for protein-DNA binding specificity

    PubMed Central

    Ruan, Shuxiang

    2017-01-01

    The specificities of transcription factors are most commonly represented with probabilistic models. These models provide a probability for each base occurring at each position within the binding site and the positions are assumed to contribute independently. The model is simple and intuitive and is the basis for many motif discovery algorithms. However, the model also has inherent limitations that prevent it from accurately representing true binding probabilities, especially for the highest affinity sites under conditions of high protein concentration. The limitations are not due to the assumption of independence between positions but rather are caused by the non-linear relationship between binding affinity and binding probability and the fact that independent normalization at each position skews the site probabilities. Generally probabilistic models are reasonably good approximations, but new high-throughput methods allow for biophysical models with increased accuracy that should be used whenever possible. PMID:28686588