Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.
Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity wasmore » assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.« less
The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.
Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T
2008-12-01
Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.
Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.
Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A
2018-05-01
Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.
Zhao, Fu-Jun; Han, Bang-Min; Yu, Sheng-Qiang; Xia, Shu-Jie
2009-01-01
This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-β1 (TGF-β1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma–epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation. PMID:19122679
Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping
2017-09-01
Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...
Investigation of c-KIT and Ki67 expression in normal, preneoplastic and neoplastic canine prostate.
Fonseca-Alves, Carlos Eduardo; Kobayashi, Priscilla Emiko; Palmieri, Chiara; Laufer-Amorim, Renée
2017-12-06
c-KIT expression has been related to bone metastasis in human prostate cancer, but whether c-KIT expression can be similarly classified in canine prostatic tissue is unknown. This study assessed c-KIT and Ki67 expression in canine prostate cancer (PC). c-KIT gene and protein expression and Ki67 expression were evaluated in forty-four canine prostatic tissues by immunohistochemistry, RT-qPCR and western blot. Additionally, we have investigated c-KIT protein expression by immunoblotting in two primary canine prostate cancer cell lines. Eleven normal prostates, 12 proliferative inflammatory atrophy (PIA) prostates, 18 PC, 3 metastatic lesions and two prostate cancer cell cultures (PC1 and PC2) were analysed. The prostatic tissue exhibited varying degrees of membranous, cytoplasmic or membranous/cytoplasmic c-KIT staining. Four normal prostates, 4 PIA and 5 prostatic carcinomas showed positive c-KIT expression. No c-KIT immunoexpression was observed in metastases. Canine prostate cancer and PIA samples contained a higher number of Ki67-positive cells compared to normal samples. The median relative quantification (RQ) for c-KIT expression in normal, PIA and prostate cancer and metastatic samples were 0.6 (0.1-2.5), 0.7 (0.09-2.1), 0.7 (0.09-5.1) and 0.1 (0.07-0.6), respectively. A positive correlation between the number of Ki67-positive cells and c-KIT transcript levels was observed in prostate cancer samples. In the cell line, PC1 was negative for c-KIT protein expression, while PC2 was weakly positive. The present study identified a strong correlation between c-KIT expression and proliferative index, suggesting that c-KIT may influence cell proliferation. Therefore, c-KIT heterogeneous protein expression among the samples (five positive and thirteen negative prostate cancer samples) indicates a personalized approach for canine prostate cancer.
Androgen Receptor Content of the Normal and Hyperplastic Canine Prostate
Shain, Sydney A.; Boesel, Robert W.
1978-01-01
A procedure was developed for measurement of androgen receptors in cytoplasmic extracts of prostates from intact dogs. The protocol utilized exchange saturation analysis at 15°C employing the synthetic androgen R1881 (17β-hydroxy-17α-methylestra-4,9,11-trien-3-one) as the ligand probe and quantitatively detected total cytoplasmic androgen receptor (Rc, androgen-free receptor, and RcA, androgen-occupied receptor) present at the initiation of the assay. This protocol was employed in conjunction with a tissue mince saturation analysis procedure (for quantitation of nuclear androgen receptor) to quantitate total androgen receptor content of normal and hyperplastic prostates obtained from young (2.5- or 4.6-yr old) and aged (12.5-yr old) purebred dogs of known birth date. The total cytoplasmic androgen receptor content (picomoles per prostate) of hyperplastic prostates was 4.6-fold greater than that of normal prostates. The total nuclear androgen receptor content of hyperplastic prostates (picomoles per prostate measured in crude nuclear preparations) was either 5.0- (4.6-yr-old dogs) or 7.8-fold (2.5-yr-old dogs) greater than that of normal prostates. However, androgen receptor content per cell was identical for hyperplastic and normal canine prostates, with the exception that nuclear androgen receptor was diminished in prostates from 2.5-yr-old dogs. The cell content per gram dry weight was identical for hyperplastic and normal canine prostates. We conclude that canine prostate hyperplasia is characterized by coordinate proliferation of androgen receptor-positive and androgen receptor-negative cells and is not a consequence of increased accumulation of 5α-dihydrotestosterone due to proliferation of androgen receptors per prostate cell. PMID:76635
De novo steroid biosynthesis in human prostate cell lines and biopsies.
Sakai, Monica; Martinez-Arguelles, Daniel B; Aprikian, Armen G; Magliocco, Anthony M; Papadopoulos, Vassilios
2016-05-01
Intratumoral androgen formation may be a factor in the development of prostate cancer (PCa), particularly castration-resistant prostate cancer (CRPC). To evaluate the ability of the human prostate to synthesize de novo steroids, we examined the expression of key enzymes and proteins involved in steroid biosynthesis and metabolism. Using TissueScan™ Cancer qPCR Arrays and quantitative RT-PCR, we performed comparative gene expression analyses between various prostate cell lines and biopsies, including normal, hyperplastic, cancerous, and androgen-deprived prostate cells lines, as well as normal, benign prostate hyperplasia (BPH), PCa, and CRPC human specimens. These studies were complemented with steroid biosynthesis studies in normal and BPH cells. Normal human prostate WPMY-1 and WPE1-NA22, benign prostate hyperplasia BPH-1, and cancer PC-3, LNCaP, and VCaP cell lines, as well as normal, BPH, PCa, and CRPC specimens, were used. Although all cell lines express mRNA encoding for hydroxymethylglutaryl-CoA reductase (HMGCR), the mitochondrial translocator protein TSPO and cholesterol side chain cleavage enzyme CYP11A1 were only observed in WPMY-1, BPH-1, and LNCaP cells. HSD3B1, HSD3B2, and CYP17A1 are involved in androgen formation and were not found in most cell lines. WPE1-NA22 and BPH-1 cells were unable to synthesize de novo steroids from mevalonate. Moreover, androgen-deprived cells did not have alterations in the expression of enzymes that could lead to de novo steroid formation. All prostate specimens expressed TSPO and CYP11A1. HSD3B1/2, CYP17A1, HSD17B5, and CYP19A1 mRNA expression was distinct to the profile observed in cells lines. The majority of BPH (90.9%) and PCa (83.1%) specimens contained CYP17A1, compared to control (normal) specimens (46.7%). BPH (82%), PCa (59%), normal (40%), and CRPC (34%) specimens expressed the four key enzymes that metabolize cholesterol to androgens. These studies question the use of prostate cell lines to study steroid biosynthesis and demonstrate that human prostate samples contain transcripts encoding for key steroidogenic enzymes and proteins indicating that they have the potential to synthesize de novo steroids. We propose CYP17A1 as a candidate enzyme that can be used for patient stratification and treatment in BPH and PCa. © 2016 Wiley Periodicals, Inc.
Sharpe, Benjamin; Alghezi, Dhafer A; Cattermole, Claire; Beresford, Mark; Bowen, Rebecca; Mitchard, John; Chalmers, Andrew D
2017-05-01
There is a pressing need to identify prognostic and predictive biomarkers for prostate cancer to aid treatment decisions in both early and advanced disease settings. Syndecan-1, a heparan sulfate proteoglycan, has been previously identified as a potential prognostic biomarker by multiple studies at the tissue and serum level. However, other studies have questioned its utility. Anti-Syndecan-1 immunohistochemistry was carried out on 157 prostate tissue samples (including cancerous, adjacent normal tissue, and non-diseased prostate) from three independent cohorts of patients. A population of Syndecan-1 positive stromal cells was identified and the number and morphological parameters of these cells quantified. The identity of the Syndecan-1-positive stromal cells was assessed by multiplex immunofluorescence using a range of common cell lineage markers. Finally, the burden of Syndecan-1 positive stromal cells was tested for association with clinical parameters. We identified a previously unreported cell type which is marked by Syndecan-1 expression and is found in the stroma of prostate tumors and adjacent normal tissue but not in non-diseased prostate. We call these cells Prostate Cancer Syndecan-1 Positive (PCSP) cells. Immunofluorescence analysis revealed that the PCSP cell population did not co-stain with markers of common prostate epithelial, stromal, or immune cell populations. However, morphological analysis revealed that PCSP cells are often elongated and displayed prominent lamellipodia, suggesting they are an unidentified migratory cell population. Analysis of clinical parameters showed that PCSP cells were found with a frequency of 20-35% of all tumors evaluated, but were not present in non-diseased normal tissue. Interestingly, a subset of primary Gleason 5 prostate tumors had a high burden of PCSP cells. The current study identifies PCSP cells as a novel, potentially migratory cell type, which is marked by Syndecan-1 expression and is found in the stroma of prostate carcinomas, adjacent normal tissue, but not in non-diseased prostate. A subset of poor prognosis high Gleason grade 5 tumors had a particularly high PCSP cell burden, suggesting an association between this unidentified cell type and tumor aggressiveness. © 2017 Wiley Periodicals, Inc.
Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.
2015-01-01
BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731
Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.
Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C
2015-06-15
The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.
2009-05-01
contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate
An ESIPT fluorescent probe sensitive to protein α-helix structures.
Jiang, Nan; Yang, Chanli; Dong, Xiongwei; Sun, Xianglang; Zhang, Dan; Liu, Changlin
2014-07-28
A large majority of membrane proteins have one or more transmembrane regions consisting of α-helices. Membrane protein levels differ from one type of cell to another, and the expression of membrane proteins also changes from normal to diseased cells. For example, prostate cancer cells have been reported to have downregulated expression of membrane proteins, including zinc transporters, compared with normal prostate cells. These reports inspired us to design a fluorescence probe sensitive to protein α-helical structures to discriminate individual prostate cancer cells from normal ones. A benzazole derivative ( in this study) was observed to emit strong fluorescence resulting from an excited-state intramolecular proton transfer (ESIPT) in protein α-helical environments. The intensity of ESIPT fluorescence of was observed to be positively correlated with the α-helix content of proteins. The molecular docking simulation suggested that it had low energy for the binding of to proteins when the binding sites were localized within the α-helical regions of protein via H-bonds. Furthermore, was found to be localized in cell membranes through binding to transmembrane α-helical regions of membrane proteins, and was capable of probing differences in the α-helix contents of membrane proteins between normal and cancerous prostate cells through changes in the ESIPT emission intensity. These results indicated that could distinguish individual prostate cancer cells from normal ones, as the changes in the ESIPT fluorescence intensity of could reflect the regulation in expression of the membrane proteins including zinc transporters. This recognition strategy of individual prostate cancer cells might contribute to early diagnosis techniques for prostate cancer.
Barber, Alison G.; Castillo-Martin, Mireia; Bonal, Dennis M.; Rybicki, Benjamin A.; Christiano, Angela M.; Cordon-Cardo, Carlos
2014-01-01
Purpose The expression of desmogleins (DSGs), which are known to be crucial for establishing and maintaining the cell-cell adhesion required for tissue integrity, has been well characterized in the epidermis and hair follicle; however, their expression in other epithelial tissues such as prostate is poorly understood. Although downregulation of classical cadherins, such as E-cadherin, has been described in prostate cancer tissue samples, the expression of desmogleins has only been previously reported in prostate cancer cell lines. In this study we characterized desmoglein expression in normal prostate tissues, and further investigated whether Desmoglein 2 (DSG2) expression specifically can serve as a potential clinical prognostic factor for patients diagnosed with primary prostate cancer. Experimental Design We utilized immunofluorescence to examine DSG2 expression in normal prostate (n = 50) and in a clinically well-characterized cohort of prostate cancer patients (n = 414). Correlation of DSG2 expression with clinico-pathological characteristics and biochemical recurrence was analyzed to assess its clinical significance. Results These studies revealed that DSG2 and DSG4 were specifically expressed in prostatic luminal cells, whereas basal cells lack their expression. In contrast, DSG1 and DSG3 were not expressed in normal prostate epithelium. Further analyses of DSG2 expression in prostate cancer revealed that reduced levels of this biomarker were a significant independent marker of poor clinical outcome. Conclusion Here we report for the first time that a low DSG2 expression phenotype is a useful prognostic biomarker of tumor aggressiveness and may serve as an aid in identifying patients with clinically significant prostate cancer. PMID:24896103
Seim, Inge; Jeffery, Penny L; de Amorim, Laura; Walpole, Carina M; Fung, Jenny; Whiteside, Eliza J; Lourie, Rohan; Herington, Adrian C; Chopin, Lisa K
2013-07-23
Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.
A basal stem cell signature identifies aggressive prostate cancer phenotypes
Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.
2015-01-01
Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041
s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells
Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.
2016-01-01
Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082
Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease.
Welsh, Michelle; Moffat, Lindsey; McNeilly, Alan; Brownstein, David; Saunders, Philippa T K; Sharpe, Richard M; Smith, Lee B
2011-09-01
Androgen-driven stromal-epithelial interactions play a key role in normal prostate development and function as well as in the progression of common prostatic diseases such as benign prostatic hyperplasia and prostate cancer. However, exactly how, and via which cell type, androgens mediate their effects in the adult prostate remains unclear. This study investigated the role for smooth muscle (SM) androgen signaling in normal adult prostate homeostasis and function using mice in which androgen receptor was selectively ablated from prostatic SM cells. In adulthood the knockout (KO) mice displayed a 44% reduction in prostate weight and exhibited histological abnormalities such as hyperplasia, inflammation, fibrosis, and reduced expression of epithelial, SM, and stem cell identify markers (e.g. p63 reduced by 27% and Pten by 31%). These changes emerged beyond puberty and were not explained by changes in serum hormones. Furthermore, in response to exogenous estradiol, adult KO mice displayed an 8.5-fold greater increase in prostate weight than controls and developed urinary retention. KO mice also demonstrated a reduced response to castration compared with controls. Together these results demonstrate that prostate SM cells are vital in mediating androgen-driven stromal-epithelial interactions in adult mouse prostates, determining cell identity and function and limiting hormone-dependent epithelial cell proliferation. This novel mouse model provides new insight into the possible role for SM androgen action in prostate disease.
Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer
Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.
2013-01-01
Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489
Glycosylation potential of human prostate cancer cell lines
Gao, Yin; Chachadi, Vishwanath B.; Cheng, Pi-Wan
2014-01-01
Altered glycosylation is a universal feature of cancer cells and altered glycans can help cancer cells escape immune surveillance, facilitate tumor invasion, and increase malignancy. The goal of this study was to identify specific glycoenzymes, which could distinguish prostate cancer cells from normal prostatic cells. We investigated enzymatic activities and gene expression levels of key glycosyl- and sulfotransferases responsible for the assembly of O- and N-glycans in several prostatic cells. These cells included immortalized RWPE-1 cells derived from normal prostatic tissues, and prostate cancer cells derived from metastasis in bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP). We found that all cells were capable of synthesizing complex N-glycans and O-glycans with the core 1 structure, and each cell line had characteristic bio-synthetic pathways to modify these structures. The in vitro measured activities corresponded well to the mRNA levels of glycosyltransferases and sulfotransferases. Lectin and antibody binding to whole cells supported these results, which form the basis for the development of tumor cell-specific targeting strategies. PMID:22843320
Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A
2017-10-01
The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Shigemura, Katsumi; Huang, Wen-Chin; Li, Xiangyan; Zhau, Haiyen E.; Zhu, Guodong; Gotoh, Akinobu; Fujisawa, Masato; Xie, Jingwu; Marshall, Fray F.; Chung, Leland W. K.
2012-01-01
BACKGROUND Sonic hedgehog (Shh) signaling plays a pivotal role in stromal-epithelial interaction during normal development but its role in tumor-stromal interaction during carcinogenic progression is less well defined. Since hormone refractory prostate cancer with bone metastasis is difficult to treat, it is crucial to investigate how androgen independent (AI) human prostate cancer cells communicate with their associated stroma. METHODS Shh and its target transcription factor, Gli1 mRNA, were assessed by RT-PCR and/or quantitative RT-PCR in co-cultured cell recombinants comprised of AI C4-2 either with NPF (prostate fibroblasts from normal/benign prostate gland) or CPF cancer-associated stromal fibroblasts) under Shh/cyclopamine (a hedgehog signaling inhibitor) treatment. Human bone marrow stromal (HS27A) cells were used as controls. In vivo investigation was performed by checking serum PSA and immunohistochemical staining for the apoptosis-associated M30 gene in mice bearing chimeric C4-2/NPF tumors. RESULTS CONCLUSIONS Based on co-culture and chimeric tumor models, active Shh-mediated signaling was demonstrated between AI prostate cancer and NPF in a paracrine- and tumor progression-dependent manner. Our study suggests that drugs like cyclopamine that interfere with Shh signaling could be beneficial in preventing AI progression in prostate cancer cells. PMID:21520153
The expression of β3-adrenoceptors and their function in the human prostate.
Suzuki, Takahisa; Otsuka, Atsushi; Matsumoto, Rikiya; Furuse, Hiroshi; Ozono, Seiichiro
2016-02-01
Little is known about β3-adrenoceptor (AR) expression and function in human prostate. We examined the expression and distribution of β-AR subtypes in normal prostate and benign prostatic hyperplasia (BPH) tissues, and investigated which selective β-AR subtype agonist was most involved in the relaxation of isolated human prostate strips. Messenger RNA (mRNA) expression for β1-, β2-, and β3 -ARs was investigated using reverse transcriptase-polymerase chain reactions (RT-PCR). Quantitative analysis of mRNA expression of β-AR subtypes between normal prostate and BPH tissues was performed using quantitative RT-PCR (qPCR). Distributions were examined by immunohistochemistry (IHC). Strips of human normal prostate or BPH were suspended in organ baths and exposed to isoproterenol, dobutamine, procaterol, and TRK-380 to investigate their relaxant effects on KCl-induced contractions, and their inhibitory effects on electrical field stimulation (EFS)-induced contractions. We confirmed the presence of mRNA for β1-, β2-, and β3-ARs both in normal prostate and in BPH tissues. For β3-AR, mRNA expression in BPH tissues was significantly higher than in normal prostate tissues, but there was no significant difference in β1- and β2-AR expression between normal and BPH tissues. IHC revealed differences in staining intensity between smooth muscle cells and glandular cells, with different proportions for different β-AR subtypes. Staining of β3-AR was particularly intense in smooth muscle cells as opposed to glandular cells. Isoproterenol and TRK-380 significantly decreased the tone of KCl-induced contractions of the normal prostate strips. The rank order of relaxant effects was isoproterenol > TRK-380 > procaterol > dobutamine. All selective β-AR agonists significantly decreased the amplitude of EFS-induced contractions of the normal prostate strips. The rank order of inhibitory effects was isoproterenol > dobutamine >TRK-380 > procaterol. In BPH strips, all selective β-AR agonists showed no significant relaxant or inhibitory effects on KCl- or EFS-induced contractions. β3 -AR is abundant in human prostate smooth muscle, whose relaxation is mediated by β1- and β3-AR stimulation. β3-AR agonists may have clinical use in the treatment of male non-BPH patients or neurogenic bladder patients with voiding dysfunction. © 2015 Wiley Periodicals, Inc.
Nagle, R. B.; Hao, J.; Knox, J. D.; Dalkin, B. L.; Clark, V.; Cress, A. E.
1995-01-01
The progression of prostate carcinoma may be influenced by the biochemical nature of the basal lamina surrounding the primary carcinoma cells. As a first step toward understanding this process, the composition and structure of the basal lamina in normal prostate, prostatic intraepithelial neoplasia, and human carcinoma were determined. In addition, a comparison was made between the attachments of the normal basal cell to its underlying basal lamina and those made by primary prostate carcinoma. The normal basal cells form both focal adhesions and hemidesmosomal-like structures as observed by transmission electron microscopy. The normal basal cells exhibited a polarized distribution of hemidesmosomal associated proteins including BP180, BP230, HD1, plectin, laminin-gamma 2(B2t), collagen VII, and the corresponding integrin laminin receptors alpha 6 beta 1 and alpha 6 beta 4. The expression and distribution pattern of these proteins were retained in the prostate intraepithelial neoplasia lesions. In contrast, the carcinoma cells uniformly lacked hemidesmosomal structures, the integrin alpha 6 beta 4, BP180, laminin-gamma 2 (B2t), and collagen VII but did express BP230 (30%), plectin, HD1 (15%), and the integrin laminin receptors alpha 3 beta 1 and alpha 6 beta 1. These results suggest that, although a detectable basal lamina structure is present in carcinoma, its composition and cellular attachments are abnormal. The loss of critical cellular attachments may play a role in influencing the progression potential of prostate carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7778688
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Janmejai K.; Department of Urology, University Hospitals of Cleveland, Cleveland, OH 44106; Gupta, Sanjay
2006-07-28
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation inmore » all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.« less
2013-01-01
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function. PMID:23879975
Immortalization of human prostate epithelial cells by HPV 16 E6/E7 open reading frames.
Choo, C K; Ling, M T; Chan, K W; Tsao, S W; Zheng, Z; Zhang, D; Chan, L C; Wong, Y C
1999-08-01
The exact pathogenesis for prostate cancer is not known. Progress made in prostate cancer research has been slow, largely due to the lack of suitable in vitro models. Here, we report our work on the immortalization of a human prostate epithelial cell line and show that it can be used as a model to study prostate tumorigenesis. Replication-defective retrovirus harboring the human papillomavirus (HPV) type 16 E6 and E7 open reading frames was used to infect primary human prostate epithelial cells. Polymerase chain reaction, followed by Southern hybridization for the HPV 16 E6/E7, Western blot for prostatic acid phosphatase, telomeric repeat amplification protocol assay for telomerase activity, two-dimensional gels for cytokeratins, and cytogenetic analysis were undertaken to characterized the infected cells. The retrovirus-infected cell line, HPr-1, continued to grow in culture for more than 80 successive passages. Normal primary cells failed to proliferate after passage 6. HPr-1 cells bore close resemblance to normal primary prostate epithelial cells, both morphologically and biochemically. However, they possessed telomerase activity and proliferated indefinitely. Cytogenetic analysis of HPr-1 cells revealed a human male karyotype with clonal abnormalities and the appearance of multiple double minutes. The HPr-1 cells expressed prostatic acid phosphatase and cytokeratins K8 and K18, proving that they were prostate epithelial cells. They were benign in nude mice tumor formation and soft agar colony formation assay. The HPr-1 cell line is an in vitro representation of early prostate neoplastic progression. Copyright 1999 Wiley-Liss, Inc.
Chowdhury, Subir K R; Gemin, Adam; Singh, Gurmit
2005-08-12
Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelial cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.
A Rapid Filter Insert-based 3D Culture System for Primary Prostate Cell Differentiation
Tricoli, Lucas; Berry, Deborah L.; Albanese, Chris
2018-01-01
Conditionally reprogrammed cells (CRCs) provide a sustainable method for primary cell culture and the ability to develop extensive “living biobanks” of patient derived cell lines. For many types of epithelial cells, various three dimensional (3D) culture approaches have been described that support an improved differentiated state. While CRCs retain their lineage commitment to the tissue from which they are isolated, they fail to express many of the differentiation markers associated with the tissue of origin when grown under normal two dimensional (2D) culture conditions. To enhance the application of patient-derived CRCs for prostate cancer research, a 3D culture format has been defined that enables a rapid (2 weeks total) luminal cell differentiation in both normal and tumor-derived prostate epithelial cells. Herein, a filter insert-based format is described for the culturing and differentiation of both normal and malignant prostate CRCs. A detailed description of the procedures required for cell collection and processing for immunohistochemical and immunofluorescent staining are provided. Collectively the 3D culture format described, combined with the primary CRC lines, provides an important medium- to high- throughput model system for biospecimen-based prostate research. PMID:28287583
Proximal location of mouse prostate epithelial stem cells
Tsujimura, Akira; Koikawa, Yasuhiro; Salm, Sarah; Takao, Tetsuya; Coetzee, Sandra; Moscatelli, David; Shapiro, Ellen; Lepor, Herbert; Sun, Tung-Tien; Wilson, E. Lynette
2002-01-01
Stem cells are believed to regulate normal prostatic homeostasis and to play a role in the etiology of prostate cancer and benign prostatic hyperplasia. We show here that the proximal region of mouse prostatic ducts is enriched in a subpopulation of epithelial cells that exhibit three important attributes of epithelial stem cells: they are slow cycling, possess a high in vitro proliferative potential, and can reconstitute highly branched glandular ductal structures in collagen gels. We propose a model of prostatic homeostasis in which mouse prostatic epithelial stem cells are concentrated in the proximal region of prostatic ducts while the transit-amplifying cells occupy the distal region of the ducts. This model can account for many biological differences between cells of the proximal and distal regions, and has implications for prostatic disease formation. PMID:12082083
Timofeeva, Olga A.; Palechor-Ceron, Nancy; Li, Guanglei; Yuan, Hang; Krawczyk, Ewa; Zhong, Xiaogang; Liu, Geng; Upadhyay, Geeta; Dakic, Aleksandra; Yu, Songtao; Fang, Shuang; Choudhury, Sujata; Zhang, Xueping; Ju, Andrew; Lee, Myeong-Seon; Dan, Han C.; Ji, Youngmi; Hou, Yong; Zheng, Yun-Ling; Albanese, Chris; Rhim, Johng; Schlegel, Richard; Dritschilo, Anatoly; Liu, Xuefeng
2017-01-01
Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer. PMID:28009986
Song, Lingmin; Shen, Wenhao; Zhang, Heng; Wang, Qiwu; Wang, Yongquan; Zhou, Zhansong
2016-01-01
This study aimed to identify the differential expression levels of androgen receptor (AR), estrogen receptors (ERα, ERβ), and progesterone receptor (PGR) between normal prostate and benign prostatic hyperplasia (BPH). The combination of immunohistochemistry, quantitative real-time reverse transcription polymerase chain reaction, and Western blotting assay was used to identify the distribution and differential expression of these receptors at the immunoactive biomarker, transcriptional, and protein levels between 5 normal human prostate tissues and 40 BPH tissues. The results were then validated in a rat model of BPH induced by testosterone propionate and estradiol benzoate. In both human and rat prostate tissues, AR was localized mainly to epithelial and stromal cell nuclei; ERα was distributed mainly to stromal cells, but not exclusively; ERβ was interspersed in the basal layer of epithelium, but sporadically in epithelial and stromal cells; PGR was expressed abundantly in cytoplasm of epithelial and stromal cells. There were decreased expression of ERα and increased expression of PGR, but no difference in the expression of ERβ in the BPH compared to the normal prostate of both human and rat. Increased expression of AR in the BPH compared to the normal prostate of human was observed, however, the expression of AR in the rat prostate tissue was decreased. This study identified the activation of AR and PGR and repression of ERα in BPH, which indicate a promoting role of AR and PGR and an inhibitory role of ERα in the pathogenesis of BPH. PMID:27294569
NASA Astrophysics Data System (ADS)
Rehman, Shagufta; O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Chandra, Dhyan; Periasamy, Ammasi
2016-03-01
Fluorescence Lifetime Imaging (FLIM) can be used to understand the metabolic activity in cancer. Prostate cancer is one of the leading cancers in men in the USA. This research focuses on FLIM measurements of NAD(P)H and Tryptophan, used as biomarkers to understand the metabolic activity in prostate cancer cells. Two prostate cancers and one normal cell line were used for live-cell FLIM measurements on Zeiss780 2P confocal microscope with SPCM FLIM board. Glucose uptake and glycolysis proceeds about ten times faster in cancer than in non-cancerous tissues. Therefore, we assessed the glycolytic activity in the prostate cancer in comparison to the normal cells upon glucose stimulation by analyzing the NAD(P)H and Trp lifetime distribution and efficiency of energy transfer (E%). Furthermore, we treated the prostate cancer cells with 1μM Doxorubicin, a commonly used anti-cancer chemotherapeutic. Increase in NADH a2%, an indicator of increased glycolysis and increased E% between Trp and NAD(P)H were seen upon glucose stimulation for 30min. The magnitude of shift to the right for NAD(P)H a2% and E% distribution was higher in prostate cancer versus the normal cells. Upon treatment with Doxorubicin decrease in cellular metabolism was seen at 15 and 30 minutes. The histogram for NAD(P)H a2% post-treatment for prostate cancer cells showed a left shift compared to the untreated control suggesting decrease in glycolysis and metabolic activity opposite to what was observed after glucose stimulation. Hence, NAD(P)H and Trp lifetimes can be used biomarkers to understand metabolic activity in prostate cancer and upon chemotherapeutic interventions.
Miličević, Nevenka; Mrčela, Milanka; Galić, Josip; Marjanović, Ksenija
2015-11-01
Interleukin-6 (IL-6) has been associated with the development of prostate cancer. The aim of the study was to clarify whether IL-6 expression in prostate tissue could be a useful marker in differentiation of prostate diseases in small foci by pathologist visual scoring. Archival paraffin-embedded specimens of benign prostate hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (PIN), prostatitis and prostate adenocarcinoma were studied by immunohistochemistry with a mouse monoclonal antibody IL-6 using the streptavidin-biotin method. Significantly, lower IL-6 immunoreactivity was observed in normal epithelial cells (p=0.000) and basal cells (p=0.000) in the samples of prostate adenocarcinoma in comparison to the samples with BPH, PIN and prostatitis. There was no significant difference in IL-6 expression in malignant and premalignant cells (p=0.814) as well as in stromal cells among the four diagnoses (p=0.22). IL-6 was expressed in normal epithelial cells, premalignant epithelial cells and malignant epithelial cells as well as in stromal cells. However, in our research IL-6 was of limited utility as a single marker for differential diagnosis of the prostate diseases in small foci needle biopsy by pathologist visual scoring. The standardization of immunohistochemical (IHC) staining protocol for IL-6 is required to determine IL-6 expression in order to avoid possible misinterpretation of the IHC results. Copyright © 2015 Elsevier GmbH. All rights reserved.
Yang, Y.; Hao, J.; Liu, X.; Dalkin, B.; Nagle, R. B.
1997-01-01
The expression of cytokeratin (CK) mRNA for CK5, -8, -14, -16, and -19 was investigated in normal prostate, prostatic intraepithelial neoplasia (PIN) lesions, and invasive carcinoma using in situ hybridization. Protein localization was carried out in adjacent sections using immunohistochemistry and correlated with mRNA expression. Snap-frozen human prostate samples including 22 examples of normal glands, 20 cases of PIN lesions, and 12 cases of invasive carcinoma were examined. CK5 and -14 mRNA and protein were prominently expressed only in the basal cells of normal glands and PIN lesions. CK14 mRNA was absent in the luminal cells of the most of the PIN lesions but was seen at a low level in some PIN lesions. CK14 protein was not detected in any PIN lesion, suggesting that, if the cell that makes up the PIN lesions is derived from a basal cell, CK14 translation is depressed although a low level of CK14 mRNA may persist. CK8 mRNA and protein were constitutively expressed in all epithelia of normal and abnormal prostate tissues. CK19 mRNA and protein were persistently expressed in both basal and luminal cells of the tubular portion of normal glands as well as PIN lesions, but were expressed heterogeneously in both basal and luminal cells of normal alveoli. CK16 mRNA was expressed in a similar pattern as CK19, but CK16 protein was not detected either in normal or in abnormal prostate tissues. In conclusion, the expression of CK19 in PIN lesions is similar to its tubular expression and would support an origin of PIN lesions from this structure rather than the alveolar portion of the glands. The similar cytokeratin expression between PIN lesions and invasive carcinoma further supports the concept that PIN is a precursor lesion of invasive carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9033282
Heaphy, Christopher M.; Gaonkar, Gaurav; Peskoe, Sarah B.; Joshu, Corinne E.; De Marzo, Angelo M.; Lucia, M. Scott; Goodman, Phyllis J.; Lippman, Scott M.; Thompson, Ian M.; Platz, Elizabeth A.; Meeker, Alan K.
2015-01-01
Background Telomeres are repetitive nucleoproteins that help maintain chromosomal stability by inhibiting exonucleolytic degradation, prohibiting inappropriate homologous recombination, and preventing chromosomal fusions by suppressing double-strand break signals. We recently observed that men treated for clinically localized prostate cancer with shorter telomeres in their cancer-associated stromal cells, in combination with greater variation in cancer cell telomere lengths, were significantly more likely to progress to distant metastases and die from their disease. Here, we hypothesized that shorter stromal cell telomere length would be associated with prostate cancer risk at time of biopsy. Methods Telomere-specific fluorescence in situ hybridization (FISH) analysis was performed in normal-appearing stromal, basal epithelial, and luminal epithelial cells in biopsies from men randomized to the placebo arm of the Prostate Cancer Prevention Trial. Prostate cancer cases (N=32) were either detected on a biopsy performed for cause or at the end of the study per trial protocol, and controls (N=50), defined as negative for cancer on an end-of-study biopsy performed per trial protocol (e.g. irrespective of indication), were sampled. Logistic regression was used to estimate the association between mean telomere length of the particular cell populations, cell-to-cell telomere length variability, and risk of prostate cancer. Results Men with short stromal cell telomere lengths (below median) had 2.66 (95% CI 1.04-3.06; p=0.04) times the odds of prostate cancer compared with men who had longer lengths (at or above median). Conversely, we did not observe statistically significant associations for short telomere lengths in normal-appearing basal (OR=2.15, 95% CI 0.86-5.39; p=0.10) or luminal (OR=1.15, 95% CI 0.47-2.80; p=0.77) cells. Conclusions These findings suggest that telomere shortening in normal stromal cells is associated with prostate cancer risk. It is essential to extend and validate these findings, while also identifying the cellular milieu that comprises the subset of cells with short telomeres within the prostate tumor microenvironment. PMID:25893825
Heaphy, Christopher M; Gaonkar, Gaurav; Peskoe, Sarah B; Joshu, Corinne E; De Marzo, Angelo M; Lucia, M Scott; Goodman, Phyllis J; Lippman, Scott M; Thompson, Ian M; Platz, Elizabeth A; Meeker, Alan K
2015-08-01
Telomeres are repetitive nucleoproteins that help maintain chromosomal stability by inhibiting exonucleolytic degradation, prohibiting inappropriate homologous recombination, and preventing chromosomal fusions by suppressing double-strand break signals. We recently observed that men treated for clinically localized prostate cancer with shorter telomeres in their cancer-associated stromal cells, in combination with greater variation in cancer cell telomere lengths, were significantly more likely to progress to distant metastases, and die from their disease. Here, we hypothesized that shorter stromal cell telomere length would be associated with prostate cancer risk at time of biopsy. Telomere-specific fluorescence in situ hybridization (FISH) analysis was performed in normal-appearing stromal, basal epithelial, and luminal epithelial cells in biopsies from men randomized to the placebo arm of the Prostate Cancer Prevention Trial. Prostate cancer cases (N = 32) were either detected on a biopsy performed for cause or at the end of the study per trial protocol, and controls (N = 50), defined as negative for cancer on an end-of-study biopsy performed per trial protocol (e.g., irrespective of indication), were sampled. Logistic regression was used to estimate the association between mean telomere length of the particular cell populations, cell-to-cell telomere length variability, and risk of prostate cancer. Men with short stromal cell telomere lengths (below median) had 2.66 (95% CI 1.04-3.06; P = 0.04) times the odds of prostate cancer compared with men who had longer lengths (at or above median). Conversely, we did not observe statistically significant associations for short telomere lengths in normal-appearing basal (OR = 2.15, 95% CI 0.86-5.39; P= 0 .10) or luminal (OR = 1.15, 95% CI 0.47-2.80; P = 0.77) cells. These findings suggest that telomere shortening in normal stromal cells is associated with prostate cancer risk. It is essential to extend and validate these findings, while also identifying the cellular milieu that comprises the subset of cells with short telomeres within the prostate tumor microenvironment. © 2015 Wiley Periodicals, Inc.
Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.
2013-01-01
Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed genes were overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer. PMID:23978847
p62 as a therapeutic target for inhibition of autophagy in prostate cancer.
Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S
2018-04-01
To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.
Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J
2017-05-01
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Bad seeds produce bad crops: a single stage-process of prostate tumor invasion
Man, Yan-gao; Gardner, William A.
2008-01-01
It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in “healthy” young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated “budding” (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors. PMID:18725981
Cell Fusion as a Cause of Prostate Cancer Metastasis
2009-03-01
PC-3 cells? Does XRMV2 transform normal human cells? Does XRMV2 affect cell proliferation or viability? Is XRMV2 present in other prostate cancer...retroviral transduction. pathways regulated by tetraploidy in premalignant cells (Figure 1). In this experimental system, normal diploid human ...or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy
Fort, Rafael Sebastián; Mathó, Cecilia; Geraldo, Murilo Vieira; Ottati, María Carolina; Yamashita, Alex Shimura; Saito, Kelly Cristina; Leite, Katia Ramos Moreira; Méndez, Manuel; Maedo, Noemí; Méndez, Laura; Garat, Beatriz; Kimura, Edna Teruko; Sotelo-Silveira, José Roberto; Duhagon, María Ana
2018-02-02
Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2-1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2-1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer. Nc886 promoter methylation status and its correlation with patient clinical parameters or DNMTs levels were evaluated in TCGA and specific GEO prostate tissue datasets. Nc886 level was measured by RT-qPCR to compare normal/neoplastic prostate cells from radical prostatectomies and cell lines, and to assess nc886 response to demethylating agents. The effect of nc886 recovery in cell proliferation (in vitro and in vivo) and invasion (in vitro) was evaluated using lentiviral transduced DU145 and LNCaP cell lines. The association between the expression of nc886 and selected genes was analyzed in the TCGA-PRAD cohort. Nc886 promoter methylation increases in tumor vs. normal prostate tissue, as well as in metastatic vs. normal prostate tissue. Additionally, nc886 promoter methylation correlates with prostate cancer clinical staging, including biochemical recurrence, Clinical T-value and Gleason score. Nc886 transcript is downregulated in tumor vs. normal tissue -in agreement with its promoter methylation status- and increases upon demethylating treatment. In functional studies, the overexpression of nc886 in the LNCaP and DU145 cell line leads to a decreased in vitro cell proliferation and invasion, as well as a reduced in vivo cell growth in NUDE-mice tumor xenografts. Finally, nc886 expression associates with the prostate cancer cell cycle progression gene signature in TCGA-PRAD. Our data suggest a tumor suppressor role for nc886 in the prostate, whose expression is epigenetically silenced in cancer leading to an increase in cell proliferation and invasion. Nc886 might hold clinical value in prostate cancer due to its association with clinical parameters and with a clinically validated gene signature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subir K.R.; Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. West, Hamilton, Ont., L8N 3Z5; Gemin, Adam
Most malignant cells are highly glycolytic and produce high levels of reactive oxygen species (ROS) compared to normal cells. Mitochondrial glycerophosphate dehydrogenase (mGPDH) participates in the reoxidation of cytosolic NADH by delivering reducing equivalents from this molecule into the electron transport chain, thus sustaining glycolysis. Here, we investigate the role of mGPDH in maintaining an increased rate of glycolysis and evaluate glycerophosphate-dependent ROS production in prostate cancer cell lines (LNCaP, DU145, PC3, and CL1). Immunoblot, polarographic, and spectrophotometric analyses revealed that mGPDH abundance and activity was significantly elevated in prostate cancer cell lines when compared to the normal prostate epithelialmore » cell line PNT1A. Furthermore, both the glycolytic capacity and glycerophosphate-dependent ROS production was increased 1.68- to 4.44-fold and 5- to 7-fold, respectively, in prostate cancer cell lines when compared to PNT1A cells. Overall, these data demonstrate that mGPDH is involved in maintaining a high rate of glycolysis and is an important site of electron leakage leading to ROS production in prostate cancer cells.« less
Andren, Ove; Ohlson, Anna‐Lena; Carlsson, Jessica; Andersson, Swen‐Olof; Giunchi, Francesca; Rider, Jennifer R.; Fiorentino, Michelangelo
2017-01-01
Background The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (Tregs). In the present study we evaluated the prevalence of Treg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Methods Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4+ Tregs and CD8+ Tregs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of Tregs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. Results In men with prostate cancer, similarly high numbers of stromal CD4+ Tregs were identified in PAH and tumor, but CD4+ Tregs were less common in PIN. Greater numbers of epithelial CD4+ Tregs in normal prostatic tissue were positively associated with both Gleason score and pT‐stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4+ Tregs in the normal prostatic tissue counterpart. Conclusions Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4+ Tregs and indicate that transformation of the anti‐tumor immune response may be initiated even before the primary tumor is established. PMID:29105795
USDA-ARS?s Scientific Manuscript database
To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...
Elshafae, Said M; Hassan, Bardes B; Supsavhad, Wachiraphan; Dirksen, Wessel P; Camiener, Rachael Y; Ding, Haiming; Tweedle, Michael F; Rosol, Thomas J
2016-06-01
The gastrin-releasing peptide receptor (GRPr) is upregulated in early and late-stage human prostate cancer (PCa) and other solid tumors of the mammary gland, lung, head and neck, colon, uterus, ovary, and kidney. However, little is known about its role in prostate cancer. This study examined the effects of a heterologous GRPr agonist, bombesin (BBN), on growth, motility, morphology, gene expression, and tumor phenotype of an osteoblastic canine prostate cancer cell line (Ace-1) in vitro and in vivo. The Ace-1 cells were stably transfected with the human GRPr and tumor cells were grown in vitro and as subcutaneous and intratibial tumors in nude mice. The effect of BBN was measured on cell proliferation, cell migration, tumor growth (using bioluminescence), tumor cell morphology, bone tumor phenotype, and epithelial-mesenchymal transition (EMT) and metastasis gene expression (quantitative RT-PCR). GRPr mRNA expression was measured in primary canine prostate cancers and normal prostate glands. Bombesin (BBN) increased tumor cell proliferation and migration in vitro and tumor growth and invasion in vivo. BBN upregulated epithelial-to-mesenchymal transition (EMT) markers (TWIST, SNAIL, and SLUG mRNA) and downregulated epithelial markers (E-cadherin and β-catenin mRNA), and modified tumor cell morphology to a spindle cell phenotype. Blockade of GRPr upregulated E-cadherin and downregulated VIMENTIN and SNAIL mRNA. BBN altered the in vivo tumor phenotype in bone from an osteoblastic to osteolytic phenotype. Primary canine prostate cancers had increased GRPr mRNA expression compared to normal prostates. These data demonstrated that the GRPr is important in prostate cancer growth and progression and targeting GRPr may be a promising strategy for treatment of prostate cancer. Prostate 76:796-809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S
2017-08-01
Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Chang, Guimin; Xu, Shuping; Dhir, Rajiv; Chandran, Uma; O'Keefe, Denise S; Greenberg, Norman M; Gingrich, Jeffrey R
2010-11-15
Cell adhesion molecules (CADM) comprise a newly identified protein family whose functions include cell polarity maintenance and tumor suppression. CADM-1, CADM-3, and CADM-4 have been shown to act as tumor suppressor genes in multiple cancers including prostate cancer. However, CADM-2 expression has not been determined in prostate cancer. The CADM-2 gene was cloned and characterized and its expression in human prostatic cell lines and cancer specimens was analyzed by reverse transcription-PCR and an immunohistochemical tissue array, respectively. The effects of adenovirus-mediated CADM-2 expression on prostate cancer cells were also investigated. CADM-2 promoter methylation was evaluated by bisulfite sequencing and methylation-specific PCR. We report the initial characterization of CADM-2 isoforms: CADM-2a and CADM-2b, each with separate promoters, in human chromosome 3p12.1. Prostate cancer cell lines, LNCaP and DU145, expressed negligible CADM-2a relative to primary prostate tissue and cell lines, RWPE-1 and PPC-1, whereas expression of CADM-2b was maintained. Using immunohistochemistry, tissue array results from clinical specimens showed statistically significant decreased expression in prostate carcinoma compared with normal donor prostate, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and normal tissue adjacent to tumor (P < 0.001). Adenovirus-mediated CADM-2a expression suppressed DU145 cell proliferation in vitro and colony formation in soft agar. The decrease in CADM-2a mRNA in cancer cell lines correlated with promoter region hypermethylation as determined by bisulfite sequencing and methylation-specific PCR. Accordingly, treatment of cells with the demethylating agent 5-aza-2'-deoxycytidine alone or in combination with the histone deacetylase inhibitor trichostatin A resulted in the reactivation of CADM-2a expression. CADM-2a protein expression is significantly reduced in prostate cancer. Its expression is regulated in part by promoter methylation and implicates CADM-2 as a previously unrecognized tumor suppressor gene in a proportion of human prostate cancers. ©2010 AACR.
Pasquali, Daniela; Rossi, Valentina; Staibano, Stefania; De Rosa, Gaetano; Chieffi, Paolo; Prezioso, Domenico; Mirone, Vincenzo; Mascolo, Massimo; Tramontano, Donatella; Bellastella, Antonio; Sinisi, Antonio Agostino
2006-09-01
A new family of angiogenic factors named endocrine-gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins (PK) have been recently described as predominantly expressed in steroidogenic tissues. Whether the normal and malignant epithelial prostate cells and tissues express EG-VEGF/PK1 and PK2 and their receptors is still unknown. We studied the expression of EG-VEGF/PK1 and PK2 and their receptors (PK-R1 and PK-R2) in human prostate and their involvement in cancer. Using immunohistochemistry, Western blot, and RT-PCR, we determined the expression of EG-VEGF/PK1 in normal prostate (NP) and malignant prostate tissues (PCa), in epithelial cell primary cultures from normal prostate (NPEC) and malignant prostate (CPEC) and in a panel of prostate cell lines. In NPEC, CPEC, and in EPN, a nontransformed human prostate epithelial cell line, EG-VEGF/PK1, PK2, PK-R1, and PK-R2 mRNA levels were evaluated by quantitative RT-PCR. EG-VEGF/PK1 transcript was found in PCa, in CPEC, in EPN, and in LNCaP, whereas it was detected at low level in NP and in NPEC. EG-VEGF/PK1 was absent in androgen-independent PC3 and DU-145 cell lines. Immunochemistry confirmed that EG-VEGF/PK1 protein expression was restricted to hyperplastic and malignant prostate tissues, localized in the glandular epithelial cells, and progressively increased with the prostate cancer Gleason score advancement. EG-VEGF/PK1 and PK2 were weakly expressed in NPEC and EPN. On the other hand, their transcripts were highly detected in CPEC. PK-R1 and PK-R2 were found in NPEC, EPN, and CPEC. Interestingly, CPEC showed a significantly (P < 0.05) higher expression of EG-VEGF/PK1, PK2, PK-R1, and PK-R2 compared with NPEC and EPN. We demonstrated that PKs and their receptors are expressed in human prostate and that their levels increased with prostate malignancy. It may imply that EG-VEGF/PK1 could be involved in prostate carcinogenesis, probably regulating angiogenesis. Thus, the level of EG-VEGF/PK1 could be useful for prostate cancer outcome evaluation and as a target for prostate cancer treatment in the future.
STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors
Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.
1999-01-01
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738
Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.
2014-01-01
Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432
Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate
USDA-ARS?s Scientific Manuscript database
Introduction: A recent clinical trial revealed that folic acid supplementation is associated with an increased incidence of prostate cancer (1). The present study evaluates serum and prostate tissue folate levels in men with prostate cancer, compared to histologically normal prostate glands from can...
Davidsson, Sabina; Andren, Ove; Ohlson, Anna-Lena; Carlsson, Jessica; Andersson, Swen-Olof; Giunchi, Francesca; Rider, Jennifer R; Fiorentino, Michelangelo
2018-01-01
The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (T regs ). In the present study we evaluated the prevalence of T reg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4 + T regs and CD8 + T regs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of T regs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. In men with prostate cancer, similarly high numbers of stromal CD4 + T regs were identified in PAH and tumor, but CD4 + T regs were less common in PIN. Greater numbers of epithelial CD4+ T regs in normal prostatic tissue were positively associated with both Gleason score and pT-stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4 + T regs in the normal prostatic tissue counterpart. Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4 + T regs and indicate that transformation of the anti-tumor immune response may be initiated even before the primary tumor is established. © 2017 The Authors. The Prostate Published by Wiley Periodicals Inc.
Prostate stem cell antigen is overexpressed in human transitional cell carcinoma.
Amara, N; Palapattu, G S; Schrage, M; Gu, Z; Thomas, G V; Dorey, F; Said, J; Reiter, R E
2001-06-15
Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigens, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. In addition to its expression in normal and malignant prostate, we recently reported that PSCA is expressed at low levels in the transitional epithelium of normal bladder. In the present study, we compared the expression of PSCA in normal and malignant urothelial tissues to assess its potential as an immunotherapeutic target in transitional cell carcinoma (TCC). Immunohistochemical analysis of PSCA protein expression was performed on tissue sections from 32 normal bladder specimens, as well as 11 cases of low-grade transitional cell dysplasia, 21 cases of carcinoma in situ (CIS), 38 superficial transitional cell tumors (STCC, stages T(a)-T(1)), 65 muscle-invasive TCCs (ITCCs, stages T(2)-T(4)), and 7 bladder cancer metastases. The level of PSCA protein expression was scored semiquantitatively by assessing both the intensity and frequency (i.e., percentage of positive tumor cells) of staining. We also examined PSCA mRNA expression in a representative sample of normal and malignant human transitional cell tissues. In normal bladder, PSCA immunostaining was weak and confined almost exclusively to the superficial umbrella cell layer. Staining in CIS and STCC was more intense and uniform than that seen in normal bladder epithelium (P < 0.001), with staining detected in 21 (100%) of 21 cases of CIS and 37 (97%) of 38 superficial tumors. PSCA protein was also detected in 42 (65%) of 65 of muscle-invasive and 4 (57%) of 7 metastatic cancers, with the highest levels of PSCA expression (i.e., moderate-strong staining in >50% of tumor cells) seen in 32% of invasive and 43% of metastatic samples. Higher levels of PSCA expression correlated with increasing tumor grade for both STCCs and ITCCs (P < 0.001). Northern blot analysis confirmed the immunohistochemical data, showing a dramatic increase in PSCA mRNA expression in two of five muscle-invasive transitional cell tumors when compared with normal samples. Confocal microscopy demonstrated that PSCA expression in TCC is confined to the cell surface. These data demonstrate that PSCA is overexpressed in a majority of human TCCs, particularly CIS and superficial tumors, and may be a useful target for bladder cancer diagnosis and therapy.
Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation
Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.
2015-01-01
The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870
NASA Astrophysics Data System (ADS)
O'Connell, Deborah; Hirst, A. M.; Packer, J. R.; Simms, M. S.; Mann, V. M.; Frame, F. M.; Maitland, N. J.
2016-09-01
Atmospheric pressure plasmas have shown considerable promise as a potential cancer therapy. An atmospheric pressure plasma driven with kHz kV excitation, operated with helium and oxygen admixtures is used to investigate the interaction with prostate cancer cells. The cytopathic effect was verified first in two commonly used prostate cancer cell lines (BPH-1 and PC-3 cells) and further extended to examine the effects in paired normal and tumour prostate epithelial cells cultured directly from patient tissues. Through the formation of reactive species in cell culture media, and potentially other plasma components, we observed high levels of DNA damage, together with reduced cell viability and colony-forming ability. We observed differences in response between the prostate cell lines and primary cells, particularly in terms of the mechanism of cell death. The primary cells ultimately undergo necrotic cell death in both the normal and tumour samples, in the complete absence of apoptosis. In addition, we provide the first evidence of an autophagic response in primary cells. This work highlights the importance of studying primary cultures in order to gain a more realistic insight into patient efficacy. EPSRC EP/H003797/1 & EP/K018388/1, Yorkshire Cancer Research: YCR Y257PA.
Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan
2012-03-01
Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.
Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C
2009-01-01
Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234
Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi
2011-10-01
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.
Whelan, Christopher; Crocitto, Laura; Kawachi, Mark; Chan, Kevin; Smith, David; Wilson, Timothy; Smith, Steven
2013-02-01
In patients with prostate cancer, luminal prostate-specific antigen (PSA) enters the circulation because the basement membrane and glandular epithelium are damaged. Given that excess mobilization of prostate cells during prostatic massage can influence normalization in diagnostic testing, we studied PSA mRNA levels in expressed prostatic secretions (EPS) from patients undergoing biopsy for prostate cancer to determine if prostate cells are preferentially mobilized from patients with prostate cancer during prostatic massage. Quantitative Reverse-Transcription PCR (qRT-PCR) was used to measure the RNA levels of GAPDH, PSA, TMPRSS2:ERG and PCA3 in EPS specimens obtained from patients undergoing biopsy for prostate cancer. The level of PSA mRNA is significantly elevated in EPS specimens obtained from patients with a subsequent diagnosis of prostate cancer. This correlation influenced diagnostic testing results from EPS in two ways. First, when used as an exclusion parameter it appears to improve the diagnostic performance of TMPRSS2:ERG in EPS. Second, when used as a normalization parameter it appears to decrease the performance of these same tests. When comparing the results of mRNA based prostate cancer diagnostics in EPS it will be essential to consider PSA mRNA as a prostate specific gene and not a housekeeping gene.
Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark
2015-04-09
Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.
Identification of Novel Prognostic Genetic Markers in Prostate Cancer
2000-02-01
alterations in two normal- and three malignant-derived prostate epithelial cell lines immortalized with the E6 and E7 transforming genes of human papilloma virus (HPV...malignant-derived prostate epithelial cell lines immortalized with the E6 and E7 transforming genes of human papilloma virus (HPV) 16. These studies...transforming genes of human papilloma virus (HPV) 16 (13). The cell lines demonstrated several numerical and structural chromosomal alterations
Nuclear Matrix Proteins in Disparity of Prostate Cancer
2013-09-01
nuclear coactivator-3 (NCOA3). 5 Methods Patients and Prostate Cancer Specimens Fresh, flash -frozen specimens were obtained from age- (50 to...for reliable data interpretation. Gene Array Analysis Total RNA isolated from LCM-procured normal epithelium and tumor cells from flash -frozen...PCR Briefly, RNA was extracted from matched LCM procured normal epithelium and tumor cells of age-, tumor grade-matched flash -frozen sections (n=24
Panov, Alexander; Orynbayeva, Zulfiya
2013-01-01
The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia. PMID:23951286
Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A
2012-01-01
Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.
Locus-specific gene repositioning in prostate cancer
Leshner, Marc; Devine, Michelle; Roloff, Gregory W.; True, Lawrence D.; Misteli, Tom; Meaburn, Karen J.
2016-01-01
Genes occupy preferred spatial positions within interphase cell nuclei. However, positioning patterns are not an innate feature of a locus, and genes can alter their localization in response to physiological and pathological changes. Here we screen the radial positioning patterns of 40 genes in normal, hyperplasic, and malignant human prostate tissues. We find that the overall spatial organization of the genome in prostate tissue is largely conserved among individuals. We identify three genes whose nuclear positions are robustly altered in neoplastic prostate tissues. FLI1 and MMP9 position differently in prostate cancer than in normal tissue and prostate hyperplasia, whereas MMP2 is repositioned in both prostate cancer and hyperplasia. Our data point to locus-specific reorganization of the genome during prostate disease. PMID:26564800
Monoamine Oxidase Deficiency Causes Prostate Atrophy and Reduces Prostate Progenitor Cell Activity.
Yin, Lijuan; Li, Jingjing; Liao, Chun-Peng; Jason Wu, Boyang
2018-04-10
Monoamine oxidases (MAOs) degrade a number of biogenic and dietary amines, including monoamine neurotransmitters, and play an essential role in many biological processes. Neurotransmitters and related neural events have been shown to participate in the development, differentiation, and maintenance of diverse tissues and organs by regulating the specialized cellular function and morphological structures of innervated organs such as the prostate. Here we show that mice lacking both MAO isoforms, MAOA and MAOB, exhibit smaller prostate mass and develop epithelial atrophy in the ventral and dorsolateral prostates. The cellular composition of prostate epithelium showed reduced CK5 + or p63 + basal cells, accompanied by lower Sca-1 expression in p63 + basal cells, but intact differentiated CK8 + luminal cells in MAOA/B-deficient mouse prostates. MAOA/B ablation also decreased epithelial cell proliferation without affecting cell apoptosis in mouse prostates. Using a human prostate epithelial cell line, we found that stable knockdown of MAOA and MAOB impaired the capacity of prostate stem cells to form spheres, coinciding with a reduced CD133 + /CD44 + /CD24 - stem cell population and less expression of CK5 and select stem cell markers, including ALDH1A1, TROP2, and CD166. Alternative pharmacological inhibition of MAOs also repressed prostate cell stemness. In addition, we found elevated expression of MAOA and MAOB in epithelial and/or stromal components of human prostate hyperplasia samples compared with normal prostate tissues. Taken together, our findings reveal critical roles for MAOs in the regulation of prostate basal progenitor cells and prostate maintenance. Stem Cells 2018. © AlphaMed Press 2018.
Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso
2007-05-15
Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.
Mohsenzadegan, Monireh; Tajik, Nader; Madjd, Zahra; Shekarabi, Mehdi; Farajollahi, Mohammad M
2015-01-01
Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investigate its expression in prostate cancer cells. Methods: In the present study, we investigated NGEP expression in LNCaP and DU145 cells by real time and RT-PCR, flow cytometric and immunocytochemical analyses. Results: Real time and RT-PCR analyses of NGEP expression showed that NGEP was expressed in the LNCaP cells but not in DU145 cells. The detection of NGEP protein by flow cytometric and immunocytochemistry analyses indicated that NGEP protein was weakly expressed only in LNCaP cell membrane. Conclusion: Our results demonstrate that LNCaP cell line is more suitable than DU145 for NGEP expression studies; however, its low-level expression is a limiting issue. NGEP expression may be increased by androgen supplementation of LNCaP cell culture medium. PMID:26000254
Rapid Selection of Mesenchymal Stem and Progenitor Cells in Primary Prostate Stromal Cultures
Brennen, W. Nathaniel; Kisteman, L. Nelleke; Isaacs, John T.
2016-01-01
BACKGROUND Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. METHODS Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (>25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. RESULTS MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 μm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. CONCLUSIONS Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. PMID:26732992
Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures.
Brennen, W Nathaniel; Kisteman, L Nelleke; Isaacs, John T
2016-05-01
Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (<25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 µm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer. © 2016 Wiley Periodicals, Inc.
Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao
2018-01-01
Objective To observe the effect of microRNA-519d-3p (miR-519d-3p) on the proliferation of prostate cancer cells and explore the possible molecular mechanism. Methods The expression level of miR-519d-3p in PC-3, DU-145, 22RV1, PC-3M, LNCaP human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time quantitative PCR. miR-519d-3p mimics or negative control microRNAs (miR-NC) was transfected into the prostate cancer cells with the lowest level of miR-519d-3p expression. Transfection efficiency was examined. The effect of miR-519d-3p on the cell cycle of prostate cancer was detected by flow cytometry. MTT assay and plate clone formation assay were used to detect its effect on the proliferation of prostate cancer cells. Bioinformatics software was used to predict and dual luciferase reporter assay was used to validate the target gene of miR-519d-3p. Real-time quantitative PCR was used to detect the expression of miR-519d-3p target gene. Western blot analysis was used to detect the expression of target gene protein and downstream protein. Results The expression of miR-519d-3p in normal prostate epithelial cells was significantly higher than that in prostate cancer cells, and the lowest was found in DU-145 cells. After transfected with miR-519d-3p mimics, the expression level of miR-519d-3p in DU-145 cells increased significantly. Bioinformatics prediction and dual luciferase reporter gene confirmed that tumor necrosis factor receptor associated factor 4 (TRAF4) was the target gene of miR-519d-3p. Overexpression of miR-519d-3p significantly reduced the expression of TRAF4 gene and its downstream TGF-β signaling pathway proteins in the prostate cancer cells. Conclusion The expression of miR-519d-3p is down-regulated in prostate cancer cells. Overexpression of miR-519d-3p can inhibit the proliferation of prostate cancer cells. The possible mechanism is that miR-519d-3p inhibits the expression of TRAF4.
Pollock, Claire B; McDonough, Sara; Wang, Victor S; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J; Feldman, Adam S; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I
2014-03-30
Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells.
Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang
2016-05-10
Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Ackerstaff, E; Pflug, B R; Nelson, J B; Bhujwalla, Z M
2001-05-01
In this study, a panel of normal human prostate cells (HPCs) and tumor cells derived from metastases were studied by (1)H NMR spectroscopy to determine whether the malignant transformation of HPCs results in the elevation of choline compounds. Although an elevated choline signal has been observed previously in clinical studies, the contribution of the different Cho compounds to this elevation, as well as their quantification, has not been established until now. Here we have shown that HPCs derived from metastases exhibit significantly higher phosphocholine as well as glycerophosphocholine levels compared with normal prostate epithelial and stromal cells. Thus the elevation of the choline peak observed clinically in prostate cancer is attributable to an alteration of phospholipid metabolism and not simply to increased cell density, doubling time, or other nonspecific effects. Androgen deprivation of the androgen receptor-positive cell lines resulted in a significant increase of choline compounds after chronic androgen deprivation of the LNCaP cell line and in a decrease of choline compounds after a more acute androgen deprivation of the LAPC-4 cell line. These data strongly support the use of proton magnetic resonance spectroscopic imaging to detect the presence of prostate cancer for diagnosis, to detect response subsequent to androgen ablation therapy, and to detect recurrence.
The transcriptional programme of the androgen receptor (AR) in prostate cancer.
Lamb, Alastair D; Massie, Charlie E; Neal, David E
2014-03-01
The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.
Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A
2016-06-14
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.
Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.
2016-01-01
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597
Liu, Jehnan; Ramakrishnan, Sadeesh K; Khuder, Saja S; Kaw, Meenakshi K; Muturi, Harrison T; Lester, Sumona Ghosh; Lee, Sang Jun; Fedorova, Larisa V; Kim, Andrea J; Mohamed, Iman E; Gatto-Weis, Cara; Eisenmann, Kathryn M; Conran, Philip B; Najjar, Sonia M
2015-03-01
Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.
Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung
2014-03-05
Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lin, Shu-fei; Wei, Hua; Maeder, Dennis; Franklin, Renty B.; Feng, Pei
2010-01-01
We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear. To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes: 1. highly sensitive to zinc, 2. associated with zinc homeostasis, i.e. metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs), 3. relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR. Results showed that zinc effect on genome-wide expression patterns was cell type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1,953 in HPR-1; 3,534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes’ expression provided evidence for the cell-type dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes -J and -M, denoted previously as “non-functional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g. Fos, Akt1, Jak3 and PI3K were highly regulated by zinc with cell type specificity. This work provided an extensive database on zinc related prostate cancer research. The strategy of data analysis was devoted to find genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc-induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy. PMID:19071009
Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells
2012-10-01
prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead...findings suggest PSA may also have immunoregulatory activity in the seminal plasma to aid in normal fertility that may have been co-opted by prostate...cleavage fragments have not been described. PSA can cleave C3 and generate the 37 kDa fragment in vitro . PSA is the major chymotrypsin-like serine
PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer
Flores, Orielyz; Santra, Santimukul; Kaittanis, Charalambos; Bassiouni, Rania; Khaled, Amr S; Khaled, Annette R.; Grimm, Jan; Perez, J Manuel
2017-01-01
Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue. With the delivery of CT20p to prostate cancer cells via PSMA, a dual level of cancer specificity is achieved: (1) selective targeting to PSMA-expressing prostate tumors, and (2) specific cytotoxicity to cancer cells with minimal toxicity to normal cells. The PSMA-targeting theranostic nanocarrier can image PSMA-expressing cells and tumors when a near infrared dye is used as cargo. Meanwhile, it can be used to treat PSMA-expressing tumors when a therapeutic, such as the CT20p peptide, is encapsulated within the nanocarrier. Even when these PSMA-targeting nanocarriers are taken up by macrophages, minimal cell death is observed in these cells, in contrast with doxorubicin-based therapeutics that result in significant macrophage death. Incubation of PSMA-expressing prostate cancer cells with the Folate-HBPE(CT20p) nanocarriers induces considerable changes in cell morphology, reduction in the levels of integrin β1, and lower cell adhesion, eventually resulting in cell death. These results are relevant as integrin β1 plays a key role in prostate cancer invasion and metastatic potential. In addition, the use of the developed PSMA-targeting nanocarrier facilitates the selective in vivo delivery of CT20p to PSMA-positive tumor, inducing significant reduction in tumor size. PMID:28744329
Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells
Szliszka, Ewelina; Czuba, Zenon P; Mazur, Bogdan; Sedek, Lukasz; Paradysz, Andrzej; Krol, Wojciech
2009-01-01
Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer. PMID:20161998
Prostate stromal cells express the progesterone receptor to control cancer cell mobility.
Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen
2014-01-01
Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.
Bone marrow-derived cells contribute to regeneration of injured prostate epithelium and stroma.
Nakata, Wataru; Nakai, Yasutomo; Yoshida, Takahiro; Sato, Mototaka; Hatano, Koji; Nagahara, Akira; Fujita, Kazutoshi; Uemura, Motohide; Nonomura, Norio
2015-06-01
Recent studies have reported that bone marrow-derived cells (BMDCs), which are recruited to sites of tissue injury and inflammation, can differentiate into epithelial cells, such as liver, lung, gastrointestinal tract, and skin cells. We investigated the role of BMDCs in contributing to regeneration of injured prostate epithelium. Using chimera rats that received allogenic bone marrow grafts from green fluorescent protein (GFP) transgenic rats after lethal whole-body irradiation, we investigated the existence of epithelial marker-positive BMDCs in injured prostate tissue caused by transurethral injection of lipopolysaccharide. Prostate tissues were harvested 2 weeks after transurethral lipopolysaccharide injection. Immunofluorescence staining showed that some cells in the stroma co-expressed GFP and pan-cytokeratin, which suggested the existence of epithelial marker-positive BMDCs. To confirm the existence of such cells, we collected bone marrow-derived non-hematopoietic cells (GFP+/CD45- cells) from the prostate by fluorescence-activated cell sorter analysis and analyzed the characteristics of the GFP+/CD45- cells. The number of cells in this population significantly increased from 0.042% to 0.492% compared with normal prostate tissue. We found by immunofluorescent analysis and RT-PCR that GFP+/CD45- cells expressed cytokeratin, which suggested that these cells have some features of epithelial cells. In the prostate obtained from the chimera rats 34 weeks after lipopolysaccharide injection, GFP- and cytokeratin-positive cells were observed in the prostate gland, which suggested that some of the cells in the prostate gland regenerated after prostate inflammation derived from bone marrow. BMDCs might be able to differentiate into prostate epithelial cells after prostatic injury. © 2015 Wiley Periodicals, Inc.
Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K
2011-10-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.
2011-01-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721
Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P
1999-01-01
We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.
Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.
1994-01-01
The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747
GPRC6A regulates prostate cancer progression
Pi, Min; Quarles, L. Darryl
2011-01-01
BACKGROUND GPRC6A is a nutrient sensing GPCR that is activated in vitro by a variety of ligands, including amino acids, calcium, zinc, osteocalcin (OC) and testosterone. The association between nutritional factors and risk of prostate cancer, the finding of increased expression of OC in prostate cancer cells and the association between GPRC6A and risk of prostate cancer in Japanese men implicates a role of GPRC6A in prostate cancer. METHODS We examined if GPRC6A is expressed in human prostate cancer cell lines and used siRNA-mediated knockdown GPRC6A expression in prostate cancer cells to explore the function of GPRC6A in vitro. To assess the role GPRC6A in prostate cancer progression in vivo we intercrossed Gprc6a−/− mice onto the TRAMP mouse prostate cancer model. RESULTS GPRC6A transcripts were markedly increased in prostate cancer cell lines 22Rv1, PC-3 and LNCaP, compared to the normal prostate RWPE-1 cell line. In addition, a panel of GPRC6A ligands, including calcium, OC, and arginine, exhibited in prostate cancer cell lines a dose-dependent stimulation of ERK activity, cell proliferation, chemotaxis, and prostate specific antigen and Runx 2 gene expression. These responses were inhibited by siRNA-mediated knockdown of GPRC6A. Finally, transfer of Gprc6a deficiency onto a TRAMP mouse model of prostate cancer significantly retarded prostate cancer progression and improved survival of compound Gprc6a−/−/TRAMP mice. CONCLUSIONS GPRC6A is a novel molecular target for regulating prostate growth and cancer progression. Increments in GPRC6A may augment the ability of prostate cancer cells to proliferate in response to dietary and bone derived ligands. PMID:21681779
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Chen-Yi; Gao, Yuan; Wang, Xing-Jie
Long non-coding RNAs (lncRNAs) are emerging as key molecules in human cancer genesis and progression, including prostate cancer. Large amount of lncRNAs have been found that differentially expressed between prostate cancer tissues and normal prostate tissues. Whether these lncRNAs could serve as a novel biomarker for prostate cancer diagnosis or prognosis, and their biological functions in prostate cancer need further investigation. In the present study, we identified that lncRNA lnc-MX1-1 is over-expressed in prostate cancer tissues compared with their adjacent normal prostate tissues by gene expression array profiling. The expression of lnc-MX1-1 in 60 prostate cancer cases was determined bymore » real-time quantitative PCR and the correlations between lnc-MX1-1 expression and patients' clinical features were further analyzed. Next, we impaired lnc-MX1-1 expression using RNAi in LNCaP and 22Rv1 prostate cancer cells to explore the effects of lnc-MX1-1 on proliferation and invasiveness of the cells. Our results showed that there was a significant association between over-expression of lnc-MX1-1 and patients' clinical features such as PSA, Gleason score, metastasis, and recurrence free survival. Moreover, knockdown of lnc-MX1-1 reduced both proliferation and invasiveness of LNCaP and 22Rv1 cells. In conclusion, the results suggest that lnc-MX1-1 may serve as a potential biomarker and therapeutic target for prostate cancer. - Highlights: • LncRNA lnc-MX1-1 is up-regulated in prostate cancer. • Overexpression of lnc-MX1-1 is correlated with poor prostate cancer clinical features. • Knockdown of lnc-MX1-1 reduces proliferation and invasiveness of prostate cancer cells.« less
Recurrent cis-SAGe chimeric RNA, D2HGDH-GAL3ST2, in prostate cancer.
Qin, Fujun; Song, Zhenguo; Chang, Maxwell; Song, Yansu; Frierson, Henry; Li, Hui
2016-09-28
Neighboring genes transcribing in the same direction can form chimeric RNAs via cis-splicing (cis-SAGe). Previously, we reported 16 novel cis-SAGe chimeras in prostate cancer cell lines, and performed in silico validation on 14 pairs of normal and tumor samples from Chinese patients. However, whether these fusions exist in different populations, as well as their clinical implications, remains unclear. To investigate, we developed a bioinformatics pipeline using modified Spliced Transcripts Alignment to a Reference (STAR) to quantify these fusion RNAs simultaneously in silico. From RNA-Seq data of 100 paired normal and prostate cancer samples from TCGA, we find that most fusions are not specific to cancer. However, D2HGDH-GAL3ST2 is more frequently seen in cancer samples, and seems to be enriched in the African American group. Further validation with our own collection as well as from commercial sources did not detect this fusion RNA in 29 normal prostate samples, but in 19 of 93 prostate cancer samples. It is more frequently detected in late stage cancer, suggesting a role in cancer progression. Consistently, silencing this fusion resulted in dramatic reduction of cell proliferation rate and cell motility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mathew, Stephen O; Chaudhary, Pankaj; Powers, Sheila B; Vishwanatha, Jamboor K; Mathew, Porunelloor A
2016-10-18
Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.
Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor
Guo, W; Liu, R; Bhardwaj, G; Yang, J C; Changou, C; Ma, A-H; Mazloom, A; Chintapalli, S; Xiao, K; Xiao, W; Kumaresan, P; Sanchez, E; Yeh, C-T; Evans, C P; Patterson, R; Lam, K S; Kung, H-J
2014-01-01
Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a ‘wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model. PMID:25188519
Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor.
Guo, W; Liu, R; Bhardwaj, G; Yang, J C; Changou, C; Ma, A-H; Mazloom, A; Chintapalli, S; Xiao, K; Xiao, W; Kumaresan, P; Sanchez, E; Yeh, C-T; Evans, C P; Patterson, R; Lam, K S; Kung, H-J
2014-09-04
Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a 'wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model.
Han, Ju-Hee; Park, Shin-Young; Kim, Jin-Bum; Cho, Sung-Dae; Kim, Bumseok; Kim, Bo-Yeon; Kang, Min-Jung; Kim, Dong-Jae; Park, Jae-Hak; Park, Jong-Hwan
2013-10-01
Although various Toll-like receptors (TLRs) have been associated with immune response and tumorigenesis in the prostate cells, little is known about the role of TLR7. Accordingly, we examined the expression of TLR7 during tumour progression of TRMAP (transgenic mouse model for prostate cancer) mice and its role on cell growth. Toll-like receptor7 expression was examined by RT-polymerase chain reaction (PCR), Western blot, and immunohistochemistry. Cell growth was examined by MTT assay. Colony formation was investigated by crystal violet staining. Strong expression of TLR7 was detected in the normal prostate epithelia of Wild-type (WT) mice, but not in TLR7-deficient mice. In contrast, TLR7 expression was weak in transgenic adenocarcinoma of mouse prostate (TRAMP)-C2 cells, as compared with murine bone marrow-derived macrophages (BMDMs). Moreover, TLR7 mRNA was markedly expressed in RWPE-1 cells (non-cancerous prostate epithelial cells), but not in PC3 and DU145 (prostate cancer cells). Immunohistochemically, TLR7 expression gradually decreased in TRAMP mice depending on the pathologic grade of the prostate cells. TLR7 agonists increased both the gene and protein expression of TLR7 and promoted production of proinflammatory cytokines/chemokines and IFN-β gene expression in prostate cancer cell lines. Moreover, loxoribine inhibited the growth and colony formation of TRAMP-C2 cells dependent of TLR7. These findings suggest that TLR7 may participate in tumour suppression in the prostate cells. © 2013 John Wiley & Sons Ltd.
Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang
2015-02-01
The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Essential Roles of Epithelial Bone Morphogenetic Protein Signaling During Prostatic Development
Omori, Akiko; Miyagawa, Shinichi; Ogino, Yukiko; Harada, Masayo; Ishii, Kenichiro; Sugimura, Yoshiki; Ogino, Hajime; Nakagata, Naomi
2014-01-01
Prostate is a male sex-accessory organ. The prostatic epithelia consist primarily of basal and luminal cells that differentiate from embryonic urogenital sinus epithelia. Prostate tumors are believed to originate in the basal and luminal cells. However, factors that promote normal epithelial differentiation have not been well elucidated, particularly for bone morphogenetic protein (Bmp) signaling. This study shows that Bmp signaling prominently increases during prostatic differentiation in the luminal epithelia, which is monitored by the expression of phosphorylated Smad1/5/8. To elucidate the mechanism of epithelial differentiation and the function of Bmp signaling during prostatic development, conditional male mutant mouse analysis for the epithelial-specific Bmp receptor 1a (Bmpr1a) was performed. We demonstrate that Bmp signaling is indispensable for luminal cell maturation, which regulates basal cell proliferation. Expression of the prostatic epithelial regulatory gene Nkx3.1 was significantly reduced in the Bmpr1a mutants. These results indicate that Bmp signaling is a key factor for prostatic epithelial differentiation, possibly by controlling the prostatic regulatory gene Nkx3.1. PMID:24731097
Gerhardt, Josefine; Steinbrech, Corinna; Büchi, Oralea; Behnke, Silvia; Bohnert, Annette; Fritzsche, Florian; Liewen, Heike; Stenner, Frank; Wild, Peter; Hermanns, Thomas; Müntener, Michael; Dietel, Manfred; Jung, Klaus; Stephan, Carsten; Kristiansen, Glen
2011-01-01
Previously, we identified the calcium-activated nucleotidase 1 (CANT1) transcript as up-regulated in prostate cancer. Now, we studied CANT1 protein expression in a large cohort of nearly 1000 prostatic tissue samples including normal tissue, prostatic intraepithelial neoplasia (PIN), primary carcinomas, metastases, and castrate-resistant carcinomas, and further investigated its functional relevance. CANT1 displayed predominantly a Golgi-type immunoreactivity with additional and variable cytoplasmic staining. In comparison to normal tissues, the staining intensity was significantly increased in PIN lesions and cancer. In cancer, high CANT1 levels were associated with a better prognosis, and castrate-resistant carcinomas commonly showed lower CANT1 levels than primary carcinomas. The functional role of CANT1 was investigated using RNA interference in two prostate cancer cell lines with abundant endogenous CANT1 protein. On CANT1 knockdown, a significantly diminished cell number and DNA synthesis rate, a cell cycle arrest in G1 phase, and a strong decrease of cell transmigration rate and wound healing capacity of CANT1 knockdown cells was found. However, on forced CANT1 overexpression, cell proliferation and migration remained unchanged. In summary, CANT1 is commonly overexpressed in the vast majority of primary prostate carcinomas and in the precursor lesion PIN and may represent a novel prognostic biomarker. Moreover, this is the first study to demonstrate a functional involvement of CANT1 in tumor biology. PMID:21435463
Intraepithelial lymphocytes in relation to NIH category IV prostatitis in autopsy prostate.
Dikov, Dorian; Bachurska, Svitlana; Staikov, Dimitri; Sarafian, Victoria
2015-07-01
Quantitative analysis of the number, normal and pathologic ratios between lymphocytes and epithelial cells (ECs), and the significance of intraepithelial lymphocytes (IELs) in normal prostatic epithelium, benign prostatic hyperplasia (BPH), and high grade prostatic intraepithelial neoplasia (PIN) in relation to NIH category IV prostatitis (histologic prostatitis: HP) was studied in autopsy prostate. IELs were analysed in 59 autopsy prostates, which was routinely embedded in paraffin and immunohistochemically stained for CD3. An average of 300-500 ECs were counted per case. The number of IELs was calculated as the mean/100 ECs. Category IV prostatitis was evaluated using NIH consensus grading system in terms of anatomical localization and grade. In healthy individuals the mean number of IELs/100 ECs was 0.61 ± 0.34% or ≤1 lymphocyte/100 ECs, which is considered as the normal basal level of prostate IELs. In category IV prostatitis, the mean number of IELs/100 ECs was 8.53 ± 3.25% or 5-11 lymphocytes/100 ECs. The number of IELs in both around and inside inflammation areas correlated to the grade and location of HP (P < 0.0001 and P < 0.0003), the presence of acute glandular inflammation (P < 0.0001), the scattered stromal lymphocytes (P = 0.029), and BPH and PIN associated prostatic inflammation (P < 0.0001). The study presents the first attempt to examine and score the basic quantitative values of prostatic IELs in normal prostate and in relation to category IV prostatitis. The detected normal upper limit of CD3+ IELs is 1 lymphocyte/100 ECs in the normal prostate epithelium. This is considered as an organ specific characteristic of the prostate-associated lymphoid tissue (PALT). Values >5 IELs/100 ECs indicate the presence of category IV prostatitis. The severity of inflammation correlates to the number of IELs. There is an intimate link between the quantity of the IELs, the degree of the severity and the localization of category IV prostatitis. HP is a chronic and dynamic inflammatory process affecting the whole prostate gland. The increased number of IELs suggests the immune or autoimmune character of category IV prostatitis, BPH and inflammatory preneoplastic (PIN) lesions in the prostatic tumor environment. © 2015 Wiley Periodicals, Inc.
[Neuroendocrine differentiation in prostate adenocarcinoma].
Ramírez-Balderrama, Lázaro; López-Briones, Sergio; Daza-Benítez, Leonel; Macías, Maciste H; López-Gaytán, Teresa; Pérez-Vázquez, Victoriano
2013-01-01
The human prostate is a gland composed of many types of cells and extracellular components with specific functions. The stromal compartment includes nerve tissue, fibroblasts, lymphocytes, macrophages, endothelial cells, and smooth muscular cells. The epithelial compartment is composed of luminal epithelial cells, basal cells, and a lesser number of neuroendocrine cells, which are transcendental in growth regulation, differentiation, and secretory function. In prostate cancer, neuroendocrine cells replicate especially in high grade and advanced stage, and hormonally treated tumoral cells adopt characteristics that make them resistant to hormonal deprivation. Androgen receptors have a crucial role in tumorigenesis of prostate adenocarcinoma. Deprivation hormone therapy blocks the expression of androgen receptors in the prostatic epithelial cells. Neuroendocrine cells lack androgen receptors; their growth is hormonally independent and that is why deprivation hormonal therapy does not eliminate the neoplasic neuroendocrine cells. In contrast, these types of cells proliferate after therapy and make a paracrine network, stimulating the proliferation of androgen-independent neoplastic cells, which finally lead to tumoral recurrence. In this work we describe the neuroendocrine function in normal tissue and in prostatic adenocarcinoma, including neoplasic proliferation stimulation, invasion, apoptosis resistance, and angiogenesis, and describe some molecular pathways involved in this neuroendocrine differentiation.
Lipid degradation promotes prostate cancer cell survival.
Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Ho Lau, Chung; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J; Takhar, Mandeep; Heemers, Hannelore V; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L; Clarke, Noel; Swinnen, Johan V; Keun, Hector C; Rekvig, Ole P; Mills, Ian G
2017-06-13
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
Dubovenko, Alexey; Serebryiskaya, Tatiana; Nikolsky, Yuri; Nikolskaya, Tatiana; Perlina, Ally; JeBailey, Lellean; Bureeva, Svetlana; Katta, Shilpa; Srivastava, Shiv; Dobi, Albert; Khasanova, Tatiana
2015-01-01
Background: Despite a growing number of studies evaluating cancer of prostate (CaP) specific gene alterations, oncogenic activation of the ETS Related Gene (ERG) by gene fusions remains the most validated cancer gene alteration in CaP. Prevalent gene fusions have been described between the ERG gene and promoter upstream sequences of androgen-inducible genes, predominantly TMPRSS2 (transmembrane protease serine 2). Despite the extensive evaluations of ERG genomic rearrangements, fusion transcripts and the ERG oncoprotein, the prognostic value of ERG remains to be better understood. Using gene expression dataset from matched prostate tumor and normal epithelial cells from an 80 GeneChip experiment examining 40 tumors and their matching normal pairs in 40 patients with known ERG status, we conducted a cancer signaling-focused functional analysis of prostatic carcinoma representing moderate and aggressive cancers stratified by ERG expression. Results: In the present study of matched pairs of laser capture microdissected normal epithelial cells and well-to-moderately differentiated tumor epithelial cells with known ERG gene expression status from 20 patients with localized prostate cancer, we have discovered novel ERG associated biochemical networks. Conclusions: Using causal network reconstruction methods, we have identified three major signaling pathways related to MAPK/PI3K cascade that may indeed contribute synergistically to the ERG dependent tumor development. Moreover, the key components of these pathways have potential as biomarkers and therapeutic target for ERG positive prostate tumors. PMID:26000039
[Prostate specific antigen and NF-kB in prostatic disease: relation with malignancy].
Cansino, J R; Vera, R; Rodríguez de Bethencourt, F; Bouraoui, Y; Rodríguez, G; Prieto, A; de la Peña, J; Paniagua, R; Royuela, M
2011-01-01
NF-kB (p50/p65) is a transcription factor involved in TNF-α-induced cell death resistance by promoting several antiapoptotic genes. We intend to relate the expression of NF-kB (p50 and p65) with serum levels of prostate-specific antigen (PSA), both in normal males and in those with pathologic conditions of the prostate. this study was carried out in 5 normal, 24 benign prostatic hyperplastic (BPH) and 19 patients with prostate cancer (PC). Immunohistochemical and Western blot analyses were performed on tissue and serum PSA was assayed by PSA DPC Immulite assays (Diagnostics Products Corporation, Los Angeles, CA). in controls, p65 NF-kB was not found and p50 was scantly detected in 60% normal samples in the cytoplasm of epithelial cells. Both p50 and p65 were expressed in 62.5% of the samples with BPH and in 63.2% of those with PC. Both increased its frequency of expression with higher PSA serum levels. Activation of NF-kB revealed by its nuclear translocation in prostate cancer could be related to cancer progression and elevated seric PSA levels. A better understanding of the biologic mechanism by which circulating PSA levels increase and its relation with NF-kB expression is needed. Possibly, NF-kB blockage could be used as a therapeutic target to counteract proliferation in prostate cancer. Copyright © 2010 AEU. Published by Elsevier Espana. All rights reserved.
Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T
2010-01-01
The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.
XMRV Discovery and Prostate Cancer-Related Research.
Kang, David E; Lee, Michael C; Das Gupta, Jaydip; Klein, Eric A; Silverman, Robert H
2011-01-01
Xenotropic murine leukemia virus-related virus (XMRV) was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME), and immunosuppressed with respiratory tract infections) or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.
hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer
Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C
2005-01-01
Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous glands is likely due to in situ gene silencing. These observations, coupled with the numerous and consistent reports of loss of zinc accumulation in malignant cells in prostate cancer, lead to the plausible proposal that down regulation of hZIP1 is a critical early event in the development prostate cancer. PMID:16153295
Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance
2016-10-01
Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.
Choi, Eun-Sun; Chung, Taeho; Kim, Jun-Sung; Lee, Hakmo; Kwon, Ki Han; Cho, Nam-Pyo; Cho, Sung-Dae
2013-01-01
Mithramycin A (Mith) is an aureolic acid-type polyketide produced by various soil bacteria of the genus Streptomyces. Mith inhibits myeloid cell leukemia-1 (Mcl-1) to induce apoptosis in prostate cancer, but the molecular mechanism underlying this process has not been fully elucidated. The aim of this study was therefore to investigate the detailed molecular mechanism related to Mith-induced apoptosis in prostate cancer cells. Mith decreased the phosphorylation of mammalian target of rapamycin (mTOR) in both cell lines overexpressing phospho-mTOR compared to RWPE-1 human normal prostate epithelial cells. Mith significantly induced truncated Bid (tBid) and siRNA-mediated knock-down of Mcl-1 increased tBid protein levels. Moreover, Mith also inhibited the phosphorylation of mTOR on serine 2448 and Mcl-1, and increased tBid protein in prostate tumors in athymic nude mice bearing DU145 cells as xenografts. Thus, Mith acts as an effective tumor growth inhibitor in prostate cancer cells through the mTOR/Mcl-1/tBid signaling pathway. PMID:24062605
Pandey, Saurabh; Walpole, Carina; Cabot, Peter J; Shaw, Paul N; Batra, Jyotsna; Hewavitharana, Amitha K
2017-05-01
Prostate cancer (PCa) is the leading cause of cancer related deaths in men. Carica papaya is a popular tropical plant that has been traditionally used for its nutritional and medicinal properties. We investigated the anti-proliferative responses of papaya leaf juice (LJP) and its various extracts ("biological"- in vitro digested, "physical"- size exclusion, and "chemical"-solvent extraction) on a range of cell lines representing benign hyperplasia, tumorigenic and normal cells of prostate origin. Time course analysis (by 24h, 48h and 72h) of LJP (1-0.1mg/mL) before and after in vitro digestion, and of molecular weight based fractions of LJP showed anti-proliferative responses. The medium polarity fraction of LJP (0.03-0.003mg/mL) after 72h exposure showed potent growth inhibitory (IC 50 =0.02-0.07mg/mL) and cytotoxic activities on all prostate cells, with the exception of the normal (RWPE-1 and WPMY-1) cells. Flow cytometry analysis showed S phase cell cycle arrest and apoptosis as a possible mechanism for these activities. Medium polar fraction of LJP also inhibited migration and adhesion of metastatic PC-3 cells. This is the first report suggesting selective anti-proliferative and anti-metastatic attributes of LJP extract against prostatic diseases, including PCa. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Synthetic Lethality as a Targeted Approach to Advanced Prostate Cancer
2013-03-01
cell line was derived from primary human prostate epithelial cells by transformation with human papilloma virus. While not tumorigenic, they do...normal cells and tissues has no significant adverse effects. Inhibition of PKCδ in human and murine cells containing an activated Ras protein, however...initiates rapid and profound apoptosis. In this work, we are testing the hypothesis that inhibition or down-regulation of PKCδ in human and murine
Elastic light single-scattering spectroscopy for detection of dysplastic tissues
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda
2013-11-01
Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.
Huang, Yuan-peng; Du, Jian; Hong, Zhen-feng; Chen, Zhi-qing; Wu, Jin-fa; Zhao, Jin-yan
2009-08-01
To investigate the effects of Kangquan Recipe (KQR) on sex steroids and cell proliferation in an experimental benign prostatic hyperplasia (BPH) model in rats. Seventy-two SD rats were randomly divided into six groups: the normal group, the model group, the finasteride group, and the low-, middle-, and high-dose KQR groups, 12 in each group. Except those in the normal group, the rats were injected with testosterone after castration for the establishment of BPH model and then given respectively with normal saline, finasteride, and low-, middle-, and high-dose of KQR for 30 days. The levels of plasma testosterone (T) and estradiol (E(2)) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression ) of proliferating cell nuclear antigen (PCNA) in prostate tissue was detected by reverse transcription-polymerase chain reaction (RT-PCR) after administration. Compared with the model group, the prostate weight, the plasma T, and the mRNA expression of PCNA were significantly lower, and the plasma E(2) and the ratio of E(2)/T were higher in the three KQR groups (P<0.05 or P<0.01). There was no significant difference in the prostate weight, plasma T and E(2), and ratio of E(2)/T among the finasteride group and the three KQR groups (P>0.05). The mRNA expressions of PCNA were significantly higher in the middle- and low-dose of KQR groups than those in the finasteride group (P<0.05). KQR shows multitarget effects on experimental BPH rats, and the mechanism might be related with regulating the balance of plasma T and E(2) and decreasing the PCNAmRNA expression in prostate tissue to restrain cell proliferation in a dose-dependent manner.
Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun
2015-10-01
In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.
The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.
Liu, Can; Kelnar, Kevin; Liu, Bigang; Chen, Xin; Calhoun-Davis, Tammy; Li, Hangwen; Patrawala, Lubna; Yan, Hong; Jeter, Collene; Honorio, Sofia; Wiggins, Jason F; Bader, Andreas G; Fagin, Randy; Brown, David; Tang, Dean G
2011-02-01
Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.
Infiltrating mast cells enhance benign prostatic hyperplasia through IL-6/STAT3/Cyclin D1 signals
Ou, Zhenyu; He, Yao; Qi, Lin; Zu, Xiongbin; Wu, Longxiang; Cao, Zhenzhen; Li, Yuan; Liu, Longfei; Dube, Daud Athanasius; Wang, Zhi; Wang, Long
2017-01-01
Early evidences have showed that mast cells could infiltrate into benign prostatic hyperplasia (BPH) tissues, but the exact role of mast cells in BPH development remains unclear. In this study, we identified more mast cells existing in human BPH tissues compared with that in the normal prostate. In the in vitro co-culture system, BPH-1 prostate cells promoted activation and migration of mast cells, and mast cells conversely stimulated BPH-1 cells proliferation significantly. Molecular analysis demonstrated that mast cell-derived interleukin 6 (IL-6) could activate STAT3/Cyclin D1 signals in BPH-1 cells. Blocking IL-6 or STAT3 partially reverse the capacity of mast cells to enhance BPH-1 cell proliferation. Our findings suggest that infiltrating mast cells in BPH tissues could promote BPH development via IL-6/STAT3/Cyclin D1 signals. Therefore, targeting infiltrating mast cells may improve the therapeutic effect of BPH. PMID:28938626
Nakayama, Masashi; Bennett, Christina J.; Hicks, Jessica L.; Epstein, Jonathan I.; Platz, Elizabeth A.; Nelson, William G.; De Marzo, Angelo M.
2003-01-01
Somatic inactivation of the glutathione S-transferase-π gene (GSTP1) via CpG island hypermethylation occurs early during prostate carcinogenesis, present in ∼70% of high-grade prostatic intraepithelial neoplasia (high-grade PIN) lesions and more than 90% of adenocarcinomas. Recently, there has been a resurgence of the concept that foci of prostatic atrophy (referred to as proliferative inflammatory atrophy or PIA) may be precursor lesions for the development of prostate cancer and/or high-grade PIN. Many of the cells within PIA lesions contain elevated levels of GSTP1, glutathione S-transferase-α (GSTA1), and cyclooxygenase-II proteins, suggesting a stress response. Because not all PIA cells are positive for GSTP1 protein, we hypothesized that some of the cells within these regions acquire GSTP1 CpG island hypermethylation, increasing the chance of progression to high-grade PIN and/or adenocarcinoma. Separate regions (n =199) from 27 formalin-fixed paraffin-embedded prostates were microdissected by laser-capture microdissection (Arcturus PixCell II). These regions included normal epithelium (n = 48), hyperplasticepithelium from benign prostatic hyperplasia nodules (n = 22), PIA (n = 64), high-grade PIN (n = 32), and adenocarcinoma (n = 33). Genomic DNA was isolated and assessed for GSTP1 CpG island hypermethylation by methylation-specific polymerase chain reaction. GSTP1 CpG island hypermethylation was not detected in normal epithelium (0 of 48) or in hyperplastic epithelium (0 of 22), but was found in 4 of 64 (6.3%) PIA lesions. The difference in the frequency of GSTP1 CpG island hypermethylation between normal or hyperplastic epithelium and PIA was statistically significant (P = 0.049). Similar to studies using nonmicrodissected cases, hypermethylation was found in 22 of 32 (68.8%) high-grade PIN lesions and in 30 of 33 (90.9%) adenocarcinoma lesions. Unlike normal or hyperplastic epithelium, GSTP1 CpG island hypermethylation can be detected in some PIA lesions. These data support the hypothesis that atrophic epithelium in a subset of PIA lesions may lead to high-grade PIN and/or adenocarcinoma. Because these atrophic lesions are so prevalent and extensive, even though only a small subset contains this somatic DNA alteration, the clinical impact may be substantial. PMID:12937133
Kong, Zhe; Wan, Xuechao; Zhang, Yalong; Zhang, Pu; Zhang, Yingyi; Zhang, Xiaona; Qi, Xiaoxiang; Wu, Hai; Huang, Jianfeng; Li, Yao
2017-11-25
Prostate cancer (PCa) is one of the most commonly diagnosed cancers in males worldwide. Circular RNA (circRNA) is a unique class of RNA transcribed by RNA polymerase II characterized by jointing 3' and 5' ends together via exon or intron circularization. However, the molecular functions of circRNAs in prostate cancer have rarely been explored. In present study, we found circ-SMARCA5 was up-regulated in prostate cancer samples compared to match normal tissues. We also observed circ-SMARCA5 expression was significantly induced after DHT treatment. Functional experiments showed circ-SMARCA5 acted as an oncogene in prostate cancer by promoting cell cycle and inhibiting cell apoptosis. We thought this study provided useful information for exploring circRNAs as potential therapeutic and prognostic targets for prostate cancer. Copyright © 2017. Published by Elsevier Inc.
Gonzaga, Amanda C R; Campolina-Silva, Gabriel H; Werneck-Gomes, Hipácia; Moura-Cordeiro, Júnia D; Santos, Letícia C; Mahecha, Germán A B; Morais-Santos, Mônica; Oliveira, Cleida A
2017-06-01
Estrogens acting through the receptors ERα and ERβ participate in prostate normal growth and cancer. ERβ is highly expressed in the prostate epithelium, playing pro-apoptotic, anti-proliferative, and pro-differentiation roles. Apoptosis is activated by the intrinsic pathway after castration and by the extrinsic pathway after ERβ agonist treatment. This differential activation of apoptotic pathways is important since a major problem in the treatment of prostate cancer is the recurrence of tumors after androgen withdrawal. However, a comprehensive study about the pattern of apoptosis in the aging prostate is lacking, a knowledge gap that we aimed to address herein. Cellular age-related proliferative and apoptotic profiles of prostate tissue obtained from aging Wistar rats were evaluated. Cell death (caspase-3, -8, -9, TNFα) was assessed by immunohistochemistry, immunofluorescence, and TUNEL. Cell proliferation (MCM7) and cell survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) were determined by immunohistochemistry. As the rats aged, the number of proliferating cells gradually reduced in the normal epithelium of all prostate lobes, while increasing in focal areas of intraepithelial proliferation. Interestingly, in areas of intraepithelial proliferation, we observed a reduction in the number of cells positive for caspase-3, -8, and -9. Regardless the animal's age, few prostate epithelial cells were positive for caspase-3, caspase-9, and TUNEL. In contrast, a progressive increase was seen in the positivity for caspase-8, especially in the atrophic epithelium of ventral prostate, which coincided with a reduction in TNFα immunoreaction. However, morphology of most caspase-8 positive cells suggests that they were not apoptotic. We also found reduced ERβ expression in the same areas. Possibly, low levels of the pro-apoptotic inductors TNFα and ERβ direct caspase-8 activity to an alternative pro-survival role in the atrophic epithelium. This hypothesis is supported by the increased expression of the key survival factors (ERK1/2, p-ERK1/2, p-Akt, and NF-κB) in these areas. Our findings reveal that, as the animals age, there is an increase of proliferation in restricted areas of the prostate epithelium, and a concomitant reduction of the apoptosis rate with an increase in cell survival induced by caspase-8, indicating a focused and spontaneous disruption of tissue homeostasis. © 2017 Wiley Periodicals, Inc.
Gong, Xiaoming; Marisiddaiah, Raju; Zaripheh, Susan; Wiener, Doris; Rubin, Lewis P
2016-10-01
Despite numerous inquiries into protective roles of lycopene in prostate cancer prevention or therapy, little is known about mechanisms by which lycopene or its metabolites inhibit prostate cancer. The enzyme β-carotene 9',10'-oxygenase (BCO2), which catalyzes asymmetric cleavage of several carotenoids, is the principal regulator of lycopene metabolism, but the range of BCO2 biological functions is incompletely understood. This study investigated expression and functional roles of BCO2 in human prostate cancer. Expression of the bco2 gene is dramatically decreased in prostate cancer tissue and in a range of prostate cancer cell lines as compared with nonneoplastic prostate tissue and normal prostatic epithelial cells, respectively. Inhibition of DNA methyltransferase activity restored bco2 expression in prostate cancer cell lines tested. Treatment with lycopene or its metabolite, apo-10-lycopenal, also increased bco2 expression and reduced cell proliferation in androgen-sensitive cell lines, but lycopene neither altered bco2 expression nor cell growth in androgen-resistant cells. Notably, restoring bco2 expression in prostate cancer cells inhibited cell proliferation and colony formation, irrespective of lycopene exposure. Exogenous expression of either wild-type BCO2 or a mutant (enzymatically inactive) BCO2 in prostate cancer cells reduced NF-κB activity and decreased NF-κB nuclear translocation and DNA binding. Together, these results indicate epigenetic loss of BCO2 expression is associated with prostate cancer progression. Moreover, these findings describe previously unanticipated functions of BCO2 that are independent of its enzymatic role in lycopene metabolism. This study identifies BCO2 as a tumor suppressor in prostate cancer. BCO2-mediated inhibition of NF-κB signaling implies BCO2 status is important in prostate cancer progression. Mol Cancer Res; 14(10); 966-75. ©2016 AACR. ©2016 American Association for Cancer Research.
Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E
2015-04-01
Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Notch signaling dynamics in the adult healthy prostate and in prostatic tumor development.
Pedrosa, Ana-Rita; Graça, José L; Carvalho, Sandra; Peleteiro, Maria C; Duarte, António; Trindade, Alexandre
2016-01-01
The Notch signaling pathway has been implicated in prostate development, maintenance and tumorigenesis by its key role in cell-fate determination, differentiation and proliferation. Therefore, we proposed to analyze Notch family members transcription and expression, including ligands (Dll1, 3, 4 and Jagged1 and 2), receptors (Notch1-4) and effectors (Hes1, 2, 5 and Hey1, 2, L), in both normal and tumor bearing mouse prostates to better understand the dynamics of Notch signaling in prostate tumorigenesis. Wild type mice and transgenic adenocarcinoma of the mouse prostate model (TRAMP) mice were sacrificed at 18, 24 or 30 weeks of age and the prostates collected and processed for either whole prostate or prostate cell specific populations mRNA analysis and for protein expression analysis by immunohistochemistry and immunofluorescence. We observed that Dll1 and Dll4 are expressed in the luminal compartment of the mouse healthy prostate, whereas Jagged2 expression is restricted to the basal and stromal compartment. Additionally, Notch2 and Notch4 are normally expressed in the prostate luminal compartment while Notch2 and Notch3 are also expressed in the stromal layer of the healthy prostate. As prostate tumor development takes place, there is up-regulation of Notch components. Particularly, the prostate tumor lesions have increased expression of Jagged1 and 2, of Notch3 and of Hey1. We have also detected the presence of activated Notch3 in prostatic tumors that co-express Jagged1 and ultimately the Hey1 effector. Taken together our results point out the Notch axis Jagged1-2/Notch3/Hey1 to be important for prostate tumor development and worthy of additional functional studies and validation in human clinical disease. © 2015 Wiley Periodicals, Inc.
Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan
2013-01-01
Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.
CpG-STAT3siRNA for Castration-Resistant Prostate Cancer Therapy
2015-12-01
RESULTS TLR9 promotes prostate cancer cell engraftment and progression in vivo Previous studies reported expression of the innate immune receptor...cancer cells express innate immune receptors, such as TLR9, normally restricted to the hematopoietic cell lineage [2, 5, 7]. Rather than becoming... innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells . Cancer Res. 2012; 72:3948–3957. 7. Ilvesaro JM
Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12
Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer
2011-01-01
The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, K
Purpose: Most prostate cancers are slow-growing diseases but normally require much higher doses (80Gy) with conventional fractionation radiotherapy, comparing to other more aggressive cancers. This study is to disclose the radiobiological basis of this discrepancy by proposing the concept of prostate cancer stem cells (CSCs) and examining their specific irradiation responses. Methods: There are overwhelming evidences that CSC may keep their stemness, e.g. the competency of cell differentiation, in hypoxic microenvironments and hence become radiation resistive, though the probability is tiny for aggressiveness cancers. Tumor hypoxia used to be considered as an independent reason for poor treatment outcomes, and recentmore » evidences showed that even prostate cancers were also hypoxic though they are very slow-growing. In addition, to achieve comparable outcomes to other much more aggressive cancers, much higher doses (rather than lower doses) are always needed for prostate cancers, regardless of its non-aggressiveness. All these abnormal facts can only be possibly interpreted by the irradiation responses characteristics of prostate CSCs. Results: Both normal cancer cells (NCCs) and CSCs exiting in tumors, in which NCCs are mainly for symptoms whereas killing all CSCs achieves disease-free. Since prostate cancers are slow-growing, the hypoxia in prostate cancers cannot possibly from NCCs, thus it is caused by hypoxic CSCs. However, single hypoxic cell cannot be imaged due to limitation of imaging techniques, unless a large group of hypoxic cells exist together, thus most of CSCs in prostate cancers are virtually hypoxic, i.e. not in working mode because CSCs in proliferating mode have to be normoxic, and this explains why prostate cancers are unaggressive. Conclusion: The fractional dose in conventional radiotherapy (∼2Gy) could only kill NCCs and CSCs in proliferating modes, whereas most CSCs survived fractional treatments since they were hypoxic, thus to eliminate all CSCs and achieve disease-free, much more fractionations are needed.« less
Emerging Roles of Human Prostatic Acid Phosphatase
Kong, Hoon Young; Byun, Jonghoe
2013-01-01
Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed. PMID:24009853
Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta
2014-02-03
There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.
Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny
2016-10-01
The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.
Brinkmann, Ulrich; Vasmatzis, George; Lee, Byungkook; Yerushalmi, Noga; Essand, Magnus; Pastan, Ira
1998-01-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus. PMID:9724777
Brinkmann, U; Vasmatzis, G; Lee, B; Yerushalmi, N; Essand, M; Pastan, I
1998-09-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.
Yoo, Nam Jin; Hur, Soo Young; Kim, Min Sung; Lee, Ji Youl; Lee, Sug Hyung
2010-04-01
Evidence exists that microRNA (miRNA), which regulates gene expression, is frequently deregulated in cancers. A mature miRNA directs a RNA-induced silencing complex (RISC) to its target messenger RNA, and causes inhibition of gene transcription. Ago proteins and TNRC proteins are main components of the RISC and participate in miRNA-induced gene silencing. However, expression status of Ago and TNRC proteins has not yet been studied in human cancer tissues. In this study, we attempted to explore whether expressions of Ago2 and TNRC6A are altered in prostate carcinomas (PCA) and esophageal squamous cell carcinomas (ESCC). We analyzed the expression of Ago2 and TNRC6A in 107 PCA and 58 ESCC tissues by immunohistochemistry using a tissue microarray (TMA) method. In the prostate, Ago2 was not expressed in normal glandular cells, while it was expressed in 50.0% of prostate intraepithelial neoplasia (PIN) and 57.0% of the PCA. TNRC6A was not expressed in normal prostate cells, while it was expressed in 55.0% of the PIN and 63.6% of the PCA in cytoplasm and nucleus. In the esophagus, neither Ago2 nor TNRC6A was expressed in normal squamous cells, while Ago2 and TNRC6A were expressed in 58.6% and 62.1% of the ESCC, respectively. However, neither the expression of Ago2 or TNRC6A was associated with pathologic characteristics of the cancers, including age, sex, Gleason score (PCA) and stage. The increased expressions of Ago2 and TNRC6A in both PCA and ESCC compared with their normal cells suggested that over-expression of these proteins may be related to miRNA functions and might play a role in tumorigenesis of PCA and ESCC.
Härmä, Ville; Virtanen, Johannes; Mäkelä, Rami; Happonen, Antti; Mpindi, John-Patrick; Knuuttila, Matias; Kohonen, Pekka; Lötjönen, Jyrki; Kallioniemi, Olli; Nees, Matthias
2010-01-01
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds. PMID:20454659
Palethorpe, Helen M; Leach, Damien A; Need, Eleanor F; Drew, Paul A; Smith, Eric
2018-04-10
Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo , providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome.
Palethorpe, Helen M.; Leach, Damien A.; Need, Eleanor F.; Drew, Paul A.; Smith, Eric
2018-01-01
Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo, providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome. PMID:29721186
Low Testosterone Alters the Activity of Mouse Prostate Stem Cells.
Zhou, Ye; Copeland, Ben; Otto-Duessel, Maya; He, Miaoling; Markel, Susan; Synold, Tim W; Jones, Jeremy O
2017-04-01
Low serum testosterone (low T) has been repeatedly linked to worse outcomes in men with newly diagnosed prostate cancer (PC). How low T contributes to these outcomes is unknown. Here we demonstrate that exposure to low T causes significant changes in the mouse prostate and prostate stem cells. Mice were castrated and implanted with capsules to achieve castrate, normal, or sub-physiological levels of T. After 6 weeks of treatment, LC-MS/MS was used to quantify the levels of T and dihydrotestosterone (DHT) in serum and prostate tissue. FACS was used to quantify the percentages of purported prostate stem and transit amplifying (TA) cells in mouse prostates. Prostate tissues were also stained for the presence of CD68+ cells and RNA was extracted from prostate tissue or specific cell populations to measure changes in transcript levels with low T treatment. Despite having significantly different levels of T and DHT in the serum, T and DHT concentrations in prostate tissue from different T treatment groups were similar. Low T treatment resulted in significant alterations in the expression of androgen biosynthesis genes, which may be related to maintaining prostate androgen levels. Furthermore, the expression of androgen-regulated genes in the prostate was similar among all T treatment groups, demonstrating that the mouse prostate can maintain functional levels of androgens despite low serum T levels. Low T increased the frequency of prostate stem and TA cells in adult prostate tissue and caused major transcriptional changes in those cells. Gene ontology analysis suggested that low T caused inflammatory responses and immunofluorescent staining indicated that low T treatment led to the increased presence of CD68+ macrophages in prostate tissue. Low T alters the AR signaling axis which likely leads to maintenance of functional levels of prostate androgens. Low T also induces quantitative and qualitative changes in prostate stem cells which appear to lead to inflammatory macrophage infiltration. These changes are proposed to lead to an aggressive phenotype once cancers develop and may contribute to the poor outcomes in men with low T. Prostate 77:530-541, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Expression of the cancer-testis antigen BORIS correlates with prostate cancer.
Cheema, Zubair; Hari-Gupta, Yukti; Kita, Georgia-Xanthi; Farrar, Dawn; Seddon, Ian; Corr, John; Klenova, Elena
2014-02-01
BORIS, a paralogue of the transcription factor CTCF, is a member of the cancer-testis antigen (CT) family. BORIS is normally present at high levels in the testis; however it is aberrantly expressed in various tumors and cancer cell lines. The main objectives of this study were to investigate BORIS expression together with sub-cellular localization in both prostate cell lines and tumor tissues, and assess correlations between BORIS and clinical/pathological characteristics. We examined BORIS mRNA expression, protein levels and cellular localization in a panel of human prostate tissues, cancer and benign, together with a panel prostate cell lines. We also compared BORIS levels and localization with clinical/pathological characteristics in prostate tumors. BORIS was detected in all inspected prostate cancer cell lines and tumors, but was absent in benign prostatic hyperplasia. Increased levels of BORIS protein positively correlated with Gleason score, T-stage and androgen receptor (AR) protein levels in prostate tumors. The relationship between BORIS and AR was further highlighted in prostate cell lines by the ability of ectopically expressed BORIS to activate the endogenous AR mRNA and protein. BORIS localization in the nucleus plus cytoplasm was also associated with higher BORIS levels and Gleason score. Detection of BORIS in prostate tumors suggests potential applications of BORIS as a biomarker for prostate cancer diagnosis, as an immunotherapy target and, potentially, a prognostic marker of more aggressive prostate cancer. The ability of BORIS to activate the AR gene indicates BORIS involvement in the growth and development of prostate tumors. © 2013 Wiley Periodicals, Inc.
Stumm, Laura; Burkhardt, Lia; Steurer, Stefan; Simon, Ronald; Adam, Meike; Becker, Andreas; Sauter, Guido; Minner, Sarah; Schlomm, Thorsten; Sirma, Hüseyin; Michl, Uwe
2013-07-01
Transcription factors of the forkhead box P (FOXP1-4) family have been implicated in various human cancer types before. The relevance and role of neuronal transcription factor FOXP2 in prostate cancer is unknown. A tissue microarray containing samples from more than 11 000 prostate cancers from radical prostatectomy specimens with clinical follow-up data was analysed for FOXP2 expression by immunohistochemistry. FOXP2 data were also compared with pre-existing ERG fusion (by fluorescence in situ hybridisation and immunohistochemistry) and cell proliferation (Ki67 labelling index) data. There was a moderate to strong FOXP2 protein expression in basal and secretory cells of normal prostatic glands. As compared with normal cells, FOXP2 expression was lost or reduced in 25% of cancers. Strong FOXP2 expression was linked to advanced tumour stage, high Gleason score, presence of lymph node metastases and early tumour recurrence (p<0.0001; each) in ERG fusion-negative, but not in ERG fusion-positive cancers. High FOXP2 expression was linked to high Ki67 labelling index (p<0.0001) in all cancers irrespective of ERG fusion status. These data demonstrate that similar high FOXP2 protein levels as in normal prostate epithelium exert a 'paradoxical' oncogenic role in 'non fusion-type' prostate cancer. It may be speculated that interaction of FOXP2 with members of pathways that are specifically activated in 'non fusion-type' cancers may be responsible for this phenomenon.
MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer
Suh, Seong O.; Chen, Yi; Zaman, Mohd Saif; Hirata, Hiroshi; Yamamura, Soichiro; Shahryari, Varahram; Liu, Jan; Tabatabai, Z.Laura; Kakar, Sanjay; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir
2011-01-01
MiR-145 is downregulated in various cancers including prostate cancer. However, the underlying mechanisms of miR-145 downregulation are not fully understood. Here, we reported that miR-145 was silenced through DNA hypermethylation and p53 mutation status in laser capture microdissected (LCM) prostate cancer and matched adjacent normal tissues. In 22 of 27 (81%) prostate tissues, miR-145 was significantly downregulated in the cancer compared with the normal tissues. Further studies on miR-145 downregulation mechanism showed that miR-145 is methylated at the promoter region in both prostate cancer tissues and 50 different types of cancer cell lines. In seven cancer cell lines with miR-145 hypermethylation, 5-aza-2′-deoxycytidine treatment dramatically induced miR-145 expression. Interestingly, we also found a significant correlation between miR-145 expression and the status of p53 gene in both LCM prostate tissues and 47 cancer cell lines. In 29 cell lines with mutant p53, miR-145 levels were downregulated in 28 lines (97%), whereas in 18 cell lines with wild-type p53 (WT p53), miR-145 levels were downregulated in only 6 lines (33%, P < 0.001). Electrophoretic mobility shift assay showed that p53 binds to the p53 response element upstream of miR-145, but the binding was inhibited by hypermethylation. To further confirm that p53 binding to miR-145 could regulate miR-145 expression, we transfected WT p53 and MUT p53 into PC-3 cells and found that miR-145 is upregulated by WT p53 but not with MUTp53. The apoptotic cells are increased after WT p53 transfection. In summary, this is the first report documenting that downregulation of miR-145 is through DNA methylation and p53 mutation pathways in prostate cancer. PMID:21349819
Sundram, Vasudha; Chauhan, Subhash C.; Ebeling, Mara; Jaggi, Meena
2012-01-01
Prostate cancer is the most commonly diagnosed cancer affecting 1 in 6 males in the US. Understanding the molecular basis of prostate cancer progression can serve as a tool for early diagnosis and development of novel treatment strategies for this disease. Protein Kinase D1 (PKD1) is a multifunctional kinase that is highly expressed in normal prostate. The decreased expression of PKD1 has been associated with the progression of prostate cancer. Therefore, synthetic or natural products that regulate this signaling pathway can serve as novel therapeutic modalities for prostate cancer prevention and treatment. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of different molecular pathways. Herein, we have demonstrated that curcumin activates PKD1, resulting in changes in β-catenin signaling by inhibiting nuclear β-catenin transcription activity and enhancing the levels of membrane β-catenin in prostate cancer cells. Modulation of these cellular events by curcumin correlated with decreased cell proliferation, colony formation and cell motility and enhanced cell-cell aggregation in prostate cancer cells. In addition, we have also revealed that inhibition of cell motility by curcumin is mediated by decreasing the levels of active cofilin, a downstream target of PKD1. The potent anti-cancer effects of curcumin in vitro were also reflected in a prostate cancer xenograft mouse model. The in vivo inhibition of tumor growth also correlated with enhanced membrane localization of β-catenin. Overall, our findings herein have revealed a novel molecular mechanism of curcumin action via the activation of PKD1 in prostate cancer cells. PMID:22523587
NASA Astrophysics Data System (ADS)
Pascal, A.; Butts-Pauly, K.; Plata, J.; Sommer, G.; Daniel, B.; Bouley, D. M.
2017-03-01
Thermal ablation techniques are important tools to treat low grade tumors in the prostate gland. The use of Magnetic Resonance Imaging (MRI) has been an excellent tool to visualize and assess the thermally ablated areas in real time. In this study slides from dog prostates previously treated with cryoablation or High Intensity Focal Ultrasound (HIFU) were immunohistochemically stained with the biomarker p63, in order to determine if this marker would be helpful for differentiatiating between viable, sub lethally damaged and normal glands. Digitized slides were analyzed using Sedeen Viewer software, and compared with corresponding representative H&E slides and MR images. p63 staining in the cryoablated acute duration prostates was negative in the coagulation necrosis zone (region of interest subjected to the coldest temperatures). In acute duration HIFU treated prostates, the central heat-fixed zone (region of interest subjected to the hottest temperatures) still displayed + p63 staining. Cryoablated or HIFU subacute duration treated prostates were very hemorrhagic, but presented the same stain pattern in the treated areas as the acute duration prostates, and in chronic duration prostates, whether treated with cryo or HIFU, glands displayed robust p63 staining most prevalent in the outer edges of the lesion where there was extensive glandular regeneration. In conclusion, this study demonstrates the value of p63 IHC and its usefulness in detecting viable prostate basal cells in normal dog prostates following either cryoablation of HIFU. Our results suggest that the portions of the lesion with complete loss of p63 staining correspond well to the non-enhancing region in cryoablated prostates, as viewed with MRI. However, p63 staining in the heat-fixed zone in acute harvested HIFU treated prostates remains positive, suggesting either inadequate heat to destroy basal cells, or heat-fixation of the p63 antigen and false positive staining. Therefore p63 staining does not appear to be beneficial in determining cell viability in HIFU-treated tissues, and would not aid in predicting if unwanted tumor cells in a similarly treated area could regenerate.
Ueda, Takashi; Ito, Saya; Shiraishi, Takumi; Kulkarni, Prakash; Ueno, Akihisa; Nakagawa, Hideo; Kimura, Yasunori; Hongo, Fumiya; Kamoi, Kazumi; Kawauchi, Akihiro; Miki, Tsuneharu
2013-09-01
Metastasis is a consequence of many biological events, during which cancer stem cells are shifted into a malignant state. Among these events, invasion of prostate cancer cells into host tissues is possible to be assessed by means of an in vitro invasion model, and is thought to be coupled to altered expression of membrane proteins. Dysregulated functions of the factors regulating organogenesis during embryogenesis are known to facilitate metastasis of many types of cancers. PAX2 (paired box 2) is a member of the PAX transcription factor family, which regulates prostatic ductal growth and branching in organogenesis of mammalian prostates. However, the role of PAX2 in prostate cancer development remains to be determined. PAX2 expression in human prostate cancers and normal prostate epithelium were examined by quantitative RT-PCR and immunohistochemistry. Matrigel invasion assay and a gene array analysis were performed using prostate cancer cell lines transfected with either control or PAX2 siRNA. In human prostate cancers, PAX2 was hyper-expressed in metastatic cancers, but was expressed at lower levels in non-metastatic cancers. Consistent with this, PAX2 knockdown repressed cell growth and invasion in a Matrigel invasion assay. Gene ontology analysis revealed that many cell membrane proteins were downregulated after PAX2 knockdown. Our data suggested that PAX2 hyper-expression promotes the development of the metastatic state in prostate cancer cells, presumably through upregulating the expression of cell membrane proteins. Copyright © 2013 Wiley Periodicals, Inc.
Targeting monoamine oxidase A in advanced prostate cancer.
Flamand, Vincent; Zhao, Hongjuan; Peehl, Donna M
2010-11-01
Inhibitors of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades neurotransmitters including serotonin and norepinephrine, are commonly used to treat neurological conditions including depression. Recently, we and others identified high expression of MAOA in normal basal prostatic epithelium and high-grade primary prostate cancer (PCa). In contrast, MAOA is low in normal secretory prostatic epithelium and low-grade PCa. An irreversible inhibitor of MAOA, clorgyline, induced secretory differentiation in primary cultures of normal basal epithelial cells and high-grade PCa. Furthermore, clorgyline inhibited several oncogenic pathways in PCa cells, suggesting clinical value of MAOA inhibitors as a pro-differentiation and anti-oncogenic therapy for high-risk PCa. Here, we extended our studies to a model of advanced PCa, VCaP cells, which were derived from castration-resistant metastatic PCa and express a high level of MAOA. Growth of VCaP cells in the presence or absence of clorgyline was evaluated in vitro and in vivo. Gene expression changes in response to clorgyline were determined by microarray and validated by quantitative real-time polymerase chain reaction. Treatment with clorgyline in vitro inhibited growth and altered the transcriptional pattern of VCaP cells in a manner consistent with the pro-differentiation and anti-oncogenic effects seen in treated primary PCa cells. Src, beta-catenin, and MAPK oncogenic pathways, implicated in androgen-independent growth and metastasis, were significantly downregulated. Clorgyline treatment of mice bearing VCaP xenografts slowed tumor growth and induced transcriptome changes similar to those noted in vitro. Our results support the possibility that anti-depressant drugs that target MAOA might find a new application in treating PCa.
PTK6 activation at the membrane regulates epithelial-mesenchymal transition in prostate cancer.
Zheng, Yu; Wang, Zebin; Bie, Wenjun; Brauer, Patrick M; Perez White, Bethany E; Li, Jing; Nogueira, Veronique; Raychaudhuri, Pradip; Hay, Nissim; Tonetti, Debra A; Macias, Virgilia; Kajdacsy-Balla, André; Tyner, Angela L
2013-09-01
The intracellular tyrosine kinase protein tyrosine kinase 6 (PTK6) lacks a membrane-targeting SH4 domain and localizes to the nuclei of normal prostate epithelial cells. However, PTK6 translocates from the nucleus to the cytoplasm in human prostate tumor cells. Here, we show that while PTK6 is located primarily within the cytoplasm, the pool of active PTK6 in prostate cancer cells localizes to membranes. Ectopic expression of membrane-targeted active PTK6 promoted epithelial-mesenchymal transition in part by enhancing activation of AKT, thereby stimulating cancer cell migration and metastases in xenograft models of prostate cancer. Conversely, siRNA-mediated silencing of endogenous PTK6 promoted an epithelial phenotype and impaired tumor xenograft growth. In mice, PTEN deficiency caused endogenous active PTK6 to localize at membranes in association with decreased E-cadherin expression. Active PTK6 was detected at membranes in some high-grade human prostate tumors, and PTK6 and E-cadherin expression levels were inversely correlated in human prostate cancers. In addition, high levels of PTK6 expression predicted poor prognosis in patients with prostate cancer. Our findings reveal novel functions for PTK6 in the pathophysiology of prostate cancer, and they define this kinase as a candidate therapeutic target. Cancer Res; 73(17); 5426-37. ©2013 AACR.
Using Human Stem Cells to Study the Role of the Stroma in the Initiation of Prostate Cancer
2011-03-01
alterations in the epithelium that drives the pr ogressive transformation of nor mal human cells into highly malignant derivatives. It is evident that...of tumor initiation, we propose to use normal human prostate epithelium generated from human embryonic stem cells (hESCs) in tissue recombination...serum free conditions for 5-8 days into endoderm in vitro. Confirm endoderm phenotype using immunohistochemistry and FACs analysis . We conducted
Interaction between Trichomonas vaginalis and the Prostate Epithelium.
Kim, Jung-Hyun; Han, Ik-Hwan; Kim, Sang-Su; Park, Soon-Jung; Min, Duk-Young; Ahn, Myoung-Hee; Ryu, Jae-Sook
2017-04-01
Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis . The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis =1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-1β, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.
TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.
Ma, Yueyun; Xin, Yijuan; Li, Rui; Wang, Zhe; Yue, Qiaohong; Xiao, Fengjing; Hao, Xiaoke
2014-03-10
TFDP3 has been previously identified as an inhibitor of E2F molecules. It has been shown to suppress E2F1-induced apoptosis dependent P53 and to play a potential role in carcinogenesis. However, whether it indeed helps cancer cells tolerate apoptosis stress in cancer tissues remains unknown. TFDP3 expression was assessed by RT-PCR, in situ hybridization and immunohistochemistry in normal human tissues, cancer tissues and prostate cancer tissues. The association between TFDP3 and E2F1 in prostate cancer development was analyzed in various stages. Apoptosis was evaluated with annexin-V and propidium iodide staining and flow-cytometry. The results show that, in 96 samples of normal human tissues, TFDP3 could be detected in the cerebrum, esophagus, stomach, small intestine, bronchus, breast, ovary, uterus, and skin, but seldom in the lung, muscles, prostate, and liver. In addition, TFDP3 was highly expressed in numerous cancer tissues, such as brain-keratinous, lung squamous cell carcinoma, testicular seminoma, cervical carcinoma, skin squamous cell carcinoma, gastric adenocarcinoma, liver cancer, and prostate cancer. Moreover, TFDP3 was positive in 23 (62.2%) of 37 prostate cancer samples regardless of stage. Furthermore, immunohistochemistry results show that TFDP3 was always expressed in coordination with E2F1 at equivalent expression levels in prostate cancer tissues, and was highly expressed particularly in samples of high stage. When E2F1 was extrogenously expressed in LNCap cells, TFDP3 could be induced, and the apoptosis induced by E2F1 was significantly decreased. It was demonstrated that TFDP3 was a broadly expressed protein corresponding to E2F1 in human tissues, and suggested that TFDP3 is involved in prostate cancer cell survival by suppressing apoptosis induced by E2F1. Copyright © 2013 Elsevier B.V. All rights reserved.
Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng
2018-07-01
Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.
Calderon-Gierszal, Esther L; Prins, Gail S
2015-01-01
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.
Lee, John K.; Bangayan, Nathanael J.; Chai, Timothy; Smith, Bryan A.; Pariva, Tiffany E.; Yun, Sangwon; Vashisht, Ajay; Zhang, Qingfu; Park, Jung Wook; Corey, Eva; Huang, Jiaoti; Wohlschlegel, James; Witte, Owen N.
2018-01-01
Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting. PMID:29686080
2014-11-13
PIM kinases are not required for essential cellular functions . Furthermore, the presence of a unique hinge region in the ATP-binding site of PIM1...washing and blocking, cells were incubated with the appropriate primary antibodies overnight and incubated with fluorescent secondary antibodies...determined after 72 hrs of reverse transfection by using the CellTiter-Glo Luminescent cell viability assay and the results were normalized to RISC -free siRNA
Prostate cancer epigenetics and its clinical implications
Yegnasubramanian, Srinivasan
2016-01-01
Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125
Prostate cancer epigenetics and its clinical implications.
Yegnasubramanian, Srinivasan
2016-01-01
Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.
Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Miranda, G; Rodríguez-Vallejo, J M; González-Esteban, J; Torrubia, F
1998-10-01
Prostatic atrophy has been documented histologically as a consequence of finasteride action on human hyperplastic prostates. An increase in apoptotic rates has also been reported in androgen-deprived hyperplastic prostates. Transforming growth factor beta (TGF-beta) signaling is implicated in apoptotic cell death. TGF-betas have been detected in normal and diseased human prostate. In the normal prostate, TGF-beta acts as a predominantly negative growth regulator. TGF-beta signaling receptors TbetaRI and TbetaRII have been shown to be negatively regulated by androgens. We studied the histological changes in 9 selected finasteride-treated patients with benign prostatic hyperplasia (BPH), and analyzed the levels of expression and localization of TGF-beta receptor types TbetaRI and TbetaRII in these patients as compared to selected BPH controls. The prostatic epithelial compartment seemed to be a primary target site for finasteride action, since we observed moderate to severe glandular atrophy after 4-6 months of treatment. TGF-beta receptors were upregulated in treated cases. We assessed a twofold increase in TbetaRII mRNA levels in treated cases as compared to controls. An increase in both TbetaRI and TbetaRII at the protein level by immunostaining was observed, which also provided a helpful means for detecting glands undergoing regression. We conclude that finasteride may modulate the TGF-beta signaling system to promote changes leading to apoptosis of epithelial cells and prostatic glandular atrophy.
Arachidonate 15-Lipoxygenase 2 as an Endogenous Inhibitor of Prostate Cancer Development
2006-03-01
dehydrogenase; NHP, normal human prostate epithelial cells; PCa, prostate cancer; NLS, nuclear localization signal; PPAR -, peroxisome proliferator...cloned, i.e., 15-LOX2sv-a/b/c, are mostly excluded from the nucleus. A potential bi-partite nuclear localization signal (NLS...only partially involved in the nuclear import of 15-LOX2. To elucidate the relationship between nuclear localization , enzymatic activity, and tumor
A Riboproteomic Platform to Identify Novel Targets for Prostate Cancer Therapy
2016-12-01
this process at the level of the translating ribosome and its associated proteins (i.e. the riboproteome). While the conventional wisdom has been...options for prostate cancer patients. 15. SUBJECT TERMS Prostate cancer, translation , riboproteome, SILAC-based mass spectrometry 16. SECURITY...riboproteomes of normal and cancer cells have been uncovered. These data suggest that the riboproteome and its associated translational landscape are
Isolation and Characterization of Prostate Cancer Stem Cells
2012-08-01
guidelines. Adjacent prostate tissue was snap frozen in liquid Nitrogen or fixed in formalin and paraffin-embedded to evaluate anatomy and glandular...phenotypically normal and fertile [35]. We examined the prostate at 8 and 20 weeks of age and found no difference in gross anatomy and histology among WT...gross anatomy of the prostate of WT and CD1662/2 mice at 8 weeks of age, scale bar: 2 mm. Bottom: HE staining of DLP section from WT and CD1662/2 mice
Beaver, Laura M.; Kuintzle, Rachael; Buchanan, Alex; Wiley, Michelle W.; Glasser, Sarah T.; Wong, Carmen P.; Johnson, Gavin S.; Chang, Jeff H.; Löhr, Christiane V.; Williams, David E.; Dashwood, Roderick H.; Hendrix, David A.; Ho, Emily
2017-01-01
Long non-coding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or DMSO. SFN significantly altered expression of ~100 lncRNAs in each cell type, and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction, and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells, and significantly upregulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A 4-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells.. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer. PMID:28131897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian Junqiang; Ning Shouchen; Knox, Susan J., E-mail: sknox@stanford.ed
Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5more » Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.« less
Beaver, Laura M; Kuintzle, Rachael; Buchanan, Alex; Wiley, Michelle W; Glasser, Sarah T; Wong, Carmen P; Johnson, Gavin S; Chang, Jeff H; Löhr, Christiane V; Williams, David E; Dashwood, Roderick H; Hendrix, David A; Ho, Emily
2017-04-01
Long noncoding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole-genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or dimethylsulfoxide. SFN significantly altered expression of ~100 lncRNAs in each cell type and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells and significantly up-regulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A four-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer. Published by Elsevier Inc.
Guo, Yidi; Zang, Ying; Lv, Lianzheng; Cai, Feng; Qian, Tingting; Zhang, Guoying; Feng, Quancheng
2017-12-01
Interleukin-8 (IL-8) possesses tumorigenic and proangiogenic properties, and is overexpressed in many human cancer types. However, only few studies have demonstrated the mechanisms of action of IL‑8 regarding the ability to promote proliferation and to inhibit apoptosis in prostate cancer. Here, the aim of the present study was to investigate the effects of IL‑8 on the prostate cancer cell line and determine possible mechanisms underlying its effect. In this study, IL‑8 was shown to be significantly upregulated in prostate cancer compared with paired normal control tissues. The data showed that IL‑8 exhibits direct oncogenicity, which significantly induced cell proliferation, invasion and attenuated apoptosis in prostate cancer cells via signal transducer and activator of transcription 3/protein kinase B/nuclear factor‑κB signaling pathways. In conclusion, modulation of IL‑8 expression or its associated signaling pathway may provide a novel working mechanism of IL‑8 in prostate cancer, and a promising strategy for controlling the progression and metastasis of prostate cancer.
Gonçalves, Bianca F; de Campos, Silvana G P; Góes, Rejane M; Scarano, Wellerson R; Taboga, Sebastião R; Vilamaior, Patricia S L
2017-06-01
Estrogens are critical players in prostate growth and disease. Estrogen therapy has been the standard treatment for advanced prostate cancer for several decades; however, it has currently been replaced by alternative anti-androgenic therapies. Additionally, studies of its action on prostate biology, resulting from an association between carcinogens and estrogen, at different stages of life are scarce or inconclusive about its protective and beneficial role on induced-carcinogenesis. Thus, the aim of this study was to determine whether estradiol exerts a protective and/or stimulatory role on N-methyl-N-nitrosurea-induced prostate neoplasms. We adopted a rodent model that has been used to study induced-prostate carcinogenesis: the Mongolian gerbil. We investigated the occurrence of neoplasms, karyometric patterns, androgen and estrogen receptors, basal cells, and global methylation status in ventral and dorsolateral prostate tissues. Histopathological analysis showed that estrogen was able to slow tumor growth in both lobes after prolonged treatment. However, a true neoplastic regression was observed only in the dorsolateral prostate. In addition to the protective effects against neoplastic progression, estrogen treatment resulted in an epithelium that exhibited features distinctive from a normal prostate, including increased androgen-insensitive basal cells, high androgens and estrogen receptor positivity, and changes in DNA methylation patterns. Estrogen was able to slow tumor growth, but the epithelium exhibited features distinct from a normal prostatic epithelium, and this unstable microenvironment could trigger lesion recurrence over time. © 2017 Wiley Periodicals, Inc.
Prostate tumor grown in NASA Bioreactor
NASA Technical Reports Server (NTRS)
2001-01-01
This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.
Li, Feng; Pascal, Laura E; Zhou, Jianhua; Zhou, Yibin; Wang, Ke; Parwani, Anil V; Dhir, Rajiv; Guo, Peng; He, Dalin; Nelson, Joel B; Wang, Zhou
2018-01-01
The mechanisms involved in the development of benign prostatic hyperplasia (BPH) are poorly understood. One potential mechanism involved in BPH pathogenesis may involve altered expression of genes related to apoptosis and proliferation because reduced cell death and increased proliferation are thought to contribute to prostatic enlargement. This study examined the expression of B-cell lymphoma 2 (BCL-2) and B-cell lymphoma-extra large (BCL-XL), two important anti-apoptosis factors that are also capable of inhibiting cell proliferation via accelerated G1 arrest or delayed G1/S transition, using immunostaining in simple prostatectomy BPH specimens from patients naïve to androgen manipulation. Since androgens and inflammation are thought to play important roles in BPH pathogenesis, we tested the effect of inhibiting 5a-reductase and/or COX-2 on the expression of BCL-2 and BCL-XL in BPH specimens from prostate cancer patients with BPH. These patients had no prior use of chronic NSAIDs and/or 5a-reductase inhibitors and were treated with celecoxib, finasteride, celecoxib plus finasteride or no treatment for 28 consecutive days prior to surgery. In all specimens, BCL-2 and BCL-XL staining was evident in both luminal and basal epithelial cells, with more intense staining in basal cells. Both luminal and basal cells exhibited decreased BCL-2 and BCL-XL staining in BPH nodules compared to the surrounding normal prostatic tissues. In prostate cancer patients with BPH, celecoxib and/or finasteride did not affect the expression of BCL-2 and BCL-XL in luminal or basal cells in BPH nodules and normal adjacent tissues. These results suggest that BCL-2 and BCL-XL may act as anti-proliferative factors in BPH pathogenesis, and the effect of celecoxib and/or finasteride on BPH is unlikely mediated through modulating BCL-2 and BCL-XL signaling. PMID:29531971
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Costello, Leslie C.; Franklin, Renty B.
2016-01-01
The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued. PMID:27132038
Chung, Ivy; Montecinos, Viviana P.; Buttyan, Ralph; Johnson, Candace S.; Smith, Gary J.
2013-01-01
Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182–1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous “antiangiogenic” agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients. PMID:23548616
Siejka, A; Schally, A V; Barabutis, N
2014-01-01
Stromal cells strictly modulate the differentiation of the normal prostate epithelium. In benign prostatic hyperplasia (BPH) tissue, the ratio of stromal to epithelial cells reaches a 5:1 ratio. In this study, we evaluated the effects of crossover conditioned media (CM) of stromal and epithelial prostate cells before and after treatment with LHRH antagonist Cetrorelix. WPMY-1 human prostate stromal cells and BPH-1 human benign prostatic hyperplasia cells were cultured in vitro and the effects of crossover conditioned media (CM) from those cells were studied. We evaluated the effect of Cetrorelix on the expression of PCNA and p53 in those cells. We then studied the effect of Cetrorelix on BPH-1 cells cultured with the CM from WPMY-1 cells, as well as the mechanisms which govern these interactions. CM from WPMY-1 cells strongly stimulated the proliferation of BPH-1 cells in a dose dependent manner, while CM from BPH-1 cells only slightly increased the proliferation of WPMY-1 cells. Cetrorelix inhibited the proliferation of both cell lines and the expression of PCNA, while the expression of p53 was increased. Cetrorelix also inhibited the proliferation of BPH-1 cells stimulated with the CM from WPMY-1 cells. In the crossover experiment, conditioned media from WPMY-1 and BPH-1 cells increased the expression of phosphorylated ERK1/2 and STAT3. Our results support previous observations on the bidirectional stromal-epithelial interactions in prostate gland and shed more light on the mechanistic action of those effects. Our study strongly supports the hypothesis that LHRH antagonists may be beneficial for BPH prevention and treatment. © Georg Thieme Verlag KG Stuttgart · New York.
[Over-expression of miR-151a-3p inhibits proliferation and migration of PC-3 prostate cancer cells].
Zhang, Yi; Hao, Tongtong; Zhang, Han; Wei, Pengtao; Li, Xiaohui
2018-03-01
Objective To observe the effect of microRNA-151a-3p (miR-151a-3p) up-regulation on the proliferation and migration of prostate cancer cells and explore the possible molecular mechanism. Methods The expression of miR-151a-3p in PC-3M, C4-2B, 22RV1, DU-145, PC-3, LNCap human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time fluorescence quantitative PCR. PC-3 cells with the lowest expression of miR-151a-3p were used for subsequent experiments. Bioinformatics and dual-luciferase reporter assay were performed to predict and test potential target genes of miR-151a-3p. The miR-151a-3p mimics or negative control microRNAs (miR-NCs) were transfected into PC-3 cells. Real-time fluorescence quantitative PCR was used to detect the expression of miR-151a-3p and potential target gene mRNA. The protein expressions of target genes and downstream signaling pathway proteins were analyzed by Western blotting. The proliferation of PC-3 cells was examined by MTT assay, and the migration of PC-3 cells was detected by Transwell TM assay. Results The expression level of miR-151a-3p in the prostate cancer cells was significantly lower than that in RWPE-1 normal human prostate epithelial cells. PC-3 cells had the lowest expression level of miR-151a-3p. The bioinformatics and dual-luciferase reporter assay showed that NEK2 was the potential target gene for miR-151a-3p. After transfection with miR-151a-3p mimics, the expression of miR-151a-3p in PC-3 cells significantly increased and the expression of NEK2 mRNA significantly decreased. The protein expressions of PI3K-AKT-mTOR signaling pathway were also reduced. Up-regulation of miR-151a-3p significantly inhibited the proliferation and migration of PC-3 cells. Conclusion The expression of miR-151a-3p is reduced in prostate cancer cells. Up-regulation of miR-151a-3p can inhibit the proliferation and migration of P-3 in prostate cancer by decreasing the expression of NEK2 and PI3K-AKT-mTOR signaling pathway proteins.
Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it’s binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2′ deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities. PMID:24614817
Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.
Therapeutic Roles of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2013-10-01
KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self- renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063-71...ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and bmi-1 regulate self-renewal of normal and malignant human mammary stem cells
DUOX enzyme activity promotes AKT signalling in prostate cancer cells.
Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G
2012-12-01
Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.
The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy
Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech
2016-01-01
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290
Ronca, Roberto; Alessi, Patrizia; Coltrini, Daniela; Di Salle, Emanuela; Giacomini, Arianna; Leali, Daria; Corsini, Michela; Belleri, Mirella; Tobia, Chiara; Garlanda, Cecilia; Bonomi, Elisa; Tardanico, Regina; Vermi, William; Presta, Marco
2013-06-01
Fibroblast growth factors (FGFs) exert autocrine/paracrine functions in prostate cancer by stimulating angiogenesis and tumour growth. Here dihydrotestosterone (DHT) up-regulates FGF2 and FGF8b production in murine TRAMP-C2 prostate cancer cells, activating a FGF-dependent autocrine loop of stimulation. The soluble pattern recognition receptor long pentraxin-3 (PTX3) acts as a natural FGF antagonist that binds FGF2 and FGF8b via its N-terminal domain. We demonstrate that recombinant PTX3 protein and the PTX3-derived pentapeptide Ac-ARPCA-NH2 abolish the mitogenic response of murine TRAMP-C2 cells and human LNCaP prostate cancer cells to DHT and FGFs. Also, PTX3 hampers the angiogenic activity of DHT-activated TRAMP-C2 cells on the chick embryo chorioallantoic membrane (CAM). Accordingly, human PTX3 overexpression inhibits the mitogenic activity exerted by DHT or FGFs on hPTX3_TRAMP-C2 cell transfectants and their angiogenic activity. Also, hPTX3_TRAMP-C2 cells show a dramatic decrease of their angiogenic and tumourigenic potential when grafted in syngeneic or immunodeficient athymic male mice. A similar inhibitory effect is observed when TRAMP-C2 cells overexpress only the FGF-binding N-terminal PTX3 domain. In keeping with the anti-tumour activity of PTX3 in experimental prostate cancer, immunohistochemical analysis of prostate needle biopsies from primary prostate adenocarcinoma patients shows that parenchymal PTX3 expression, abundant in basal cells of normal glands, is lost in high-grade prostatic intraepithelial neoplasia and in invasive tumour areas. These results identify PTX3 as a potent FGF antagonist endowed with anti-angiogenic and anti-neoplastic activity in prostate cancer. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Nishikawa, Yukihiro; Okuzaki, Daisuke; Fukushima, Kohshiro; Mukai, Satomi; Ohno, Shouichi; Ozaki, Yuki; Yabuta, Norikazu; Nojima, Hiroshi
2015-01-01
Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death. PMID:26230090
Ferrucci, Danilo; Biancardi, Manoel F; Nishan, Umar; Rosa-Ribeiro, Rafaela; Carvalho, Hernandes F
2017-11-01
In this commentary, we propose a relationship between desquamation, initially described as the collective detachment and deletion of epithelial cell in the prostate gland after castration, and proliferative inflammatory atrophy (PIA) and stromal growth in benign prostate hyperplasia (BPH). First, in response to diverse stimuli, including inflammatory mediators, epithelial cells desquamate and leave a large surface of the luminal side of the basement membrane (BM) exposed. Basal cells are activated into intermediate-type cells, which change morphology to cover and remodel the exposed BM (simple atrophy) to a new physiological demand (such as in the hypoandrogen environment, simulated by surgical and/or chemical castration) and/or to support re-epithelialization (under normal androgen levels). In the presence of inflammation (that might be the cause of desquamation), the intermediate-type cells proliferate and characterize PIA. Second, in other circumstances, desquamation is an early step of epithelial-to-mesenchymal transition (EMT), which contributes to stromal growth, as suggested by some experimental models of BPH. The proposed associations correlate unexplored cell behaviors and reveal the remarkable plasticity of the prostate epithelium that might be at the origin of prostate diseases. © 2017 International Federation for Cell Biology.
miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1.
Sun, Xianglun; Li, Youkong; Yu, Jie; Pei, Hong; Luo, Pengcheng; Zhang, Jie
2015-05-01
Recent reports strongly suggest the profound role of miRNAs in cancer therapeutic response and progression, including invasion and metastasis. The sensitivity to therapy and invasion is the major obstacle for successful treatment in prostate cancer. We aimed to investigate the regulative effect of miR-128/zinc-finger E-box-binding homeobox 1 axis on prostate cancer cell chemosensitivity and invasion. The miR-128 expression pattern of prostate cancer cell lines and tissues was detected by real-time reverse transcriptase-polymerase chain reaction, while the mRNA and protein expression levels of zinc-finger E-box-binding homeobox 1 were measured by real-time reverse transcriptase-polymerase chain reaction and western blot assay, respectively. Dual-luciferase reporter gene assay was used to find the direct target of miR-128. Furthermore, prostate cancer cells were treated with miR-128 mimic or zinc-finger E-box-binding homeobox 1-siRNA, and then the cells' chemosensitivity and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and transwell assay, respectively. We found miR-128 expression obviously decreased in prostate cancer tissues compared with paired normal tissues. Restored miR-128 expression sensitized prostate cancer cells to cisplatin and inhibited the invasion. Furthermore, there was an inverse expression pattern between miR-128 and zinc-finger E-box-binding homeobox 1 in prostate cancer cells and tissues, and zinc-finger E-box-binding homeobox 1 was identified as a direct target of miR-128 in prostate cancer. Knockdown of zinc-finger E-box-binding homeobox 1 expression efficiently sensitized prostate cancer cells to cisplatin and inhibited the invasion. However, ectopic zinc-finger E-box-binding homeobox 1 expression impaired the effects of miR-128 on chemosensitivity and invasion in prostate cancer cells. miR-128 functions as a potential cancer suppressor in prostate cancer progression and rational therapeutic strategies for prostate cancer would be developed based on miR-128/zinc-finger E-box-binding homeobox 1 axis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pu, Yang
Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.
Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer.
Ha, Hong Koo; Lee, Wan; Park, Hyun Jun; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee
2011-01-01
We hypothesized that the CXCL16-CXCR6 ligand-receptor system may play an important role in prostate cancer progression. Levels of CXCL16 and CXCR6 expression were evaluated in prostate cancer cell lines (PC-3 and LNCaP) and normal prostate epithelial cells (PrEC), as well as in tissues from 354 patients. The immunohistochemical expression of CXCL16/CXCR6 was greater in the PC-3/LNCaP cells than in the PrEC cell line. The expression of CXCL16/CXCR6 was significantly higher in prostate cancer than in benign prostatic hypertrophy. Using RT-PCR, the expression of CXCL16/CXCR6 was found to be greater in the PC-3/LNCaP cells than in the PrEC cell line. CXCL16/CXCR6 was weakly detected in lung and liver tissues, whereas CXCL16 was highly expressed in specimens of bone metastasis. CXCL16 immunostaining was related to Gleason score, T stage, tumor volume, perineural invasion and lymph node metastasis. However, biochemical PSA recurrence was not related to the expression of CXCL16/CXCR6. High CXCL16/CXCR6 expression may be related to aggressive cancer behavior, and high CXCL16 expression to bone metastases.
The Role of Polycomb Group Gene Bmi-1 in the Development of Prostate Cancer
2011-09-01
new tricks. Cell Div. 2006 Jul 24;1:15. 17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions... Pestell RG. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer...Datar 22 R, Cote R, Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res. 2007
Aurora-A over-expression in high-grade PIN lesions and prostate cancer.
Buschhorn, Holly McKlveen; Klein, Robert R; Chambers, Susan M; Hardy, Margaret C; Green, Sylvan; Bearss, David; Nagle, Raymond B
2005-09-01
Over-expression of Aurora-A (Aurora 2 kinase, STK-15), a protein found in centrosomes thought to be associated with genetic instability, has been previously documented in prostate cancer [Pihan et al.: Cancer Res 61(5):2212-2219, 2001]. It is unknown if this protein is also over-expressed in high-grade prostatic intraepithelial neoplasia (PIN) lesions. PIN lesions were examined for increased Aurora-A using immunohistochemical staining on archival paraffin embedded prostatectomy tissue. Aurora-A expression was scored using size, number, and staining intensity. Protein expression was examined and compared between stromal cells, normal glands, high-grade PIN lesions, and invasive cancer. Immunohistochemistry shows an increased expression of Aurora-A in 96% of high-grade PIN cases, and 98% in cancer lesions. Twenty-nine percent of cases of normal glands from cancerous prostates also showed increased Aurora-A expression. Over-expression of Aurora-A is present in some normal and the majority of high-grade PIN lesions indicating that this may be an early event that leads to the genetic instability seen in prostate carcinogenesis. Copyright 2005 Wiley-Liss, Inc.
Al-Suede, Fouad Saleih R.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Aman S.; Baharetha, Hussin M.; Hassan, Loiy E. A.; Kadir, Mohd Omar A.; Nassar, Zeyad D.; Abdul Majid, Amin M. S.
2014-01-01
Cat's whiskers (Orthosiphon stamineus) leaves extracts were prepared using supercritical CO2 (SC-CO2) with full factorial design to determine the optimum extraction parameters. Nine extracts were obtained by varying pressure, temperature, and time. The extracts were analysed using FTIR, UV-Vis, and GC-MS. Cytotoxicity of the extracts was evaluated on human (colorectal, breast, and prostate) cancer and normal fibroblast cells. Moderate pressure (31.1 MPa) and temperature (60°C) were recorded as optimum extraction conditions with high yield (1.74%) of the extract (B2) at 60 min extraction time. The optimized extract (B2) displayed selective cytotoxicity against prostate cancer (PC3) cells (IC50 28 µg/mL) and significant antioxidant activity (IC50 42.8 µg/mL). Elevated levels of caspases 3/7 and 9 in B2-treated PC3 cells suggest the induction of apoptosis through nuclear and mitochondrial pathways. Hoechst and rhodamine assays confirmed the nuclear condensation and disruption of mitochondrial membrane potential in the cells. B2 also demonstrated inhibitory effects on motility and colonies of PC3 cells at its subcytotoxic concentrations. It is noteworthy that B2 displayed negligible toxicity against the normal cells. Chemometric analysis revealed high content of essential oils, hydrocarbon, fatty acids, esters, and aromatic sesquiterpenes in B2. This study highlights the therapeutic potentials of SC-CO2 extract of cat's whiskers in targeting prostate carcinoma. PMID:25276215
Wang, Min; Ren, Dong; Guo, Wei; Wang, Zeyu; Huang, Shuai; Du, Hong; Song, Libing; Peng, Xinsheng
2014-07-01
Evidence in literature has demonstrated that some microRNAs (miRNAs) play a pivotal role in most solid tumor metastasis. Previous studies have showed that miR-100 is downregulated in human prostate cancer tissue compared to normal prostate and also significantly decreased in bone metastatic prostate cancer samples compared with primary prostate cancer. Argonaute 2 (AGO2) is the core effector protein of the miRNA-induced silencing complex and overexpression of AGO2 might enhance tumor metastasis. However, it is unknown whether and how miR-100 and AGO2 regulates metastasis of prostate cancer. Here, we report that miR-100 negatively regulated migration, invasion, epithelial-mesenchymal transition (EMT), colony formation, spheroid formation and expression of the stemness factors c-Myc, Oct4 and Klf4 in PC-3 and DU145 cells. Furthermore, miR-100 expression was negatively correlated with bone metastasis of prostate cancer patients. Notably, luciferase assay showed that AGO2 was a direct target of miR-100. Downregulation of AGO2 repressed migration, invasion, EMT and stemness of prostate cancer cells, and reversed the effects seen with miR-100 downregulation. Downregulation of AGO2 enhanced expression of miR-34a and miR-125b which can suppress migration, invasion, EMT and stemness of cancer cells. Taken together, our findings indicate that loss of miR-100 promotes the metastatic ability of prostate cancer cells at least partially by upregulating AGO2 expression through modulating migration, invasion, EMT and stemness of cancer cells, and suggest that miR-100/AGO2 may play an important role in regulating the metastasis of prostate cancer and is a potential target of prevention and therapy.
Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor
NASA Technical Reports Server (NTRS)
Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.
1999-01-01
PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.
Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.
2001-01-01
It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.
Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells.
Hughes-Fulford, M; Chen, Y; Tjandrawinata, R R
2001-05-01
It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.
Lineage plasticity-mediated therapy resistance in prostate cancer.
Blee, Alexandra M; Huang, Haojie
2018-06-12
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution.
Lin, Xiukun; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Romero, Mirna Azalea; Tabassum, Sobia; Ismail, Muhammad
2016-06-01
It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.
A microdissection approach to detect molecular markers during progression of prostate cancer.
Berthon, P.; Dimitrov, T.; Stower, M.; Cussenot, O.; Maitland, N. J.
1995-01-01
To investigate the underlying mechanisms of carcinogenesis, we have developed a technique to determine the frequency of genetic changes in prostatic carcinoma tissue. We have demonstrated that at a ratio of between 1:4 and 1:9 mutant-normal alleles, the signal from a mutant TP53 allele is not apparent after polymerase chain reaction (PCR) amplification and further direct sequencing or single-strand conformation polymorphism (SSCP) analysis. To bypass this problem, which is inherent in the heterogeneity of the prostate tissue and of the tumour, we selected areas of graded prostate tumours (Gleason score) from cryosectioned preparations and microdissected these cells (20-100 cells). After anionic resin removal of proteins, PCR amplification of TP53 gene exons 5/6 and SSCP analysis, an abnormal SSCP band shift was observed in suspected tumour cells, compared with microdissected stromal cells used as an internal control, while (1) a crude preparation of tissue DNA carrying the tumour did not show any abnormality and (2) immunostaining by a set of monoclonal antibodies against TP53 protein remained negative. Nucleotide sequence analysis of the different bands confirmed the presence of a mutation in the TP53 gene exon 6 position 13,336 in an abnormal band for one specimen, while no mutation was detected in the normal SSCP band. By targeting recognised tumour cells we can find DNA mutations which are undetectable using the standard technique of whole-tissue DNA extraction, particularly in a heterogeneous tumour such as carcinoma of the prostate. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7547246
Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A
2016-01-01
Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements. © 2015 American Society of Andrology and European Academy of Andrology.
Scaggiante, B; Dapas, B; Bonin, S; Grassi, M; Zennaro, C; Farra, R; Cristiano, L; Siracusano, S; Zanconati, F; Giansante, C; Grassi, G
2012-01-03
In prostate adenocarcinoma, the dissection of the expression behaviour of the eukaryotic elongation factors (eEF1A1/2) has not yet fully elucidated. The EEF1A1/A2 expressions were investigated by real-time PCR, western blotting (cytoplasmic and cytoskeletal/nuclear-enriched fractions) and immunofluorescence in the androgen-responsive LNCaP and the non-responsive DU-145 and PC-3 cells, displaying a low, moderate and high aggressive phenotype, respectively. Targeted experiments were also conducted in the androgen-responsive 22Rv1, a cell line marking the progression towards androgen-refractory tumour. The non-tumourigenic prostate PZHPV-7 cell line was the control. Compared with PZHPV-7, cancer cells showed no major variations in EEF1A1 mRNA; eEF1A1 protein increased only in cytoskeletal/nuclear fraction. On the contrary, a significant rise of EEF1A2 mRNA and protein were found, with the highest levels detected in LNCaP. Eukaryotic elongation factor 1A2 immunostaining confirmed the western blotting results. Pilot evaluation in archive prostate tissues showed the presence of EEF1A2 mRNA in near all neoplastic and perineoplastic but not in normal samples or in benign adenoma; in contrast, EEF1A1 mRNA was everywhere detectable. Eukaryotic elongation factor 1A2 switch-on, observed in cultured tumour prostate cells and in human prostate tumour samples, may represent a feature of prostate cancer; in contrast, a minor involvement is assigned to EEF1A1. These observations suggest to consider EEF1A2 as a marker for prostate cell transformation and/or possibly as a hallmark of cancer progression.
Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K
2005-03-15
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells
Parajuli, Keshab R.; Zhang, Qiuyang; Liu, Sen; You, Zongbing
2015-01-01
Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer. PMID:26006246
Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.
Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing
2015-05-22
Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.
Choudhary, Vivek; Kaddour-Djebbar, Ismail; Alaisami, Rabei; Kumar, M Vijay; Bollag, Wendy B
2014-05-01
Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer.
Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer.
Segawa, Yoshihiro; Yoshimura, Rikio; Hase, Taro; Nakatani, Tatsuya; Wada, Seiji; Kawahito, Yutaka; Kishimoto, Taketoshi; Sano, Hajime
2002-05-01
Recent studies have demonstrated that peroxisome proliferator activator-receptors (PPAR)-gamma is expressed in some cancer cells such as breast, lung, and gastric cancer, and its ligand induces growth arrest of these cancer cells through apoptosis. However, the expression and localization of PPARs in prostate have not been examined. In this study, PPARs expression was investigated in human prostate cancer (PC), prostatic intraepithelial neoplasia (PIN), benign prostatic hyperplasia (BPH), and normal prostate (NP) tissues. Tumor specimens were obtained from 156 patients with PC, 15 with PIN, 20 with BPH, and 12 patients with NP tissues. The expressions were investigated by RT-PCR and immunohistochemical methods. Immunoreactive PPAR-alpha and -beta were significantly apparent in PC tissues. Marked expressions of PPAR-alpha and -beta were also detected in PIN, BPH, and NP groups. However, very weak or no expression of immunoreactive PPAR-gamma was found in BPH and NP cases. In contrast, we found significant expression of immunoreactive PPAR-gamma in cancer cells in PC group and in PIN group. Our results demonstrated that PPAR-gamma is induced in PC, and suggest that PPAR-gamma ligands may mediate its own potent antiproliferative effect against PC cells through differentiation. Copyright 2002 Wiley-Liss, Inc.
Inhibition of autophagy prevents cadmium-induced prostate carcinogenesis.
Pal, Deeksha; Suman, Suman; Kolluru, Venkatesh; Sears, Sophia; Das, Trinath P; Alatassi, Houda; Ankem, Murali K; Freedman, Jonathan H; Damodaran, Chendil
2017-06-27
Cadmium, an established carcinogen, is a risk factor for prostate cancer. Induction of autophagy is a prerequisite for cadmium-induced transformation and metastasis. The ability of Psoralidin (Pso), a non-toxic, orally bioavailable compound to inhibit cadmium-induced autophagy to prevent prostate cancer was investigated. Psoralidin was studied using cadmium-transformed prostate epithelial cells (CTPE), which exhibit high proliferative, invasive and colony forming abilities. Gene and protein expression were evaluated by qPCR, western blot, immunohistochemistry and immunofluorescence. Xenograft models were used to study the chemopreventive effects in vivo. Cadmium-transformed prostate epithelial cells were treated with Pso resulting in growth inhibition, without causing toxicity to normal prostate epithelial cells (RWPE-1). Psoralidin-treatment of CTPE cells inhibited the expression of Placenta Specific 8, a lysosomal protein essential for autophagosome and autolysosome fusion, which resulted in growth inhibition. Additionally, Pso treatment caused decreased expression of pro-survival signalling proteins, NFκB and Bcl2, and increased expression of apoptotic genes. In vivo, Pso effectively suppressed CTPE xenografts growth, without any observable toxicity. Tumours from Pso-treated animals showed decreased autophagic morphology, mesenchymal markers expression and increased epithelial protein expression. These results confirm that inhibition of autophagy by Pso plays an important role in the chemoprevention of cadmium-induced prostate carcinogenesis.
Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn
2016-12-27
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).
Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim
2010-01-01
Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505
Calderon-Gierszal, Esther L.; Prins, Gail S.
2015-01-01
Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures. PMID:26222054
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2015-10-01
antitumor activity in mouse xenografts did not exert toxic effects on normal tissues. BMI-1 targeted therapy when combined with taxotere resulted in...utilizing zebrafish xenografts (Sabaawy Lab) and prostate cancer cell lines (Bertino Lab), and 3) Confirmation of the antitumor activity of C-209...in mouse xenografts alone and upon combination with taxotere (Bertino Lab). The following tasks from the approved SOW were performed to achieve the
Cheng, Max A; Chou, Fu-Ju; Wang, Keliang; Yang, Rachel; Ding, Jie; Zhang, Qiaoxia; Li, Gonghui; Yeh, Shuyuan; Xu, Defeng; Chang, Chawnshang
2018-03-28
ASC-J9 ® is a recently-developed androgen receptor (AR)-degradation enhancer that effectively suppresses castration resistant prostate cancer (PCa) cell proliferation and invasion. The optimal half maximum inhibitory concentrations (IC 50 ) of ASC-J9 ® at various PCa cell confluences (20%, 50%, and 100%) were assessed via both short-term MTT growth assays and long-term clonogenic proliferation assays. Our results indicate that the IC 50 values for ASC-J9 ® increased with increasing cell confluency. The IC 50 values were significantly decreased in PCa AR-positive cells compared to PCa AR-negative cells or in normal prostate cells. This suggests that ASC-J9 ® may function mainly via targeting the AR-positive PCa cells with limited unwanted side-effects to suppress the surrounding normal prostate cells. Mechanism dissection indicated that ASC-J9 ® might function via altering the apoptosis signals to suppress the PCa AR-negative PC-3 cells. Preclinical studies using multiple in vitro PCa cell lines and an in vivo mouse model with xenografted castration-resistant PCa CWR22Rv1 cells demonstrated that ASC-J9 ® has similar AR degradation effects when dissolved in FDA-approved solvents, including DMSO, PEG-400:Tween-80 (95:5), DMA:Labrasol:Tween-80 (10:45:45), and DMA:Labrasol:Tween-20 (10:45:45). Together, results from preclinical studies suggest a potential new therapy with AR-degradation enhancer ASC-J9 ® may potentially be ready to be used in human clinical trials in order to better suppress PCa at later castration resistant stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target
Raff, Adam B.; Gray, Andrew; Kast, W. Martin
2009-01-01
The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214
Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio
2007-03-01
Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both prostate compartments.
Androgen Regulation of p27 in the Normal and Neoplastic Prostate
1999-09-01
IL-6 (50) or the flavanoid antioxidant silibinin (5 1) results in increased p27KIP’ expression associated with G1 arrest and neuroendocrine...Commun 257:609-614. 51. Zi X, Agarwal R 1999 Silibinin decreases prostate-specific antigen with cell growth inhibition via GI arrest, leading to
Cowin, Prue A.; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K.; Foster, Paul M. D.; Scott, Hamish S.; Risbridger, Gail P.
2010-01-01
Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-κB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, −3A, −3B, and −3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-κB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression. PMID:20056826
Cowin, Prue A; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K; Foster, Paul M D; Scott, Hamish S; Risbridger, Gail P
2010-02-01
Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-kappaB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, -3A, -3B, and -3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-kappaB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression.
Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping
2017-03-07
Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.
Dai, Yuanqing; Li, Dongjie; Chen, Xiong; Tan, Xinji; Gu, Jie; Chen, Mingquan; Zhang, Xiaobo
2018-05-25
BACKGROUND In developed countries, prostate cancer (PCa) is a frequently diagnosed cancer with the second highest fatality rate. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) stably expressed in cells and involved in a series of carcinomas. However, few research studies have reported on the role of circRNAs in PCa. MATERIAL AND METHODS We used qRT-PCR to detect the expression of circMYLK (circRNA ID: hsa_circ_0141940) and miR-29a in PCa tissues and cell lines. MTT, colony formation, and TUNEL assays were performed to analysis the cell viability of PCa cells. Transwell and wound scratch assays were performed to investigate the cell invasion and migration of PCa cells. RESULTS In the present study, we confirmed that circMYLK expression level was significantly higher in PCa samples and PCa cells than in normal tissues and normal prostatic cells. The upregulated circRNA-MYLK promoted PCa cells proliferation, invasion, and migration; however, si-circRNA-MYLK significantly accelerated the PCa cell apoptosis. We also observed that the aforementioned function of circRNA-MYLK on PCa cells was affected through targeting miR-29a. CONCLUSIONS We confirmed circRNA-MYLK was an oncogene in PCa and revealed a novel mechanism underlying circRNA-MYLK in PC progression.
The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells
Ramos-Torres, Ágata; Bort, Alicia; Morell, Cecilia; Rodríguez-Henche, Nieves; Díaz-Laviada, Inés
2016-01-01
Capsaicin, the pungent ingredient of red hot chili peepers, has been shown to have anti-cancer activities in several cancer cells, including prostate cancer. Several molecular mechanisms have been proposed on its chemopreventive action, including ceramide accumulation, endoplasmic reticulum stress induction and NFκB inhibition. However, the precise mechanisms by which capsaicin exerts its anti-proliferative effect in prostate cancer cells remain questionable. Herein, we have tested the involvement of autophagy on the capsaicin mechanism of action on prostate cancer LNCaP and PC-3 cells. The results showed that capsaicin induced prostate cancer cell death in a time- and concentration-dependent manner, increased the levels of microtubule-associated protein light chain 3-II (LC3-II, a marker of autophagy) and the accumulation of the cargo protein p62 suggesting an autophagy blockage. Moreover, confocal microscopy revealed that capsaicin treatment increased lysosomes which co-localized with LC3 positive vesicles in a similar extent to that produced by the lysosomal protease inhibitors E64 and pepstatin pointing to an autophagolysosomes breakdown inhibition. Furthermore, we found that capsaicin triggered ROS generation in cells, while the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Co-treatment of cells with NAC and capsaicin abrogated the effects of capsaicin on autophagy and cell death. Normal prostate PNT2 and RWPE-1 cells were more resistant to capsaicin-induced cytotoxicity and did not accumulate p62 protein. Taken together, these results suggest that ROS-mediated capsaicin-induced autophagy blockage contributes to antiproliferation in prostate cancer cells, which provides new insights into the anticancer molecular mechanism of capsaicin. PMID:26625315
Prostate Angiogenesis in Development and Inflammation
Wong, Letitia; Gipp, Jerry; Carr, Jason; Loftus, Christopher; Benck, Molly; Lee, Sanghee; Mehta, Vatsal; Vezina, Chad; Bushman, Wade
2014-01-01
BACKGROUND Prostatic inflammation is an important factor in development and progression of BPH/LUTS. This study was performed to characterize the normal development and vascular anatomy of the mouse prostate and then examine, for the first time, the effects of prostatic inflammation on the prostate vasculature. METHODS Adult mice were perfused with India ink to visualize the prostatic vascular anatomy. Immunostaining was performed on the E16.5 UGS and the P5, P20 and adult prostate to characterize vascular development. Uropathogenic E. coli 1677 was instilled transurethrally into adult male mice to induce prostate inflammation. RT-PCR and BrdU labeling was performed to assay anigogenic factor expression and endothelial proliferation, respectively. RESULTS An artery on the ventral surface of the bladder trifurcates near the bladder neck to supply the prostate lobes and seminal vesicle. Development of the prostatic vascular system is associated with endothelial proliferation and robust expression of pro-angiogenic factors Pecam1, Tie1, Tek, Angpt1, Angpt2, Fgf2, Vegfa, Vegfc, Figf. Bacterial-induced prostatic inflammation induced endothelial cell proliferation and increased vascular density but surprisingly decreased pro-angiogenic factor expression. CONCLUSIONS The striking decrease in pro-angiogenic factor mRNA expression associated with endothelial proliferation and increased vascular density during inflammation suggests that endothelial response to injury is not a recapitulation of normal development and may be initiated and regulated by different regulatory mechanisms. PMID:24293357
Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells.
Corman, J M; Sercarz, E E; Nanda, N K
1998-11-01
It is now becoming accepted that one is not tolerant to all the determinants of self proteins: the T cell repertoire directed to some sequences in self proteins is intact and can be activated. When a self protein is exclusively expressed by tumour cells, the T cell repertoire directed to the particular self antigen can potentially be activated to attack the tumour: this would amount to induction of a beneficial autoimmune response. Prostate cancer offers a unique opportunity for activation of a tumour-specific immune response owing to the exclusive synthesis of prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSM) by prostatic tissue and prostate tumour cells. In this study we examine the CD4 and CD8 T cell repertoires specific for peptides of PSA and PSM in normal human male individuals, using short-term, peptide antigen-driven CD4 and CD8 T cell lines. We show that short-term, CD4 T cell lines derived from six HLA-DR4 individuals showed strong proliferative responses to six of 10 tested peptides of PSA, selected as to contain a DR4 binding motif. Short-term, CD8 T cell lines from three HLA-A1 individuals showed specific cytolytic activity for autologous targets loaded with five of five tested peptides of PSA and PSM, selected to possess an HLA-A1 binding motif. One of the peptides chosen is termed a 'dual-motif' peptide, as it encodes determinants for both CD4 and CD8 T cells. These results, indicating the existence of CD4 and CD8 T cells against determinants of the self proteins, PSA and PSM, in healthy male individuals reveal the potential of the T cell repertoire from the typical prostate cancer patient to eradicate prostate tumours upon being appropriately activated.
The epigenome as a therapeutic target in prostate cancer.
Perry, Antoinette S; Watson, R William G; Lawler, Mark; Hollywood, Donal
2010-12-01
During cancer development and progression, tumor cells undergo abnormal epigenetic modifications, including DNA methylation, histone deacetylation and nucleosome remodeling. Collectively, these aberrations promote genomic instability and lead to silencing of tumor-suppressor genes and reactivation of oncogenic retroviruses. Epigenetic modifications, therefore, provide exciting new avenues for prostate cancer research. Promoter hypermethylation is widespread during neoplastic transformation of prostate cells, which suggests that restoration of a 'normal' epigenome through treatment with inhibitors of the enzymes involved could be clinically beneficial. Global patterns of histone modifications are also being defined and have been associated with clinical and pathologic predictors of prostate cancer outcome. Although treatment for localized prostate cancer can be curative, the development of successful therapies for the management of castration-resistant metastatic disease is urgently needed. Reactivation of tumor-suppressor genes by demethylating agents and histone deacetylase inhibitors could be a potential treatment option for patients with advanced disease.
Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin
2009-01-01
Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
2016-06-15
Purpose: Cerium oxide nanoparticles (CONPs) have unique pH dependent properties such that they act as a radical modulator. These properties may be used in radiation therapy (RT) to protect normal tissue. This work investigates the selective radioprotection of CONPs in-vitro and potential for in-situ delivery of CONPs in prostate cancer RT. Methods: i) Normal human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC-3) were treated with 0 or 2 ng/mL CONPs (NP size: 5 nm). 2 Gy of 100 kVp radiation was delivered to the cells 4 hours after the CONP treatment. Cell viability was checked 48more » hours later using MTS assays. ii) A prostate tumor was modeled as a 2-cm diameter sphere. CONPs were proposed to be loaded in a hollow radiotherapy fiducial marker. The concentration profile for the CONPs within the tumor was modeled with a previously validated diffusion equation employed in other studies for nanoparticles 10 nm or less. Results: i) Without radiation, cell viability was above 90% when treated with 2 ng/mL CONPs for both HUVEC and PC-3. After irradiation, a slightly higher viability was observed in HUVEC with CONPs than the ones without CONPs, and this effect was not observed in PC-3. ii) Based on the calculations, 2 ng/mL of CONPs could be delivered to normal cells by diffusion with a 1 µg/mL initial concentration within two weeks. Conclusion: We conclude that CONPs can provide selective radioprotection. The delivery of needed concentrations of CONPs is feasible via in-situ release from radiotherapy biomaterials (e.g. fiducials) loaded with the CONPs.« less
Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)
Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan
2013-01-01
Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956
Korohoda, Włodzimierz; Hapek, Anna; Pietrzak, Monika; Ryszawy, Damian; Madeja, Zbigniew
2016-11-01
The present study found that, similarly to 5-fluorouracil, low concentrations (1-10 µM) of 9-aminoacridine (9-AAA) inhibited the growth of the two rat prostate cancer AT-2 and Mat-LyLu cell lines and the human melanoma A375 cell line. However, at the same concentrations, 9-AAA had no effect on the growth and apoptosis of normal human skin fibroblasts (HSFs). The differences between the cellular responses of the AT-2 and Mat-LyLu cell lines, which differ in malignancy, were found to be relatively small compared with the differences between normal HSFs and the cancer cell lines. Visible effects on the cell growth and survival of tumor cell lines were observed after 24-48 h of treatment with 9-AAA, and increased over time. The inhibition of cancer cell growth was found to be due to the gradually increasing number of cells dying by apoptosis, which was observed using two methods, direct counting and FlowSight analysis. Simultaneously, cell motile activity decreased to the same degree in cancer and normal cells within the first 8 h of incubation in the presence of 9-AAA. The results presented in the current study suggest that short-lasting tests for potential anticancer substances can be insufficient; which may result in cell type-dependent differences in the responses of cells to tested compounds that act with a delay being overlooked. The observed differences in responses between normal human fibroblasts and cancer cells to 9-AAA show the requirement for additional studies to be performed simultaneously on differently reacting cancer and normal cells, to determine the molecular mechanisms responsible for these differences.
Liang, Meihua; Zhan, Fei; Zhao, Juan; Li, Qi; Wuyang, Jiazi; Mu, Guannan; Li, Dianjun; Zhang, Yanqiao; Huang, Xiaoyi
2016-07-19
Platinum-based chemotherapy is emerging as the first line of treatment for castration resistant prostate cancer. Among the family of platinum (IV)-based compounds, a member known as CPA-7 inhibits the growth of multiple cancer cell lines. However, how and to what extent CPA-7 elicits its anti-prostate cancer effects in vivo is largely unknown. In this study, we firstly assessed the potential toxicity of the synthesized CPA-7 in a prostate cancer model as well as in normal mice. Next, we evaluated the in vitro effects of CPA-7 on the growth of prostate cancer cells using cell counting assay, and calculated the tumor sizes and cumulative survival rate of the tumor bearing mice by Kaplan-Meier method during CPA-7 treatment. Then we measured the expression level of the activated form of STAT3 (one targets of CPA-7) and its transcriptive activity post CPA-7 treatment by synergistically using western blot, IHC, and firefly luciferase reporter assays. Finally, effects of CPA-7 on immune cell trafficking in the tumor draining lymph nodes and in the spleens are evaluated with flow cytometry. Treatment with CPA-7 significantly inhibited growth of prostate cancer cells in vitro, and also in mice resulting in a prolonged survival and a decreased recurrence rate. These therapeutic effects are due, at least in part, to functional depletion of STAT3 in prostate tumor tissue as well as in the surrounding areas of tumor cell invasion. CPA-7 treatment also resulted in a reduced level of regulatory T cells and increased levels of cytotoxic T and T helper cells in the spleen and in tumor infiltrating lymph nodes. This favorable effect on immune cell trafficking may account for the amnestic immune response against recurrent prostate cancer. CPA-7 is a promising new therapeutic agent for prostate cancer that both inhibits tumor cell proliferation and stimulates anti-tumor immunity. It has potential as first line treatment and/or as an adjuvant for refractory prostate cancer.
Sung, Shian-Ying; Chang, Junn-Liang; Chen, Kuan-Chou; Yeh, Shauh-Der; Liu, Yun-Ru; Su, Yen-Hao; Hsueh, Chia-Yen; Chung, Leland W K; Hsieh, Chia-Ling
2016-01-01
Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E) containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc) into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK) was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.
Vascular Endothelial Growth Factor and Angiopoietin are Required for Prostate Regeneration.
Wang, Gui-min; Kovalenko, Bruce; Huang, Yili; Moscatelli, David
2007-01-01
BACKGROUND The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after one day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2 or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominately in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens. PMID:17221843
[Relationship between chronic prostatitis and prostatic calculus].
Chen, Hong-jie; Yang, Ning-gang; Zhang, Ju-jie; Wang, Jun; Zhang, Xiang-jun; Zhang, Jun; Yu, Xin-ning; Zhang, Dian-ting
2011-01-01
To explore the relationship between chronic prostatitis (CP) and prostatic calculus (PC). We used transperineal ultrasonography (TPUS) to detect PC in 500 normal volunteers and 491 CP patients, and divided them into a CP and a CP + PC group according to the ultrasonographic results. Then we analyzed the NIH-CPSI scores, duration of symptoms and white blood cell count in the expressed prostate secretion (ESP). PC was found in 19.8% of the normal controls, 5% (5/100), 12% (12/100), 19% (19/100), 27% (27/100) and 36% (36/100) in the 20-30 yr, 31-40 yr, 41-50 yr, 51-60 yr and > 60 yr groups, respectively. In comparison, PC was detected in 42.2% of the CP patients, 15.8% (12/76), 30.1% (69/215), 55.7% (59/109), 66.2% (43/65) and 82.8% (24/29) in the above five age groups, respectively, with statistically significant differences between the control and CP groups (P < 0.01). The CP and CP + PC groups showed significant differences in the duration of symptoms and white blood cell count in ESP (P < 0.01) but not in CPSI scores (P < 0.05). The incidence of PC is higher in CP patients than in healthy men, and it is associated with inflammation, aging and symptom duration, but not with CPSI scores.
Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.
2016-01-01
Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599
Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S
2017-01-01
Background: Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Methods: Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. Results: TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G1/S transition and G2/M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. Conclusions: This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types. PMID:28677687
Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S
2017-08-08
Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G 1 /S transition and G 2 /M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types.
Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng
2017-01-01
We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 ( 64 Cu), to evaluate the metabolism, biodistribution, and potential of [ 64 Cu]PSMA-617 for PET imaging of prostate cancer. [ 64 Cu]PSMA-617 was synthesized by heating PSMA-617 with [ 64 Cu]CuCl 2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64 Cu for PSMA-617 yielded [ 64 Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [ 64 Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [ 64 Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [ 64 Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [ 64 Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64 Cu or 67 Cu-labeled PSMA ligands for imaging and radiotherapy.
Cui, Can; Hanyu, Masayuki; Hatori, Akiko; Zhang, Yiding; Xie, Lin; Ohya, Tomoya; Fukada, Masami; Suzuki, Hisashi; Nagatsu, Kotaro; Jiang, Cuiping; Luo, Rui; Shao, Guoqiang; Zhang, Mingrong; Wang, Feng
2017-01-01
We radiolabeled a ligand, PSMA-617, of prostate-specific membrane antigen (PSMA) with copper-64 (64Cu), to evaluate the metabolism, biodistribution, and potential of [64Cu]PSMA-617 for PET imaging of prostate cancer. [64Cu]PSMA-617 was synthesized by heating PSMA-617 with [64Cu]CuCl2 in buffer solution at 90°C for 5 min. In vitro uptake was determined in two cell lines of prostate cancer. In vivo regional distributions were determined in normal and tumor-bearing mice. High radiolabeling efficiency of 64Cu for PSMA-617 yielded [64Cu]PSMA-617 with >99% radiochemical purity. In vitro cellular uptake experiments demonstrated the specificity of [64Cu]PSMA-617 for PSMA-positive LNCaP cells. Biodistribution observations of normal mice revealed high uptake of radioactivity in the kidney and liver. PET with [64Cu]PSMA-617 visualized tumor areas implanted by PSMA-positive LNCaP cells in the mice. Two hours after the injection of [64Cu]PSMA-617 into mice, a radiolabeled metabolite was observed in the blood, liver, urine, and LNCaP tumor tissues. [64Cu]PSMA-617 was easily synthesized, and exhibited a favorable biodistribution in PSMA-positive tumors. Although this radioligand shows slow clearance for kidney and high liver uptake, change of its chelator moiety and easy radiolabeling may enable development of new 64Cu or 67Cu-labeled PSMA ligands for imaging and radiotherapy. PMID:28533936
NOGGIN IS REQUIRED FOR NORMAL LOBE PATTERNING AND DUCTAL BUDDING IN THE MOUSE PROSTATE
Cook, Crist; Vezina, Chad M.; Hicks, Sarah M.; Shaw, Aubie; Yu, Min; Peterson, Richard E.; Bushman, Wade
2008-01-01
Mesenchymal expression of the BMP antagonist NOGGIN during prostate development plays a critical role in pre-natal ventral prostate development and opposes BMP4-mediated inhibition of cell proliferation during postnatal ductal development. Morphologic examination of newborn Noggin-/- male fetuses revealed genitourinary anomalies including cryptorchidism, incomplete separation of the hindgut from the urogenital sinus (UGS), absence of the ventral mesenchymal pad and a complete loss of ventral prostate (VP) budding. Examination of lobe-specific marker expression in the E14 Noggin-/- UGS rescued by transplantation under the renal capsule of a male nude mouse confirmed a complete loss of VP determination. More modest effects were observed in the other lobes, including decreased number of ductal buds in the dorsal and lateral prostates of newborn Noggin-/- males. BMP4 and BMP7 have been shown to inhibit ductal budding and outgrowth by negatively regulating epithelial cell proliferation. We show here that NOGGIN can neutralize budding inhibition by BMP4 and rescues branching morphogenesis of BMP4-exposed UGS in organ culture and show that the effects of BMP4 and NOGGIN activities converge on P63+ epithelial cells located at nascent duct tips. Together, these studies show that the BMP-NOGGIN axis regulates patterning of the ventral prostate, regulates ductal budding, and controls proliferation of P63+ epithelial cells in the nascent ducts of developing mouse prostate. PMID:18028901
Domachevsky, Liran; Goldberg, Natalia; Bernstine, Hanna; Nidam, Meital; Groshar, David
2018-05-30
To quantitatively characterize clinically significant intra-prostatic cancer (IPC) by prostate-specific membrane antigen (PSMA) expression and cell density on PSMA-11 positron emission tomography/magnetic resonance (PET/MR). Retrospective study approved by the institutional review board with informed written consent obtained. Patients with a solitary, biopsy-proven prostate cancer, Gleason score (GS) ≥7, presenting for initial evaluation by PET/computerised tomography (PET/CT), underwent early prostate PET/MR immediately after PSMA-11 tracer injection. PET/MR [MRI-based attenuation correction (MRAC)] and PET/CT [CT-based AC (CTAC)] maximal standardised uptake value (SUVmax) and minimal and mean apparent diffusion coefficient (ADCmin, ADCmean; respectively) in normal prostatic tissue (NPT) were compared to IPC area. The relationship between SUVmax, ADCmin and ADCmean measurements was obtained. Twenty-two patients (mean age 69.5±5.0 years) were included in the analysis. Forty-four prostate areas were evaluated (22 IPC and 22 NPT). Median MRAC SUVmax of NPT was significantly lower than median MRAC SUVmax of IPC (p < 0.0001). Median ADCmin and ADCmean of NPT was significantly higher than median ADCmin and ADCmean of IPC (p < 0.0001). A very good correlation was found between MRAC SUVmax with CTAC SUVmax (rho = -0.843, p < 0.0001). A good inverse relationship was found between MRAC SUVmax and CTAC SUVmax with ADCmin (rho = -0.717, p < 0.0001 and -0.740, p < 0.0001; respectively; Z = 0.22, p = 0.82, NS) and with MRAC SUVmax and ADCmean (rho = -0.737, p < 0.0001). PET/MR SUVmax, ADCmin and ADCmean are distinct biomarkers able to differentiate between IPC and NPT in naïve prostate cancer patients with GS ≥ 7. • PSMA PET/MR metrics differentiate between normal and tumoural prostatic tissue. • A multi-parametric approach combining molecular and anatomical information might direct prostate biopsy. • PSMA PET/MR metrics are warranted for radiomics analysis.
Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping
2012-04-01
G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.
Finasteride Inhibits Human Prostate Cancer Cell Invasion through MMP2 and MMP9 Downregulation
Moroz, Andrei; Delella, Flávia K.; Almeida, Rodrigo; Lacorte, Lívia Maria; Fávaro, Wágner José; Deffune, Elenice; Felisbino, Sérgio L.
2013-01-01
Introduction The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines. Materials and Methods RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate. Results Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells. Conclusions Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells. PMID:24386413
Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T
1998-09-25
A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.
FLIM data analysis of NADH and Tryptophan autofluorescence in prostate cancer cells
NASA Astrophysics Data System (ADS)
O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Rehman, Shagufta; Periasamy, Ammasi
2016-03-01
Fluorescence lifetime imaging microscopy (FLIM) is one of the most sensitive techniques to measure metabolic activity in living cells, tissues and whole animals. We used two- and three-photon fluorescence excitation together with time-correlated single photon counting (TCSPC) to acquire FLIM signals from normal and prostate cancer cell lines. FLIM requires complex data fitting and analysis; we explored different ways to analyze the data to match diverse cellular morphologies. After non-linear least square fitting of the multi-photon TCSPC images by the SPCImage software (Becker & Hickl), all image data are exported and further processed in ImageJ. Photon images provide morphological, NAD(P)H signal-based autofluorescent features, for which regions of interest (ROIs) are created. Applying these ROIs to all image data parameters with a custom ImageJ macro, generates a discrete, ROI specific database. A custom Excel (Microsoft) macro further analyzes the data with charts and statistics. Applying this highly automated assay we compared normal and cancer prostate cell lines with respect to their glycolytic activity by analyzing the NAD(P)H-bound fraction (a2%), NADPH/NADH ratio and efficiency of energy transfer (E%) for Tryptophan (Trp). Our results show that this assay is able to differentiate the effects of glucose stimulation and Doxorubicin in these prostate cell lines by tracking the changes in a2% of NAD(P)H, NADPH/NADH ratio and the changes in Trp E%. The ability to isolate a large, ROI-based data set, reflecting the heterogeneous cellular environment and highlighting even subtle changes -- rather than whole cell averages - makes this assay particularly valuable.
Chemical Agonists of the PML/Daxx Pathway for Prostate Cancer Therapy
2011-04-01
positive nuclei. These data suggest that the assay is highly specific and will not suffer from promiscuous reactivity with NIH library compounds...Figure 16B). Strikingly, when we compared Daxx levels in PCa cell lines to a nontumorigenic human prostatic epithelial line, PWR -1E, they were...Lysates from six different cell types ( PWR -1E, ALVA-31 Daxx K/D, ALVA-31 WT, DU145, LNCaP, and PC3) were normalized for total protein content (60 μg
Identification of HLA-DRB1*1501-restricted T-cell epitopes from human prostatic acid phosphatase.
Klyushnenkova, Elena N; Kouiavskaia, Diana V; Kodak, James A; Vandenbark, Arthur A; Alexander, Richard B
2007-07-01
The crucial role of CD4 T-cells in anti-tumor immune response is widely recognized, yet the identification of HLA class II-restricted epitopes derived from tumor antigens has lagged behind compared to class I epitopes. This is particularly true for prostate cancer. Based on the hypothesis that successful cancer immunotherapy will likely resemble autoimmunity, we searched for the CD4 T-cell epitopes derived from prostatic proteins that are restricted by human leukocyte antigen (HLA)-DRB1*1501, an allele associated with granulomatous prostatitis (GP), a disease that may have an autoimmune etiology. One of the antigens implicated in the development of autoimmunity in the prostate is prostatic acid phosphatase (PAP), which is also considered a promising target for prostate cancer immunotherapy. We immunized transgenic (tg) mice engineered to express HLA-DRB1*1501 with human PAP. A library of overlapping 20-mer peptides spanning the entire human PAP sequence was screened in vitro for T-cell recognition by proliferative and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. We identified two 20-mer peptides, PAP (133-152), and PAP (173-192), that were immunogenic and naturally processed from whole PAP in HLA-DRB1*1501 tg mice. These peptides were also capable of stimulating CD4 T lymphocytes from HLA-DRB1*1501-positive patients with GP and normal donors. These peptides can be used for the design of a new generation of peptide-based vaccines against prostate cancer. The study can also be helpful in understanding the role of autoimmunity in the development of some forms of chronic prostatitis.
Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R
2018-04-27
Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.
Rogers, Oliver C.; Anthony, Lizamma; Rosen, D. Marc; Brennen, W. Nathaniel; Denmeade, Samuel R.
2018-01-01
Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers. PMID:29854290
Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A; Khan, Shafiq A; Chaney, William G; Bu, Xiu R; Lin, Ming-Fong
2014-10-10
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A.; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A.; Khan, Shafiq A.; Chaney, William G.; Bu, Xiu R.; Lin, Ming-Fong
2014-01-01
Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. PMID:25050738
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-01-01
Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. PMID:27124473
Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco
2016-04-01
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.
Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo
2007-08-08
Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.
Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.
Roca, Hernan; Jones, Jacqueline D; Purica, Marta C; Weidner, Savannah; Koh, Amy J; Kuo, Robert; Wilkinson, John E; Wang, Yugang; Daignault-Newton, Stephanie; Pienta, Kenneth J; Morgan, Todd M; Keller, Evan T; Nör, Jacques E; Shea, Lonnie D; McCauley, Laurie K
2018-01-02
During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.
Pathak, Bhakti R; Breed, Ananya A; Apte, Snehal; Acharya, Kshitish; Mahale, Smita D
2016-01-01
Cysteine-rich secretory protein 3 (CRISP-3) is upregulated in prostate cancer as compared to the normal prostate tissue. Higher expression of CRISP-3 has been linked to poor prognosis and hence it has been thought to act as a prognostic marker for prostate cancer. It is proposed to have a role in innate immunity but its role in prostate cancer is still unknown. In order to understand its function, its expression was stably knocked down in LNCaP cells. CRISP-3 knockdown did not affect cell viability but resulted in reduced invasiveness. Global gene expression changes upon CRISP-3 knockdown were identified by microarray analysis. Microarray data were quantitatively validated by evaluating the expression of seven candidate genes in three independent stable clones. Functional annotation of the differentially expressed genes identified cell adhesion, cell motility, and ion transport to be affected among other biological processes. Prostate-specific antigen (PSA, also known as Kallikrein 3) was the top most downregulated gene whose expression was also validated at protein level. Interestingly, expression of Annexin A1 (ANXA1), a known anti-inflammatory protein, was upregulated upon CRISP-3 knockdown. Re-introduction of CRISP-3 into the knockdown clone reversed the effect on invasiveness and also led to increased PSA expression. These results suggest that overexpression of CRISP-3 in prostate tumor may maintain higher PSA expression and lower ANXA1 expression. Our data also indicate that poor prognosis associated with higher CRISP-3 expression could be due to its role in cell invasion.
Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma; Meeker, Alan K; Isaacs, John T
2017-03-01
There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16 INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and experimentally facile model for clarifying the molecular mechanism(s) involved in both immortalization of human PrECs, as well as identifying genetic/epigenetic "drivers" for conversion of these immortalized non-tumorigenic cells into fully lethal prostate cancers. Notably, loxP sites flank the exogenous TERT gene in the TERT-PrECs. Cre recombinase can be used to excise TERT, and resolve whether TERT expression is required for these cells to be fully transformed into lethal cancer. Prostate 77: 374-384, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Xuan, Jian-Ai; Schneider, Doug; Toy, Pam; Lin, Rick; Newton, Alicia; Zhu, Ying; Finster, Silke; Vogel, David; Mintzer, Bob; Dinter, Harald; Light, David; Parry, Renate; Polokoff, Mark; Whitlow, Marc; Wu, Qingyu; Parry, Gordon
2006-04-01
Hepsin is a type II transmembrane serine protease that is expressed in normal liver, and at lower levels in kidney, pancreas, and testis. Several studies have shown that hepsin mRNA is significantly elevated in most prostate tumors, as well as a significant fraction of ovarian and renal cell carcinomas and hepatomas. Although the overexpression of mRNA in these tumors has been extensively documented, there has been conflicting literature on whether hepsin plays a role in tumor cell growth and progression. Early literature implied a role for hepsin in human tumor cell proliferation, whereas recent studies with a transgenic mouse model for prostate cancer support a role for hepsin in tumor progression and metastases. To evaluate this issue further, we have expressed an activatable form of hepsin, and have generated a set of monoclonal antibodies that neutralize enzyme activity. The neutralizing antibodies inhibit hepsin enzymatic activity in biochemical and cell-based assays. Selected neutralizing and nonneutralizing antibodies were used in cell-based assays with tumor cells to evaluate the effect of antibodies on tumor cell growth and invasion. Neutralizing antibodies failed to inhibit the growth of prostate, ovarian, and hepatoma cell lines in culture. However, potent inhibitory effects of the antibodies were seen on invasion of ovarian and prostate cells in transwell-based invasion assays. These results support a role for hepsin in tumor cell progression but not in primary tumor growth. Consistent with this, immunohistochemical experiments with a mouse monoclonal antibody reveal progressively increased staining of prostate tumors with advanced disease, and in particular, extensive staining of bone metastatic lesions.
Gajić, Milan M.; Obradović, Vladimir B.; Baum, Richard P.
2014-01-01
Abstract Aim: The aim was to investigate somatostatin receptor (sstr) expression in normal prostate by determining the maximum standardized uptake value (SUVmax) of 68Ga-DOTATOC PET/CT in neuroendocrine tumor (NET) patients, without NET involvement of the prostate gland, for establishing the reference standard. Methods: Sixty-four NET patients underwent 68Ga-DOTATOC PET/CT. SUVmax of the prostate gland, normal liver, testes, and gluteus muscles were evaluated. The prostate gland size was measured. Statistical analysis was performed using dedicated software (SPSS13). Results: Mean/median 68Ga-DOTATOC SUVmax values were as follows: normal prostate 2.6±0.0, slightly enlarged prostate 4.2±1.6, prostatic hypertrophy 4.9±1.6, prostatic hyperplasia 5.0±1.5, prostate cancer 9.5±2.1, normal liver 7.3±1.8, testes 1.8±0.5, and gluteus 1.0±0.2. The normal prostate gland had three times less sstr expression than normal liver tissue. Strong correlation was found between patient age and sstr expression in prostate/prostate size. No significant difference existed in sstr expression between prostatic hypertrophy and hyperplasia. Much higher sstr expression was found in prostatic cancer compared with normal prostate. Conclusion: 68Ga-DOTATOC PET/CT defines the baseline sstr uptake in prostate not affected by NET (significantly lower than in the liver). Higher values were established in prostatic hyperplasia and hypertrophy. Only concomitant prostate cancer was associated with higher SUVmax in comparison with non-neoplastic liver. PMID:24450327
Thangavel, Chellappagounder; Perepelyuk, Maryna; Boopathi, Ettickan; Liu, Yi; Polischak, Steven; Deshpande, Deepak A; Rafiq, Khadija; Dicker, Adam P; Knudsen, Karen E; Shoyele, Sunday A; Den, Robert B
2018-05-07
Second generation antiandrogens have improved overall survival for men with metastatic castrate resistant prostate cancer; however, the antiandrogens result in suppression of androgen receptor (AR) activity in all tissues resulting in dose limiting toxicity. We sought to overcome this limitation through encapsulation in a prostate specific membrane antigen (PSMA)-conjugated nanoparticle. We designed and characterized a novel nanoparticle containing an antiandrogen, enzalutamide. Selectivity and enhanced efficacy was achieved through coating the particle with PSMA. The PSMA-conjugated nanoparticle was internalized selectively in AR expressing prostate cancer cells. It did not elicit an inflammatory effect. The efficacy of enzalutamide was not compromised through insertion into the nanoparticle; in fact, lower systemic drug concentrations of enzalutamide resulted in comparable clinical activity. Normal muscle cells were not impacted by the PSMA-conjugated containing antiandrogen. This approach represents a novel strategy to increase the specificity and effectiveness of antiandrogen treatment for men with castrate resistant prostate cancer. The ability to deliver higher drug concentrations in prostate cancer cells may translate into improved clinical end points including overall survival.
Influence of the neural microenvironment on prostate cancer.
Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J; Ayala, Gustavo
2018-02-01
Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.
[Prostatic granulomas revealing a peripheral T-cell lymphoma].
Foguem, C; Curlier, E; Rouamba, M-M; Regent, A; Philippe, P
2009-02-01
The presence of granulomas on tissue biopsie has been reported in a wide range of disorders. The clinical presentation and the diagnostic work-up of granulomatosis can be difficult as it is illustrated in the following report. A 59-year-old patient was referred in 2002 for a granulomatous prostatitis. Physical examination was normal. Except for the increase of prostate-specific antigen (which motivated a biopsy), the laboratory results were normal. Thoracic CT-scan disclosed mediastinal lymph nodes. A minor salivary gland biopsy was consistent with the diagnosis of sarcoidosis. In 2004, the patient presented an epidermal necrolysis, and in 2005 the deterioration of general status raised suspicion of a lymphoproliferative disorder. Liver and bone marrow biopsies revealed a granulomatous process. Despite steroid therapy, the patient died. Autopsy discloses a anaplasic T cell lymphoma. This report illustrates the relationship between sarcoidosis and lymphoma as a mode of presentation, a complication, or an accidental but misleading association? The association between anaplastic lymphoma and sarcoidosis is exceptional.
Zhang, Yajia; Pitchiaya, Sethuramasundaram; Cieślik, Marcin; Niknafs, Yashar S; Tien, Jean C-Y; Hosono, Yasuyuki; Iyer, Matthew K; Yazdani, Sahr; Subramaniam, Shruthi; Shukla, Sudhanshu K; Jiang, Xia; Wang, Lisha; Liu, Tzu-Ying; Uhl, Michael; Gawronski, Alexander R; Qiao, Yuanyuan; Xiao, Lanbo; Dhanasekaran, Saravana M; Juckette, Kristin M; Kunju, Lakshmi P; Cao, Xuhong; Patel, Utsav; Batish, Mona; Shukla, Girish C; Paulsen, Michelle T; Ljungman, Mats; Jiang, Hui; Mehra, Rohit; Backofen, Rolf; Sahinalp, Cenk S; Freier, Susan M; Watt, Andrew T; Guo, Shuling; Wei, John T; Feng, Felix Y; Malik, Rohit; Chinnaiyan, Arul M
2018-06-01
The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA-RNA interaction. ARLNC1 knockdown suppressed AR expression, global AR signaling and prostate cancer growth in vitro and in vivo. Taken together, these data support a role for ARLNC1 in maintaining a positive feedback loop that potentiates AR signaling during prostate cancer progression and identify ARLNC1 as a novel therapeutic target.
Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1
Kanwal, Rajnee; Pandey, Mitali; Bhaskaran, Natarajan; MacLennan, Gregory T; Fu, Pingfu; Ponsky, Lee E; Gupta, Sanjay
2014-01-01
The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P<0.0001) levels of 8-oxo-2′-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r=0.2) with loss of GSTP1 activity (34%; P<0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2O2-mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2O2, these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused re-expression of GSTP1, which protected the cells from H2O2-mediated DNA damage through decreased ROS production compared to non-exposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer. PMID:22833520
Di Donato, Guido; Laufer-Amorim, Renée; Palmieri, Chiara
2017-10-01
Ten normal prostates, 22 benign prostatic hyperplasia (BPH) and 29 prostate cancer (PC) were morphometrically analyzed with regard to mean nuclear area (MNA), mean nuclear perimeter (MNP), mean nuclear diameter (MND), coefficient of variation of the nuclear area (NACV), mean nuclear diameter maximum (MDx), mean nuclear diameter minimum (MDm), mean nuclear form ellipse (MNFe) and form factor (FF). The relationship between nuclear morphometric parameters and histological type, Gleason score, methods of sample collection, presence of metastases and survival time of canine PC were also investigated. Overall, nuclei from neoplastic cells were larger, with greater variation in nuclear size and shape compared to normal and hyperplastic cells. Significant differences were found between more (small acinar/ductal) and less (cribriform, solid) differentiated PCs with regard to FF (p<0.05). MNA, MNP, MND, MDx, and MDm were significantly correlated with the Gleason score of PC (p<0.05). MNA, MNP, MDx and MNFe may also have important prognostic implications in canine prostatic cancer since negatively correlated with the survival time. Biopsy specimens contained nuclei that were smaller and more irregular in comparison to those in prostatectomy and necropsy specimens and therefore factors associated with tissue sampling and processing may influence the overall morphometric evaluation. The results indicate that nuclear morphometric analysis in combination with Gleason score can help in canine prostate cancer grading, thus contributing to the establishment of a more precise prognosis and patient's management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J
2014-01-01
The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.
Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L
2016-02-01
Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015 Wiley Periodicals, Inc.
Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.
2016-01-01
BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830
Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis
Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing
2014-01-01
Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576
RNA splicing and splicing regulator changes in prostate cancer pathology.
Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J
2017-09-01
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
Anway, Matthew D; Skinner, Michael K
2008-04-01
The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.
Anway, Matthew D.; Skinner, Michael K.
2018-01-01
PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299
Hu, Dong Gui; McKinnon, Ross A.; Hulin, Julie-Ann; Mackenzie, Peter I.; Meech, Robyn
2016-01-01
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2–8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE). PMID:28035996
Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A
2018-04-01
Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.
Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas
2015-01-01
Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639
Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.
Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D
2010-09-01
The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.
Reducing Toxicity of Radiation Treatment of Advanced Prostate Cancer
2015-10-01
steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA...ongoing. 7 KEY RESEARCH ACCOMPLISHMENTS: • Identified radiation protection of different organ systems (GI tract, skin and hematopoiesis ) by RTA
Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.
Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael
2012-07-15
Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.
Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M
2016-02-15
Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non-neoplastic RWPE-1 prostatic cells. Nup62, CaMKK2, and the AR were recruited to androgen response elements of the AR target genes, prostate specific antigen, and transmembrane protease, serine 2. Knockdown of CaMKK2 and Nup62 reduced prostate specific antigen expression and AR transcriptional activity driven by androgen response elements from the prostate-specific probasin gene promoter. Nup62 and CaMKK2 are required for optimal AR transcriptional activity and a potential mechanism for AR re-activation in CRPC. © 2015 Wiley Periodicals, Inc.
Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping
2013-01-01
The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.
Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb; Pomerantz, Mark; Li, Fugen; Long, Henry W; Ingles, Sue A; Kittles, Rick A; Strom, Sara S; Rybicki, Benjamin A; Nemesure, Barbara; Isaacs, William B; Zheng, Wei; Pettaway, Curtis A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; John, Esther M; Murphy, Adam B; Signorello, Lisa B; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anslem J M; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Witte, John S; Casey, Graham; Kaggwa, Sam; Cook, Michael B; Stram, Daniel O; Blot, William J; Eeles, Rosalind A; Easton, Douglas; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Southey, Melissa C; Fitzgerald, Liesel M; Gronberg, Henrik; Wiklund, Fredrik; Aly, Markus; Henderson, Brian E; Schleutker, Johanna; Wahlfors, Tiina; Tammela, Teuvo L J; Nordestgaard, Børge G; Key, Tim J; Travis, Ruth C; Neal, David E; Donovan, Jenny L; Hamdy, Freddie C; Pharoah, Paul; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Thibodeau, Stephen N; McDonnell, Shannon K; Schaid, Daniel J; Maier, Christiane; Vogel, Walther; Luedeke, Manuel; Herkommer, Kathleen; Kibel, Adam S; Cybulski, Cezary; Wokolorczyk, Dominika; Kluzniak, Wojciech; Cannon-Albright, Lisa; Teerlink, Craig; Brenner, Hermann; Dieffenbach, Aida K; Arndt, Volker; Park, Jong Y; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Kaneva, Radka; Mitev, Vanio; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A; Teixeira, Manuel R; Pandha, Hardev; Michael, Agnieszka; Paulo, Paula; Maia, Sofia; Kierzek, Andrzej; Conti, David V; Albanes, Demetrius; Berg, Christine; Berndt, Sonja I; Campa, Daniele; Crawford, E David; Diver, W Ryan; Gapstur, Susan M; Gaziano, J Michael; Giovannucci, Edward; Hoover, Robert; Hunter, David J; Johansson, Mattias; Kraft, Peter; Le Marchand, Loic; Lindström, Sara; Navarro, Carmen; Overvad, Kim; Riboli, Elio; Siddiq, Afshan; Stevens, Victoria L; Trichopoulos, Dimitrios; Vineis, Paolo; Yeager, Meredith; Trynka, Gosia; Raychaudhuri, Soumya; Schumacher, Frederick R; Price, Alkes L; Freedman, Matthew L; Haiman, Christopher A; Pasaniuc, Bogdan
2016-04-07
Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.
Kaija, Helena; Pakanen, Lasse; Kortelainen, Marja-Leena; Porvari, Katja
2015-01-01
Prostate cancer has been extensively studied, but cellular stress responses in healthy prostate tissue are rarely investigated. Hypothermia is known to cause alterations in mRNA and protein expressions and stability. The aim of this study was to use normal rat prostate as a model in order to find out consequences of cold exposure and rewarming on the expressions of genes which are either members or functionally/structurally related to erythroblastic leukemia viral oncogene B (ErbB) signaling pathway. Relative mRNA expressions of amphiregulin (AMR), cyclin D1 (CyD1), cyclin-dependent kinase inhibitor 1A (p21), transmembrane form of the prostatic acid phosphatase (PAcP), thrombomodulin (TM) and heat shock transcription factor 1 (HSF1) in rat ventral prostate were quantified in mild (2 or 4.5 h at room temperature) and severe (2 or 4.5 h at +10°C) hypothermia and in rewarming after cold exposure (2 h at +10°C followed by 2 h at room temperature or 3 h at +28°C). AMR protein level, apoptotic Bcl-2 associated X protein to B-cell CLL/lymphoma 2 (Bax/Bcl-2) mRNA ratio and proliferative index Ki-67 were determined. 4.5-h mild hypothermia, 2-h severe hypothermia and rewarming increased expression of all these genes. Elevated proliferation index Ki-67 could be seen in 2-h severe hypothermia, and the proliferation index had its highest value in longer rewarming with totally recovered normal body temperature. Pro-apoptotic tendency could be seen in 2-h mild hypothermia while anti-apoptosis was predominant in 4.5-h mild hypothermia and in shorter rewarming with only partly recovered body temperature. Hypothermia and following rewarming promote the proliferation of cells in healthy rat prostate tissue possibly via ErbB signaling pathway. PMID:25996932
2001-05-15
This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.
Swanson, Kristin R.; True, Lawrence D.; Lin, Daniel W.; Buhler, Kent R.; Vessella, Robert; Murray, James D.
2001-01-01
Prostate-specific antigen (PSA) is an enzyme produced by both normal and cancerous prostate epithelial cells. Although PSA is the most widely used serum marker to detect and follow patients with prostatic adenocarcinoma, there are certain anomalies in the values of serum levels of PSA that are not understood. We developed a mathematical model for the dynamics of serum levels of PSA as a function of the tumor volume. Our model results show good agreement with experimental observations and provide an explanation for the existence of significant prostatic tumor mass despite a low-serum PSA. This result can be very useful in enhancing the use of serum PSA levels as a marker for cancer growth. PMID:11395397
Suhovskih, Anastasia V; Kashuba, Vladimir I; Klein, George; Grigorieva, Elvira V
2017-01-02
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna
2007-06-08
LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.
Mohler, James L; Titus, Mark A; Wilson, Elizabeth M
2011-09-15
High-affinity binding of dihydrotestosterone (DHT) to the androgen receptor (AR) initiates androgen-dependent gene activation, required for normal male sex development in utero, and contributes to prostate cancer development and progression in men. Under normal physiologic conditions, DHT is synthesized predominantly by 5α-reduction of testosterone, the major circulating androgen produced by the testis. During androgen deprivation therapy, intratumoral androgen production is sufficient for AR activation and prostate cancer growth, even though circulating testicular androgen levels are low. Recent studies indicate that the metabolism of 5α-androstane-3α, 17β-diol by 17β-hydroxysteroid dehydrogenase 6 in benign prostate and prostate cancer cells is a major biosynthetic pathway for intratumoral synthesis of DHT, which binds AR and initiates transactivation to promote prostate cancer growth during androgen deprivation therapy. Drugs that target the so-called backdoor pathway of DHT synthesis provide an opportunity to enhance clinical response to luteinizing-hormone-releasing hormone (LHRH) agonists or antagonists, AR antagonists, and inhibitors of 5α-reductase enzymes (finasteride or dutasteride), and other steroid metabolism enzyme inhibitors (ketoconazole or the recently available abiraterone acetate). ©2011 AACR.
Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.
Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro
2015-06-30
DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.
Soekmadji, Carolina; Riches, James D.; Russell, Pamela J.; Ruelcke, Jayde E.; McPherson, Stephen; Wang, Chenwei; Hovens, Chris M.; Corcoran, Niall M.; Hill, Michelle M.; Nelson, Colleen C.
2017-01-01
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. PMID:28881726
Heinrich, Marie-Christine; Göbel, Cosima; Kluth, Martina; Bernreuther, Christian; Sauer, Charlotte; Schroeder, Cornelia; Möller-Koop, Christina; Hube-Magg, Claudia; Lebok, Patrick; Burandt, Eike; Sauter, Guido; Simon, Ronald; Huland, Hartwig; Graefen, Markus; Heinzer, Hans; Schlomm, Thorsten; Heumann, Asmus
2018-05-31
Prostate Stem Cell Antigen (PSCA) is frequently expressed in prostate cancer but its exact function is unclear. To clarify contradictory findings on the prognostic role of PSCA expression, a tissue microarray containing 13,665 prostate cancers was analyzed by immunohistochemistry. PSCA staining was absent in normal epithelial and stromal cells of the prostate. Membranous and cytoplasmic PSCA staining was seen in 53.7% of 9642 interpretable tumors. Staining was weak in 22.4%, moderate in 24.5% and strong in 6.8% of tumors. PSCA expression was associated with favorable pathological and clinical tumor features: Early pathological tumor stage (p < 0.0001), low Gleason grade (p < 0.0001), absence of lymph node metastasis (p < 0.0001), low pre-operative PSA level (p = 0.0118), negative surgical margin (p < 0.0001) and reduced PSA recurrence (p < 0.0001). PSCA expression was an independent predictor of prognosis in multivariate analysis (hazard ratio 0.84, p < 0.0001). The absence of statistical relationship to TMPRSS2:ERG fusion status, chromosomal deletion or high tumor cell proliferation argues against a major role of PSCA for regulation of cell cycle or genomic integrity. PSCA expression is linked to favorable prognosis. PSCA measurement is a candidate for inclusion in multi-parametric prognostic prostate cancer tests.
Domińska, Kamila; Okła, Piotr; Kowalska, Karolina; Habrowska-Górczyńska, Dominika Ewa; Urbanek, Kinga Anna; Ochędalski, Tomasz; Piastowska-Ciesielska, Agnieszka Wanda
2018-07-07
The ACE2/Ang1-7/MAS axis was involved in the cell proliferation, migration and apoptosis of many types of reproductive tissues. The research was conducted on prostate epithelial cells, immortalized by Simian Virus 40. We examined the influence of Ang 1-7 on biological properties of PNT1A cells after 24- or 48-h treatment. The employed selective antagonists of angiotensin receptors allowed evaluation of the receptor mediating Ang1-7 action. Our data clearly indicate that Ang1-7 can decrease cell proliferation and epithelial-to-mesenchymal transition of PNT1A cells via inactivation of PI3K axis and modulation of expression of the NF-kB gene family. Furthermore, it counteracts oxidant stress and inflammation in prostate cells by inhibition of VEGF expression and MMPs activation as well as by modulating the level of ERα and ERβ. On the other hand, this heptapeptide can promote cell survival by alteration of expression of anti- and pro-apoptotic members as well as compensatory up-regulation of AR expression. Summary, the results confirm the existence of a complicated dependence networks between the various elements of the local RAS and steroid hormone receptor pathways in prostate gland. Furthermore, shows the chances of using ACE2/Ang1-7/MAS pathway as a novel therapeutic target in prevention and treatment of prostate diseases. Copyright © 2018 Elsevier Inc. All rights reserved.
Photoacoustic physio-chemical analysis for prostate cancer diagnosis (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Guan; Cheng, Qian; Huang, Shengsong; Qin, Ming; Hopkins, Thomas; Lee, Chang H.; Kopelman, Raoul; Chao, Wan-yu; Keller, Evan T.; Wu, Denglong; Wang, Xueding
2017-03-01
Photoacoustic physio-chemical analysis (PAPCA) is a recently developed technology capable of simultaneously quantifying the content of molecular components and the corresponding microarchitectures in biological tissue. We have successfully quantified the diagnostic information in livers with PAPCA. In this study, we implemented PAPCA to the diagnosis of prostate cancers. 4 human prostates were scanned ex vivo. The PA signals from normal and cancerous regions in the prostates were acquired by an interstitial needle PA probe. A total of 14 interstitial measurements, including 6 within the normal regions and 8 in the cancerous regions, were acquired. The observed changes in molecular components, including lipid, collagen and hemoglobin were consistent with the findings by other research groups. The changes were quantified by PA spectral analysis (PASA) at wavelengths where strong optical absorption of the relevant molecular components was found. Statistically significant differences among the PASA parameters were observed (p=0.025 at significance of 0.05). A support vector machine model for differentiating the normal and cancerous tissue was established. With the limited number of samples, an 85% diagnostic accuracy was found. The diagnostic information in the PCPCA can be further enriched by targeted optical contrast agents visualizing the microarchitecture in PCa tissues. F3 PAA-PEG nanoparticles was employed to stain the PCa cells in a transgenic mouse model, in which the microarchitectures of normal and cancerous prostate tissues are comparable to that in human. Statistically significant differences were observed between the contrast-enhanced normal and cancerous regions (p=0.038 at a significance of 0.05).
Serum levels of endothelial and neural cell adhesion molecules in prostate cancer.
Lynch, D F; Hassen, W; Clements, M A; Schellhammer, P F; Wright, G L
1997-08-01
Tumorigenesis and progression to metastatic disease are accompanied by changes in the expression of cell adhesion molecules (CAMs). Normally expressed CAMs, such as E-cadherin, are lost, while others, i.e., ICAM-1, VCAM-1, NCAM, and E-selectin, are altered and overexpressed in progressive disease and metastases. Abnormal levels of these latter CAMs have been observed in melanoma and carcinomas of the colon and breast, and NCAM is overexpressed in small-cell lung carcinoma (SCLC). The objective of this study was to determine if serum levels of ICAM-1, VCAM-1, NCAM, and E-selectin could differentiate patients with benign prostate hypertrophy (BPH) from those with prostate carcinoma (CaP) and identify prostate cancers with high potential for progression to metastatic disease. Serum levels of these CAMs were determined by ELISA in serum from normal males and females and from patients with BPH and CaP before and after treatment. Sera from patients with breast carcinoma, colon carcinoma, melanoma, and small-cell lung carcinoma were also evaluated, as soluble CAMs have been reported to be elevated in these cancer patients. ICAM-1 levels were elevated in sera from patients with breast carcinoma (P = 0.0004) and melanoma (P = 0.0001). VCAM-1 levels were elevated in sera from patients with colon carcinoma (P = 0.0001). NCAM levels were elevated in the sera of patients with SCLC (P = 0.0001). Normal levels of ICAM-1, E-selectin, and NCAM were found in both BPH and pretreatment CaP patients. Median NCAM levels in hormone-refractive CaP patients were significantly greater than in BPH (P = 0.0005) and CaP patients with pathologically determined organ-confined (P = 0.0014) or nonorgan-confined disease (P = 0.0385). VCAM-1 levels were significantly elevated in both BPH patients (P = 0.0002) and CaP patients (P = 0.0002) when compared with levels for normal age-matched donors. None of the CAMs were found to offer an advantage over prostatic-specific antigen (PSA) for monitoring CaP patients following definitive radiotherapy, radical prostatectomy, or hormonal therapy. The results of this study indicate that serum ICAM-1, VCAM-1, NCAM, and E-selectin are not clinically useful biomarkers for differentiating CaP from BPH, for predicting progression, for identifying metastatic potential, or for monitoring treatment.
Pérez-Alvarado, Carlos; Gómez, Consuelo; Reyes, Miguel; García, Mario; Pérez, Elizabeth; Pérez de la Mora, Carlos; Sanchez, Virginia
2017-01-01
Objective. To evaluate the anti-inflammatory properties of Dialyzable Leukocyte Extract (DLE) in a murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Methods. Histopathological characterization, prostatein Enzyme-Linked Immunosorbent Assay, and immunohistochemical analysis for CD45, TNF-α, IFN-γ, IL-6, IL-17, and IL-4 molecules were done in prostatic Wistar rats treated with DLE, placebo, or Dexamethasone. Results. Histopathological analysis of animals induced to prostatitis showed inflammatory infiltrate, mainly constituted by leucocytes and mast cells as well as Benign Prostatic Hyperplasia. Serum prostatein concentrations were 14 times higher than those displayed by healthy animals. After DLE and Dexamethasone treatments, the inflammatory infiltrate decreased; the tissue morphology was similar to that of a normal prostate, and the prostatein decreased to the basal levels of healthy animals. DLE treatment produced a decreased expression of the cell surface marker CD45 and the proinflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-17. On the other hand, the expression of anti-inflammatory cytokine IL-4 increased in both the Dexamethasone and DLE groups. Conclusion. DLE is able to modulate the inflammatory response in Experimental Autoimmune Prostatitis (EAP). PMID:28386549
Pérez-Alvarado, Carlos; Gómez, Consuelo; Reyes, Miguel; García, Mario; Pérez, Elizabeth; Pérez de la Mora, Carlos; Sanchez, Virginia; Pérez Ishiwara, D Guillermo
2017-01-01
Objective. To evaluate the anti-inflammatory properties of Dialyzable Leukocyte Extract (DLE) in a murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Methods. Histopathological characterization, prostatein Enzyme-Linked Immunosorbent Assay, and immunohistochemical analysis for CD45, TNF- α , IFN- γ , IL-6, IL-17, and IL-4 molecules were done in prostatic Wistar rats treated with DLE, placebo, or Dexamethasone. Results. Histopathological analysis of animals induced to prostatitis showed inflammatory infiltrate, mainly constituted by leucocytes and mast cells as well as Benign Prostatic Hyperplasia. Serum prostatein concentrations were 14 times higher than those displayed by healthy animals. After DLE and Dexamethasone treatments, the inflammatory infiltrate decreased; the tissue morphology was similar to that of a normal prostate, and the prostatein decreased to the basal levels of healthy animals. DLE treatment produced a decreased expression of the cell surface marker CD45 and the proinflammatory cytokines TNF- α , IFN- γ , IL-6, and IL-17. On the other hand, the expression of anti-inflammatory cytokine IL-4 increased in both the Dexamethasone and DLE groups. Conclusion. DLE is able to modulate the inflammatory response in Experimental Autoimmune Prostatitis (EAP).
Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential
Almeida, Mafalda; Costa, Vera L; Costa, Natália R; Ramalho-Carvalho, João; Baptista, Tiago; Ribeiro, Franclim R; Paulo, Paula; Teixeira, Manuel R; Oliveira, Jorge; Lothe, Ragnhild A; Lind, Guro E; Henrique, Rui; Jerónimo, Carmen
2014-01-01
Epigenetic alterations are common in prostate cancer (PCa) and seem to contribute decisively to its initiation and progression. Moreover, aberrant promoter methylation is a promising biomarker for non-invasive screening. Herein, we sought to characterize EFEMP1 as biomarker for PCa, unveiling its biological relevance in prostate carcinogenesis. Microarray analyses of treated PCa cell lines and primary tissues enabled the selection of differentially methylated genes, among which EFEMP1 was further validated by MSP and bisulfite sequencing. Assessment of biomarker performance was accomplished by qMSP. Expression analysis of EFEMP1 and characterization of histone marks were performed in tissue samples and cancer cell lines to determine the impact of epigenetic mechanisms on EFEMP1 transcriptional regulation. Phenotypic assays, using transfected cell lines, permitted the evaluation of EFEMP1’s role in PCa development. EFEMP1 methylation assay discriminated PCa from normal prostate tissue (NPT; P < 0.001, Kruskall–Wallis test) and renal and bladder cancers (96% sensitivity and 98% specificity). EFEMP1 transcription levels inversely correlated with promoter methylation and histone deacetylation, suggesting that both epigenetic mechanisms are involved in gene regulation. Phenotypic assays showed that EFEMP1 de novo expression reduces malignant phenotype of PCa cells. EFEMP1 promoter methylation is prevalent in PCa and accurately discriminates PCa from non-cancerous prostate tissues and other urological neoplasms. This epigenetic alteration occurs early in prostate carcinogenesis and, in association with histone deacetylation, progressively leads to gene down-regulation, fostering cell proliferation, invasion and evasion of apoptosis. PMID:25211630
Thysell, Elin; Halin Bergström, Sofia; Bergh, Anders
2017-01-01
In order to grow and spread tumors need to interact with adjacent tissues. We therefore hypothesized that small but aggressive prostate cancers influence the rest of the prostate and regional lymph nodes differently than tumors that are more indolent. Poorly metastatic (Dunning AT1) or highly metastatic (Dunning MLL) rat prostate tumor cells were injected into the ventral prostate lobe of immunocompetent rats. After 10 days—when the tumors occupied about 30% of the prostate lobe and lymph node metastases were undetectable—the global gene expression in tumors, benign parts of the prostate, and regional iliac lymph nodes were examined to define tumor-induced changes related to preparation for future metastasis. The tumors induced profound effects on the gene expression profiles in the benign parts of the prostate and these were strikingly different in the two tumor models. Gene ontology enrichment analysis suggested that tumors with high metastatic capacity were more successful than less metastatic tumors in inducing tumor-promoting changes and suppressing anti-tumor immune responses in the entire prostate. Some of these differences such as altered angiogenesis, nerve density, accumulation of T-cells and macrophages were verified by immunohistochemistry. Gene expression alterations in the regional lymph nodes suggested decreased quantity and activation of immune cells in MLL-lymph nodes that were also verified by immunostaining. In summary, even when small highly metastatic prostate tumors can affect the entire tumor-bearing organ and pre-metastatic lymph nodes differently than less metastatic tumors. When the kinetics of these extratumoral influences (by us named TINT = tumor instructed normal tissue) are more precisely defined they could potentially be used as markers of disease aggressiveness and become therapeutic targets. PMID:28472073
Development of New Treatments for Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiPaola, R. S.; Abate-Shen, C.; Hait, W. N.
2005-02-01
The Dean and Betty Gallo Prostate Cancer Center (GPCC) was established with the goal of eradicating prostate cancer and improving the lives of men at risk for the disease through research, treatment, education and prevention. GPCC was founded in the memory of Dean Gallo, a beloved New Jersey Congressman who died tragically of prostate cancer diagnosed at an advanced stage. GPCC unites a team of outstanding researchers and clinicians who are committed to high-quality basic research, translation of innovative research to the clinic, exceptional patient care, and improving public education and awareness of prostate cancer. GPCC is a center ofmore » excellence of The Cancer Institute of New Jersey, which is the only NCI-designated comprehensive cancer center in the state. GPCC efforts are now integrated well as part of our Prostate Program at CINJ, in which Dr. Robert DiPaola and Dr. Cory Abate-Shen are co-leaders. The Prostate Program unites 19 investigators from 10 academic departments who have broad and complementary expertise in prostate cancer research. The overall goal and unifying theme is to elucidate basic mechanisms of prostate growth and oncogenesis, with the ultimate goal of promoting new and effective strategies for the eradication of prostate cancer. Members' wide range of research interests collectively optimize the chances of providing new insights into normal prostate biology and unraveling the molecular pathophysiology of prostate cancer. Cell culture and powerful animal models developed by program members recapitulate the various stages of prostate cancer progression, including prostatic intraepithelial neoplasia, adenocarcinoma, androgen-independence, invasion and metastases. These models promise to further strengthen an already robust program of investigator-initiated therapeutic clinical trials, including studies adopted by national cooperative groups. Efforts to translate laboratory results into clinical studies of early detection and chemoprevention are underway. The specific goals of this program are: (1) To investigate the molecular mechanisms underlying normal prostate growth and differentiation and elucidate the molecular mechanisms underlying prostate oncogenesis. (2) To build on fundamental knowledge to develop effective therapeutic approaches for the treatment of prostate cancer. (3) To improve the control of prostate cancer through early detection, chemoprevention, and outreach and education. This new disease-based program is structured to improve interdisciplinary interactions and translational results. Already, through the dynamic leadership of Drs. Cory Abate-Shen and Robert DiPaola, new investigators were attracted to the field, new collaborations engendered, and numerous investigator-initiated trials implemented. Progress in GPCC and the program overall has been outstanding. The Center has success in uniting investigators with broad and complementary expertise in prostate cancer research. The overall goal and unifying theme is to elucidate basic mechanisms of prostate growth and oncogenesis, with the ultimate goal of promoting new and effective strategies for the eradication of prostate cancer in patients and populations at risk. Members wide range of research interests collectively optimize the chances of providing new insights into normal prostate biology and unraveling the molecular pathophysiology of prostate cancer. Studies in cell culture and powerful animal models developed recapitulate the various stages of prostate cancer progression, including prostatic intraepithelial neoplasia, adenocarcinoma, androgen-independence, invasion and metastases. These models promise to further strengthen an already robust program of investigator-initiated therapeutic clinical trials, including studies adopted by national cooperative groups. Efforts to translate laboratory results into clinical studies of early detection and chemoprevention are underway.« less
The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer
2010-09-01
2006 Jul 24;1:15. 17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004 Dec;145...and cyclin D1:connecting development to breast cancer. Cell Cycle. 2004 Feb;3(2):145-8. 32. Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal... Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res. 2007 May 1;67(9):4364-72. 36
Influence of the neural microenvironment on prostate cancer
Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J.
2017-01-01
Background Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. Method We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Result Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non‐neoplastic epithelial cells. Conclusion Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. PMID:29131367
Rueda-Camino, José Antonio; Losada-Vila, Beatriz; De Ancos-Aracil, Cristina Lucía; Rodríguez-Lajusticia, Laura; Tardío, Juan Carlos; Zapatero-Gaviria, Antonio
2016-01-01
Small cell carcinoma (SCC) of the prostate is an uncommon condition; there are very few cases in which presenting symptoms are consistent with Cushing Syndrome (CS). We report a new case in which CS triggers the suspicion of an SCC of the prostate and a review of the published cases of SCC of the prostate presenting with CS. The origin of these neoplasms is still unclear. It may be suspected when laboratory features appear in patients diagnosed with prostatic adenocarcinoma which becomes resistant to specific therapy. SCC usually occurs after the 6th decade. Patients suffering SCC of the prostate presenting with CS usually present symptoms such as hypertension, hyperglycemia, alkalosis or hypokalemia; cushingoid phenotype is less frequent. Cortisol and ACTH levels are often high. Prostatic-specific antigen levels are usually normal. CT scan is the preferred imaging test to localize the lesion, but its performance may be improved by adding other tests, such as FDG-PET scan. All patients have metastatic disease at the time of diagnosis. Lymph nodes, liver and bone are the most frequent metastases sites. Surgery and Ketokonazole are the preferred treatments for CS. The prognosis is very poor: 2- and 5-year survival rates are 27.5 and 14.3%, respectively. Key messages When a patient presents with ectopic Cushing Syndrome but lungs are normal, an atypical localization should be suspected. We should suspect a prostatic origin if Cushing Syndrome is accompanied by obstructive inferior urinary tract symptoms or in the setting of a prostatic adenocarcinoma with rapid clinical and radiological progression with relatively low PSA levels. Although no imaging test is preferred to localize these tumors, FDG-PET-TC can be very useful. Hormone marker scintigraphy (e.g. somatostatin) could be used too. As Cushing Syndrome is a paraneoplastic phenomenon, treatment of the underlying disease may help control hypercortisolism manifestations. These tumors are usually metastatic by the time of diagnosis. They have very poor prognosis.
Jung, Yunu; Park, Jinbong; Kim, Hye-Lin; Youn, Dong-Hyun; Kang, JongWook; Lim, Seona; Jeong, Mi-Young; Sethi, Gautam; Park, Sung-Joo; Ahn, Kwang Seok; Um, Jae-Young
2017-10-20
Benign prostatic hyperplasia (BPH) is a common disease in the male population, especially in elderly men. Vanillic acid (VA), a dihydroxybenzoic derivative used as a flavoring agent, is reported to have an anti-inflammatory effect. However, there are no reports of its effects on BPH to date. BPH was induced with a pre-4-week treatment of daily subcutaneous injections of testosterone propionate (TP), and the normal control group received injections of ethanol with corn oil instead. Six weeks of further injections were done with (a) ethanol with corn oil, (b) TP only, (c) TP + finasteride, and (d) TP + VA. Finasteride was used as a positive control group. VA had protective effects on the TP-induced BPH. In the VA treatment group, the prostate weight was reduced, and the histological changes including the epithelial thickness and lumen area were restored like in the normal control group. Furthermore, in the VA treatment group, two proliferation related factors, high molecular weight cytokeratin 34βE12 and α smooth muscle actin, were significantly down-regulated compared to the TP-induced BPH group. The expressions of dihydrotestosterone and 5α-reductase, the most crucial factors in BPH development, were suppressed by VA treatment. Expressions of the androgen receptor, estrogen receptor α and steroid receptor coactivator 1 were also significantly inhibited by VA compared to the TP-induced BPH group. In addition, we established an in vitro model for BPH by treating a normal human prostatic epithelial cell line RWPE-1 with TP. VA successfully inhibited proliferation and BPH-related factors in a concentration-dependent manner in this newly established model. These results suggest a new and potential pharmaceutical therapy of VA in the treatment of BPH.
Kim, Hye-Lin; Youn, Dong-Hyun; Kang, JongWook; Lim, Seona; Jeong, Mi-Young; Sethi, Gautam; Park, Sung-Joo; Ahn, Kwang Seok; Um, Jae-Young
2017-01-01
Benign prostatic hyperplasia (BPH) is a common disease in the male population, especially in elderly men. Vanillic acid (VA), a dihydroxybenzoic derivative used as a flavoring agent, is reported to have an anti-inflammatory effect. However, there are no reports of its effects on BPH to date. BPH was induced with a pre-4-week treatment of daily subcutaneous injections of testosterone propionate (TP), and the normal control group received injections of ethanol with corn oil instead. Six weeks of further injections were done with (a) ethanol with corn oil, (b) TP only, (c) TP + finasteride, and (d) TP + VA. Finasteride was used as a positive control group. VA had protective effects on the TP-induced BPH. In the VA treatment group, the prostate weight was reduced, and the histological changes including the epithelial thickness and lumen area were restored like in the normal control group. Furthermore, in the VA treatment group, two proliferation related factors, high molecular weight cytokeratin 34βE12 and α smooth muscle actin, were significantly down-regulated compared to the TP-induced BPH group. The expressions of dihydrotestosterone and 5α-reductase, the most crucial factors in BPH development, were suppressed by VA treatment. Expressions of the androgen receptor, estrogen receptor α and steroid receptor coactivator 1 were also significantly inhibited by VA compared to the TP-induced BPH group. In addition, we established an in vitro model for BPH by treating a normal human prostatic epithelial cell line RWPE-1 with TP. VA successfully inhibited proliferation and BPH-related factors in a concentration-dependent manner in this newly established model. These results suggest a new and potential pharmaceutical therapy of VA in the treatment of BPH. PMID:29152074
Lim, Whasun; Park, Sunwoo; Bazer, Fuller W; Song, Gwonhwa
2017-05-01
Prostate cancer is the most common cancer in men and the second most common cause of cancer-related deaths in men. Although, various drugs targeting the androgen receptor are normally used, the patients frequently undergo recurrence of the disease. To overcome these limitations, natural compounds have been researched for evidence that they suppress progression and metastasis of various cancer cells. In the present study, we investigated effects of naringenin, a natural anti-oxidant flavonoid derived from citrus, on prostate cancer cells (PC3 and LNCaP). Results of present study with PC3 and LNCaP cells revealed that naringenin inhibited proliferation and migration, while inducing apoptosis and ROS production by those cells. In addition, naringenin-induced loss of mitochondrial membrane potential and increased Bax and decreased Bcl-2 proteins in PC3 cells, but not LNCaP cells. In a dose-dependent manner, naringenin decreased phosphorylation of ERK1/2, P70S6K, S6, and P38 in PC3 cells, and reduced phosphorylation of ERK1/2, P53, P38, and JNK proteins in LNCaP cells. However, naringenin activated phosphorylation of AKT in both PC3 and LNCaP cells. Then, targeted signaling proteins associated with viability of PC3 and LNCaP cells were analyzed using pharmacological inhibitors of AKT and ERK1/2 cell signaling pathways. Moreover, we compared the apoptotic effects of naringenin and paclitaxel alone and in combination to find that naringenin enhanced the efficiency of paclitaxel to suppress progression of prostate cancer cell lines. Collectively, these results indicate that naringenin is a potential chemotherapeutic agent for treatment of prostate cancer. J. Cell. Biochem. 118: 1118-1131, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Serum pro-gastrin-releasing peptide (31-98) in benign prostatic hyperplasia and prostatic carcinoma.
Nagakawa, Osamu; Furuya, Yuzo; Fujiuchi, Yasuyoshi; Fuse, Hideki
2002-09-01
To clarify whether serum levels of pro-gastrin-releasing peptide (ProGRP) (31-98) could be a useful marker in patients with prostatic carcinoma. GRP is produced and secreted by prostatic neuroendocrine cells. Serum levels of ProGRP(31-98) were measured by enzyme-linked immunosorbent assay in 20 patients with benign prostatic hyperplasia and 107 patients with prostatic carcinoma. The mean serum levels of ProGRP(31-98) in patients with distant metastasis and hormone-resistant prostate cancer were significantly elevated compared with those in patients with organ-confined disease. Significantly elevated levels of ProGRP(31-98) were detected in 9 patients with prostatic carcinoma before any treatment. During hormone-resistant prostate cancer progression, ProGRP(31-98) levels were elevated in 9 patients (23%). Of the 9 patients with Stage D3 and elevated serum ProGRP, 4 had a normal serum prostate-specific antigen level. ProGRP may be a potential tumor marker for prostate cancer. Additional studies in large groups of patients are needed to define the clinical value of ProGRP.
Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean
2016-09-13
Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.
Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel
2014-08-01
Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells
Xie, Xiaoming; Kong, Yanan; Tang, Hailin; Yang, Lu; Hsu, Jennifer L; Hung, Mien-Chie
2014-01-01
Targeted gene therapy is a promising approach for treating prostate cancer after the discovery of prostate cancer-specific promoters such as prostate-specific antigen, rat probasin, and human glandular kallikrein. However, these promoters are androgen-dependent, and after castration or androgen ablation therapy, they become much less active or sometimes inactive. Importantly, the disease will inevitably progress from androgen-dependent (ADPC) to castration-resistant prostate cancer (CRPC) at which treatments fail and high mortality ensues. Therefore, it is critical to develop a targeted gene therapy strategy that is effective in both ADPC and CRPC to eradicate recurrent prostate tumors. The human telomerase reverse transcriptase-VP16-Gal4-WPRE integrated systemic amplifier composite (T-VISA) vector we previously developed which targets transgene expression in ovarian and breast cancer is also active in prostate cancer. To further improve its effectiveness based on androgen response in ADPC progression, the ARR2 element (two copies of androgen response region from rat probasin promoter) was incorporated into T-VISA to produce AT-VISA. Under androgen analog (R1881) stimulation, the activity of AT-VISA was increased to a level greater than or comparable to the cytomegalovirus (CMV) promoter in ADPC and CRPC cells, respectively. Importantly, AT-VISA demonstrated little or no expression in normal cells. Systemic administration of AT-VISA-BikDD encapsulated in liposomes repressed prostate tumor growth and prolonged mouse survival in orthotopic animal models as well as in the transgenic adenocarcinoma mouse prostate model, indicating that AT-VISA-BikDD has therapeutic potential to treat ADPC and CRPC safely and effectively in preclinical setting. PMID:24785255
Al-Bakheit, Ala'a; Traka, Maria; Saha, Shikha; Mithen, Richard; Melchini, Antonietta
2016-10-01
Acylcarnitines are intermediates of fatty acid oxidation and accumulate as a consequence of the metabolic dysfunction resulting from the insufficient integration between β-oxidation and the tricarboxylic acid (TCA) cycle. The aim of this study was to investigate whether acylcarnitines accumulate in prostate cancer tissue, and whether their biological actions could be similar to those of dihydrotestosterone (DHT), a structurally related compound associated with cancer development. Levels of palmitoylcarnitine (palcar), a C16:00 acylcarnitine, were measured in prostate tissue using LC-MS/MS. The effect of palcar on inflammatory cytokines and calcium (Ca(2+) ) influx was investigated in in vitro models of prostate cancer. We observed a significantly higher level of palcar in prostate cancerous tissue compared to benign tissue. High levels of palcar have been associated with increased gene expression and secretion of the pro-inflammatory cytokine IL-6 in cancerous PC3 cells, compared to normal PNT1A cells. Furthermore, we found that high levels of palcar induced a rapid Ca(2+) influx in PC3 cells, but not in DU145, BPH-1, or PNT1A cells. This pattern of Ca(2+) influx was also observed in response to DHT. Through the use of whole genome arrays we demonstrated that PNT1A cells exposed to palcar or DHT have a similar biological response. This study suggests that palcar might act as a potential mediator for prostate cancer progression through its effect on (i) pro-inflammatory pathways, (ii) Ca(2+) influx, and (iii) DHT-like effects. Further studies need to be undertaken to explore whether this class of compounds has different biological functions at physiological and pathological levels. Prostate 76:1326-1337, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc.
... Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All Cancer ... as vascular endothelial growth factor (VEGF) , bind to receptors on the surface of normal endothelial cells. When ...
Gene therapy for prostate cancer: where are we now?
Steiner, M S; Gingrich, J R
2000-10-01
The ability to recombine specifically and alter DNA sequences followed by techniques to transfer these sequences or even whole genes into normal and diseased cells has revolutionized medical research and ushered the clinicians of today into the age of gene therapy. We provide urologists a review of relevant background information, outline current treatment strategies and clinical trials, and delineate current challenges facing the field of gene therapy for advanced prostate cancer. We comprehensively reviewed the literature, including PubMed and recent abstract proceedings from national meetings, relevant to gene therapy and advanced prostate cancer. We selected for review literature representative of the principal scientific background for current gene therapy strategies and National Institutes of Health Recombinant DNA Advisory Committee approved clinical trials. Current prostate cancer gene therapy strategies include correcting aberrant gene expression, exploiting programmed cell death pathways, targeting critical cell biological functions, introducing toxic or cell lytic suicide genes, enhancing the immune system antitumor response and combining treatment with conventional cytotoxic chemotherapy or radiation therapy. Many challenges lie ahead for gene therapy, including improving DNA transfer efficiency to cells locally and at distant sites, enhancing levels of gene expression and overcoming immune responses that limit the time that genes are expressed. Nevertheless, despite these current challenges it is almost certain that gene therapy will be part of the urological armamentarium against prostate cancer in this century.
... shows that you have a higher than normal prostate specific antigen (PSA) level Your provider discovers a lump or abnormality in your prostate during a digital rectal exam Normal Results Normal ...
Rodriguez-Teja, Mercedes; Breit, Claudia; Clarke, Mitchell; Talar, Kamil; Wang, Kai; Mohammad, Mohammad A.; Pickwell, Sage; Etchandy, Guillermina; Stasiuk, Graeme J.; Sturge, Justin
2016-01-01
Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under the same conditions. Cell signaling pathways and the subcellular localization of proteins can also be assessed. PMID:27684203
Mathieu, Romain; Evrard, Bertrand; Fromont, Gaëlle; Rioux-Leclercq, Nathalie; Godet, Julie; Cathelineau, Xavier; Guillé, François; Primig, Michael; Chalmel, Frédéric
2013-07-01
Cancer/Testis (CT) genes are expressed in male gonads, repressed in most healthy somatic tissues and de-repressed in various somatic malignancies including prostate cancers (PCa). Because of their specific expression signature and their associations with tumor aggressiveness and poor outcomes, CT genes are considered to be useful biomarkers and they are also targets for the development of new anti-cancer immunotherapies. The aim of this study was to identify novel CT genes associated with hormone-sensitive prostate cancer (HSPC), and castration-resistant prostate cancer (CRPC). To identify novel CT genes we screened genes for which transcripts were detected by RNA profiling specifically in normal testis and in either HSPC or CRPC as compared to normal prostate and 44 other healthy tissues using GeneChips. The expression and clinicopathological significance of a promising candidate--NR6A1--was examined in HSPC, CRPC, and metastatic site samples using tissue microarrays. We report the identification of 98 genes detected in CRPC, HSPC and testicular samples but not in the normal controls. Among them, cellular levels of NR6A1 were found to be higher in HSPC compared to normal prostate and further increased in metastatic lesions and CRPC. Furthermore, increased NR6A1 immunoreactivity was significantly associated with a high Gleason score, advanced pT stage and cancer cell proliferation. Our results show that cellular levels of NR6A1 are correlated with disease progression in PCa. We suggest that this essential orphan nuclear receptor is a potential therapeutic target as well as a biomarker of PCa aggressiveness. Copyright © 2013 Wiley Periodicals, Inc.
Microenvironment-Sensitive Multimodal Contrast Agent for Prostate Cancer Diagnosis
2017-10-01
indication of their colloidal stability and may also further affect their cellular uptake. In one study , it was demonstrated that anionic nanoparticles...normal prostate cells. In this study , phage particles having a specific peptide sequence on the surface, as listed below, were incubated for one hour...conducted gelatin zymography studies on HT-1080 serum-free conditioned media, which confirmed the secretion of gelatinase, an MMP, as shown in Figure 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konsoula, Zacharoula; Cao Hong; Velena, Alfredo
2011-04-01
Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to {gamma}-radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. Results: H6CAHA demonstrated goodmore » solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 {+-} 0.91 {mu}M x h, and its half-life was 11.17 {+-} 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of {gamma}H2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with {gamma}-radiation (10 x 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. Conclusion: These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.« less
Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells.
Mukhtar, Eiman; Adhami, Vaqar Mustafa; Siddiqui, Imtiaz Ahmad; Verma, Ajit Kumar; Mukhtar, Hasan
2016-12-01
Although treatment of prostate cancer has improved over the past several years, taxanes, such as cabazitaxel, remain the only form of effective chemotherapy that improves survival in patients with metastatic castration-resistant prostate cancer. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule-stabilizing agent and inhibits prostate cancer cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity, and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μmol/L) enhances cabazitaxel (5 nmol/L) and synergistically reduces 22Rν1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in the inhibition of tumor growth, invasion, and metastasis when assessed in two in vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced prostate cancer through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant prostate cancer and possibly other cancer types. Mol Cancer Ther; 15(12); 2863-74. ©2016 AACR. ©2016 American Association for Cancer Research.
Shao, Rui; Shi, Jiandang; Liu, Haitao; Shi, Xiaoyu; Du, Xiaoling; Klocker, Helmut; Lee, Chung; Zhu, Yan; Zhang, Ju
2014-06-01
Epithelial-to-mesenchymal transition (EMT) has been reported involved in the pathogenesis of fibrotic disorders and associated with stemness characteristics. Recent studies demonstrated that human benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium. However, the inductive factors of EMT in the adult prostate and the cause-and-effect relationship between EMT and stemness characteristics are not yet resolved. EMT expression patterns were immunohistochemically identified in the human epithelia of normal/BPH prostate tissue and in a rat BPH model induced by estrogen/androgen (E2/T, ratio 1:100) alone or in the presence of the ER antagonist raloxifene. Gene expression profiles were analyzed in micro-dissected prostatic epithelia of rat stimulated by E2/T for 3 days. Two main morphological features both accompanied with EMT were observed in the epithelia of human BPH. Luminal cells undergoing EMT dedifferentiated from a cytokeratin (CK) CK18(+) /CK8(+) /CK19(+) to a CK18(-) /CK8(+) /CK19(-) phenotype and CK14 expression increased in basal epithelial cells. ERα expression was closely related to these dedifferentiated cells and the expression of EMT markers. A similar pattern of EMT events was observed in the E2/T induced rat model of BPH in comparison to the prostates of untreated rats, which could be prevented by raloxifene. Epithelial and mesenchymal phenotype switching is an important mechanism in the etiology of BPH. ERα mediated enhanced estrogenic effect is a crucial inductive factor of epithelial dedifferentiation giving rise to activation of an EMT program in prostate epithelium. © 2014 Wiley Periodicals, Inc.
Sphingosine Kinase-1 Is Central to Androgen-Regulated Prostate Cancer Growth and Survival
Dayon, Audrey; Brizuela, Leyre; Martin, Claire; Mazerolles, Catherine; Pirot, Nelly; Doumerc, Nicolas; Nogueira, Leonor; Golzio, Muriel; Teissié, Justin; Serre, Guy; Rischmann, Pascal; Malavaud, Bernard; Cuvillier, Olivier
2009-01-01
Background Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. Methodology/Principal Findings Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway—by negatively impacting SphK1 activity—could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. Conclusions/Significance We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer. PMID:19956567
Maxwell, Pamela J.; Coulter, Jonathan; Walker, Steven M.; McKechnie, Melanie; Neisen, Jessica; McCabe, Nuala; Kennedy, Richard D.; Salto-Tellez, Manuel; Albanese, Chris; Waugh, David J.J.
2014-01-01
Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised. Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa. Design, setting, and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten+/−) mice harbouring inactivation of one PTEN allele. Interventions: Small interfering RNA (siRNA)–or small hairpin RNA (shRNA)–directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions. Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays. Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten+/− murine prostate tissue relative to normal epithelium in wild-type PTEN (PtenWT) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study. Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium. PMID:22939387
A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue
Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina
2013-01-01
We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235
Intensified autophagy compromises the efficacy of radiotherapy against prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koukourakis, Michael I., E-mail: targ@her.forthnet.gr; Kalamida, Dimitra; Mitrakas, Achilleas
2015-05-29
Introduction: Radiotherapy is an equivalent alternative or complement to radical prostatectomy, with high therapeutic efficacy. High risk patients, however, experience high relapse rates, so that research on radio-sensitization is the most evident route to improve curability of this common disease. Materials and methods: In the current study we investigated the autophagic activity in a series of patients with localized prostate tumors treated with radical radiotherapy, using the LC3A and the LAMP2a proteins as markers of autophagosome and lysosome cellular content, respectively. The role of autophagy on prostate cancer cell line resistance to radiation was also examined. Results: Using confocal microscopymore » on tissue biopsies, we showed that prostate cancer cells have, overall, high levels of LC3A and low levels of LAMP2a compared to normal prostate glands. Tumors with a ‘highLC3A/lowLAMP2a’ phenotype, suggestive of intensified lysosomal consumption, had a significantly poorer biochemical relapse free survival. The PC3 radioresistant cell line sustained remarkably its autophagic flux ability after radiation, while the DU145 radiosensitive one experiences a prolonged blockage of the autophagic process. This was assessed with aggresome accumulation detection and LC3A/LAMP2a double immunofluorescence, as well as with sequestrosome/p62 protein detection. By silencing the LC3A or LAMP2a expression, both cell lines became more sensitive to escalated doses of radiation. Conclusions: High base line autophagy activity and cell ability to sustain functional autophagy define resistance of prostate cancer cells to radiotherapy. This can be reversed by blocking up-regulated components of the autophagy pathway, which may prove of importance in the field of clinical radiotherapy. - Highlights: • High LC3A and low LAMP2a levels is a frequent expression pattern of prostate carcinoma. • This pattern of intensified autophagic flux relates with high relapse rates after radiotherapy. • The PC3 radio-resistant cell line sustains remarkably its autophagic flux ability after radiation. • Irradiation of the DU145 radio-sensitive cell line blocks the autophagic flux. • Intense autophagy activity defines prostate cancer radio-resistance, in vivo and in vitro.« less
Ihsan, Awais Ullah; Khan, Farhan Ullah; Nawaz, Waqas; Khan, Muhammad Zahid; Yang, Mengqi; Zhou, Xiaohui
2017-07-01
The exact etiological mechanism of Chronic Prostatitis/chronic pelvic pain syndrome (CP/CPPS) is still unclear however autoimmunity is the most valid theory. We developed a rat model of Chronic Prostatitis/chronic pelvic pain syndrome by using a novel peptide (T2) isolated from TRPM8. This model might be beneficial in elucidating mechanisms involved in the pathogenesis of Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS). 40 male Sprague-Dawley rats with an average weight of 180-220g were equally distributed into five groups. The normal control group was injected with normal saline (.9% NACL), the CFA group with CFA, AL(OH)3 group was given AL(OH)3 injection, T2 group using a novel peptide T2 and T2+AL(OH)3+CFA group was injected with T2+AL(OH)3+CFA. Dosing to all rat groups were injected subcutaneously. Hematoxylin and eosin staining and Immunohistochemistry were used to investigate inflammatory cell infiltration and IL-1β in the prostate tissue respectively. ELISA technique was used to measure the serum level of CRP and TNF-α. T-test was used to analyze the results. Maximum infiltration of inflammatory cells and the highest level of IL-1β in the prostate tissue was observed in T2+AL(OH)3+CFA group as revealed by histopathology and Immunohistochemistry, respectively. Furthermore, T2+AL(OH)3+CFA group attained the peak value of serum TNF-α and CRP as determined by ELISA technique. Our results demonstrated that T2 in combination with AL(OH)3 and CFA induced severe Prostatitis in rats. We believe that our present model will be highly beneficial for investigation of the pathophysiology of Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells
Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C.; Dahiya, Rajvir; Tanaka, Yuichiro
2015-01-01
DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells. PMID:26036629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, R.Y.; Troncoso, P.; El-Naggar, A.K.
1994-09-01
Identification of chromosomal aberrations that may be used for diagnostic or prognostic evaluation of prostatic adenocarcinoma has been the subject of great interest. In a previous study, we applied the fluorescence in situ hybridization (FISH) method on paraffin-embedded material to show that trisomy 7 was associated with the progression of human prostate cancer. In this study, we attempted to assess the utility of the FISH technique in detecting aneuploidy in fine needle aspirate (FNA) smears of prostatic tissues and to compare FISH results with that of DNA flow cytometry (FCM). Paired samples of normal and tumor FNA smears were obtainedmore » from 10 radical prostatectomy specimens. Dual-color chromosomes 7 and 9-specific centromeric DNA probes were used for FISH. FISH analysis demonstrated increased frequencies of trisomy 7 cells in all 10 tumors studied when compared with the paired normals. In contrast, 6 of 10 tumors were determined to be diploid by FCM. Our results show that FNA of radical prostatectomy specimens is a practical method for obtaining suitable material for both FISH and FCM analyses of prostate carcinoma. Thus, interphase FISH may be a practical screening tool to determine aneuploidy in FNA smears of prostatic carcinoma.« less
Kato, Taku; Yamamura, Soichiro; Tanaka, Yuichiro; Majid, Shahana; Saini, Sharanjot; Varahram, Shahryari; Kulkarni, Priyanka; Dasgupta, Pritha; Mitsui, Yozo; Sumida, Mitsuho; Tabatabai, Laura; Deng, Guoren; Kumar, Deepak; Dahiya, Rajvir
2017-01-01
African-Americans are diagnosed with more aggressive prostate cancers and have worse survival than Caucasians, however a comprehensive understanding of this health disparity remains unclear. To clarify the mechanisms leading to this disparity, we analyzed the potential involvement of miR-34b expression in African-Americans and Caucasians. miR-34b functions as a tumor suppressor and has a multi-functional role, through regulation of cell proliferation, cell cycle and apoptosis. We found that miR-34b expression is lower in human prostate cancer tissues from African-Americans compared to Caucasians. DNA hypermethylation of the miR-34b-3p promoter region showed significantly higher methylation in prostate cancer compared to normal samples. We then sequenced the promoter region of miR-34b-3p and found a chromosomal deletion in miR-34b in African-American prostate cancer cell line (MDA-PCA-2b) and not in Caucasian cell line (DU-145). We found that AR and ETV1 genes are differentially expressed in MDA-PCa-2b and DU-145 cells after overexpression of miR-34b. Direct interaction of miR-34b with the 3’ untranslated region of AR and ETV1 was validated by luciferase reporter assay. We found that miR-34b downregulation in African-Americans is inversely correlated with high AR levels that lead to increased cell proliferation. Overexpression of miR-34b in cell lines showed higher inhibition of cell proliferation, apoptosis and G1 arrest in the African-American cells (MDA-PCa-2b) compared to Caucasian cell line (DU-145). Taken together, our results show that differential expression of miR-34b and AR are associated with prostate cancer aggressiveness in African-Americans. PMID:28039468
Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi
2016-02-15
FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.
Targeted Zinc Delivery: A Novel Treatment for Prostate Cancer
2010-06-01
aconitase, which normally functions to oxidize citrate during the Krebs cycle . Because citrate is a principle component of seminal fluid, prostate...tissue, likely due to the metabolic effects of zinc in the Krebs cycle . That is, because zinc inhibits m- aconitase, loss of zinc allows for greater...secretory cells do not complete the oxidation of citrate in the mitochondria and the zinc-mediated inhibition of m-aconitase is crucial for the
Lazzeri, Massimo; Abrate, Alberto; Lughezzani, Giovanni; Gadda, Giulio Maria; Freschi, Massimo; Mistretta, Francesco; Lista, Giuliana; Fossati, Nicola; Larcher, Alessandro; Kinzikeeva, Ella; Buffi, Nicolòmaria; Dell'Acqua, Vincenzo; Bini, Vittorio; Montorsi, Francesco; Guazzoni, Giorgio
2014-03-01
To investigate the relationship between serum [-2]proPSA (p2PSA) and derivatives with chronic histologic prostatic inflammation (CHPI) in men undergoing prostate biopsy for suspected prostate cancer (PCa). This nested case-control study resulted from an observational prospective trial for the definition of sensibility, specificity, and accuracy of p2PSA, %p2PSA, and Beckman Coulter Prostate Health Index (PHI), in men undergoing prostate biopsy, with a total prostate-specific antigen (PSA) of 4-10 ng/mL and normal digital rectal examination. CHPI was the outcome of interest and defined as the presence of moderate to large infiltration of lymphomononuclear cells with interstitial and/or glandular disruption in absence of PCa. p2PSA, %p2PSA, and PHI were considered the index tests and compared with the established biomarker reference standard tests: tPSA, fPSA, %fPSA. Of 267 patients subjected to prostate biopsy, 73 (27.3%) patients were diagnosed with CHPI. Comparing CHPI with PCa patients, %p2PSA and PHI were found to be significantly lower, whereas fPSA and %fPSA were significantly higher. %p2PSA and PHI were the most accurate predictors of CHPI at biopsy, significantly outperforming tPSA, fPSA, and %fPSA. On the contrary, no significant differences were found in PSA, p2PSA, and derivatives between CHPI and benign prostatic hyperplasia (BPH) patients. Our findings showed that p2PSA, %p2PSA, and PHI values might discriminate PCa from CHPI or BPH, but not CHPI from BPH, in men with a total PSA 4-10 ng/mL and normal digital rectal examination. p2PSA isoform and its derivatives could be useful in clinical decision making to avoid unnecessary biopsies in patients with CHPI and elevated tPSA value. Copyright © 2014 Elsevier Inc. All rights reserved.
Asare, George Awuku; Afriyie, Dan; Ngala, Robert A; Abutiate, Harry; Doku, Derek; Mahmood, Seidu A; Rahman, Habibur
2015-01-01
Annona muricata L. has been reported to possess antitumor and antiproliferative properties. Not much work has been done on its effect on BPH-1 cell lines, and no in vivo studies targeting the prostate organ exist. The study determined the effect of A muricata on human BPH-1 cells and prostate organ. The MTT assay was performed on BPH-1 cells using the aqueous leaf extract of A muricata. Cells (1 × 10(5) per well) were challenged with 0.5, 1.0, and 1.5 mg/mL extract for 24, 48, and 72 hours. Cell proliferation and morphology were examined microscopically. BPH-1 cells (1 × 10(4) per well) were seeded into 6-well plates and incubated for 48 hours with 0.5, 1.0, and 1.5 mg/mL A muricata extract. Reverse transcriptase polymerase chain reaction was performed using mRNA extracted from the cells. Possible target genes, Bax and Bcl-2, were examined. Twenty F344 male rats (≈200 g) were gavaged 30 mg/mL (10 rats) and 300 mg/mL (10 rats) and fed ad libitum alongside 10 control rats. Rats were sacrificed after 60 days. The prostate, seminal vesicles, and testes were harvested for histological examination. Annona muricata demonstrated antiproliferative effects with an IC50 of 1.36 mg/mL. Best results were obtained after 48 hours, with near cell extinction at 72 hours. Bax gene was upregulated, while Bcl-2 was downregulated. Normal histological architecture was observed for all testes. Seminal vesicle was significantly reduced in test groups (P < .05) and demonstrated marked atrophy with increased cellularity and the acinii, empty of secretion. Prostate of test groups were reduced with epithelial lining showing pyknotic nucleus, condensation, and marginalization of the nuclear material, characteristic of apoptosis of the glandular epithelium. Furthermore, scanty prostatic secretion with flattening of acinar epithelial lining occurred. Annona muricata has antiproliferative effects on BPH-1 cells and reduces prostate size, possibly through apoptosis. © The Author(s) 2014.
Fosså, S. D.; Waehre, H.; Paus, E.
1992-01-01
Twenty-seven of 152 patients (18%) with progressing hormone resistant prostate cancer had normal serum levels of prostate specific antigen (PSA less than or equal to 10 micrograms l-1), when referred for secondary treatment. PSA was significantly correlated with the extent of skeletal metastases (R: 0.35) and the levels of hemoglobin (R: -0.19) and serum alkaline phosphatase (R: 0.30). In a multivariate Cox regression analysis the survival of the 152 patients was not correlated with the PSA level but with the patients performance status, the level of hemoglobin, and the time between primary hormone treatment and relapse. The lack of serum PSA to predict survival may be explained by a heterogenous composition of hormone resistant prostate cancer as regards differentiated and/or PSA producing vs undifferentiated and/or PSA non-producing cells. PMID:1379059
Tam, Kevin J; Hui, Daniel H F; Lee, Wilson W; Dong, Mingshu; Tombe, Tabitha; Jiao, Ivy Z F; Khosravi, Shahram; Takeuchi, Ario; Peacock, James W; Ivanova, Larissa; Moskalev, Igor; Gleave, Martin E; Buttyan, Ralph; Cox, Michael E; Ong, Christopher J
2017-09-13
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Xu, Ya-Ming; Wijeratne, E M Kithsiri; Babyak, Ashley L; Marks, Hanna R; Brooks, Alan D; Tewary, Poonam; Xuan, Li-Jiang; Wang, Wen-Qiong; Sayers, Thomas J; Gunatilaka, A A Leslie
2017-07-28
Investigation of aeroponically grown Physalis peruviana resulted in the isolation of 11 new withanolides, including perulactones I-L (1-4), 17-deoxy-23β-hydroxywithanolide E (5), 23β-hydroxywithanolide E (6), 4-deoxyphyperunolide A (7), 7β-hydroxywithanolide F (8), 7β-hydroxy-17-epi-withanolide K (9), 24,25-dihydro-23β,28-dihydroxywithanolide G (10), and 24,25-dihydrowithanolide E (11), together with 14 known withanolides (12-25). The structures of 1-11 were elucidated by the analysis of their spectroscopic data, and 12-25 were identified by comparison of their spectroscopic data with those reported. All withanolides were evaluated for their cytotoxic activity against a panel of tumor cell lines including LNCaP (androgen-sensitive human prostate adenocarcinoma), 22Rv1 (androgen-resistant human prostate adenocarcinoma), ACHN (human renal adenocarcinoma), M14 (human melanoma), SK-MEL-28 (human melanoma), and normal human foreskin fibroblast cells. Of these, the 17β-hydroxywithanolides (17-BHWs) 6, 8, 9, 11-13, 15, and 19-22 showed selective cytotoxic activity against the two prostate cancer cell lines LNCaP and 22Rv1, whereas 13 and 20 exhibited selective toxicity for the ACHN renal carcinoma cell line. These cytotoxicity data provide additional structure-activity relationship information for the 17-BHWs.
Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M
2013-12-01
The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
2011-01-01
Background We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways. Results Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2. Conclusion From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation. PMID:21999842
The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines
Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona
2010-01-01
Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977
Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases
Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi
2014-01-01
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857
Selective tumor cell targeting by the disaccharide moiety of bleomycin.
Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M
2013-02-27
In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.
Gambara, Guido; Desideri, Marianna; Stoppacciaro, Antonella; Padula, Fabrizio; De Cesaris, Paola; Starace, Donatella; Tubaro, Andrea; del Bufalo, Donatella; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna
2015-01-01
Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa. PMID:25444175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Junqiang; Doi, Hiroshi; Saar, Matthias
2013-12-01
Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome.more » The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.« less
Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D; Aneja, Ritu
2014-10-01
Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. Copyright © 2014 Elsevier Inc. All rights reserved.
Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu
2015-01-01
Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. PMID:25064160
2011-09-01
the ETS family of transcription factors showing diverse expression patterns in human tissues (Turner and Watson, 2008). ERG, similar to other...and adult mouse tissues . Most striking of these observations was highly selective and abundant expression of erg protein in endothelial cells of...mouse tissues . We for the first time clarified that endogenous ERG was not expressed in normal mouse prostate epithelium (Mohamed et al., 2010
Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz
2018-02-19
Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep
2016-09-09
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. Copyright © 2016 Elsevier Inc. All rights reserved.
Schulz, Wolfgang A; Ingenwerth, Marc; Djuidje, Carolle E; Hader, Christiane; Rahnenführer, Jörg; Engers, Rainer
2010-09-22
The cortical cytoskeleton network connects the actin cytoskeleton to various membrane proteins, influencing cell adhesion, polarity, migration and response to extracellular signals. Previous studies have suggested changes in the expression of specific components in prostate cancer, especially of 4.1 proteins (encoded by EPB41 genes) which form nodes in this network. Expression of EPB41L1, EPB41L2, EPB41L3 (protein: 4.1B), EPB41L4B (EHM2), EPB41L5, EPB49 (dematin), VIL2 (ezrin), and DLG1 (summarized as "cortical cytoskeleton" genes) as well as ERG was measured by quantitative RT-PCR in a well-characterized set of 45 M0 prostate adenocarcinoma and 13 benign tissues. Hypermethylation of EPB41L3 and GSTP1 was compared in 93 cancer tissues by methylation-specific PCR. Expression of 4.1B was further studied by immunohistochemistry. EPB41L1 and EPB41L3 were significantly downregulated and EPB41L4B was upregulated in cancer tissues. Low EPB41L1 or high EPB41L4B expression were associated with earlier biochemical recurrence. None of the other cortical cytoskeleton genes displayed expression changes, in particular EPB49 and VIL2, despite hints from previous studies. EPB41L3 downregulation was significantly associated with hypermethylation of its promoter and strongly correlated with GSTP1 hypermethylation. Protein 4.1B was detected most strongly in the basal cells of normal prostate epithelia. Its expression in carcinoma cells was similar to the weaker one in normal luminal cells. EPB41L3 downregulation and EPB41L4B upregulation were essentially restricted to the 22 cases with ERG overexpression. Expression changes in EPB41L3 and EPB41L4B closely paralleled those previously observed for the extracellular matrix genes FBLN1 and SPOCK1, respectively. Specific changes in the cortical cytoskeleton were observed during prostate cancer progression. They parallel changes in the expression of extracellular matrix components and all together appear to be associated with oncogenic ERG overexpression. We hypothesize that these alterations may contribute to the increased invasivity conferred to prostate cancer cells by ERG deregulation.
NASA Astrophysics Data System (ADS)
Xu, Guan; Davis, Mandy A.; Siddiqui, Javed; Chao, Wan-yu; Tomlins, Scott A.; Wei, John T.; Wang, Xueding
2017-03-01
Prostate cancer (PCa) is the most commonly diagnosed cancer in American men for the past decades. PCa has a relatively low progression rate but the 5 year survival rate decreases dramatically once the cancer has metastasized. Differentiating aggressive from indolent PCa is critical for improving PCa patient outcomes and preventing metastasis and death. Prostate biopsy is the standard procedure for evaluating the presence and aggressiveness of PCa. The microarchitecture of the biopsied tissues visualized by histology process is evaluated by pathologists and assigned a Gleason score as a quantification of the aggressiveness. In our previous study, we have shown that photoacoustic spectral analysis (PASA) is capable of quantifying the Gleason scores of the H&E stained human prostate tissues. In this study, we attempt to assess the Gleason scores without any staining by taking advantage of the strong optical absorption of nucleic acid at ultraviolet wavelengths. PA signals were generated by wide field illumination at 266 nm and received by a hydrophone with a bandwidth of 0-20 MHz. DU145 prostate cancer cells at the concentrations of 0.8, 0.4, 0.05, 0.025 and 0.0125 million per cm3 simulating those in cancerous and normal tissues were first attempted. The measurements were repeated for 10 times at each concentration. A correlation of 0.86 was observed between the PA signal intensities and the cell concentrations. Human PCa tissues with Gleason score 6, 7 and 8 and normal tissues were assessed. With 11 samples, a correlation of 0.89 was found between the Gleason scores and PASA slopes.
Ki-67 expression in early prostate cancer and associated pathological lesions.
Feneley, M R; Young, M P; Chinyama, C; Kirby, R S; Parkinson, M C
1996-01-01
AIM: To assess cell proliferation in early prostate cancer and associated pathological lesions. METHODS: Using the Ki-67 antibody, the cell proliferation index was measured in early stage prostatic carcinoma in 37 incidental tumours diagnosed at transurethral prostatectomy (TURP) and in 20 low volume cancers treated by radical prostatectomy. Proliferation indexes have also been measured in areas of normal peripheral zone, transition zone hyperplasia, atrophic appearing lobules, and high grade prostatic intraepithelial neoplasia in the radical prostatectomy cases. RESULTS: In the TURP series the proliferation index correlated with grade and stage. Logistic regression analysis, however, showed that Gleason grade was the most reliable predictor of biopsy proven residual disease and clinical progression. In the radical series transition zone carcinoma the proliferation index was half that of peripheral zone carcinoma. The atrophic lobules also showed a high proliferation index of the same order as seen in the peripheral zone carcinoma. Normal peripheral zone showed the lowest proliferation index and in hyperplastic transition zone it was also less than the other areas. CONCLUSIONS: There is only limited support for the correlation of proliferation index with grade in early stage prostatic carcinoma. The findings do not suggest that proliferation index adds to the prognostic information given by grade and stage in pT1 disease. The significant difference in proliferation index in transition zone and peripheral zone carcinomas supports the morphological distinction of these tumour types and is consistent with differences in biological behaviour. The high proliferation index in lobules considered morphologically atrophic is reminiscent of previous observations in which carcinoma was spatially associated with atrophy. Images PMID:9038759
Majumder, Subhadipa; Bhowal, Ankur; Basu, Sanmitra; Mukherjee, Pritha; Chatterji, Urmi; Sengupta, Sanghamitra
2016-11-01
Transforming growth factor-β signaling exerts divergent effects on normal and cancer cells, although mechanism underlying this differential behavior remains unclear. In this study, expression of 94 genes pertaining to the TGF-β signaling pathway was compared between tumor and benign tissue samples from the human prostate gland to identify major discriminators driving prostate carcinogenesis. E2F5 was identified as one of the most deregulated genes in prostate cancer tissues, predominantly in samples with Gleason-score 6. Expression of other deregulated components of TGF-β signaling was examined by qRT-PCR, Western blot, and immune-staining. Function of E2F5 and p38 in prostate cancer was investigated using siRNA-treatment of PC3 cell-line followed by analyses of associated components and cell cycle. Observations revealed that E2F5 overexpression was accompanied by significantly higher phosphorylation of SMAD3 at Ser-208 in the linker region (pSMAD3L) and p38 in tumor tissue. A striking difference in SMAD3 phosphorylation, marked by preponderance of pSMAD3L and pSMAD3C (Ser-423 and 425) in tumor and benign tissues, respectively was noted. Co-localization of E2F5 with pSMAD3L in the nuclei of tumor and PC3 cells indicated a functional interface between the proteins. Downregulation of E2F5 and p38 in PC3 cells resulted in marked reduction of phosphorylation of SMAD3 and perturbation of cell cycle with an arrest of cells in G1 . Our findings unearthed that E2F5/p38 axis played a cardinal role in uncontrolled cellular proliferation in prostate cancer through pSMAD3L activation. It also underscores a strong potential for E2F5 to be incorporated as a tool in early detection of prostate cancer. J. Cell. Physiol. 231: 2482-2492, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing
2016-01-01
Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944
Zager, Michael G.; Barton, Hugh A.
2012-01-01
A systems-level mathematical model is presented that describes the effects of inhibiting the enzyme 5α-reductase (5aR) on the ventral prostate of the adult male rat under chronic administration of the 5aR inhibitor, finasteride. 5aR is essential for androgen regulation in males, both in normal conditions and disease states. The hormone kinetics and downstream effects on reproductive organs associated with perturbing androgen regulation are complex and not necessarily intuitive. Inhibition of 5aR decreases the metabolism of testosterone (T) to the potent androgen 5α-dihydrotestosterone (DHT). This results in decreased cell proliferation, fluid production and 5aR expression as well as increased apoptosis in the ventral prostate. These regulatory changes collectively result in decreased prostate size and function, which can be beneficial to men suffering from benign prostatic hyperplasia (BPH) and could play a role in prostate cancer. There are two distinct isoforms of 5aR in male humans and rats, and thus developing a 5aR inhibitor is a challenging pursuit. Several inhibitors are on the market for treatment of BPH, including finasteride and dutasteride. In this effort, comparisons of simulated vs. experimental T and DHT levels and prostate size are depicted, demonstrating the model accurately described an approximate 77% decrease in prostate size and nearly complete depletion of prostatic DHT following 21 days of daily finasteride dosing in rats. This implies T alone is not capable of maintaining a normal prostate size. Further model analysis suggests the possibility of alternative dosing strategies resulting in similar or greater effects on prostate size, due to complex kinetics between T, DHT and gene occupancy. With appropriate scaling and parameterization for humans, this model provides a multiscale modeling platform for drug discovery teams to test and generate hypotheses about drugging strategies for indications like BPH and prostate cancer, such as compound binding properties, dosing regimens, and target validation. PMID:22970204
Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen
2014-01-01
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. PMID:24981110
Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen
2014-10-01
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. © 2014 The authors.
Epigenetics in prostate cancer.
Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M
2011-01-01
Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.
van Niekerk, Cornelis G; van der Laak, Jeroen A W M; Börger, M Elisa; Huisman, Henk-Jan; Witjes, J Alfred; Barentsz, Jelle O; Hulsbergen-van de Kaa, Christina A
2009-01-01
Contrast enhanced imaging enables powerful, non-invasive diagnostics, important for detection and staging of early prostate cancer. The uptake of contrast agent is increased in prostate cancer as compared to normal prostate tissue. To reveal the underlying physiological mechanisms, quantification of tissue components in pathology specimens may yield important information. Aim of this study was to investigate whether microvascularity is increased in prostate confined cancer (pT2). Radical prostatectomy specimens of 26 patients were selected for organ confined peripheral zone tumors which were restricted to one side of the prostate. Microvessels were visualized by immunohistochemistry against CD31. Specimens were scanned using a computer controlled microscope and scanning stage and vessels were recognized automatically. Pseudocolor mappings were produced showing number of vascular profiles (MVD), vascular area (MVA) and perimeter (MVP) in an overview of the entire prostate transection. MVD is a common measure for vascularity, whereas MVA represents the 3D vascular volume and MVP the perfused surface area. Mean, coefficient of variation and 75th percentile of these parameters were calculated automatically in manually indicated areas, consisting of the entire tumor area and the corresponding normal area in the contra lateral side of the prostate. The mappings clearly indicate areas of increased vascularity in prostate transections. In tumor tissue an increase was found compared to normal tissue of 81%, 49%, and 62% for mean MVD, mean MVA and mean MVP, respectively (P < 0.001 for all comparisons). In contrast, the heterogeneity in tumor vasculature was significantly decreased as compared to normal prostate (P < 0.001). Characteristics of microvasculature deviated significantly in pT2 prostate tumor as compared to normal tissue. Copyright 2008 Wiley-Liss, Inc.
PARP inhibition has been approved for treatment of advanced ovarian cancer with BRAC1 and BRAC2 mutations and is being studied in the treatment advanced breast, colorectal, and prostate cancer. A new study by Center for Cancer Research scientists in the Mouse Cancer Genetics Program and the Laboratory of Genome Integrity, raises concerns that when cancer patients with a BRCA mutation are treated with PARP inhibitors their normal cells may also be affected.
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2014-10-01
G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human...1, OCT3/4, Hedgehog (Hh), Wnt/β-catenin, Notch signaling, Hox gene family, PTEN/Akt pathway, efflux transporters such as ABCG markers of self...105-111 (2001). 50. Liu, S., et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer
Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae
2014-02-01
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer.
Chin, Suyin Paulynn; Marthick, James R; West, Alison C; Short, Annabel K; Chuckowree, Jyoti; Polanowski, Andrea M; Thomson, Russell J; Holloway, Adele F; Dickinson, Joanne L
2015-05-01
Integrin alpha2 beta1 (α2 β1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated. © 2015 Wiley Periodicals, Inc.
Lad, P M; Cooper, J F; Learn, D B; Olson, C V
1984-12-07
We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.
Lv, Qingzhi; Yang, Jincheng; Zhang, Ruoshi; Yang, Zimeng; Yang, Zhengtao; Wang, Yongjun; Xu, Youjun; He, Zhonggui
2018-05-07
Prostate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells. The high expression level of PSMA in PCa cells offers an opportunity for target delivery of nonspecific cytotoxic drugs to PCa cells, thus improving therapeutic efficacy and reducing toxicity. PSMA has high affinity for DUPA, a glutamate urea ligand. Herein, a novel DUPA-PTX conjugate is developed using DUPA as the targeting ligand to deliver PTX specifically for treatment of PSMA expressing PCa. The targeting ligand DUPA enhances the transport capability and selectivity of PTX to tumor cells via PSMA mediated endocytosis. Besides, DUPA is conjugated with PTX via a disulfide bond, which facilitates the rapid and differential drug release in tumor cells. The DUPA-PTX conjugate exhibits potent cytotoxicity in PSMA expressing cell lines and induces a complete cessation of tumor growth with no obvious toxicity. Our findings give new insight into the PSMA-targeted delivery of chemotherapeutics and provide an opportunity for the development of novel active targeting drug delivery systems for PCa therapy.
Taylor, Julia A.; Richter, Catherine A.; Ruhlen, Rachel L.; vom Saal, Frederick S.
2011-01-01
Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures. PMID:21827855
Jiang, Yumei; Cui, Dong; Du, Yuefeng; Lu, Jun; Yang, Lin; Li, Jinmei; Zhang, Jing; Bai, Xiaojing
2016-11-01
Chronic prostatitis is a risk factor for impaired male fertility potential, and anti-sperm antibodies (ASAs) cause the autoimmune disease immune infertility, which has a negative effect on semen parameters. Current studies have investigated the ASA-positive relationship between chronic prostatitis versus normal controls, but have shown inconsistent results. Hence, we systematic searched the PubMed, EMBASE, Science Direct/Elsevier, Medline, and the Cochrane Library up to October 2015 for case-control studies that involved the ASA-positive relationship between chronic prostatitis patients versus normal controls. The meta-analysis was performed with Review Manager and Stata software. After literature search, six studies were identified, including 721 cases of chronic prostatitis and 160 normal controls. Our results illustrated a significant correlation of the ASA-positive relationship between chronic prostatitis patients versus normal controls. The combined odds ratio of the ASA-positive rate in chronic prostatitis patients and normal controls was 3.26 (1.86-5.71). There was also a significant correlation of the ASA-positive relationship between National Institutes of Health (NIH) III versus normal controls, and the combined OR was 2.46 (1.10-5.51). However, there was no significant correlation of the ASA-positive relationship between National Institutes of Health (NIH) II versus normal controls. The present study illustrates that the positive rate of ASAs in chronic prostatitis patients was significantly higher than in the control group, suggesting that chronic prostatitis has a negative effect on male reproductive function. However, studies with larger samples are needed to better illuminate the correlation between ASAs and chronic prostatitis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The role of DAB2IP in androgen receptor activation during prostate cancer progression.
Wu, K; Liu, J; Tseng, S-F; Gore, C; Ning, Z; Sharifi, N; Fazli, L; Gleave, M; Kapur, P; Xiao, G; Sun, X; Oz, O K; Min, W; Alexandrakis, G; Yang, C-R; Hsieh, C-L; Wu, H-C; He, D; Xie, D; Hsieh, J-T
2014-04-10
Altered androgen-receptor (AR) expression and/or constitutively active AR are commonly associated with prostate cancer (PCa) progression. Targeting AR remains a focal point for designing new strategy of PCa therapy. Here, we have shown that DAB2IP, a novel tumor suppressor in PCa, can inhibit AR-mediated cell growth and gene activation in PCa cells via distinct mechanisms. DAB2IP inhibits the genomic pathway by preventing AR nuclear translocation or phosphorylation and suppresses the non-genomic pathway via its unique functional domain to inactivate c-Src. Also, DAB2IP is capable of suppressing AR activation in an androgen-independent manner. In addition, DAB2IP can inhibit several AR splice variants showing constitutive activity in PCa cells. In DAB2IP(-/-) mice, the prostate gland exhibits hyperplastic epithelia, in which AR becomes more active. Consistently, DAB2IP expression inversely correlates with AR activation status particularly in recurrent or metastatic PCa patients. Taken together, DAB2IP is a unique intrinsic AR modulator in normal cells, and likely can be further developed into a therapeutic agent for PCa.
Palomera-Sanchez, Zoraya; Watson, Gregory W; Wong, Carmen P; Beaver, Laura M; Williams, David E; Dashwood, Roderick H; Ho, Emily
2017-09-01
Androgen receptor (AR) is a transcription factor involved in normal prostate physiology and prostate cancer (PCa) development. 3,3'-Diindolylmethane (DIM) is a promising phytochemical agent against PCa that affects AR activity and epigenetic regulators in PCa cells. However, whether DIM suppresses PCa via epigenetic regulation of AR target genes is unknown. We assessed epigenetic regulation of AR target genes in LNCaP PCa cells and showed that DIM treatment led to epigenetic suppression of AR target genes involved in DNA repair (PARP1, MRE11, DNA-PK). Decreased expression of these genes was accompanied by an increase in repressive chromatin marks, loss of AR occupancy and EZH2 recruitment to their regulatory regions. Decreased DNA repair gene expression was associated with an increase in DNA damage (γH2Ax) and up-regulation of genomic repeat elements LINE1 and α-satellite. Our results suggest that DIM suppresses AR-dependent gene transcription through epigenetic modulation, leading to DNA damage and genome instability in PCa cells. Published by Elsevier Inc.
Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC.
Frank, Sander B; Berger, Penny L; Ljungman, Mats; Miranti, Cindy K
2017-06-01
Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation. © 2017. Published by The Company of Biologists Ltd.
Opoku-Acheampong, Alexander B.; Nelsen, Michelle K.; Unis, Dave; Lindshield, Brian L.
2012-01-01
Background 5α-reductase 1 (5αR1) and 5α-reductase 2 (5αR2) convert testosterone into the more potent androgen dihydrotestosterone. 5αR2 is the main isoenzyme in normal prostate tissue; however, most prostate tumors have increased 5αR1 and decreased 5αR2 expression. Previously, finasteride (5αR2 inhibitor) treatment begun 3 weeks post-tumor implantation had no effect on Dunning R3327-H rat prostate tumor growth. We believe the tumor compensated for finasteride treatment by increasing tumor 5αR1 expression or activity. We hypothesize that finasteride treatment would not significantly alter tumor growth even if begun before tumor implantation, whereas dutasteride (5αR1 and 5αR2 inhibitor) treatment would decrease tumor growth regardless of whether treatment was initiated before or after tumor implantation. Methodology/Principal Findings Sixty 8-week-old male nude mice were randomized to Control, Pre- and Post-Finasteride, and Pre- and Post-Dutasteride (83.3 mg drug/kg diet) diet groups. Pre- and post-groups began their treatment diets 1–2 weeks prior to or 3 weeks after subcutaneous injection of 1×105 WPE1-NA22 human prostate cancer cells, respectively. Tumors were allowed to grow for 22 weeks; tumor areas, body weights, and food intakes were measured weekly. At study's conclusion, prostate and seminal vesicle weights were significantly decreased in all treatment groups versus the control; dutasteride intake significantly decreased seminal vesicle weights compared to finasteride intake. No differences were measured in final tumor areas or tumor weights between groups, likely due to poor tumor growth. In follow-up studies, proliferation of WPE1-NA22 prostate cancer cells and parent line RWPE-1 prostate epithelial cells were unaltered by treatment with testosterone, dihydrotestosterone, or mibolerone, suggesting that these cell lines are not androgen-sensitive. Conclusion The lack of response of WPE1-NA22 prostate cancer cells to androgen treatment may explain the inadequate tumor growth observed. Additional studies are needed to determine whether finasteride and dutasteride are effective in decreasing prostate cancer development/growth. PMID:22242155
Mogal, Ashish; Abdulkadir, Sarki A
2006-04-01
In quantitative RT-PCR (qRT-PCR), analysis of gene expression is dependent on normalization using housekeeping genes such as 18S rRNA, GAPDH and beta actin. However, variability in their expression has been reported to be caused by factors like drug treatment, pathological states and cell-cycle phase. An emerging area of cancer research focuses on identifying the role of epigenetic alterations such as histone modifications and DNA methylation in the initiation and progression of cancer. Histone acetylation is the best studied modification so far and has been probed through the use of histone deacetylase inhibitors (HDACi). Further, modulation of histone acetylation is currently being explored as a therapeutic strategy in the treatment of cancer and HDACis have shown promise in inhibiting tumorigenesis and metastasis. Trichostatin-A (TSA) is the most widely used HDACi. Therefore, we were driven to identify a suitable internal control for RT-PCR following TSA treatment. We performed quantitative RT-PCR analysis using mouse prostate tissue explants, human prostate cancer (LNCaP) cells and human breast cancer (T-47D and ZR-75-1) cells following TSA treatment. Expression of housekeeping genes including 18S rRNA, beta actin, GAPDH and ribosomal highly-basic 23-kDa protein (rb 23-kDa, RPL13A) were compared in vehicle versus TSA treated samples. Our results showed marked variations in 18S rRNA, beta actin mRNA and GAPDH mRNA levels in mouse prostate explants and a human prostate cancer (LNCaP) cell line following TSA treatment. Furthermore, in two human breast cancer cell lines (T-47D and ZR-75-1) 18S rRNA, beta actin mRNA and GAPDH mRNA levels varied significantly. However, RPL13A mRNA levels remained constant in all the conditions tested. Therefore, we recommend use of RPL13A as a standard for normalization during TSA treatment.
Shaikhibrahim, Zaki; Lindstrot, Andreas; Ochsenfahrt, Jacqueline; Fuchs, Kerstin; Wernert, Nicolas
2013-01-01
Epigenetic changes have been suggested to drive prostate cancer (PCa) development and progression. Therefore, in this study, we aimed to identify novel epigenetics-related genes in PCa tissues, and to examine their expression in metastatic PCa cell lines. We analyzed the expression of epigenetics-related genes via a clustering analysis based on gene function in moderately and poorly differentiated PCa glands compared to normal glands of the peripheral zone (prostate proper) from PCa patients using Whole Human Genome Oligo Microarrays. Our analysis identified 12 epigenetics-related genes with a more than 2-fold increase or decrease in expression and a p-value <0.01. In modera-tely differentiated tumors compared to normal glands of the peripheral zone, we found the genes, TDRD1, IGF2, DICER1, ADARB1, HILS1, GLMN and TRIM27, to be upregulated, whereas TNRC6A and DGCR8 were found to be downregulated. In poorly differentiated tumors, we found TDRD1, ADARB and RBM3 to be upregulated, whereas DGCR8, PIWIL2 and BC069781 were downregulated. Our analysis of the expression level for each gene in the metastatic androgen-sensitive VCaP and LNCaP, and -insensitive PC3 and DU-145 PCa cell lines revealed differences in expression among the cell lines which may reflect the different biological properties of each cell line, and the potential role of each gene at different metastatic sites. The novel epigenetics-related genes that we identified in primary PCa tissues may provide further insight into the role that epigenetic changes play in PCa. Moreover, some of the genes that we identified may play important roles in primary PCa and metastasis, in primary PCa only, or in metastasis only. Follow-up studies are required to investigate the functional role and the role that the expression of these genes play in the outcome and progression of PCa using tissue microarrays.
The Effect of Glycolytic Modulation in Prostate Cancer
2009-11-01
glycolysis to induce cytotox- icity, despite diagnostic studies developing positron emission tomography (PET), which uses a trapped glucose analogue, 2...controlled by androgen ablation therapy or chemotherapy, warranting the study ofnovel approaches. In this regard, recent studies have demonstrated...dependence on glycolysis, supporting arationale for selectivity of abrogating glycolysis in tumor cells compared to normal cells. Additional recent studies
Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines.
Haddad, A Q; Venkateswaran, V; Viswanathan, L; Teahan, S J; Fleshner, N E; Klotz, L H
2006-01-01
Epidemiologic studies have demonstrated an inverse association between flavonoid intake and prostate cancer (PCa) risk. The East Asian diet is very high in flavonoids and, correspondingly, men in China and Japan have the lowest incidence of PCa worldwide. There are thousands of different naturally occurring and synthetic flavonoids. However, only a few have been studied in PCa. Our aim was to identify novel flavonoids with antiproliferative effect in PCa cell lines, as well as determine their effects on cell cycle. We have screened a representative subgroup of 26 flavonoids for antiproliferative effect on the human PCa (LNCaP and PC3), breast cancer (MCF-7), and normal prostate stromal cell lines (PrSC). Using a fluorescence-based cell proliferation assay (Cyquant), we have identified five flavonoids, including the novel compounds 2,2'-dihydroxychalcone and fisetin, with antiproliferative and cell cycle arresting properties in human PCa in vitro. Most of the flavonoids tested exerted antiproliferative effect at lower doses in the PCa cell lines compared to the non-PCa cells. Flow cytometry was used as a means to determine the effects on cell cycle. PC3 cells were arrested in G2/M phase by flavonoids. LNCaP cells demonstrated different cell cycle profiles. Further studies are warranted to determine the molecular mechanism of action of 2,2'-DHC and fisetin in PCa, and to establish their effectiveness in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vikas; Sharma, Vikas; Singh, Vishal
The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as themore » most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.« less
Iodine Uptake and Prostate Cancer in the TRAMP Mouse Model
Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda
2013-01-01
Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I−) and iodine (I2) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. 125I− and 125I2 uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na+/I− symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I− plus 0.062 mg I2/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I− uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I− uptake and support the notion that another transporter mediates I2 uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens. PMID:24306422
Iodine uptake and prostate cancer in the TRAMP mouse model.
Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda
2013-11-08
Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.
VPAC1 targeted 64Cu-TP3805 PET imaging of prostate cancer: preliminary evaluation in man
Tripathi, Sushil; Trabulsi, Edouard J; Gomella, Leonard; Kim, Sung; McCue, Peter; Intenzo, Charles; Birbe, Ruth; Gandhe, Ashish; Kumar, Pardeep; Thakur, Mathew
2015-01-01
Objectives To evaluate 64Cu-TP3805 as a novel biomolecule, to PET image prostate cancer (PC), at the onset of which VPAC1, the superfamily of G-protein coupled receptors, is expressed in high density on PC cells, but not on normal cells. Methods 25 patients undergoing radical prostatectomy were PET/CT imaged preoperatively with 64Cu-TP3805. Standardized uptake values (SUVmax) were determined, malignant lesions (SUV > 1.0) counted, and compared with histologic findings. Whole mount pathology slides from 6 VPAC1 PET imaged patients, 3 BPH patients, one malignant and one benign lymph node underwent digital autoradiography (DAR) after 64Cu-TP3805 incubation and compared to H&E stained slides. Results In 25 patient PET imaging, 212 prostate gland lesions had SUVmax > 1.0 vs.127 lesions identified by histology of biopsy tissues. The status of the additional 85 PET identified prostate lesions remains to be determined. In 68 histological slides from 6 PET imaged patients, DAR identified 105/107 PC foci, 19/19 HGPIN, and ejaculatory ducts and verumontanum involved with cancer. Additionally, DAR found 9 PC lesions not previously identified histologically. The positive and negative lymph nodes were correctly identified and in 3/3 BPH patients and 5/5 cysts, DAR was negative. Conclusion This feasibility study demonstrated that 64Cu-TP3805 delineates PC in vivo and ex vivo, provided normal images for benign masses, and is worthy of further studies. PMID:26519886
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao
Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increasedmore » expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to apoptosis. • HC induced ROS-mediated autophagic response. • It inhibited prostate tumor growth by ∼ 72% without any observable toxicity. • Its anticancer efficacy is likely due to its selective prooxidant activity.« less
Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer1
Kurhanewicz, John; Vigneron, Daniel B; Nelson, Sarah J
2000-01-01
Abstract Clinical applications of magnetic resonance spectroscopic imaging (MRSI) for the study of brain and prostate cancer have expanded significantly over the past 10 years. Proton MRSI studies of the brain and prostate have demonstrated the feasibility of noninvasively assessing human cancers based on metabolite levels before and after therapy in a clinically reasonable amount of time. MRSI provides a unique biochemical “window” to study cellular metabolism noninvasively. MRSI studies have demonstrated dramatic spectral differences between normal brain tissue (low choline and high N-acetyl aspartate, NAA) and prostate (low choline and high citrate) compared to brain (low NAA, high choline) and prostate (low citrate, high choline) tumors. The presence of edema and necrosis in both the prostate and brain was reflected by a reduction of the intensity of all resonances due to reduced cell density. MRSI was able to discriminate necrosis (absence of all metabolites, except lipids and lactate) from viable normal tissue and cancer following therapy. The results of current MRSI studies also provide evidence that the magnitude of metabolic changes in regions of cancer before therapy as well as the magnitude and time course of metabolic changes after therapy can improve our understanding of cancer aggressiveness and mechanisms of therapeutic response. Clinically, combined MRI/MRSI has already demonstrated the potential for improved diagnosis, staging and treatment planning of brain and prostate cancer. Additionally, studies are under way to determine the accuracy of anatomic and metabolic parameters in providing an objective quantitative basis for assessing disease progression and response to therapy. PMID:10933075
Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen
2012-02-01
Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer.
Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping
2014-07-18
eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Hormaechea-Agulla, Daniel; Gómez-Gómez, Enrique; Ibáñez-Costa, Alejandro; Carrasco-Valiente, Julia; Rivero-Cortés, Esther; L-López, Fernando; Pedraza-Arevalo, Sergio; Valero-Rosa, José; Sánchez-Sánchez, Rafael; Ortega-Salas, Rosa; Moreno, María M; Gahete, Manuel D; López-Miranda, José; Requena, María J; Castaño, Justo P; Luque, Raúl M
2016-12-01
Ghrelin-O-acyltransferase (GOAT) is the key enzyme regulating ghrelin activity, and has been proposed as a potential therapeutic target for obesity/diabetes and as a biomarker in some endocrine-related cancers. However, GOAT presence and putative role in prostate-cancer (PCa) is largely unknown. Here, we demonstrate, for the first time, that GOAT is overexpressed (mRNA/protein-level) in prostatic tissues (n = 52) and plasma/urine-samples (n = 85) of PCa-patients, compared with matched controls [healthy prostate tissues (n = 12) and plasma/urine-samples from BMI-matched controls (n = 28), respectively]. Interestingly, GOAT levels in PCa-patients correlated with aggressiveness and metabolic conditions (i.e. diabetes). Actually, GOAT expression was regulated by metabolic inputs (i.e. In1-ghrelin, insulin/IGF-I) in cultured normal prostate cells and PCa-cell lines. Importantly, ROC-curve analysis unveiled a valuable diagnostic potential for GOAT to discriminate PCa at the tissue/plasma/urine-level with high sensitivity/specificity, particularly in non-diabetic individuals. Moreover, we discovered that GOAT is secreted by PCa-cells, and that its levels are higher in urine samples from a stimulated post-massage vs. pre-massage prostate-test. In conclusion, plasmatic GOAT levels exhibit high specificity/sensitivity to predict PCa-presence compared with other PCa-biomarkers, especially in non-diabetic individuals, suggesting that GOAT holds potential as a novel non-invasive PCa-biomarker. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Higgins, John P T; Kaygusuz, Gulsah; Wang, Lingli; Montgomery, Kelli; Mason, Veronica; Zhu, Shirley X; Marinelli, Robert J; Presti, Joseph C; van de Rijn, Matt; Brooks, James D
2007-05-01
The morphologic distinction between prostate and urothelial carcinoma can be difficult. To identify novel diagnostic markers that may aid in the differential diagnosis of prostate versus urothelial carcinoma, we analyzed expression patterns in prostate and bladder cancer tissues using complementary DNA microarrays. Together with our prior studies on renal neoplasms and normal kidney, these studies suggested that the gene for placental S100 (S100P) is specifically expressed in benign and malignant urothelial cells. Using tissue microarrays, a polyclonal antiserum against S100P protein stained 86% of 295 urothelial carcinomas while only 3% of 260 prostatic adenocarcinomas and 1% of 133 renal cell carcinomas stained. A commercially available monoclonal antibody against S100P stained 78% of 300 urothelial carcinomas while only 2% of 256 prostatic adenocarcinomas and none of 137 renal cell carcinomas stained. A second gene, GATA3, also showed high level expression in urothelial tumors by cDNA array. A commercially available monoclonal antibody against GATA3 stained 67% of 308 urothelial carcinomas, but none of the prostate or renal carcinomas. For comparison, staining was also performed for p63 and cytokeratin 5/6. p63 stained 87% of urothelial carcinomas whereas CK5/6 stained 54%. Importantly, when S100P and p63 were combined 95% of urothelial carcinomas were labeled by one or both markers. We conclude that the detection of S100P and GATA3 protein expression may help distinguish urothelial carcinomas from other genitourinary neoplasms that enter into the differential diagnosis.
Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J
2016-01-01
Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.
Saxena, Roopali; Yang, Chunhua; Rao, Mukkavilli; Turaga, Ravi Chakra; Garlapati, Chakravarthy; Gundala, Sushma Reddy; Myers, Kimberly; Ghareeb, Ahmed; Bhattarai, Shristi; Kamilinia, Golnaz; Bristi, Sangina; Su, Dan; Gadda, Giovanni; Rida, Padmashree C. G.; Cantuaria, Guilherme H.; Aneja, Ritu
2018-01-01
Purpose Most currently-available chemotherapeutic agents target rampant cell division in cancer cells, thereby affecting rapidly-dividing normal cells resulting in toxic side-effects. This non-specificity necessitates identification of novel cellular pathways that are reprogrammed selectively in cancer cells and can be exploited to develop pharmacologically superior and less-toxic therapeutics. Despite growing awareness on dysregulation of lipid metabolism in cancer cells, targeting lipid biosynthesis is still largely uncharted territory. Herein, we report development of a novel non-toxic orally-deliverable anticancer formulation of monoethanolamine (Etn), for prostate cancer by targeting the Kennedy pathway of phosphatidylethanolamine (PE) lipid biosynthesis. Experimental Design We first evaluated GI-tract stability, drug-drug interaction liability, pharmacokinetic and toxicokinetic properties of Etn to evaluate its suitability as a non-toxic orally-deliverable agent. We next performed in vitro and in vivo experiments to investigate efficacy and mechanism of action. Results Our data demonstrate that Etn exhibits excellent bioavailability, GI-tract stability, and no drug-drug interaction liability. Remarkably, orally-fed Etn inhibited tumor growth in four weeks by ~67% in mice bearing human prostate cancer PC-3 xenografts without any apparent toxicity. Mechanistically, Etn exploits selective overexpression of choline kinase in cancer cells, resulting in accumulation of phosphoethanolamine (PhosE), accompanied by downregulation of HIF-1α that induces metabolic stress culminating into cell death. Conclusions Our study provides first evidence for the superior anticancer activity of Etn, a simple lipid precursor formulation, whose non-toxicity conforms to FDA-approved standards, compelling its clinical development for prostate cancer management. PMID:28167510
Androgen receptor signaling and mutations in prostate cancer
Koochekpour, Shahriar
2010-01-01
Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-independent (AI) progression of the disease. In addition, cross-modulation by various nuclear transcription factors acting through basal transcriptional machinery could positively or negatively affect the AR or AR target genes expression and activity. Androgen ablation leads to an initial favorable response in a significant number of patients; however, almost invariably patients relapse with an aggressive form of the disease known as castration-resistant or hormone-refractory prostate cancer (PCa). Understanding critical molecular events that lead PCa cells to resist androgen-deprivation therapy is essential in developing successful treatments for hormone-refractory disease. In a significant number of hormone-refractory patients, the AR is overexpressed, mutated or genomically amplified. These genetic alterations maintain an active presence for a highly sensitive AR, which is responsive to androgens, antiandrogens or nonandrogenic hormones and collectively confer a selective growth advantage to PCa cells. This review provides a brief synopsis of the AR structure, AR coregulators, posttranslational modifications of AR, duality of AR function in prostate epithelial and stromal cells, AR-dependent signaling, genetic changes in the form of somatic and germline mutations and their known functional significance in PCa cells and tissues. PMID:20711217
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Dibash K.; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016; Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065
Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and themore » androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa. - Graphical abstract: miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer. - Highlights: • Expression of microRNA-1207-3p is significantly lost in prostate cancer (PCa) cells. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • FNDC1, FN1, and AR are concurrently overexpressed in metastatic PCa.« less
Selenium and Vitamin E: Cell Type– and Intervention-Specific Tissue Effects in Prostate Cancer
Tsavachidou, Dimitra; McDonnell, Timothy J.; Wen, Sijin; Wang, Xuemei; Vakar-Lopez, Funda; Pisters, Louis L.; Pettaway, Curtis A.; Wood, Christopher G.; Do, Kim-Anh; Thall, Peter F.; Stephens, Clifton; Efstathiou, Eleni; Taylor, Robert; Menter, David G.; Troncoso, Patricia; Lippman, Scott M.; Logothetis, Christopher J.
2009-01-01
Background Secondary analyses of two randomized, controlled phase III trials demonstrated that selenium and vitamin E could reduce prostate cancer incidence. To characterize pharmacodynamic and gene expression effects associated with use of selenium and vitamin E, we undertook a randomized, placebo-controlled phase IIA study of prostate cancer patients before prostatectomy and created a preoperative model for prostatectomy tissue interrogation. Methods Thirty-nine men with prostate cancer were randomly assigned to treatment with 200 μg of selenium, 400 IU of vitamin E, both, or placebo. Laser capture microdissection of prostatectomy biopsy specimens was used to isolate normal, stromal, and tumor cells. Gene expression in each cell type was studied with microarray analysis and validated with a real-time polymerase chain reaction (PCR) and immunohistochemistry. An analysis of variance model was fit to identify genes differentially expressed between treatments and cell types. A beta-uniform mixture model was used to analyze differential expression of genes and to assess the false discovery rate. All statistical tests were two-sided. Results The highest numbers of differentially expressed genes by treatment were 1329 (63%) of 2109 genes in normal epithelial cells after selenium treatment, 1354 (66%) of 2051 genes in stromal cells after vitamin E treatment, and 329 (56%) of 587 genes in tumor cells after combination treatment (false discovery rate = 2%). Validation of 21 representative genes across all treatments and all cell types yielded Spearman correlation coefficients between the microarray analysis and the PCR validation ranging from 0.64 (95% confidence interval [CI] = 0.31 to 0.79) for the vitamin E group to 0.87 (95% CI = 0.53 to 0.99) for the selenium group. The increase in the mean percentage of p53-positive tumor cells in the selenium-treated group (26.3%), compared with that in the placebo-treated group (5%), showed borderline statistical significance (difference = 21.3%; 95% CI = 0.7 to 41.8; P = .051). Conclusions We have demonstrated the feasibility and efficiency of the preoperative model and its power as a hypothesis-generating engine. We have also identified cell type– and zone-specific tissue effects of interventions with selenium and vitamin E that may have clinical implications. PMID:19244175
Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.
2014-01-01
Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373
Mounir, Zineb; Korn, Joshua M; Westerling, Thomas; Lin, Fallon; Kirby, Christina A; Schirle, Markus; McAllister, Gregg; Hoffman, Greg; Ramadan, Nadire; Hartung, Anke; Feng, Yan; Kipp, David Randal; Quinn, Christopher; Fodor, Michelle; Baird, Jason; Schoumacher, Marie; Meyer, Ronald; Deeds, James; Buchwalter, Gilles; Stams, Travis; Keen, Nicholas; Sellers, William R; Brown, Myles; Pagliarini, Raymond A
2016-05-16
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.
Role of monocyte-lineage cells in prostate cancer cell invasion and tissue factor expression.
Lindholm, Paul F; Lu, Yi; Adley, Brian P; Vladislav, Tudor; Jovanovic, Borko; Sivapurapu, Neela; Yang, Ximing J; Kajdacsy-Balla, André
2010-11-01
Tissue factor (TF) is a cell surface glycoprotein intricately related to blood coagulation and inflammation. This study was performed to investigate the role of monocyte-lineage cells in prostate cancer cell TF expression and cell invasion. Prostate cancer cell invasion was tested with and without added peripheral blood monocytes or human monocyte-lineage cell lines. TF neutralizing antibodies were used to determine the TF requirement for prostate cancer cell invasion activity. Immunohistochemistry was performed to identify prostate tissue CD68 positive monocyte-derived cells and prostate epithelial TF expression. Co-culture of PC-3, DU145, and LNCaP cells with isolated human monocytes significantly stimulated prostate cancer cell invasion activity. TF expression was greater in highly invasive prostate cancer cells and was induced in PC-3, DU145, and LNCaP cells by co-culture with U-937 cells, but not with THP-1 cells. TF neutralizing antibodies inhibited PC-3 cell invasion in co-cultures with monocyte-lineage U-937 or THP-1 cells. Prostate cancer tissues contained more CD68 positive cells in the stroma and epithelium (145 ± 53/mm(2)) than benign prostate (108 ± 31/mm(2)). Samples from advanced stage prostate cancer tended to contain more CD68 positive cells when compared with lower stage lesions. Prostatic adenocarcinoma demonstrated significantly increased TF expression compared with benign prostatic epithelium. This study shows that co-culture with monocyte-lineage cells induced prostate cancer cell invasion activity. PC-3 invasion and TF expression was induced in co-culture with U-937 cells and partially inhibited with TF neutralizing antibodies.
DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.
Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro
2014-11-30
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.
DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells
Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro
2014-01-01
Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis. PMID:25526032
Hung, Chao-Ming; Lin, Ying-Chao; Liu, Liang-Chih; Kuo, Sheng-Chu; Ho, Chi-Tang; Way, Tzong-Der
2016-12-25
CWF-145, a synthetic 2-phenyl-4-quinolone derivative exerted potent cytotoxicity against prostate cancer. CWF-145 inhibited prostate cancer cell lines PC-3, DU-145 and LNCap. It had a very low IC 50 about 200 nM against castrate-resistant prostate cancer (CRPC) PC-3. We found that CWF-145 had a similar effect to clinical trial antimitotic agents in cancer cells and normal cells. CWF-145 arrested cell cycle at G2/M phase by binding to the β-tubulin at the colchicine-binding site then disrupted microtubule polymerization. Furthermore, the damaged microtubule affected the Akt/mammalian target of rapamycin (mTOR) signaling pathway. Our data showed that CWF-145 activated Akt and mTOR expression to increase emi1 accumulation and inhibit APC. The increased cyclin B1 and securin arrested cell cycle at G2/M phase. Moreover, we showed that Akt activation markedly increased resistance to microtubule-directed agents, including CWF-145, colchicine, and paclitaxel. Interestingly, rapamycin inhibited Akt-mediated therapeutic resistance, indicating that these effects were dependent on mTOR. Taken together, these observations suggest that activation of the Akt/mTOR signaling pathway can promote resistance to chemotherapeutic agents that do not directly target metabolic regulation. These data may provide insight into potentially synergistic combinations of anticancer therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yu, Shengqiang; Jiang, Yingjuan; Wan, Fengchun; Wu, Jitao; Gao, Zhenli; Liu, Dongfu
2017-08-01
Cancer-associated fibroblasts (CAFs) are dominant components of the prostate cancer (PCa) stroma. However, the contrasting effects of CAFs and adjacent normal prostate fibroblasts (NPFs) are still poorly defined. The senescence of non-immortalized CAFs after subculture may limit the cell number and influence experimental results of in vitro studies. In this study, we immortalized CAFs to study their role in PCa carcinogenesis, proliferation, and invasion. We cultured and immortalized CAFs and NPFs, then compared their effect on epithelial malignant transformation by using in vitro co-culture, soft agar assay, and a mouse renal capsule xenograft model. We also compared their roles in PCa progression by using in vitro co-culture, cell viability assays, invasion assays, and a mouse xenograft model. For the mechanistic study, we screened a series of growth factors by using real-time polymerase chain reaction. The CAFs and NPFs were successfully cultured, immortalized, and characterized. The CAFs were able to transform prostate epithelial cells into malignant cells, but NPFs were not. The CAFs were more active in promoting proliferation of and invasion by PCa cells, and in secreting higher levels of a series of growth factors. The immortalized CAFs were more supportive of PCa carcinogenesis and progression. Targeting CAFs might be a potential option for PCa therapy. Immortalized CAFs and NPFs will also be valuable resources for future experimental exploration. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.
2006-07-01
Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
Association and regulation of protein factors of field effect in prostate tissues
Gabriel, Kristin N.; Jones, Anna C.; Nguyen, Julie P.T.; Antillon, Kresta S.; Janos, Sara N.; Overton, Heidi N.; Jenkins, Shannon M.; Frisch, Emily H.; Trujillo, Kristina A.; Bisoffi, Marco
2016-01-01
Field effect or field cancerization denotes the presence of molecular aberrations in structurally intact cells residing in histologically normal tissues adjacent to solid tumors. Currently, the etiology of prostate field-effect formation is unknown and there is a prominent lack of knowledge of the underlying cellular and molecular pathways. We have previously identified an upregulated expression of several protein factors representative of prostate field effect, i.e., early growth response-1 (EGR-1), platelet-derived growth factor-A (PDGF-A), macrophage inhibitory cytokine-1 (MIC-1), and fatty acid synthase (FASN) in tissues at a distance of 1 cm from the visible margin of intracapsule prostate adenocarcinomas. We have hypothesized that the transcription factor EGR-1 could be a key regulator of prostate field-effect formation by controlling the expression of PDGF-A, MIC-1, and FASN. Taking advantage of our extensive quantitative immunofluorescence data specific for EGR-1, PDGF-A, MIC-1, and FASN generated in disease-free, tumor-adjacent, and cancerous human prostate tissues, we chose comprehensive correlation as our major approach to test this hypothesis. Despite the static nature and sample heterogeneity of association studies, we show here that sophisticated data generation, such as by spectral image acquisition, linear unmixing, and digital quantitative imaging, can provide meaningful indications of molecular regulations in a physiologically relevant in situ environment. Our data suggest that EGR-1 acts as a key regulator of prostate field effect through induction of pro-proliferative (PDGF-A and FASN), and suppression of pro-apoptotic (MIC-1) factors. These findings were corroborated by computational promoter analyses and cell transfection experiments in non-cancerous prostate epithelial cells with ectopically induced and suppressed EGR-1 expression. Among several clinical applications, a detailed knowledge of pathways of field effect may lead to the development of targeted intervention strategies preventing progression from pre-malignancy to cancer. PMID:27634112
2013-04-01
1nM R1881). All samples were normalized to renilla . B) Activity of PSA- luciferase in the presence of FOXA1 when EAF2 is over-expressed. All...samples performed in the presence of 1nM R1881. All samples were normalized to renilla . *=pɘ.05 All experiments were performed in C4-2 cells. FOXA1
Modulation of Beta-catenin Activity With PKD1 Prostate Cancer
2009-04-01
mutated site as a negative control (FOPFlash) with pRL-TK ( Renilla luciferase) in C4-2- PKD1-GFP cells activated with Bryostatin 1 or DMSO. The...firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter (DLR) Assay System. After normalizing the firefly luciferase...activity to that of Renilla luciferase, the FOPFlash reporter plasmid luciferase values were subtracted from the normalized values obtained with the
T CELLS LOCALIZED TO THE ANDROGEN-DEPRIVED PROSTATE ARE TH1 AND TH17 BIASED
Morse, Matthew D.; McNeel, Douglas G.
2013-01-01
BACKGROUND T cells infiltrate the prostates of prostate cancer patients undergoing neoadjuvant androgen deprivation. These prostate-infiltrating T cells have an oligoclonal phenotype, suggesting the development of an antigen-specific T-cell response. We hypothesized that androgen deprivation might elicit a prostate tissue-specific T-cell response that could potentially be combined with other immune-active therapies, and consequently sought to investigate the nature and timing of this T-cell response following castration. METHODS We investigated the phenotype and cytokine expression of T cells at various time points in the prostates of Lewis rats following surgical castration, and used adoptive transfer of prostate-infiltrating lymphocytes to determine whether the infiltration by T cells was mediated by effects of castration on the prostate or lymphocytes. RESULTS Prostate T-cell infiltration shortly after castration was TH1 biased up to approximately 30 days, followed by a predominance of TH17-type cells, which persisted until at least 90 days post castration. Prostate-infiltrating lymphocytes from sham-treated or castrate rats localized to the prostates of castrate animals. CONCLUSIONS These observations suggest castration elicits a time-dependent prostate-specific T-cell infiltration, and this infiltration is likely mediated by effects of castration on prostate tissue rather than T cells. These findings have implications for the timing of immunotherapies combined with androgen deprivation as treatments for prostate cancer. PMID:22213030
Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp
2012-04-01
Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia.
McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S; Oben, Karine Z; Greene, Joseph T; Mani, Rajeswaran; Perry, Kathryn L; Collard, James P; Rivas, Jacqueline R; Hildebrandt, Gerhard; Fleischman, Roger; Durbin, Eric B; Byrd, John C; Wang, Chi; Muthusamy, Natarajan; Rangnekar, Vivek M; Bondada, Subbarao
2018-04-25
Prostate apoptosis response-4 (Par-4), a pro-apoptotic tumor suppressor protein, is down regulated in many cancers including renal cell carcinoma, glioblastoma, endometrial and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from the Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1 to S cell cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with FDA approved drugs caused a decrease in Par-4 mRNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase and Bruton's tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel pro-growth rather than pro-apoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR signaling inhibitors. Copyright © 2018 American Society of Hematology.
Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.
Yang, Jiayi; Ning, Jianping; Peng, Linlin; He, Dan
2015-01-01
Prostate cancer is a common malignant tumor in urinary system. Curcumin has curative effect on many kinds of cancers and can inhibit prostate cancer (PC)-3 cells proliferation. This study aimed to explore the curcumin induced prostate cancer cell apoptosis and apoptosis related proteins Bcl-2 and Bax expression. PC-3 cells were injected subcutaneously to the nude mice to establish the tumor model. The nude mice were randomly divided into group C (normal saline), group B (6% polyethylene glycol and 6% anhydrous ethanol), group H, M, L (100 mg/kg, 50 mg/kg, and 25 mg/kg curcumin). The tumor volume was measured every 6 days to draw the tumor growth curve. The mice were killed at the 30(th) day after injection to weight the tumor. TUNEL assay was applied to determine cell apoptosis. Immunohistochemistry was used to detect Bcl-2 and Bax expression. The tumor volume and weight in group H, M, L were significantly lower than the control group (C, B) (P<0.05), and the inhibitory rate increased following the curcumin dose increase. Compared with the control group, Bcl-2 expression in group H, M, L gradually decreased, while Bax protein expression increased (P<0.05). The cell apoptosis rate showed no statistical difference between group B and C, while it increased in curcumin group H, M, and L (P<0.05). Curcumin could inhibit PC-3 growth, decrease tumor volume, reduce tumor weight, and induce cell apoptosis under the skin of nude mice by up-regulating Bax and down-regulating Bcl-2.
Zhu, Cuicui; Zhu, Qingyi; Wu, Zhaomeng; Yin, Yingying; Kang, Dan; Lu, Shan; Liu, Ping
2018-02-01
Isorhapontigenin (ISO), a naturally phytopolyphenol compound existing in Chinese herb, apples, and various vegetables, has attracted extensive interest in recent years for its diverse pharmacological characteristics. Increasing evidences reveal that ISO can inhibit cancer cell growth by induced apoptosis, however, the molecular mechanisms is not fully understood. In this study, we found for the first time that ISO apparently induced cell growth inhibition and apoptosis by targeting EGFR and its downstream signal pathways in prostate cancer (PCa) cells both in vitro and in vivo, whereas no obviously effect on normal prostate cells. From the results, we found that ISO competitively targeted EGFR with EGF and inhibited EGFR auto-phosphorylation, and then decreased the levels of p-Erk1/2, p-PI3 K, and p-AKT, and further induced down-regulation of p-FOXO1 and promoted FOXO1 nuclear translocation; and finally resulted in a significantly up-regulation of Bim/p21/27/Bax/cleaved Caspase-3/cleaved PARP-1 and a markedly down-regulation of Sp1/Bcl-2/XIAP/Cyclin D1. Moreover, our experimental data demonstrated that treatment of ISO decreased protein level of AR via both inhibiting the expression of AR gene and promoting the ubiquitination/degradation of AR proteins in proteasome. In vivo, we also found that ISO inhibited the growth of subcutaneous xenotransplanted tumor in nude mice by inducing PCa cell growth inhibition and apoptosis. Taken together, all findings here clearly implicated that EGFR-related signal pathways, including EGFR-PI3K-Akt and EGFR-Erk1/2 pathways, were involved in ISO-induced cell growth inhibition and apoptosis in PCa cells, providing a more solid theoretical basis for the application of ISO to treat patients with prostate cancer in clinic. © 2017 Wiley Periodicals, Inc.
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less
Fidanzi-Dugas, Chloë; Liagre, Bertrand; Chemin, Guillaume; Perraud, Aurélie; Carrion, Claire; Couquet, Claude-Yves; Granet, Robert; Sol, Vincent; Léger, David Yannick
2017-07-01
Photodynamic therapy, using porphyrins as photosensitizers (PS), has been approved in treatment of several solid tumors. However, commonly used PS induce death but also resistance pathways in cancer cells and an alteration of surrounding normal tissues. Because polyamines (PA) are actively accumulated in cancer cells by the Polyamine Transport System (PTS), they may enable PS to specifically target cancer cells. Here, we investigated whether new protoporphyrin IX-polyamine derivatives were effective PS against prostate cancer and whether PA increased PDT specificity after 630nm irradiation. CHO and CHO-MG cells (differing in their PTS activity) were used to assess efficacy of polyamine vectorization. MTT assays were performed on human prostate non-malignant (RWPE-1) and malignant (PC-3, DU 145 and LNCaP) cell lines to test PS phototoxicity. ROS generation, DNA fragmentation and cell signalling were assessed by ELISA/EIA, western-blots and gel shift assays. Finally, PS effects were studied on tumor growth in nude mice. Our PS were more effective on cancer cells compared to non-malignant cells and more effective than PpIX alone. PpIX-PA generated ROS production involved in induction of apoptotic intrinsic pathways. Different pathways involved in apoptosis resistance were studied: PS inhibited Bcl-2, Akt, and NF-κB but activated p38/COX-2/PGE 2 pathways which were not implicated in apoptosis resistance in our model. In vivo experiments showed PpIX-PA efficacy was greater than results obtained with PpIX. All together, our results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Gajdošik, Martina Šrajer; Hixson, Douglas C; Brilliant, Kate E; Yang, DongQin; De Paepe, Monique E; Josić, Djuro; Mills, David R
2018-05-29
The critical molecular and cellular mechanisms involved in the development and progression of prostate cancer remain elusive. In this report, we demonstrate that normal rat prostate epithelial cells (PEC) undergo spontaneous transformation at high passage (p > 85) evidenced by the acquisition of anchorage independent growth when plated on soft agar and tumorigenicity when injected into immunodeficient mice. In addition, we also report the discovery of a minor subpopulation of spontaneously transformed PEC derived from high passage PEC with the ability to migrate through a layer of 1% agar and form expanding colonies on the underlying plastic substratum. Comparison of these soft agar invasive (SAI) cells with low (p < 35), mid (p36-84) and high passage (p > 85) PEC identified marked differences in cell morphology, proliferation and motility. The SAI subpopulation was more tumorigenic than the high passage anchorage independent cultures from which they were isolated, as manifested by a decreased latency period and an increase in the size of tumors arising in immunodeficient mice. In contrast, low and mid passage cells were unable to grow on soft agar and failed to form tumors when injected into immunodeficient mice. Screening with antibody-based signaling arrays identified several differences in the altered expression levels of signaling proteins between SAI-derived cells and low or high passage PEC, including the up-regulation of EGFR and MAPK-related signaling pathways in SAI-selected cells. In summary, these studies suggest that the SAI assay selects for a novel, highly tumorigenic subpopulation of transformed cells that may represent an early step in the progression of slow growing prostatic carcinomas into more rapidly growing and aggressive tumors. Copyright © 2017. Published by Elsevier Inc.
Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V
2003-10-01
We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.
Lack of Evidence for Green Tea Polyphenols as DNA Methylation Inhibitors in Murine Prostate
Morey Kinney, Shannon R.; Zhang, Wa; Pascual, Marien; Greally, John M.; Gillard, Bryan M.; Karasik, Ellen; Foster, Barbara A.; Karpf, Adam R.
2009-01-01
Green tea polyphenols (GTPs) have been reported to inhibit DNA methylation in cultured cells. Here we tested whether oral consumption of GTPs affects normal or cancer specific DNA methylation in vivo, using mice. Wildtype (WT) and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice were administered 0.3% GTPs in drinking water beginning at 4 weeks of age. To monitor DNA methylation, we measured 5-methyl-deoxycytidine (5mdC) levels, methylation of the B1 repetitive element, and methylation of the Mage-a8 gene. Each of these parameters were unchanged in prostate, gut, and liver from WT mice at both 12 and 24 weeks of age, with the single exception of a decrease of 5mdC in the liver at 12 weeks. In GTP-treated TRAMP mice, 5mdC levels and the methylation status of four loci hypermethylated during tumor progression were unaltered in TRAMP prostates at 12 or 24 weeks. Quite surprisingly, GTP treatment did not inhibit tumor progression in TRAMP mice, although known pharmacodynamic markers of GTPs were altered in both WT and TRAMP prostates. We also administered 0.1%, 0.3%, or 0.6% GTPs to TRAMP mice for 12 weeks and measured 5mdC levels and methylation of B1 and Mage-a8 in prostate, gut, and liver tissues. No dose-dependent alterations in DNA methylation status were observed. Genome-wide DNA methylation profiling using the HELP assay also revealed no significant hypomethylating effect of GTP. These data indicate that oral administration of GTPs does not affect normal or cancer-specific DNA methylation in the murine prostate. PMID:19934341
α-blockade, apoptosis, and prostate shrinkage: how are they related?
Chłosta, Piotr; Drewa, Tomasz; Kaplan, Steven
2013-01-01
The α1-adrenoreceptor antagonists, such as terazosin and doxazosin, induce prostate programmed cell death (apoptosis) within prostate epithelial and stromal cells in vitro. This treatment should cause prostate volume decrease, However, this has never been observed in clinical conditions. The aim of this paper is to review the disconnect between these two processes. PubMed and DOAJ were searched for papers related to prostate, apoptosis, and stem cell death. The following key words were used: prostate, benign prostate hyperplasia, programmed cell death, apoptosis, cell death, α1-adrenoreceptor antagonist, α-blockade, prostate epithelium, prostate stroma, stem cells, progenitors, and in vitro models. We have shown how discoveries related to stem cells can influence our understanding of α-blockade treatment for BPH patients. Prostate epithelial and mesenchymal compartments have stem (progenitors) and differentiating cells. These compartments are described in relation to experimental in vitro and in vivo settings. Apoptosis is observed within prostate tissue, but this effect has no clinical significance and cannot lead to prostate shrinkage. In part, this is due to stem cells that are responsible for prostate tissue regeneration and are resistant to apoptosis triggered by α1-receptor antagonists.
Anatomy and Histology of the Human and Murine Prostate.
Ittmann, Michael
2018-05-01
The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Kim, Hye-Lin; Jung, Yunu; Kang, JongWook; Jeong, Mi-Young; Sethi, Gautam; Ahn, Kwang Seok; Um, Jae-Young
2017-01-01
Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH. PMID:27880726
Zhang, S; Zhang, H S; Cordon-Cardo, C; Ragupathi, G; Livingston, P O
1998-11-01
The relative expression of mucin antigens MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC7 and glycoprotein antigens KSA, carcinoembryonic antigen, prostate-specific membrane antigen (PSMA), HER-2/neu, and human chorionic gonadotropin-beta on different cancers and normal tissues is difficult to determine from available reports. We have compared the distribution of these antigens by immunohistology on a broad range of malignant and normal tissues. MUC1 expression was most intense in cancers of breast, lung, ovarian, and endometrial origin; MUC2 was most intense in cancers of colon and prostate origin; and MUC5AC was most intense in cancers of breast and gastric origin. MUC4 was intensely expressed in 50% of cancers of colon and pancreas origin, and MUC3, MUC5B, and MUC7 were expressed in a variety of epithelial cancers, but not so intensely. KSA was intensely and uniformly expressed on all epithelial cancers; carcinoembryonic antigen was expressed in most cancers of breast, lung, colon, pancreas, and gastric origin; and PSMA was expressed only in cancers of prostate origin. Human chorionic gonadotropin-beta was expressed on the majority of sarcomas and cancers of breast, lung, and pancreas origin, although intense staining was not seen. Staining on normal tissues was restricted to one or many normal epithelial tissues ranging from MUC3, MUC4, and PSMA, which were expressed only on epithelia of pancreas, stomach, and prostate origin, respectively, to MUC1 and KSA, which were expressed on most normal epithelia. Expression was restricted to the secretory borders of these epithelia while stroma and other normal tissues were completely negative. These results plus the results of the two previous papers (S. Zhang et al, Int. J. Cancer, 73: 42-49, 1997; S. Zhang et al., Int. J. Cancer, 73: 50-56, 1997) in this series provide the basis for selection of multiple cell surface antigens as targets for antibody-mediated attack against these cancers.
Pharmacologic basis for the enhanced efficacy of dutasteride against prostatic cancers.
Xu, Yi; Dalrymple, Susan L; Becker, Robyn E; Denmeade, Samuel R; Isaacs, John T
2006-07-01
Prostatic dihydrotestosterone (DHT) concentration is regulated by precursors from systemic circulation and prostatic enzymes of androgen metabolism, particularly 5alpha-reductases (i.e., SRD5A1 and SRD5A2). Therefore, the levels of expression SRD5A1 and SRD5A2 and the antiprostatic cancer growth response to finasteride, a selective SRD5A2 inhibitor, versus the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, were compared. Real-time PCR and enzymatic assays were used to determine the levels of SRD5A1 and SRD5A2 in normal versus malignant rat and human prostatic tissues. Rats bearing the Dunning R-3327H rat prostate cancer and nude mice bearing LNCaP or PC-3 human prostate cancer xenografts were used as model systems. Tissue levels of testosterone and DHT were determined using liquid chromatography-mass spectrometry. Prostate cancer cells express undetectable to low levels of SRD5A2 but elevated levels of SRD5A1 activity compared with nonmalignant prostatic tissue. Daily oral treatment of rats with the SRD5A2 selective inhibitor, finasteride, reduces prostate weight and DHT content but did not inhibit R-3327H rat prostate cancer growth or DHT content in intact (i.e., noncastrated) male rats. In contrast, daily oral treatment with even a low 1 mg/kg/d dose of the dual SRD5A1 and SRD5A2 inhibitor, dutasteride, reduces both normal prostate and H tumor DHT content and weight in intact rats while elevating tissue testosterone. Daily oral treatment with finasteride significantly (P < 0.05) inhibits growth of LNCaP human prostate cancer xenografts in intact male nude mice, but this inhibition is not as great as that by equimolar oral dosing with dutasteride. This anticancer efficacy is not equivalent, however, to that produced by castration. Only combination of dutasteride and castration produces a greater tumor inhibition (P < 0.05) than castration monotherapy against androgen-responsive LNCaP cancers. In contrast, no response was induced by dutasteride in nude mice bearing androgen-independent PC-3 human prostatic cancer xenografts. These results document that testosterone is not as potent as DHT but does stimulate prostate cancer growth, thus combining castration with dutasteride enhances therapeutic efficacy.
High-sensitivity detection of PSA by time-resolved fluorometry with Europium chelate
NASA Astrophysics Data System (ADS)
Nahm, Kie B.; Jeong, Jin H.; Kim, Byoung C.; Kim, Jae H.; Kim, Young M.; Jeong, Dong S.; Oh, Sang W.; Choi, Eui Y.; Ko, Dong S.
2006-01-01
Prostate-specific antigen (PSA) is an androgen-dependent glycoprotein protease (M.W. 33 kDa) and a member of kallikrein super-family of serine protease, and has chymotrypsin-like enzymatic activity. It is synthesized by the prostate epithelial cells and found in the prostate gland and seminal plasma as a major protein. It is widely used as a clinical marker for diagnosis, screening, monitoring and prognosis of prostate cancer. In normal male adults, the concentration of PSA in the blood is below 4 ng/ml and this value increases in patients with the prostate cancer or the benign prostatic hyperplasia (BPH) due to its leakage into the circulatory system. As such, systematic monitoring of the PSA level in the blood can provide critical information about the progress of the prostatic disease. We have fabricated a bread-board time resolved fluorescence system that could detect a concentration of Prostate Specific Antigen t-PSA) at clinically meaningful level in plasma as well as in whole blood sample. We chose Europium chelates as the fluorescence markers to attach to the PSA for its long decay lifetime and relative photostability. We have simplified the electronic circuits considerably by employing a MCS. With this setup, we have successfully proved that PSA concentration of 4pg/mL can be detected with acceptable reliability.
Effects of Radiation on Proteasome Function in Prostate Cancer Cells
2012-02-01
California Breast Cancer Research Program Innovative Development and Exploratory Award (IDEA) Competitive Renewal Modulation of...Weissman IL. Establishment of a normal hemato- poietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol 2008;73:439–449. 9 Trott KR...existence of CSCs in solid cancer has been advocated by radiobiologists for decades [Withers et al., 1988; Trott , 1994]. However, until recently this
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin.
Erdogan, Begum; Ao, Mingfang; White, Lauren M; Means, Anna L; Brewer, Bryson M; Yang, Lijie; Washington, M Kay; Shi, Chanjuan; Franco, Omar E; Weaver, Alissa M; Hayward, Simon W; Li, Deyu; Webb, Donna J
2017-11-06
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. © 2017 Erdogan et al.
Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin
Ao, Mingfang; White, Lauren M.; Means, Anna L.; Yang, Lijie; Washington, M. Kay; Franco, Omar E.; Li, Deyu; Webb, Donna J.
2017-01-01
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF–cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α–mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration. PMID:29021221
Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer.
Lagemaat, Miriam W; Vos, Eline K; Maas, Marnix C; Bitz, Andreas K; Orzada, Stephan; van Uden, Mark J; Kobus, Thiele; Heerschap, Arend; Scheenen, Tom W J
2014-05-01
The aim of this study was to identify characteristics of phosphorus (P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo P magnetic resonance spectroscopic imaging (MRSI) at 7 T. In this institutional review board-approved study, 15 patients with biopsy-proven prostate cancer underwent T2-weighted magnetic resonance imaging and 3-dimensional P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most P spectra in the prostate. Glycerophosphocholine signals were observable in 43% of the voxels in malignant tissue, but in only 10% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels.
Falleiros-Júnior, Luiz R; Perez, Ana P S; Taboga, Sebastião R; Dos Santos, Fernanda C A; Vilamaior, Patrícia S L
2016-10-01
The aim of this study was to analyse morphologically the ventral prostate of adult Mongolian gerbils exposed to ethinylestradiol (EE) during the first week of postnatal development. Lactating females received daily, by gavage, doses of 10 μg/kg of EE diluted in 100 μl of mineral oil from the 1st to 10th postnatal day of the pups (EE group). In the control group (C), the lactating females received only the vehicle. Upon completing 120 days of age, the male offspring were euthanized and the prostates collected for analyses. We employed morphological, stereological-morphometrical, immunohistochemical and ultrastructural methods. The results showed that the postnatal exposure to EE doubled the prostatic complex weight, increasing the epithelial and stromal compartments, in addition to the secretory activity of the ventral lobe of the prostate. All glands exposed to EE showed strong stromal remodelling, and some foci of epithelial hyperplasia and inflammatory infiltrate in both luminal and epithelial or stromal compartments. Cells positive for anti-AR and anti-PCNA reactions increased into the epithelial and stromal tissues. ERα-positive cells, which are normally found in the stromal compartment of intact prostates, were frequently observed in the prostatic epithelium of treated animals. This study demonstrated that the exposure to EE during postnatal development causes histophysiological alterations in this gland, predisposing to the development of prostatic lesions during life. These results are important for public health, considering that women worldwide have commonly used EE. Moreover, the bioaccumulation of this chemical has increased in different ecosystems. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.
Burtnyk, Mathieu; Hill, Tracy; Cadieux-Pitre, Heather; Welch, Ian
2015-05-01
We determine the safety and feasibility of magnetic resonance image guided transurethral ultrasound prostate ablation using active temperature feedback control in a preclinical canine model with 28-day followup. After a long acclimatization period we performed ultrasound treatment in 8 subjects using the magnetic resonance image guided TULSA-PRO™ transurethral ultrasound prostate ablation system. Comprehensive examinations and observations were done before and throughout the 28-day followup, including assessment of clinically significant treatment related adverse events. In addition to gross pathology evaluation, extensive histopathological analysis was done to assess cell kill inside and outside the prostate. We evaluated prostate conformal heating by comparing the spatial difference between the treatment plan and the 55C isotherm measured on magnetic resonance imaging thermometry acquired during treatment. These findings were confirmed on contrast enhanced magnetic resonance imaging immediately after treatment and at 28 days. Clinically there were no adverse events in any of the 8 subjects throughout the 28-day followup. All subjects had normal urinary and bowel function. Gross necropsy and histology confirmed that the intended thermal cell kill was confined to the prostate. No surrounding tissue was damaged, including the rectum and the external urinary sphincter. Conformal heating was achieved with an average -0.9 mm accuracy and 0.9 mm precision. Contrast enhanced magnetic resonance imaging and histological analysis confirmed tissue ablation in targeted areas of the prostate. Urethral tissue was spared from thermal damage. Magnetic resonance image guided transurethral ultrasound is a safe, feasible procedure for accurate and precise conformal thermal ablation of prostate tissue, as demonstrated in a preclinical model with 28-day followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Metabolomic signatures of aggressive prostate cancer.
McDunn, Jonathan E; Li, Zhen; Adam, Klaus-Peter; Neri, Bruce P; Wolfert, Robert L; Milburn, Michael V; Lotan, Yair; Wheeler, Thomas M
2013-10-01
Current diagnostic techniques have increased the detection of prostate cancer; however, these tools inadequately stratify patients to minimize mortality. Recent studies have identified a biochemical signature of prostate cancer metastasis, including increased sarcosine abundance. This study examined the association of tissue metabolites with other clinically significant findings. A state of the art metabolomics platform analyzed prostatectomy tissues (331 prostate tumor, 178 cancer-free prostate tissues) from two independent sites. Biochemicals were analyzed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry. Statistical analyses identified metabolites associated with cancer aggressiveness: Gleason score, extracapsular extension, and seminal vesicle and lymph node involvement. Prostate tumors had significantly altered metabolite profiles compared to cancer-free prostate tissues, including biochemicals associated with cell growth, energetics, stress, and loss of prostate-specific biochemistry. Many metabolites were further associated with clinical findings of aggressive disease. Aggressiveness-associated metabolites stratified prostate tumor tissues with high abundances of compounds associated with normal prostate function (e.g., citrate and polyamines) from more clinically advanced prostate tumors. These aggressive prostate tumors were further subdivided by abundance profiles of metabolites including NAD+ and kynurenine. When added to multiparametric nomograms, metabolites improved prediction of organ confinement (AUROC from 0.53 to 0.62) and 5-year recurrence (AUROC from 0.53 to 0.64). These findings support and extend earlier metabolomic studies in prostate cancer and studies where metabolic enzymes have been associated with carcinogenesis and/or outcome. Furthermore, these data suggest that panels of analytes may be valuable to translate metabolomic findings to clinically useful diagnostic tests. Copyright © 2013 Wiley Periodicals, Inc.
Xu, S; Adisetiyo, H; Tamura, S; Grande, F; Garofalo, A; Roy-Burman, P; Neamati, N
2015-07-14
Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice.
Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K.
Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng
2016-01-01
Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the presence of vasculogenic mimicry and in vitro inhibition of PI3K by LY294002 disrupted vasculogenic mimicry, potentially through a reduction of EphA2 phosphorylation at Ser897. The expression levels of PI3K and EphA2 are positively correlated with vasculogenic mimicry both in vivo and in vitro. Moreover, phosphorylation levels of EphA2 regulated by PI3K are also significantly associated with vasculogenic mimicry in vivo. Based on its functional implication in vasculogenic mimicry in vitro, EphA2 signaling may be a potential therapeutic target in advanced prostate cancer.
Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities
2016-10-01
Report We will continue to recruit African American patients and bank their prostate tissue . We will continue dissecting tumor samples into tumor...in prostate tumors and adjacent normal tissue derived from both AA and EA individuals. We will determine if DNA methylation patterns in prostate... tissue (both cancerous and normal tissue ) differ between AA and EA individuals. We will also identify methylation features that differ between tumor
The oncogenic gene fusion TMPRSS2: ERG is not a diagnostic or prognostic marker for ovarian cancer
Huang, Lillian; Schauer, Isaiah G; Zhang, Jing; Mercado-Uribe, Imelda; Deavers, Michael T; Huang, Jiaoti; Liu, Jinsong
2011-01-01
TMPRSS2:ERG is a gene fusion resulting from the chromosomal rearrangement of the androgen-regulated TMPRSS2 gene and the ETS transcription factor ERG, leading to the over-expression of the oncogenic molecule ERG. This gene rearrangement has been found in approximately half of all prostate cancers and ERG overexpression is considered as a novel diagnostic marker for prostate carcinoma. However, little is known about the role of the TMPRSS2:ERG gene fusion in ovarian cancer. The purpose of this study was to test ERG expression in ovarian cancer and its potential as a diagnostic marker for ovarian carcinoma progression. A tissue microarray containing 180 ovarian cancer tissues of various pathological types and grades were examined by immunohistochemical analysis for expression of ERG. We also used 40 prostate carcinoma tissues and 40 normal tissues for comparison in parallel experiments. ERG-positive expression was detected in 40% of the prostate tumor cancer, as well as in internal positive control endothelial cells, confirming over-expression of ERG in prostate cancer at relatively the same rate observed by others. In contrast, all of the ovarian tumor patient tissues of varying histologic types were ERG-negative, despite some positivity in endothelial cells. These results suggest that the oncogenic gene fusion TMPRSS2:ERG does not occur in ovarian cancer relative to prostate cancer. Therefore, development of ERG expression profile would not be a useful diagnostic or prognostic marker for ovarian cancer patient screening. PMID:22076164
The oncogenic gene fusion TMPRSS2: ERG is not a diagnostic or prognostic marker for ovarian cancer.
Huang, Lillian; Schauer, Isaiah G; Zhang, Jing; Mercado-Uribe, Imelda; Deavers, Michael T; Huang, Jiaoti; Liu, Jinsong
2011-01-01
TMPRSS2:ERG is a gene fusion resulting from the chromosomal rearrangement of the androgen-regulated TMPRSS2 gene and the ETS transcription factor ERG, leading to the over-expression of the oncogenic molecule ERG. This gene rearrangement has been found in approximately half of all prostate cancers and ERG overexpression is considered as a novel diagnostic marker for prostate carcinoma. However, little is known about the role of the TMPRSS2:ERG gene fusion in ovarian cancer. The purpose of this study was to test ERG expression in ovarian cancer and its potential as a diagnostic marker for ovarian carcinoma progression. A tissue microarray containing 180 ovarian cancer tissues of various pathological types and grades were examined by immunohistochemical analysis for expression of ERG. We also used 40 prostate carcinoma tissues and 40 normal tissues for comparison in parallel experiments. ERG-positive expression was detected in 40% of the prostate tumor cancer, as well as in internal positive control endothelial cells, confirming over-expression of ERG in prostate cancer at relatively the same rate observed by others. In contrast, all of the ovarian tumor patient tissues of varying histologic types were ERG-negative, despite some positivity in endothelial cells. These results suggest that the oncogenic gene fusion TMPRSS2:ERG does not occur in ovarian cancer relative to prostate cancer. Therefore, development of ERG expression profile would not be a useful diagnostic or prognostic marker for ovarian cancer patient screening.
Cui, Dong; Han, GuangWei; Shang, YongGang; Mu, LiJun; Long, QingZhi; Du, YueFeng
2015-01-01
Prostatitis is a common disease in urology departments. Prostatic zinc accumulation is connected with the secretory function of the prostate, and zinc concentrations present in prostatic diseases differ greatly from the normal level. Studies have investigated the effect of chronic prostatitis on zinc concentration of prostatic fluid and seminal plasma, but have shown inconsistent results. Hence, we performed a systematic literature review and meta-analysis to assess the effect of chronic prostatitis on the zinc concentration of prostatic fluid and seminal plasma. Systematic literature searches were conducted with PubMed, Embase, Science Direct/Elsevier, CNKI and the Cochrane Library up to March 2015 for case-control studies that involved the relationship between chronic prostatitis and zinc concentration of prostatic fluid and seminal plasma. Meta-analysis was performed with Review Manager and Stata software. Standard mean differences (SMDs) of zinc concentration were identified with 95% confidence intervals (95% CIs) in a random- or fixed-effects model. Our results illustrated that the zinc concentrations in prostatic fluid and seminal plasma from chronic prostatitis patients were significantly lower than normal controls (SMD [95% CI] -246.71 [-347.97, -145.44], -20.74 [-35.11, -6.37], respectively). The sample size of each study was relatively small, and a total of 731 chronic prostatitis patients and 574 normal controls were investigated in all fourteen studies. Several studies related to the subject were excluded due to lack of control data or means and standard deviations. The present study illustrates that there was a significant negative effect of chronic prostatitis on zinc concentrations of prostatic fluid and seminal plasma. Further studies with larger sample sizes are needed to better illuminate the negative impact of chronic prostatitis on zinc concentrations.
McCourt, Clare; Maxwell, Pamela; Mazzucchelli, Roberta; Montironi, Rodolfo; Scarpelli, Marina; Salto-Tellez, Manuel; O’Sullivan, Joe M.; Longley, Daniel B.; Waugh, David J.J.
2012-01-01
Purpose To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase 8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer (CaP) cells to androgen receptor (AR)-targeted therapy. Experimental Design c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacological interventions. Results c-FLIP expression was increased in high-grade prostatic intra-epithelial neoplasia (HGPIN) and CaP tissue relative to normal prostate epithelium (P<0.001). Maximal c-FLIP expression was detected in castrate-resistant CaP (CRPC) (P<0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also down-regulated c-FLIP expression, induced caspase-8 and caspase-3/7 mediated apoptosis and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. Conclusion c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of CaP cells. A combination of HDACi with androgen-deprivation therapy (ADT) may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP however may be relevant to enhance the response of existing and novel therapeutics in CRPC. PMID:22623731
Parnes, Howard L; House, Margaret G; Kagan, Jacob; Kausal, David J; Lieberman, Ronald
2004-02-01
We describe the current National Cancer Institute chemoprevention agent development program and provide a summary of the intermediate end points used. The National Cancer Institute is currently sponsoring a wide range of studies of promising chemoprevention agents in a variety of informative cohorts, eg high grade prostatic intraepithelial neoplasia, positive family history of cancer, increased prostate specific antigen with negative biopsies, prostate cancer followed expectantly, prostate cancer awaiting definitive therapy and the general population. The rationale for each agent under investigation is derived from epidemiological observations, prostate cancer treatment trials, secondary analyses of large cancer prevention studies, an understanding of cancer biology and prostate carcinogenesis, and/or experimental animal models. Carcinogenesis is a multistep process occurring over decades which is characterized by disruption of the normal regulatory pathways controlling cellular proliferation, programmed cell death and differentiation. Administration of agents to reverse, inhibit or slow this process of malignant transformation is known as chemoprevention. Chemoprevention represents a promising approach to reducing the morbidity and mortality of prostate cancer. A variety of agents are currently being studied in phase 2 clinical trials, some of which may warrant subsequent evaluation in phase 3 trials with definitive cancer end points. Two large phase 3 trials, the Prostate Cancer Prevention Trial and the Selenium and Vitamin E Cancer Prevention Trial, which are ongoing, are also sponsored by the National Cancer Institute.
Dihydrotestosterone in prostatic hypertrophy
Siiteri, Pentti K.; Wilson, Jean D.
1970-01-01
To explore the relation between androgens and prostatic hypertrophy in man, the concentrations of testosterone, dihydrotestosterone, and androstenedione and the rate of conversion of testosterone to dihydrotestosterone have been measured in normal and hypertrophic prostate tissue. First, a double isotope derivative technique was adapted for the measurement of tissue androgen content in 15 normal and 10 hypertrophic prostates. Although there was no significant difference in the content of androstenedione and testosterone between the two types of tissue, the content of dihydrotestosterone was significantly greater in the hypertrophic tissue (0.60 ±0.10 μg/100 g) than in the normal glands (0.13 ±0.05 μg/100 g). Second, a regional study was performed in three normal prostates and four glands with early hypertrophy, and it was demonstrated that the dihydrotestosterone content was two and three fold greater in the periurethral area where prostatic hypertrophy usually commences than in the outer regions of the gland. Finally, the rate of conversion of testosterone to dihydrotestosterone has been measured under standardized conditions in tissue slices from 4 normal and 20 hypertrophic prostates. There was no significant difference in the rate of dihydrotestosterone formation between the two types of gland (6.0 ±0.8 and 7.8 ±0.5 μμmoles/15 mg of tissue per hr). While the mechanism by which dihydrotestosterone accumulation occurs remains unexplained, it is possible that the local accumulation of dihydrotestosterone may be involved in the pathogenesis of prostatic hypertrophy in man. Images PMID:4194768
Expression and potential role of the peptide orexin-A in prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valiante, Salvatore; Liguori, Giovanna; Tafuri, Simona
The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A inmore » human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor.« less
Haverkamp, Jessica M.; Charbonneau, Bridget; Meyerholz, David K.; Cohen, Michael B.; Snyder, Paul W.; Svensson, Robert U.; Henry, Michael D.; Wang, Hsing- Hui
2011-01-01
Background Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases, including prostate cancer. Methods The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer into POET-3 mice or POET-3/Luc/Pten−/+ mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue. The impact of inflammation on the prostate was evaluated by monitoring epithelial cell proliferation over time. Results Initiation of inflammation by ovalbumin specific CD8+ T cells (OT-I cells) resulted in development of acute prostatitis in the anterior, dorsolateral and anterior prostate of POET-3 and POET-3/Luc/Pten−/+ mice. Acute prostatitis was characterized by recruitment of adoptively transferred OT-I cells and importantly, autologous CD4+ and CD8+ T cells, myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). In concert with leukocyte infiltration elevated levels of pro-inflammatory cytokines and chemokines were observed. Inflammation also resulted in marked epithelial cell proliferation that was sustained up to 80 days post adoptive-transfer of OT-I cells. Conclusions The POET-3 model represents a novel mouse model to study both acute and chronic prostate inflammation in an antigen-specific system. Further, the POET-3 mouse model can be crossed with other genetic models of disease such as the C57/Luc/Pten−/− model of prostate cancer, allowing the impact of prostatitis on other prostatic diseases to be evaluated. PMID:21656824
Häggström, Christel; Stocks, Tanja; Nagel, Gabriele; Manjer, Jonas; Bjørge, Tone; Hallmans, Göran; Engeland, Anders; Ulmer, Hanno; Lindkvist, Björn; Selmer, Randi; Concin, Hans; Tretli, Steinar; Jonsson, Håkan; Stattin, Pär
2014-11-01
Few previous studies of metabolic aberrations and prostate cancer risk have taken into account the fact that men with metabolic aberrations have an increased risk of death from causes other than prostate cancer. The aim of this study was to calculate, in a real-life scenario, the risk of prostate cancer diagnosis, prostate cancer death, and death from other causes. In the Metabolic Syndrome and Cancer Project, prospective data on body mass index, blood pressure, glucose, cholesterol, and triglycerides were collected from 285,040 men. Risks of prostate cancer diagnosis, prostate cancer death, and death from other causes were calculated by use of competing risk analysis for men with normal (bottom 84%) and high (top 16%) levels of each factor, and a composite score. During a mean follow-up period of 12 years, 5,893 men were diagnosed with prostate cancer, 1,013 died of prostate cancer, and 26,328 died of other causes. After 1996, when prostate-specific antigen testing was introduced, men up to age 80 years with normal metabolic levels had 13% risk of prostate cancer, 2% risk of prostate cancer death, and 30% risk of death from other causes, whereas men with metabolic aberrations had corresponding risks of 11%, 2%, and 44%. In contrast to recent studies using conventional survival analysis, in a real-world scenario taking risk of competing events into account, men with metabolic aberrations had lower risk of prostate cancer diagnosis, similar risk of prostate cancer death, and substantially higher risk of death from other causes compared with men who had normal metabolic levels.
Biomarkers identified for prostate cancer patients through genome-scale screening.
Wang, Lei-Yun; Cui, Jia-Jia; Zhu, Tao; Shao, Wei-Hua; Zhao, Yi; Wang, Sai; Zhang, Yu-Peng; Wu, Ji-Chu; Zhang, Le
2017-11-03
Prostate cancer is a threat to men and usually occurs in aged males. Though prostate specific antigen level and Gleason score are utilized for evaluation of the prostate cancer in clinic, the biomarkers for this malignancy have not been widely recognized. Furthermore, the outcome varies across individuals receiving comparable treatment regimens and the underlying mechanism is still unclear. We supposed that genetic feature may be responsible for, at least in part, this process and conducted a two-cohort study to compare the genetic difference in tumorous and normal tissues of prostate cancer patients. The Gene Expression Omnibus dataset were used and a total of 41 genes were found significantly differently expressed in tumor tissues as compared with normal prostate tissues. Four genes (SPOCK3, SPON1, PTN and TGFB3) were selected for further evaluation after Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and clinical association analysis. MIR1908 was also found decreased expression level in prostate cancer whose target genes were found expressing in both prostate tumor and normal tissues. These results indicated that these potential biomarkers deserve attention in prostate cancer patients and the underlying mechanism should be further investigated.
Prostate cancer stem cells: from theory to practice.
Adamowicz, Jan; Pakravan, Katayoon; Bakhshinejad, Babak; Drewa, Tomasz; Babashah, Sadegh
2017-04-01
None of the generally accepted theories on prostate cancer development can fully explain many distinguishing features of the disease, such as intratumoral heterogeneity, metastatic growth, drug resistance and tumor relapse. Prostate stem cells are a heterogeneous and small subpopulation of self-renewing cells which can actively proliferate in response to changes in the androgen level and give rise to all the cell lineages that build the prostate epithelium. According to the cancer stem cell hypothesis, prostate cancer could be a stem cell disease. Prostate cancer stem cells, which represent only a minimal percentage of the tumor mass, are characterized by a markedly increased clonogenicity and therapeutic resistance. These tumor-initiating cells reside in dynamic niches distributed within the prostate but at a higher concentration in proximal regions of the prostatic ducts. Several markers have been used to identify prostate cancer stem cells. Nevertheless, a definitive profile has not yet been established owing to specificity issues. As cancer stem cells play determining roles in the birth and burst of prostate malignancy, strategies that selectively target them have gained huge clinical attention. Unraveling the mechanisms underlying the physiological functions of cancer stem cells and gaining fundamental insights into their putative involvement in the pathogenesis of prostate tumors provide novel opportunities for the development of efficient and sophisticated therapeutic strategies in the future.
2007-09-01
AD_________________ Award Number: W81XWH-04-1-0817 TITLE: Pilot Comparison of Stromal Gene ...COVERED 30 Sep 2006 – 31 Aug 2007 4. TITLE AND SUBTITLE Pilot Comparison of Stromal Gene Expression among Normal Prostate Tissues and 5a. CONTRACT...subject to formal hypothesis testing. 15. SUBJECT TERMS Prostate Stromal Gene Expression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Fiber optic SERS-based plasmonics nanobiosensing in single living cells
NASA Astrophysics Data System (ADS)
Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan
2009-05-01
We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.
Her-2-neu expression and progression toward androgen independence in human prostate cancer.
Signoretti, S; Montironi, R; Manola, J; Altimari, A; Tam, C; Bubley, G; Balk, S; Thomas, G; Kaplan, I; Hlatky, L; Hahnfeldt, P; Kantoff, P; Loda, M
2000-12-06
Human prostate cancers are initially androgen dependent but ultimately become androgen independent. Overexpression of the Her-2-neu receptor tyrosine kinase has been associated with the progression to androgen independence in prostate cancer cells. We examined the expression of Her-2-neu in normal and cancerous prostate tissues to assess its role in the progression to androgen independence. Prostate cancer tissue sections were obtained from 67 patients treated by surgery alone (UNT tumors), 34 patients treated with total androgen ablation therapy before surgery (TAA tumors), and 18 patients in whom total androgen ablation therapy failed and who developed bone metastases (androgen-independent [AI] disease). The sections were immunostained for Her-2-neu, androgen receptor (AR), prostate-specific antigen (PSA), and Ki-67 (a marker of cell proliferation) protein expression. Messenger RNA (mRNA) levels and gene amplification of Her-2-neu were examined by RNA in situ hybridization and fluorescent in situ hybridization(FISH), respectively, in a subset of 27 tumors (nine UNT, 11 TAA, and seven AI). All statistical tests were two-sided. Her-2-neu protein expression was statistically significantly higher in TAA tumors than in UNT tumors with the use of two different scoring methods (P =.008 and P =.002). The proportion of Her-2-neu-positive tumors increased from the UNT group (17 of 67) to the TAA group (20 of 34) to the AI group (14 of 18) (P<.001). When compared with UNT tumors, tumor cell proliferation was higher in AI tumors (P =.014) and lower in TAA tumors (P<.001). All tumors expressed AR and PSA proteins. Although Her-2-neu mRNA expression was high in TAA and AI tumors, no Her-2-neu gene amplification was detected by FISH in any of the tumor types. Her-2-neu expression appears to increase with progression to androgen independence. Thus, therapeutic targeting of this tyrosine kinase in prostate cancer may be warranted.
Understanding the Role of MDSCs in Castration-Resistant Prostate Cancer and Metastasis
2015-10-01
Ar+ cells down-regulate Ar expression in the CRPC tumors. Further, a significant amount of normal epithelium was identified in castrated Ptenpc... junction (consistent with their epithelial nature), stromal cells display activation of more diverse signaling pathways involved in chronic...will attend “Faculty Development Workshop and Seminar Series” of MDACC regularly to help me prepare the transition to independent PI. o How were the
Genetic Dissection of PTEN Signaling Mechanisms in Prostate Cancer
2005-03-01
Renilla luciferase reporter to be used as a control for cell number and transfection efficiency. Luciferase assays were performed using the Dual...Luciferase Assay Kit from Promega. Reporter activities were normalized with the TK- Renilla luciferase control obtained from Promega. All assays were...Invitrogen). In addition to these components all transfections included 100 nanograms on the TK- Renilla luciferase reporter to be used as a control for cell
Campos, Mônica S; Ribeiro, Naiara C S; de Lima, Rodrigo F; Santos, Mariana B; Vilamaior, Patrícia S L; Regasini, Luis O; Biancardi, Manoel F; Taboga, Sebastião R; Santos, Fernanda C A
2018-03-07
Chrysin is a bioflavonoid found in fruits, flowers, tea, honey and wine, which has antioxidant, anti-inflammatory, antiallergic and anticarcinogenic properties. This flavone has also been considered as beneficial for reproduction due its testosterone-boosting potential. Thus, the aim of this study was to evaluate the effects of chrysin on the prostate and gonads of male and female adult gerbils. In addition, a comparative analysis of the effects of testosterone on these same organs was conducted. Ninety-day-old male and female gerbils were treated with chrysin (50mgkg-1day-1) or testosterone cypionate (1mgkg-1week-1) for 21 days. The ventral male prostate and female prostate were dissected out for morphological, morphometric-stereological and ultrastructural assays. Testes and ovaries were submitted to morphological and morphometric---stereological analyses. Chrysin treatment caused epithelial hyperplasia and stromal remodelling of the ventral male and female prostate. Ultrastructurally, male and female prostatic epithelial cells in the chrysin group presented marked development of the organelles involved in the biosynthetic-secretory pathway, whereas cellular toxicity was observed only in female glands. Chrysin preserved normal testicular morphology and increased the number of growing ovarian follicles. Comparatively, testosterone treatment was detrimental to the prostate and gonads, since foci of prostatic intraepithelial neoplasia and gonadal degeneration were observed in both sexes. Thus, under the experimental conditions of this study, chrysin was better tolerated than testosterone in the prostate and gonads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.g
Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restorationmore » of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure malignantly transforms human prostate stem cells (SCs) to arsenic-cancer SCs via unknown mechanisms. • miR-143 was several fold downregulated in the arsenic-cancer SCs (As-CSCs), suggesting a likely role in transformation. • miR-143 restoration reduced cancer characteristics in the As-CSC, suggesting a role in arsenic-induced SC transformation. • miR-143 appears to exert its anticancer effect by inhibiting expression and activity of LIMK1, its predicted gene target. • These findings suggest miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer.« less
Heeba, Gehan Hussein; Hamza, Alaaeldin Ahmed; Hassanin, Soha Osama
2016-12-15
Cisplatin-induced testicular damage is a major obstacle in the application of cisplatin as chemotherapeutic agent. However, it remains as one of the most widely employed anticancer agents in treating various solid tumors including prostate cancer. Since heme-oxygenase-1 (HO-1) is a cytoprotective enzyme with anti-oxidative stress, anti-inflammatory and anticancer activities, we investigated the effects of up-regulation of HO-1 by hemin and its inhibition by zinc protoporphyrin-IX (ZnPP) on cisplatin-induced testicular toxicity in adult rats. Furthermore, the anticancer effect of hemin and ZnPP, with and without cisplatin, was evaluated on human prostate cancer cell line, PC3. Results of the animal study showed that hemin reversed cisplatin-induced perturbations in sperm characteristics, normalized serum testosterone level, and ameliorated cisplatin-induced alterations in testicular and epididymal weights, and restored normal testicular architecture. Moreover, hemin increased the expression and activity of HO-1 protein and prevented cisplatin-induced testicular toxicity by virtue of its antioxidant and anti-inflammatory effects. This effect was evidenced by amelioration of testicular oxidative stress markers (malondialdehyde, nitric oxide, reduced glutathione contents, and catalase activity) and inflammatory mediators (tumor necrosis factor-α and nitric oxide synthase expressions). In contrast, administration of ZnPP (HO-1 inhibitor) did not show significant improvement against cisplatin-induced testicular toxicity. Finally, in vitro analyses showed that, hemin augmented the anticancer efficacy of cisplatin, while ZnPP inhibited its apoptotic effect in PC3 cells. In conclusion, the induction of HO-1 represents a potential therapeutic approach to protect the testicular tissue from the detrimental effects of cisplatin without repressing, but rather augmenting, its cytotoxic effects on PC3 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Reddy, Anupama; Huang, C Chris; Liu, Huiqing; Delisi, Charles; Nevalainen, Marja T; Szalma, Sandor; Bhanot, Gyan
2010-01-01
We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict permutation test. Separate networks for normal prostate samples, and prostate cancer samples from African Americans (AA) and European Americans (EA) were generated and compared. We found that the same hubs control disease progression in AA and EA networks. Combining AA and EA samples, we generated networks for low low (<7) and high (≥7) Gleason grade tumors. A comparison of their major hubs with those of the network for normal samples identified two types of changes associated with disease: (i) Some hub genes increased their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with gain of regulatory control in cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. Conversely, HIF-lα is a major hub that loses connections in the prostate cancer network compared to the normal prostate network. We also find that the degree of these hubs changes progressively from normal to low grade to high grade disease, suggesting that these hubs are master regulators of prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in functional pathways associated with tumorigenesis. Our method is general and can easily be extended to identify and study networks associated with any two phenotypes.
NASA Astrophysics Data System (ADS)
Pu, Yang; Chen, Jun; Wang, Wubao
2014-02-01
The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.
Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.
Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M
2011-07-01
Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.
Prostate-specific membrane antigen as a target for cancer imaging and therapy
KIESS, A. P.; BANERJEE, S. R.; MEASE, R. C.; ROWE, S. P.; RAO, A.; FOSS, C. A.; CHEN, Y.; YANG, X.; CHO, S. Y.; NIMMAGADDA, S.; POMPER, M. G.
2016-01-01
The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers. PMID:26213140
Anazawa, Yoshio; Nakagawa, Hidewaki; Furihara, Mutsuo; Ashida, Shingo; Tamura, Kenji; Yoshioka, Hiroki; Shuin, Taro; Fujioka, Tomoaki; Katagiri, Toyomasa; Nakamura, Yusuke
2005-06-01
Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.
[Bone marrow mesenchymal stem cells suppress E coli-induced bacterial prostatitis in rats].
Han, Guang-wei; Liu, Cheng-cheng; Gao, Wen-hong; Cui, Dong; Yi, Shan-hong
2015-04-01
To investigate the inhibitory effect of bone marrow mesenchymal stem cells (BMSCs) on E coliinduced prostatitis in rats. BMSCs were isolated, cultured and amplified by the attached choice method. Fifty SD rats were randomized into five groups of equal number: normal control, acute bacterial prostatitis (ABP) , chronic bacterial prostatitis (CBP), ABP + BMSCs, and CBP + BMSCs, and the animals in the latter four groups were injected with E. coli into both sides of the prostate under ultrasound guidance for 1 - 14 days to induce ABP and for 4 - 12 weeks to induce CBP. The control rats were injected with the same amount of PBS. Two weeks after injection of BMSCs into the prostates, pathomorphological changes in the prostate were observed under the light microscope and the mRNA and protein levels of IL-1β and TNF-α determined by RT-PCR and ELISA, respectively, followed by statistical analysis with SPSS 18.0. Histopathological evaluation showed typical pathological inflammatory changes in the prostates of the rats in the ABP and CBP groups, including glandular structural changes, interstitial edema, inflammatory cell infiltration, and fibrous hyperplasia, which were all remarkably relieved after treated with BMSCs. The mRNA and protein levels of IL-β ([0.829 ± 0.121] and [271.75 ± 90.59] pg/ml) and TNF-α ([0.913 ± 0. 094] and [105.78 ± 19. 05] pg/ml) in the ABP and those of IL-1β ([0. 975 ± 0. 114] and [265. 31 ± 71. 34] pg/ml) and TNF-α ([0. 886 ± 0. 084] and [107. 45 ± 26. 11 ] pg/ml) in the CBP groups were significantly higher than those in the control rats ([0. 342 ± 0.087] and [45.76 17. 99] pg/ml, P <0. 05); ([0.247 ± 0.054] and ([19.42 ± 7. 75] pg/ml, P <0. 01) as well as than those in the ABP + BMSCs ([0. 433 ± 0. 072] and [51. 34 ± 22. 13] pg/ml, P < 0. 05 ) ; ( [0. 313 ± 0. 076] and [28. 38 ± 8. 78] pg/ml, P < 0. 01) and the CBP + BMSCs group ([0.396 ± 0.064] and [56.37 ± 21.22] pg/ml, P <0.05); ([0.417 ± 0.068] and [29.21 ± 10.22] pg/ml, P <0.01). Injection of BMSCs can reduce E coli-induced prostatic inflammation reaction, which.may be associated with its reduction of inflammatory cell infiltration and the expressions of IL-1β and TNF-α in the prostate tissue.
Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C
2016-10-25
More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Felix-Patrício, Bruno; Miranda, Alexandre F.; Medeiros, Jorge L.; Gallo, Carla B. M.; Gregório, Bianca M.; de Souza, Diogo B.; Costa, Waldemar S.; Sampaio, Francisco J. B.
2017-01-01
ABSTRACT Purpose: To evaluate if late hormonal replacement is able to recover the prostatic tissue modified by androgenic deprivation. Materials and Methods: 24 rats were assigned into a Sham group; an androgen deficient group, submitted to bilateral orchiectomy (Orch); and a group submitted to bilateral orchiectomy followed by testosterone replacement therapy (Orch+T). After 60 days from surgery blood was collected for determination of testosterone levels and the ventral prostate was collected for quantitative and qualitative microscopic analysis. The acinar epithelium height, the number of mast cells per field, and the densities of collagen fibers and acinar lumen were analyzed by stereological methods under light microscopy. The muscle fibers and types of collagen fibers were qualitatively assessed by scanning electron microscopy and polarization microscopy. Results: Hormone depletion (in group Orch) and return to normal levels (in group Orch+T) were effective as verified by serum testosterone analysis. The androgen deprivation promoted several alterations in the prostate: the acinar epithelium height diminished from 16.58±0.47 to 11.48±0.29μm; the number of mast cells per field presented increased from 0.45±0.07 to 2.83±0.25; collagen fibers density increased from 5.83±0.92 to 24.70±1.56%; and acinar lumen density decreased from 36.78±2.14 to 16.47±1.31%. Smooth muscle was also increased in Orch animals, and type I collagen fibers became more predominant in these animals. With the exception of the densities of collagen fibers and acinar lumen, in animals receiving testosterone replacement therapy all parameters became statistically similar to Sham. Collagen fibers density became lower and acinar lumen density became higher in Orch+T animals, when compared to Sham. This is the first study to demonstrate a relation between mast cells and testosterone levels in the prostate. This cells have been implicated in prostatic cancer and benign hyperplasia, although its specific role is not understood. Conclusion: Testosterone deprivation promotes major changes in the prostate of rats. The hormonal replacement therapy was effective in reversing these alterations. PMID:28379662
Felix-Patrício, Bruno; Miranda, Alexandre F; Medeiros, Jorge L; Gallo, Carla B M; Gregório, Bianca M; Souza, Diogo B; Costa, Waldemar S; Sampaio, Francisco J B
2017-01-01
To evaluate if late hormonal replacement is able to recover the prostatic tissue modified by androgenic deprivation. 24 rats were assigned into a Sham group; an androgen deficient group, submitted to bilateral orchiectomy (Orch); and a group submitted to bilateral orchiectomy followed by testosterone replacement therapy (Orch+T). After 60 days from surgery blood was collected for determination of testosterone levels and the ventral prostate was collected for quantitative and qualitative microscopic analysis. The acinar epithelium height, the number of mast cells per field, and the densities of collagen fibers and acinar lumen were analyzed by stereological methods under light microscopy. The muscle fibers and types of collagen fibers were qualitatively assessed by scanning electron microscopy and polarization microscopy. Hormone depletion (in group Orch) and return to normal levels (in group Orch+T) were effective as verified by serum testosterone analysis. The androgen deprivation promoted several alterations in the prostate: the acinar epithelium height diminished from 16.58±0.47 to 11.48±0.29μm; the number of mast cells per field presented increased from 0.45±0.07 to 2.83±0.25; collagen fibers density increased from 5.83±0.92 to 24.70±1.56%; and acinar lumen density decreased from 36.78±2.14 to 16.47±1.31%. Smooth muscle was also increased in Orch animals, and type I collagen fibers became more predominant in these animals. With the exception of the densities of collagen fibers and acinar lumen, in animals receiving testosterone replacement therapy all parameters became statistically similar to Sham. Collagen fibers density became lower and acinar lumen density became higher in Orch+T animals, when compared to Sham. This is the first study to demonstrate a relation between mast cells and testosterone levels in the prostate. This cells have been implicated in prostatic cancer and benign hyperplasia, although its specific role is not understood. Testosterone deprivation promotes major changes in the prostate of rats. The hormonal replacement therapy was effective in reversing these alterations. Copyright® by the International Brazilian Journal of Urology.
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.
Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C
2014-10-15
PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target. ©2014 American Association for Cancer Research.
Vaz, Cátia V; Maia, Cláudio J; Marques, Ricardo; Gomes, Inês M; Correia, Sara; Alves, Marco G; Cavaco, José E; Oliveira, Pedro F; Socorro, Sílvia
2014-09-01
Regucalcin (RGN) is a calcium (Ca(2+) )-binding protein underexpressed in prostate adenocarcinoma comparatively to non-neoplastic prostate or benign prostate hyperplasia cases. Moreover, RGN expression is negatively associated with the cellular differentiation of prostate adenocarcinoma, suggesting that loss of RGN may be associated with tumor onset and progression. However, the RGN actions over the control of prostate cell growth have not been investigated. Androgens are implicated in the promotion of prostate cell proliferation, thus we studied the in vivo effect of androgens on RGN expression in rat prostate. The role of RGN modulating cell proliferation and apoptotic pathways in rat prostate was investigated using transgenic animals (Tg-RGN) overexpressing the protein. In vivo stimulation with 5α-dihydrotestosterone (DHT) down-regulated RGN expression in rat prostate. Cell proliferation index and prostate weight were reduced in Tg-RGN, which was concomitant with altered expression of cell-cycle regulators. Tg-RGN presented diminished expression of the oncogene H-ras and increased expression of cell-cycle inhibitor p21. Levels of anti-apoptotic Bcl-2, as well as the Bcl-2/Bax protein ratio were increased in prostates overexpressing RGN. Both caspase-3 expression and enzyme activity were decreased in the prostates of Tg-RGN. Overexpression of RGN resulted in inhibition of cell proliferation and apoptotic pathways, which demonstrated its role maintaining prostate growth balance. Thus, deregulation of RGN expression may be an important event favoring the development of prostate cancer. Moreover, the DHT effect down-regulating RGN expression in rat prostate highlighted for the importance of this protein in prostatic physiology. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayed, Rabab H., E-mail: rabab.sayed@pharma.cu.edu
Serotonin level plays a role in suppressing the pathological findings of benign prostatic hyperplasia (BPH). Thus a new selective serotonin reuptake inhibitor, dapoxetine was used to test its ability to ameliorate the pathological changes in the rat prostate. A dose response curve was constructed between the dose of dapoxetine and prostate weight as well as relative prostate weight, then a 5 mg/kg dose was used as a representative dose for dapoxetine administration. Rats were divided into four groups; the control group that received the vehicle; the BPH-induced group received daily s.c injection of 3 mg/kg testosterone propionate dissolved in olivemore » oil for four weeks; BPH-induced group treated with finasteride 5 mg/kg/day p.o and BPH-induced group treated with dapoxetine 5 mg/kg/day p.o. Injection of testosterone increased prostate weight and relative prostate weight which were both returned back to the normal value after treatment with dapoxetine as well as finasteride. Testosterone also upregulated androgen receptor (AR) and proliferating cell nuclear antigen gene expression. Furthermore, testosterone injection elevated cyclooxygenase-II (COX II), inducible nitric oxide synthase (iNOS), B-cell lymphoma-2 (Bcl2) expression and tumor necrosis factor alpha content and reduced caspase-3 activity, Bcl-2-associated X protein (Bax) expression and Bax/Bcl2 ratio. Dapoxetine and finasteride administration reverted most of the changes made by testosterone injection. In conclusion, the current study provides an evidence for the protective effects of dapoxetine against testosterone-induced BPH in rats. This can be attributed, at least in part, to decreasing AR expression, and the anti-proliferative, anti-inflammatory and pro-apoptotic activities of dapoxetine in BPH. - Highlights: • Dapoxetine attenuates testosterone-induced prostatic hyperplasia in rats. • Dapoxetine decreased androgen receptor gene expression in rat prostate. • Dapoxetine possess anti-proliferative, anti-inflammatory and pro-apoptotic activities.« less
Mydlo, J H; Kral, J G; Macchia, R J
1997-09-01
Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to human prostate epithelial and stromal cells, and it is reported to be elevated in the serum and urine of patients with various cancers, including prostate cancer. Obesity, with increased body fat, is a risk factor for prostate cancer through unknown mechanisms. Because adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it with normal and cancerous prostate tissues. Using heparin-Sepharose chromatography, we extracted proteins from human omental adipose tissue, adenocarcinoma of the prostate, and benign prostatic hypertrophic (BPH) tissues. Each of the mitogenic proteins eluted with NaCl concentrations between 1.4 M and 1.8 M, similar to control FGF-2. Using FGF-2 antisera (which inhibited the mitogenic activity of the proteins), we performed Western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity, and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells and the chorioallantoic membrane assay. There was greater recovery of FGF-2 from omental adipose tissue compared with cancerous or BPH homogenates (40 micrograms [2.0 micrograms/g] versus 25 micrograms [1.25 micrograms/g] and 20 micrograms [1.0 microgram/g], respectively). Moreover. FGF-2 from adipose tissue had greater mitogenic activity (96.2% versus 74.8% and 54%; P < 0.05) and a greater angiogenic activity (5.1 vessels versus 2.9 and 1.8 vessels; P < 0.05) on the chorioallantoic assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either BPH or prostate cancer tissue FGF-2. It is not known whether FGF-2 from adipose tissue qualitatively or quantitatively may underlie the relationship between obesity and prostate cancer.
The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines.
Alileche, Abdelkrim; Hampikian, Greg
2017-08-09
Nullomer peptides are the smallest sequences absent from databases of natural proteins. We first began compiling a list of absent 5-amino acid strings in 2006 (1). We report here the effects of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel, derived from human cancers of 9 organs (kidney, ovary, skin melanoma, lung, brain, lung, colon, prostate and the hematopoietic system), and four normal cell lines (endothelial HUVEC, skin fibroblasts BJ, colon epithelial FHC and normal prostate RWPE-1). NCI-60 cancer cell panel and four normal cell lines were cultured in vitro in RPMI1640 supplemented with 10% Hyclone fetal bovine serum and exposed for 48 h to 5 μM, 25 μM and 50 μM of peptides 9R, 9S1R and 124R. Viability was assessed by CCK-8 assay. For peptide ATP depletion effects, one cell line representing each organ in the NCI-60 panel, and four normal cell lines were exposed to 50 μM of peptides 9R, 9S1R and 124R for 3 h. The ATP content was assessed in whole cells, and their supernatants. Peptides 9S1R and 9R are respectively lethal to 95 and 81.6% of the 60 cancer cell lines tested. Control peptide 124R has no effect on the growth of these cells. Especially interesting the fact that peptides 9R and 9S1R are capable of killing drug-resistant and hormone-resistant cell lines, and even cancer stem cells. Peptides 9R and 9S1R have a broader activity spectrum than many cancer drugs in current use, can completely deplete cellular ATP within 3 h, and are less toxic to 3 of the 4 normal cell lines tested than they are to several cancers. Nullomer peptides 9R and 9S1R have a large broad lethal effect on cancer cell lines derived from nine organs represented in the NCI-60 panel. This broad activity crosses many of the categorical divisions used in the general classification of cancers: solid vs liquid cancers, drug sensitive vs drug resistant, hormone sensitive vs hormone resistant, cytokine sensitive vs cytokine non sensitive, slow growing vs rapid growing, differentiated vs dedifferentiated cancers. Furthermore peptides 9R and 9S1R are lethal to cancer stem cells and breast canrcinosarcoma.
Soekmadji, Carolina; Nelson, Colleen C
2015-01-01
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
NASA Astrophysics Data System (ADS)
DeLuna, Frank; Ding, XiaoFie; Sun, Lu-Zhe; Ye, Jing Yong
2017-02-01
Biomarker screening for prostate-specific antigen (PSA) is the current clinical standard for detection of prostate cancer. However this method has shown many limitations, mainly in its specificity, which can lead to a high false positive rate. Thus, there is a growing need in developing a more specific detection system for prostate cancer. Using a Photonic- Crystal-based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, we demonstrate the use of refractive index (RI) to accomplish label-free detection of prostate cancer cells against non-cancerous prostate epithelial cells. The PC-TIR biosensor possesses an open microcavity, which in contrast to traditional closed microcavities, allows for easier access of analyte molecules or cells to interact with its sensing surface. In this study, an imaging system was designed using the PC-TIR biosensor to quantify cell RI as the contrast parameter for prostate cancer detection. Non-cancerous BPH-1 prostate epithelial cells and prostate cancer PC-3 cells were placed on a single biosensor and measured concurrently. Recorded image data was then analyzed through a home-built MatLab program. Results demonstrate that RI is a suitable variable for differentiation between prostate cancer cells and non-cancerous prostate epithelial cells. Our study shows clinical potential in utilizing RI test for the detection of prostate cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, Waseet; Tucker, Susan L.; Crevoisier, Renaud de
2007-03-01
Purpose: To determine the value of a 2-year post-radiotherapy (RT) prostate biopsy for predicting eventual biochemical failure in patients who were treated for localized prostate cancer. Methods and Materials: This study comprised 164 patients who underwent a planned 2-year post-RT prostate biopsy. The independent prognostic value of the biopsy results for forecasting eventual biochemical outcome and overall survival was tested with other factors (the Gleason score, 1992 American Joint Committee on Cancer tumor stage, pretreatment prostate-specific antigen level, risk group, and RT dose) in a multivariate analysis. The current nadir + 2 (CN + 2) definition of biochemical failure wasmore » used. Patients with rising prostate-specific antigen (PSA) or suspicious digital rectal examination before the biopsy were excluded. Results: The biopsy results were normal in 78 patients, scant atypical and malignant cells in 30, carcinoma with treatment effect in 43, and carcinoma without treatment effect in 13. Using the CN + 2 definition, we found a significant association between biopsy results and eventual biochemical failure. We also found that the biopsy status provides predictive information independent of the PSA status at the time of biopsy. Conclusion: A 2-year post-RT prostate biopsy may be useful for forecasting CN + 2 biochemical failure. Posttreatment prostate biopsy may be useful for identifying patients for aggressive salvage therapy.« less
The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells.
Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Trumpp, Andreas; Sprick, Martin R
2016-01-01
Based on findings of surface marker, protein screens as well as the postulated near-urethral location of the prostate stem cell niche, we were interested whether androgen ablation, distinct anatomic regions within the prostate or neurotrophins have an influence on basal prostate epithelial progenitor cells (PESCs). Microdissection of the prostate, enzymatic digestion, and preparation of single cells was performed from murine and human prostates. Adult PESC marker expressions were compared between a group of C57BL/6 mice and a separate group of castrated C57BL/6 mice. Surface markers CD13/CD271 on human prostate epithelial progenitor cells were evaluated by FACS analyses in cells cultured under novel stem cell conditions. The effect of neurotrophins NGF, NT3, and BDNF were evaluated with respect to their influence on proliferation and activation of human basal PESCs in vitro. We demonstrate the highest percentage of CD49f+ and Trop2+ expressing cells in the urethra near prostatic regions of WT mice (Trop2+ proximal: 10% vs. distal to the urethra: 3%, P < 0.001). While a marked increase of Trop2 expressing cells can be measured both in the proximal and distal prostatic regions after castration, the most prominent increase in Trop2+ cells can be measured in the prostatic tissue distant to the urethra. Furthermore, we demonstrate that the proportion of syndecan-1 expressing cells greatly increases in the regions proximal to the urethra after castration (WT: 5% vs. castrated: 40%). We identified heterogeneous CD13 and nerve growth factor receptor (p75(NGFR), CD271) expression on CD49f(+)/TROP2(high) human basal PESCs. Addition of the neurotrophins NT3, BDNF, and NGF to the stem cell media led to a marked temporary increase in the proliferation of human basal PESCs. Our results in mice support the model, in which the proximal urethral region contains the prostate stem cell niche while a stronger androgen-dependent regulation of adult prostate stem cells can be found in the peripheral prostatic tissue. Neutrophin signaling via nerve growth factor receptor is possibly involved in human prostate stem cell homeostasis. © 2015 Wiley Periodicals, Inc.
Biological Impact of Senescence Induction in Prostate Cancer
2010-01-01
with decreasing compound concentrations. Data showing chlorhexidine, bithionol, cytarabine and crassin acetate effectively inhibited proliferation...senescence with 25 nM doxorubicin were included as a positive control. Of the candi- date compounds, methotrexate, cytarabine , chlorhexidine, and IC261...then normalized to expression in untreated cells. Candidate compounds: methotrexate (MET), chlorhexadine (CHL), crassin acetate (CRA), cytarabine
Definition of molecular determinants of prostate cancer cell bone extravasation.
Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J
2013-01-15
Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.
Variation of M3 muscarinic receptor expression in different prostate tissues and its significance.
Song, Wei; Yuan, Mingzhen; Zhao, Shengtian
2009-08-01
To detect the expression of the muscarinic receptor (M receptor) in different prostate tissues and analyze the role of its subtype in prostatic oncogenesis. Thirty-six cases of normal prostate and benign prostatic hyperplasia, and 8 cases of prostatic tumor, were used in this study from the Shandong University, Shandong, China, between 2003-2006. The protein expressions of M1, M2, and M3 receptors in each group were determined by Western-blotting. The gene expressions of the M3 receptor and vascular endothelial growth factors (VEGF) in each group were determined by reverse transcriptase-polymerase chain reaction. The protein and gene expressions of the M3 receptor in the prostatic carcinoma group were higher than that of benign prostatic hyperplasia group (p=0.0001) and normal prostate group (p=0.0001). The M3 receptor and VEGF showed positive straight-line correlations of gene expressions with the 3 groups (r=0.4999, p=0.0001). The M3 receptor may have a close relationship with prostatic oncogenesis.
Park, Eunsook; Lee, Mee-Young; Jeon, Woo-Young; Seo, Chang-Seob; You, Sooseong; Shin, Hyeun-Kyoo
2018-05-23
Paljung-san is a traditional herbal medicine used widely for the treatment of urogenital diseases in East Asia. However, scientific evidence of the efficacy of Paljung-san and its mechanisms of action against benign prostatic hyperplasia (BPH) is not clearly established. We investigated the inhibitory effect of Paljung-san water extract (PSWE) and its mechanisms against BPH in vitro and in vivo. Active compounds of PSWE were analyzed quantitatively by High-performance liquid chromatography (HPLC). For in vitro study, PSWE treated BPH-1 cells were used to perform western blot analysis, cell cycle analysis and enzyme-linked immunosorbent assay. For in vivo BPH model, male rats were subcutaneously injected with 10 mg/kg of testosterone propionate (TP) every day for four weeks. 200 and 500 mg/kg of PSWE was administrated daily by oral gavage with s.c. injection of TP, respectively. HPLC revealed that PSWE contains 1.21, 1.18, 2.27, 3.56, 4.23, 3.00, 6.78, and 0.004 mg/g of gallic acid, 5-caffeoylquinic acid, chlorogenic acid, geniposide, liquiritin apioside, liquiritin, glycyrrhizin, and chrysophanol components, respectively. In human BPH-1 cells, PSWE treatment reduced cell proliferation through arresting the cell cycle in the DNA synthesis phase. Moreover, PSWE suppressed prostaglandin E 2 production with reduced cyclooxygenase-2 expression. In TP -induced BPH rat model, PSWE administration showed reduced prostate weights and dihydrotestosterone levels and led to a restoration of normal prostate morphology. PSWE also decreased TP-induced Ki-67 and cyclin D1 protein levels in the prostatic tissues. Decreased glutathione reductase activity and increased malondialdehyde levels in the BPH groups were reversed by PSWE administration. PSWE attenuates the progression of BPH through anti-proliferative, anti-inflammatory and anti-oxidant activities in vitro and in vivo. Therefore, these data provide the scientific evidence of pharmacological efficacy of PSWE against BPH. Copyright © 2018 Elsevier B.V. All rights reserved.
Radioligand therapy of metastatic castration-resistant prostate cancer: current approaches.
Awang, Zool Hilmi; Essler, Markus; Ahmadzadehfar, Hojjat
2018-05-23
Prostate Cancer is the forth most common type of cancer. Prostate-specific membrane antigen (PSMA) is anchored in the cell membrane of prostate epithelial cells. PSMA is highly expressed on prostate epithelial cells and strongly up-regulated in prostate cancer. Therefore it is an appropriate target for diagnostic and therapy of prostate cancer and its metastases. This article discusses several articles on radionuclide treatments in prostate cancer and the results on PSMA therapy with either beta or alpha emitters as a salvage therapy.
Mechanism of Action of Novel Antiproliferative Oligonucleotides
2002-05-01
DNA replication , cell cycle regulation, and apoptosis, the overall goal of this study was to identify the functions of nucleolin that are affected by GRO binding. After the first year of this study, several significant results have emerged. We have shown that GROs cause cell cycle arrest and induce apoptosis in prostate cancer cells but not normal skin cells, and that this arrest is due to specific inhibition of DNA replication . We have further shown that the inhibition of DNA replication may be linked to the ability of GROs to
Utter, Matthew; Chakraborty, Sohag; Goren, Limor; Feuser, Lucas; Zhu, Yuan-Shan; Foster, David A
2018-06-01
Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.
Genome-wide Search of Oncogenic Pathways Cooperating with ETS Fusions in Prostate Cancer
2013-07-01
luminal cells cannot engraft well in this assay), and although both luminal and basal cells could serve as cells of origin of prostate cancer, luminal ...was the need for them to differentiate into luminal cells first [27]. Thus, it appears that prostate luminal cells may serve as the major cellular...origin for prostate cancer. We therefore more favor a strategy to search for ETS-cooperating mutations in prostate luminal cells. Furthermore
Fluorescence of prostate-specific antigen as measured with a portable 1D scanner
NASA Astrophysics Data System (ADS)
Kim, Byeong C.; Jeong, Jin H.; Jeong, Dong S.; Kim, Young M.; Oh, Sang W.; Choi, Eui Y.; Kim, Jae H.; Nahm, Kie B.
2005-01-01
Prostate-specific antigen (PSA) is an androgen-dependent glycoprotein protease (M.W. 33 kDa) and a member of kallikrein super-family of serine protease, and has chymotrypsin-like enzymatic activity. It is synthesized by the prostate epithelial cells and found in the prostate gland and seminal plasma as a major protein. It is widely used as a clinical marker for diagnosis, screening, monitoring and prognosis of prostate cancer. In normal male adults, the concentration of PSA in the blood is below 4 ng/ml and this value increases in patients with the prostate cancer or the benign prostatic hyperplasia (BPH) due to its leakage into the circulatory system. As such, systematic monitoring of the PSA level in the blood can provide critical information about the progress of the prostatic disease. We have developed a compact integral system that can quantitatively measure the concentration of total PSA in human blood. This system utilizes the fluorescence emitted from the dye molecules attached to PSA molecules after appropriate immunoassay-based processing. Developed for the purpose of providing an affordable means of fast point-of-care testing of the prostate cancer, this system proved to be able to detect the presence of the PSA at the level of 0.18 ng/ml in less than 12 minutes, with the actual measurement taking less than 2 minutes. The design concept for this system is presented together with the result for a few representative samples.
Le, H Carl; Lupu, Mihaela; Kotedia, Khushali; Rosen, Neal; Solit, David; Koutcher, Jason A
2009-11-01
17-Allylamino, 17-demethoxygeldanamycin (17-AAG), an effective inhibitor of the heat shock protein hsp90, preferentially inhibiting tumor hsp90 compared to hsp90 from normal cells, has shown promising results against several cancers, including hormone-resistant prostate cancer. Levels of several oncogenic proteins critical to tumor growth and progression, such as androgen receptor and HER2/neu, were reduced 4 h post 17-allylamino, 17-demethoxygeldanamycin treatment. Posttreatment metabolic changes have also been observed in several tumor cell lines. In this study, total choline distributions in hormone sensitive CWR22 and hormone resistant CWR22r prostate cancer xenograft tumors in mice were measured before and at 4 h and 48 h after a single-bolus 17-allylamino, 17-demethoxygeldanamycin treatment at 100 mg/kg, using proton MR spectroscopy. Our results show that tumor total choline levels declined 4 h after the treatment for CWR22 (P = 0.001) and 48 h post treatment for CWR22r (P = 0.003). Metabolic changes, in particular of total choline intensity detected by proton magnetic resonance spectroscopic imaging (MRSI), are consistent with the observed immunohistochemistry changes, tumor growth inhibition for CWR22r (P = 0.01 at 14 days post treatment), and a constant prostate specific antigen level versus increasing prostate specific antigen for control CWR22 (P = 0.01). Metabolic changes in total choline by proton MRSI can be used as an early biomarker of response for advanced-stage prostate cancer in targeted therapy such as 17-allylamino, 17-demethoxygeldanamycin. (c) 2009 Wiley-Liss, Inc.
The role of Cajal cells in chronic prostatitis.
Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan
2016-07-04
Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.
Vitamin D deficiency and insufficiency among patients with prostate cancer
Trump, Donald L.; Chadha, Manpreet K.; Sunga, Annette Y.; Fakih, Marwan G.; Ashraf, Umeer; Silliman, Carrie G.; Hollis, Bruce W.; Nesline, Mary K.; Tian, Lili; Tan, Wei; Johnson, Candace S.
2009-01-01
Objective To assess the frequency of vitamin D deficiency among men with prostate cancer, as considerable epidemiological, in vitro, in vivo and clinical data support an association between vitamin D deficiency and prostate cancer outcome. Patients, subjects and methods The study included 120 ambulatory men with recurrent prostate cancer and 50 with clinically localized prostate cancer who were evaluated and serum samples assayed for 25-OH vitamin D levels. Then 100 controls (both sexes), matched for age and season of serum sample, were chosen from a prospective serum banking protocol. The relationship between age, body mass index, disease stage, Eastern Cooperative Oncology Group performance status, season and previous therapy on vitamin D status were evaluated using univariate and multivariate analyses. Results The mean 25-OH vitamin D level was 25.9 ng/mL in those with recurrent disease, 27.5 ng/mL in men with clinically localized prostate cancer and 24.5 ng/mL in controls. The frequency of vitamin D deficiency (< 20 ng/mL) and insufficiency (20–31 ng/mL) was 40% and 32% in men with recurrent prostate; 28% had vitamin D levels that were normal (32–100 ng/mL). Among men with localized prostate cancer, 18% were deficient, 50% were insufficient and 32% were normal. Among controls, 31% were deficient, 40% were insufficient and 29% were normal. Metastatic disease (P = 0.005) and season of blood sampling (winter/spring; P = 0.01) were associated with vitamin D deficiency in patients with prostate cancer, while age, race, performance status and body mass index were not. Conclusions Vitamin D deficiency and insufficiency were common among men with prostate cancer and apparently normal controls in the western New York region. PMID:19426195
Vitamin D deficiency and insufficiency among patients with prostate cancer.
Trump, Donald L; Chadha, Manpreet K; Sunga, Annette Y; Fakih, Marwan G; Ashraf, Umeer; Silliman, Carrie G; Hollis, Bruce W; Nesline, Mary K; Tian, Lili; Tan, Wei; Johnson, Candace S
2009-10-01
To assess the frequency of vitamin D deficiency among men with prostate cancer, as considerable epidemiological, in vitro, in vivo and clinical data support an association between vitamin D deficiency and prostate cancer outcome. The study included 120 ambulatory men with recurrent prostate cancer and 50 with clinically localized prostate cancer who were evaluated and serum samples assayed for 25-OH vitamin D levels. Then 100 controls (both sexes), matched for age and season of serum sample, were chosen from a prospective serum banking protocol. The relationship between age, body mass index, disease stage, Eastern Cooperative Oncology Group performance status, season and previous therapy on vitamin D status were evaluated using univariate and multivariate analyses. The mean 25-OH vitamin D level was 25.9 ng/mL in those with recurrent disease, 27.5 ng/mL in men with clinically localized prostate cancer and 24.5 ng/mL in controls. The frequency of vitamin D deficiency (<20 ng/mL) and insufficiency (20-31 ng/mL) was 40% and 32% in men with recurrent prostate; 28% had vitamin D levels that were normal (32-100 ng/mL). Among men with localized prostate cancer, 18% were deficient, 50% were insufficient and 32% were normal. Among controls, 31% were deficient, 40% were insufficient and 29% were normal. Metastatic disease (P = 0.005) and season of blood sampling (winter/spring; P = 0.01) were associated with vitamin D deficiency in patients with prostate cancer, while age, race, performance status and body mass index were not. Vitamin D deficiency and insufficiency were common among men with prostate cancer and apparently normal controls in the western New York region.
Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.
2016-01-01
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829
miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα.
Tribollet, Violaine; Barenton, Bruno; Kroiss, Auriane; Vincent, Séverine; Zhang, Ling; Forcet, Christelle; Cerutti, Catherine; Périan, Séverine; Allioli, Nathalie; Samarut, Jacques; Vanacker, Jean-Marc
2016-01-01
MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion. Here we show that miR-135a down-regulates the expression of ERRα through specific sequences of its 3'UTR. As a consequence miR-135a also reduces the expression of downstream targets of ERRα. miR-135a also decreases cell invasive potential in an ERRα-dependent manner. Our results suggest that the decreased expression of miR-135a in metastatic tumors leads to elevated ERRα expression, resulting in increased cell invasion capacities.
miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα
Tribollet, Violaine; Barenton, Bruno; Kroiss, Auriane; Vincent, Séverine; Zhang, Ling; Forcet, Christelle; Cerutti, Catherine; Périan, Séverine; Allioli, Nathalie; Samarut, Jacques; Vanacker, Jean-Marc
2016-01-01
MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion. Here we show that miR-135a down-regulates the expression of ERRα through specific sequences of its 3’UTR. As a consequence miR-135a also reduces the expression of downstream targets of ERRα. miR-135a also decreases cell invasive potential in an ERRα-dependent manner. Our results suggest that the decreased expression of miR-135a in metastatic tumors leads to elevated ERRα expression, resulting in increased cell invasion capacities. PMID:27227989
Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M; Sayed, Douaa
2013-03-01
Prostate cancer (PCa) is the most commonly diagnosed cancer in men. The progression and invasion of PCa are normally mediated by the overexpression of chemokine receptors (CKRs) and the interaction between CKRs and their cognate ligands. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV) either alone or in combination with silica nanoparticles (WEV+NP) mediated the growth arrest and apoptosis of breast cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on the migration, invasion, proliferation and apoptosis of prostate cancer cells. We found that WEV alone and WEV+NP decreased the viability of all cell types tested (PCa cells isolated from patient samples, PC3 cells and LNCaP cells) using an MTT assay. The IC(50) values were determined to be 10 and 5 μg/mL for WEV alone and WEV+NP, respectively. WEV+NP decreased the surface expression of the CKRs CXCR3, CXCR4, CXCR5 and CXCR6 to a greater extent than WEV alone and subsequently reduced migration and the invasion response of the cells to the cognate ligands of the CKRs (CXCL10, CXCL12, CXCL13 and CXCL16, respectively). Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited epidermal growth factor-mediated PCa cell proliferation. Furthermore, analysis of the cell cycle indicated that WEV+NP strongly altered the cell cycle of PCa cells and enhanced the induction of apoptosis. Finally, we demonstrated that WEV+NP robustly decreased the expression of anti-apoptotic effectors, such as B cell Lymphoma-2 (Bcl-2), B cell Lymphoma-extra large (Bcl-(XL)) and myeloid cell leukemia sequence-1 (Mcl-1), and increased the expression of pro-apoptotic effectors, such as Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax) and Bcl-2-interacting mediator of cell death (Bim). WEV+NP also altered the membrane potential of mitochondria in the PCa cells. Our data reveal the potential of nanoparticle-sustained delivery of snake venom as effective treatments for prostate cancer.
Zheng, R; Iwase, A; Shen, R; Goodman, O B; Sugimoto, N; Takuwa, Y; Lerner, D J; Nanus, D M
2006-09-28
The neuropeptides bombesin and endothelin-1 stimulate prostate cancer (PC) cell migration and invasion (J Clin Invest, 2000; 106: 1399-1407). The intracellular signaling pathways that direct this cell movement are not well delineated. The monomeric GTPase RhoA is required for migration in several cell types including neutrophils, monocytes and fibroblasts. We demonstrate that bombesin-stimulated PC cell migration occurs via the heterotrimeric G-protein-coupled receptors (G-protein) G alpha 13 subunit leading to activation of RhoA, and Rho-associated coiled-coil forming protein kinase (ROCK). Using siRNA to suppress expression of the three known G-protein alpha-subunit-associated RhoA guanine nucleotide exchange factors (GEFs), we also show that two of these RhoA GEFs, PDZ-RhoGEF and leukemia-associated RhoGEF (LARG), link bombesin receptors to RhoA in a non-redundant manner in PC cells. We next show that focal adhesion kinase, which activates PDZ-RhoGEF and LARG, is required for bombesin-stimulated RhoA activation. Neutral endopeptidase (NEP) is expressed on normal prostate epithelium whereas loss of NEP expression contributes to PC progression. We also demonstrate that NEP inhibits neuropeptide activation of RhoA. Together, these results establish a contiguous signaling pathway from the bombesin receptor to ROCK in PC cells, and they implicate NEP as a major regulator of neuropeptide-stimulated RhoA in these cells. This work also identifies members of this signaling pathway as potential targets for rational pharmacologic manipulation of neuropeptide-stimulated migration of PC cells.
Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer
Yang, Lifang; Dutta, Sucharita M.; Troyer, Dean A.; Lin, Jefferson B.; Lance, Raymond A.; Nyalwidhe, Julius O.; Drake, Richard R; Semmes, O. John
2015-01-01
CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression. PMID:26497208
Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin
Liu, Yongliang; Qiao, Lu; Gao, Wenhong; Zhang, Weiguo; Liu, Zheng
2016-01-01
Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia. PMID:27643992
Yang, X J; Lecksell, K; Gaudin, P; Epstein, J I
1999-02-01
Immunohistochemistry with antibodies for high-molecular-weight cytokeratin labels basal cells and is used as an ancillary study in diagnosing prostate carcinoma, which reportedly lacks expression of high-molecular-weight cytokeratin. A recent report questioned the specificity of this marker, describing immunopositivity for high-molecular-weight cytokeratin in a small series of metastatic prostate cancer. We have also noted rare cases of prostate lesions on biopsy with typical histological features of adenocarcinoma showing immunopositivity for high-molecular-weight cytokeratin, either in tumor cells or in patchy cells with the morphology of basal cells. In some of these cases, it was difficult to distinguish cancer from out-pouching of high-grade prostatic intraepithelial neoplasia. To investigate whether prostate cancer cells express high-molecular-weight cytokeratin, we studied 100 cases of metastatic prostate carcinoma and 10 cases of prostate cancer invading the seminal vesicles from surgical specimens. Metastatic sites included regional lymph nodes (n = 67), bone (n = 19), and miscellaneous (n = 14). Cases with any positivity for high-molecular-weight cytokeratin antibody (34betaE12) were verified as being of prostatic origin with immunohistochemistry for prostate-specific antigen and prostate-specific acid phosphatase. Only four cases were detected positive for high-molecular-weight cytokeratin. In two cases (one metastasis, one seminal vesicle invasion) there was weakly diffuse positivity above background level. Two metastases in lymph nodes showed scattered strong staining of clusters of tumor cells, which represented <0.2% of tumor cells in the metastatic deposits. These positive cells did not have the morphology of basal cells. We conclude that prostate cancer, even high grade, only rarely expresses high-molecular-weight cytokeratin. This marker remains a very useful adjunct in the diagnosis of prostate cancer.
1996-06-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators
1988-07-14
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators
NASA Technical Reports Server (NTRS)
1988-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.
Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer
Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S
2015-01-01
Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer. PMID:26383180
Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer.
Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S
2015-01-01
Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer.
ERBB2 Increases Metastatic Potentials Specifically in Androgen-Insensitive Prostate Cancer Cells
Tome-Garcia, Jessica; Li, Dan; Ghazaryan, Seda; Shu, Limin; Wu, Lizhao
2014-01-01
Despite all the blood-based biomarkers used to monitor prostate cancer patients, prostate cancer remains as the second common cause of cancer mortality in men in the United States. This is largely due to a lack of understanding of the molecular pathways that are responsible for the aggressive forms of prostate cancers, the castrate-resistant prostate cancer and the metastatic prostate cancer. Cell signaling pathways activated by the ERBB2 oncogene or the RAS oncogene are frequently found to be altered in metastatic prostate cancers. To evaluate and define the role of the ERBB2/RAS pathway in prostate cancer metastasis, we have evaluated the impact of ERBB2- or RAS-overexpression on the metastatic potentials for four prostate cancer cell lines derived from tumors with different androgen sensitivities. To do so, we transfected the human DU145, LnCaP, and PC3 prostate cancer cells and the murine Myc-CaP prostate cancer cells with the activated form of ERBB2 or H-RAS and assessed their metastatic potentials by three complementary assays, a wound healing assay, a transwell motility assay, and a transwell invasion assay. We showed that while overexpression of ERBB2 increased the metastatic potential of the androgen-insensitive prostate cancer cells (i.e. PC3 and DU145), it did not affect metastatic potentials of the androgen-sensitive prostate cancer cells (i.e. LnCaP and Myc-CaP). In contrast, overexpression of H-RAS only increased the cell motility of Myc-CaP cells, which overexpress the human c-MYC oncogene. Our data suggest that ERBB2 collaborates with androgen signaling to promote prostate cancer metastasis, and that although RAS is one of the critical downstream effectors of ERBB2, it does not phenocopy ERBB2 for its impact on the metastatic potentials of prostate cancer cell lines. PMID:24937171
Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.
2017-01-01
The chondroitin sulfatases N-acetylgalactosamine-4-sulfatase (ARSB) and galactosamine-N-acetyl-6-sulfatase (GALNS) remove either the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate (C4S) and dermatan sulfate, or the 6-sulfate group of chondroitin 6-sulfate, chondroitin 4,6-disulfate (chondroitin sulfate E), or keratan sulfate. In human prostate cancer tissues, the ARSB activity was reduced and the GALNS activity was increased, compared to normal prostate tissue. In human prostate stem cells, when ARSB was reduced by silencing or GALNS was increased by overexpression, activity of SHP2, the ubiquitous non-receptor tyrosine phosphatase, declined, attributable to increased binding of SHP2 with C4S. This led to increases in phospho-ERK1/2, Myc/Max nuclear DNA binding, DNA methyltransferase (DNMT) activity and expression, and methylation of the Dickkopf Wnt signaling pathway inhibitor (DKK)3 promoter and to reduced DKK3 expression. Since DKK3 negatively regulates Wnt/β-catenin signaling, silencing of ARSB or overexpression of GALNS disinhibited (increased) Wnt/β-catenin signaling. These findings indicate that the chondroitin sulfatases can exert profound effects on Wnt-mediated processes, due to epigenetic effects that modulate Wnt signaling. PMID:29245974
Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer
Xu, S; Adisetiyo, H; Tamura, S; Grande, F; Garofalo, A; Roy-Burman, P; Neamati, N
2015-01-01
Background: Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. Methods: We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Results: Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. Conclusions: There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice. PMID:26103574
Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K
Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng
2016-01-01
BACKGROUND. Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. METHODS. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. RESULTS. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the presence of vasculogenic mimicry and in vitro inhibition of PI3K by LY294002 disrupted vasculogenic mimicry, potentially through a reduction of EphA2 phosphorylation at Ser897. CONCLUSIONS. The expression levels of PI3K and EphA2 are positively correlated with vasculogenic mimicry both in vivo and in vitro. Moreover, phosphorylation levels of EphA2 regulated by PI3K are also significantly associated with vasculogenic mimicry in vivo. Based on its functional implication in vasculogenic mimicry in vitro, EphA2 signaling may be a potential therapeutic target in advanced prostate cancer. PMID:27326255
Yu, Yue; Liu, Liangliang; Xie, Ning; Xue, Hui; Fazli, Ladan; Buttyan, Ralph; Wang, Yuzhuo; Gleave, Martin
2013-01-01
Context: Like other tissues, the prostate is an admixture of many different cell types that can be segregated into components of the epithelium or stroma. Reciprocal interactions between these 2 types of cells are critical for maintaining prostate homeostasis, whereas aberrant stromal cell proliferation can disrupt this balance and result in diseases such as benign prostatic hyperplasia. Although the androgen and estrogen receptors are relatively well studied for their functions in controlling stromal cell proliferation and differentiation, the role of the progesterone receptor (PR) remains unclear. Objective: The aim of the study was to investigate the expression and function of the PR in the prostate. Design and Setting: Human prostate biopsies, renal capsule xenografts, and prostate stromal cells were used. Immunohistochemistry, Western blotting, real-time quantitative PCR, cell proliferation, flow cytometry, and gene microarray analyses were performed. Results: Two PR isoforms, PRA and PRB, are expressed in prostate stromal fibroblasts and smooth muscle cells, but not in epithelial cells. Both PR isoforms suppress prostate stromal cell proliferation through inhibition of the expression of cyclinA, cyclinB, and cdc25c, thus delaying cell cycling through S and M phases. Gene microarray analyses further demonstrated that PRA and PRB regulated different transcriptomes. However, one of the major gene groups commonly regulated by both PR isoforms was the one associated with regulation of cell proliferation. Conclusion: PR plays an inhibitory role in prostate stromal cell proliferation. PMID:23666965
Marks, Leonard S; Kojima, Munekado; Demarzo, Angelo; Heber, David; Bostwick, David G; Qian, Junqi; Dorey, Frederick J; Veltri, Robert W; Mohler, James L; Partin, Alan W
2004-10-01
To investigate the relationship between diet and prostate cancer (CaP) among native Japanese (NJ) and second-generation or third-generation Japanese-American (J-A) men--focusing on the effects of animal fat and soy on prostatic tissues. The subjects were 50 Japanese men undergoing radical prostatectomy, 25 NJ living in Nagoya, Japan and 25 U.S.-born J-A men, living in Los Angeles, California. A priori, the NJ men were believed to be a low-fat, high-soy group and the J-A men, a high-fat, low-soy group. The studies included postoperative measurements of diet (Block questionnaire), body fat (bioimpedance), blood, urine, and prostatic biomarkers in malignant and adjacent normal tissue, using a tissue microarray made from the original paraffin blocks. The NJ and J-A men were similar in age (65 to 70 years old; P <0.05), prostate-specific antigen level (7.1 to 8.6 ng/mL), prostate volume (35 to 38 cm3), and Gleason score (5.6 to 6.6), but their body composition differed. J-A men had more body fat (24% versus 19%), higher serum triglyceride levels (245 versus 106 mg/dL), lower estradiol levels (27 versus 31 ng/mL), and much lower urinary soy-metabolite levels (1:3) than NJ men (P <0.02). In both NJ and J-A groups, expression of numerous tissue biomarkers separated normal from CaP tissue, including markers for apoptosis (Bcl-2, caspase-3), growth factor receptors (epidermal growth factor receptor), racemase, 5-lipoxygenase, kinase inhibition (p27), and cell proliferation (Ki-67; all P <0.02). Furthermore, within both normal and CaP tissues, caspase-3 and 5-lipoxygenase were expressed more in NJ than in J-A men (P <0.01). Nuclear morphometry showed that the chromatin in each of the four groups (normal versus CaP, NJ versus J-A) was different (area under the curve 85% to 94%, P <0.01), despite fundamental genetic homogeneity. NJ and J-A men, products of similar genetics but differing environments, were shown to have differences in body composition that could influence CaP evolution. The CaP specimens from the NJ and J-A men were histologically similar, but tissue biomarker expression, especially of lipoxygenase and the caspase family, suggested differing mechanisms of carcinogenesis. Differences in nuclear morphometry suggested the additional possibility of gene-nutrient interactions.
Fisetin enhances chemotherapeutic effect of cabazitaxel against human prostate cancer cells
Mukhtar, Eiman; Adhami, Vaqar Mustafa; Siddiqui, Imtiaz Ahmad; Verma, Ajit Kumar; Mukhtar, Hasan
2016-01-01
Although treatment of prostate cancer (PCa) has improved over the past several years, taxanes such as cabazitaxel remain the only form of effective chemotherapy that improves survival in patients with metastatic castration-resistant PCa. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule stabilizing agent and inhibits PCa cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μM) enhances cabazitaxel (5nM) and synergistically reduces 22Rν1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in inhibition of tumor growth, invasion and metastasis when assessed in two in-vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced PCa through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant PCa and possibly other cancer types. PMID:27765854
Franzen, Carrie A; Blackwell, Robert H; Foreman, Kimberly E; Kuo, Paul C; Flanigan, Robert C; Gupta, Gopal N
2016-05-01
Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA with the potential to alter signaling pathways in recipient cells. While exosome research has flourished, few publications have specifically considered the role of genitourinary cancer shed exosomes in urine, their implication in disease progression and their usefulness as noninvasive biomarkers. In this review we examined the current literature on the role of exosomes in intercellular communication and as biomarkers, and their potential as delivery vehicles for therapeutic applications in bladder, prostate and renal cancer. We searched PubMed® and Google® with the key words prostate cancer, bladder cancer, kidney cancer, exosomes, microvesicles and urine. Relevant articles, including original research studies and reviews, were selected based on contents. A review of this literature was generated. Cancer exosomes can be isolated from urine using various techniques. Cancer cells have been found to secrete more exosomes than normal cells. These exosomes have a role in cellular communication by interacting with and depositing their cargo in target cells. Bladder, prostate and renal cancer exosomes have been shown to enhance migration, invasion and angiogenesis. These exosomes have also been shown to increase proliferation, confer drug resistance and promote immune evasion. Urinary exosomes can be isolated from bladder, kidney and prostate cancer. They serve as a potential reservoir for biomarker identification. Exosomes also have potential for therapeutics as siRNA or pharmacological agents can be loaded into exosomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Arctigenin inhibits prostate tumor cell growth in vitro and in vivo
Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.
2017-01-01
The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application. PMID:29062885
Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.
Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V
2017-06-01
The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.
Photodynamic therapy in prostate cancer: optical dosimetry and response of normal tissue
NASA Astrophysics Data System (ADS)
Chen, Qun; Shetty, Sugandh D.; Heads, Larry; Bolin, Frank; Wilson, Brian C.; Patterson, Michael S.; Sirls, Larry T., II; Schultz, Daniel; Cerny, Joseph C.; Hetzel, Fred W.
1993-06-01
The present study explores the possibility of utilizing photodynamic therapy (PDT) in treating localized prostate carcinoma. Optical properties of ex vivo human prostatectomy specimens, and in vivo and ex vivo dog prostate glands were studied. The size of the PDT induced lesion in dog prostate was pathologically evaluated as a biological endpoint. The data indicate that the human normal and carcinoma prostate tissues have similar optical properties. The average effective attenuation depth is less in vivo than that of ex vivo. The PDT treatment generated a lesion size of up to 16 mm in diameter. The data suggest that PDT is a promising modality in prostate cancer treatment. Multiple fiber system may be required for clinical treatment.
Ward, Ashley B; Mir, Hina; Kapur, Neeraj; Gales, Dominique N; Carriere, Patrick P; Singh, Shailesh
2018-06-14
Despite recent advances in diagnosis and treatment, prostate cancer (PCa) remains the leading cause of cancer-related deaths in men. Current treatments offered in the clinics are often toxic and have severe side effects. Hence, to treat and manage PCa, new agents with fewer side effects or having potential to reduce side effects of conventional therapy are needed. In this study, we show anti-cancer effects of quercetin, an abundant bioflavonoid commonly used to treat prostatitis, and defined quercetin-induced cellular and molecular changes leading to PCa cell death. Cell viability was assessed using MTT. Cell death mode, mitochondrial outer membrane potential, and oxidative stress levels were determined by flow cytometry using Annexin V-7 AAD dual staining kit, JC-1 dye, and ROS detection kit, respectively. Antibody microarray and western blot were used to delineate the molecular changes induced by quercetin. PCa cells treated with various concentrations of quercetin showed time- and dose-dependent decrease in cell viability compared to controls, without affecting normal prostate epithelial cells. Quercetin led to apoptotic and necrotic cell death in PCa cells by affecting the mitochondrial integrity and disturbing the ROS homeostasis depending upon the genetic makeup and oxidative status of the cells. LNCaP and PC-3 cells that have an oxidative cellular environment showed ROS quenching after quercetin treatment while DU-145 showed rise in ROS levels despite having a highly reductive environment. Opposing effects of quercetin were also observed on the pro-survival pathways of PCa cells. PCa cells with mutated p53 (DU-145) and increased ROS showed significant reduction in the activation of pro-survival Akt pathway while Raf/MEK were activated in response to quercetin. PC-3 cells lacking p53 and PTEN with reduced ROS levels showed significant activation of Akt and NF-κB pathway. Although some of these changes are commonly associated with oncogenic response, the cumulative effect of these alterations is PCa cell death. Our results demonstrated quercetin exerts its anti-cancer effects by modulating ROS, Akt, and NF-κB pathways. Quercetin could be used as a chemopreventive option as well as in combination with chemotherapeutic drugs to improve clinical outcomes of PCa patients.
Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli
2014-07-01
HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.
Sadinski, Meredith; Karczmar, Gregory; Peng, Yahui; Wang, Shiyang; Jiang, Yulei; Medved, Milica; Yousuf, Ambereen; Antic, Tatjana; Oto, Aytekin
2016-09-01
The objective of our study was to evaluate the role of a hybrid T2-weighted imaging-DWI sequence for prostate cancer diagnosis and differentiation of aggressive prostate cancer from nonaggressive prostate cancer. Twenty-one patients with prostate cancer who underwent preoperative 3-T MRI and prostatectomy were included in this study. Patients underwent a hybrid T2-weighted imaging-DWI examination consisting of DW images acquired with TEs of 47, 75, and 100 ms and b values of 0 and 750 s/mm(2). The apparent diffusion coefficient (ADC) and T2 were calculated for cancer and normal prostate ROIs at each TE and b value. Changes in ADC and T2 as a function of increasing the TE and b value, respectively, were analyzed. A new metric termed "PQ4" was defined as the percentage of voxels within an ROI that has increasing T2 with increasing b value and has decreasing ADC with increasing TE. ADC values were significantly higher in normal ROIs than in cancer ROIs at all TEs (p < 0.0001). With increasing TE, the mean ADC increased 3% in cancer ROIs and increased 12% in normal ROIs. T2 was significantly higher in normal ROIs than in cancer ROIs at both b values (p ≤ 0.0002). The mean T2 decreased with increasing b value in cancer ROIs (ΔT2 = -17 ms) and normal ROIs (ΔT2 = -52 ms). PQ4 clearly differentiated normal ROIs from prostate cancer ROIs (p = 0.0004) and showed significant correlation with Gleason score (ρ = 0.508, p < 0.0001). Hybrid MRI measures the response of ADC and T2 to changing TEs and b values, respectively. This approach shows promise for detecting prostate cancer and determining its aggressiveness noninvasively.
Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.
2016-01-01
This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562
Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook
2016-11-01
Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by trichomonads induce the migration and activation of mast cells. The activated mast cells induce the proliferation of prostate stromal cells via CXCL8-CXCR1 and CCL2-CCR2 signaling. Our results therefore show that the inflammatory response by BPH epithelial cells stimulated with T. vaginalis induce the proliferation of prostate stromal cells via crosstalk with mast cells. Prostate 76:1431-1444, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2018-06-08
Infiltrating Bladder Urothelial Carcinoma; Recurrent Bladder Carcinoma; Stage I Prostate Cancer; Stage I Renal Cell Cancer; Stage II Bladder Urothelial Carcinoma; Stage II Renal Cell Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es
2015-07-15
Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT inductionmore » (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the acquisition of a malignant phenotype.« less
Kwon, Oh-Joon; Zhang, Li; Xin, Li
2016-01-01
Recent lineage tracing studies support the existence of prostate luminal progenitors that possess extensive regenerative capacity, but their identity remains unknown. We show that Sca-1 (Stem Cell Antigen-1) identifies a small population of murine prostate luminal cells that reside in the proximal prostatic ducts adjacent to the urethra. Sca-1+ luminal cells do not express Nkx3.1. They do not carry the secretory function, although they express the androgen receptor. These cells are enriched in the prostates of castrated mice. In the in vitro prostate organoid assay, a small fraction of the Sca-1+ luminal cells are capable of generating budding organoids that are morphologically distinct from those derived from other cell lineages. Histologically, this type of organoid is composed of multiple inner layers of luminal cells surrounded by multiple outer layers of basal cells. When passaged, these organoids retain their morphological and histological features. Finally, the Sca-1+ luminal cells are capable of forming small prostate glands containing both basal and luminal cells in an in vivo prostate regeneration assay. Collectively, our study establishes the androgen-independent and bipotent organoid-forming Sca-1+ luminal cells as a functionally distinct cellular entity. These cells may represent a putative luminal progenitor population and serve as a cellular origin for castration resistant prostate cancer. PMID:26418304
Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe
2015-12-29
The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.