Science.gov

Sample records for normal sleep circuitry

  1. The Drosophila circuitry of sleep-wake regulation.

    PubMed

    Artiushin, Gregory; Sehgal, Amita

    2017-06-01

    Sleep is a deeply conserved, yet fundamentally mysterious behavioral state. Knowledge of the circuitry of sleep-wake regulation is an essential step in understanding the physiology of the sleeping brain. Recent efforts in Drosophila have revealed new populations which impact sleep, as well as provided unprecedented mechanistic and electrophysiological detail of established sleep-regulating neurons. Multiple, distributed centers of sleep-wake circuitry exist in the fly, including the mushroom bodies, central complex and the circadian clock cells. Intriguingly, certain populations have been implicated in specific roles in homeostatic rebound sleep, occurring after sleep loss. In short, our knowledge of fly sleep circuitry advances towards a greater view of brain-wide connectivity and integration of the signals and correlates of the state of sleep. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sleep circuitry and the hypnotic mechanism of GABAA drugs.

    PubMed

    Lu, Jun; Greco, Mary Ann

    2006-04-15

    Early in the twentieth century, von Economo provided the first evidence linking the hypothalamus with sleep-wake behavior. His studies concluded that the anterior hypothalamus was associated with sleep, whereas the posterior hypothalamus was associated with waking. In the decades following these observations, a wealth of research has shown that an elaborate circuitry comprising a number of brain regions, cell types, and extracellular messengers underlies sleep-wake behavior. In this review, we discuss data generated in the past 10 years that highlight the role of the hypothalamus in sleep-wake behavior and control. In particular, we will focus on the identification of the ventrolateral preoptic nucleus (VLPO) as a sleep center and the hypocretin/orexin cells in the perifornical region of the hypothalamus as constituting a waking center; these two centers are critical for the maintenance of normal sleep-wake architecture, and provide a foundation for our understanding of sleep-wake behavior and its underlying physiology. The data from these and other regions traditionally associated with the sleep-wake cycle have led to a flip-flop switch model of sleep-wake control. The switch is composed of two sets of mutually inhibitory groups of neurons: a sleep group and an arousal group, with the latter modulated by orexin-containing neurons in the lateral hypothalamus. The sleep-promoting GABA (gamma-amino-butyric acid) receptor agonists are a diverse class of drugs, which include barbiturates, benzodiazepines, chloral hydrate, ethanol, and gaseous anesthetics, that have been used to study sleep physiology for many years. Recent studies suggest that these drugs may exert their hypnotic effects in a regionally specific manner. For example, some GABAA agonists appear to promote sleep by inhibiting the histaminergic cells in the tuberomammillary nucleus and weakly activating the VLPO via agonist binding to the alpha1 subunit of GABAA receptors; whereas, gaboxadol (THIP; 4

  3. Memory, sleep, and dynamic stabilization of neural circuitry: evolutionary perspectives.

    PubMed

    Kavanau, J L

    1996-01-01

    Some aspects of the evolution of mechanisms for enhancement and maintenance of synaptic efficacy are treated. After the origin of use-dependent synaptic plasticity, frequent synaptic activation (dynamic stabilization, DS) probably prolonged transient efficacy enhancements induced by single activations. In many "primitive" invertebrates inhabiting essentially unvarying aqueous environments, DS of synapses occurs primarily in the course of frequent functional use. In advanced locomoting ectotherms encountering highly varied environments, DS is thought to occur both through frequent functional use and by spontaneous "non-utilitarian" activations that occur primarily during rest. Non-utilitarian activations are induced by endogenous oscillatory neuronal activity, the need for which might have been one of the sources of selective pressure for the evolution of neurons with oscillatory firing capacities. As non-sleeping animals evolved increasingly complex brains, ever greater amounts of circuitry encoding inherited and experiential information (memories) required maintenance. The selective pressure for the evolution of sleep may have been the need to depress perception and processing of sensory inputs to minimize interference with DS of this circuitry. As the higher body temperatures and metabolic rates of endothermy evolved, mere skeletal muscle hypotonia evidently did not suffice to prevent sleep-disrupting skeletal muscle contractions during DS of motor circuitry. Selection against sleep disruption may have led to the evolution of further decreases in muscle tone, paralleling the increase in metabolic rate, and culminating in the postural atonia of REM (rapid eye movement) sleep. Phasic variations in heart and respiratory rates during REM sleep may result from superposition of activations accomplishing non-utilitarian DS of redundant and modulatory motor circuitry on the rhythmic autonomic control mechanisms. Accompanying non-utilitarian DS of circuitry during sleep

  4. Brain Circuitry Controlling Sleep and Wakefulness.

    PubMed

    Horner, Richard L; Peever, John H

    2017-08-01

    This article outlines the fundamental brain mechanisms that control sleep-wake patterns and reviews how pathologic changes in these control mechanisms contribute to common sleep disorders. Discrete but interconnected clusters of cells located within the brainstem and hypothalamus comprise the circuits that generate wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. These clusters of cells use specific neurotransmitters, or collections of neurotransmitters, to inhibit or excite their respective sleep- and wake-promoting target sites. These excitatory and inhibitory connections modulate not only the presence of wakefulness or sleep, but also the levels of arousal within those states, including the depth of sleep, degree of vigilance, and motor activity. Dysfunction or degeneration of wake- and sleep-promoting circuits is associated with narcolepsy, REM sleep behavior disorder, and age-related sleep disturbances. Research has made significant headway in identifying the brain circuits that control wakefulness, non-REM, and REM sleep and has led to a deeper understanding of common sleep disorders and disturbances.

  5. Unraveling a new circuitry for sleep regulation in Parkinson's disease.

    PubMed

    Targa, Adriano D S; Rodrigues, Lais S; Noseda, Ana Carolina D; Aurich, Mariana F; Andersen, Monica L; Tufik, Sergio; da Cunha, Cláudio; Lima, Marcelo M S

    2016-09-01

    Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology.

  6. [Normal and disordered sleep].

    PubMed

    Arnulf, I

    2007-07-01

    Normal sleep is a complex and reversible state of brain functioning, including reduced inputs and outputs, blunted reflexes, and metabolic and cognitive changes. Evidence supports a role for sleep in the consolidation of an array of learning and memory tasks. Sleep deprivation and fragmentation result in executive dysfunction, increased appetite/weight and cellular stress. Sleep is a vital, complex but plastic function that can be modulated depending on individual heritage and motivation. The major role of sleep in attention and memory raises about concern the reduction in sleep duration recently pointed in teenagers and young adults. Sleep disorders are numerous and various. Their mechanism is not always identified, but may result from a central dysfunction in sleep-wake (e.g. narcolepsy) or circadian (e.g. advanced sleep phase syndrome) systems, from the sleep-related loss of compensation of reflexes normally effective during wakefulness (breathing is the most vulnerable function during sleep), or from other diseases preventing sleep (e.g. psychiatric insomnia, restless legs syndrome).

  7. Breakdown in REM sleep circuitry underlies REM sleep behavior disorder.

    PubMed

    Peever, John; Luppi, Pierre-Hervé; Montplaisir, Jacques

    2014-05-01

    During rapid eye movement (REM) sleep, skeletal muscles are almost paralyzed. However, in REM sleep behavior disorder (RBD), which is a rare neurological condition, muscle atonia is lost, leaving afflicted individuals free to enact their dreams. Although this may sound innocuous, it is not, given that patients with RBD often injure themselves or their bed-partner. A major concern in RBD is that it precedes, in 80% of cases, development of synucleinopathies, such as Parkinson's disease (PD). This link suggests that neurodegenerative processes initially target the circuits controlling REM sleep. Clinical and basic neuroscience evidence indicates that RBD results from breakdown of the network underlying REM sleep atonia. This finding is important because it opens new avenues for treating RBD and understanding its link to neurodegenerative disorders.

  8. Lessons from sleeping flies: insights from Drosophila melanogaster on the neuronal circuitry and importance of sleep.

    PubMed

    Potdar, Sheetal; Sheeba, Vasu

    2013-06-01

    Sleep is a highly conserved behavior whose role is as yet unknown, although it is widely acknowledged as being important. Here we provide an overview of many vital questions regarding this behavior, that have been addressed in recent years using the genetically tractable model organism Drosophila melanogaster in several laboratories around the world. Rest in D. melanogaster has been compared to mammalian sleep and its homeostatic and circadian regulation have been shown to be controlled by intricate neuronal circuitry involving circadian clock neurons, mushroom bodies, and pars intercerebralis, although their exact roles are not entirely clear. We draw attention to the yet unanswered questions and contradictions regarding the nature of the interactions between the brain regions implicated in the control of sleep. Dopamine, octopamine, γ-aminobutyric acid (GABA), and serotonin are the chief neurotransmitters identified as functioning in different limbs of this circuit, either promoting arousal or sleep by modulating membrane excitability of underlying neurons. Some studies have suggested that certain brain areas may contribute towards both sleep and arousal depending on activation of specific subsets of neurons. Signaling pathways implicated in the sleep circuit include cyclic adenosine monophosphate (cAMP) and epidermal growth factor receptor-extracellular signal-regulated kinase (EGFR-ERK) signaling pathways that operate on different neural substrates. Thus, this field of research appears to be on the cusp of many new and exciting findings that may eventually help in understanding how this complex physiological phenomenon is modulated by various neuronal circuits in the brain. Finally, some efforts to approach the "Holy Grail" of why we sleep have been summarized.

  9. Brain circuitry mediating arousal from obstructive sleep apnea.

    PubMed Central

    Chamberlin, Nancy L.

    2013-01-01

    Obstructive sleep apnea (OSA) is a disorder of repetitive sleep disruption caused by reduced or blocked respiratory airflow. Although an anatomically compromised airway accounts for the major predisposition to OSA, a patient's arousal threshold and factors related to the central control of breathing (ventilatory control stability) are also important. Arousal from sleep (defined by EEG desynchronization) may be the only mechanism that allows airway re-opening following an obstructive event. However, in many cases arousal is unnecessary and even worsens the severity of OSA. Mechanisms for arousal are poorly understood. However, accumulating data are elucidating the relevant neural pathways and neurotransmitters. For example, serotonin is critically required, but its site of action is unknown. Important neural substrates for arousal have been recently identified in the parabrachial complex (PB), a visceral sensory nucleus in the rostral pons. Moreover, glutamatergic signaling from the PB contributes to arousal caused by hypercapnia, one of the arousal-promoting stimuli in OSA. A major current focus of OSA research is to find means to maintain airway patency during sleep, without sleep interruption. PMID:23810448

  10. A critical period of sleep for development of courtship circuitry and behavior in Drosophila.

    PubMed

    Kayser, Matthew S; Yue, Zhifeng; Sehgal, Amita

    2014-04-18

    Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.

  11. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder.

    PubMed

    McKenna, Dillon; Peever, John

    2017-04-10

    During healthy rapid eye movement sleep, skeletal muscles are actively forced into a state of motor paralysis. However, in rapid eye movement sleep behavior disorder-a relatively common neurological disorder-this natural process is lost. A lack of motor paralysis (atonia) in rapid eye movement sleep behavior disorder allows individuals to actively move, which at times can be excessive and violent. At first glance this may sound harmless, but it is not because rapid eye movement sleep behavior disorder patients frequently injure themselves or the person they sleep with. It is hypothesized that the degeneration or dysfunction of the brain stem circuits that control rapid eye movement sleep paralysis is an underlying cause of rapid eye movement sleep behavior disorder. The link between brain stem degeneration and rapid eye movement sleep behavior disorder stems from the fact that rapid eye movement sleep behavior disorder precedes, in the majority (∼80%) of cases, the development of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, which are known to initially cause degeneration in the caudal brain stem structures where rapid eye movement sleep circuits are located. Furthermore, basic science and clinical evidence demonstrate that lesions within the rapid eye movement sleep circuits can induce rapid eye movement sleep-specific motor deficits that are virtually identical to those observed in rapid eye movement sleep behavior disorder. This review examines the evidence that rapid eye movement sleep behavior disorder is caused by synucleinopathic neurodegeneration of the core brain stem circuits that control healthy rapid eye movement sleep and concludes that rapid eye movement sleep behavior disorder is not a separate clinical entity from synucleinopathies but, rather, it is the earliest symptom of these disorders. © 2017 International Parkinson and Movement Disorder Society.

  12. Pre-sleep behaviour in normal subjects.

    PubMed

    Ellis; Lemmens; Parkes

    1995-12-01

    Behaviour in the 2-h period before sleep onset was evaluated in 90 subjects with normal sleep/wake habits using an anonymous self-report questionnaire. This determined the timing of events from the initial preparation for sleep. The nature of the pre-sleep environment, the level of physical activity, and patterns of feeding behaviour were recorded together with self-ratings of tiredness, mood and security. Estimated sleep duration and sleep quality were determined. Ninety of 120 subjects responded. Sleep 'preparatory latency', from the time of initial sleep preparation to sleep onset, was 77 +/- 48 min; bed time to sleep onset time (sleep latency) was 41 +/- 42 min; lights out to sleep onset latency was 26 +/- 45 min. The estimated total sleep time was 7 +/- 1 h. In the pre-sleep period, mean noise and illumination levels were low and environmental temperature rating was at the median point on a very cold-very hot scale (mean scale scores: 23, 28 and 50, respectively). All subjects went to the bathroom before going to bed. Twenty-five percent of normal subjects had a snack or meal in the 2-h period before sleep onset. Sixty percentage recorded setting an alarm, 27% had a bath or shower, 23% checked door locks or windows and 49% read in bed. Nine percent of subjects slept with a cat on the bed. Humans, like other animal species, show a complex behavioural sequence in the 2-h period before falling asleep. A constant environment with limited metabolic activity may predispose to thermoregulatory changes prior to sleep onset.

  13. Medullary circuitry regulating rapid eye movement (REM) sleep and motor atonia

    PubMed Central

    Vetrivelan, Ramalingam; Fuller, Patrick M; Tong, Qingchun; Lu, Jun

    2009-01-01

    Considerable data support a role for glycinergic ventromedial medulla neurons in the mediation of the postsynaptic inhibition of spinal motoneurons necessary for the motor atonia of rapid-eye movement (REM) sleep in cats. These data are however difficult to reconcile with the fact that large lesions of the rostral ventral medulla do not result in loss of REM atonia in rats. In the present study, we sought to clarify which medullary networks in rodents are responsible for REM motor atonia by retrogradely tracing inputs to the spinal ventral horn from the medulla, ablating these medullary sources to determine their effects on REM atonia and using transgenic mice to identify the neurotransmitter(s) involved. Our results reveal a restricted region within the ventromedial medulla, termed here the ‘supraolivary medulla’ (SOM), which contains glutamatergic neurons that project to the spinal ventral horn. Cell-body specific lesions of the SOM resulted in an intermittent loss of muscle atonia, taking the form of exaggerated phasic muscle twitches, during REM sleep. A concomitant reduction in REM sleep time was observed in the SOM-lesioned animals. We next used mice with lox-P modified alleles of either the glutamate or GABA/glycine vesicular transporters to selectively eliminate glutamate or GABA/glycine neurotransmission from SOM neurons. Loss of SOM glutamate release, but not SOM GABA/glycine release, resulted in exaggerated muscle twitches during REM sleep that were similar to those observed following SOM lesions in rats. These findings, taken together, demonstrate that SOM glutamatergic neurons comprise key elements of the medullary circuitry mediating REM atonia. PMID:19625526

  14. Brainstem and Spinal Cord Circuitry Regulating REM Sleep and Muscle Atonia

    PubMed Central

    Krenzer, Martina; Anaclet, Christelle; Vetrivelan, Ramalingam; Wang, Nishang; Vong, Linh; Lowell, Bradford B.; Fuller, Patrick M.; Lu, Jun

    2011-01-01

    Background Previous work has suggested, but not demonstrated directly, a critical role for both glutamatergic and GABAergic neurons of the pontine tegmentum in the regulation of rapid eye movement (REM) sleep. Methodology/Principal Findings To determine the in vivo roles of these fast-acting neurotransmitters in putative REM pontine circuits, we injected an adeno-associated viral vector expressing Cre recombinase (AAV-Cre) into mice harboring lox-P modified alleles of either the vesicular glutamate transporter 2 (VGLUT2) or vesicular GABA-glycine transporter (VGAT) genes. Our results show that glutamatergic neurons of the sublaterodorsal nucleus (SLD) and glycinergic/GABAergic interneurons of the spinal ventral horn contribute to REM atonia, whereas a separate population of glutamatergic neurons in the caudal laterodorsal tegmental nucleus (cLDT) and SLD are important for REM sleep generation. Our results further suggest that presynaptic GABA release in the cLDT-SLD, ventrolateral periaqueductal gray matter (vlPAG) and lateral pontine tegmentum (LPT) are not critically involved in REM sleep control. Conclusions/Significance These findings reveal the critical and divergent in vivo role of pontine glutamate and spinal cord GABA/glycine in the regulation of REM sleep and atonia and suggest a possible etiological basis for REM sleep behavior disorder (RBD). PMID:22043278

  15. Effect of normal sleep and sleep deprivation on interhemispheric correlation during subsequent wakefulness in man.

    PubMed

    Corsi-Cabrera, M; Ramos, J; Meneses, S

    1989-04-01

    EEG activity was recorded from the right and left central, temporal, parietal and occipital derivations in 10 volunteers under the following conditions: at night before going to sleep, at night before sleep deprivation, in the morning after waking, in the morning after sleep deprivation and in the morning 48 h after recovery. Interhemispheric correlation and relative power were calculated for EEG samples of 20.48 sec. In the morning after normal sleep interhemispheric correlations were higher in all derivations in comparison to presleep values, while in the morning after sleep deprivation, interhemispheric correlations were lower or similar to predeprivation values in all derivations except the temporal cortex. The relative power of beta was significantly lower after normal sleep and higher after sleep loss, while the relative power of low frequencies was higher in the morning after sleep and lower in the morning after deprivation.

  16. A global quantification of "normal" sleep schedules using smartphone data.

    PubMed

    Walch, Olivia J; Cochran, Amy; Forger, Daniel B

    2016-05-01

    The influence of the circadian clock on sleep scheduling has been studied extensively in the laboratory; however, the effects of society on sleep remain largely unquantified. We show how a smartphone app that we have developed, ENTRAIN, accurately collects data on sleep habits around the world. Through mathematical modeling and statistics, we find that social pressures weaken and/or conceal biological drives in the evening, leading individuals to delay their bedtime and shorten their sleep. A country's average bedtime, but not average wake time, predicts sleep duration. We further show that mathematical models based on controlled laboratory experiments predict qualitative trends in sunrise, sunset, and light level; however, these effects are attenuated in the real world around bedtime. Additionally, we find that women schedule more sleep than men and that users reporting that they are typically exposed to outdoor light go to sleep earlier and sleep more than those reporting indoor light. Finally, we find that age is the primary determinant of sleep timing, and that age plays an important role in the variability of population-level sleep habits. This work better defines and personalizes "normal" sleep, produces hypotheses for future testing in the laboratory, and suggests important ways to counteract the global sleep crisis.

  17. Sleep extension normalizes ERP of waking auditory sensory gating in healthy habitually short sleeping individuals.

    PubMed

    Gumenyuk, Valentina; Korzyukov, Oleg; Roth, Thomas; Bowyer, Susan M; Drake, Christopher L

    2013-01-01

    Chronic sleep loss has been associated with increased daytime sleepiness, as well as impairments in memory and attentional processes. In the present study, we evaluated the neuronal changes of a pre-attentive process of wake auditory sensory gating, measured by brain event-related potential (ERP)--P50 in eight normal sleepers (NS) (habitual total sleep time (TST) 7 h 32 m) vs. eight chronic short sleeping individuals (SS) (habitual TST ≤6 h). To evaluate the effect of sleep extension on sensory gating, the extended sleep condition was performed in chronic short sleeping individuals. Thus, one week of time in bed (6 h 11 m) corresponding to habitual short sleep (hSS), and one week of extended time (∼ 8 h 25 m) in bed corresponding to extended sleep (eSS), were counterbalanced in the SS group. The gating ERP assessment was performed on the last day after each sleep condition week (normal sleep and habitual short and extended sleep), and was separated by one week with habitual total sleep time and monitored by a sleep diary. We found that amplitude of gating was lower in SS group compared to that in NS group (0.3 µV vs. 1.2 µV, at Cz electrode respectively). The results of the group × laterality interaction showed that the reduction of gating amplitude in the SS group was due to lower amplitude over the left hemisphere and central-midline sites relative to that in the NS group. After sleep extension the amplitude of gating increased in chronic short sleeping individuals relative to their habitual short sleep condition. The sleep condition × frontality interaction analysis confirmed that sleep extension significantly increased the amplitude of gating over frontal and central brain areas compared to parietal brain areas.

  18. Cerebral blood flow in normal and abnormal sleep and dreaming

    SciTech Connect

    Meyer, J.S.; Ishikawa, Y.; Hata, T.; Karacan, I.

    1987-07-01

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreaming CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.

  19. Differentiation of normal and disturbed sleep by automatic analysis.

    PubMed

    Hasan, J

    1983-01-01

    The main purpose of the present study was to develop an automatic hybrid system and evaluate its performance in the differentiation of normal and disturbed sleep. The study was carried out in roughly the following steps: At the beginning the quantity of five EEG waveforms, delta, theta, alpha, sigma and beta were examined with respect to sleep stages and their temporal distributions and inter-relationships throughout the nights in young 20-22 year-old, healthy individuals. These data were used as a basis for the choice of parameters for a sleep stage scoring program. Secondly, the sleep stage scoring software was developed using as test material three subject groups: about 10 years older controls, anonymous alcoholics and chronic alcoholics in the withdrawal phase. The last group was examined on two occasions, first in the initial withdrawal and then after two weeks' abstinence between the recordings. The sleep stage scoring program was evaluated in comparison with a visual sleep stage determination and its performance was also tested on the young normals. Attention was paid to three main points: First, how well does an automatic system imitate the visual classification of a human subject, when both the human and the computer classifications are compared side by side at a 20 s epoch level? Second, even if this comparison did not show a satisfactory agreement, could the computer classification still replace the visual sleep stage scoring when the objective is to describe the neurophysiological characteristics of the human whole-night sleep process or differentiate between normal and disturbed sleep. For this purpose it was examined, whether the values for the sleep stage parameters obtained by visual classification corresponded to those obtained by computer scoring and whether the differences found between the groups by manual methods could also be obtained by computer classification. The third goal was to see whether other measures than parameters received by sleep

  20. Cardiovascular and respiratory dynamics during normal and pathological sleep

    NASA Astrophysics Data System (ADS)

    Penzel, Thomas; Wessel, Niels; Riedl, Maik; Kantelhardt, Jan W.; Rostig, Sven; Glos, Martin; Suhrbier, Alexander; Malberg, Hagen; Fietze, Ingo

    2007-03-01

    Sleep is an active and regulated process with restorative functions for physical and mental conditions. Based on recordings of brain waves and the analysis of characteristic patterns and waveforms it is possible to distinguish wakefulness and five sleep stages. Sleep and the sleep stages modulate autonomous nervous system functions such as body temperature, respiration, blood pressure, and heart rate. These functions consist of a sympathetic tone usually related to activation and to parasympathetic (or vagal) tone usually related to inhibition. Methods of statistical physics are used to analyze heart rate and respiration to detect changes of the autonomous nervous system during sleep. Detrended fluctuation analysis and synchronization analysis and their applications to heart rate and respiration during sleep in healthy subjects and patients with sleep disorders are presented. The observed changes can be used to distinguish sleep stages in healthy subjects as well as to differentiate normal and disturbed sleep on the basis of heart rate and respiration recordings without direct recording of brain waves. Of special interest are the cardiovascular consequences of disturbed sleep because they present a risk factor for cardiovascular disorders such as arterial hypertension, cardiac ischemia, sudden cardiac death, and stroke. New derived variables can help to find indicators for these health risks.

  1. Brainstem Circuitry Regulating Phasic Activation of Trigeminal Motoneurons during REM Sleep

    PubMed Central

    Anaclet, Christelle; Pedersen, Nigel P.; Fuller, Patrick M.; Lu, Jun

    2010-01-01

    Background Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. Methodology/Principal Findings To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. Conclusions/Significance These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate

  2. Self-reported consistency of normal habitual sleep durations of college students.

    PubMed

    Hicks, R A; Pellegrini, R J; Hawkins, J; Moore, J D

    1978-10-01

    A relationship between hours of sleep/night and the consistency of this normal daily sleep duration was observed for 763 college students who had rated themselves as good sleepers with stable and fairly well established patterns of sleep. Congruent with a limited literature, these data suggest that shorter sleep durations are likely, for college students, to be relatively recently acquired patterns of sleep.

  3. Prevalence of periodic limb movements during sleep in normal children.

    PubMed

    Marcus, Carole L; Traylor, Joel; Gallagher, Paul R; Brooks, Lee J; Huang, Jingtao; Koren, Dorit; Katz, Lorraine; Mason, Thornton B A; Tapia, Ignacio E

    2014-08-01

    Although the American Academy of Sleep Medicine (AASM) mandates that periodic limb movements during sleep (PLMS) be scored on every polysomnogram, and considers a periodic limb movement index (PLMI) > 5/h abnormal in children, there is a lack of community-derived data regarding the prevalence of PLMS in children, and no data to support this cutoff value. Therefore, the aim of this study was to determine the prevalence of PLMS in a sample of normal children. Retrospective study. 195 healthy, non-snoring children aged 5-17 years, recruited from the community, who underwent polysomnography for research purposes. PLMS were scored using the AASM 2007 criteria. The group age (median [IQR]) was 12.9 [10-15] years, and 58% were male. Sleep architecture was normal, and the obstructive apnea hypopnea index was 0.1 [0-0.3]/h. The median PLMI was 0/h, ranging from 0 to 35.5/h. Fifteen (7.7%) subjects had a PLMI > 5/h, and only 3 (1.5%) met the adult pathologic criterion of more than 15/h. Use of the 95th percentile PLMI cutoff of 7.2/h produced little difference in categorization between groups. Children with a PLMI > 5/h had a higher arousal index than those with a lower PLMI (11.6 [8.8-14.6] vs 8.1 [6.1-9.9]/h, respectively, P = 0.003). This study provides normative data to the field and supports the clinical periodic limb movement index cutoff of > 5/h based on both prevalence and the correlate of increased sleep fragmentation. Periodic limb movements during sleep are infrequent in normal children recruited from the community. Marcus CL, Traylor J, Gallagher PR, Brooks LJ, Huang J, Koren D, Katz L, Mason TB, Tapia IE. Prevalence of periodic limb movements during sleep in normal children.

  4. Adaptations and pathologies linked to dynamic stabilization of neural circuitry.

    PubMed

    Kavanau, J L

    1999-05-01

    Brain circuits for infrequently employed memories are reinforced largely during sleep by self-induced, electrical slow-waves, a process referred to as "dynamic stabilization" (DS). The essence of waking brain function in the absence of volitional activity is sensory input processing, an enormous amount of which is visual. These two functions: circuit reinforcement by DS and sensory information processing come into conflict when both occur at a high level, a conflict that may have been the selective pressure for sleep's origin. As brain waves are absent at the low temperatures of deep torpor, essential circuitry of hibernating small mammals would lose its competence if the animals did not warm up periodically to temperatures allowing sleep and circuit reinforcement. Blind, cave-dwelling vertebrates require no sleep because their sensory processing does not interfere with DS. Nor does such interference arise in continuously-swimming fishes, whose need to process visual information is reduced greatly by life in visually relatively featureless, pelagic habitats, and by schooling. Dreams are believed to have their origin in DS of memory circuits. They are thought to have illusory content when the circuits are partially degraded (incompetent), with synaptic efficacies weakened through infrequent use. Partially degraded circuits arise normally in the course of synaptic efficacy decay, or pathologically through abnormal regimens of DS. Organic delirium may result from breakdown of normal regimens of DS of circuitry during sleep, leaving many circuits incompetent. Activation of incompetent circuits during wakefulness apparently produces delirium and hallucinations. Some epileptic seizures may be induced by abnormal regimens of DS of motor circuitry. Regimens of remedial DS during seizures induced by electroconvulsive therapy (ECT) apparently produce temporary remission of delirium by restoring functional or 'dedicated' synaptic efficacies in incompetent circuitry. Sparing

  5. [Unusual behaviors in sleep as "compensatory" reactions, aimed at normalizing sleep-alertness cycles].

    PubMed

    Gol'bin, A Ts; Guzeva, V I; Shepoval'nikov, A N

    2013-01-01

    The present article is an attempt to perform a conceptual clinical and physiological analysis of a large spec- trum of sleep-related phenomena called parasomnias in children, based on data from three independent in- stitutions. Parasonmias appear in the process of falling asleep, at the time of sleep stage changes, and upon awakening. They are common for both healthy children and those with neurological and psychiatric disorders. Brief descriptions of clinical pictures of several groups of parasomnias and their polysomnographic characteristics are presented. Instances of stereotyped rhythmic movements (e.g. head rocking), paroxysmal somatic and behavioral episodes (night terrors and nightmares), "static" phenomena (sleep with open eyes, strange body positions), as well as somnambulism are specifically described. Common features of parasomnias as a group have been identified (the "Parasomnia syndrome"). It was found that sleep architecture frequently normalizes after a parasomnia episode, whereas parasomnias are self-liquidated after sleep matures (self-cure). The significance of gender differences in parasomnias have been reviewed. Possible compensatory physiological functions of parasomnias acting as "switches" or "stabilizers" of sleep stages to "off-set" deviated or immature sleep-wake mechanisms were discussed.

  6. Cataplexy with Normal Sleep Studies and Normal CSF Hypocretin: An Explanation?

    PubMed Central

    Drakatos, Panagis; Leschziner, Guy

    2016-01-01

    Patients with narcolepsy usually develop excessive daytime sleepiness (EDS) before or coincide with the occurrence of cataplexy, with the latter most commonly associated with low cerebrospinal fluid (CSF) hypocretin-1 levels. Cataplexy preceding the development of other features of narcolepsy is a rare phenomenon. We describe a case of isolated cataplexy in the context of two non-diagnostic multiple sleep latency tests and normal CSF-hypocretin-1 levels (217 pg/mL) who gradually developed EDS and low CSF-hypocretin-1 (< 110 pg/mL). Citation: Drakatos P, Leschziner G. Cataplexy with normal sleep studies and normal csf hypocretin: an explanation? J Clin Sleep Med 2016;12(3):449–450. PMID:26564387

  7. CPAP Treatment Partly Normalizes Sleep Spindle Features in Obstructive Sleep Apnea

    PubMed Central

    Saunamäki, Tiia; Huupponen, Eero; Loponen, Juho

    2017-01-01

    Objective. Obstructive sleep apnea (OSA) decreases sleep spindle density and frequency. We evaluated the effects of continuous positive airway pressure (CPAP) treatment on different features of sleep spindles. Methods. Twenty OSA patients underwent two night polysomnographies in a diagnostic phase and one night polysomnography after 6 months of CPAP treatment. The control group comprised 20 healthy controls. Sleep spindles were analyzed by a previously developed automated method. Unilateral and bilateral spindles were identified in central and frontopolar brain locations. Spindle density and frequency were determined for the first and last half of the NREM time. Results. The density of bilateral central spindles, which did not change in the untreated OSA patients, increased towards the morning hours during CPAP treatment and in the controls. Central spindles did not become faster with sleep in OSA patients and the central spindles remained slow in the left hemisphere even with CPAP. Conclusion. CPAP treatment normalized spindle features only partially. The changes may be associated with deficits in thalamocortical spindle generating loops. Significance. This study shows that some sleep spindle changes persist after CPAP treatment in OSA patients. The association of these changes to daytime symptoms in OSA patients needs to be further evaluated. PMID:28261503

  8. Should children with suspected obstructive sleep apnea syndrome and normal nap sleep studies have overnight sleep studies?

    PubMed

    Saeed, M M; Keens, T G; Stabile, M W; Bolokowicz, J; Davidson Ward, S L

    2000-08-01

    Overnight polysomnography (ONP) is the "gold standard" for the diagnosis of sleep-disordered breathing, but it is expensive and time-consuming. Thus, daytime nap studies have been used as screening tests. If the findings of a nap study are normal or mildly abnormal, should ONP be performed? Do specific abnormalities in nap studies predict abnormal findings in ONP? To answer these questions, we conducted this study. Retrospective chart review. Children's hospital. One hundred forty-three children with suspected obstructive sleep apnea syndrome secondary to isolated adenotonsillar hypertrophy, who had normal or mildly abnormal nap studies, and underwent ONP. We compared daytime nap and overnight polysomnograms in 143 children (52 girls; mean [+/- SD] age, 5.6 +/- 3.1 years). Total sleep time was 1 h in daytime nap, and 5.1 +/- 1.3 h in ONP. The interval between the two studies was 5.9 +/- 4.8 months. The findings of 59% of the nap studies were mildly abnormal, while 66% of overnight studies were abnormal. No individual nap study parameter (including short obstructive apneas, hypopneas, hypoxemia, hypoventilation, snoring, paradoxical breathing, gasping, retractions) had good sensitivity at predicting abnormal overnight polysomnograms, but most had good specificity and positive predictive value. We conclude that individual nap study parameters are not very sensitive in predicting abnormal ONP findings. However, when nap study parameters are abnormal, the chance of obstructive sleep apnea syndrome is high.

  9. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  10. Automatic sleep scoring in normals and in individuals with neurodegenerative disorders according to new international sleep scoring criteria.

    PubMed

    Jensen, Peter S; Sorensen, Helge B D; Leonthin, Helle L; Jennum, Poul

    2010-08-01

    The aim of this study was to develop a fully automatic sleep scoring algorithm on the basis of a reproduction of new international sleep scoring criteria from the American Academy of Sleep Medicine. A biomedical signal processing algorithm was developed, allowing for automatic sleep depth quantification of routine polysomnographic recordings through feature extraction, supervised probabilistic Bayesian classification, and heuristic rule-based smoothing. The performance of the algorithm was tested using 28 manually classified day-night polysomnograms from 18 normal subjects and 10 patients with Parkinson disease or multiple system atrophy. This led to quantification of automatic versus manual epoch-by-epoch agreement rates for both normals and abnormals. Resulting average agreement rates were 87.7% (Cohen's Kappa: 0.79) and 68.2% (Cohen's Kappa: 0.26) in the normal and abnormal group, respectively. Based on an observed reliability of the manual scorer of 92.5% (Cohen's Kappa: 0.87) in the normal group and 85.3% (Cohen's Kappa: 0.73) in the abnormal group, this study concluded that although the developed algorithm was capable of scoring normal sleep with an accuracy around the manual interscorer reliability, it failed in accurately scoring abnormal sleep as encountered for the Parkinson disease/multiple system atrophy patients.

  11. Odds, prevalence and predictors of sleep problems in school-age normal children.

    PubMed

    Spruyt, Karen; O'Brien, Louise M; Cluydts, Raymond; Verleye, Gino Benjamin; Ferri, Raffaele

    2005-06-01

    The objectives of the study were to describe the prevalence, odds, and predictors of 36 paediatric sleep behaviours and describe their coexistence in a school-age normal population. The design was community-based questionnaire survey of sleep-wake patterns, sleep environment, and 36 sleep behaviours indicative of six sleep disorder-subscales using the Health-Behaviour Questionnaire. A caregivers' report of 3045 children aged 6-13 years in Belgium constituted the participants. Prevalence of each sleep behaviour was calculated. Log-linear modelling within and between the sleep disorder-subscales was used to screen for coexistence. The effect size of selected night-time parameters to the likelihood of sleep behaviours and disorder-subscale was expressed as odds ratios via logit regression analysis. Significant differences in sleep-wake patterns were found between weekday and weekend. Ranking by odds showed that: (1) sleep problems such as 'tired when waking up', 'repetitive limb movements', 'going to bed reluctantly', and 'sleep paralysis' and; (2) the disorder-subscale 'excessive somnolence' are common in children. Coexistences within and between disorder-subscales of sleep problems are evident in a school-age, normal population. These results suggest that disorders of excessive somnolence (DES) are highly prevalent in a non-clinical sample of school-age children. Furthermore, sleep-onset latency and a noisy, not well-darkened room are predictive towards the odds for exhibiting sleep problems and disorders. It is advocated that more information on the importance of good sleep-wake hygiene should reach parents and children.

  12. Heart rate variability in normal and pathological sleep

    PubMed Central

    Tobaldini, Eleonora; Nobili, Lino; Strada, Silvia; Casali, Karina R.; Braghiroli, Alberto; Montano, Nicola

    2013-01-01

    Sleep is a physiological process involving different biological systems, from molecular to organ level; its integrity is essential for maintaining health and homeostasis in human beings. Although in the past sleep has been considered a state of quiet, experimental and clinical evidences suggest a noteworthy activation of different biological systems during sleep. A key role is played by the autonomic nervous system (ANS), whose modulation regulates cardiovascular functions during sleep onset and different sleep stages. Therefore, an interest on the evaluation of autonomic cardiovascular control in health and disease is growing by means of linear and non-linear heart rate variability (HRV) analyses. The application of classical tools for ANS analysis, such as HRV during physiological sleep, showed that the rapid eye movement (REM) stage is characterized by a likely sympathetic predominance associated with a vagal withdrawal, while the opposite trend is observed during non-REM sleep. More recently, the use of non-linear tools, such as entropy-derived indices, have provided new insight on the cardiac autonomic regulation, revealing for instance changes in the cardiovascular complexity during REM sleep, supporting the hypothesis of a reduced capability of the cardiovascular system to deal with stress challenges. Interestingly, different HRV tools have been applied to characterize autonomic cardiac control in different pathological conditions, from neurological sleep disorders to sleep disordered breathing (SDB). In summary, linear and non-linear analysis of HRV are reliable approaches to assess changes of autonomic cardiac modulation during sleep both in health and diseases. The use of these tools could provide important information of clinical and prognostic relevance. PMID:24137133

  13. Dynamics of sleep/wake determination--Normal and abnormal

    NASA Astrophysics Data System (ADS)

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  14. Dynamics of sleep/wake determination-Normal and abnormal.

    PubMed

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  15. Normal sleep and circadian rhythms: neurobiologic mechanisms underlying sleep and wakefulness.

    PubMed

    Markov, Dimitri; Goldman, Marina

    2006-12-01

    Sleep is a vital, highly organized process regulated by complex systems of neuronal networks and neurotransmitters. Sleep plays an important role in the regulation of central nervous system and body physiologic functions. Sleep architecture changes with age and is easily susceptible to external and internal disruption. Reduction or disruption of sleep can affect numerous functions varying from thermoregulation to learning and memory during the waking state.

  16. Effect of age on EEG arousals in normal sleep.

    PubMed

    Boselli, M; Parrino, L; Smerieri, A; Terzano, M G

    1998-06-15

    EEG arousals were quantified in 40 nocturnal polysomnographic recordings belonging to four age groups (teenagers: 10 to 19 years; young adults: 20 to 39 years; middle-aged: 40 to 59 years; elderly: > or = 60 years). Ten subjects (five males and five females) participated in each group. The subjects were healthy and sound sleepers. All sleep recordings were preceded by an adaptation night which aimed at excluding the presence of sleep-related disorders. The recordings were carried out in a partially soundproof recording chamber and in a standard laboratory setting. Arousal indices (AI), defined as the number of arousals per hour of sleep, were calculated for total sleep time (AI/TST) and for all the sleep stages. AI/TST increased linearly with age (r = 0.852; p < 0.00001): teenagers (13.8), young adults (14.7), middle-aged (17.8), elderly (27.1). An age-related positive linear correlation was found also for the arousal indices referred to NREM sleep (r = 0.811; p < 0.00001) and to stages 1 and 2 (r = 0.712; p < 0.00001), while in stages 3 and 4 and in REM sleep, arousal indices showed stable values across the ages. Overall, arousals lasted 14.9 +/- 2.3 seconds, with arousal duration stable across the ages (range of means: 13.3-16.6 seconds) and no relevant differences between NREM sleep (14.6 +/- 2.5 seconds) and REM sleep (16.2 +/- 5 seconds). The paper discusses the impact of age on arousals, the similarities between arousals and the phases d'activation transitoire, and the consideration that arousals are physiological components of sleep.

  17. Symposium: Normal and abnormal REM sleep regulation: REM sleep in depression-an overview.

    PubMed

    Berger; Riemann

    1993-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a major depressive disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous sub-type of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison with other psychopathological groups is challenged as well. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state- or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well-known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  18. Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults.

    PubMed

    Spira, Adam P; Gonzalez, Christopher E; Venkatraman, Vijay K; Wu, Mark N; Pacheco, Jennifer; Simonsick, Eleanor M; Ferrucci, Luigi; Resnick, Susan M

    2016-05-01

    To determine the association between self-reported sleep duration and cortical thinning among older adults. We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51-84) at baseline sleep assessment and 69.5 y (range, 56-86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3-11), with mean follow-up from initial scan of 8.0 y (range, 2.0-11.8). In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. © 2016 Associated Professional Sleep Societies, LLC.

  19. Sleep-Wake Profile in Dementia with Lewy Bodies, Alzheimer's Disease, and Normal Aging.

    PubMed

    Cagnin, Annachiara; Fragiacomo, Federica; Camporese, Giulia; Turco, Matteo; Bussè, Cinzia; Ermani, Mario; Montagnese, Sara

    2017-01-01

    Alterations of the sleep-wake cycle are common features of neurodegenerative dementia. To study differences in sleep-wake profiles in dementia with Lewy bodies (DLB), Alzheimer's disease (AD), and healthy controls. 30 DLB and 32 AD patients, and 33 healthy elderly participants were studied. Patients were evaluated for global cognitive impairment, extrapyramidal signs, fluctuations of attention, and behavioral disorders. A comprehensive sleep-wake profile was obtained including a set of questionnaires [Pittsburgh Sleep Quality Index (PSQI), REM Sleep Behavior Disorder Single-Question screen (RBD1Q), Epworth Sleepiness Scale (ESS)] and 12-day sleep diaries. Patients were matched for age, gender, and disease severity. DLB patients showed more severe daytime somnolence/dysfunction due to somnolence, and a higher proportion of RBD-like symptoms (70%) compared to AD and controls (p < 0.001), regardless of the presence of psychoactive drug treatment. As for sleep timing, DLB patients had a greater number of daytime naps and longer night sleep, with the latter being associated with use of clonazepam. The severity of fluctuations was associated with the presence of RBD (Clinician Assessment of Fluctuation score = RBD+: 5.2±3.7; RBD-: 2.1±3.2, p = 0.04). AD patients reported the best sleep-wake profile, while healthy controls declared the poorest sleep quality, although sleep timing and the quality of wakefulness were comparable between AD and controls. RBD and daytime fluctuations of attention may coexist in DLB and even reciprocally potentiate each other. Self-reports of sleep quality may lead to an underestimation of sleep disturbances in AD, possibly influenced by anosognosia, compared to normal elderly individuals who complain mainly of insomnia.

  20. Longitudinal Study of Sleep Behavior in Normal Infants during the First Year of Life

    PubMed Central

    Bruni, Oliviero; Baumgartner, Emma; Sette, Stefania; Ancona, Mario; Caso, Gianni; Di Cosimo, Maria Elisabetta; Mannini, Andrea; Ometto, Mariangela; Pasquini, Anna; Ulliana, Antonella; Ferri, Raffaele

    2014-01-01

    Study Objectives: To longitudinally examine sleep patterns, habits, and parent-reported sleep problems during the first year of life. Methods: Seven hundred four parent/child pairs participated in a longitudinal cohort study. Structured interview recording general demographic data, feeding habits, intercurrent diseases, family history, sleep habits, and parental evaluation of the infant's sleep carried out at 1, 3, 6, 9, and 12 months Results: Nocturnal, daytime, and total sleep duration showed a high inter-individual variability in the first year of life associated with changes in the first 6 months and stability from 6 to 12 months. Bedtime was at around 22:00 and remained stable at 6, 9, and 12 months of age. Approximately 20% of the infants had more than 2 awakenings and slept more often in the parent bed. Nearly 10% of the infants were considered as having a problematic sleep by parents and this significantly correlated with nocturnal awakenings and difficulties falling asleep. Conclusions: Sleep patterns change during the first year of life but most sleep variables (i.e., sleep latency and duration) show little variation from 6 to 12 months. Our data provide a context for clinicians to discuss sleep issues with parents and suggest that prevention efforts should focus to the first 3-6 months, since sleep patterns show stability from that time point to 12 months. Citation: Bruni O, Baumgartner E, Sette S, Ancona M, Caso G, Di Cosimo ME, Mannini A, Ometto M, Pasquini A, Ulliana A, Ferri R. Longitudinal study of sleep behavior in normal infants during the first year of life. J Clin Sleep Med 2014;10(10):1119-1127. PMID:25317093

  1. Variability in Self-Reported Normal Sleep Across the Adult Age Span

    PubMed Central

    Lichstein, Kenneth L.; Dautovich, Natalie D.; Taylor, Daniel J.; Riedel, Brant W.; Bush, Andrew J.

    2015-01-01

    Objectives. Illustrate the importance of examining within- and between-person differences in sleep across the adult age span. Method. Two weeks of sleep diary data were analyzed for 592 normal sleepers ranging in age from 20 to 96 years. Variability in total sleep time (TST), number of nighttime awakenings (NWAK), sleep-onset latency (SOL), and wake-time after sleep onset (WASO) were examined overall and by age, sex, and race utilizing multilevel models and multiple regression. Results. Night-to-night differences in sleep within the same individual generally exceeded differences between individuals for TST, SOL, and WASO. The amount of intraindividual variability in TST and NWAK decreased with older age. Further, the degree of reduction in variability in TST associated with age depended on sex and race, with young black females showing the greatest variability. In general, females tended to have more intraindividual variability in SOL and NWAK than males, while race differences were complicated by high variability between blacks. Discussion. To truly assess and understand individual differences in the sleep of older adults, future research needs to take into account night-to-night variability (including what makes sleep vary from one night to the next), in addition to average sleep. PMID:24829303

  2. The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice

    PubMed Central

    Szentirmai, Éva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G.; Krueger, James M.

    2009-01-01

    Peptidergic mechanisms controlling feeding, metabolism, thermoregulation, and sleep overlap in the hypothalamus. Low ambient temperatures and food restriction induce hypothermic (torpor) bouts and characteristic metabolic and sleep changes in mice. We report that mice lacking the preproghrelin gene, but not those lacking the ghrelin receptor, have impaired abilities to manifest and integrate normal sleep and thermoregulatory responses to metabolic challenges. In response to fasting at 17 °C (a subthermoneutral ambient temperature), preproghrelin knockout mice enter hypothermic bouts associated with reduced sleep, culminating in a marked drop in body temperature to near-ambient levels. Prior treatment with obestatin, another preproghrelin gene product, attenuates the hypothermic response of preproghrelin knockout mice. Results suggest that obestatin is a component in the coordinated regulation of metabolism and sleep during torpor. PMID:19666521

  3. Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults

    PubMed Central

    Spira, Adam P.; Gonzalez, Christopher E.; Venkatraman, Vijay K.; Wu, Mark N.; Pacheco, Jennifer; Simonsick, Eleanor M.; Ferrucci, Luigi; Resnick, Susan M.

    2016-01-01

    Study Objectives: To determine the association between self-reported sleep duration and cortical thinning among older adults. Methods: We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51–84) at baseline sleep assessment and 69.5 y (range, 56–86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3–11), with mean follow-up from initial scan of 8.0 y (range, 2.0–11.8). Results: In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Conclusions: Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. Citation: Spira AP, Gonzalez CE, Venkatraman

  4. Restoration of normal motor control in Parkinson's disease during REM sleep.

    PubMed

    De Cock, Valérie Cochen; Vidailhet, Marie; Leu, Smaranda; Texeira, Antonio; Apartis, Emmanuelle; Elbaz, Alexis; Roze, Emmanuel; Willer, Jean Claude; Derenne, Jean Philippe; Agid, Yves; Arnulf, Isabelle

    2007-02-01

    Although normal subjects do not move during REM sleep, patients with Parkinson's disease may experience REM sleep behaviour disorder (RBD). The characteristics of the abnormal REM sleep movements in RBD have, however, not been studied. We interviewed one hundred consecutive non-demented patients with Parkinson's disease and their bed partners using a structured questionnaire assessing the presence of RBD. They rated the quality of movements, voice and facial expression during RBD as being better, equal or worse than in awake ON levodopa condition. Night-time sleep and movements were video-monitored during polysomnography in 51 patients to evaluate the presence of bradykinesia, tremor and hypophonia during REM sleep. Fifty-nine patients had clinical RBD with 53/59 bed partners able to evaluate them. All 53 (100%) reported an improvement of at least one component of motor control during RBD. By history, movements were improved in 87% patients (faster, 87%; stronger, 87%; smoother, 51%), speech was better in 77% patients (more intelligible, 77%; louder, 38%; better articulated, 57%) and facial expression was normalized in 47% patients. Thirty-eight per cent of bed partners reported that movements were 'much better', even in the most disabled patients. The video-monitored purposeful movements in REM sleep were also surprisingly fast, ample, coordinated and symmetrical, without obvious sign of parkinsonism. The movements were, however, jerky, violent and often repetitive. While all patients had asymmetrical parkinsonism when awake, most of the time they used the more disabled arm, hand and leg during the RBD (P = 0.04). Movements involved six times as often the upper limbs and the face as the lower limbs (OR: 5.9, P = 0.004). The percentage of time containing tremor EMG activity decreased with sleep stages from 34.9 +/- 15.5% during wakefulness, to 3.6 +/- 5.7% during non-REM sleep stages 1-2, 1.4 +/- 3.0% during non-REM sleep stages 3-4, and 0.06 +/- 0.2% during REM

  5. Prior sleep, prior wake, and crew performance during normal flight operations.

    PubMed

    Thomas, Matthew J W; Ferguson, Sally A

    2010-07-01

    Industries that operate outside daytime hours are known to carry higher safety risks related to fatigue. While we are beginning to understand better the role of fatigue in increasing the risk of accidents in the workplace, relatively little is known about the manifestation of fatigue in the multicrew environment, where operational safety involves interaction between two or more crewmembers and a complex operating environment. Data were collected by trained expert observers during 302 normal flight operations of a commercial airline flying short-haul jet operations. Crewmembers were asked to provide an estimate of their total sleep in the prior 24 h, total sleep in the prior 48 h, and total wake time since their last sleep period at the commencement of cruise. Observers used the Threat and Error Management Model, developed as a standardized and highly structured method to collect operational performance data. Restricted sleep in both the 24-h and 48-h period prior to each sector were found to be associated with changes in crews' threat and error management performance. However, prior wake was not associated with any significant changes in crew performance. Restriction to less than 6 h sleep in the prior 24 h was associated with degraded operational performance and increased error rates. The findings of this study provide support to the notion that prior sleep is a critical fatigue-related variable. Moreover, the use of individual subjective assessment of prior sleep as a component of an overall fatigue risk management system is reinforced.

  6. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals.

    PubMed

    St-Onge, M-P; Wolfe, S; Sy, M; Shechter, A; Hirsch, J

    2014-03-01

    Sleep restriction alters responses to food. However, the underlying neural mechanisms for this effect are not well understood. The purpose of this study was to determine whether there is a neural system that is preferentially activated in response to unhealthy compared with healthy foods. Twenty-five normal-weight individuals, who normally slept 7-9 h per night, completed both phases of this randomized controlled study. Each participant was tested after a period of five nights of either 4 or 9 h in bed. Functional magnetic resonance imaging (fMRI) was performed in the fasted state, presenting healthy and unhealthy food stimuli and objects in a block design. Neuronal responses to unhealthy, relative to healthy food stimuli after each sleep period were assessed and compared. After a period of restricted sleep, viewing unhealthy foods led to greater activation in the superior and middle temporal gyri, middle and superior frontal gyri, left inferior parietal lobule, orbitofrontal cortex, and right insula compared with healthy foods. These same stimuli presented after a period of habitual sleep did not produce marked activity patterns specific to unhealthy foods. Further, food intake during restricted sleep increased in association with a relative decrease in brain oxygenation level-dependent (BOLD) activity observed in the right insula. This inverse relationship between insula activity and food intake and enhanced activation in brain reward and food-sensitive centers in response to unhealthy foods provides a model of neuronal mechanisms relating short sleep duration to obesity.

  7. Cyclic alternating patterns in normal sleep and insomnia: structure and content differences.

    PubMed

    Chouvarda, Ioanna; Mendez, Martin Oswaldo; Rosso, V; Bianchi, Anna M; Parrino, Liborio; Grassi, Andrea; Terzano, Mario Giovanni; Cerutti, Sergio; Maglaveras, Nicos

    2012-09-01

    This work aims to investigate new markers for the quantitative characterization of insomnia, in the context of sleep microstructure, as expressed by cyclic alternating pattern (CAP) sleep. The study group includes 11 subjects with normal sleep and 10 subjects with diagnosed primary insomnia. Differences between normal sleepers and insomniacs are investigated, in terms of dynamics and content of CAP events. The overall rate of CAP and of different phases is considered. The dynamic in the structure and alternation of CAP events is further studied in different scales by use of wavelet analysis, and calculation of energy/entropy features. The content of CAP events is studied in terms of electroencephalography (EEG) complexity analysis for the different types of events. Statistically significant differences are highlighted, both in structure and content. Besides confirming the increase in CAP rate, main findings regarding the microstructure difference in insomnia include: 1) as regards the deep sleep building phases, more irregular activation-deactivation patterns, with bigger deactivation time, i.e., distance between consecutive activation events, and appearing with higher EEG complexity in deactivation, and 2) a bigger duration of desynchronisation phases, with increased EEG complexity and more irregular patterns. This analysis extends previous findings on the relation between CAPrate increase and sleep instability mechanisms, proposing specific features of CAP that seem to play a role in insomnia (as consistently presented via classification analysis). This opens new perspectives for the understanding of the role of CAP in the quantitative characterization of sleep and its disorders.

  8. The effect of sleep restriction on neurobehavioural functioning in normally developing children and adolescents: insights from the Attention, Behaviour and Sleep Laboratory.

    PubMed

    Cassoff, J; Bhatti, J A; Gruber, R

    2014-10-01

    In the current paper, we first introduce the research themes of the attention, behaviour and sleep (ABS) laboratory, namely, sleep and ADHD, sleep and obesity, and sleep and academic performance. We then focus in on the topic to be reviewed in the current paper - the association between sleep restriction and neurobehavioral functioning (NBF) in typically developing children. We review the research thus far conducted by the ABS lab specific to this topic and posit the unique methodological contributions of the ABS lab (e.g. home-based assessment of sleep architecture and patterns, extensive phenotyping, etc.) in terms of advancing this research area. In the second section of the paper, we review 13 studies investigating the causal association between experimental sleep restriction and NBF in normally developing pediatric populations. Eight of the 13 studies found that sleep restriction causes impairments in neurobehavioural functioning. However, given the inconsistency in outcome measures, experimental protocols and statistical power, the studies reviewed herein are difficult to interpret. Strategies used by the ABS including implementing home assessments of sleep, restricting sleep relative to the participants' typical sleep schedules, blinding raters who assess NBF, and using valid and reliable NBF assessments are an attempt to address the gaps in this research area and clarify the causal relationship between sleep restriction and NBF in typically developing children and adolescents.

  9. Obstructive Sleep Apnea: Differences between Normal-Weight, Overweight, Obese, and Morbidly Obese Children.

    PubMed

    Scott, Brian; Johnson, Romaine F; Mitchell Md, Ron B

    2016-05-01

    The severity of obstructive sleep apnea in children determines perioperative management and is an indication for postoperative polysomnography. The relationship between increasing weight and sleep apnea severity in children remains unclear. To compare demographic, clinical, and polysomnography parameters in normal-weight, overweight, obese, and morbidly obese children, as well as identify demographic factors that predict sleep apnea severity. Case series with chart review. Academic children's hospital. A retrospective chart review of 290 children aged 2 to 18 years who underwent polysomnography at an academic children's hospital was performed. Demographics, clinical findings, and polysomnographic parameters were recorded. Children were categorized as normal weight, overweight, obese, or morbidly obese. Differences were assessed using linear and logistical regression models. Significance was set at P < .05. Morbidly obese were older than normal-weight children (mean, 8.0 ± 0.5 years vs 5.8 ± 0.3 years; P < .001) and less likely to have a normal polysomnogram (16% vs 48%; P = .02). There were no differences in sex, ethnicity, birth status (term or preterm), or tonsil size between normal-weight, overweight, obese, and morbidly obese children. Sleep efficiency and percentage of time in rapid eye movement were decreased in morbidly obese compared with other children (P < .05). The apnea-hypopnea index was positively correlated with increasing body mass index z score only as a function of increasing age (P < .001). Obstructive sleep apnea severity is correlated with a combination of increasing age and weight but not with either variable independently. This study suggests that obese and morbidly obese older children are most likely to have severe obstructive sleep apnea. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  10. Trait Hostility, Perceived Stress, and Sleep Quality in a Sample of Normal Sleepers

    PubMed Central

    Taylor, Nicholas D.; Fireman, Gary D.; Levin, Ross

    2013-01-01

    Objective. To date, no studies have directly examined the effects of cognitive trait hostility on prospectively assessed sleep quality. This is important as individuals with heightened trait hostility demonstrate similar patterns of reactivity to perceived stressors as is often reported by poor sleepers. The present study hypothesized that increased trait hostility is associated with poorer subjective sleep quality and that perceived stress mediates this relationship. Methods. A sample of 66 normal sleepers completed daily sleep and stress logs for two weeks. Trait hostility was measured retrospectively. Results. The cognitive dimension of trait hostility was significantly correlated with subjectively rated sleep quality indicators, and these relationships were significantly mediated by perceived daily stress. Individuals with higher levels of trait cognitive hostility reported increased levels of perceived stress which accounted for their poorer sleep ratings as measured by both retrospective and prospective measures. Conclusions. Overall, the findings indicate that high levels of cognitive hostility are a significant risk factor for disturbed sleep and suggest that this might be a fruitful target for clinical intervention. PMID:23766918

  11. Timing and duration of sleep and meals in obese and normal weight women. Association with increase blood pressure.

    PubMed

    Corbalán-Tutau, M D; Madrid, J A; Garaulet, M

    2012-08-01

    The aim was to evaluate the efficiency and duration of sleep and meals in normal-weight and obese women and the impact of these factors on metabolic syndrome (MetS) variables. The study was conducted in 70 women, normal-weight women (n=20) and obese women (n=50). Anthropometric variables, plasma glucose, lipids and ghrelin concentrations were determined. Blood pressure measurement was performed before lunch and before dinner for a week on alternate days. Subjects were instructed to keep a sleep and feeding diary. In general, obese women displayed longer and a significantly higher number of awakenings per week than normal-weight women and a higher duration of naps. Sleep efficiency was significantly lower in obese women. The higher intake in energy in the obese women was due to snacking differences. Moreover, higher sleep efficiency was correlated with a decrease in the diastolic blood pressure evening/morning ratio. Interestingly, among normal-weight women, visceral fat increased with the number of awakenings while plasma ghrelin was inversely correlated with meal duration (P=0.027). In conclusion, obese women had lower sleep efficiency, ate more quickly and spent more time eating and sleeping during the daytime hours than normal-weight women. Of note, sleep efficiency was associated with MetS features. Further interventions in obesity could include educating patients in food timing and in healthier sleep-hygiene practices, helping them to modify bad sleep habits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Sleep laboratory studies in restless legs syndrome patients as compared with normals and acute effects of ropinirole. 1. Findings on objective and subjective sleep and awakening quality.

    PubMed

    Saletu, B; Gruber, G; Saletu, M; Brandstätter, N; Hauer, C; Prause, W; Ritter, K; Saletu-Zyhlarz, G

    2000-01-01

    Although the restless legs syndrome (RLS) is a disorder with a relatively high prevalence rate (8% in Austria) and leads to insomnia and excessive daytime tiredness, there is a paucity of sleep laboratory data concerning objective and subjective sleep and awakening quality. Thus, the aim of this study was to investigate 12 untreated RLS patients as compared with 12 normal controls and subsequently measure the acute effects of 0.5 mg ropinirole (Requip((R))) - a nonergoline dopamine agonist - as compared with placebo. In 3 nights (adaptation, placebo, ropinirole night) sleep induction, maintenance and architecture were measured objectively by polysomnography, subjective sleep and awakening quality were assessed by self-rating scales and visual-analog scales, and objective awakening quality was evaluated by a psychometric test battery. In polysomnography, RLS patients demonstrated, as compared with normal controls, a decreased total sleep time (TST) and sleep efficacy, increased wakefulness during the total sleep period and frequency of nocturnal awakenings, increased sleep stage S1, decreased S2 and increased stage shifts. Subjective sleep quality tended to decrease, and morning well-being, mood, affectivity and wakefulness were deteriorated. In the noopsyche, fine motor activity and reaction time performance were deteriorated. Ropinirole 0.5 mg induced, as compared with placebo, an increase in TST, sleep efficacy, S2 sleep and stage shifts. In the morning, somatic complaints increased slightly, while fine motor activity and reaction time performance improved. Our findings suggest a key-lock principle in the diagnosis/treatment of RLS and a dopaminergic mechanism in its pathogenesis, which is supported by the data on periodic leg movements during sleep and arousals of the subsequent paper.

  13. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions.

    PubMed

    Pandi-Perumal, Seithikurippu R; Gonfalone, Alain A

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man's adaptation to life beyond the earth. One of man's most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man's biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth's gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts' subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve "normal" sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality which has

  14. How are normal sleeping controls selected? A systematic review of cross-sectional insomnia studies and a standardized method to select healthy controls for sleep research.

    PubMed

    Beattie, Louise; Espie, Colin A; Kyle, Simon D; Biello, Stephany M

    2015-06-01

    There appears to be some inconsistency in how normal sleepers (controls) are selected and screened for participation in research studies for comparison with insomnia patients. The purpose of the current study is to assess and compare methods of identifying normal sleepers in insomnia studies, with reference to published standards. We systematically reviewed the literature on insomnia patients, which included control subjects. The resulting 37 articles were systematically reviewed with reference to the five criteria for normal sleep specified by Edinger et al. In summary, these criteria are as follows: evidence of sleep disruption, sleep scheduling, general health, substance/medication use, and other sleep disorders. We found sleep diaries, polysomnography (PSG), and clinical screening examinations to be widely used with both control subjects and insomnia participants. However, there are differences between research groups in the precise definitions applied to the components of normal sleep. We found that none of the reviewed studies applied all of the Edinger et al. criteria, and 16% met four criteria. In general, screening is applied most rigorously at the level of a clinical disorder, whether physical, psychiatric, or sleep. While the Edinger et al. criteria seem to be applied in some form by most researchers, there is scope to improve standards and definitions in this area. Ideally, different methods such as sleep diaries and questionnaires would be used concurrently with objective measures to ensure normal sleepers are identified, and descriptive information for control subjects would be reported. Here, we have devised working criteria and methods to be used for the assessment of normal sleepers. This would help clarify the nature of the control group, in contrast to insomnia subjects and other patient groups.

  15. [Clinical correlation of hypnagogic hypersynchrony during sleep in normal children and those with learning disability].

    PubMed

    Olmos G de Alba, G; Fraire-Martínez, M I; Valenzuela-Romero, R

    One of the electroencephalographic (EEG) patterns that can be mistaken for paroxysmal clinical activity, when not taken into account and especially in children, is hypnagogic hypersynchrony (HH). This consists in generalised, paroxysmal, synchronic, symmetrical, slow, high voltage waves lasting 2 8 seconds, which appear in drowsiness and in stage I. It was observed that this pattern often appeared in children with learning disability (LD). AIMS. To correlate clinical data with the presence of HH during sleep in normal children and those with LD. We assessed 180 children between the ages of 6 12 years with normal neurological development, 130 of which suffered LD and 50 who did not have LD. EEG was performed with sleep deprivation, following the International Federation of Clinical Neurophysiology guidelines. The presence or absence of HH, together with its characteristics, was assessed. Of the children with LD, 35.38% displayed HH and of the children without LD, only 4% displayed HH. Since the characteristics of HH in the children with LD were different to previous descriptions, we put forward criteria with which to evaluate those differences. HH appeared more often in children with LD than in normal children. Qualitative, quantitative (p< 0.05) and morphological changes were found in the paroxysmal activity of HH during the stages of sleep in children with LD.

  16. Parental Perception of Sleep Problems in Children of Normal Intelligence with Pervasive Developmental Disorders: Prevalence, Severity, and Pattern

    ERIC Educational Resources Information Center

    Couturier, Jennifer L.; Speechley, Kathy N.; Steele, Margaret; Norman, Ross; Stringer, Bernadette; Nicolson, Rob

    2005-01-01

    Objective: This study compares parents' perceptions of the prevalence, severity, and pattern of sleep problems in children of normal intelligence with pervasive developmental disorders (PDDs) with a normative comparison group of children. Method: A survey including the Children's Sleep Habits Questionnaire was mailed to a sample of parents of…

  17. Parental Perception of Sleep Problems in Children of Normal Intelligence with Pervasive Developmental Disorders: Prevalence, Severity, and Pattern

    ERIC Educational Resources Information Center

    Couturier, Jennifer L.; Speechley, Kathy N.; Steele, Margaret; Norman, Ross; Stringer, Bernadette; Nicolson, Rob

    2005-01-01

    Objective: This study compares parents' perceptions of the prevalence, severity, and pattern of sleep problems in children of normal intelligence with pervasive developmental disorders (PDDs) with a normative comparison group of children. Method: A survey including the Children's Sleep Habits Questionnaire was mailed to a sample of parents of…

  18. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index.

    PubMed

    Vorona, Robert D; Winn, Maria P; Babineau, Teresa W; Eng, Benjamin P; Feldman, Howard R; Ware, J Catesby

    2005-01-10

    Insufficient sleep and obesity are common in the United States. Restricted sleep causes important neurocognitive changes, including excessive daytime sleepiness and altered mood. This may result in work-related injuries and automotive crashes. Evidence links sleep loss to hormonal changes that could result in obesity. This article examines the association between restricted sleep and obesity in a heterogeneous adult primary care population. A total of 1001 patients from 4 primary care practices participated in this prospective study. Patients completed a questionnaire administered by a nurse or study coordinator concerning demographics, medical problems, sleep habits, and sleep disorders. Professional staff measured height and weight in the office. The relationship between body mass index (BMI) and reported total sleep time per 24 hours was analyzed after categorizing patients according to their BMI (calculated as weight in kilograms divided by the square of height in meters) as being of normal weight (<25), overweight (25-29.9), obese (30-39.9), or extremely obese (> or =40). Analyzable forms from 924 patients aged between 18 and 91 years indicated that (1) the mean BMI was 30; (2) women slept more than men; (3) overweight and obese patients slept less than patients with a normal BMI (patients reported less sleep in a nearly linear relationship from the normal through the obese group); and (4) this trend of decreasing sleep time was reversed in the extremely obese patients. This study found that reduced amounts of sleep are associated with overweight and obese status. Interventions manipulating total sleep time could elucidate a cause-and-effect relationship between insufficient sleep and obesity.

  19. Sleep

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Sleep: Condition Information Skip sharing on social media links Share this: Page Content What is sleep? Sleep is a period of unconsciousness during which ...

  20. Changes in oxygen saturation and heart frequency during sleep in young normal subjects.

    PubMed Central

    Gimeno, F; Peset, R

    1984-01-01

    Changes in oxygen saturation and heart frequency were measured during sleep in a group of 21 normal subjects (9 women and 12 men) aged 19-25. At the time of the investigation all were non-smokers, they had no respiratory complaints, and indices of lung function (lung volumes, volume-pressure diagram, and diffusing capacity for carbon monoxide) were within normal limits. In contrast to published data, there were no major changes in oxygen saturation and no differences between men and women. PMID:6474401

  1. Mother-infant cosleeping, breastfeeding and sudden infant death syndrome: what biological anthropology has discovered about normal infant sleep and pediatric sleep medicine.

    PubMed

    McKenna, James J; Ball, Helen L; Gettler, Lee T

    2007-01-01

    Twenty years ago a new area of inquiry was launched when anthropologists proposed that an evolutionary perspective on infancy could contribute to our understanding of unexplained infant deaths. Here we review two decades of research examining parent-infant sleep practices and the variability of maternal and infant sleep physiology and behavior in social and solitary sleeping environments. The results challenge clinical wisdom regarding "normal" infant sleep, and over the past two decades the perspective of evolutionary pediatrics has challenged the supremacy of pediatric sleep medicine in defining what are appropriate sleep environments and behaviors for healthy human infants. In this review, we employ a biocultural approach that integrates diverse lines of evidence in order to illustrate the limitations of pediatric sleep medicine in adopting a view of infants that prioritizes recent western social values over the human infant's biological heritage. We review what is known regarding infant sleeping arrangements among nonhuman primates and briefly explore the possible paleoecological context within which early human sleep patterns and parent-infant sleeping arrangements might have evolved. The first challenges made by anthropologists to the pediatric and SIDS research communities are traced, and two decades of studies into the behavior and physiology of mothers and infants sleeping together are presented up to the present. Laboratory, hospital and home studies are used to assess the biological functions of shared mother-infant sleep, especially with regard to breastfeeding promotion and SIDS reduction. Finally, we encourage other anthropologists to participate in pediatric sleep research using the unique skills and insights anthropological data provide. By employing comparative, evolutionary and cross-cultural perspectives an anthropological approach stimulates new research insights that influence the traditional medical paradigm and help to make it more inclusive

  2. Opposite effects of sleep deprivation on the continuous reaction times in patients with liver cirrhosis and normal persons.

    PubMed

    Lauridsen, Mette Munk; Frøjk, Jesper; de Muckadell, Ove B Schaffalitzky; Vilstrup, Hendrik

    2014-09-01

    The continuous reaction times (CRT) method describes arousal functions. Reaction time instability in a patient with liver disease indicates covert hepatic encephalopathy (cHE). The effects of sleep deprivation are unknown although cirrhosis patients frequently suffer from sleep disorders. The aim of this study was to determine if sleep deprivation influences the CRT test. Eighteen cirrhosis patients and 27 healthy persons were tested when rested and after one night's sleep deprivation. The patients filled out validated sleep quality questionnaires. Seven patients (38%) had unstable reaction times (a CRTindex < 1.9) compatible with cHE. In these patients, the wakefulness improved or normalized their reaction speed and CRTindex (p = 0.01). There was no change in the other patients' reaction speed or stability. Seven patients (38%) reported poor sleep that was not related to their CRT tests before or after the sleep deprivation. In the healthy participants, the sleep deprivation slowed their reaction times by 11% (p < 0.0001) and in 7 persons (25%) destabilized them. The acute sleep deprivation normalized or improved the reaction time stability of the patients with a CRTindex below 1.9 and had no effect in the patients with a CRTindex above 1.9. There was no relation between reported sleep quality and reaction time results. Thus, in cirrhosis patients, sleep disturbances do not lead to 'falsely' slowed and unstable reaction times. In contrast, the acute sleep deprivation slowed and destabilized the reaction times of the healthy participants. This may have negative consequences for decision-making.

  3. Long-term facilitation of genioglossus activity is present in normal humans during NREM sleep.

    PubMed

    Chowdhuri, Susmita; Pierchala, Lisa; Aboubakr, Salah E; Shkoukani, Mahdi; Badr, M Safwan

    2008-01-01

    Episodic hypoxia (EH) is followed by increased ventilatory motor output in the recovery period indicative of long-term facilitation (LTF). We hypothesized that episodic hypoxia evokes LTF of genioglossus (GG) muscle activity in humans during non-rapid eye movement sleep (NREM) sleep. We studied 12 normal non-flow limited humans during stable NREM sleep. We induced 10 brief (3 min) episodes of isocapnic hypoxia followed by 5 min of room air. Measurements were obtained during control, hypoxia, and at 5, 10, 20, 30 and 40 min of recovery, respectively, for minute ventilation (V(I)), supraglottic pressure (P(SG)), upper airway resistance (R(UA)) and phasic GG electromyogram (EMG(GG)). In addition, sham studies were conducted on room air. During hypoxia there was a significant increase in phasic EMG(GG) (202.7+/-24.1% of control, p<0.01) and in V (I) (123.0+/-3.3% of control, p<0.05); however, only phasic EMG(GG) demonstrated a significant persistent increase throughout the recovery. (198.9+/-30.9%, 203.6+/-29.9% and 205.4+/-26.4% of control, at 5, 10, and 20 min of recovery, respectively, p<0.01). In multivariate regression analysis, age and phasic EMG(GG) activity during hypoxia were significant predictors of EMG(GG) at recovery 20 min. No significant changes in any of the measured parameters were noted during sham studies. (1) EH elicits LTF of GG in normal non-flow limited humans during NREM sleep, without concomitant ventilatory or mechanical LTF. (2) GG activity during the recovery period correlates with the magnitude of GG activation during hypoxia, and inversely with age.

  4. Obstructive sleep apnea in normal weight patients: characteristics and comparison with overweight and obese patients.

    PubMed

    Dacal Quintas, Raquel; Tumbeiro Novoa, Manuel; Alves Pérez, María Teresa; Santalla Martínez, Mari Luz; Acuña Fernández, Adela; Marcos Velázquez, Pedro

    2013-12-01

    To determine the frequency of obstructive sleep apnoea (OSA) and metabolic syndrome (MS) in normal weight patients and their characteristics, and to compare these with overweight and obese patients. We studied all patients with suspected OSA referred to the sleep laboratory from January to December 2009. OSA was diagnosed when the apnoea-hypopnoea index (AHI) was >5 and symptoms were present. MS was diagnosed according to International Diabetes Federation (IDF) criteria. The patients were distributed into 3 groups according to body mass index (BMI): normal weight (<25kg/m(2)), overweight (25-29.9kg/m(2)) and obese (≥30kg/m(2)). We studied 475 patients: 7.60% normal weight and 56.4% obese. Most patients in the normal weight group were women, snorers, non-smokers, non-drinkers and were significantly younger and with a smaller neck and waist circumference than obese and overweight patients. OSA was diagnosed in 90.10%: 77.70% normal weight. OSA in these patients was mostly mild, and there were differences between the diagnosis of OSA and the BMI classified. MS was diagnosed in 64.40%: 33.33% normal weight. There was a higher probability of MS as the BMI increased. OSA and MS frequency in normal weight patients was 22% and in obese patients was 70.52%. OSA in normal weight patients was related with gender and age. There was no relationship between OSA and MS, or between otorhinolaryngological malformations and OSA in normal weight patients. Eight normal weight patients with OSA were treated with continuous positive airway pressure (CPAP) therapy. The frequency of OSA in normal weight patients was lower than in overweight and obese patients. The frequency of concomitant OSA and MS was lower in normal weight patients than in obese subjects. Normal weight patients were mostly women, younger and had no toxic habits. In normal weight patients, age and gender were predictive factors for OSA, but OSA and MS were not related. Copyright © 2013 SEPAR. Published by Elsevier

  5. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals.

    PubMed

    Benedict, Christian; Vogel, Heike; Jonas, Wenke; Woting, Anni; Blaut, Michael; Schürmann, Annette; Cedernaes, Jonathan

    2016-12-01

    Changes to the microbial community in the human gut have been proposed to promote metabolic disturbances that also occur after short periods of sleep loss (including insulin resistance). However, whether sleep loss affects the gut microbiota remains unknown. In a randomized within-subject crossover study utilizing a standardized in-lab protocol (with fixed meal times and exercise schedules), we studied nine normal-weight men at two occasions: after two nights of partial sleep deprivation (PSD; sleep opportunity 02:45-07:00 h), and after two nights of normal sleep (NS; sleep opportunity 22:30-07:00 h). Fecal samples were collected within 24 h before, and after two in-lab nights, of either NS or PSD. In addition, participants underwent an oral glucose tolerance test following each sleep intervention. Microbiota composition analysis (V4 16S rRNA gene sequencing) revealed that after two days of PSD vs. after two days of NS, individuals exhibited an increased Firmicutes:Bacteroidetes ratio, higher abundances of the families Coriobacteriaceae and Erysipelotrichaceae, and lower abundance of Tenericutes (all P < 0.05) - previously all associated with metabolic perturbations in animal or human models. However, no PSD vs. NS effect on beta diversity or on fecal short-chain fatty acid concentrations was found. Fasting and postprandial insulin sensitivity decreased after PSD vs. NS (all P < 0.05). Our findings demonstrate that short-term sleep loss induces subtle effects on human microbiota. To what extent the observed changes to the microbial community contribute to metabolic consequences of sleep loss warrants further investigations in larger and more prolonged sleep studies, to also assess how sleep loss impacts the microbiota in individuals who already are metabolically compromised.

  6. Effect of ambient temperature on the 24-hour sleep-wake cycle in normal and capsaicin-treated rats.

    PubMed

    Obál, F; Tobler, I; Borbély, A A

    1983-03-01

    The 24-hour sleep-wake cycle of untreated, normal rats and of capsaicin-treated rats was continuously recorded by telemetry. Recordings were made on two baseline days at 22 degrees C, two days at 29 degrees C, and two final days at 22 degrees C. In untreated animals the daily amount of waking was reduced by the elevated ambient temperature and nonREM sleep was enhanced. This effect was mainly due to the frequent interruption of the dark-time waking episodes by sleep. In capsaicin-treated animals, raising the ambient temperature did not significantly enhance sleep. However, in both groups of rats the slow wave sleep (SWS) fraction of nonREM sleep was increased after elevating the temperature to 29 degrees C. REM sleep showed a minor increase which was significant only for the capsaicin-treated group. The results suggest that a moderate increase of ambient temperature has two effects: (1) It causes an enhancement of sleep by a reduction in the duration of waking episodes, an effect that may represent a heat-defense response. The attenuation of this response in capsaicin-treated rats may be a consequence of the impairment of warm-receptors. (2) It favors the occurrence of SWS and REM sleep.

  7. Heritability of Craniofacial Structures in Normal Subjects and Patients with Sleep Apnea

    PubMed Central

    Chi, Luqi; Comyn, Francois-Louis; Keenan, Brendan T.; Cater, Jacqueline; Maislin, Greg; Pack, Allan I.; Schwab, Richard J.

    2014-01-01

    Objectives: Accumulating evidence has shown that there is a genetic contribution to obstructive sleep apnea (OSA).The objectives were to use magnetic resonance imaging (MRI) cephalometry to (1) confirm heritability of craniofacial risk factors for OSA previously shown by cephalometrics; and (2) examine the heritability of new craniofacial structures that are measurable with MRI. Design: A sib pair “quad” design examining apneics, apneic siblings, controls, and control siblings. The study design used exact matching on ethnicity and sex, frequency matching on age, and statistical control for differences in age, sex, ethnicity, height, and weight. Setting: Academic medical center. Patients: We examined 55 apneic probands (apnea-hypopnea index [AHI]: 46.8 ± 33.5 events/h), 55 proband siblings (AHI: 11.1 ± 15.9 events/h), 55 controls (AHI: 2.2 ± 1.7 events/h), and 55 control siblings (AHI: 4.1 ± 4.0 events/h). Interventions: N/A. Measurements and Results: Five independent domains reflecting different aspects of the craniofacial structure were examined. We confirmed heritability of sella–nasion–subspinale (38%, P = 0.002), saddle angle (55%, P < 0.0001), mandibular length (24%, P = 0.02) and lower facial height (33%, P = 0.006) previously measured by cephalometry. In addition, the current study added new insights by demonstrating significant heritability of mandibular width (30%, P = 0.005), maxillary width (47%, P < 0.0001), distance from the hyoid bone to the retropogonion (36%, P = 0.0018) and size of the oropharyngeal space (31%, P = 0.004). Finally, our data indicate that heritability of the craniofacial structures is similar in normal patients and those with apnea. Conclusions: The data support our a priori hypothesis that the craniofacial structures that have been associated with obstructive sleep apnea (OSA) are heritable. We have demonstrated heritability for several intermediate craniofacial phenotypes for OSA. Thus, we believe that future studies

  8. Sleep disorders in Latin-American children with asthma and/or allergic rhinitis and normal controls.

    PubMed

    Urrutia-Pereira, M; Solé, D; Chong Neto, H J; Acosta, V; Cepeda, A M; Álvarez-Castelló, M; Almendarez, C F; Lozano-Saenz, J; Sisul-Alvariza, J C; Rosario, N A; Castillo, A J; Valentin-Rostan, M; Badellino, H; Castro-Almarales, R L; González-León, M; Sanchez-Silot, C; Avalos, M M; Fernandez, C; Berroa, F; De la Cruz, M M; Sarni, R O S

    Asthma and/or allergic rhinitis have been associated with sleep disorders. The aim of this study was to evaluate sleep disorders in Latin-American children (4-10 years) from nine countries, with persistent asthma (A) and/or allergic rhinitis (AR) and in normal controls (C). Parents from 454 C children and 700 A and/or AR children followed up in allergy reference clinics completed the Children's Sleep Habits Questionnaire (CSHQ) which is a retrospective one-week questionnaire composed of 33 questions composed of seven subscales (bedtime resistance, sleep duration, sleep anxiety, night wakings, parasomnias, sleep-disordered breathing and daytime sleepiness). The total scale of CSHQ and the subscales were compared between groups C and A+AR, A (n=285) vs. AR (n=390), and between controlled A (CA, n=103) vs. partially controlled/uncontrolled A (UA, n=182). The comparison between C and A+AR showed no significant differences in age (6.7 years vs. 7.0 years, respectively), mean Body Mass Index and total scale of CSHQ (53.3 vs. 63.2, respectively) and the subscales were significantly higher in the A+AR group. Comparison between groups A and AR, except for sleep anxiety, showed significantly higher values for CSHQ total scale (66.9 vs. 61.0, respectively) and subscales for group A. The UA group showed significantly higher values for total CSHQ scale and subscales in comparison to CA (71.1 vs. 59.4, respectively). Latin-American children with asthma and/or allergic rhinitis showed sleep disorders identified by the CSHQ when compared to normal controls. Despite being treated, asthma causes sleep impairment, especially when uncontrolled. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  9. No effects of short-term sleep restriction, in a controlled feeding setting, on lipid profiles in normal-weight adults.

    PubMed

    O'Keeffe, Majella; Roberts, Amy L; Kelleman, Michael; Roychoudhury, Arindam; St-Onge, Marie-Pierre

    2013-12-01

    Short sleep has been associated with cardiovascular risk. The aim of this study was to determine the impact of short-term sleep restriction on lipid profiles and resting blood pressure factors in young, normal-weight individuals (14 men, 13 women). Participants were randomized to five nights of either habitual (9 h) or short (4 h) sleep in a cross-over design separated by a 3-week washout period. There was no sleep × day interaction on lipid profile and blood pressure. Short-term sleep restriction does not alter lipid profiles and resting blood pressure in healthy, normal-weight individuals. The association between short sleep and increased cardiovascular risk reported in the epidemiological literature may be the result of long-term sleep restriction and poor lifestyle choices. © 2013 European Sleep Research Society.

  10. Brain serotonergic circuitries

    PubMed Central

    Charnay, Yves; Leger, Lucienne

    2010-01-01

    Brain serotonergic circuitries interact with other neurotransmitter systems on a multitude of different molecular levels. In humans, as in other mammalian species, serotonin (5-HT) plays a modulatory role in almost every physiological function. Furthermore, serotonergic dysfunction is thought to be implicated in several psychiatric and neurodegenerative disorders. We describe the neuroanatomy and neurochemistry of brain serotonergic circuitries. The contribution of emergent in vivo imaging methods to the regional localization of binding site receptors and certain aspects of their functional connectivity in correlation to behavior is also discussed. 5-HT cell bodies, mainly localized in the raphe nuclei, send axons to almost every brain region. It is argued that the specificity of the local chemocommunication between 5-HT and other neuronal elements mainly depends on mechanisms regulating the extracellular concentration of 5-HT, the diversity of high-affinity membrane receptors, and their specific transduction modalities. PMID:21319493

  11. Sexual circuitry in Drosophila.

    PubMed

    Auer, Thomas O; Benton, Richard

    2016-06-01

    The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses.

  12. Optical Circuitry Cooperative

    NASA Astrophysics Data System (ADS)

    Gibbs, H. M.; Gibson, U.; Peyghambarian, N.; Sarid, D.; Stegeman, G.

    1985-01-01

    An Optical Circuitry Cooperative (OCC) has been formed as an NSF cooperative research center in which six or more companies contribute financial support; NSF provides support which declines to zero in five years. Companies benefit from a center by early access to research results, leverage for their research dollars, participation in research selection, and improved relations with faculty and students. The university receives support for a major research program that increases its research capability, provides reasonably stable funding, and opens more opportunities for graduate students. The potential of optical circuitry has been discussed for many years, but the excitement is growing rapidly on the strength of the success of optical fibers for optical transmission, the generation of subpicosecond opitcal pulses, and the development of promising optical logic elements, such as optical bistable devices. And yet, much research remains to be done to discover the best nonlinear optical materials and fabrication techniques. OCC will perform research to provide a data base to allow the development of optical circuitry devices. The areas encompassed by OCC include all-optical logic, picosecond decision-making, guided-wave preprocessors, opti-cal interconnects within computers (both fiber and whole-array imaging), optical storage, and optical computer architecture and devices.

  13. Nocturnal sustained attention during sleep deprivation can be predicted by specific periods of subjective daytime alertness in normal young humans.

    PubMed

    Taillard, Jacques; Moore, Nicholas; Claustrat, Bruno; Coste, Olivier; Bioulac, Bernard; Philip, Pierre

    2006-03-01

    In our 24-h society, nocturnal sleep-related accidents are common. Because all individuals are not equal in their responses to sleep loss, it is very important to identify predictors of vulnerability to sleep deprivation in normal subjects. We investigated the performance of a cognitive test of sustained attention, electroencephalogram theta/alpha power, subjective sleepiness, and two circadian markers (core temperature and melatonin) in 18 healthy men (nine morning types and nine evening types, 21.4 +/- 1.9 years) during a 36-h sleep deprivation in a constant routine protocol. Sleep need (self-reported) and baseline sleep structure were also investigated. Nighttime performance impairment was defined as the difference between the mean nocturnal number of lapses (00:00-07:30 [corrected] hours) and the mean diurnal number of lapses (07:30-20:30 hours) expressed as a percentage. Feeling fully alert in the morning just after awakening and/or sleepy in early afternoon were the only two factors (Multiple R > 0.80, > 60% of explained variance) which better predicted the decrease in performances of nocturnal operational tasks requiring sustained attention.

  14. 24-h actigraphic monitoring of motor activity, sleeping and eating behaviors in underweight, normal weight, overweight and obese children.

    PubMed

    Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo

    2016-12-01

    Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.

  15. Effect of sleep deprivation on the growth hormone response to the alpha-3 adrenergic receptor agonist, clonidine, in normal subjects.

    PubMed

    Lal, S; Thavundayil, J X; Krishnan, B; Nair, N P; Schwartz, G; Kiely, M E; Guyda, H

    1997-01-01

    One night's sleep deprivation (SD) increased the growth hormone (GH) response to clonidine (20 ug/kg i.v.) in 11 normal men ( p < 0.005). This finding may indicate that SD enhances alpha-2 adrenergic receptor function or that the GH response to GH releasing factor in increased by SD.

  16. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research.

    PubMed

    Scullin, Michael K; Bliwise, Donald L

    2015-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines.

  17. Sleep, Cognition, and Normal Aging: Integrating a Half-Century of Multidisciplinary Research

    PubMed Central

    Scullin, Michael K.; Bliwise, Donald L.

    2014-01-01

    Sleep is implicated in cognitive functioning in young adults. With increasing age there are substantial changes to sleep quantity and quality including changes to slow wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half-century of research studies across 7 diverse correlational and experimental literature domains, which historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects (including correlations in the unexpected, negative direction) in healthy older adults indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines. PMID:25620997

  18. New Data Pre-processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based Normalization Method (LBNM)

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Güneş, Salih; Yosunkaya, Şebnem

    Sleep disorders are a very common unawareness illness among public. Obstructive Sleep Apnea Syndrome (OSAS) is characterized with decreased oxygen saturation level and repetitive upper respiratory tract obstruction episodes during full night sleep. In the present study, we have proposed a novel data normalization method called Line Based Normalization Method (LBNM) to evaluate OSAS using real data set obtained from Polysomnography device as a diagnostic tool in patients and clinically suspected of suffering OSAS. Here, we have combined the LBNM and classification methods comprising C4.5 decision tree classifier and Artificial Neural Network (ANN) to diagnose the OSAS. Firstly, each clinical feature in OSAS dataset is scaled by LBNM method in the range of [0,1]. Secondly, normalized OSAS dataset is classified using different classifier algorithms including C4.5 decision tree classifier and ANN, respectively. The proposed normalization method was compared with min-max normalization, z-score normalization, and decimal scaling methods existing in literature on the diagnosis of OSAS. LBNM has produced very promising results on the assessing of OSAS. Also, this method could be applied to other biomedical datasets.

  19. Sleep normalization and decrease in dissociative experiences: evaluation in an inpatient sample.

    PubMed

    van der Kloet, Dalena; Giesbrecht, Timo; Lynn, Steven Jay; Merckelbach, Harald; de Zutter, André

    2012-02-01

    We conducted a longitudinal study to investigate the relation between sleep experiences and dissociative symptoms in a mixed inpatient sample at a private clinic evaluated on arrival and at discharge 6 to 8 weeks later. Using hierarchical regression analyses and structural equation modeling, we found a link between sleep experiences and dissociative symptoms and determined that specifically decreases in narcoleptic experiences rather than insomnia accompany a reduction in dissociative symptoms. Although sleep improvements were associated with a general reduction in psychopathology, this reduction could not fully account for the substantial and specific effect that we found for dissociation. Our findings are consistent with Watson's (2001) hypothesis that disruptions in the sleep-wake cycle lead to intrusions of sleep phenomena into waking consciousness, resulting in dissociative experiences. Accordingly, sleep hygiene may contribute to the treatment or prevention of dissociative symptoms.

  20. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans.

    PubMed Central

    Boyle, P J; Scott, J C; Krentz, A J; Nagy, R J; Comstock, E; Hoffman, C

    1994-01-01

    Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep. Images PMID:8113391

  1. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  2. Neural circuitry and immunity.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine.

  3. [Functional organization of the sleep state in infants under normal conditions and in brain damage].

    PubMed

    Fantalova, V L

    1975-09-01

    Polygraphic study of day sleep was carried out in 30 nurslings with consideration to the EEG, oculogram, muscle tone indices, variations in skin resistance, respiration, ECG, rheoencephalogram and rheogram of the calf. Nurslings with cerebral affections of perinatal genesis were examined by the same method. It was possible to distinguish the main stages of slow sleep and stages of rapid sleep in young nurslings, although the electroencephalographic expression of the stages in children had its specific features. Age dynamics of the polygraphic picture of sleep showed electroencephalographic, vegetative and motor components of sleep to distinctly coordinate by stages and, at the same time, to possess marked autonomicity; this was also confirmed by analysis of cerebral pathology.

  4. Polysomnography (Sleep Study)

    MedlinePlus

    ... diagnosed with a sleep disorder. Polysomnography monitors your sleep stages and cycles to identify if or when your ... normal process of falling asleep begins with a sleep stage called non-rapid eye movement (NREM) sleep. During ...

  5. Effects of corticotropin-releasing hormone on respiratory parameters during sleep in normal men.

    PubMed

    Mann, K; Röschke, J; Benkert, O; Aldenhoff, J; Nink, M; Beyer, J; Lehnert, H

    1995-01-01

    Corticotropin-releasing hormone (CRH) is well-known to be a centrally acting respiratory stimulant after systemic application both in healthy subjects and in patients suffering from respiratory failure. In order to study the effects of CRH on sleep EEG and respiratory parameters during sleep, 14 healthy male volunteers were investigated in a single-blind placebo controlled design. After an adaptation night, polysomnography was performed during two successive nights between 23.00 hrs. and 7.00 hrs. During one night placebo was applied, on the other 50 micrograms ovine CRH was administered intravenously as a bolus every hour from 0.00 hrs. to 6.00 hrs. For the assessment of respiration, blood oxygen saturation and thoracic wall movements were measured, as well as nasal and oral airflow using the thermistor method. Sleep efficiency parameters and subjective perception of sleep quality were not affected following CRH. The following alterations were found regarding sleep architecture: REM sleep as well as slow wave sleep showed a tendency to decrease under CRH, whereas light sleep tended to increase. After an injection of CRH a stimulation of respiration could be observed, with an increase of tidal volume over a time interval of a few minutes. Blood oxygen saturation was only slightly increased. Cortisol and ACTH concentrations were found to be constantly elevated. These results indicate that respiration during sleep is clearly affected by CRH with only slight alterations of global sleep parameters. No association was found between stimulation of ventilation and the occurrence of arousals; the respiratory analeptic effect of CRH thus appears to be specific.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Extracorporeal Membrane Oxygenation Circuitry

    PubMed Central

    Horton, Stephen B.; McMullan, D. Michael; Bartlett, Robert H

    2013-01-01

    The extracorporeal membrane oxygenation (ECMO) circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard ECMO circuit consists of a mechanical blood pump, gas exchange device, and a heat exchanger all connected together with circuit tubing. ECMO circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short and long term ECMO applications. Contemporary ECMO circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time, while minimizing the procedure-related complications of bleeding, thrombosis and other physiologic derangements that were so common with the early application of ECMO. Modern era ECMO circuitry and components are simpler, safer, more compact and can be used across a wide variety of patient sizes from neonates to adults. PMID:23735989

  7. Positive Airway Pressure-Induced Conversion of Atrial Fibrillation to Normal Sinus Rhythm in Severe Obstructive Sleep Apnea

    PubMed Central

    Walia, Harneet K.; Chung, Mina K.; Ibrahim, Sally; Mehra, Reena

    2016-01-01

    Accumulating data implicate obstructive sleep apnea (OSA) as a predisposing factor to the development of atrial fibrillation (AF), the latter representing the most common sustained cardiac arrhythmia. The postulated mechanisms leading to atrial arrhythmogenesis in OSA include alterations in intrathoracic pressures, intermittent hypoxemia, and autonomic nervous system fluctuations. Although these OSA-related pathophysiologic pathways may result in atrial structural and electrical remodeling, thereby predisposing to AF, there are data to suggest that the immediate influences of respiratory events may trigger arrhythmic events. This case demonstrates an immediate reversal of AF to normal sinus rhythm with optimal continuous positive airway pressure (CPAP) therapy in the background of severe OSA. These findings of immediate benefit of reversal of OSA pathophysiology on cardiac arrhythmia suggest OSA may have acute influences on cardiac electrophysiology. Citation: Walia HK, Chung MK, Ibrahim S, Mehra R. Positive airway pressure-induced conversion of atrial fibrillation to normal sinus rhythm in severe obstructive sleep apnea. J Clin Sleep Med 2016;12(9):1301–1303. PMID:27166298

  8. Science and Teachers: Cardboard Circuitry

    ERIC Educational Resources Information Center

    Science and Children, 1977

    1977-01-01

    Diagrams a quick, improvised cardboard circuitry for battery holder, bulb socket, and switches. Materials include corrugated cardboard, paper clips, and rubber bands. Assembly useful in determining the electrical conductivity of substances. (CS)

  9. Sleep biological rhythms in normal infants and those at high risk for SIDS.

    PubMed

    Cornwell, Anne Christake; Feigenbaum, Peter

    2006-01-01

    The focus of this study was on daytime and nighttime sleep and wakefulness during the peak age for Sudden Infant Death Syndrome (SIDS), two to four months, to determine whether there are differences between at-risk for SIDS (R) and control (C) infants. Such differences may provide insight on the frequent occurrence of SIDS in the early morning hours, when most babies are asleep. This is the only study in which R and C infants were continuously monitored for long periods of time (24-48 h) and then followed and recorded at monthly intervals until the age of 4-6 months. Data analyses indicate that ultradian REM/NREM cyclicity becomes stabilized into a regular pattern at three months of age. Infants at this age convert from a polyphasic sleep/wakefulness pattern to a circadian one. Among the changes that occur is a lengthening of short sleep periods that consolidate at night and wake periods that consolidate in the daytime. The most striking effects are related to sleep state and vary according to age and sex. The lengthening of single sleep and wakeful periods is coupled with the maturation of the brain. The development of the central nervous system facilitates the synchronization of sleeping patterns with external light input and social entrainment. One or more biological clocks or oscillators may be responsible for these REM/NREM patterns and circadian cycles. These differences during the early morning hours, when the occurrence of SIDS peaks, may have important implications for understanding the pathophysiological mechanism of SIDS.

  10. Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep.

    PubMed

    Mendez, Martin Oswaldo; Chouvarda, Ioanna; Alba, Alfonso; Bianchi, Anna Maria; Grassi, Andrea; Arce-Santana, Edgar; Milioli, Guilia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-01-01

    An analysis of the EEG signal during the B-phase and A-phases transitions of the cyclic alternating pattern (CAP) during sleep is presented. CAP is a sleep phenomenon composed by consecutive sequences of A-phases (each A-phase could belong to a possible group A1, A2 or A3) observed during the non-REM sleep. Each A-phase is separated by a B-phase which has the basal frequency of the EEG during a specific sleep stage. The patterns formed by these sequences reflect the sleep instability and consequently help to understand the sleep process. Ten recordings from healthy good sleepers were included in this study. The current study investigates complexity, statistical and frequency signal properties of electroencephalography (EEG) recordings at the transitions: B-phase--A-phase. In addition, classification between the onset-offset of the A-phases and B-phase was carried out with a kNN classifier. The results showed that EEG signal presents significant differences (p < 0.05) between A-phases and B-phase for the standard deviation, energy, sample entropy, Tsallis entropy and frequency band indices. The A-phase onset showed values of energy three times higher than B-phase at all the sleep stages. The statistical analysis of variance shows that more than 80% of the A-phase onset and offset is significantly different from the B-phase. The classification performance between onset or offset of A-phases and background showed classification values over 80% for specificity and accuracy and 70% for sensitivity. Only during the A3-phase, the classification was lower. The results suggest that neural assembles that generate the basal EEG oscillations during sleep present an over-imposed coordination for a few seconds due to the A-phases. The main characteristics for automatic separation between the onset-offset A-phase and the B-phase are the energy at the different frequency bands.

  11. Acquired auditory agnosia in childhood and normal sleep electroencephalography subsequently diagnosed as Landau-Kleffner syndrome: a report of three cases.

    PubMed

    van Bogaert, Patrick; King, Mary D; Paquier, Philippe; Wetzburger, Catherine; Labasse, Catherine; Dubru, Jean-Marie; Deonna, Thierry

    2013-06-01

      We report three cases of Landau-Kleffner syndrome (LKS) in children (two females, one male) in whom diagnosis was delayed because the sleep electroencephalography (EEG) was initially normal.   Case histories including EEG, positron emission tomography findings, and long-term outcome were reviewed.   Auditory agnosia occurred between the age of 2 years and 3 years 6 months, after a period of normal language development. Initial awake and sleep EEG, recorded weeks to months after the onset of language regression, during a nap period in two cases and during a full night of sleep in the third case, was normal. Repeat EEG between 2 months and 2 years later showed epileptiform discharges during wakefulness and strongly activated by sleep, with a pattern of continuous spike-waves during slow-wave sleep in two patients. Patients were diagnosed with LKS and treated with various antiepileptic regimens, including corticosteroids. One patient in whom EEG became normal on hydrocortisone is making significant recovery. The other two patients did not exhibit a sustained response to treatment and remained severely impaired.   Sleep EEG may be normal in the early phase of acquired auditory agnosia. EEG should be repeated frequently in individuals in whom a firm clinical diagnosis is made to facilitate early treatment. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  12. [Neurological sleep disorders].

    PubMed

    Khatami, Ramin

    2014-11-01

    Neurological sleep disorders are common in the general population and may have a strong impact on quality of life. General practitioners play a key role in recognizing and managing sleep disorders in the general population. They should therefore be familiar with the most important neurological sleep disorders. This review provides a comprehensive overview of the most prevalent and important neurological sleep disorders, including Restless legs syndrome (with and without periodic limb movements in sleep), narcolepsy, NREM- and REM-sleep parasomnias and the complex relationship between sleep and epilepsies. Although narcolepsy is considered as a rare disease, recent discoveries in narcolepsy research provided insight in the function of brain circuitries involved in sleep wake regulation. REM sleep behavioral parasomnia (RBD) is increasingly recognized to represent an early manifestation of neurodegenerative disorders, in particular evolving synucleinopathies. Early diagnosis may thus open new perspectives for developing novel treatment options by targeting neuroprotective substances.

  13. [Sleep genes].

    PubMed

    Prospéro-García, O; Guzmán, K; Méndez-Diaz, M; Herrera-Solís, A; Ruiz-Contreras, A

    Sleep is a non-learned adaptive strategy that depends on the expression of several neurotransmitters and other molecules. The expression of some of these molecules depends on a number of different genes. Sleep disorders are associated with an inadequate expression of some molecules, which therefore indicates that these genes that code for these molecules participate in the regulation of normal sleep. To discuss the evidence on gene regulation over the occurrence of sleep and its architecture, as well as of sleep disorders, which supports the participation of specific genes. We describe the evidence on sleep in mammals, particularly in humans, in addition to studies with twins that demonstrate the influence of genes on sleep regulation. We also discuss several sleep disorders, which in this study only serves to emphasise how certain specific genes, under normal conditions, participate in the expression of sleep. Furthermore, evidence is also provided for other molecules, such as endocannibinoids, involved in sleep regulation. Lastly, we report on studies conducted with different strains of mice that show differences in the amount of sleep they express, possibly as an epiphenomenon of their different genetic loads. A number of different genes have been described as those responsible for making us sleep, although sleeping also depends on our interaction with the environment. This interaction is what makes us express sleep at times that are best suited to favouring our survival.

  14. SWItching on the transcriptional circuitry in melanoma.

    PubMed

    Vinod Saladi, Srinivas; Marathe, Himangi; de la Serna, Ivana L

    2010-08-16

    Melanoma is an aggressive malignancy that is resistant to current therapy, and the most lethal of all human skin cancers. It is characterized by several genetic alterations that lead to changes in gene expression and tumorigenesis by triggering alterations in the normal transcriptional circuitry. Transformation and tumor progression are thought to be promoted by a complex interplay between the accumulation of genetic alterations and epigenetic changes. In this review, we discuss recent studies that have implicated SWI/SNF chromatin remodeling enzymes as epigenetic regulators of a transcriptional circuit that operates within the context the genetic alterations that frequently occur in melanoma.

  15. Effects of Catecholamine Depletion on Alertness and Mood in Rested and Sleep Deprived Normal Volunteers

    DTIC Science & Technology

    1993-01-01

    suggest- vw jon (AMIAPT/SD); 3) treatment with placebo plus sleep ing a link between the regulation of mood and arousal deprivation (P/SD); or 4) treatment...deprivation improves mood Drug Administration in depressed individuals remains unclear, but may in- volve catecholamines (Siegel and Rogawski 1988; Hart...neurotransmis- also be involved in the AMPT-indluced changes in mood. sion (Siegel and Rogawski 1988). For example, it has Although the relationship between

  16. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  17. Recognition of sleep paralysis among normal adults in Canada and in Japan.

    PubMed

    Fukuda, K; Ogilvie, R D; Takeuchi, T

    2000-06-01

    There were no differences between Canada and Japan in the prevalence and symptoms of sleep paralysis (SP), but many more Canadians considered SP to be a dream. The difference was considered to be derived from the fact that there is a common expression for SP in Japan but there is not one in Canada. Then, we investigated why there are individuals who consider SP to be a dream and others who do not, and found that many Japanese who regarded it as a dream did not report the symptom of 'unable to move', while in Canada, self-evaluation of spirituality was different between the two groups.

  18. Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions

    PubMed Central

    Pandi-Perumal, Seithikurippu R.; Gonfalone, Alain A.

    2016-01-01

    Space agencies such as the National Aeronautics and Space Administration of the United States, the Russian Federal Space Agency, the European Space Agency, the China National Space Administration, the Japan Aerospace Exploration Agency, and Indian Space Research Organization, although differing in their local political agendas, have a common interest in promoting all applied sciences that may facilitate man’s adaptation to life beyond the earth. One of man’s most important adaptations has been the evolutionary development of sleep cycles in response to the 24 hour rotation of the earth. Less well understood has been man’s biological response to gravity. Before humans ventured into space, many questioned whether sleep was possible at all in microgravity environments. It is now known that, in fact, space travelers can sleep once they leave the pull of the earth’s gravity, but that the sleep they do get is not completely refreshing and that the associated sleep disturbances can be elaborate and variable. According to astronauts’ subjective reports, the duration of sleep is shorter than that on earth and there is an increased incidence of disturbed sleep. Objective sleep recordings carried out during various missions including the Skylab missions, space shuttle missions, and Mir missions all support the conclusion that, compared to sleep on earth, the duration in human sleep in space is shorter, averaging about six hours. In the new frontier of space exploration, one of the great practical problems to be solved relates to how man can preserve “normal” sleep in a very abnormal environment. The challenge of managing fatigue and sleep loss during space mission has critical importance for the mental efficiency and safety of the crew and ultimately for the success of the mission itself. Numerous "earthly" examples now show that crew fatigue on ships, trucks, and long-haul jetliners can lead to inadequate performance and sometimes fatal consequences, a reality

  19. Phospholipase C-β4 Is Essential for the Progression of the Normal Sleep Sequence and Ultradian Body Temperature Rhythms in Mice

    PubMed Central

    Ikeda, Masayuki; Hirono, Moritoshi; Sugiyama, Takashi; Moriya, Takahiro; Ikeda-Sagara, Masami; Eguchi, Naomi; Urade, Yoshihiro; Yoshioka, Tohru

    2009-01-01

    Background The sleep sequence: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the β4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-β4-deficient mutant (PLC-β4−/−) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-β4−/− mice, however. Methodology/Principal Findings Therefore, we analyzed 24-h sleep electroencephalogram in PLC-β4−/− mice. PLC-β4−/− mice exhibited normal non-REM sleep both during the day and nighttime. PLC-β4−/− mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-β4−/− mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22°C–4°C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca2+ mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-β4−/− mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-β4−/− mice. Conclusions/Significance These lines

  20. Phospholipase C-beta4 is essential for the progression of the normal sleep sequence and ultradian body temperature rhythms in mice.

    PubMed

    Ikeda, Masayuki; Hirono, Moritoshi; Sugiyama, Takashi; Moriya, Takahiro; Ikeda-Sagara, Masami; Eguchi, Naomi; Urade, Yoshihiro; Yoshioka, Tohru

    2009-11-09

    THE SLEEP SEQUENCE: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the beta4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-beta4-deficient mutant (PLC-beta4-/-) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-beta4-/- mice, however. Therefore, we analyzed 24-h sleep electroencephalogram in PLC-beta4-/- mice. PLC-beta4-/- mice exhibited normal non-REM sleep both during the day and nighttime. PLC-beta4-/- mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-beta4-/- mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22 degrees C-4 degrees C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca(2+) mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-beta4-/- mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-beta4-/- mice. These lines of evidence indicate that impaired LGNd relay, possibly mediated

  1. Sleep State Switching

    PubMed Central

    Saper, Clifford B.; Fuller, Patrick M.; Pedersen, Nigel P.; Lu, Jun; Scammell, Thomas E.

    2010-01-01

    We take for granted the ability to fall asleep or to snap out of sleep into wakefulness, but these changes in behavioral state require specific switching mechanisms in the brain that allow well-defined state transitions. In this review, we examine the basic circuitry underlying the regulation of sleep and wakefulness, and discuss a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions. We also review how homeostatic, circadian, and allostatic drives help regulate sleep state switching, and discuss how breakdown of the switching mechanism may contribute to sleep disorders such as narcolepsy. PMID:21172606

  2. Optogenetic mapping of brain circuitry

    NASA Astrophysics Data System (ADS)

    Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In

    2012-10-01

    Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.

  3. Bilateral leg movements during sleep: detailing their structure and features in normal controls and in patients with restless legs syndrome.

    PubMed

    Ferri, Raffaele; Manconi, Mauro; Rundo, Francesco; Zucconi, Marco; Aricò, Debora; Bruni, Oliviero; Cosentino, Filomena I I; Ferini-Strambi, Luigi; Fulda, Stephany

    2017-04-01

    The aim of this study was to analyze statistically the number of single leg movements (LMs) forming bilateral LMs during sleep, along with their combined duration, to eventually provide evidence-based data for the adjustment of the current scoring rules defining bilateral LMs. Polysomnographic recordings of 111 untreated patients with RLS with a median age of 56.0 years, along with 42 normal controls with a mean age of 60.0 years, were included. In each recording, we identified all LMs that were considered as bilateral when two or more LMs were overlapping or the onset of the following movement was <0.5 second after the offset of the preceding LM. The remaining LMs were classified as monolateral. A series of parameters were computed for both bilateral and monolateral LMs. The duration of monolateral LMs in RLS patients was significantly longer than that of normal controls. For bilateral LMs, the maximum number of single LMs forming a bilateral movement and the maximum duration were slightly higher in RLS patients; however, the distribution of the number of individual LMs forming a single bilateral LM was similar. Only 0.12% and 0.27% of bilateral LMs consisted of >4 individual movements, and only 0.16% and 1.90% of bilateral LMs were >15 seconds in RLS patients and healthy controls, respectively. Our results strongly suggest that bilateral LMs during sleep should be constituted by no more than four individual LMs and should have a maximum duration of 15 seconds. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. All Nanowire Integrated Sensor Circuitry

    DTIC Science & Technology

    2008-04-01

    of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high mobility Ge/Si nanowires are...for enabling the fabrication of the all- nanowire sensor circuitry. First, highly aligned CdSe and Ge/Si NW arrays were assembled at pre-defined...FETs (Tl and T2) amplifying the photoresponse of a CdSe nanosensor. (B) Schematic of the all- nanowire optical sensor circuit based on ordered

  5. Insomnia with objective short sleep duration is associated with longer duration of insomnia in the Freiburg Insomnia Cohort compared to insomnia with normal sleep duration, but not with hypertension

    PubMed Central

    Johann, Anna F.; Hertenstein, Elisabeth; Kyle, Simon D.; Baglioni, Chiara; Feige, Bernd; Nissen, Christoph; McGinness, Alastair J.; Riemann, Dieter; Spiegelhalder, Kai

    2017-01-01

    Study objectives To replicate the association between insomnia with objective short sleep duration and hypertension, type 2 diabetes and duration of insomnia. Design Retrospective case-control study. Setting Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg. Participants 328 patients with primary insomnia classified according to DSM-IV criteria (125 males, 203 females, 44.3 ± 12.2 years). Interventions N/A Measurements All participants were investigated using polysomnography, blood pressure measurements, and fasting routine laboratory. Results Insomnia patients with short sleep duration (< 6 hours) in the first night of laboratory sleep presented with a longer duration of insomnia compared to those with normal sleep duration (≥ 6 hours) in the first night of laboratory sleep. Insomnia patients who were categorised as short sleepers in either night were not more likely to suffer from hypertension (systolic blood pressure of ≥ 140 mm Hg, diastolic blood pressure of ≥ 90 mm Hg, or a previously established diagnosis). Data analysis showed that insomnia patients with objective short sleep duration were not more likely to suffer from type 2 diabetes (fasting plasma glucose level of ≥ 126 mg/dl, or a previously established diagnosis). However, the diabetes analysis was only based on a very small number of diabetes cases. As a new finding, insomnia patients who were categorised as short sleepers in either night presented with increases in liver enzyme levels. Conclusions The finding on insomnia duration supports the concept of two distinct sub-groups of insomnia, namely insomnia with, and without, objectively determined short sleep duration. However, our data challenges previous findings that insomnia patients with short sleep duration are more likely to suffer from hypertension. PMID:28746413

  6. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    PubMed Central

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  7. The value of REM sleep parameters in differentiating Alzheimer's disease from old-age depression and normal aging.

    PubMed

    Dykierek, P; Stadtmüller, G; Schramm, P; Bahro, M; van Calker, D; Braus, D F; Steigleider, P; Löw, H; Hohagen, F; Gattaz, W F; Berger, M; Riemann, D

    1998-01-01

    Pseudodementia as a common trait in elderly depressives presents a major problem in gerontopsychiatry, especially for the differential diagnosis between Old-Age Depression (OAD) and Dementia of the Alzheimer Type (DAT). The present polysomnographic study examined parameters of sleep continuity, sleep architecture, and REM sleep to differentiate DAT from OAD. The investigation was based on the theoretical framework of the cholinergic-aminergic imbalance model of depression, the cholinergic deficit hypothesis of Alzheimer's disease and the reciprocal interaction model of Non-REM/REM sleep regulation, according to which REM sleep parameters should have high discriminative value to differentiate OAD and DAT. We investigated 35 DAT patients, 39 OAD patients and 42 healthy controls for two consecutive nights in the sleep laboratory. The DAT patients were in relatively early/mild stages of the disease, the severity of depression in the OAD group was moderate to severe. Depressed patients showed characteristic 'depression-like' EEG sleep alterations, i.e. a lower sleep efficiency, a higher amount of nocturnal awakenings and decreased sleep stage 2. Sleep continuity and architecture in DAT was less disturbed. Nearly all REM sleep measures differentiated significantly between the diagnostic groups. OAD patients showed a shortened REM latency, increased REM density and a high rate of Sleep Onset REM periods (SOREM), whereas in DAT REM density was decreased in comparison to control subjects. REM latency in DAT was not prolonged as expected. To assess the discriminative power of REM sleep variables a series of discriminant analyses were conducted. Overall, 86% of patients were correctly classified, using REM density and REM latency measures. Our findings suggest that REM density as an indicator of phasic activity appears to be more sensitive as a biological marker for the differential diagnosis of OAD and DAT than REM latency. The results support the role of central cholinergic

  8. Physiologic responses during rest on a sleep system at varied degrees of firmness in a normal population.

    PubMed

    Lahm, Ryan; Iaizzo, Paul A

    2002-09-15

    This study explores the hypothesis that a high degree of sustained muscle activity associated with a sub-optimal spinal orientation may compromise an individual's ability to relax or initiate sleep. Data from 22 participants who were considered to be part of a normal, back-pain-free population were used in these studies. Participants laid down on a mattress in a foetal position (i.e. on their sides) at three varying bed pressures while EMG activities, heart rates, blood pressures, subjective comfort levels and spinal alignment data were recorded. Minor effects of mattress inflation pressures were associated with changes in EMG activity, heart rate, blood pressure and/or subjective comfort. In contrast, spinal alignment assessment revealed significant differences between the three different inflation pressures studied (827.4, 2413.2 and 3999.0 Pa). It was concluded that in a population of normal participants, although mattress inflation pressure induced significant changes in spinal alignment, these changes were of little physiological consequence. Nevertheless, this data provides baseline information needed to assess similar correlations in a symptomatic population (e.g. those with either acute or chronic neck or back pain).

  9. Neural circuitry coordinating male copulation

    PubMed Central

    Pavlou, Hania J; Lin, Andrew C; Neville, Megan C; Nojima, Tetsuya; Diao, Fengqiu; Chen, Brian E; White, Benjamin H; Goodwin, Stephen F

    2016-01-01

    Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes – motor neurons, interneurons and mechanosensory neurons – controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior. DOI: http://dx.doi.org/10.7554/eLife.20713.001 PMID:27855059

  10. A repeated dose comparison of dichloralphenazone, flunitrazepam and amylobarbitone sodium on some aspects of sleep and early morning behaviour in normal subjects.

    PubMed

    Hindmarch, I; Parrott, A C; Arenillas, L

    1977-04-01

    1 Seven normal subjects were given three different hypnotics (flunitrazepam 1 mg, amylobarbitone sodium 100 mg and dichloralphenazone 1300 mg) for four consecutive nights each. 2 All three substances improved subjective assessment of the ease of getting to sleep. Flunitrazepam was rated as better than eithr dichloralphenazone or amylobarbitone sodium in this respect. 3 The perceived quality of induced sleep was not altered by any of the preparations. 4 There was a disturbance of the subjective ratings of getting to sleep following cessation of treatment with dichloralphenazone, giving tentative support to the existence of a 'rebound' effect. 5 Dichloralphenazone produced an impairment in psychomotor performance as measured on a complex reaction time test following four nights medication with the drug.

  11. Sleep disorders in Parkinson's disease.

    PubMed

    Schrempf, Wiebke; Brandt, Moritz D; Storch, Alexander; Reichmann, Heinz

    2014-01-01

    Sleep disorders in patients with Parkinson's disease (PD) are very common and have an immense negative impact on their quality of life. Insomnia, daytime sleepiness with sleep attacks, restless-legs syndrome (RLS) and REM-sleep behaviour disorder (RBD) are the most frequent sleep disorders in PD. Neurodegenerative processes within sleep regulatory brain circuitries, antiparkinsonian (e.g., levodopa and dopamine agonists) and concomitant medication (e.g., antidepressants) as well as comorbidities or other non-motor symptoms (such as depression) are discussed as causative factors. For the diagnosis of sleep disturbances we recommend regular screening using validated questionnaires such as the Pittsburgh Sleep Quality Index (PSQI) or the Medical Outcomes Study Sleep Scale (MOS), for evaluating daytime sleepiness we would suggest to use the Epworth Sleepiness Scale (ESS), the inappropriate sleep composite score (ISCS) or the Stanford sleepiness scale (SSS). All of these questionnaires should be used in combination with a detailed medical history focusing on common sleep disorders and medication. If necessary, patients should be referred to sleep specialists or sleep laboratories for further investigations. Management of sleep disorders in PD patients usually starts with optimization of (dopaminergic) antiparkinsonian therapy followed by specific treatment of the sleep disturbances. Aside from these clinical issues of sleep disorders in PD, the concept of REM-sleep behaviour disorder (RBD) as an early sign for emerging neurodegenerative diseases is of pivotal interest for future research on biomarkers and neuroprotective treatment strategies of neurodegenerative diseases, and particularly PD.

  12. Mirtazapine, but not fluvoxamine, normalizes the blunted REM sleep response to clonidine in depressed patients: implications for subsensitivity of alpha(2)-adrenergic receptors in depression.

    PubMed

    Schittecatte, Michel; Dumont, Françoise; Machowski, Robert; Fontaine, Eric; Cornil, Catherine; Mendlewicz, Julien; Wilmotte, Jean

    2002-01-31

    To determine whether alpha(2)-adrenergic receptor (alpha2AR) subsensitivity is a state or a trait marker of depression, we consecutively challenged 32 drug-free depressed patients with a clonidine REM suppression test (CREST). We then treated the patients with fluvoxamine, a selective serotonin reuptake inhibitor, or mirtazapine, a selective alpha(2)-adrenergic receptor antagonist. The first 10 patients from each treatment group who recovered were given a second challenge test. The CREST values of the two treatment groups at each time point were compared, and also compared with the CREST values of a group of 10 normal subjects. Before treatment, the REM sleep response to clonidine in the two groups of patients was significantly blunted compared with the REM sleep response in the healthy subjects. After treatment, there was still an abnormal REM sleep response to clonidine in the fluvoxamine-treated patients, despite clinical recovery, but there was a normalized REM sleep response in the mirtazapine-treated patients. These results are compatible with the hypothesis that alpha2AR subsensitivity is a trait marker of depression and suggest that the effects of these two antidepressants on alpha2AR sensitivity may not be linked to the alleviation of depression.

  13. Sleep disordered breathing as a risk of cardiac events in subjects with diabetes mellitus and normal exercise echocardiographic findings.

    PubMed

    Seicean, Sinziana; Strohl, Kingman P; Seicean, Andreea; Gibby, Conrad; Marwick, Thomas H

    2013-04-15

    Sleep disordered breathing (SDB) is associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease; however, the contribution of SDB to incident heart failure (HF), coronary artery disease (CAD), and atrial fibrillation (AF) in patients with T2DM is unknown. We followed up 834 consecutive asymptomatic patients with T2DM (age 56 ± 11 years, 369 women) with normal exercise echocardiographic findings for ≤8 years using electronic health records. The demographics, cardiac risk factors, symptoms, diagnoses, and medications were collected at the echocardiography and validated from the electronic health records. SDB was confirmed by a comprehensive sleep evaluation and/or polysomnography before echocardiography. SDB was diagnosed in 188 patients (21%) at baseline; 116 were untreated. During a median follow-up of 4.9 years (interquartile range 3.9 to 6.1), 22 congestive HF, 72 CAD, and 40 AF incident events were observed. In the Cox proportional hazards models, SDB was associated with incident CAD (hazard ratio 1.8, 95% confidence interval 1.1 to 3.0, p = 0.01; adjusted hazard ratio 1.9, 95% confidence interval 1.2 to 3.2, p <0.01) and AF (hazard ratio 2.6, 95% confidence interval 1.4 to 4.7, p = 0.01; adjusted hazard ratio 2.9, 95% confidence interval 1.5 to 5.9, p <0.01). Limiting SDB to only those patients diagnosed using polysomnography (n = 132), SDB was associated with incident CAD (hazard ratio 1.9, 95% confidence interval 1.1 to 3.3, p = 0.03; adjusted hazard ratio 2.2, 95% confidence interval 1.2 to 3.9, p = 0.01) and HF (hazard ratio 2.7, 95% confidence interval 1.1 to 7.0, p = 0.03; adjusted hazard ratio 3.5, 95% confidence interval 1.4 to 9.0, p <0.01). Female gender, age, elevated blood pressure, and left ventricular mass were additional correlates of CAD in those with asymptomatic T2DM. In conclusion, the association of SDB with incident CAD, AF, and HF in patients with T2DM justifies more liberal screening for SDB in patients with T2DM

  14. Employees with Sleep Disorders

    MedlinePlus

    ... The International Classification of Sleep Disorders (ICSD) lists over 84 different types of sleep disorders that affect the body’s normal cycle of ... factor in the occurrence (Haran, 2005). Sleep Apnea: Over 12 million Americans have sleep apnea; it is more common in men over ...

  15. Quetiapine improves visual hallucinations in Parkinson disease but not through normalization of sleep architecture: results from a double-blind clinical-polysomnography study.

    PubMed

    Fernandez, Hubert H; Okun, Michael S; Rodriguez, Ramon L; Malaty, Irene A; Romrell, Janet; Sun, Anqi; Wu, Samuel S; Pillarisetty, Sandeep; Nyathappa, Anand; Eisenschenk, Stephan

    2009-01-01

    Polysomnographic studies of Parkinson's disease (PD) patients with visual hallucinations (VH) usually reveal short, fragmented rapid eye movement (REM) sleep, with lower sleep efficiency and reduced total REM sleep. Quetiapine has been demonstrated in open-label trials to be effective for the treatment of insomnia and VH in PD. To confirm quetiapine's efficacy in improving VH, and to determine whether the mechanism was due to its effect on REM sleep architecture, we performed a pilot, double-blind, placebo-controlled study. Sixteen PD patients experiencing VH were recruited. Eight patients were randomized to quetiapine and eight patients to placebo. Patients underwent pre- and post-treatment polysomnography. The Clinical Global Impression Scale (CGIS), Brief Psychiatric Rating Scale (BPRS), and Unified Parkinson Disease Rating Scale (UPDRS) motor subscale were obtained. There were no differences in baseline characteristics between the treatment arms except that the placebo group had more sleep in stage REM (74.7 min vs. 40.1 min; p < .001). Data were imputed for all patients who prematurely discontinued (four quetiapine and one placebo) in an intention-to-treat analysis. The average quetiapine dose was 58.3 mg/day. While there was no significant difference in the change in REM duration pre- vs. post-treatment in either arm, patients randomized to quetiapine improved on the CGIS (p = .03) and the hallucination item of the BPRS (p = .02). No difference was noted in the UPDRS motor scores. Despite the small sample, this is the first double-blind trial to show quetiapine's efficacy over placebo in controlling VH in the PD population. However, normalization of sleep architecture was not supported as the mechanism.

  16. Review of disrupted sleep patterns in Smith-Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion.

    PubMed

    Boudreau, Eilis A; Johnson, Kyle P; Jackman, Angela R; Blancato, Jan; Huizing, Marjan; Bendavid, Claude; Jones, Marypat; Chandrasekharappa, Settara C; Lewy, Alfred J; Smith, Ann C M; Magenis, R Ellen

    2009-07-01

    Smith-Magenis syndrome (SMS) is a disorder characterized by multiple congenital anomalies and behavior problems, including abnormal sleep patterns. It is most commonly due to a 3.5 Mb interstitial deletion of chromosome 17 band p11.2. Secretion of melatonin, a hormone produced by the pineal gland, is the body's signal for nighttime darkness. Published reports of 24-hr melatonin secretion patterns in two independent SMS cohorts (US and France) document an inverted endogenous melatonin pattern in virtually all cases (96%), suggesting that this finding is pathognomic for the syndrome. We report on a woman with SMS due to an atypical large proximal deletion ( approximately 6Mb; cen<->TNFRSFproteinB) of chromosome band (17)(p11.2p11.2) who presents with typical sleep disturbances but a normal pattern of melatonin secretion. We further describe a melatonin light suppression test in this patient. This is the second reported patient with a normal endogenous melatonin rhythm in SMS associated with an atypical large deletion. These two patients are significant because they suggest that the sleep disturbances in SMS cannot be solely attributed to the abnormal diurnal melatonin secretion versus the normal nocturnal pattern.

  17. Underlying brain mechanisms that regulate sleep-wakefulness cycles.

    PubMed

    Gvilia, Irma

    2010-01-01

    Daily cycles of wakefulness and sleep are regulated by coordinated interactions between wakefulness- and sleep-regulating neural circuitry. Wakefulness is associated with neuronal activity in cholinergic neurons in the brainstem and basal forebrain, monoaminergic neurons in the brainstem and posterior hypothalamus, and hypocretin (orexin) neurons in the lateral hypothalamus that act in a coordinated manner to stimulate cortical activation on the one hand and behavioral arousal on the other hand. Each of these neuronal groups subserves distinct aspects of wakefulness-related functions of the brain. Normal transitions from wakefulness to sleep involve sleep-related inhibition and/or disfacilitation of the multiple arousal systems. The cell groups that shut off the network of arousal systems, at sleep onset, occur with high density in the ventral lateral preoptic area (VLPO) and the median preoptic nucleus (MnPN) of the hypothalamus. Preoptic neurons are activated during sleep and exhibit sleep-wake state-dependent discharge patterns that are reciprocal of that observed in several arousal systems. Neurons in the VLPO contain the inhibitory neuromodulator, galanin, and the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). The majority of MnPN sleep-active neurons synthesize GABA. VLPO and MnPN neurons are sources of projections to arousal-regulatory systems in the posterior and lateral hypothalamus and the rostral brainstem. Mechanisms of sleep induction by these nuclei are hypothesized to involve GABA-mediated inhibition of multiple arousal systems. Normal cycling between discrete behavioral states is mediated by the combined influence of a sleep need that increases with continued wakefulness and an intrinsic circadian oscillation. This chapter will review anatomical and functional properties of populations of sleep-/wake-regulating neurons, focusing on recent findings supporting functional significance of the VLPO and MnPN in the regulation of sleep

  18. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  19. Neuroimmunologic aspects of sleep and sleep loss

    NASA Technical Reports Server (NTRS)

    Rogers, N. L.; Szuba, M. P.; Staab, J. P.; Evans, D. L.; Dinges, D. F.

    2001-01-01

    The complex and intimate interactions between the sleep and immune systems have been the focus of study for several years. Immune factors, particularly the interleukins, regulate sleep and in turn are altered by sleep and sleep deprivation. The sleep-wake cycle likewise regulates normal functioning of the immune system. Although a large number of studies have focused on the relationship between the immune system and sleep, relatively few studies have examined the effects of sleep deprivation on immune parameters. Studies of sleep deprivation's effects are important for several reasons. First, in the 21st century, various societal pressures require humans to work longer and sleep less. Sleep deprivation is becoming an occupational hazard in many industries. Second, to garner a greater understanding of the regulatory effects of sleep on the immune system, one must understand the consequences of sleep deprivation on the immune system. Significant detrimental effects on immune functioning can be seen after a few days of total sleep deprivation or even several days of partial sleep deprivation. Interestingly, not all of the changes in immune physiology that occur as a result of sleep deprivation appear to be negative. Numerous medical disorders involving the immune system are associated with changes in the sleep-wake physiology--either being caused by sleep dysfunction or being exacerbated by sleep disruption. These disorders include infectious diseases, fibromyalgia, cancers, and major depressive disorder. In this article, we will describe the relationships between sleep physiology and the immune system, in states of health and disease. Interspersed will be proposals for future research that may illuminate the clinical relevance of the relationships between sleeping, sleep loss and immune function in humans. Copyright 2001 by W.B. Saunders Company.

  20. Genetic analysis of sleep

    PubMed Central

    Crocker, Amanda; Sehgal, Amita

    2010-01-01

    Almost 20 years ago, the gene underlying fatal familial insomnia was discovered, and first suggested the concept that a single gene can regulate sleep. In the two decades since, there have been many advances in the field of behavioral genetics, but it is only in the past 10 years that the genetic analysis of sleep has emerged as an important discipline. Major findings include the discovery of a single gene underlying the sleep disorder narcolepsy, and identification of loci that make quantitative contributions to sleep characteristics. The sleep field has also expanded its focus from mammalian model organisms to Drosophila, zebrafish, and worms, which is allowing the application of novel genetic approaches. Researchers have undertaken large-scale screens to identify new genes that regulate sleep, and are also probing questions of sleep circuitry and sleep function on a molecular level. As genetic tools continue to be refined in each model organism, the genes that support a specific function in sleep will become more apparent. Thus, while our understanding of sleep still remains rudimentary, rapid progress is expected from these recently initiated studies. PMID:20551171

  1. Comparison of Detection of Normal Puberty in Girls by a Hormonal Sleep Test and a Gonadotropin-Releasing Hormone Agonist Test

    PubMed Central

    Bordini, Brian; Yu, Christine

    2013-01-01

    Context: The magnitude of sleep-related gonadotropin rise required to activate pubertal feminization is not established. Objective: The objective of the study was to determine the normal relationship of pubertal hormone responses to sleep and to GnRH agonist (GnRHag) challenge across the female pubertal transition. Design/Setting: This was a prospective study in a General Clinical Research Center. Participants: Sixty-two healthy 6- to 13-year-old volunteer girls participated in the study. Interventions: Interventions included overnight blood sampling followed by GnRHag (leuprolide acetate) injection. Primary Outcome Variables: The primary outcome variables included LH, FSH, and estradiol. Results: LH levels rose steadily during sleep and after GnRHag throughout the prepubertal years. The LH response to sleep and GnRHag correlated well across groups (eg, r = 0.807, peak vs 4 h post-GnRHag value); however, this correlation was less robust than in boys (r = 0.964, P < .01). Sleep peak LH of 1.3 U/L or greater had 85% sensitivity and 2.1 U/L or greater 96% specificity for detecting puberty (thelarche). The LH 1-hour post-GnRHag value of 3.2 U/L or greater had 95% sensitivity and 5.5 U/L or greater 96% specificity for detecting puberty. Girls entered puberty at lower LH levels than boys. FSH levels rose day and night during the prepubertal years to reach 1.0 U/L or greater during puberty but discriminated puberty poorly. Estradiol of 34 pg/mL or greater at 20–24 hours after GnRHag was 95% sensitive and 60 pg/mL or greater was 95% specific for puberty. Thirty-six percent of overweight early pubertal girls had meager hormonal evidence of puberty. Conclusions: These data suggest that sleep-related pubertal hormone levels critical for puberty are normally reflected in the responses to GnRHag testing across the normal female pubertal transition. Inconsistencies between clinical and hormonal staging may arise from peripubertal cyclicity of neuroendocrine function and from

  2. Promoting healthy sleep.

    PubMed

    Price, Bob

    2016-03-09

    Nurses are accustomed to helping others with their sleep problems and dealing with issues such as pain that may delay or interrupt sleep. However, they may be less familiar with what constitutes a healthy night's sleep. This article examines what is known about the process and purpose of sleep, and examines the ways in which factors that promote wakefulness and sleep combine to help establish a normal circadian rhythm. Theories relating to the function of sleep are discussed and research is considered that suggests that sleep deficit may lead to metabolic risks, including heart disease, obesity, type 2 diabetes mellitus and several types of cancer.

  3. Ancestral sleep.

    PubMed

    de la Iglesia, Horacio O; Moreno, Claudia; Lowden, Arne; Louzada, Fernando; Marqueze, Elaine; Levandovski, Rosa; Pilz, Luisa K; Valeggia, Claudia; Fernandez-Duque, Eduardo; Golombek, Diego A; Czeisler, Charles A; Skene, Debra J; Duffy, Jeanne F; Roenneberg, Till

    2016-04-04

    While we do not yet understand all the functions of sleep, its critical role for normal physiology and behaviour is evident. Its amount and temporal pattern depend on species and condition. Humans sleep about a third of the day with the longest, consolidated episode during the night. The change in lifestyle from hunter-gatherers via agricultural communities to densely populated industrialized centres has certainly affected sleep, and a major concern in the medical community is the impact of insufficient sleep on health [1,2]. One of the causal mechanisms leading to insufficient sleep is altered exposure to the natural light-dark cycle. This includes the wide availability of electric light, attenuated exposure to daylight within buildings, and evening use of light-emitting devices, all of which decrease the strength of natural light-dark signals that entrain circadian systems [3]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nonlinear analysis of the change points between A and B phases during the Cyclic Alternating Pattern under normal sleep.

    PubMed

    Chouvarda, I; Mendez, M O; Alba, A; Bianchi, A M; Grassi, A; Arce-Santana, E; Rosso, V; Terzano, M G; Parrino, L

    2012-01-01

    This study analyzes the nonlinear properties of the EEG at transition points of the sequences that build the Cyclic Alternating Pattern (CAP). CAP is a sleep phenomenon built up by consecutive sequences of activations and non-activations observed during the sleep time. The sleep condition can be evaluated from the patterns formed by these sequences. Eleven recordings from healthy and good sleepers were included in this study. We investigated the complexity properties of the signal at the onset and offset of the activations. The results show that EEG signals present significant differences (p<0.05) between activations and non-activations in the Sample Entropy and Tsallis Entropy indices. These indices could be useful in the development of automatic methods for detecting the onset and offset of the activations, leading to significant savings of the physician's time by simplifying the manual inspection task.

  5. Evolution of the circuitry for conscious color vision in primates.

    PubMed

    Neitz, J; Neitz, M

    2017-02-01

    There are many ganglion cell types and subtypes in our retina that carry color information. These have appeared at different times over the history of the evolution of the vertebrate visual system. They project to several different places in the brain and serve a variety of purposes allowing wavelength information to contribute to diverse visual functions. These include circadian photoentrainment, regulation of sleep and mood, guidance of orienting movements, detection and segmentation of objects. Predecessors to some of the circuits serving these purposes presumably arose before mammals evolved and different functions are represented by distinct ganglion cell types. However, while other animals use color information to elicit motor movements and regulate activity rhythms, as do humans, using phylogenetically ancient circuitry, the ability to appreciate color appearance may have been refined in ancestors to primates, mediated by a special set of ganglion cells that serve only that purpose. Understanding the circuitry for color vision has implications for the possibility of treating color blindness using gene therapy by recapitulating evolution. In addition, understanding how color is encoded, including how chromatic and achromatic percepts are separated is a step toward developing a complete picture of the diversity of ganglion cell types and their functions. Such knowledge could be useful in developing therapeutic strategies for blinding eye disorders that rely on stimulating elements in the retina, where more than 50 different neuron types are organized into circuits that transform signals from photoreceptors into specialized detectors many of which are not directly involved in conscious vision.

  6. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice.

    PubMed

    Szentirmai, Eva; Kapás, Levente; Sun, Yuxiang; Smith, Roy G; Krueger, James M

    2010-02-01

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin signaling is required for FEO function by studying food anticipatory activity (FAA) in preproghrelin knockout (KO) and wild-type (WT) mice. Sleep-wake activity, locomotor activity, body temperature, food intake, and body weight were measured for 12 days in mice on a RF paradigm with food available only for 4 h daily during the light phase. On RF days 1-3, increases in arousal occurred. This response was significantly attenuated in preproghrelin KO mice. There were progressive changes in sleep architecture and body temperature during the subsequent nine RF days. Sleep increased at night and decreased during the light periods while the total daily amount of sleep remained at baseline levels in both KO and WT mice. Body temperature fell during the dark but was elevated during and after feeding in the light. In the premeal hours, anticipatory increases in body temperature, locomotor activity, and wakefulness were present from RF day 6 in both groups. Results indicate that the preproghrelin gene is not required for the manifestation of FAA but suggest a role for ghrelinergic mechanisms in food deprivation-induced arousal in mice.

  7. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice

    PubMed Central

    Kapás, Levente; Sun, Yuxiang; Smith, Roy G.; Krueger, James M.

    2010-01-01

    Behavioral and physiological rhythms can be entrained by daily restricted feeding (RF), indicating the existence of a food-entrainable oscillator (FEO). One manifestation of the presence of FEO is anticipatory activity to regularly scheduled feeding. In the present study, we tested if intact ghrelin signaling is required for FEO function by studying food anticipatory activity (FAA) in preproghrelin knockout (KO) and wild-type (WT) mice. Sleep-wake activity, locomotor activity, body temperature, food intake, and body weight were measured for 12 days in mice on a RF paradigm with food available only for 4 h daily during the light phase. On RF days 1–3, increases in arousal occurred. This response was significantly attenuated in preproghrelin KO mice. There were progressive changes in sleep architecture and body temperature during the subsequent nine RF days. Sleep increased at night and decreased during the light periods while the total daily amount of sleep remained at baseline levels in both KO and WT mice. Body temperature fell during the dark but was elevated during and after feeding in the light. In the premeal hours, anticipatory increases in body temperature, locomotor activity, and wakefulness were present from RF day 6 in both groups. Results indicate that the preproghrelin gene is not required for the manifestation of FAA but suggest a role for ghrelinergic mechanisms in food deprivation-induced arousal in mice. PMID:19939974

  8. Delay in the recovery of normal sleep-wake cycle after disruption of the light-dark cycle in mice: a bipolar disorder-prone animal model?

    PubMed

    Jung, Sun Hwa; Park, Je-Min; Moon, Eunsoo; Chung, Young In; Lee, Byung Dae; Lee, Young Min; Kim, Ji Hoon; Kim, Soo Yeon; Jeong, Hee Jeong

    2014-10-01

    Disruption of the circadian rhythm is known as a provoking factor for manic episodes. Individual differences exist in the recovery rate from disruption in the general population. To develop a screening method to detect individuals vulnerable to bipolar disorder, the authors observed the relationship between the recovery of the normal sleep-wake cycle after switching the light-dark (LD) cycle and quinpirole-induced hyperactivity in mice. Sixteen male mice (age of 5 weeks, weight 28-29 gm) were subjected to a circadian rhythm disruption protocol. Sleep-wake behaviors were checked every 5 min for a total duration of 15 days, i.e., 2 days of baseline observations, 3 days of LD cycle changes, and 10 days of recovery. During the dark cycle on the 16th experimental day, their general locomotor activities were measured in an open field for 120 minutes after an injection of quinpirole (0.5 mg/kg, s.c.). The individual differences in the recovery rate of the baseline sleep-wake cycle were noted after 3 days of switching the LD cycle. Fifty percent (n=8) of the mice returned to the baseline cycle within 6 days after normalizing the LD cycle (early recovery group). The locomotor activities of mice that failed to recover within 6 days (delayed recovery group) were significantly higher (mean rank=12.25) than those of the early recovery group (mean rank=4.75, u=62.0, p=0.001, Mann-Whitney U test). Given that the quinpirole-induced hyperactivity is an animal model of bipolar disorder, our results suggest individuals who have difficulties in recovery from circadian rhythm disruption may be vulnerable to bipolar disorder.

  9. Signal conditioning circuitry design for instrumentation systems.

    SciTech Connect

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  10. Optogenetic probing of functional brain circuitry.

    PubMed

    Mancuso, James J; Kim, Jinsook; Lee, Soojung; Tsuda, Sachiko; Chow, Nicholas B H; Augustine, George J

    2011-01-01

    Recently developed optogenetic technologies offer the promise of high-speed mapping of brain circuitry. Genetically targeted light-gated channels and pumps, such as channelrhodopsins and halorhodopsin, allow optical control of neuronal activity with high spatial and temporal resolution. Optogenetic probes of neuronal activity, such as Clomeleon and Mermaid, allow light to be used to monitor the activity of a genetically defined population of neurons. Combining these two complementary sets of optogenetic probes will make it possible to perform all-optical circuit mapping. Owing to the improved efficiency and higher speed of data acquisition, this hybrid approach should enable high-throughput mapping of brain circuitry.

  11. Heart Rate Dynamics and their Relation with the Cyclic Alternating Pattern of Sleep in Normal Subjects and NFLE Patients

    NASA Astrophysics Data System (ADS)

    González, Jose S.; Dorantes, Guadalupe; Alba, Alfonso; Méndez, Martin O.; Camacho, Sergio; Luna-Rivera, Martin; Parrino, Liborio; Riccardi, Silvia; Terzano, Mario G.; Milioli, Giulia

    The aim of this work is to study the behavior of the autonomic system through variations in the heart rate (HR) during the Cyclic Alternating Pattern (CAP) which is formed by A-phases. The analysis was carried out in 10 healthy subjects and 10 patients with Nocturnal Front Lobe Epilepsy (NFLE) that underwent one whole night of polysomnographic recordings. In order to assess the relation of A-phases with the cardiovascular system, two time domain features were computed: the amplitude reduction and time delay of the minimum of the R-R intervals with respect to A-phases onset. In addition, the same process was performed over randomly chosen R-R interval segments during the NREM sleep for baseline comparisons. A non-parametric bootstrap procedure was used to test differences of the kurtosis values of two populations. The results suggest that the onset of the A-phases is correlated with a significant increase of the HR that peaks at around 4s after the A-phase onset, independently of the A-phase subtype and sleep time for both healthy subjects and NFLE patients. Furthermore, the behavior of the reduction in the R-R intervals during the A-phases was significantly different for NFLE patients with respect to control subjects.

  12. Interface Electronic Circuitry for an Electronic Tongue

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Buehler, Martin

    2007-01-01

    Electronic circuitry has been developed to serve as an interface between an electronic tongue and digital input/output boards in a laptop computer that is used to control the tongue and process its readings. Electronic tongues can be used for a variety of purposes, including evaluating water quality, analyzing biochemicals, analyzing biofilms, and measuring electrical conductivities of soils.

  13. Intergenerational Neuroimaging of Human Brain Circuitry.

    PubMed

    Ho, Tiffany C; Sanders, Stephan J; Gotlib, Ian H; Hoeft, Fumiko

    2016-10-01

    Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed light on the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here we highlight recent intergenerational neuroimaging studies and provide recommendations for future work.

  14. Sleep disordered breathing at the extremes of age: infancy

    PubMed Central

    Tan, Hui-Leng

    2016-01-01

    Educational aims The reader will be able to: Understand normal sleep patterns in infancyAppreciate disorders of breathing in infancyAppreciate disorders of respiratory control Normal sleep in infancy is a time of change with alterations in sleep architecture, sleep duration, sleep patterns and respiratory control as an infant grows older. Interactions between sleep and respiration are key to the mechanisms by which infants are vulnerable to sleep disordered breathing. This review discusses normal sleep in infancy, as well as normal sleep breathing in infancy. Sleep disordered breathing (obstructive and central) as well as disorders of ventilatory control and infant causes of hypoventilation are all reviewed in detail. PMID:27064478

  15. Interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly individuals.

    PubMed

    Osorio, Ricardo S; Ayappa, Indu; Mantua, Janna; Gumb, Tyler; Varga, Andrew; Mooney, Anne M; Burschtin, Omar E; Taxin, Zachary; During, Emmanuel; Spector, Nicole; Biagioni, Milton; Pirraglia, Elizabeth; Lau, Hiuyan; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Rapoport, David M; de Leon, Mony J

    2014-06-01

    Previous studies have suggested a link between sleep disordered breathing (SDB) and dementia risk. In the present study, we analyzed the relationship between SDB severity, cerebrospinal fluid (CSF) Alzheimer's disease-biomarkers, and the ApoE alleles. A total of 95 cognitively normal elderly participants were analyzed for SDB severity, CSF measures of phosphorylated-tau (p-tau), total-tau (t-tau), and amyloid beta 42 (Aβ-42), as well as ApoE allele status. In ApoE3+ subjects, significant differences were found between sleep groups for p-tau (F[df2] = 4.3, p = 0.017), and t-tau (F[df2] = 3.3, p = 0.043). Additionally, among ApoE3+ subjects, the apnea and/or hypopnea with 4% O2-desaturation index was positively correlated with p-tau (r = 0.30, p = 0.023), t-tau (r = 0.31, p = 0.021), and Aβ-42 (r = 0.31, p = 0.021). In ApoE2+ subjects, the apnea and/or hypopnea with 4% O2-desaturation index was correlated with lower levels of CSF Aβ-42 (r = -0.71, p = 0.004), similarly to ApoE4+ subjects where there was also a trend toward lower CSF Aβ-42 levels. Our observations suggest that there is an association between SDB and CSF Alzheimer's disease-biomarkers in cognitively normal elderly individuals. Existing therapies for SDB such as continuous positive airway pressure could delay the onset to mild cognitive impairment or dementia in normal elderly individuals.

  16. The interaction between sleep-disordered breathing and ApoE genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly

    PubMed Central

    Osorio, Ricardo S.; Ayappa, Indu; Mantua, Janna; Gumb, Tyler; Varga, Andrew; Mooney, Anne M.; Burschtin, Omar E.; Taxin, Zachary; During, Emmanuel; Spector, Nicole; Biagioni, Milton; Pirraglia, Elizabeth; Lau, Hiuyan; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Rapoport, David M.; de Leon, Mony J.

    2014-01-01

    Background Previous studies have suggested a link between Sleep Disordered Breathing (SDB) and dementia risk. In the present study, we analyzed the relationship between SDB severity, cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, and the ApoE alleles. Methods 95 cognitively normal elderly participants were analyzed for SDB severity, CSF measures of phosphorylated-tau (P-Tau), total-tau (T-Tau), and amyloid beta 42 (Aβ42), as well as ApoE allele status. Findings In ApoE3+ subjects, significant differences were found between sleep groups for P-Tau (F[df2]=4.3, p=0.017), and T-Tau (F[df2]=3.3, p=0.043). Additionally, among ApoE3+ subjects, the apnea/hypopnea with 4% O2-desaturation index (AHI4%) was positively correlated with P-Tau (r=0.30, p=0.023), T-Tau (r=0.31, p=0.021), and Aβ42 (r=0.31, p=0.021). In ApoE2+ subjects, AHI4% was correlated with lower levels of CSF Aβ42 (r=−0.71, p=0.004), similarly to ApoE4+ subjects where there was also a trend towards lower CSF Aβ42 levels Interpretation Our observations suggest that there is an association between SDB and CSF AD- biomarkers in cognitively normal elderly. Existing therapies for SDB such as CPAP could delay the onset to mild cognitive impairment or dementia in normal elderly. PMID:24439479

  17. Sleep Problems in Asthma and COPD

    MedlinePlus

    ... 5 Sleep Problems in Asthma and COPD NORMAL AIRWAY Good quality sleep is important for everyone. People ... COPD can take to improve their sleep. OBSTRUCTED AIRWAY What kind of night disturbances can I get ...

  18. Muscarinic receptor pharmacology and circuitry for the modulation of cognition.

    PubMed

    Bubser, Michael; Byun, Nellie; Wood, Michael R; Jones, Carrie K

    2012-01-01

    The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimer's disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.

  19. Comparison of Cone-Beam CT Incidental Findings between Moderate/Severe Obstructive Sleep Apnea patients and Mild/Normal patients

    PubMed Central

    Enciso, Reyes; Shigeta, Yuko; Nguyen, Manuel; Clark, Glenn T.

    2012-01-01

    Objective To compare the incidental radiographic findings in the maxillofacial structures and the pharyngeal airway between moderate/severe Obstructive Sleep Apnea (OSA) subjects and mild OSA/normal subjects using Cone-Beam Computed Tomography (CBCT) scans. Study Design 53 moderate/severe OSA subjects (with a Respiratory Disturbance Index [RDI]≥15 events/hr) and 33 mild OSA/normal subjects, (RDI<15) based on ambulatory somnographic assessment were recruited. Supine CBCT’s were taken and sent for radiological report. The incidental findings were compared between the two groups. Results Moderate/severe subjects had larger prevalence of conchae bullosa, hypertrophic turbinates, hypertrophic tonsils, elongated or posteriorly placed soft palate, narrower airway, enlarged tongue, and focal calcifications, though no significant differences were found. Conclusions CBCT is useful in identifying maxillofacial and airway anomalies that could interfere with normal breathing. However, no significant difference was found in prevalence of incidental findings between moderate/severe OSA and mild/normal subjects. Further studies are necessary to generalize our results. PMID:22862979

  20. Ganzfeld Stimulation or Sleep Enhance Long Term Motor Memory Consolidation Compared to Normal Viewing in Saccadic Adaptation Paradigm

    PubMed Central

    Voges, Caroline; Helmchen, Christoph; Heide, Wolfgang; Sprenger, Andreas

    2015-01-01

    Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation (“Ganzfeld”-stimulation or sleep) can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials – interspersed by an extinction block – which were followed by a two-hour break with or without visual deprivation (VD). Using additional adaptation and extinction blocks short and long (4 weeks) term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error) in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep), might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation. PMID:25867186

  1. Sleep and Human Aging.

    PubMed

    Mander, Bryce A; Winer, Joseph R; Walker, Matthew P

    2017-04-05

    Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?

  2. Isolated sleep paralysis elicited by sleep interruption.

    PubMed

    Takeuchi, T; Miyasita, A; Sasaki, Y; Inugami, M; Fukuda, K

    1992-06-01

    We elicited isolated sleep paralysis (ISP) from normal subjects by a nocturnal sleep interruption schedule. On four experimental nights, 16 subjects had their sleep interrupted for 60 minutes by forced awakening at the time when 40 minutes of nonrapid eye movement (NREM) sleep had elapsed from the termination of rapid eye movement (REM) sleep in the first or third sleep cycle. This schedule produced a sleep onset REM period (SOREMP) after the interruption at a high rate of 71.9%. We succeeded in eliciting six episodes of ISP in the sleep interruptions performed (9.4%). All episodes of ISP except one occurred from SOREMP, indicating a close correlation between ISP and SOREMP. We recorded verbal reports about ISP experiences and recorded the polysomnogram (PSG) during ISP. All of the subjects with ISP experienced inability to move and were simultaneously aware of lying in the laboratory. All but one reported auditory/visual hallucinations and unpleasant emotions. PSG recordings during ISP were characterized by a REM/W stage dissociated state, i.e. abundant alpha electroencephalographs and persistence of muscle atonia shown by the tonic electromyogram. Judging from the PSG recordings, ISP differs from other dissociated states such as lucid dreaming, nocturnal panic attacks and REM sleep behavior disorders. We compare some of the sleep variables between ISP and non-ISP nights. We also discuss the similarities and differences between ISP and sleep paralysis in narcolepsy.

  3. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    PubMed Central

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  4. Neuronal circuitry controlling the near response.

    PubMed

    Mays, L E; Gamlin, P D

    1995-12-01

    Experiments in primates have contributed greatly to our understanding of the neural mechanisms involved in the eye movements required to view objects at different distances. Early work focused on the circuitry for generating horizontal vergence eye movements alone. However, vergence eye movements are associated with lens accommodation and are usually accompanied by saccadic eye movements, so more recent work has been directed at understanding the interactions between vergence and accommodation, and between vergence and saccades. A new model explains the neural basis for interactions between vergence and accommodation by a neural network in which pre-motor elements are shared by these two systems. The effects of saccades on vergence eye movements appear to be the result of shared pre-motor circuits as well. Current evidence suggests that pontine omnipause neurons, known to be crucial for the generation of saccades, play an important role in the vergence pre-motor circuitry.

  5. [Sleep rhythm and cardiovascular diseases].

    PubMed

    Maemura, Koji

    2012-07-01

    Sleep disturbance is a common problem in general adult population. Recent evidence suggests the link between the occurrence of cardiovascular events and several sleep disturbances including sleep apnea syndrome, insomnia and periodic limb movements during sleep. Sleep duration may affect the cardiovascular outcome. Shift work also may increase the risk of ischemic heart disease. Normalization of sleep rhythm has a potential to be a therapeutic target of ischemic heart diseases, although further study is required to evaluate the preventive effect on cardiovascular events. Here we describe the current understandings regarding the roles of sleep disorders during the pathogenesis of cardiovascular events.

  6. Risk of obstructive sleep apnea in obese and nonobese women with polycystic ovary syndrome and healthy reproductively normal women.

    PubMed

    Mokhlesi, Babak; Scoccia, Bert; Mazzone, Theodore; Sam, Susan

    2012-03-01

    To study the risk for obstructive sleep apnea (OSA) in a group of nonobese and obese polycystic ovary syndrome (PCOS) and control women. Prospective study. Academic tertiary care medical center. Forty-four women with PCOS and 34 control women. All of the women completed the Berlin questionnaire for assessment of OSA risk. All of the women underwent fasting determination of androgens, glucose, and insulin. Women with PCOS were more obese compared with control women. However, there were no differences in BMI once subjects were divided into nonobese (PCOS: n = 17; control: n = 26) and obese (PCOS: n = 27; control: n = 8) groups. Women with PCOS had higher prevalence of high-risk OSA compared with control women (47% vs. 15%). However, none of the nonobese PCOS and control women screened positively for high-risk OSA. Among the obese group, the risk did not differ between groups (77% vs. 63%). Our findings indicate that even though the risk for OSA in PCOS is high, it is related to the high prevalence of severe obesity. The risk for OSA among nonobese women with PCOS is very low. However, our findings are limited by lack of polysomnographic confirmation of OSA. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Additional Drive Circuitry for Piezoelectric Screw Motors

    NASA Technical Reports Server (NTRS)

    Smythe, Robert; Palmer, Dean; Gursel, Yekta; Reder, Leonard; Savedra, Raymond

    2004-01-01

    Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.

  8. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  9. Advanced Data Acquisition Systems with Self-Healing Circuitry

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  10. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2

    PubMed Central

    Schrölkamp, Maren; Jennum, Poul J.; Gammeltoft, Steen; Holm, Anja; Kornum, Birgitte R.; Knudsen, Stine

    2017-01-01

    Study Objectives: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. Methods: Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition (ICSD-3) and 20 healthy controls. HCRT-1 and MCH levels were quantified by radioimmunoassay and correlated with clinical symptoms, polysomnography (PSG), and Multiple Sleep Latency Test (MSLT) parameters. Results: CSF and plasma MCH levels were not significantly different between narcolepsy patients regardless of ICSD-3 subtype, HCRT-1 levels, or compared to controls. CSF MCH and HCRT-1 levels were not significantly correlated. Multivariate regression models of CSF MCH levels, age, sex, and body mass index predicting clinical, PSG, and MSLT parameters did not reveal any significant associations to CSF MCH levels. Conclusions: Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH measurement is not an informative diagnostic marker for narcolepsy. Citation: Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal morning melanin

  11. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  12. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  13. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    PubMed Central

    Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604

  14. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization.

    PubMed

    Ray, Laura B; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M; Doyon, Julien; Fogel, Stuart M

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing "background" sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  15. Sleep disturbances in Parkinsonism.

    PubMed

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  16. Plasma renin levels and renin-blood pressure relationship in normal-weight and overweight children with obstructive sleep apnea and matched controls.

    PubMed

    Shamsuzzaman, Abu; Szczesniak, Rhonda D; Fenchel, Matthew C; Amin, Raouf S

    2015-01-01

    Obstructive sleep apnea (OSA) has been increasingly linked to elevated blood pressure (BP) and hypertension. Repeated night-time hypoxia in OSA is associated with activation of two critical mechanisms of BP control: the autonomic nervous system and the renin-angiotensin system (RAS). The effects of OSA on the RAS are not well understood, especially in children. We hypothesized that children with OSA have elevated renin levels and abnormal relationships between BP and renin. Polysomnography was conducted in 173 children to diagnose OSA (apnea-hypopnea index [AHI] >1 event/h) and control (AHI ≤1 event/h) groups. Age- and gender-specific z-scores for body mass index (BMI) were calculated to divide subjects into obese (BMI ≥95%), overweight (BMI ≥85% and <95%) and normal-weight (BMI <85%) groups. Morning BP was measured with an automatic sphygmomanometer and venous blood samples were collected for measurements of plasma renin, after overnight polysomnography. Plasma renin levels were not significantly different in all four groups after adjustment of age, gender, and race. Significantly negative associations between renin and BP were present only in the normal-weight control group and were absent in the other three groups. Plasma renin levels were not significantly increased in children with OSA compared to controls for both normal-weight and overweight subjects. The absence of normal, negative renin-BP relationships in both overweight and OSA children suggests a dysfunction of the RAS, which could be a mechanism for increased BP and the development of hypertension. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The development of micromachined gyroscope structure and circuitry technology.

    PubMed

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-14

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  18. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-01

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468

  19. Comparison of lingual tonsil size as depicted on MR imaging between children with obstructive sleep apnea despite previous tonsillectomy and adenoidectomy and normal controls.

    PubMed

    Fricke, Bradley L; Donnelly, Lane F; Shott, Sally R; Kalra, Maninder; Poe, Stacy A; Chini, Barbara A; Amin, Raouf S

    2006-06-01

    Cine MRI has become a useful tool in the evaluation of patients with persistent obstructive sleep apnea (OSA) despite previous surgical intervention and in patients with underlying conditions that render them susceptible to multilevel airway obstruction. Findings on cine MRI studies have also increased our understanding of the mechanisms and anatomic causes of OSA in children. To compare lingual tonsil size between children with OSA and a group of normal controls. In addition, a subanalysis was made of the group of children with OSA comparing lingual tonsils between children with and without underlying Down syndrome. Children with persistent OSA despite previous palatine tonsillectomy and adenoidectomy and controls without OSA underwent MR imaging with sagittal fast spin echo inversion-recovery images, and lingual tonsils were categorized as nonperceptible at imaging or present and measurable. When present, lingual tonsils were measured in the maximum anterior-posterior diameter. If lingual tonsils were greater than 10 mm in diameter and abutting both the posterior border of the tongue and the posterior pharyngeal wall, they were considered markedly enlarged. There were statistically significant differences between the OSA and control groups for the presence vs. nonvisualization of lingual tonsils (OSA 33% vs. control 0%, P=0.0001) and mean diameter of the lingual tonsils (OSA 9.50 mm vs. control 0.0 mm, P=0.00001). Within the OSA group, there were statistically significant differences between children with and without Down syndrome for the three lingual tonsil width categories (P=0.0070) and occurrence of markedly enlarged lingual tonsils (with Down syndrome 35% vs. without Down syndrome 3%, P=0.0035). Enlargement of the lingual tonsils is relatively common in children with persistent obstructive sleep apnea after palatine tonsillectomy and adenoidectomy. This is particularly true in patients with Down syndrome.

  20. Cued memory reactivation during sleep influences skill learning.

    PubMed

    Antony, James W; Gobel, Eric W; O'Hare, Justin K; Reber, Paul J; Paller, Ken A

    2012-06-26

    Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we enhanced relative performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry.

  1. The Neuroprotective Aspects of Sleep

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2015-01-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle. PMID:26594659

  2. The Neuroprotective Aspects of Sleep.

    PubMed

    Eugene, Andy R; Masiak, Jolanta

    2015-03-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle.

  3. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  4. Clinical Considerations of Obstructive Sleep Apnea with Little REM Sleep.

    PubMed

    Koo, Dae Lim; Nam, Hyunwoo

    2016-10-01

    Obstructive sleep apnea (OSA) is more severe during rapid eye movement (REM) sleep than during non-REM sleep. We aimed to determine the features of patients with OSA who experience little REM sleep. Patients with a chief complaint of sleep-disordered breathing were enrolled. All subjects underwent overnight polysomnography (PSG) and completed questionnaires on sleep quality. Patients were divided into the following three groups according to the proportion of REM sleep detected in overnight PSG: little REM sleep [REM sleep <20% of total sleep time (TST)], normal REM sleep (20-25% of TST), and excessive REM sleep (>25% of TST). Multiple logistic regression analyses were applied to the data. The success rate of continuous positive airway pressure (CPAP) titration was estimated in these groups. The age and body mass index of the patients were 47.9±15.9 years (mean±SD) and 25.2±4.1 kg/m², respectively. The 902 patients comprised 684 (76%) men and 218 (24%) women. The apnea-hypopnea index (AHI) in the little-REM-sleep group was 22.1±24.4 events/hour, which was significantly higher than those in the other two groups (p<0.05). Multiple logistic regression showed that a higher AHI (p<0.001; odds ratio, 1.512; 95% confidence interval, 1.020-1.812) was independently predictive of little REM sleep. The titration success rate was lower in the little-REM-sleep group than in the normal-REM-sleep group (p=0.038). The AHI is higher and the success rate of CPAP titration is lower in OSA patients with little REM sleep than those with normal REM sleep.

  5. [Some indices of the activity of the brain in "rapid" sleep preceeded or not preceeded by delta-sleep].

    PubMed

    Latash, L P; Raĭt, M L; Veĭn, A M; Iakhno, N N

    1975-04-01

    In order to study the functional interaction between the delta sleep and the REM sleep some psychophysiological features of REM sleep were examined in REM-onset (without any preceding delta sleep--"early REM period") and in the REM period (REMP) terminating the normal sleep cycle (with the preceding delta sleep) of 92 daytime sleep attacks in 10 narcoleptic patients. Under these conditions the significant differences exist in the characteristics of the dream reports and in subjective estimations of sleep quality and duration. Sleep was evaluated as "superficial" and underestimations of sleep duration took place after an early REMP. Correct estimations of sleep duration and evaluations of sleep as "deep" dominated after REMP enging sleep cycles. The results obtained indicate the functional interaction between the delta sleep and REM sleep existing in the sleep cycle and largely determining the psychic content of the brain activity in the REM sleep.

  6. Use of SX Series Devices and IEEE 1149.1 JTAG Circuitry

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Wang, J. J.

    1998-01-01

    This report summarizes the use of SX series devices and their JTAG 1149.1 circuitry. 'JTAG' circuitry was originally designed to standardize testing of boards via a simple control port interface electrically without having to use devices such as a bed of nails tester. JTAG is also used for other functions such as executing built-in-test sequences, identifying devices, or, through custom instructions, other functions designed in by the chip designer. The JTAG circuitry is designed for test only; it has no functional use in the integrated circuit during normal operations. The JTAG circuitry and the mode of the device is controlled by a circuit block known as the 'TAP controller,' which is a sixteen-state state machine along with various registers. The controller is normally in an operational state known as TEST-LOGIC-RESET. In this state, the device is held in a fully functional, operational mode. However, a Single Event Upset (SEU) may remove the TAP controller from this state, causing a loss of control of the integrated circuit, unless certain precautions are taken, such as grounding the optional JTAG TRST signal.

  7. Use of SX Series Devices and IEEE 1149.1 JTAG Circuitry. Revised

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Wang, J. J.

    1998-01-01

    This report summarizes the use of SX series devices and their JTAG 1149.1 circuitry. 'JTAG' circuitry was originally designed to standardize testing of boards via a simple control port interface electrically without having to use devices such as a bed of nails tester. JTAG is also used for other functions such as executing built-in-test sequences, identifying devices, or, through custom instructions, other functions designed in by the chip designer. The JTAG circuitry is designed for test only; it has no functional use in the integrated circuit during normal operations. The JTAG circuitry and the mode of the device is controlled by a circuit block known as the 'TAP controller,' which is a sixteen-state state machine along with various registers. The controller is normally in an operational state known as TEST-LOGIC-RESET. In this state, the device is held in a fully functional, operating mode. However, a Single Event Upset (SEU) may remove the TAP controller from this state, causing a loss of control of the integrated circuit, unless certain precautions are taken, such as grounding the optional JTAG TRST signal.

  8. Sleep Disorders

    MedlinePlus

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  9. Sleep Problems

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  10. Neuroimaging in sleep medicine.

    PubMed

    Dang-Vu, Thien Thanh; Desseilles, Martin; Petit, Dominique; Mazza, Stéphanie; Montplaisir, Jacques; Maquet, Pierre

    2007-06-01

    The development of neuroimaging techniques has made possible the characterization of cerebral function throughout the sleep-wake cycle in normal human subjects. Indeed, human brain activity during sleep is segregated within specific cortical and subcortical areas in relation to the sleep stage, sleep physiological events and previous waking activity. This approach has allowed sleep physiological theories developed from animal data to be confirmed, but has also introduced original concepts about the neurobiological mechanisms of sleep, dreams and memory in humans. In contrast, at present, few neuroimaging studies have been dedicated to human sleep disorders. The available work has brought interesting data that describe some aspects of the pathophysiology and neural consequences of disorders such as insomnia, sleep apnea and narcolepsy. However, the interpretation of many of these results is restricted by limited sample size and spatial/temporal resolution of the employed technique. The use of neuroimaging in sleep medicine is actually restrained by concerns resulting from the technical experimental settings and the characteristics of the diseases. Nevertheless, we predict that future studies, conducted with state of the art techniques on larger numbers of patients, will be able to address these issues and contribute significantly to the understanding of the neural basis of sleep pathologies. This may finally offer the opportunity to use neuroimaging, in addition to the clinical and electrophysiological assessments, as a helpful tool in the diagnosis, classification, treatment and monitoring of sleep disorders in humans.

  11. [Thyroid gland and sleep].

    PubMed

    Steiger, A

    1999-01-01

    A set of data suggests that the thyroid gland plays a role in the bi-directional interaction between the electrophysiological and the endocrine components of sleep, e.g. the nonREM-REM-cycle and the patterns of nocturnal hormone secretion, respectively. In detail thyroid-stimulating hormone (TSH) and thyroxin (T4) show circadian rhythms. A specific relationship was observed between TSH and REM sleep. Blunted TSH levels were found in healthy elderly subjects and, probably due to overactivity of corticotropin-releasing hormone in patients with depression in comparison to young normal controls. Pulsatile administration of thyrotropin-releasing hormone induced a decrease of sleep efficiency and an earlier occurrence of the cortisol rise in normal controls. Slow wave sleep was reduced in patients with hypothyroidism in comparison to normal controls. The sleep EEG normalised after therapy.

  12. Reward circuitry function in autism spectrum disorders

    PubMed Central

    Felder, Jennifer N.; Green, Steven R.; Rittenberg, Alison M.; Sasson, Noah J.; Bodfish, James W.

    2012-01-01

    Social interaction deficits and restricted repetitive behaviors and interests that characterize autism spectrum disorders (ASDs) may both reflect aberrant functioning of brain reward circuits. However, no neuroimaging study to date has investigated the integrity of reward circuits using an incentive delay paradigm in individuals with ASDs. In the present study, we used functional magnetic resonance imaging to assess blood-oxygen level-dependent activation during reward anticipation and outcomes in 15 participants with an ASD and 16 matched control participants. Brain activation was assessed during anticipation of and in response to monetary incentives and object image incentives previously shown to be visually salient for individuals with ASDs (e.g. trains, electronics). Participants with ASDs showed decreased nucleus accumbens activation during monetary anticipation and outcomes, but not during object anticipation or outcomes. Group × reward-type-interaction tests revealed robust interaction effects in bilateral nucleus accumbens during reward anticipation and in ventromedial prefrontal cortex during reward outcomes, indicating differential responses contingent on reward type in these regions. Results suggest that ASDs are characterized by reward-circuitry hypoactivation in response to monetary incentives but not in response to autism-relevant object images. The clinical implications of the double dissociation of reward type and temporal phase in reward circuitry function in ASD are discussed. PMID:21148176

  13. Sleep and vascular disorders.

    PubMed

    Plante, Gérard E

    2006-10-01

    It is not surprising that cardiovascular diseases such as congestive heart failure and coronary insufficiency can give rise to varying degrees of sleep impairment; it is less readily appreciated that certain physiologic events occurring during sleep-as well as long-term unsatisfactory sleep-may cause or increase the risk of cardiovascular conditions such as hypertension, atherosclerosis, stroke, and cardiac arrythmias. Heart rate abnormalities during sleep in normotensive subjects predict later cardiovascular disease, and their early identification alerts the physician to undertake preventive measures. Maneuvers, such as induction of hypoxia, can elicit abnormal blood pressure responses during sleep, and such responses have been used to identify impending cardiovascular problems that could become therapeutic targets. The spontaneously hypertensive rat has been used to examine the effect of sympathetic nervous system (SNS) activity on the heart under a variety of experimental conditions, including quiet and paradoxical sleep. The results have disclosed significant differences between the responses of spontaneously hypertensive rats and normal rats to SNS stimulation. Exploration of other pathophysiologic pathways affected by exposure to light and dark, including those responsive to the cyclic production of melatonin, will improve our understanding of the effect of disruptions of the circadian cycle on cardiovascular function. There is growing evidence that melatonin can influence important processes such as fluid, nitrogen, and acid-base balance. Human subjects whose nocturnal arterial blood pressure fails to show the "normal" decrement during sleep ("nondippers") are also prone to sleep poorly, exhibit increased SNS activity during sleep, and have an increased risk of total and cardiovascular disease mortality. Chronic sleep deficit is now known to be a risk factor for obesity and may contribute to the visceral form of obesity that underlies the metabolic syndrome

  14. Sleep paralysis among medical students.

    PubMed

    Penn, N E; Kripke, D F; Scharff, J

    1981-03-01

    Sleep paralysis is a sensation of an inability to speak or move other muscles when falling asleep or awakening. Sleep paralysis by itself has been reported as occurring infrequently and many clinicians are uncertain of its significance. In contrast, sleep paralysis in conjunction with sleep attacks has been reported as a concomitant of narcolepsy. To further examine the incidence of sleep paralysis, the responses of 80 first-year medical students, 16.25% had experienced predormital, postdormital, or both types of sleep paralysis. These episodes occurred infrequently--only once or twice for most of these students. Reports of sleep paralysis were not associated with sleep attacks or cataplexy. These results support two previous studies which found that sleep paralysis alone occurs frequently among normals.

  15. Sleep in athletes and the effects of Ramadan.

    PubMed

    Roky, Rachida; Herrera, Christopher Paul; Ahmed, Qanta

    2012-01-01

    Sleep is now considered as a new frontier in performance enhancement. This article presents background content on sleep function, sleep needs and methods of sleep investigation along with data on the potential effects of Ramadan fasting on sleep in normal individuals and athletes. Accumulated sleep loss has negative impacts on cognitive function, mood, daytime sleepiness and performance. Sleep studies in athletes fasting during Ramadan are very rare. Most of them have demonstrated that during this month, sleep duration decreased and sleep timing shifted. But the direct relation between sleep changes and performance during Ramadan is not yet elucidated. Objective sleep patterns can be investigated using polysomnography, actigraphy, and standardised questionnaires and recorded in daily journals or sleep logs. The available data on sleep indicate that team doctors and coaches should consider planning sleep schedule and napping; implementing educational programmes focusing on the need for healthy sleep; and consider routine screening for sleep loss in athletes of all age groups and genders.

  16. Effects of different sleep deprivation protocols on sleep perception in healthy volunteers.

    PubMed

    Goulart, Leonardo I; Pinto, Luciano R; Perlis, Michael L; Martins, Raquel; Caboclo, Luis Otavio; Tufik, Sergio; Andersen, Monica L

    2014-10-01

    To investigate whether different protocols of sleep deprivation modify sleep perception. The effects of total sleep deprivation (TD) and selective rapid eye movement (REM) sleep deprivation (RD) on sleep perception were analyzed in normal volunteers. Thirty-one healthy males with normal sleep were randomized to one of three conditions: (i) normal uninterrupted sleep; (ii) four nights of RD; or (iii) two nights of TD. Morning perception of total sleep time was evaluated for each condition. Sleep perception was estimated using total sleep time (in hours) as perceived by the volunteer divided by the total sleep time (in hours) measured by polysomnography (PSG). The final value of this calculation was defined as the perception index (PI). There were no significant differences among the three groups of volunteers in the total sleep time measured by PSG or in the perception of total sleep time at baseline condition. Volunteers submitted to RD exhibited lower sleep PI scores as compared with controls during the sleep deprivation period (P <0.05). Both RD and TD groups showed PI similar to controls during the recovery period. Selective REM sleep deprivation reduced the ability of healthy young volunteers to perceive their total sleep time when compared with time measured by PSG. The data reinforce the influence of sleep deprivation on sleep perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Sleep Physiology, Abnormal States, and Therapeutic Interventions

    PubMed Central

    Wickboldt, Alvah T.; Bowen, Alex F.; Kaye, Aaron J.; Kaye, Adam M.; Rivera Bueno, Franklin; Kaye, Alan D.

    2012-01-01

    Sleep is essential. Unfortunately, a significant portion of the population experiences altered sleep states that often result in a multitude of health-related issues. The regulation of sleep and sleep-wake cycles is an area of intense research, and many options for treatment are available. The following review summarizes the current understanding of normal and abnormal sleep-related conditions and the available treatment options. All clinicians managing patients must recommend appropriate therapeutic interventions for abnormal sleep states. Clinicians' solid understanding of sleep physiology, abnormal sleep states, and treatments will greatly benefit patients regardless of their disease process. PMID:22778676

  18. The sleep protection in the preterm infants.

    PubMed

    Calciolari, Guido; Montirosso, Rosario

    2011-10-01

    The importance of sleep in the development is only now beginning to be understood: sleep and established sleep cycles have an important role in the normal neurosensory and cortex development. The biological basis of sleep organization has been highlighted by several studies however environmental differences can affect the sleep patterns in preterm infants in the NICU. Sleep disorders are related to several physiological conditions but it is important to know the relationship between sleep organization and neurocognitive and socio-emotional outcomes. From the recent literature it is possible to find out potentially better practices that preserve and promote infant sleep in the NICU.

  19. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  20. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  1. Circadian clock circuitry in colorectal cancer

    PubMed Central

    Mazzoccoli, Gianluigi; Vinciguerra, Manlio; Papa, Gennaro; Piepoli, Ada

    2014-01-01

    Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer. PMID:24764658

  2. Circadian clock circuitry in colorectal cancer.

    PubMed

    Mazzoccoli, Gianluigi; Vinciguerra, Manlio; Papa, Gennaro; Piepoli, Ada

    2014-04-21

    Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.

  3. On the general theory of neural circuitry.

    PubMed

    Kingham, D J

    1994-05-01

    A general theory of neural circuitry is proposed wherein neural impulses travel in a continuous circuit from the brain to the extremities and back to the brain. At the extremities the impulse may be modified by the environment there. At the spinal column the return signal is compared with the outgoing signal and the appropriate motoneuronal 'reflex' signal is generated if the difference is sufficiently large. In the thalamus the return signal is again compared with the outgoing signal and the difference between the two generates a sensory impulse which is sent to the cortical regions of the brain for comparison with stored patterns from similar signals of past experience. This theory allows for an explanation of feelings of pain and pleasure, pain remote from an area of trauma, phantom limb pain and the relationship between sensory impulses and motor impulses. New approaches to reducing pain are suggested by this theory.

  4. The Brain Reward Circuitry in Mood Disorders

    PubMed Central

    Russo, Scott J.; Nestler, Eric J.

    2013-01-01

    Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioral domains. A recent literature has identified important structural and functional alterations within the brain’s reward circuitry —particularly in the ventral tegmental area to nucleus accumbens pathway — that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms. PMID:23942470

  5. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  6. Sleep and immune function.

    PubMed

    Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2012-01-01

    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep-wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations.

  7. Sleep and its disorders in translational medicine.

    PubMed

    Paterson, Louise M; Nutt, David J; Wilson, Sue J

    2011-09-01

    The study of sleep is a useful approach to studying the brain in psychiatric disorders and in investigating the effects of psychotropic drugs. Sleep physiology lends itself well to pharmacological and physiological manipulation, as it has the advantage of a functional output, the electroencephalograph, which is common to all mammals, and can be measured in freely moving (or naturally sleeping) animals under controlled laboratory conditions or in a naturalistic home environment. The complexity of sleep architecture varies between species but all share features which are comparable. In addition, sleep architecture is sensitive to changes in brain neurotransmitters such as serotonin, so cross-species sleep measurement can be combined with pharmacological manipulation to investigate the receptor mechanisms controlling sleep-wake regulation and sleep architecture in response to known and novel agents. Translational approaches such as these have improved our understanding of sleep circuitry and facilitated the development of new treatments for sleep disorders, particularly insomnia. This review provides examples of how research findings within the sleep field have been translated between animal models, healthy volunteers and patient populations with particular focus on the serotonergic system.

  8. Clock and cycle limit starvation-induced sleep loss in Drosophila

    PubMed Central

    Keene, Alex C.; Duboué, Erik R.; McDonald, Daniel M.; Dus, Monica; Suh, Greg S.B.; Waddell, Scott; Blau, Justin

    2010-01-01

    Summary Neural systems controlling the vital functions of sleep and feeding in mammals are tightly inter-connected: sleep deprivation promotes feeding, while starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms because starved period mutants sleep like wild type flies. By selectively targeting subpopulations of Clk-expressing neurons we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food. PMID:20541409

  9. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason.

    PubMed

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry.

  10. State Preparation and Readout of Fluxon Qubit by RSFQ Circuitry

    NASA Astrophysics Data System (ADS)

    Ustinov, Alexey

    2002-07-01

    This report results from a contract tasking University of Erlangen-Nuremberg as follows: The contractor will investigate the use of Rapid Single Flux Quantum (RSFQ) logic circuitry to read qubits in 3-micron wide Josephson transmission line (JTL). He will construct semiconductor chips as necessary to test his theories on RSFQ circuitry and document his findings in a final report.

  11. Mapping the brain's metaphor circuitry: metaphorical thought in everyday reason

    PubMed Central

    Lakoff, George

    2014-01-01

    An overview of the basics of metaphorical thought and language from the perspective of Neurocognition, the integrated interdisciplinary study of how conceptual thought and language work in the brain. The paper outlines a theory of metaphor circuitry and discusses how everyday reason makes use of embodied metaphor circuitry. PMID:25566012

  12. Semiconductors can be tested without removing them from circuitry

    NASA Technical Reports Server (NTRS)

    Allen, B. C.

    1966-01-01

    Oscilloscope, with specially developed test circuitry, quickly checks semiconductors without removing them from the circuitry. For transistors, approximate gain and linearity, as well as PNP or NPN determinations are made. When testing diodes, open or short circuits, and reverse polarity show up plainly.

  13. The Effect of Total Sleep Deprivation and Recovery Sleep on Cognitive on Performance and Brain Function

    DTIC Science & Technology

    2005-08-01

    Performance on other Cognitive Tasks. Sleep 2005 28(Suppl 1):A353. 7. Chen, T, Salamat, JS, Yanagi, MA, Stiller, CS, Drummond, SPA. Actigraphy Measures vs...suggest that these variations within a normal range of sleep , as measured with actigraphy , were not extreme enough to influence cognitive performance...appear to alter normal sleep architecture during recovery sleep . Here, we compared sleep parameters on baseline and for two consecutive nights of

  14. Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks.

    PubMed

    Arns, Martijn; Kenemans, J Leon

    2014-07-01

    In this review article an overview of the history and current status of neurofeedback for the treatment of ADHD and insomnia is provided. Recent insights suggest a central role of circadian phase delay, resulting in sleep onset insomnia (SOI) in a sub-group of ADHD patients. Chronobiological treatments, such as melatonin and early morning bright light, affect the suprachiasmatic nucleus. This nucleus has been shown to project to the noradrenergic locus coeruleus (LC) thereby explaining the vigilance stabilizing effects of such treatments in ADHD. It is hypothesized that both Sensori-Motor Rhythm (SMR) and Slow-Cortical Potential (SCP) neurofeedback impact on the sleep spindle circuitry resulting in increased sleep spindle density, normalization of SOI and thereby affect the noradrenergic LC, resulting in vigilance stabilization. After SOI is normalized, improvements on ADHD symptoms will occur with a delayed onset of effect. Therefore, clinical trials investigating new treatments in ADHD should include assessments at follow-up as their primary endpoint rather than assessments at outtake. Furthermore, an implication requiring further study is that neurofeedback could be stopped when SOI is normalized, which might result in fewer sessions.

  15. [Sleep talking].

    PubMed

    Challamel, M J

    2001-11-01

    Sleep talking is very common in the general population. Its prevalence remains stable from childhood through adulthood. Sleep talking is often associated with other parasomnias: sleep walking, sleep terrors or REM sleep behavior disorders. It may arise from either REM or non REM sleep, when associated with REM sleep it is more comprehensible and often associated with clear sentences and recall of sleep mentation. Sleep talking is a benign entity and does not require any treatment; however an exceptional organic cause or psychopathology should be suspected if the onset is late (after 25 years); if the mental content is too violent or too emotional.

  16. Sleep apnoea.

    PubMed

    Jun, Jonathan C; Chopra, Swati; Schwartz, Alan R

    2016-03-01

    Sleep apnoea is a disorder characterised by repetitive pauses in breathing during sleep caused by airway occlusion (obstructive sleep apnoea) or altered control of breathing (central sleep apnoea). In this Clinical Year in Review, we summarise high-impact research from the past year pertaining to management, diagnosis and cardio-metabolic consequences of sleep apnoea.

  17. Effects of hormones on sleep.

    PubMed

    Steiger, A; Antonijevic, I A; Bohlhalter, S; Frieboes, R M; Friess, E; Murck, H

    1998-01-01

    Administration of hormones to humans and animals results in specific effects on the sleep electroencephalogram (EEG) and nocturnal hormone secretion. Studies with pulsatile administration of various neuropeptides in young and old normal controls and in patients with depression suggest they play a key role in sleep-endocrine regulation. Growth hormone (GH)-releasing hormone (GHRH) stimulates GH and slow wave sleep (SWS) and inhibits cortisol, whereas corticotropin-releasing hormone (CRH) exerts opposite effects. Changes in the GHRH:CRH ratio contribute to sleep-endocrine aberrations during normal ageing and acute depression. In addition, galanin and neuropeptide Y promote sleep, whereas, in the elderly, somatostatin impairs sleep. The rapid eye movement (REM)-nonREM cycle is modulated by vasoactive intestinal polypeptide. Cortisol stimulates SWS and GH, probably by feedback inhibition of CRH. Neuroactive steroids exert specific effects on the sleep EEG, which can be explained by gamma-aminobutyric acid(A) receptor modulation.

  18. Identifying genetic influences on sleep: an approach to discovering the mechanisms of sleep regulation.

    PubMed

    Toth, L A

    2001-01-01

    Comparisons of sleep patterns of various inbred strains of mice have revealed differences in daily amounts of slow-wave sleep and rapid-eye movement sleep, in circadian patterns of sleep, and in some parameters of the electroencephalograms both in healthy mice and in mice undergoing microbial infections. Technical considerations will probably be an important variable in achieving consensus between different independent studies that use a genetic approach to identify sleep-regulatory genes or mechanisms. However, despite such differences, current data suggest that both normal sleep and various sleep disorders either have a genetic basis or are influenced by genetically determined physiologic or environmental predispositions. Excessive sleepiness, abnormal sleep patterns, nonrestorative sleep, and fatigue are becoming increasingly pervasive in modern society. Identifying genes that influence vigilance may ultimately contribute to a better understanding of the processes that control normal sleep and contribute to sleep disorders and may eventually promote the development of interventions to prevent or alleviate these disabling medical conditions.

  19. Insomnia types and sleep microstructure dynamics.

    PubMed

    Chouvarda, I; Grassi, A; Mendez, M O; Bianchi, A M; Parrino, L; Milioli, G; Terzano, M; Maglaveras, N; Cerutti, S

    2013-01-01

    This work aims to investigate sleep microstructure as expressed by Cyclic Alternating Pattern (CAP), and its possible alterations in pathological sleep. Three groups, of 10 subjects each, are considered: a) normal sleep, b) psychophysiological insomnia, and c) sleep misperception. One night sleep PSG and sleep macro- micro structure annotations were available per subject. The statistical properties and the dynamics of CAP events are in focus. Multiscale and non-linear methods are presented for the analysis of the microstructure event time series, applied for each type of CAP events, and their combination. The results suggest that a) both types of insomnia present CAP differences from normal sleep related to hyperarousal, b) sleep misperception presents more extensive differences from normal, potentially reflecting multiple sleep mechanisms, c) there are differences between the two types of insomnia as regard to the intertwining of events of different subtypes. The analysis constitutes a contribution towards new markers for the quantitative characterization of insomnia, and its subtypes.

  20. Sleep in Children with Williams Syndrome

    PubMed Central

    Mason, Thornton B.A.; Arens, Raanan; Sharman, Jaclyn; Bintliff-Janisak, Brooke; Schultz, Brian; Walters, Arthur S.; Cater, Jacqueline R.; Kaplan, Paige; Pack, Allan I.

    2011-01-01

    Objective To analyze sleep in children with Williams Syndrome (WS) compared to normal healthy controls in order to determine whether particular sleep features are characteristic of WS, and to explore associations between disturbed sleep and behavior. Methods 35 children with genetically-confirmed WS and 35 matched controls underwent overnight polysomnography and performance testing in the Sleep Center at the Children’s Hospital of Philadelphia. Parents completed questionnaires regarding the subjects’ sleep and behavior. Results WS subjects had significantly different sleep than controls, with decreased sleep efficiency, increased respiratory-related arousals, and increased slow wave sleep on overnight polysomnography. WS subjects were also noted to have more difficulty falling asleep, with greater restlessness and more arousals from sleep than controls. 52% of WS subjects had features of attention deficit- hyperactivity disorder. Conclusions Children with WS had significantly different sleep than controls in our sample. These differences demonstrated in our study may reflect genetic influences on sleep. PMID:21940205

  1. Sleeping worries away or worrying away sleep? Physiological evidence on sleep-emotion interactions.

    PubMed

    Talamini, Lucia M; Bringmann, Laura F; de Boer, Marieke; Hofman, Winni F

    2013-01-01

    Recent findings suggest that sleep might serve a role in emotional coping. However, most findings are based on subjective reports of sleep quality, while the relation with underlying sleep physiology is still largely unknown. In this study, the impact of an emotionally distressing experience on the EEG correlates of sleep was assessed. In addition, the association between sleep physiological parameters and the extent of emotional attenuation over sleep was determined. The experimental set up involved presentation of an emotionally neutral or distressing film fragment in the evening, followed by polysomnographic registration of undisturbed, whole-night sleep and assessment of emotional reactivity to film cues on the next evening. We found that emotional distress induced mild sleep deterioration, but also an increase in the proportion of slow wave sleep (SWS) and altered patterning of rapid eye movement (REM) sleep. Indeed, while REM sleep occurrence normally increases over the course of the night, emotional distress flattened this distribution and correlated with an increased number of REM periods. While sleep deterioration was negatively associated to emotional attenuation over sleep, the SWS response was positively related to such attenuation and may form part of a compensatory response to the stressor. Interestingly, trait-like SWS characteristics also correlated positively with the extent of emotion attenuation over sleep. The combined results provide strong evidence for an intimate reciprocal relation between sleep physiology and emotional processing. Moreover, individual differences in subjects' emotional and sleep responses suggest there may be a coupling of certain emotion and sleep traits into distinct emotional sleep types.

  2. Relationships Between Questionnaire Ratings of Sleep Quality and Polysomnography in Healthy Adults.

    PubMed

    Westerlund, Anna; Lagerros, Ylva Trolle; Kecklund, Göran; Axelsson, John; Åkerstedt, Torbjörn

    2016-01-01

    This study aimed to examine the association between polysomnographic sleep and subjective habitual sleep quality and restoration from sleep. Thirty-one normal sleepers completed the Karolinska Sleep Questionnaire and multiple home polysomnography recordings (n = 2-5). Using linear regression, sleep quality and restoration were separately analyzed as functions of standard polysomnography parameters: sleep efficiency, total sleep time, sleep latency, stage 1 and 2 sleep, slow-wave sleep, rapid eye movement sleep, wake time after sleep onset, and awakenings (n), averaged across recordings. Stage 2 and slow-wave sleep predicted worse and better sleep quality, respectively. Also, slow-wave sleep predicted less subjective restoration, although adjustment for age attenuated this relation. Our findings lend some physiological validity to ratings of habitual sleep quality in normal sleepers. Data were less supportive of a physiological correlate of ratings of restoration from sleep.

  3. Neuroregulators and sleep mechanisms.

    PubMed

    Holman, R B; Elliott, G R; Barchas, J D

    1975-01-01

    Information which has emerged thus far relates to the overall transmitter mechanisms of sleep. The data, while conflicting, point to the involvement of many neuroregulators at numerous integrative levels of the process. However the long term question still remain: what triggers and maintain sleep, what stops sleep, what occurs to the body and brain during sleep--in essence, why sleep? These questions are now problems for behavioral neurochemists, whereas in a previous era, they were problems for philosophers. Unfortunately, our answers to date, while in another idiom, have hardly been more complete or satisfying. To answer these questions, it will be necessary to understand, in detail, the manner in which neurobiochemical processes relate to the functional physiology of sleep. Although existing studies have given invaluable insight into the neurochemical anatomy of sleep, we have only recently acquired the technical and biochemical expertise necessary to investigate sleep as it occurs normally. Future research must focus on the dynamic changes associated with the regulatory mechanisms of neurotransmitters. Many questions can be asked. With sleep transitions, what changes occur in transmitter content, synthesis, or release? Are there changes in metabolic pathways, reflecting a shift from intra- to interneuronal metabolism? What changes occur in pre- and postsynaptic neurotransmitter receptors to affect sensitivity? What constraints do genetic (245) and environmental (246) factors impose upon these mechanisms? Knowledge of such parameters will allow us to construct more complete models of the neuroregulatory basis of sleep and waking. However, as we acquire this knowledge, we must avoid the temptation of assuming causation when the evidence merely shows correlation. Neuroregulation are involved in the control of number different behaviors; and, at present, we have few, if any, methods of establishing causative links between a specific neuroregulator and a specific

  4. Sleep Disturbances

    MedlinePlus

    ... PD / Coping with Symptoms & Side Effects / Sleep Disturbances Sleep Disturbances Many people with Parkinson’s disease (PD) have ... stay awake during the day. Tips for Better Sleep People with PD — and their care partners too — ...

  5. Human adult deglutition during sleep.

    PubMed

    Sato, Kiminori; Nakashima, Tadashi

    2006-05-01

    Clearance of the pharynx by deglutition is important in protecting the airway. The pattern of deglutition during sleep was investigated. Deglutition during sleep was examined in 8 normal human adults via time-matched recordings of polysomnography and surface electromyography (EMG) of the thyrohyoid and suprahyoid muscles. During sleep, deglutition was episodic, and was absent for long periods. The mean number of swallows per hour (+/-SD) during the total sleep time was 2.9 +/- 1.3. The mean period of the longest absence of deglutition was 50.6 +/- 10.2 minutes. Most deglutition occurred in association with spontaneous electroencephalographic arousal in rapid eye movement (REM) sleep and non-REM sleep. Deglutition was related to sleep stage. The mean number of swallows per hour was 7.2 +/- 3.5 during stage 1 sleep and 2.0 +/- 0.7 during stage 2 sleep. There was little deglutition during stages 3 and 4. The deeper the sleep stage became, the lower the mean deglutition frequency became. The mean number of swallows per hour was 2.7 +/- 2.2 during REM sleep. The EMG amplitude dropped to the lowest level of recording and hypotonic EMG activity increased during REM sleep. Deglutition, a vital function, is infrequent during sleep.

  6. GPS Position and Heading Circuitry for Ships

    NASA Technical Reports Server (NTRS)

    Cooke, Michael P.; Yim, Hester J.; Gomez, Susan F.

    2003-01-01

    Circuit boards that contain radio-frequency (RF) and digital circuitry have been developed by NASA to satisfy a requirement of the Port of Houston Authority for relatively inexpensive Global Positioning System (GPS) receivers that indicate the azimuthal headings as well as the positions of ships. The receiver design utilizes the unique architecture of the Mitel commercial chip-set, which provides for an accurate GPS-based heading-determination device. The major components include two RF front ends (each connected to a separate antenna), a surface-acoustic-wave intermediate-frequency filter between second- and third-stage mixers, a correlator, and a reduced-instruction- set computer. One of the RF front ends operates as a master, the other as a slave. Both RF front ends share a 10-MHz sinusoidal clock oscillator, which provides for more accurate carrier phase measurements between the two antennas. The outputs of the RF front ends are subjected to conventional GPS processing. The commercial-based chip-set design approach provides an inexpensive open architecture GPS platform, which can be used in developing and implementing unique GPS-heading and attitude-determination algorithms for specific applications. The heading is estimated from the GPS position solutions of the two antennas by an algorithm developed specifically for this application. If a third (and preferably a fourth) antenna were added, it would be possible to estimate the attitude of the GPS receiver in three dimensions instead of only its heading in a horizontal plane.

  7. New calibration circuitry and concept for AGIPD

    NASA Astrophysics Data System (ADS)

    Mezza, D.; Allahgholi, A.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Klyuev, A.; Laurus, T.; Marras, A.; Mozzanica, A.; Perova, I.; Poehlsen, J.; Schmitt, B.; Sheviakov, I.; Shi, X.; Trunk, U.; Xia, Q.; Zhang, J.; Zimmer, M.

    2016-11-01

    AGIPD (adaptive gain integrating pixel detector) is a detector system developed for the European XFEL (XFEL.EU), which is currently being constructed in Hamburg, Germany. The XFEL.EU will operate with bunch trains at a repetition rate of 10 Hz. Each train consists of 2700 bunches with a temporal separation of 220 ns corresponding to a rate of 4.5 MHz. Each photon pulse has a duration of < 100 fs (rms) and contains up to 1012 photons in an energy range between 0.25 and 25 keV . In order to cope with the large dynamic range, the first stage of each bump-bonded AGIPD ASIC is a charge sensitive preamplifier with three different gain settings that are dynamically switched during the charge integration. Dynamic gain switching allows single photon resolution in the high gain stage and can cover a dynamic range of 104 × 12.4 keV photons in the low gain stage. The burst structure of the bunch trains forces to have an intermediate in-pixel storage of the signals. The full scale chip has 352 in-pixel storage cells inside the pixel area of 200 × 200 μm2. This contribution will report on the measurements done with the new calibration circuitry of the AGIPD1.1 chip (without sensor). These results will be compared with the old version of the chip (AGIPD1.0). A new calibration method (that is not AGIPD specific) will also be shown.

  8. Sleep disorders - overview

    MedlinePlus

    ... Hypersomina; Daytime sleepiness; Sleep rhythm; Sleep disruptive behaviors; Jet lag ... disrupted sleep schedule include: Irregular sleep-wake syndrome Jet lag syndrome Paradoxical insomnia (the person sleeps a ...

  9. Sleep Loss and Inflammation

    PubMed Central

    Simpson, Norah S.; Meier-Ewert, Hans K.; Haack, Monika

    2012-01-01

    Controlled, experimental studies on the effects of acute sleep loss in humans have shown that mediators of inflammation are altered by sleep loss. Elevations in these mediators have been found to occur in healthy, rigorously screened individuals undergoing experimental vigils of more than 24 hours, and have also been seen in response to various durations of sleep restricted to between 25 and 50% of a normal 8 hour sleep amount. While these altered profiles represent small changes, such sub-clinical shifts in basal inflammatory cytokines are known to be associated with the future development of metabolic syndrome disease in healthy, asymptomatic individuals. Although the mechanism of this altered inflammatory status in humans undergoing experimental sleep loss is unknown, it is likely that autonomic activation and metabolic changes play key roles. PMID:21112025

  10. Sleep, its regulation and possible mechanisms of sleep disturbances.

    PubMed

    Porkka-Heiskanen, T; Zitting, K-M; Wigren, H-K

    2013-08-01

    The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.

  11. Nicotinic modulation of descending pain control circuitry.

    PubMed

    Umana, Iboro C; Daniele, Claire A; Miller, Brooke A; Abburi, Chandrika; Gallagher, Keith; Brown, Meghan A; Mason, Peggy; McGehee, Daniel S

    2017-10-01

    Along with the well-known rewarding effects, activation of nicotinic acetylcholine receptors (nAChRs) can also relieve pain, and some nicotinic agonists have analgesic efficacy similar to opioids. A major target of analgesic drugs is the descending pain modulatory pathway, including the ventrolateral periaqueductal gray (vlPAG) and the rostral ventromedial medulla (RVM). Although activating nAChRs within this circuitry can be analgesic, little is known about the subunit composition and cellular effects of these receptors, particularly within the vlPAG. Using electrophysiology in brain slices from adult male rats, we examined nAChR effects on vlPAG neurons that project to the RVM. We found that 63% of PAG-RVM projection neurons expressed functional nAChRs, which were exclusively of the α7-subtype. Interestingly, the neurons that express α7 nAChRs were largely nonoverlapping with those expressing μ-opioid receptors (MOR). As nAChRs are excitatory and MORs are inhibitory, these data suggest distinct roles for these neuronal classes in pain modulation. Along with direct excitation, we also found that presynaptic nAChRs enhanced GABAergic release preferentially onto neurons that lacked α7 nAChRs. In addition, presynaptic nAChRs enhanced glutamatergic inputs onto all PAG-RVM projection neuron classes to a similar extent. In behavioral testing, both systemic and intra-vlPAG administration of the α7 nAChR-selective agonist, PHA-543,613, was antinociceptive in the formalin assay. Furthermore, intra-vlPAG α7 antagonist pretreatment blocked PHA-543,613-induced antinociception via either administration method. Systemic administration of submaximal doses of the α7 agonist and morphine produced additive antinociceptive effects. Together, our findings indicate that the vlPAG is a key site of action for α7 nAChR-mediated antinociception.

  12. Disrupted Working Memory Circuitry in Adolescent Psychosis

    PubMed Central

    Eckfeld, Ariel; Karlsgodt, Katherine H.; Haut, Kristen M.; Bachman, Peter; Jalbrzikowski, Maria; Zinberg, Jamie; van Erp, Theo G. M.; Cannon, Tyrone D.; Bearden, Carrie E.

    2017-01-01

    Individuals with schizophrenia (SZ) consistently show deficits in spatial working memory (WM) and associated atypical patterns of neural activity within key WM regions, including the dorsolateral prefrontal cortex (dlPFC) and parietal cortices. However, little research has focused on adolescent psychosis (AP) and potential age-associated disruptions of WM circuitry that may occur in youth with this severe form of illness. Here we utilized each subject’s individual spatial WM capacity to investigate task-based neural dysfunction in 17 patients with AP (16.58 ± 2.60 years old) as compared to 17 typically developing, demographically comparable adolescents (18.07 ± 3.26 years old). AP patients showed lower behavioral performance at higher WM loads and lower overall WM capacity compared to healthy controls. Whole-brain activation analyses revealed greater bilateral precentral and right postcentral activity in controls relative to AP patients, when controlling for individual WM capacity. Seed-based psychophysiological interaction (PPI) analyses revealed significantly greater co-activation between the left dlPFC and left frontal pole in controls relative to AP patients. Significant group-by-age interactions were observed in both whole-brain and PPI analyses, with AP patients showing atypically greater neural activity and stronger coupling between WM task activated brain regions as a function of increasing age. Additionally, AP patients demonstrated positive relationships between right dlPFC neural activity and task performance, but unlike healthy controls, failed to show associations between neural activity and out-of-scanner neurocognitive performance. Collectively, these findings are consistent with atypical WM-related functioning and disrupted developmental processes in youth with AP. PMID:28848413

  13. Disrupted Working Memory Circuitry in Adolescent Psychosis.

    PubMed

    Eckfeld, Ariel; Karlsgodt, Katherine H; Haut, Kristen M; Bachman, Peter; Jalbrzikowski, Maria; Zinberg, Jamie; van Erp, Theo G M; Cannon, Tyrone D; Bearden, Carrie E

    2017-01-01

    Individuals with schizophrenia (SZ) consistently show deficits in spatial working memory (WM) and associated atypical patterns of neural activity within key WM regions, including the dorsolateral prefrontal cortex (dlPFC) and parietal cortices. However, little research has focused on adolescent psychosis (AP) and potential age-associated disruptions of WM circuitry that may occur in youth with this severe form of illness. Here we utilized each subject's individual spatial WM capacity to investigate task-based neural dysfunction in 17 patients with AP (16.58 ± 2.60 years old) as compared to 17 typically developing, demographically comparable adolescents (18.07 ± 3.26 years old). AP patients showed lower behavioral performance at higher WM loads and lower overall WM capacity compared to healthy controls. Whole-brain activation analyses revealed greater bilateral precentral and right postcentral activity in controls relative to AP patients, when controlling for individual WM capacity. Seed-based psychophysiological interaction (PPI) analyses revealed significantly greater co-activation between the left dlPFC and left frontal pole in controls relative to AP patients. Significant group-by-age interactions were observed in both whole-brain and PPI analyses, with AP patients showing atypically greater neural activity and stronger coupling between WM task activated brain regions as a function of increasing age. Additionally, AP patients demonstrated positive relationships between right dlPFC neural activity and task performance, but unlike healthy controls, failed to show associations between neural activity and out-of-scanner neurocognitive performance. Collectively, these findings are consistent with atypical WM-related functioning and disrupted developmental processes in youth with AP.

  14. Use of tear ring permits repair of sealed module circuitry

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Improved packaging technique for modular electronic circuitry utilizes a tear ring which may be removed for repair and resealed. The tear ring is put over the container and header to which the electronic circuit assembly has been attached.

  15. Practical and simple circuitry for the measurement of small capacitance

    NASA Astrophysics Data System (ADS)

    Lin, D. Y.; Wu, J. D.; Chang, Y. J.; Wu, J. S.

    2007-01-01

    Practical and cost-effective circuitry with high sensitivity has been developed to measure a small capacitance using current compensation method. The circuitry uses an electronic switch to periodically connect or separate the capacitor under test (Cx) from a reference capacitor (Cr). When Cx is connected in parallel with Cr the total capacitance becomes Cx+Cr. On the other hand, as Cx is separated from Cr, the total capacitance is only Cr. This periodic change of the capacitance generates a periodic square-wave output with an amplitude in proportion to the capacitance of Cx. A high sensitivity of ΔV /ΔC=202.2mV/pF has been achieved, making the circuitry a powerful tool in measuring small capacitances. Three applications have been performed to present its capability: (a) displacement, (b) height of liquid, and (c) angle of tilt. The experimental results demonstrate the performance of the circuitry.

  16. In-school Snacking, Breakfast Consumption, and Sleeping Patterns of Normal and Overweight Iranian High School Girls: A Study in Urban and Rural Areas in Guilan, Iran

    ERIC Educational Resources Information Center

    Maddah, Mohsen; Rashidi, Arash; Mohammadpour, Behnoush; Vafa, Reza; Karandish, Majid

    2009-01-01

    Objective: To investigate the relationship of snacking during school hours, sleep time, and breakfast consumption by weight status of Iranian high school girls in urban and rural areas in Guilan Province, Iran. Design: Data were collected by self-administered questionnaire and measure of body weight and height. Setting: High schools in urban and…

  17. In-school Snacking, Breakfast Consumption, and Sleeping Patterns of Normal and Overweight Iranian High School Girls: A Study in Urban and Rural Areas in Guilan, Iran

    ERIC Educational Resources Information Center

    Maddah, Mohsen; Rashidi, Arash; Mohammadpour, Behnoush; Vafa, Reza; Karandish, Majid

    2009-01-01

    Objective: To investigate the relationship of snacking during school hours, sleep time, and breakfast consumption by weight status of Iranian high school girls in urban and rural areas in Guilan Province, Iran. Design: Data were collected by self-administered questionnaire and measure of body weight and height. Setting: High schools in urban and…

  18. Circuitry, systems and methods for detecting magnetic fields

    DOEpatents

    Kotter, Dale K [Shelley, ID; Spencer, David F [Idaho Falls, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-14

    Circuitry for detecting magnetic fields includes a first magnetoresistive sensor and a second magnetoresistive sensor configured to form a gradiometer. The circuitry includes a digital signal processor and a first feedback loop coupled between the first magnetoresistive sensor and the digital signal processor. A second feedback loop which is discrete from the first feedback loop is coupled between the second magnetoresistive sensor and the digital signal processor.

  19. Sleep Apnea

    MedlinePlus

    ... that delivers air pressure through a mask placed over your nose while you sleep. With CPAP (SEE-pap), the air pressure is ... obstructive sleep apnea, involves wearing a pressurized mask over your nose while you sleep. CPAP may eliminate snoring and prevent sleep apnea. ...

  20. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  1. Obesity and short sleep: unlikely bedfellows?

    PubMed

    Horne, J

    2011-05-01

    The link between habitual short sleep and obesity is critically examined from a sleep perspective. Sleep estimates are confounded by 'time in bed', naps; the normal distribution of sleep duration. Wide categorizations of 'short sleep', with claims that <7 h sleep is associated with obesity and morbidity, stem from generalizations from 5 h sleepers (<8% of adults) and acute restriction studies involving unendurable sleepiness. Statistically significant epidemiological findings are of questionable clinical concern, even for 5 h sleepers, as any weight gains accumulate slowly over years; easily redressed by e.g. short exercise exposures, contrasting with huge accumulations of 'lost' sleep. Little evidence supports 'more sleep', alone, as an effective treatment for obesity. Impaired sleep quality and quantity are surrogates for many physical and psychological disorders, as can be obesity. Advocating more sleep, in these respects, could invoke unwarranted use of sleep aids including hypnotics. Inadequate sleep in obese children is usually symptomatic of problems not overcome by increasing sleep alone. Interestingly, neuropeptides regulating interactions between sleep, locomotion and energy balance in normal weight individuals, are an avenue for investigation in some obese short sleepers. The real danger of inadequate sleep lies with excessive daytime sleepiness, not obesity.

  2. Genetic and immunologic aspects of sleep and sleep disorders.

    PubMed

    Parish, James M

    2013-05-01

    The study of genetics is providing new and exciting insights into the pathogenesis, diagnosis, and treatment of disease. Both normal sleep and several types of sleep disturbances have been found to have significant genetic influences, as have traits of normal sleep, such as those evident in EEG patterns and the circadian sleep-wake cycle. The circadian sleep-wake cycle is based on a complex feedback loop of genetic transcription over a 24-h cycle. Restless legs syndrome (RLS) and periodic limb movements in sleep (PLMS) have familial aggregation, and several genes have a strong association with them. Recent genome-wide association studies have identified single nucleotide polymorphisms linked to RLS/PLMS, although none has a definite functional correlation. Narcolepsy/cataplexy are associated with HLA DQB1*0602 and a T-cell receptor α locus, although functional correlations have not been evident. Obstructive sleep apnea is a complex disorder involving multiple traits, such as anatomy of the oropharynx, ventilatory control, and traits associated with obesity. Although there is clear evidence of familial aggregation in the obstructive sleep apnea syndrome, no specific gene or locus has been identified for it. Angiotensin-converting enzyme has been proposed as a risk variant, but evidence is weak. Fatal familial insomnia and advanced sleep phase syndrome are sleep disorders with a definite genetic basis.

  3. Genetic and Immunologic Aspects of Sleep and Sleep Disorders

    PubMed Central

    2013-01-01

    The study of genetics is providing new and exciting insights into the pathogenesis, diagnosis, and treatment of disease. Both normal sleep and several types of sleep disturbances have been found to have significant genetic influences, as have traits of normal sleep, such as those evident in EEG patterns and the circadian sleep-wake cycle. The circadian sleep-wake cycle is based on a complex feedback loop of genetic transcription over a 24-h cycle. Restless legs syndrome (RLS) and periodic limb movements in sleep (PLMS) have familial aggregation, and several genes have a strong association with them. Recent genome-wide association studies have identified single nucleotide polymorphisms linked to RLS/PLMS, although none has a definite functional correlation. Narcolepsy/cataplexy are associated with HLA DQB1*0602 and a T-cell receptor α locus, although functional correlations have not been evident. Obstructive sleep apnea is a complex disorder involving multiple traits, such as anatomy of the oropharynx, ventilatory control, and traits associated with obesity. Although there is clear evidence of familial aggregation in the obstructive sleep apnea syndrome, no specific gene or locus has been identified for it. Angiotensin-converting enzyme has been proposed as a risk variant, but evidence is weak. Fatal familial insomnia and advanced sleep phase syndrome are sleep disorders with a definite genetic basis. PMID:23648914

  4. Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity

    PubMed Central

    He, Shigang

    2011-01-01

    The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience. PMID:21573161

  5. Overview of sleep & sleep disorders.

    PubMed

    Chokroverty, S

    2010-02-01

    Sleep is defined on the basis of behavioural and physiological criteria dividing it into two states: non rapid eye movement (NREM) sleep which is subdivided into three stages (N1, N2, N3); and rapid eye movement (REM) sleep characterized by rapid eye movements, muscle atonia and desynchronized EEG. Circadian rhythm of sleep-wakefulness is controlled by the master clock located in the suprachiasmatic nuclei of the hypothalamus. The neuroanatomical substrates of the NREM sleep are located principally in the ventrolateral preoptic nucleus of the hypothalamus and those of REM sleep are located in pons. A variety of significant physiological changes occur in all body systems and organs during sleep as a result of functional alterations in the autonomic and somatic nervous systems. The international classification of sleep disorders (ICSD, ed 2) lists eight categories of sleep disorders along with appendix A and appendix B. The four major sleep complaints include excessive daytime sleepiness, insomnia, abnormal movements or behaviour during sleep and inability to sleep at the desired time. The most important step in assessing a patient with a sleep complaint is obtaining a detailed history including family and previous histories, medical, psychiatric, neurological, drug, alcohol and substance abuse disorders. Some important laboratory tests for investigating sleep disorders consist of an overnight polysomnography, multiple sleep latency and maintenance of wakefulness tests as well as actigraphy. General physicians should have a basic knowledge of the salient clinical features of common sleep disorders, such as insomnia, obstructive sleep apnoea syndrome, narcolepsy-cataplexy syndrome, circadian rhythm sleep disorders (e.g., jet leg, shift work disorder, etc.) and parasomnias (e.g., partial arousal disorders, REM behaviour disorder, etc.) and these are briefly described in this chapter. The principle of treatment of sleep disorders is first to find cause of the sleep

  6. [Clinical features of sleep disorders in older adults].

    PubMed

    Chiba, Shigeru; Tamura, Yoshiyuki

    2015-06-01

    There are three major neurophysiological mechanisms underlying the sleep-waking cycle: the sleep system, the waking system, and the system that determines sleep-waking timing. Sleep dlisorders of older adults seem to be caused by functional or organic changes in one or more of the three systems, and are roughly classified into two categories: (i) normal age-related, and (ii) pathological. The former includes decreased amplitude and advanced phase of circadian rhythms (body temperature, melatonin secretion, and sleep-waking), as well as reduced sleep duration, sleep fragmentation, and a decrease of slow-wave sleep in sleep architecture. Pathological sleep disorders include medical and psychiatric diseases (e.g., lifestyle-related diseases, dementia, delirium, and depression) and primary age-related sleep disorders (e.g., REM sleep behavior disorder and periodic limb move- ment disorders). This mini-review delineates the clinical features of sleep disorders in older adults.

  7. Respiratory rate variability in sleeping adults without obstructive sleep apnea.

    PubMed

    Gutierrez, Guillermo; Williams, Jeffrey; Alrehaili, Ghadah A; McLean, Anna; Pirouz, Ramin; Amdur, Richard; Jain, Vivek; Ahari, Jalil; Bawa, Amandeep; Kimbro, Shawn

    2016-09-01

    Characterizing respiratory rate variability (RRV) in humans during sleep is challenging, since it requires the analysis of respiratory signals over a period of several hours. These signals are easily distorted by movement and volitional inputs. We applied the method of spectral analysis to the nasal pressure transducer signal in 38 adults with no obstructive sleep apnea, defined by an apnea-hypopnea index <5, who underwent all-night polysomnography (PSG). Our aim was to detect and quantitate RRV during the various sleep stages, including wakefulness. The nasal pressure transducer signal was acquired at 100 Hz and consecutive frequency spectra were generated for the length of the PSG with the Fast Fourier Transform. For each spectrum, we computed the amplitude ratio of the first harmonic peak to the zero frequency peak (H1/DC), and defined as RRV as (100 - H1/DC) %. RRV was greater during wakefulness compared to any sleep stage, including rapid-eye-movement. Furthermore, RRV correlated with the depth of sleep, being lowest during N3. Patients spent most their sleep time supine, but we found no correlation between RRV and body position. There was a correlation between respiratory rate and sleep stage, being greater in wakefulness than in any sleep stage. We conclude that RRV varies according to sleep stage. Moreover, spectral analysis of nasal pressure signal appears to provide a valid measure of RRV during sleep. It remains to be seen if the method can differentiate normal from pathological sleep patterns.

  8. ECP (Electrical Circuitry Program): A proposed program for electrical circuitry analysis

    NASA Astrophysics Data System (ADS)

    Barton, Cynthia K.; Williams, Anthony J.

    1988-02-01

    This research analyzed and proposed development of the computerized Electrical Circuitry Program (ECP). ECP is proposed to assist U.S. Army Corps of Engineers (USACE) in-house electrical engineers in performing the required analysis during facilities concept design phase. The program would include features which allow the user to design a thorough power system with minimum effort. The program would also allow the user to graphically determine outlet locations for luminaries, establish receptacle locations and types, select switch locations and types, lay out wiring diagrams for the system, and locate and describe the features of the panelboards. ECP would be equipped to perform voltage drop, short circuit, and wire length calculations to insure the system design's efficiency. Using the information entered into the program, ECP would create summary reports and panel schedules to be submitted with design documents.

  9. Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle

    PubMed Central

    Goldstein, Jill M.; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-01

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this fMRI study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right-handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry (amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal and medial prefrontal cortices (OFC and mPFC), and anterior cingulate gyrus (ACG). Women were scanned twice based on normal variation in menstrual cycle hormones (i.e., early follicular (EF) compared with late follicular-midcycle menstrual phases (LF/MC)). Using SPM8b, there were few significant differences in BOLD signal changes in men compared to EF women, except ventromedial (VMN) and lateral (LHA) hypothalamus, left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males. PMID:20071507

  10. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution.

    PubMed

    Marchand, William R; Lee, James N; Suchy, Yana; Garn, Cheryl; Johnson, Susanna; Wood, Nicole; Chelune, Gordon

    2011-03-01

    Normal human aging is associated with declining motor control and function. It is thought that dysfunction of the cortico-basal ganglia circuitry may contribute to age-related sensorimotor impairment, however the underlying mechanisms are poorly characterized. The aim of this study was to enhance our understanding of age-related changes in the functional architecture of these circuits. Fifty-nine subjects, consisting of a young, middle and old group, were studied using functional MRI and a motor activation paradigm. Functional connectivity analyses and examination of correlations of connectivity strength with performance on the activation task as well as neurocognitive tasks completed outside of magnet were conducted. Results indicated that increasing age is associated with changes in the functional architecture of the cortico-basal ganglia circuitry. Connectivity strength increased between subcortical nuclei and cortical motor and sensory regions but no changes were found between subcortical components of the circuitry. Further, increased connectivity was correlated with poorer performance on a neurocognitive task independently of age. This result suggests that increased connectivity reflects a decline in brain function rather than a compensatory process. These findings advance our understanding of the normal aging process. Further, the methods employed will likely be useful for future studies aimed at disambiguating age-related versus illness progression changes associated with neuropsychiatric disorders that involve the cortico-basal ganglia circuitry.

  11. Early postnatal deprivation of active sleep with desipramine or zimeldine impairs later behavioural reactivity to auditory stimuli in rats.

    PubMed

    Hilakivi, L A; Taira, T; Hilakivi, I

    1988-02-01

    To examine the functional significance of early postnatal active sleep for the development of behavioural reactivity to auditory stimuli, rat pups were daily injected i.p. from the 7th to the 18th postnatal days with 5 mg kg-1 (6.6 mmol l-1) desipramine or 25 mg kg-1 (12.2 mmol l-1) zimeldine. Sleep-wake behaviour was recorded with a static-charge-sensitive bed (SCSB) method. Both desipramine and zimeldine suppressed the percentage of active sleep relative to the total recording time throughout the treatment period. In addition, these drugs increased the percentage of quiet state and waking. At the age of 38 days the zimeldine-treated rats showed more motor activity in the open field than the controls. At the age of 39 and 78 days all rat groups behaved similarly in the open field. Startle measures and motor activation, provoked by auditory stimulation, were determined by the SCSB method when the rats were 4 months of age. Auditory stimuli, consisting of a series of ten clicks, induced a greater number of startles as well as strong movement responses in the control rats than in the desipramine- or zimeldine-treated rats. The number of small movement responses did not differ between the rat groups. These findings indicate that early postnatal active sleep and the monoaminergic systems regulating it may be important for the normal development of neuronal circuitry associated with later reactivity to auditory stimuli.

  12. Reward Circuitry is Perturbed in the Absence of the Serotonin Transporter

    PubMed Central

    Bearer, Elaine L.; Zhang, Xiaowei; Janvelyan, Davit; Boulat, Benoit; Jacobs, Russell E.

    2009-01-01

    The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately involved in normal physiological functioning of the brain and implicated in numerous pathological conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT knock-out mouse. Employing manganese-enhanced MRI, we injected Mn2+ into the prefrontal cortex and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas (substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit. Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce behavioral changes also alter the functional anatomy of the reward circuitry in which all the monoamine systems are involved. PMID:19306930

  13. [Sleep and sleep difficulties in Danish children aged 6-11 years].

    PubMed

    Hvolby, Allan; Jørgensen, Jan; Bilenberg, Niels

    2008-02-04

    Sleeping difficulties in children can affect learning and behaviour. Parental understanding of sleep can differ from what clinicians define as a sleep problem. It is therefore important to have information on sleep in Danish children in order to be able to advice parents on normal and deviant sleep. The purpose of this article is to describe the sleep in Danish healthy children. We examined 211 healthy children aged 6-11 years, recruited in a public school. Their sleep was evaluated objectively with actigraphy. Sleep patterns and sleep problems were examined by means of a questionnaire completed by parents. The objective and subjective measurements were compared. The most frequently reported sleep problem was fear of falling asleep in the dark, which 19.4% reported. Unwillingness to go to bed was reported in 7.1% and 7.5% had difficulties falling asleep. Actigraphic-measured sleep onset latency was on average 13.5 minutes, while parents reported an average of 21.5 minutes. The results comply with other findings. As in other sleep studies we found that parents estimate the child's sleep to be poorer than it actually is, although the discrepancy is less than seen in clinical populations. Detailed sleep history, possibly in combination with a sleep diary, can usually identify sleep problems and might be the first step in an effective treatment. Furthermore, actigraphy can be an effective supplement in the unravelling of sleep difficulties.

  14. Cytokines in sleep regulation.

    PubMed

    Krueger, J M; Takahashi, S; Kapás, L; Bredow, S; Roky, R; Fang, J; Floyd, R; Renegar, K B; Guha-Thakurta, N; Novitsky, S

    1995-01-01

    The central thesis of this essay is that the cytokine network in brain is a key element in the humoral regulation of sleep responses to infection and in the physiological regulation of sleep. We hypothesize that many cytokines, their cellular receptors, soluble receptors, and endogenous antagonists are involved in physiological sleep regulation. The expressions of some cytokines are greatly amplified by microbial challenge. This excess cytokine production during infection induces sleep responses. The excessive sleep and wakefulness that occur at different times during the course of the infectious process results from dynamic changes in various cytokines that occur during the host's response to infectious challenge. Removal of any one somnogenic cytokine inhibits normal sleep, alters the cytokine network by changing the cytokine mix, but does not completely disrupt sleep due to the redundant nature of the cytokine network. The cytokine network operates in a paracrine/autocrine fashion and is responsive to neuronal use. Finally, cytokines elicit their somnogenic actions via endocrine and neurotransmitter systems as well as having direct effects neurons and glia. Evidence in support of these postulates is reviewed in this essay.

  15. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  16. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  17. [Sleep health education for elderly people].

    PubMed

    Miyazaki, Soichiro; Nishiyama, Akiko

    2015-06-01

    Successful aging is characterized by minimal age-associated loss of the physiological functions of sleep and circadian clock. Sleep health education is necessary to have normal, quality nighttime sleep and full daytime alertness. Elderly people show changes of sleep parameters, accompanied by increased napping. Many studies have reported that daytime sleepiness or napping in elderly people could have potentially serious effects such as dementia and life-style related diseases. The main topics of sleep health education for elderly people are as follows: Right knowledge of sleep mechanism, understanding the bad influence of excessive napping, the effects of light on the circadian rhythm and negative effects of caffeine, alcohol and television.

  18. Sleep and brain energy levels: ATP changes during sleep.

    PubMed

    Dworak, Markus; McCarley, Robert W; Kim, Tae; Kalinchuk, Anna V; Basheer, Radhika

    2010-06-30

    Sleep is one of the most pervasive biological phenomena, but one whose function remains elusive. Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology. We here report that ATP levels, the energy currency of brain cells, show a surge in the initial hours of spontaneous sleep in wake-active but not in sleep-active brain regions of rat. The surge is dependent on sleep but not time of day, since preventing sleep by gentle handling of rats for 3 or 6 h also prevents the surge in ATP. A significant positive correlation was observed between the surge in ATP and EEG non-rapid eye movement delta activity (0.5-4.5 Hz) during spontaneous sleep. Inducing sleep and delta activity by adenosine infusion into basal forebrain during the normally active dark period also increases ATP. Together, these observations suggest that the surge in ATP occurs when the neuronal activity is reduced, as occurs during sleep. The levels of phosphorylated AMP-activated protein kinase (P-AMPK), well known for its role in cellular energy sensing and regulation, and ATP show reciprocal changes. P-AMPK levels are lower during the sleep-induced ATP surge than during wake or sleep deprivation. Together, these results suggest that sleep-induced surge in ATP and the decrease in P-AMPK levels set the stage for increased anabolic processes during sleep and provide insight into the molecular events leading to the restorative biosynthetic processes occurring during sleep.

  19. Healthy Sleep Habits

    MedlinePlus

    ... Sleep Apnea Testing CPAP Healthy Sleep Habits Healthy Sleep Habits Your behaviors during the day, and especially ... team at an AASM accredited sleep center . Quick Sleep Tips Follow these tips to establish healthy sleep ...

  20. What Are Sleep Studies?

    MedlinePlus

    ... Share this page from the NHLBI on Twitter. Sleep Studies Also known as polysomnography. Sleep studies are ... Sleep Rate This Content: Updated: December 9, 2016 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  1. Obstructive Sleep Apnea

    MedlinePlus

    ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ...

  2. Sleep Talking (Somniloquy)

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders Sleep Apnea Snoring Central Sleep Apnea Overview & Facts ...

  3. Epigenetics of sleep and chronobiology.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2014-03-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.

  4. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans

    PubMed Central

    Nelson, MD; Trojanowski, NF; George-Raizen, JB; Smith, CJ; Yu, C-C; Fang-Yen, C; Raizen, DM

    2013-01-01

    Neuropeptides play central roles in the regulation of homeostatic behaviors such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed during lethargus. nlp-22 shows cyclical mRNA expression in synchrony with lethargus; it is regulated by LIN-42, an orthologue of the core circadian protein PERIOD; and it is expressed solely in the two RIA interneurons. nlp-22 and the RIA interneurons are required for normal lethargus quiescence, and forced expression of nlp-22 during active stages causes anachronistic locomotion and feeding quiescence. Optogenetic stimulation of RIA interneurons has a movement-promoting effect, demonstrating functional complexity in a single neuron type. Our work defines a quiescence-regulating role for NLP-22 and expands our knowledge of the neural circuitry controlling Caenorhabditis elegans behavioral quiescence. PMID:24301180

  5. Knowledge of childhood sleep: a possible variable in under or misdiagnosis of childhood sleep problems.

    PubMed

    Schreck, Kimberly A; Richdale, Amanda L

    2011-12-01

    Evidence demonstrates that health professionals have limited knowledge about childhood sleep, frequently do not screen for these problems and often rely on parents to raise sleep issues at clinic visits. However, little is known about parents' sleep knowledge. The goal of this study was to assess parents' knowledge of sleep and specifically: (i) sleep aspects related to the age of children; (ii) developmentally normal sleep; and (iii) sleep problems that may lead to parents' ability to raise sleep issues at clinic visits. This study evaluated the knowledge of 170 parents of children aged 2-17 years about infant, child and adolescent sleep patterns and problems. The majority of parents could not answer correctly questions about developmental sleep patterns or sleep problems, but were more likely to answer correctly questions about normal infant sleep patterns and about sleep problems during waking hours. Parents also were more likely to answer 'don't know' to questions about: (i) older children and adolescents; (ii) sleep apnea; and (iii) dreams and nightmares. The implications of these findings for the identification, intervention and prevention of childhood sleep problems are discussed.

  6. Sleep Apnea

    MedlinePlus

    Sleep apnea is a common disorder that causes your breathing to stop or get very shallow. Breathing ... an hour. The most common type is obstructive sleep apnea. It causes your airway to collapse or ...

  7. Operational testing of system for automatic sleep analysis

    NASA Technical Reports Server (NTRS)

    Kellaway, P.

    1972-01-01

    Tables on the performance, under operational conditions, of an automatic sleep monitoring system are presented. Data are recorded from patients who were undergoing heart and great vessel surgery. This study resulted in cap, electrode, and preamplifier improvements. Children were used to test the sleep analyzer and medical console write out units. From these data, an automatic voltage control circuit for the analyzer was developed. A special circuitry for obviating the possibility of incorrect sleep staging due to the presence of a movement artifact was also developed as a result of the study.

  8. Sleep and memory.

    PubMed

    Roth, T; Roehrs, T; Zwyghuizen-Doorenbos, A; Stepanski, E; Wittig, R

    1988-01-01

    Generally sleep is considered a time of amnesia. It is not uncommon for an individual to experience 8 h of sleep and have no memory for events during that time. Similarly, a substantial proportion of the population has no memory for dreams that occurred during the night, despite the fact that the literature on awakening during rapid eye movement (REM) sleep clearly shows that individuals normally have four to six "dream experiences" a night. Research on this issue seems to indicate that the lack of memory cannot be explained by the organisms' inability to perceive stimuli. The data indicate that although perceptual thresholds are elevated, organisms can clearly perceive stimuli, and, in fact, can discriminate between them during sleep. The amnesia also cannot be explained by a defect in long-term memory, as studies have indicated that stimuli put into the memory during wakefulness are more efficiently retrieved after a sleep period than after a comparable period of wakefulness. The most likely explanation for the amnestic property of sleep seems to be the inability of organisms to transfer information from short-term memory to long-term memory during sleep. There are several sources of evidence to support this hypothesis. First, the probability of remembering a stimulus given during wakefulness is related to the proximity of sleep onset to the stimulus. Generally, information put into the system within 5 min of sleep onset is lost from memory. Secondly, disorders of excessive daytime somnolence which cause individuals to have frequent microsleeps are often associated with complains of memory problems.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Automatic quadrature control and measuring system. [using optical coupling circuitry

    NASA Technical Reports Server (NTRS)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  10. Risk of obstructive sleep apnea in obese and non-obese women with polycystic ovary syndrome and healthy reproductively normal women

    PubMed Central

    Mokhlesi, Babak; Scoccia, Bert; Mazzone, Theodore; Sam, Susan

    2011-01-01

    Objective To study the risk for obstructive sleep apnea (OSA) in a group of non-obese and obese PCOS and control women. Women with polycystic ovary syndrome (PCOS) are at high risk for obstructive sleep apnea (OSA). Whether this risk is independent of obesity is not clear. Design/Patients/Interventions/Main Outcome Measures In a prospective study, 44 women with PCOS and 34 control women completed the Berlin questionnaire for assessment of OSA risk. All women underwent fasting determination of androgens, glucose and insulin. Results Women with PCOS were more obese compared to control women (p=0.02). However, there were no differences in BMI once subjects were divided into non-obese (PCOS n=17 and control n=26) and obese (PCOS n=26 and control n=8) groups. Women with PCOS had higher prevalence of high risk OSA compared to control women on the Berlin questionnaire (47% vs. 15%, P<0.01). However, none of the non-obese PCOS and control women screened positive for high risk OSA. Among the obese group, the risk did not differ between groups (77% vs. 63%, P= 0.65). Conclusions Our findings indicate that even though the risk for OSA in PCOS is high, it is related to the high prevalence of severe obesity. The risk for OSA among non-obese women with PCOS is very low. However, our findings are limited by lack of polysomnographic confirmation of OSA. PMID:22264851

  11. BDNF in sleep, insomnia, and sleep deprivation.

    PubMed

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  12. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  13. Control of sleep and wakefulness.

    PubMed

    Brown, Ritchie E; Basheer, Radhika; McKenna, James T; Strecker, Robert E; McCarley, Robert W

    2012-07-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.

  14. The Role of Sleep and Sleep Disorders in the Development, Diagnosis, and Management of Neurocognitive Disorders

    PubMed Central

    Miller, Michelle A.

    2015-01-01

    It is becoming increasingly apparent that sleep plays an important role in the maintenance, disease prevention, repair, and restoration of both mind and body. The sleep and wake cycles are controlled by the pacemaker activity of the superchiasmic nucleus in the hypothalamus but can be disrupted by diseases of the nervous system causing disordered sleep. A lack of sleep has been associated with an increase in all-cause mortality. Likewise, sleep disturbances and sleep disorders may disrupt neuronal pathways and have an impact on neurological diseases. Sleep deprivation studies in normal subjects demonstrate that a lack of sleep can cause attention and working memory impairment. Moreover, untreated sleep disturbances and sleep disorders such as obstructive sleep apnoe (OSA) can also lead to cognitive impairment. Poor sleep and sleep disorders may present a significant risk factor for the development of dementia. In this review, the underlying mechanisms and the role of sleep and sleep disorders in the development of neurocognitive disorders [dementia and mild cognitive impairment (MCI)] and how the presence of sleep disorders could direct the process of diagnosis and management of neurocognitive disorders will be discussed. PMID:26557104

  15. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  16. Sleep Transitions in Hypocretin-Deficient Narcolepsy

    PubMed Central

    Sorensen, Gertrud Laura; Knudsen, Stine; Jennum, Poul

    2013-01-01

    Study Objectives: Narcolepsy is characterized by instability of sleep-wake, tonus, and rapid eye movement (REM) sleep regulation. It is associated with severe hypothalamic hypocretin deficiency, especially in patients with cataplexy (loss of tonus). As the hypocretin neurons coordinate and stabilize the brain's sleep-wake pattern, tonus, and REM flip-flop neuronal centers in animal models, we set out to determine whether hypocretin deficiency and/or cataplexy predicts the unstable sleep-wake and REM sleep pattern of the human phenotype. Design: We measured the frequency of transitions in patients with narcolepsy between sleep-wake states and to/from REM and NREM sleep stages. Patients were subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. Setting: Sleep laboratory studies conducted from 2001-2011. Patients: In total 63 narcolepsy patients were included in the study. Cataplexy was present in 43 of 63 patients and hypocretin-1 deficiency was present in 37 of 57 patients. Measurements and Results: Hypocretin-deficient patients with narcolepsy had a significantly higher frequency of sleep-wake transitions (P = 0.014) and of transitions to/from REM sleep (P = 0.044) than patients with normal levels of hypocretin-1. Patients with cataplexy had a significantly higher frequency of sleep-wake transitions (P = 0.002) than those without cataplexy. A multivariate analysis showed that transitions to/from REM sleep were predicted mainly by hypocretin-1 deficiency (P = 0.011), whereas sleep-wake transitions were predicted mainly by cataplexy (P = 0.001). Conclusions: In human narcolepsy, hypocretin deficiency and cataplexy are both associated with signs of destabilized sleep-wake and REM sleep control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. Citation: Sorensen GL; Knudsen S; Jennum P. Sleep transitions in hypocretin-deficient narcolepsy. SLEEP 2013;36(8):1173-1177. PMID:23904677

  17. Sleep Deprivation.

    PubMed

    Abrams, Robert M

    2015-09-01

    Sleep deprivation occurs when inadequate sleep leads to decreased performance, inadequate alertness, and deterioration in health. It is incompletely understood why humans need sleep, although some theories include energy conservation, restoration, and information processing. Sleep deprivation has many deleterious health effects. Residency programs have enacted strict work restrictions because of medically related errors due to sleep deprivation. Because obstetrics is an unpredictable specialty with long irregular hours, enacting a hospitalist program enhances patient safety, decreases malpractice risk, and improves the physician's quality of life by allowing obstetricians to get sufficient rest.

  18. Mean Platelet Volume, Vitamin D and C Reactive Protein Levels in Normal Weight Children with Primary Snoring and Obstructive Sleep Apnea Syndrome

    PubMed Central

    Di Mauro, Federica; Lollobrigida, Valeria; Di Fraia, Marco; Savastano, Vincenzo; Loffredo, Lorenzo; Nicita, Francesco; Spalice, Alberto; Duse, Marzia

    2016-01-01

    Introduction Studies on Mean Platelet Volume (MPV) in children with Sleep Disordered Breathing (SDB) report conflicting results and the hypothesis of an intermittent hypoxemia leading to a systemic inflammation is reaching consensus. Vitamin D exerts anti-inflammatory properties and its deficiency has been supposed to play a role in sleep disorders. Emerging interest is rising about Primary Snoring (PS) since it is reasonable that also undetectable alteration of hypoxia might predispose to an increased production of inflammatory mediators. In this perspective, in a group of children affected by SDB, our aim was to investigate MPV, vitamin D and C Reactive Protein (CRP) levels, which had been previously evaluated separately in different studies focused only on Obstructive Sleep Apnea Syndrome (OSAS). Materials and Methods We enrolled 137 children: 70 healthy controls (HC), 67 affected by SDB undergoing a polysomnographic evaluation, 22 with a diagnosis of PS and 45 with a diagnosis of OSAS. All patients underwent routine biochemical evaluations including blood cell counts, CRP and vitamin D. Results Children affected by SDB had a mean age of 8.49±2.19 and were prevalently males (23 females, 34%; 44 males, 66%). MPV levels were higher in OSAS and PS when compared to HC; platelet count (PLT) and CRP levels were higher while Vitamin D levels were lower in children with SDB when compared to HC. MPV levels were correlated with PLT (r = -0.54; p<0.001), vitamin D (r = -0.39; p<0.001) and CRP (r = 0.21; p<0.01). A multiple regression was run to predict MPV levels from vitamin D, CRP and PLT and these variables significantly predicted MPV (F = 17.42, p<0.0001; adjusted R2 = 0.37). Only platelet count and vitamin D added statistically significantly to the prediction (p<0.05). Conclusion The present study provides evidence of higher MPV and lower vitamin D levels in children with PS as well as in children with OSAS, and supports the underlying inflammation, hence

  19. Sleep-Dependent Modulation of Metabolic Rate in Drosophila.

    PubMed

    Stahl, Bethany A; Slocumb, Melissa E; Chaitin, Hersh; DiAngelo, Justin R; Keene, Alex C

    2017-08-01

    Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.

  20. Alexithymia and polysomnographic measures of sleep in healthy adults.

    PubMed

    Bazydlo, R; Lumley, M A; Roehrs, T

    2001-01-01

    This study examined associations between alexithymia and objective characteristics of sleep (latencies, stages, and amount and patterning of REM sleep) that may contribute to subjective reports of poor sleep quality and impaired dream recall among alexithymic people. Fifty healthy, normally sleeping adults from the community completed the 20-item Toronto Alexithymia Scale and slept uninterrupted for one night in the laboratory while polysomnography was conducted. Various measures of sleep latency, sleep stages, and REM sleep-related variables were obtained, and analyses correlated these sleep measures with alexithymia, controlling for age, sex, and level of depressed affect. Higher alexithymia scores were significantly related to increased stage 1 (light) sleep and decreased stage 3/4 (deep) sleep. Alexithymia was unrelated to overall sleep efficiency or percentage of stage 2 sleep. Alexithymia was related to more frequent REM episodes and more stage 1 sleep during and immediately after REM episodes but was unrelated to the absolute amount of REM sleep. Alexithymia was also related to an earlier onset of the first REM episode. Alexithymia is associated with more light sleep and less deep sleep, which may contribute to subjective reports of poor sleep and increased sleepiness, fatigue, and somatic symptoms. Although alexithymia is not associated with an overall reduction of REM sleep, the increased frequency of episodes of REM that are interrupted and followed by light sleep rather than complete awakenings may contribute to limited dream recall.

  1. Reward Circuitry Function in Autism during Face Anticipation and Outcomes

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Richey, J. Anthony; Rittenberg, Alison M.; Sabatino, Antoinette; Bodfish, James W.

    2012-01-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary…

  2. Rugged microelectronic module package supports circuitry on heat sink

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1966-01-01

    Rugged module package for thin film hybrid microcircuits incorporated a rigid, thermally conductive support structure, which serves as a heat sink, and a lead wire block in which T-shaped electrical connectors are potted. It protects the circuitry from shock and vibration loads, dissipates internal heat, and simplifies electrical connections between adjacent modules.

  3. Circuitry selectively limits data storage in general purpose computer

    NASA Technical Reports Server (NTRS)

    Slopper, D. K.

    1969-01-01

    Circuitry limits storage in the memory of a stored program general purpose digital computer by permitting storage or writing to certain, specified areas of memory. The limit register used in the computer is easily set under program control, and the memory block size and position is readily changed to suit each specific program.

  4. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    PubMed

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  5. Shh-Proteoglycan Interactions Regulate Maturation of Olfactory Glomerular Circuitry

    PubMed Central

    Persson, Laura; Witt, Rochelle M.; Galligan, Meghan; Greer, Paul L.; Eisner, Adriana; Pazyra-Murphy, Maria F.; Datta, Sandeep R.; Segal, Rosalind A.

    2014-01-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (ShhAla/Ala), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature ShhAla/Ala mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry. PMID:24913191

  6. Reward Circuitry Function in Autism during Face Anticipation and Outcomes

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Richey, J. Anthony; Rittenberg, Alison M.; Sabatino, Antoinette; Bodfish, James W.

    2012-01-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary…

  7. Sleep, learning, and birdsong.

    PubMed

    Margoliash, Daniel

    2010-01-01

    Neuroethological research combines approaches derived from animal behavior and neurobiology to examine the neuronal mechanisms of behavior, often in the context of laboratory experiments on species chosen for particular adaptations. Typically, these species are not traditional laboratory animals yet they contribute greatly to a broad, evolutionarily diverse view of nervous system function. The surprising role of sleep in the vocal learning process of songbirds is one such example, described here. Juvenile zebra finches show sleep-dependent daytime fluctuations in their patterns of singing starting after their first exposure to tutor songs. Nighttime bursting activity in the vocal control song system also changes after the onset of tutoring, with the neuronal changes preceding the changes in objective behavior (daytime singing). After tutoring, the nighttime bursting increases and exhibits structure that depends on the particular tutor song, and the nighttime expression of these changes requires normal auditory feedback during daytime singing. These observations shed light on the information carried in neuronal activity during sleep and on the adaptive plastic mechanisms engaged during sleep. They suggest a new hypothesis of sensorimotor learning, whereby sensory memories act indirectly on sensorimotor feedback by modifying networks through plastic changes at night. Sleep may also contribute to adult song maintenance, with nighttime neuronal replay conveying information about songs produced during the day and possibly mediating daily changes in the structure of premotor bursts. Collectively, these insights contribute a comparative perspective to theories of sleep and memory, which also help to inform a developing understanding of how humans acquire and retain memories.

  8. Sleep-wake cycle effects on sleep stages, and plasma cortisol and growth secretions

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Studies were made of the effects of various stimuli on sleep stages and of secretion of a number of different hormones during sleep in human subjects. Among the stimuli were vestibular stimulation, the action of L-Dopa, and a three-hour sleep-wake cycle. Hormones observed included plasma cortisol, growth hormone, dehydroisoandrosterone, and luteinizing hormone. Relationships between sleep onset, the presence of Cushing's syndrome or sleep disorders, and ultradian rhythmicity, and hormone secretion were investigated. Sleep patterns and hormone secretion in normal subjects were also studied.

  9. Sleep Inertia and On-Call Readiness

    DTIC Science & Technology

    2000-03-01

    i.e., the mean duration of a normal normal room light (about 150 lux) upon NREM - REM sleep cycle), minimizing the awakening did not improve performance...Badia, 1988; awakenings have greater negative effects on Rosa et al., 1983; Rosa & Bonnet, 1985). A subsequent performance than REM sleep more accurate...slow Neurophysiology, 102, 125-131. wave versus REM sleep . Labuc S. (1978) A study of performance Psychophysiology, 5, 231. upon sudden awakening

  10. Sleep and hypnotic drugs.

    PubMed

    Johns, M W

    1975-01-01

    In recent years the effectiveness of hypnotic drugs has had to be assessed in terms of a greatly increased knowledge of the physiology and pathology of sleep. The normal pattern of sleep and wakefulness involves a cyclic alternation between three rather than two basically dissimilar states of the brain and body - alert wakefulness, rapid-eye-movement (REM) sleep and non-rapid-eye-movement (NREM) sleep. The pattern of this alternation in individual people results from the interaction of many influences - biological (including genetic, early developmental and later degenerative influences), psychological, social and environmental factors, various physical and psychiatric disorders, and most drugs which affect the central nervous system. The quality of sleep is not related in any simple or constant manner either to its duration or to the proprotions of time spent in each stage of sleep. Among the disorders of sleep, insomnia is a far more common problem of medical management than are enuresis, narcolepsy, somnambulism or nightmares. With a few exceptions, most hypnotic drugs now in widespread use cease to be effective in treating insomnia after the first few nights. However, the ineffective treatment is often continued because insomnia will be even worse during the initial period of drug withdrawal. These factors and the toxicity of hypnotic drugs when taken in overdose make the long-term treatment of insomnia more difficult than was previously supposed. Barbiturates should no longer be prescribed. Some of the non-barbiturates, such as glutethimide and methaqualone, have no advantage over the barbiturates. The benzodiazepine hypnotics, nitrazepam and flurazepam, are less toxic in overdose and are relatively effective in treating insomnia. Chloral hydrate and its derivates are useful alternative drugs for short-term use. Measures to improve sleep without drugs deserve greater emphasis than they have had in the past.

  11. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries.

    PubMed

    Corallino, Salvatore; Malabarba, Maria Grazia; Zobel, Martina; Di Fiore, Pier Paolo; Scita, Giorgio

    2015-01-01

    The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the

  12. Mammalian sleep

    NASA Astrophysics Data System (ADS)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  13. Firefighter Shift Schedules Affect Sleep Quality.

    PubMed

    Billings, Joel; Focht, Will

    2016-03-01

    The aim of this study was to investigate the prevalence and severity of firefighter sleep quality across department shift schedules. Sleep quality was assessed using a Pittsburgh Sleep Quality Index in a sample of 109 male career firefighters from six fire departments in three Southwestern US states. The three shift schedules studied were 24on/48off, 48on/96off, and Kelly. Seventy-three percent of firefighters report poor sleep quality. The 24on/48off shift schedule is associated with the best sleep quality and Kelly is associated with the worst sleep quality. Firefighters working second jobs report significantly poorer sleep quality than those who do not. Shift schedules that disrupt normal circadian rhythms more result in poorer sleep quality, which can lead to less effective emergency response and increased risk to firefighter health and safety.

  14. New assessment tools that measure sleep vital signs: the SleepMed Insomnia Index and the Sleep Matrix

    PubMed Central

    Bogan, Richard K; Turner, Jo Anne

    2007-01-01

    Insomnia is the leading sleep disorder in the US; however, diagnosis is often problematic. This pilot study assessed the clinical value of a novel diagnostic insomnia questionnaire. The SleepMed Insomnia Index (SMI) was administered to 543 consecutive patients and 50 normal control subjects during a pilot study. Mean SMI scores were assessed based on subsequent sleep-related diagnoses. The SMI scores for patients with sleep-related disorders were significantly higher than those for the control group (p < 0.001) and highest for the 90 patients comprising the insomnia group. Analysis of the SMI scores from the 90 insomnia patients indicates a high degree of reliability (Cronbach’s alpha: 0.7). These data support our clinical experience with this diagnostic tool which indicates a strong likelihood of disrupted nighttime sleep in patients with high SMI scores. Following further validation, the SMI may prove to be a valuable tool for evaluating sleep disorders, specifically as an aid in the diagnosis of insomnia. The Sleep Matrix is a visual tool that quantifies a sleep complaint by combining scores from the Epworth Sleepiness Scale (ESS) and the SMI. The SMI measures an insomnia component while the ESS is an accepted measure of daytime sleepiness. The Sleep Matrix visually displays the complexity of the sleep complaint in an effort to differentiate insomnia with differing etiologies from other sleep disorders and measure treatment outcomes. To pilot test the Sleep Matrix, the tool was administered to 90 patients with insomnia and to 22 normal controls. Plots from the insomnia patients were concentrated into the “insomnia zone” while scores from the normal controls were located in the “normal zone” located in the lower left quadrant. Additional research using the Sleep Matrix could provide data that the tool could be utilized to visually aid the clinician in the diagnosis of unknown sleep complaints. PMID:19300579

  15. Aging and Sleep: Physiology and Pathophysiology

    PubMed Central

    Edwards, Bradley A.; O’Driscoll, Denise M.; Ali, Asad; Jordan, Amy S.; Trinder, John; Malhotra, Atul

    2012-01-01

    Aging effects on sleep are important to consider for the practicing pulmonologist due to the increase in prevalence of major respiratory disorders as well as the normal changes that occur in sleep patterns with aging. Typically, aging is associated with decreases in the amount of slow wave sleep and increases in stage 1 and 2 non–rapid eye movement sleep, often attributed to an increased number of spontaneous arousals that occur in the elderly. Elderly individuals tend to go to sleep earlier in the evening and wake earlier due to a phase advance in their normal circadian sleep cycle. Furthermore the development of sleep-related respiratory disorders such as obstructive sleep apnea (OSA) and central sleep apnea or Cheyne-Stokes respiration (CSA-CSR) associated with congestive heart failure (CHF) occur with increasing prevalence in the elderly. The development of such disorders is often of major concern because they are associated with systemic hypertension and cardiovascular disease, metabolic disorders such as diabetes, and impaired neurocognition. The present review reflects the current understanding of the normal changes in sleep patterns and sleep needs with advancing age, in addition to the effect that aging has on the predisposition to and consequences of OSA and CSA-CSR associated with CHF. PMID:20941662

  16. Sleep in disorders of consciousness.

    PubMed

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-04-01

    From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research.

  17. Sleep in disorders of consciousness

    PubMed Central

    Cologan, Victor; Schabus, Manvel; Ledoux, Didier; Moonen, Gustave; Maquet, Pierre; Laureys, Steven

    2010-01-01

    SUMMARY From a behavioral as well as neurobiological point of view, sleep and consciousness are intimately connected. A better understanding of sleep cycles and sleep architecture of patients suffering from disorders of consciousness (DOC) might therefore improve the clinical care for these patients as well as our understanding of the neural correlations of consciousness. Defining sleep in severely brain-injured patients is however problematic as both their electrophysiological and sleep patterns differ in many ways from healthy individuals. This paper discusses the concepts involved in the study of sleep of patients suffering from DOC and critically assesses the applicability of standard sleep criteria in these patients. The available literature on comatose and vegetative states as well as that on locked-in and related states following traumatic or non-traumatic severe brain injury will be reviewed. A wide spectrum of sleep disturbances ranging from almost normal patterns to severe loss and architecture disorganization are reported in cases of DOC and some patterns correlate with diagnosis and prognosis. At the present time the interactions of sleep and consciousness in brain-injured patients are a little studied subject but, the authors suggest, a potentially very interesting field of research. PMID:19524464

  18. American Sleep Association

    MedlinePlus

    ... Sleep Disorders Book Join ASA Press Room American Sleep Association Improving public health by increasing awareness about ... Members Username or Email Password Remember Me Register Sleep Blog Changing Bad Sleep Habits Asthma and Sleep ...

  19. Sleep Terrors (Night Terrors)

    MedlinePlus

    ... can contribute to sleep terrors, such as: Sleep deprivation and extreme tiredness Stress Sleep schedule disruptions, travel ... Risk factors Sleep terrors are more common if family members have a history of sleep terrors or ...

  20. Sleep Deprivation and Deficiency

    MedlinePlus

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA- ... Rate This Content: NEXT >> Updated: June 7, 2017 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  1. Sleep in the intensive care unit.

    PubMed

    Beltrami, Flávia Gabe; Nguyen, Xuân-Lan; Pichereau, Claire; Maury, Eric; Fleury, Bernard; Fagondes, Simone

    2015-01-01

    Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion.

  2. Sleep-related deglutition in children.

    PubMed

    Sato, Kiminori; Nakashima, Tadashi

    2007-10-01

    Clearance of the pharynx by deglutition is important in protecting the airway. The pattern of deglutition during sleep was investigated in children. Ten normal human children (8.6 +/- 2.9 years) were examined via time-matched recordings of polysomnography and of surface electromyography (EMG) of the thyrohyoid and suprahyoid muscles. During sleep, deglutition was episodic, and it was absent for long periods. The mean number of swallows per hour (+/- SD) during the total sleep time was 2.8 +/- 1.7 per hour. The mean period of the longest absence of deglutition was 59.7 +/- 20.3 minutes. Most deglutition occurred in association with spontaneous electroencephalographic arousal in rapid eye movement (REM) and non-REM sleep. Deglutition was related to sleep stage. The mean number of swallows per hour was 27.4 +/- 27.4 during stage 1 sleep, 3.1 +/- 3.5 during stage 2 sleep, 2.8 +/- 3.3 during stage 3 sleep, and 0.9 +/- 0.8 during stage 4 sleep. The deeper the sleep stage became, the lower the mean deglutition frequency became. The mean number of swallows per hour was 2.2 +/- 2.1 during REM sleep. The EMG amplitude dropped to the lowest level of recording during REM sleep. Deglutition, a vital function, is infrequent during sleep in children.

  3. Sleep in the intensive care unit

    PubMed Central

    Beltrami, Flávia Gabe; Nguyen, Xuân-Lan; Pichereau, Claire; Maury, Eric; Fleury, Bernard; Fagondes, Simone

    2015-01-01

    ABSTRACT Poor sleep quality is a consistently reported by patients in the ICU. In such a potentially hostile environment, sleep is extremely fragmented and sleep architecture is unconventional, with a predominance of superficial sleep stages and a limited amount of time spent in the restorative stages. Among the causes of sleep disruption in the ICU are factors intrinsic to the patients and the acute nature of their condition, as well as factors related to the ICU environment and the treatments administered, such as mechanical ventilation and drug therapy. Although the consequences of poor sleep quality for the recovery of ICU patients remain unknown, it seems to influence the immune, metabolic, cardiovascular, respiratory, and neurological systems. There is evidence that multifaceted interventions focused on minimizing nocturnal sleep disruptions improve sleep quality in ICU patients. In this article, we review the literature regarding normal sleep and sleep in the ICU. We also analyze sleep assessment methods; the causes of poor sleep quality and its potential implications for the recovery process of critically ill patients; and strategies for sleep promotion. PMID:26785964

  4. SLEEP DEPRIVATION,

    DTIC Science & Technology

    This report was confined to considering the effects of sleep deprivation , in man, with particular reference to studies of the resulting biochemical...have a limited value when taken separately: the biochemical and physiological changes that occur in response to sleep deprivation may depend...three separate heads: first, the biochemical changes resulting from sleep deprivation ; secondly, the physiological ones; and last, the changes in performance and behaviour. (Author)

  5. Is sleep's 'supreme mystery' unraveling? An evolutionary analysis of sleep encounters no mystery; nor does life's earliest sleep, recently discovered in jellyfish.

    PubMed

    Kavanau, J Lee

    2006-01-01

    Biotelemetry has revealed daily 15-h behavioral sleep periods in a cubomedusan jellyfish, Chironex fleckeri. Its sleep is expected to be phylogenetically most primitive, since jellyfish possess only two germ layers. They belong to the phylum Cnidaria, the 'simplest' multicellular organisms with an organized nervous system. Cubomedusae have a complex visual system with 24 eyes of four different types, each type specialized for a different task. Input to these eyes during visually guided fast-swimming predation requires enormous amounts of neural processing, possibly nearly saturating the capacity of their comparatively simple nervous system. These heavy neural demands may account for the need for fifteen hours of sleep. C. fleckeri is the only animal known for which sleep may be either present or absent, dependent on lifestyle. Limited knowledge of behavior of some other cubomedusae suggests that they also possess this faculty. The finding of sleep in C. fleckeri supports current proposals of sleep's origin and basic function. Evolutionary analyses link sleep to a conflict produced by excessive processing demands on multifunctional neural circuitry for detailed focal vision by complex lensed eyes. The conflict arises between the enormous demands of complex visual analysis and needs for split-second control of actions, on the one hand, and non-urgent processing of memories of ongoing and stored events, on the other. Conflict is resolved by deferring the non-urgent processing to periods of sleep. Without sleep, selection would favor the evolution of circuitry 'dedicated' to single or but few tasks, with corresponding lesser efficiency. Had complex lensed eyes of medusae originated as a consequence of selection for increased mating success of males pursuing females, it could have occurred before the evolution of fast-swimming bilateral (three-germ-layered) prey. But if it was a consequence of selection for increased prey-hunting success, the origin of such eyes

  6. Beauty sleep: experimental study on the perceived health and attractiveness of sleep deprived people.

    PubMed

    Axelsson, John; Sundelin, Tina; Ingre, Michael; Van Someren, Eus J W; Olsson, Andreas; Lekander, Mats

    2010-12-14

    To investigate whether sleep deprived people are perceived as less healthy, less attractive, and more tired than after a normal night's sleep. Experimental study. Sleep laboratory in Stockholm, Sweden. 23 healthy, sleep deprived adults (age 18-31) who were photographed and 65 untrained observers (age 18-61) who rated the photographs. Participants were photographed after a normal night's sleep (eight hours) and after sleep deprivation (31 hours of wakefulness after a night of reduced sleep). The photographs were presented in a randomised order and rated by untrained observers. Difference in observer ratings of perceived health, attractiveness, and tiredness between sleep deprived and well rested participants using a visual analogue scale (100 mm). Sleep deprived people were rated as less healthy (visual analogue scale scores, mean 63 (SE 2) v 68 (SE 2), P<0.001), more tired (53 (SE 3) v 44 (SE 3), P<0.001), and less attractive (38 (SE 2) v 40 (SE 2), P<0.001) than after a normal night's sleep. The decrease in rated health was associated with ratings of increased tiredness and decreased attractiveness. Our findings show that sleep deprived people appear less healthy, less attractive, and more tired compared with when they are well rested. This suggests that humans are sensitive to sleep related facial cues, with potential implications for social and clinical judgments and behaviour. Studies are warranted for understanding how these effects may affect clinical decision making and can add knowledge with direct implications in a medical context.

  7. [Sleep as a restorative process under extreme exposure conditions].

    PubMed

    Stoilova, I

    1992-03-01

    In 40 aquanauts, a prolonged stay under increased pressure (11 to 46 kgs/cm2) of the oxygen-helium-nitrogen mixture did not affect the average duration of sleep. Slow-wave sleep, mostly its 3 rd and 4 th stages, and paradoxical sleep were significantly decreased whereas the light sleep/profound sleep ratio increased. The cyclic structure of sleep became altered. The longer the exposure to high pressure led to an augmentation of the slow-wave sleep and REM-phase, but the normal cycles terminating with a REM-phase could not be formed during the experiment.

  8. The immediate effects of intravenous specific nutrients on EEG sleep.

    PubMed

    Lacey, J H; Stanley, P; Hartmann, M; Koval, J; Crisp, A H

    1978-03-01

    This study examined the immediate influence of intravenous amino acids and glucose on sleep as measured by all-night EEG recording. The study on 9 normal female subjects was of a latin-square design. Slow wave sleep (SWS) was increased by both solutions whilst dream sleep (REM) was decreased by amino acids and increased by glucose. Total sleep time was not affected. Subjective feelings as to restlessness, quality and depth of sleep under the impact of the various solutions were gathered. The work further elucidates the effect of nutrition on sleep and supports certain theories as to the function of the main sleep component.

  9. Correlation of sleep EEG frequency bands and Heart Rate Variability.

    PubMed

    Abdullah, Haslaile; Holland, Gerard; Cosic, Irena; Cvetkovic, Dean

    2009-01-01

    Sleep apnoea is a sleep breathing disorder which causes changes in cardiac and neuronal activity and discontinuities in sleep pattern when observed via electrocardiogram (ECG) and electroencephalogram (EEG). This paper presents a pilot study result of assessing the correlation between EEG frequency bands and ECG Heart Rate Variability (HRV) in normal and sleep apnoea human clinical patients at different sleep stages. In sleep apnoea patients, the results have shown that EEG delta, sigma and beta bands exhibited a strong correlation with cardiac HRV parameters at different sleep stages.

  10. Prevention and treatment of sleep deprivation among emergency physicians.

    PubMed

    Nelson, Douglas

    2007-07-01

    Emergency physicians commonly experience sleep deprivation because of the need to work shifts during evening and late night hours. The negative effects of this problem are compounded by job stress and traditional methods of scheduling work shifts. Sleep deprivation may be reduced by schedules designed to lessen interference with normal sleep patterns and circadian rhythms. Pharmacological treatments for sleep deprivation exist in the form of alertness-enhancing agents, caffeine and modafinil. Sleep-promoting agents may also help treat the problem by helping physicians to sleep during daytime hours. Minimizing sleep deprivation may help prevent job burnout and prolong the length of an emergency physician's career.

  11. 76 FR 72214 - Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... COMMISSION Certain Semiconductor Chips with DRAM Circuitry, and Modules and Products Containing Same Receipt... Commission has received a complaint entitled In Re Certain Semiconductor Chips with DRAM Circuitry, and... importation of certain semiconductor chips with dram circuitry, and modules and products containing same....

  12. Narcolepsy with long sleep time: a specific entity?

    PubMed

    Vernet, Cyrille; Arnulf, Isabelle

    2009-09-01

    The classical narcolepsy patient reports intense feelings of sleepiness (with/out cataplexy), normal or disrupted nighttime sleep, and takes short and restorative naps. However, with long-term monitoring, we identified some narcoleptics resembling patients with idiopathic hypersomnia. To isolate and describe a new subtype of narcolepsy with long sleep time). University Hospital Controlled, prospective cohort Out of 160 narcoleptics newly diagnosed within the past 3 years, 29 (18%) had a long sleep time (more than 11 h/24 h). We compared narcoleptics with (n = 23) and without (n = 29) long sleep time to 25 hypersomniacs with long sleep time and 20 healthy subjects. Patients and controls underwent face-to face interviews, questionnaires, human leukocyte antigen (HLA) genotype, an overnight polysomnography, multiple sleep latency tests, and 24-h ad libitum sleep monitoring. Narcoleptics with long sleep time had a similar disease course and similar frequencies of cataplexy, sleep paralysis, hallucinations, multiple sleep onset in REM periods, short mean sleep latencies, and HLA DQB1*0602 positivity as narcoleptics with normal sleep time did. However, they had longer sleep time during 24 h, and higher sleep efficiency, lower Epworth Sleepiness Scale scores, and reported their naps were more often unrefreshing. Only 3/23 had core narcolepsy (HLA and cataplexy positive). The subgroup of narcoleptics with a long sleep time comprises 18% of narcoleptics. Their symptoms combine the disabilities of both narcolepsy (severe sleepiness) and idiopathic hypersomnia (long sleep time and unrefreshing naps). Thus, they may constitute a group with multiple arousal system dysfunctions.

  13. Sleep quality in professional ballet dancers.

    PubMed

    Fietze, Ingo; Strauch, Jutta; Holzhausen, Martin; Glos, Martin; Theobald, Christiane; Lehnkering, Hanna; Penzel, Thomas

    2009-08-01

    Ballet dancers are competitive athletes who undergo extreme physical and mental stress and work according to an irregular schedule, with long days of training, rehearsal, and performance. Their most significant potential risks entail physical injury and altered sleep. The elaborate training requirements for ballet dancers do not allow regular chronobiological patterns or a normal sleep-wake rhythm. Our aim was to investigate the sleep-wake rhythm and sleep quality during rehearsal phases prior to a ballet premiere. We used wrist actigraphy and sleep diaries for a period of 67 days before the ballet premiere performance to study 24 classical ballet dancers. We likewise applied the Epworth Sleepiness Score (ESS), Pittsburgh Sleep Quality Index (PSQI), SF-12 Quality of life Assessment, and d2 Test of Attention to assess quality of sleep, aspects of cognitive performance, and health status. We found significant reduction in sleep duration, from 418+/-43 min to 391+/-42 min, and sleep efficiency, from 81+/-4% to 79+/-5%, over the 67-day course of the rehearsal. We also found a decline in time in bed and an increase in wakefulness after sleep onset. Sleep onset latency did not change. However, the changes in sleep as documented by actigraphy were not reflected by the subjective data of the sleep diaries and sleep scores. As a result of the facts that total sleep efficiency and sleep duration values were already lower than usual for the dancers' age group at the beginning of the study and that mental acuity, concentration, and speed were likewise impaired, we observed exacerbated health deterioration in terms of sleep deprivation in ballet dancers during preparation for a premier. We conclude that individual activity-rest schedules, including daytime naps, may be helpful, especially during the stressful training and rehearsal experienced prior to ballet premieres.

  14. Antioxidant defense responses to sleep loss and sleep recovery.

    PubMed

    Everson, Carol A; Laatsch, Christa D; Hogg, Neil

    2005-02-01

    Sleep deprivation in humans is widely believed to impair health, and sleep is thought to have powerful restorative properties. The specific physical and biochemical factors and processes mediating these outcomes, however, are poorly elucidated. Sleep deprivation in the animal model produces a condition that eventually becomes highly lethal, lacks specific localization, and is reversible with sleep, implying mediation by a biochemical abnormality. Metabolic and immunological consequences of sleep deprivation point to a high potential for antioxidant imbalance. The objective, therefore, was to study glutathione content in the liver, heart, and lung, because glutathione is considered a major free radical scavenger that reflects the degree to which a tissue has been oxidatively challenged. We also investigated major enzymatic antioxidants, including catalase and glutathione peroxidase, as well as indexes of glutathione recycling. Catalase activity and glutathione content, which normally are tightly regulated, were both decreased in liver by 23-36% by 5 and 10 days of sleep deprivation. Such levels are associated with impaired health in other animal models of oxidative stress-associated disease. The decreases were accompanied by markers of generalized cell injury and absence of responses by the other enzymatic antioxidants under study. Enzymatic activities in the heart indicated an increased rate of oxidative pentose phosphate pathway activity during sleep deprivation. Recovery sleep normalized antioxidant content in liver and enhanced enzymatic antioxidant activities in both the liver and the heart. The present results link uncompensated oxidative stress to health effects induced by sleep deprivation and provide evidence that restoration of antioxidant balance is a property of recovery sleep.

  15. Reward circuitry function in autism during face anticipation and outcomes.

    PubMed

    Dichter, Gabriel S; Richey, J Anthony; Rittenberg, Alison M; Sabatino, Antoinette; Bodfish, James W

    2012-02-01

    The aim of this study was to investigate reward circuitry responses in autism during reward anticipation and outcomes for monetary and social rewards. During monetary anticipation, participants with autism spectrum disorders (ASDs) showed hypoactivation in right nucleus accumbens and hyperactivation in right hippocampus, whereas during monetary outcomes, participants with ASDs showed hyperactivation in left midfrontal and anterior cingulate gyrus. Groups did not differ in nucleus accumbens responses to faces. The ASD group demonstrated hyperactivation in bilateral amygdala during face anticipation that predicted social symptom severity and in bilateral insular cortex during face outcomes. These results add to the growing body of evidence that autism is characterized by altered functioning of reward circuitry. Additionally, atypical amygdala activation during the processing of social rewards may contribute to the development or expression of autistic features.

  16. Separate Circuitries Encode the Hedonic and Nutritional Values of Sugar

    PubMed Central

    Tellez, Luis A.; Han, Wenfei; Zhang, Xiaobing; Ferreira, Tatiana L.; Perez, Isaac O.; Shammah-Lagnado, Sara J.; van den Pol, Anthony N.; de Araujo, Ivan E.

    2016-01-01

    Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is however unknown if sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We show in mice that separate basal ganglia circuitries mediate the hedonic and nutritional actions of sugar. We found that, during sugar intake, suppressing hedonic value inhibited dopamine release in ventral but not dorsal striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal but not ventral striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar’s ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data demonstrate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy seeking over taste quality. PMID:26807950

  17. Separate circuitries encode the hedonic and nutritional values of sugar.

    PubMed

    Tellez, Luis A; Han, Wenfei; Zhang, Xiaobing; Ferreira, Tatiana L; Perez, Isaac O; Shammah-Lagnado, Sara J; van den Pol, Anthony N; de Araujo, Ivan E

    2016-03-01

    Sugar exerts its potent reinforcing effects via both gustatory and post-ingestive pathways. It is, however, unknown whether sweetness and nutritional signals engage segregated brain networks to motivate ingestion. We found in mice that separate basal ganglia circuitries mediated the hedonic and nutritional actions of sugar. During sugar intake, suppressing hedonic value inhibited dopamine release in ventral, but not dorsal, striatum, whereas suppressing nutritional value inhibited dopamine release in dorsal, but not ventral, striatum. Consistently, cell-specific ablation of dopamine-excitable cells in dorsal, but not ventral, striatum inhibited sugar's ability to drive the ingestion of unpalatable solutions. Conversely, optogenetic stimulation of dopamine-excitable cells in dorsal, but not ventral, striatum substituted for sugar in its ability to drive the ingestion of unpalatable solutions. Our data indicate that sugar recruits a distributed dopamine-excitable striatal circuitry that acts to prioritize energy-seeking over taste quality.

  18. Sleep/wake cycles in the dark: sleep recorded by polysomnography in 26 totally blind subjects compared to controls.

    PubMed

    Leger, Damien; Guilleminault, Christian; Santos, Carmen; Paillard, Michel

    2002-10-01

    To evaluate subjective sleep difficulties and nocturnal sleep with polysomnography in 26 completely blind subjects, living in normal social environments and to compare the findings with those of matched controls. Twenty-six blind individuals with no light perception and free-running melatonin rhythms, as assessed by measurements of urinary and salivary 6-sulfatoxymelatonin, were polygraphically monitored. Actigraphy and Braille sleep logs were obtained from the individuals for 14 days. Their sleep was compared to that of matched controls. Blind individuals were 'free-running' despite normal and regular social interaction. Each had ordinary working conditions and/or a family life with seeing spouse and children. Actigraphy obtained on 14 successive days showed the presence of small amount of daytime 'sleep' - 24.7+/-25.1 min per day. Total sleep time, sleep latency, sleep efficiency, and total REM sleep were significantly lower than in matched controls. Working blind subjects had a slightly higher total sleep time than those retired and unemployed. Congenital blindness, acquired blindness, presence of bilateral prosthetic eyes or presence of normal human eyes did not produce different nocturnal sleep and 'free-running' pattern results. Reduced total sleep time and other sleep abnormalities were associated with the complaint of daytime sleepiness and poor sleep in blind subjects. The abnormalities of sleep, which may be related to the free-running condition, present an additional challenge for these subjects, who are already severely impaired by their complete lack of vision.

  19. System consolidation during sleep - a common principle underlying psychological and immunological memory formation.

    PubMed

    Westermann, Jürgen; Lange, Tanja; Textor, Johannes; Born, Jan

    2015-10-01

    Sleep benefits the consolidation of psychological memory, and there are hints that sleep likewise supports immunological memory formation. Comparing psychological and immunological domains, we make the case for active system consolidation that is similarly established in both domains and partly conveyed by the same sleep-associated processes. In the psychological domain, neuronal reactivation of declarative memory during slow-wave sleep (SWS) promotes the redistribution of representations initially stored in hippocampal circuitry to extra-hippocampal circuitry for long-term storage. In the immunological domain, SWS seems to favor the redistribution of antigenic memories initially held by antigen-presenting cells, to persisting T cells serving as a long-term store. Because storage capacities are limited in both systems, system consolidation presumably reduces information by abstracting 'gist' for long-term storage.

  20. Role of the Brain’s Reward Circuitry in Depression: Transcriptional Mechanisms

    PubMed Central

    Nestler, Eric J.

    2015-01-01

    Increasing evidence supports an important role for the brain’s reward circuitry in controlling mood under normal conditions and contributing importantly to the pathophysiology and symptomatology of a range of mood disorders, such as depression. Here we focus on the nucleus accumbens (NAc), a critical component of the brain’s reward circuitry, in depression and other stress-related disorders. The prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression supports the involvement of the NAc in these conditions. We concentrate on several transcription factors (CREB, ΔFosB, SRF, NFκB, and β-catenin), which are altered in the NAc in rodent depression models—and in some cases in the NAc of depressed humans, and which produce robust depression- or antidepressant-like effects when manipulated in the NAc in animal models. These studies of the NAc have established novel approaches toward modeling key symptoms of depression in animals and could enable the development of antidepressant medications with fundamentally new mechanisms of action. PMID:26472529

  1. The Dorsal Medial Habenula Minimally Impacts Circadian Regulation of Locomotor Activity and Sleep.

    PubMed

    Hsu, Yun-Wei A; Gile, Jennifer J; Perez, Jazmine G; Morton, Glenn; Ben-Hamo, Miriam; Turner, Eric E; de la Iglesia, Horacio O

    2017-09-01

    In nocturnal rodents, voluntary wheel-running activity (WRA) represents a self-reinforcing behavior. We have previously demonstrated that WRA is markedly reduced in mice with a region-specific deletion of the transcription factor Pou4f1 (Brn3a), which leads to an ablation of the dorsal medial habenula (dMHb). The decrease in WRA in these dMHb-lesioned (dMHb(CKO)) mice suggests that the dMHb constitutes a critical center for conveying reinforcement by exercise. However, WRA also represents a prominent output of the circadian system, and the possibility remains that the dMHb is a source of input to the master circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. To test this hypothesis, we assessed the integrity of the circadian system in dMHb(CKO) mice. Here we show that the developmental lesion of the dMHb reduces WRA under both a light-dark cycle and constant darkness, increases the circadian period of WRA, but has no effect on the circadian amplitude or period of home cage activity or the daily amplitude of sleep stages, suggesting that the lengthening of period is a result of the decreased WRA in the mutant mice. Polysomnographic sleep recordings show that dMHb(CKO) mice have an overall unaltered daily amplitude of sleep stages but have fragmented sleep and an overall increase in total rapid eye movement (REM) sleep. Photoresponsiveness is intact in dMHb(CKO) mice, but compared with control animals, they reentrain faster to a 6-h abrupt phase delay protocol. Circadian changes in WRA of dMHb(CKO) mice do not appear to emerge within the central pacemaker, as circadian expression of the clock genes Per1 and Per2 within the SCN is normal. We do find some evidence for fragmented sleep and an overall increase in total REM sleep, supporting a model in which the dMHb is part of the neural circuitry encoding motivation and involved in the manifestation of some of the symptoms of depression.

  2. Sleep and Premenstrual Syndrome

    PubMed Central

    Jehan, Shazia; Auguste, Evan; Hussain, Mahjabeen; Pandi-Perumal, Seithikurippu R.; Brzezinski, Amon; Gupta, Ravi; Attarian, Hrayr; Jean-Louis, Giradin; McFarlane, Samy I.

    2016-01-01

    The etiology of premenstrual syndrome (PMS) is unknown; it may be due to the normal effect of hormones during the menstrual cycle as it occurs in the late luteal phase of the menstrual cycle.PMS affects women of childbearing age and remits with the onset of menstruation. The menstrual phase is known to influence stage 2 and REM sleep in women, irrespective of premenstrual dysphoric disorder (PMDD). Women with PMDD showed a decreased response to melatonin in their luteal phase as compared to the follicular phase of the menstrual cycle. However, melatonin duration or timing of offset in the morning has not been reported to correlate with the mood. Rather, improvement in mood-related symptoms of PMDD has been found to be influenced by sleep deprivation, be it sleep restrictions in early or late night. Sleep disturbance and decreased melatonin secretions due to hormonal fluctuations during the luteal phase of the menstrual cycle could explain the sleep complaints of PMDD. PMID:28239684

  3. Nocturnal psychophysiological correlates of somatic conditions and sleep disorders.

    PubMed

    Kales, J D; Kales, A

    1975-01-01

    Modern sleep research studies have provided the practicing physician with considerable new information concerning the basic psychophysiology of sleep, the effects of medical conditions on sleep and the role of maturational and emotional factors in producing certain sleep disorders. Medical and psychiatric disorders, sleep disorders and drug-induced sleep stage alterations are studied in the sleep laboratory using the same techniques developed to analyze sleep patterns in normal subjects. After initial sleep laboratory adaptation, a profile of the sleep characteristics of various clinical conditions is obtained. This profile can be compared to sleep profiles of normal subjects as well as to the effects on sleep of subsequent experimental or therapeutic procedures. Various studies have shown that coronary artery, duodenal ulcer and nocturnal headache patients experience angina, increased gastric acid secretion and migraine or cluster headaches, respectively during REM sleep. Adult nocturnal asthamtic episodes occur out of all sleep stages while attacks of dyspnea in asthmatic children occur in all stages except stage 4 sleep. Hypothyroid patients show decreases in stages 3 and 4 sleep, while in hyperthyroid patients the percentage of time spent in stages 3 and 4 sleep is markedly increased. Enuretic episodes occur predominantly in non-rapid eye movement (NREM) sleep. Sleepwalking and night terror episodes occur exclusively out of NREM sleep, particularly from stages 3 and 4 sleep. Most child somnambulists and children with night terrors "outgrow" this disorder, suggesting a delayed maturation of the central nervous system. Stimulant drugs are effective in the treatment of the sleep attacks of narcolepsy and in treating certain cases of hypersomnia, while imipramine is an effective treatment for the auxillary symptoms of narcolepsy. Psychological disturbances are frequent in adult somnambulism and night terrors as well as in hypersomnia and insomnia. Proper

  4. Individual Differences in Sleep Timing Relate to Melanopsin-Based Phototransduction in Healthy Adolescents and Young Adults

    PubMed Central

    van der Meijden, Wisse P.; Van Someren, Jamie L.; te Lindert, Bart H.W.; Bruijel, Jessica; van Oosterhout, Floor; Coppens, Joris E.; Kalsbeek, Andries; Cajochen, Christian; Bourgin, Patrice; Van Someren, Eus J.W.

    2016-01-01

    Study Objectives: Individual differences in sleep timing have been widely recognized and are of particular relevance in adolescents and young adults who often show mild to severely delayed sleep. The biological mechanisms underlying the between-subject variance remain to be determined. Recent human genetics studies showed an association between sleep timing and melanopsin gene variation, but support for functional effects on downstream pathways and behavior was not demonstrated before. We therefore investigated the association between the autonomic (i.e., pupil diameter) and behavioral (i.e., sleep timing) readouts of two different downstream brain areas, both affected by the same melanopsin-dependent retinal phototransduction: the olivary pretectal nucleus (OPN) and the suprachiasmatic nucleus (SCN). Methods: Our study population included 71 healthy individuals within an age range with known vulnerability to a delayed sleep phase (16.8–35.7 y, 37 males, 34 females). Pupillometry was performed to estimate functionality of the intrinsic melanopsin-signaling circuitry based on the OPN-mediated post-illumination pupil response (PIPR) to blue light. Sleep timing was quantified by estimating the SCN-mediated mid-sleep timing in three different ways in parallel: using a chronotype questionnaire, a sleep diary, and actigraphy. Results: All three measures consistently showed that those individuals with a later mid-sleep timing had a more pronounced PIPR (0.03 < P < 0.05), indicating a stronger blue-light responsiveness of the intrinsic melanopsin-based phototransduction circuitry. Conclusions: Trait-like individual differences in the melanopsin phototransduction circuitry contribute to individual differences in sleep timing. Blue light-sensitive young individuals are more prone to delayed sleep. Citation: van der Meijden WP, Van Someren JL; te Lindert BH, Bruijel J, van Oosterhout F, Coppens JE, Kalsbeek A, Cajochen C, Bourgin P, Van Someren EJ. Individual differences in

  5. Sleep and behavioral problems in rolandic epilepsy.

    PubMed

    Samaitienė, Rūta; Norkūnienė, Jolita; Tumienė, Birutė; Grikinienė, Jurgita

    2013-02-01

    Although patients with benign childhood epilepsy with centrotemporal spikes exhibit a benign course of the disease, some of them display sleep and behavioral problems. Sixty-one patients with rolandic epilepsy, aged 6-11 years, were included in this study. The patients were divided into two subgroups according to the presence of seizures over the preceding 6 months. The control group comprised 25 patients without epilepsy and with similar characteristics in terms of age and sex. All patients underwent evaluation of sleep (Sleep Disturbance Scale for Children) and behavior (Lithuanian version of the Child Behaviour Checklist). Only patients who had had seizures over the preceding 6 months displayed significantly higher scores for sleep problems (disorders of excessive daytime sleepiness, disorders of sleep-wake transition, and scores for total sleep problems), worse sleep quality (longer sleep-onset latency), and behavioral problems (anxiety/depression, social problems, thought problems, attention problems, and aggressive behavior) than the patients of the control group. Our data add to evidence that active epilepsy has an impact on sleep and behavior. Clinically significant sleep problems were related to the higher risk of behavioral problems. Parents' ratings for existing sleep problems were sensitive to Sleep Disturbance Scale for Children scores above normal values.

  6. Sleep and Barbiturates: some Experiments and Observations*

    PubMed Central

    Evans, J. I.; Lewis, S. A.; Gibb, I. A. M.; Cheetham, Mary

    1968-01-01

    To determine the effect of barbiturates on sleep two subjects, after a control period, received 200 mg. of sodium amylobarbitone for 26 nights. All night sleep records taken during this period showed that the barbiturate shortened the delay to sleep, increased the total sleep period, lengthened the delay to rapid eye movement (R.E.M.) sleep, and depressed R.E.M. sleep. After five nights R.E.M. sleep returned to baseline values —that is, showed tolerance. On stopping the drug withdrawal phenomena were seen, even to this small dose of the drug. In a second experiment a subject dependent on 600 mg. of Tuinal was found to have low normal R.E.M. sleep while on drugs. On withdrawal, delay to sleep increased and total sleep time fell. R.E.M. sleep was doubled and the delay to R.E.M. became abnormally short. These findings suggest that hypnotics allow sleep to be “borrowed,” and that patients should be supported while they are being withdrawn. PMID:4301261

  7. Sleep and performance--recent trends.

    PubMed

    Himashree, Gidugu; Banerjee, P K; Selvamurthy, W

    2002-01-01

    Sleep and sleep deprivation are intimately related to performance. Sleep management of people working in different sectors of the society like multi shift workers, nurses, doctors, students in professional schools and the armed forces has a great bearing on performance, health and safety of the subject population. The detrimental effects of sleep deprivation on psychological performance are indicated as increased lapsing, cognitive slowing, memory impairment, decrease in vigilance and sustained attention and shift in optimum response capability. Its effects on physical performance are manifested as decline in ability to perform maximal exercise, self-selected walking pace and increase in perceived exertion. Sleep deprivation appears to have no effect in respect of muscle contractile properties and maximum anaerobic power. At high altitude (HA), there is a reduction in NREM sleep with frequent awakening due to hypoxia as a physiological adaptive measure to prevent accentuation of hypoxemia due to sleep-hypoventilation. Total sleep deprivation for 48 hours at high altitude can affect the acclimatization status, thermoregulation efficiency and cognitive functions. The concept of 'sleepiness' has also been studied, as it is an emerging concept for better understanding of the effects of sleep deprivation and its effects on performance. A special mention of sustained operations in the armed forces has been made keeping in mind its uniqueness in challenging the normal sleep-work schedule and its deployment in extreme environment and operational condition. This article reviews in detail the functions of sleep, its requirement and the effects of sleep deprivation on human performance.

  8. Sleep and Development in Genetically Tractable Model Organisms

    PubMed Central

    Kayser, Matthew S.; Biron, David

    2016-01-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564

  9. Sleep and Development in Genetically Tractable Model Organisms.

    PubMed

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  10. Sleep in traumatic brain injury.

    PubMed

    Mazwi, Nicole L; Fusco, Heidi; Zafonte, Ross

    2015-01-01

    Sleep disturbances affect more than half of survivors of traumatic brain injury (TBI) and have the potential to undermine rehabilitation, recovery, and outcomes. Normal sleep architecture has been well-described and the neurophysiology of sleep is becoming better understood in recent years, though this complex process continues to be dissected for better appreciation. There are numerous types of sleep disorder, most of which fall under two categories: dyssomnias and parasomnias. In more challenging scenarios patients may be plagued with more than one dyssomnia and/or parasomnia simultaneously, complicating the diagnostic and therapeutic approach. Objective and subjective methods are used to evaluate sleep disorders and help distinguish them from psychiatric and environmental contributors to poor sleep. There are several pharmacologic and nonpharmacologic treatments options for sleep disturbances after TBI, many of which have been particularly helpful in restoring adequate quantity and quality of sleep for survivors. However, to date no consensus has been established regarding how to treat this entity, and it may be that a multimodal approach is ultimately best.

  11. Sleep problems and obstructive sleep apnea in children with down syndrome, an overwiew.

    PubMed

    Maris, Mieke; Verhulst, Stijn; Wojciechowski, Marek; Van de Heyning, Paul; Boudewyns, An

    2016-03-01

    Children with Down syndrome (DS) have a high prevalence of sleep problems, including behavioural sleep disturbances and obstructive sleep apnea. Sleep problems are associated with a wide range of adverse health effects. Since children with DS are already known to have many comorbidities, they are particularly susceptible for the negative impact of sleep problems. Aim of this study is (1) to evaluate the prevalence of sleep problems in children with DS, (2) compare the prevalence of sleep problems in children with DS with a community sample of typical developing school-aged children, and (3) to correlate the existence of sleep problems in children with DS and OSA. Children enrolled at the multidisciplinary Down team of the University Hospital Antwerp and seen at the ENT department were eligible for this study. The prevalence of sleep problems was evaluated by the use of the Child Sleep Habits Questionnaire (CSHQ) and a full overnight polysomnography was performed to screen for obstructive sleep apnea. Parents of fifty-four children with DS, aged 7.5 years (5.4-11.6), completed the CSHQ and an overall prevalence of sleep problems was found in 74.1%. In 57.1% of the children OSA was diagnosed with a median obstructive apnea-hypopnea index (oAHI) 7.25/h (5.7-9.8). Overall sleep problems were not age-or gender related, however boys suffer more from daytime sleepiness. Symptoms of sleep disordered breathing correlate with parasomnias, a longer sleep duration and more daytime sleepiness. No correlation was found between sleep problems and underlying OSA. Children with Down syndrome have a significantly higher prevalence of sleep problems, compared to normal developing healthy school-aged children. We didn't find any correlation between the parental report of sleep problems and underlying OSA, or OSA severity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Sleep Disruption in Patients with Sleep Apnea and End-Stage Renal Disease

    PubMed Central

    Loewen, Andrea; Siemens, AnDrea; Hanly, Patrick

    2009-01-01

    Objectives: Sleep apnea (SA) is common in patients with end-stage renal disease (ESRD) and such patients are likely to suffer additional sleep disruption associated with restless legs syndrome (RLS) and periodic leg movements (PLM). Our objective was to evaluate sleep quality in ESRD patients who are newly diagnosed with SA and determine the additional contribution of PLM to sleep disruption. Methods: Two groups of patients with SA (apnea-hypopnea index (AHI) > 15) were compared, one with ESRD (n = 12) and the other with normal renal function (n = 18), using a sleep history questionnaire, sleep diary, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, polysomnography (1 night) and actigraphy (6 nights). Results: The prevalence of RLS was higher in ESRD patients (60% vs 6%, p < 0.001). ESRD patients had shorter total sleep time (TST) (264 ± 78 vs 330 ± 46 min, p = 0.01), lower sleep efficiency (68 ± 20 % vs 81 ± 11 %, p = 0.03), and more stage 1 NREM sleep (23 ± 18 vs 8 ± 5 % TST, p = 0.002). ESRD patients had a higher frequency of PLM (31 ± 37 hr-1 vs 8.0 ± 16 hr-1, p = 0.02) and PLM-related arousals (15 ± 18 hr-1 vs 1 ± 2 hr-1, p = 0.003). Actigraphy demonstrated a higher movement and fragmentation index in ESRD patients (23 ± 10 % sleep time vs 17 ± 6 % sleep time, p = 0.04). Conclusions: The co-existence of PLM is an additional source of sleep disruption in patients with ESRD and SA. Treatment of PLM, in addition to treatment of sleep apnea, may be required to improve sleep quality in this patient population. Citation: Loewen A; Siemens A; Hanly P. Sleep disruption in patients with sleep apnea and end-stage renal disease. J Clin Sleep Med 2009;5(4):324-329. PMID:19968009

  13. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    PubMed Central

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  14. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

    PubMed

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

    2017-02-28

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

  15. Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism.

    PubMed

    Varin, Christophe; Rancillac, Armelle; Geoffroy, Hélène; Arthaud, Sébastien; Fort, Patrice; Gallopin, Thierry

    2015-07-08

    Sleep-active neurons located in the ventrolateral preoptic nucleus (VLPO) play a crucial role in the induction and maintenance of slow-wave sleep (SWS). However, the cellular and molecular mechanisms responsible for their activation at sleep onset remain poorly understood. Here, we test the hypothesis that a rise in extracellular glucose concentration in the VLPO can promote sleep by increasing the activity of sleep-promoting VLPO neurons. We find that infusion of a glucose concentration into the VLPO of mice promotes SWS and increases the density of c-Fos-labeled neurons selectively in the VLPO. Moreover, we show in patch-clamp recordings from brain slices that VLPO neurons exhibiting properties of sleep-promoting neurons are selectively excited by glucose within physiological range. This glucose-induced excitation implies the catabolism of glucose, leading to a closure of ATP-sensitive potassium (KATP) channels. The extracellular glucose concentration monitors the gating of KATP channels of sleep-promoting neurons, highlighting that these neurons can adapt their excitability according to the extracellular energy status. Together, these results provide evidence that glucose may participate in the mechanisms of SWS promotion and/or consolidation. Although the brain circuitry underlying vigilance states is well described, the molecular mechanisms responsible for sleep onset remain largely unknown. Combining in vitro and in vivo experiments, we demonstrate that glucose likely contributes to sleep onset facilitation by increasing the excitability of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO). We find here that these neurons integrate energetic signals such as ambient glucose directly to regulate vigilance states accordingly. Glucose-induced excitation of sleep-promoting VLPO neurons should therefore be involved in the drowsiness that one feels after a high-sugar meal. This novel mechanism regulating the activity of VLPO neurons reinforces the

  16. Better Sleep in a Strange Bed? Sleep Quality in South African Women with Posttraumatic Stress Disorder.

    PubMed

    Lipinska, Gosia; Thomas, Kevin G F

    2017-01-01

    Although individuals diagnosed with posttraumatic stress disorder (PTSD) regularly report subjective sleep disruption, many studies using objective measures (e.g., polysomnography) report no PTSD-related sleep disruption. To account for these inconsistencies, some authors hypothesize that PTSD-diagnosed individuals have sleep-state misperception; that is, they self-report experiencing poor sleep quality, but objectively sleep relatively normally. We tested this sleep-state misperception hypothesis, collecting data on subjectively-reported sleep quality (in the home, and in the laboratory) and on objectively-measured, laboratory-based, sleep quality in PTSD-diagnosed participants from low socioeconomic status South African communities. Women with PTSD (n = 21), with trauma exposure but no PTSD (TE; n = 19), and healthy controls (HC; n = 20) completed questionnaires on their average sleep quality in the past 30 days, and on their sleep quality after a night (8 h) of polysomnographic-monitored sleep in the laboratory. PTSD-diagnosed individuals reported poorer everyday subjective sleep quality than TE and HC individuals. In the laboratory, however, there were no between-group differences in subjective sleep quality, and few between-group differences in objective sleep quality (PTSD-diagnosed individuals only had decreased sleep depth). Furthermore, whereas measures of laboratory-based objective and subjective sleep quality correlated significantly, especially in PTSD-diagnosed individuals, there were few significant associations between objective sleep measures and everyday subjective sleep quality. Taken together, these findings suggest that PTSD-diagnosed individuals likely experienced better sleep quality in the laboratory than at home. Descriptive observations corroborated this interpretation, with almost half the sample rating their laboratory sleep (which they described as "safe" and "quiet") as better than their home sleep (which was experienced in an

  17. Irregular sleep-wake syndrome

    MedlinePlus

    ... normal, but the body clock loses its normal circadian cycle. People with changing work shifts and travelers who ... Abbott SM, Reid KJ, Zee PC. Circadian disorders of the sleep-wake ... Medicine . 6th ed. Philadelphia, PA: Elsevier; 2017:chap 40. ...

  18. Future Directions in Sleep and Developmental Psychopathology.

    PubMed

    Meltzer, Lisa J

    2017-01-01

    It is critical for psychologists to gain a better understanding about the intersection between sleep and developmental psychopathology. However, while many strive to answer the question of whether sleep causes developmental psychopathology, or vice versa, ultimately the relationship between sleep and developmental psychopathology is complex and dynamic. This article considers future directions in the field of clinical child and adolescent psychology that go beyond this mechanistic question, highlighting areas important to address for clinicians and researchers who strive to better understand how best to serve children and adolescents with developmental psychopathology. Questions are presented about what is normal in terms of sleep across development, the role of individual variability in terms of sleep needs and vulnerability to sleep loss, and how sleep may serve as a risk or resilience factor for developmental psychopathology, concluding with considerations for interventions.

  19. Medicines for sleep

    MedlinePlus

    Benzodiazepines; Sedatives; Hypnotics; Sleeping pills; Insomnia - medicines; Sleep disorder - medicines ... are commonly used to treat allergies. While these sleep aids are not addictive, your body becomes used ...

  20. SLEEP - Williams wearing sleep net

    NASA Image and Video Library

    1998-05-12

    STS090-377-011 (17 APRIL-3 MAY 1998) --- Astronaut Dafydd R. (Dave) Williams, mission specialist representing the Canadian Space Agency (CSA), accomplishes more than one purpose when he sleeps in this bunk aboard the Earth-orbiting Space Shuttle Columbia. Conducting a Neurolab sleep experiment, Williams wears equipment which includes a sleep net (mesh cap that monitors and records brain waves); a Respiratory Inductance Plethysmograph (RIP) suit for monitoring respiration; and an activity monitor -- a device (out of view) worn on the wrist to detect and record body movement. Data on brain waves, eye movements, respiration, heart rate, and oxygen concentration are routed to a portable data recorder. The entire system has capabilities similar to a fully equipped sleep laboratory on Earth. The sleeping bag is conventional Shuttle ware and not part of the experiment.

  1. Involvement of the α1-adrenoceptor in sleep-waking and sleep loss-induced anxiety behavior in zebrafish.

    PubMed

    Singh, A; Subhashini, N; Sharma, S; Mallick, B N

    2013-08-15

    Sleep is a universal phenomenon in vertebrates, and its loss affects various behaviors. Independent studies have reported that sleep loss increases anxiety; however, the detailed mechanism is unknown. Because sleep deprivation increases noradrenalin (NA), which modulates many behaviors and induces patho-physiological changes, this study utilized zebrafish as a model to investigate whether sleep loss-induced increased anxiety is modulated by NA. Continuous behavioral quiescence for at least 6s was considered to represent sleep in zebrafish; although some authors termed it as a sleep-like state, in this study we have termed it as sleep. The activity of fish that signified sleep-waking was recorded in light-dark, during continuous dark and light; the latter induced sleep loss in fish. The latency, number of entries, time spent and distance travelled in the light chamber were assessed in a light-dark box test to estimate the anxiety behavior of normal, sleep-deprived and prazosin (PRZ)-treated fish. Zebrafish showed increased waking during light and complete loss of sleep upon continuous exposure to light for 24h. PRZ significantly increased sleep in normal fish. Sleep-deprived fish showed an increased preference for dark (expression of increased anxiety), and this effect was prevented by PRZ, which increased sleep as well. Our findings suggest that sleep loss-induced anxiety-like behavior in zebrafish is likely to be mediated by NA's action on the α1-adrenoceptor.

  2. APPROACHES TO UNRAVEL THE GENETICS OF SLEEP

    PubMed Central

    Bamne, Mikhil N.; Mansour, Hader; Monk, Timothy H.; Buysse, Daniel J.; Nimgaonkar, Vishwajit L.

    2010-01-01

    Sleep and circadian rhythms are complex and inter-connected physiological processes. Relative to the remarkable progress made in identifying the genetic basis of circadian rhythms and some specific sleep disorders, efforts to identify genetic variants associated with normal variation in sleep have progressed more slowly. Two key issues concerning the design of such studies must be addressed in order to facilitate further progress. The first concerns the sleep related traits to be targeted. The second issue is the choice of the gene mapping method (linkage, candidate gene association or genome-wide association). This paper discusses these issues, reviews published studies of sleep phenotypes, and recommends cost-effective methods to advance knowledge of the genetic determinants of normal sleep patterns. PMID:20299255

  3. Respiration during sleep in kyphoscoliosis.

    PubMed Central

    Sawicka, E H; Branthwaite, M A

    1987-01-01

    Eleven subjects with non-paralytic and 10 with paralytic kyphoscoliosis and nine normal control subjects were studied during sleep. The Cobb angle of those with kyphoscoliosis varied from 60 degrees to 140 degrees (median 100 degrees) and the vital capacity varied from 17% to 56% (median 28%) of the value predicted on the basis of span. Recordings made during sleep included expired carbon dioxide tension at the nose, gas flow at the mouth, arterial oxygen saturation, chest wall movement, and the electroencephalogram, electro-oculogram, and electrocardiogram. In three subjects transcutaneous carbon dioxide tension was measured simultaneously. Patients with kyphoscoliosis hypoventilated during sleep, particularly in rapid eye movement sleep, resulting in a rise in end tidal and transcutaneous carbon dioxide tension, and a reduction in oxygen saturation to a degree not observed in normal subjects. Reduced chest wall movement was the major cause of these episodes, which were more frequent and occupied a greater proportion of sleep time in those with kyphoscoliosis than in normal subjects. Serious cardiac arrhythmias were rarely associated. It is concluded that disturbances of respiration during sleep occur in patients with kyphoscoliosis and that these may be important in the pathogenesis of cardiorespiratory failure. PMID:3424256

  4. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  5. Sleep Misperception and Chronic Insomnia in the General Population: The Role of Objective Sleep Duration and Psychological Profiles

    PubMed Central

    Fernandez-Mendoza, Julio; Calhoun, Susan L.; Bixler, Edward O.; Karataraki, Maria; Liao, Duanping; Vela-Bueno, Antonio; Ramos-Platon, María Jose; Sauder, Katherine A.; Basta, Maria; Vgontzas, Alexandros N.

    2011-01-01

    Objective Sleep misperception is considered by some investigators a common characteristic of chronic insomnia, whereas others propose it as a separate diagnosis. The frequency and the determinants of sleep misperception in general population samples are unknown. In this study we examined the role of objective sleep duration, a novel marker in phenotyping insomnia, and psychological profiles on sleep misperception in a large, general population sample. Methods 142 insomniacs and 724 controls selected from a general random sample of 1,741 individuals (age ≥ 20 years) underwent a polysomnographic evaluation, completed the Minnesota Multiphasic Personality Inventory-2, and were split into two groups based on their objective sleep duration: “normal sleep duration” (≥ 6 hours) and “short sleep duration” (< 6 hours). Results The discrepancy between subjective and objective sleep duration was determined by two independent factors. Short sleepers reported more sleep than they objectively had and insomniacs reported less sleep than controls with similar objective sleep duration. The additive effect of these two factors resulted in underestimation only in insomniacs with normal sleep duration. Insomniacs with normal sleep duration showed a MMPI-2 profile of high depression and anxiety, and low ego strength, whereas insomniacs with short sleep duration showed a profile of a medical disorder. Conclusions Underestimation of sleep duration is prevalent among insomniacs with objective normal sleep duration. Anxious-ruminative traits and poor resources for coping with stress appear to mediate the underestimation of sleep duration. These data further support the validity and clinical utility of objective sleep measures in phenotyping insomnia. PMID:20978224

  6. Sleep-Related Declarative Memory Consolidation and Verbal Replay during Sleep Talking in Patients with REM Sleep Behavior Disorder

    PubMed Central

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    Objective To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Methods Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Results Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Conclusion Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level. PMID:24349492

  7. Sleep-related declarative memory consolidation and verbal replay during sleep talking in patients with REM sleep behavior disorder.

    PubMed

    Uguccioni, Ginevra; Pallanca, Olivier; Golmard, Jean-Louis; Dodet, Pauline; Herlin, Bastien; Leu-Semenescu, Smaranda; Arnulf, Isabelle

    2013-01-01

    To determine if sleep talkers with REM sleep behavior disorder (RBD) would utter during REM sleep sentences learned before sleep, and to evaluate their verbal memory consolidation during sleep. Eighteen patients with RBD and 10 controls performed two verbal memory tasks (16 words from the Free and Cued Selective Reminding Test and a 220-263 word long modified Story Recall Test) in the evening, followed by nocturnal video-polysomnography and morning recall (night-time consolidation). In 9 patients with RBD, daytime consolidation (morning learning/recall, evening recall) was also evaluated with the modified Story Recall Test in a cross-over order. Two RBD patients with dementia were studied separately. Sleep talking was recorded using video-polysomnography, and the utterances were compared to the studied texts by two external judges. Sleep-related verbal memory consolidation was maintained in patients with RBD (+24±36% words) as in controls (+9±18%, p=0.3). The two demented patients with RBD also exhibited excellent nighttime consolidation. The post-sleep performance was unrelated to the sleep measures (including continuity, stages, fragmentation and apnea-hypopnea index). Daytime consolidation (-9±19%) was worse than night-time consolidation (+29±45%, p=0.03) in the subgroup of 9 patients with RBD. Eleven patients with RBD spoke during REM sleep and pronounced a median of 20 words, which represented 0.0003% of sleep with spoken language. A single patient uttered a sentence that was judged to be semantically (but not literally) related to the text learned before sleep. Verbal declarative memory normally consolidates during sleep in patients with RBD. The incorporation of learned material within REM sleep-associated sleep talking in one patient (unbeknownst to himself) at the semantic level suggests a replay at a highly cognitive creative level.

  8. Troubled sleep

    PubMed Central

    Haig, David

    2014-01-01

    Disrupted sleep is probably the most common complaint of parents with a new baby. Night waking increases in the second half of the first year of infant life and is more pronounced for breastfed infants. Sleep-related phenotypes of infants with Prader-Willi and Angelman syndromes suggest that imprinted genes of paternal origin promote greater wakefulness whereas imprinted genes of maternal origin favor more consolidated sleep. All these observations are consistent with a hypothesis that waking at night to suckle is an adaptation of infants to extend their mothers’ lactational amenorrhea, thus delaying the birth of a younger sib and enhancing infant survival. PMID:24610432

  9. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

    PubMed Central

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression. PMID:26412074

  10. Sleep in Parkinson's disease: a comparison of actigraphy and subjective measures.

    PubMed

    Stavitsky, K; Saurman, J L; McNamara, P; Cronin-Golomb, A

    2010-05-01

    Sleep disturbances are common in Parkinson's disease (PD). Actigraphy has emerged as an alternative to polysomnography to measure sleep, raising the question of its ability to capture sleep quality in PD patients. Our aim was to compare self-report data with actigraphic data. Thirty non-demented individuals with PD and 14 normal control participants (NC) were included. Sleep was measured using 24-h wrist actigraphy over a seven day period, during which time participants kept a sleep diary. Subjective sleep and arousal questionnaires included the Parkinson's Disease Sleep Scale and Epworth Sleepiness Scale. Patients with PD presented with more sleep problems than NC. In NC, none of the actigraphic sleep variables were related to any of the self-report measures of sleep. In PD, scores on subjective sleep measures correlated with actigraphy-derived estimates of sleep quality. Our results suggest that actigraphy is an appropriate method of measuring sleep quality in PD.

  11. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression.

    PubMed

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

  12. Functions and Mechanisms of Sleep in Flies and Mammals

    DTIC Science & Technology

    2007-02-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-02-2007 2. REPORT...human therapeutic Carbamazepine is a potent sleep-deprivation agent in flies. Current data indicate that its effects are mediated through the Rdl...between flies and humans (Hendricks et al., 2000; Shaw et al., 2000), but there is little current understanding of the circuitry or channels that

  13. Individual Differences in Sleep Timing Relate to Melanopsin-Based Phototransduction in Healthy Adolescents and Young Adults.

    PubMed

    van der Meijden, Wisse P; Van Someren, Jamie L; Te Lindert, Bart H W; Bruijel, Jessica; van Oosterhout, Floor; Coppens, Joris E; Kalsbeek, Andries; Cajochen, Christian; Bourgin, Patrice; Van Someren, Eus J W

    2016-06-01

    Individual differences in sleep timing have been widely recognized and are of particular relevance in adolescents and young adults who often show mild to severely delayed sleep. The biological mechanisms underlying the between-subject variance remain to be determined. Recent human genetics studies showed an association between sleep timing and melanopsin gene variation, but support for functional effects on downstream pathways and behavior was not demonstrated before. We therefore investigated the association between the autonomic (i.e., pupil diameter) and behavioral (i.e., sleep timing) readouts of two different downstream brain areas, both affected by the same melanopsin-dependent retinal phototransduction: the olivary pretectal nucleus (OPN) and the suprachiasmatic nucleus (SCN). Our study population included 71 healthy individuals within an age range with known vulnerability to a delayed sleep phase (16.8-35.7 y, 37 males, 34 females). Pupillometry was performed to estimate functionality of the intrinsic melanopsin-signaling circuitry based on the OPN-mediated post-illumination pupil response (PIPR) to blue light. Sleep timing was quantified by estimating the SCN-mediated mid-sleep timing in three different ways in parallel: using a chronotype questionnaire, a sleep diary, and actigraphy. All three measures consistently showed that those individuals with a later mid-sleep timing had a more pronounced PIPR (0.03 < P < 0.05), indicating a stronger blue-light responsiveness of the intrinsic melanopsin-based phototransduction circuitry. Trait-like individual differences in the melanopsin phototransduction circuitry contribute to individual differences in sleep timing. Blue light-sensitive young individuals are more prone to delayed sleep. © 2016 Associated Professional Sleep Societies, LLC.

  14. Striatal development in autism: repetitive behaviors and the reward circuitry

    PubMed Central

    Kohls, Gregor; Yerys, Benjamin; Schultz, Robert T.

    2016-01-01

    RRBIs, like insistence on sameness, compulsions and rituals, to become such a force so as to impact the growth trajectory of an evolutionarily ancient brain structure like the caudate nucleus? This question ties in with a long-standing debate among clinicians and scientists concerning the potential functions that the myriad of RRBIs might serve in individuals with ASD. While several plausible ideas have been advanced7, convincing support for any specific one is lacking. One hypothesis that is gaining increased research attention, however, involves the effects of alterations of the balance between social and nonsocial motivation in reward circuitry on RRBIs8. This model suggests that ASD is in part a disorder of “behavioral dependency” to RRBIs because of the rewarding effects they induce1. Indeed, insistence on sameness and preoccupying restricted interests are reported to be quite pleasurable by affected individuals1. The dorsal striatum with caudate nucleus, in particular, is believed to mediate reward value for purposeful actions5. Functional imaging studies show that the brain's reward circuitry in ASD, particularly striatum and ventral prefrontal cortices, selectively over-reacts to objects that may comprise an intense special interest, whereas it under-reacts to more typical desires such as social reward and money6. This may indicate that the brain in ASD cares less for conventional rewards. It is not yet known if an initial lack of social reward motivation opens the door for enhanced rewarding effects of certain circumscribed objects, topics, and routines, or whether the reverse is true – that the dominating reward effects of nonsocial objects, topic and routines diminishes the reward value of social engagement. The rewarding effects of RRBIs are thought to be fueled by the preference of those with ASD for predictability in their environment, where they can exercise more control; social encounters are in many ways the antithesis of this, as these are often

  15. Depression and sleep: pathophysiology and treatment

    PubMed Central

    Thase, Michael E.

    2006-01-01

    This review examines the relationship between sleep and depression. Most depressive disorders are characterized by subjective sleep disturbances, and the regulation of sleep is intricately linked to the same mechanisms that are implicated in the pathophysiology of depression. After briefly reviewing the physiology and topography of normal sleep, the disturbances revealed in studies of sleep in depression using polysomnographic recordings and neuroimaging assessments are discussed. Next, treatment implications of the disturbances are reviewed at both clinical and neuro-biologic levels. Most antidepressant medications suppress rapid eye movement (REM) sleep, although this effect is neither necessary nor sufficient for clinical efficacy. Effects on patients' difficulties initiating and maintaining sleep are more specific to particular types of antidepressants. Ideally, an effective antidepressant will result in normalization of disturbed sleep in concert with resolution of the depressive syndrome, although few interventions actually restore decreased slow-wave sleep. Antidepressants that block central histamine 1 and serotonin 2 tend to have stronger effects on sleep maintenance, but are also prone to elicit complaints of daytime sedation. Adjunctive treatment with sedative hypnotic medications-primarily potent, shorter-acting benzodiazepine and γ-aminobutyric acid (GABA A)-selective compounds such as zolpidem-are often used to treat associated insomnia more rapidly. Cognitive behavioral therapy and other nonpharmacologic strategies are also helpful. PMID:16889107

  16. Delayed Sleep Phase Disorder In Temporal Isolation

    PubMed Central

    Campbell, Scott S.; Murphy, Patricia J.

    2007-01-01

    Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395

  17. Sleep Disorders Associated with Primary Mitochondrial Diseases

    PubMed Central

    Ramezani, Ryan J.; Stacpoole, Peter W.

    2014-01-01

    Study Objectives: Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. Design: We examined publications reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Measurements and Results: Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/or hypercapnia that was not considered due to weakness of the intrinsic muscles of respiration. Conclusions: Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hypercapnia. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. Citation: Ramezani RJ

  18. From Fibonacci to the mathematics of cows and quantum circuitry

    NASA Astrophysics Data System (ADS)

    Wilmott, C. M.

    2015-01-01

    The Fibonacci sequence is a famously well-known integer sequence from the thirteenth century which has transcended its original motivation. It possesses many interested and varied applications within architecture, engineering and science. Less well known is the Narayana sequence which itself has interesting and wide-ranging Fibonacci-type connections. In this paper, we shall recall Narayana's original motivation that gives rise to the sequence bearing his name. We also provide an interesting application of this sequence to the construction to quantum gate circuitry used in quantum computation.

  19. Implementing size-optimal discrete neural networks require analog circuitry

    SciTech Connect

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  20. Silent Synapse-Based Circuitry Remodeling in Drug Addiction

    PubMed Central

    2016-01-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. PMID:26721952

  1. Regulation of dietary choice by the decision-making circuitry.

    PubMed

    Rangel, Antonio

    2013-12-01

    To advance our understanding of how the brain makes food decisions, it is essential to combine knowledge from two fields that have not yet been well integrated: the neuro-computational basis of decision-making and the homeostatic regulators of feeding. This Review integrates these two literatures from a neuro-computational perspective, with an emphasis in describing the variables computed by different neural systems and how they affect dietary choice. We highlight what is unique about feeding decisions, the mechanisms through which metabolic and endocrine factors affect the decision-making circuitry, why making healthy food choices is difficult for many people, and key processes at work in the obesity epidemic.

  2. Sleep Quiz

    MedlinePlus

    ... body and brain shut down for rest and relaxation True False Correct! Incorrect! Although it is a time when your body rests and restores its energy levels, sleep is an active state that affects both your physical and mental ...

  3. Sleep Quiz

    MedlinePlus

    ... body and brain shut down for rest and relaxation. _____2 . If you regularly doze off unintentionally during ... and restores its energy levels, sleep is an active state that affects both your physical and mental ...

  4. Exercise & Sleep

    MedlinePlus

    ... on. Feature: Back to School, the Healthy Way Exercise & Sleep Past Issues / Fall 2012 Table of Contents ... helps kids. Photo: iStock 6 "Bests" About Kids' Exercise At least one hour of physical activity a ...

  5. Sleep Disorders (PDQ)

    MedlinePlus

    ... anxiety and the patient's age. Stress caused by learning the cancer diagnosis often causes sleeping problems. Stress, ... control and sleep restriction to work for you. Learning good sleep habits is important. Good sleep habits ...

  6. Sleeping during Pregnancy

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Sleeping During Pregnancy KidsHealth > For Parents > Sleeping During Pregnancy ... have trouble getting enough deep, uninterrupted sleep. Why Sleeping Can Be Difficult The first and most pressing ...

  7. Sleep Apnea Detection

    MedlinePlus

    ... Young Adult Healthy Children > Ages & Stages > Baby > Sleep > Sleep Apnea Detection Ages & Stages Listen Español Text Size Email Print Share Sleep Apnea Detection Page Content Article Body Sleep apnea ...

  8. Sleep Apnea (For Parents)

    MedlinePlus

    ... for TV, Video Games, and the Internet Obstructive Sleep Apnea KidsHealth > For Parents > Obstructive Sleep Apnea Print ... kids and teens can develop it, too. About Sleep Apnea Sleep apnea happens when a person stops ...

  9. Obstructive sleep apnea - adults

    MedlinePlus

    Sleep apnea - obstructive - adults; Apnea - obstructive sleep apnea syndrome - adults; Sleep-disordered breathing - adults; OSA - adults ... When you sleep, all of the muscles in your body become more relaxed. This includes the muscles that help keep your ...

  10. Pediatric sleep apnea

    MedlinePlus

    Sleep apnea - pediatric; Apnea - pediatric sleep apnea syndrome; Sleep-disordered breathing - pediatric ... During sleep, all of the muscles in the body become more relaxed. This includes the muscles that help keep ...

  11. Sleep and Aging

    MedlinePlus

    ... version of this page please turn Javascript on. Sleep and Aging About Sleep We all look forward to a good night's ... health and quality of life. Two Types of Sleep There are two types of sleep: non-rapid ...

  12. Sleep Terrors (Night Terrors)

    MedlinePlus

    ... factors can contribute to sleep terrors, such as: Sleep deprivation and extreme tiredness Stress Fever (in children) Sleeping in unfamiliar surroundings Lights or noise An overfull bladder Sleep terrors sometimes are associated with underlying conditions that ...

  13. American Sleep Apnea Association

    MedlinePlus

    American Sleep Apnea Association Learn About the CPAP Assistance Program About ASAA News about ASAA Who we are Leadership Team Supporting the ASAA Financials Learn Healthy sleep Sleep apnea Other sleep disorders Personal stories Treat Test Yourself ...

  14. Sleep disorders of early childhood: a review.

    PubMed

    Benhamou, I

    2000-01-01

    Night awakening and refusal to go to sleep are common problems during the first three years of life, comprising 6-30% of children in the general population. The organization and regulation of child sleep is thought to be closely related to his mode of attachment to his mother. Sleep aids (pacifier, teddy bear, etc.) during the night seem to reduce the occurrence of sleep disorders whereas prolonged breastfeeding and co-sleep with the parents interfere with the normal development of sleep. During the preschool years, the main issue affecting sleep is the ability of parents to set firm limits while respecting the sense of autonomy of the child. Sleep disorders are considered to be more common among physically and mentally handicapped children. Children with a difficult temperament sleep less than those with an easy one. A clear association is found between sleep patterns and psychopathology of the mother probably due to emotional unavailability and inappropriate behavior. Evaluation of the disorder should follow medical examination. It should take place in the presence of the child in order to view the real interaction as well as given information about the reported interaction between the child and his mother. Therapeutic interventions in cases of early childhood sleep disorders can be behavioral or psychodynamic and are advised to be focused and brief, unless there is psychopathology in the parents.

  15. Sleep in children with Williams Syndrome.

    PubMed

    Mason, Thornton B A; Arens, Raanan; Sharman, Jaclyn; Bintliff-Janisak, Brooke; Schultz, Brian; Walters, Arthur S; Cater, Jacqueline R; Kaplan, Paige; Pack, Allan I

    2011-10-01

    To analyze sleep in children with Williams Syndrome (WS) compared to normal healthy controls in order to determine whether particular sleep features are characteristic of WS, and to explore associations between disturbed sleep and behavior. Thirty-five children with genetically-confirmed WS and 35 matched controls underwent overnight polysomnography and performance testing in the Sleep Center at the Children's Hospital of Philadelphia. Parents completed questionnaires regarding the subjects' sleep and behavior. WS subjects had significantly different sleep than controls, with decreased sleep efficiency, increased respiratory-related arousals and increased slow wave sleep on overnight polysomnography. WS subjects were also noted to have more difficulty falling asleep, with greater restlessness and more arousals from sleep than controls. Fifty-two percent of WS subjects had features of attention deficit-hyperactivity disorder. Children with WS had significantly different sleep than controls in our sample. These differences demonstrated in our study may reflect genetic influences on sleep. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Night sleep in patients with vegetative state.

    PubMed

    Pavlov, Yuri G; Gais, Steffen; Müller, Friedemann; Schönauer, Monika; Schäpers, Barbara; Born, Jan; Kotchoubey, Boris

    2017-10-01

    Polysomnographic recording of night sleep was carried out in 15 patients with the diagnosis vegetative state (syn. unresponsive wakefulness syndrome). Sleep scoring was performed by three raters, and confirmed by means of a spectral power analysis of the electroencephalogram, electrooculogram and electromyogram. All patients but one exhibited at least some signs of sleep. In particular, sleep stage N1 was found in 13 patients, N2 in 14 patients, N3 in nine patients, and rapid eye movement sleep in 10 patients. Three patients exhibited all phenomena characteristic for normal sleep, including spindles and rapid eye movements. However, in all but one patient, sleep patterns were severely disturbed as compared with normative data. All patients had frequent and long periods of wakefulness during the night. In some apparent rapid eye movement sleep episodes, no eye movements were recorded. Sleep spindles were detected in five patients only, and their density was very low. We conclude that the majority of vegetative state patients retain some important circadian changes. Further studies are necessary to disentangle multiple factors potentially affecting sleep pattern of vegetative state patients. © 2017 European Sleep Research Society.

  17. Effects of sleep on memory for conditioned fear and fear extinction

    PubMed Central

    Pace-Schott, Edward F.; Germain, Anne; Milad, Mohammed R.

    2015-01-01

    Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. REM may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep’s effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. PMID:25894546

  18. Electroencephalographic studies of sleep

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1975-01-01

    Various experimental studies on sleep are described. The following areas are discussed: (1) effect of altered day length on sleep, (2) effect of a partial loss of sleep on subsequent nocturnal sleep; (3) effect of rigid control over sleep-wake-up times; (4) sleep and wakefulness in a time-free environment; (5) distribution of spindles during a full night of sleep; and (6) effect on sleep and performance of swiftly changing shifts of work.

  19. Sleep in Othello

    PubMed Central

    Dimsdale, Joel E.

    2009-01-01

    Some of our best descriptions of sleep disorders come from literature. While Shakespeare is well known for his references to insomnia and sleep walking, his works also demonstrate a keen awareness of many other sleep disorders. This paper examines sleep themes in Shakespeare's play Othello. The play indicates Shakespeare's astute eye for sleep deprivation, sexual parasomnias, and effects of stress and drugs on sleep. Citation: Dimsdale JE. Sleep in Othello. J Clin Sleep Med 2009;5(3):280-281. PMID:19960651

  20. Sleep Tips: 7 Steps to Better Sleep

    MedlinePlus

    ... turn every night. Consider simple tips for better sleep, from setting a sleep schedule to including physical activity in your daily ... factors that can interfere with a good night's sleep — from work stress and family responsibilities to unexpected ...

  1. Sleep deprivation increases cigarette smoking.

    PubMed

    Hamidovic, Ajna; de Wit, Harriet

    2009-09-01

    Loss of sleep may impair the ability to abstain from drug use, through any of a number of mechanisms. Sleep loss may increase drug use by impairing attention and inhibitory control, increasing the value of drug rewards over other rewards, or by inducing mood states that facilitate use of a drug. In the present study, we examined whether sleep deprivation (SD) would increase smoking in cigarette smokers, and whether it would do so by impairing attention or inhibitory control. Healthy cigarette smokers (N=14) were tested in a two-session within subject study, after overnight SD or after a normal night's sleep. Subjects were tested in both conditions in randomized order, after abstaining from cigarettes for 48 hours. The procedure was designed to model the human relapse situation. On each 6-h laboratory session after sleep or no sleep, subjects completed mood and craving questionnaires, tasks measuring behavioral inhibition and attention, and a choice procedure in which they chose between money and smoking cigarettes. SD increased self-reported fatigue and decreased arousal, it increased the number of cigarettes subjects chose to smoke, impaired behavioral inhibition and attention. However, the impairments in inhibition or attention were not related to the increase in smoking. It is possible that SD increases smoking because smokers expect that it will reduce sleepiness. Thus, the findings suggest that sleep loss may increase the likelihood of smoking during abstinence not through inhibitory or attentional mechanisms but because of the potential of nicotine to reduce subjective sleepiness.

  2. Personality characteristics and sleep variables.

    PubMed

    Nakazawa, Y; Kotorii, M; Arikawa, K; Horikawa, S; Hasuzawa, H

    1975-01-01

    In a sleep study of 14 normal healthy adults an investigation was made of sleep measurements of a baseline record for its eventual relationship to the percentage of increase of REM percentage of the 1st recovery night following partial differential REM deprivation (PDRD), as well as to personality characteristics. The percentage of change in NREM sleep of the 1st recovery night was compared with the baseline record andthen compared with corresponding values of REM sleep. The results are summarized as follows. No significant correlation exists between the percentage of increase in the REM percentage of the 1st recovery night and sleep measures of the baseline record. An investigation of the relationship between sleep measures of the baseline record and personality characteristics revealed that stage SWS(%) was significantly greater in the introvert than in the extrovert, in the neurotic than in the non-neurotic, and in the nervous than in the optimistic. Comparison of the changes in NREM and REM sleep percentages of the 1st recovery night with the baseline record was made between paired personality characteristics. A significantly high percentage of increase in REM percentage was almost always associated with a significantly high percentage of decrease in stage 2 percentage. From these results it was inferred that an increase in REM percentage occurs at the expense of stage 2 percentage.

  3. Stitching Circuits: Learning About Circuitry Through E-textile Materials

    NASA Astrophysics Data System (ADS)

    Peppler, Kylie; Glosson, Diane

    2012-11-01

    Central to our understanding of learning is the relationship between various tools and technologies and the structuring of disciplinary subject matter. One of the staples of early science education curriculum is the use of electrical circuit toolkits to engage students in broader discussions of energy. Traditionally, these concepts are introduced to youth using battery packs, insulated wire and light bulbs. However, there are affordances and limitations in the way this toolset highlights certain conceptual aspects while obscuring others, which we argue leads to common misconceptions about electrical circuitry. By contrast, we offer an alternative approach utilizing an e-textiles toolkit for developing understanding of electrical circuitry, testing the efficacy of this approach for learning in elective settings to pave the way for later classroom adoption. This study found that youth who engaged in e-textile design demonstrated significant gains in their ability to diagram a working circuit, as well as significant gains in their understanding of current flow, polarity and connections. The implications for rethinking our current toolkits for teaching conceptual understanding in science are discussed.

  4. Mapping gene regulatory circuitry of Pax6 during neurogenesis

    PubMed Central

    Thakurela, Sudhir; Tiwari, Neha; Schick, Sandra; Garding, Angela; Ivanek, Robert; Berninger, Benedikt; Tiwari, Vijay K

    2016-01-01

    Pax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that Pax6 targets a large number of promoters in neural progenitors cells. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6-binding data set with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesodermal and endodermal genes, thereby ensuring the unidirectionality of lineage commitment towards neuronal differentiation. Furthermore, Pax6 is critical for inducing activity of transcription factors that elicit neurogenesis and repress others that promote non-neuronal lineages. In addition to many established downstream effectors, Pax6 directly binds and activates a number of genes that are specifically expressed in neural progenitors but have not been previously implicated in neurogenesis. The in utero knockdown of one such gene, Ift74, during brain development impairs polarity and migration of newborn neurons. These findings demonstrate new aspects of the gene regulatory circuitry of Pax6, revealing how it functions to control neuronal development at multiple levels to ensure unidirectionality and proper execution of the neurogenic program. PMID:27462442

  5. DNA-based random number generation in security circuitry.

    PubMed

    Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C

    2010-06-01

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.

  6. The Brain Circuitry Mediating Antipruritic Effects of Acupuncture

    PubMed Central

    Napadow, Vitaly; Li, Ang; Loggia, Marco L.; Kim, Jieun; Schalock, Peter C.; Lerner, Ethan; Tran, Thanh-Nga; Ring, Johannes; Rosen, Bruce R.; Kaptchuk, Ted J.; Pfab, Florian

    2014-01-01

    Itch is an aversive sensory experience and while systemic therapies, such as acupuncture, have shown promise in alleviating itch in patients suffering from chronic itch, their antipruritic mechanisms are unknown. As several lines of evidence implicate brain-focused mechanisms, we applied functional magnetic resonance imaging and our validated temperature-modulation itch model to evaluate the underlying brain circuitry supporting allergen-induced itch reduction in atopic dermatitis patients by acupuncture, antihistamine, and respective placebo treatments. Brain response to allergen itch demonstrated phase dependency. During an increasing itch phase, activation was localized in anterior insula and striatum, regions associated with salience/interoception and motivation processing. Once itch reached peak plateau, robust activation was noted in prefrontal cognitive and premotor areas. Acupuncture reduced itch and itch-evoked activation in the insula, putamen, and premotor and prefrontal cortical areas. Neither itch sensation nor itch-evoked brain response was altered following antihistamine or placebo acupuncture. Greater itch reduction following acupuncture was associated with greater reduction in putamen response, a region implicated in motivation and habitual behavior underlying the urge to scratch, specifically implicating this region in acupuncture's antipruritic effects. Understanding brain circuitry underlying itch reduction following acupuncture and related neuromodulatory therapies will significantly impact the development and applicability of novel therapies to reduce an itch. PMID:23222890

  7. Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain

    PubMed Central

    Lee, Michelle; Manders, Toby R.; Eberle, Sarah E.; Su, Chen; D'amour, James; Yang, Runtao; Lin, Hau Yueh; Deisseroth, Karl; Froemke, Robert C.

    2015-01-01

    Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation. PMID:25834050

  8. The brain circuitry mediating antipruritic effects of acupuncture.

    PubMed

    Napadow, Vitaly; Li, Ang; Loggia, Marco L; Kim, Jieun; Schalock, Peter C; Lerner, Ethan; Tran, Thanh-Nga; Ring, Johannes; Rosen, Bruce R; Kaptchuk, Ted J; Pfab, Florian

    2014-04-01

    Itch is an aversive sensory experience and while systemic therapies, such as acupuncture, have shown promise in alleviating itch in patients suffering from chronic itch, their antipruritic mechanisms are unknown. As several lines of evidence implicate brain-focused mechanisms, we applied functional magnetic resonance imaging and our validated temperature-modulation itch model to evaluate the underlying brain circuitry supporting allergen-induced itch reduction in atopic dermatitis patients by acupuncture, antihistamine, and respective placebo treatments. Brain response to allergen itch demonstrated phase dependency. During an increasing itch phase, activation was localized in anterior insula and striatum, regions associated with salience/interoception and motivation processing. Once itch reached peak plateau, robust activation was noted in prefrontal cognitive and premotor areas. Acupuncture reduced itch and itch-evoked activation in the insula, putamen, and premotor and prefrontal cortical areas. Neither itch sensation nor itch-evoked brain response was altered following antihistamine or placebo acupuncture. Greater itch reduction following acupuncture was associated with greater reduction in putamen response, a region implicated in motivation and habitual behavior underlying the urge to scratch, specifically implicating this region in acupuncture's antipruritic effects. Understanding brain circuitry underlying itch reduction following acupuncture and related neuromodulatory therapies will significantly impact the development and applicability of novel therapies to reduce an itch.

  9. DNA-Based Random Number Generation in Security Circuitry

    PubMed Central

    Gearheart, Christy M.; Arazi, Benjamin; Rouchka, Eric C.

    2010-01-01

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid-phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications. PMID:20303385

  10. Novel and Direct Access to the Human Locomotor Spinal Circuitry

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Machueva, Ekaterina; Pivovarova, Elena; Semyenov, Denis; Savochin, Alexandr; Roy, Roland R.; Edgerton, V. Reggie

    2010-01-01

    The degree of automaticity of locomotion in primates compared to other mammals remains unclear. Here we examine the possibility for activation of the spinal locomotor circuitry in non-injured humans by spinal electromagnetic stimulation (SEMS). SEMS (3 Hz and 1.3 to 1.82 Tesla) at the T11–T12 vertebrae induced involuntary bilateral locomotor-like movements in the legs of individuals placed in a gravity-neutral position. The formation of locomotor-like activity during SEMS started with a latency of 0.68 ± 0.1 sec after delivering the first stimulus, unlike continuous vibration of muscles that requires several seconds. The first EMG burst in response to SEMS was observed most often in a proximal flexor muscle. We speculate that SEMS directly activates the circuitry intrinsic to the spinal cord, as suggested by the immediate response and the electrophysiological observations demonstrating an absence of strictly time-linked responses within the EMG burst associated with individual stimuli during SEMS. SEMS in the presence of vibration of the leg muscles was more effective in facilitating locomotor-like activity than SEMS alone. The present results suggest that SEMS could be an effective noninvasive clinical tool to determine the potential of an individual to recover locomotion after a spinal cord injury as well as being an effective rehabilitation tool itself. PMID:20220003

  11. Novel and direct access to the human locomotor spinal circuitry.

    PubMed

    Gerasimenko, Yury; Gorodnichev, Ruslan; Machueva, Ekaterina; Pivovarova, Elena; Semyenov, Denis; Savochin, Alexandr; Roy, Roland R; Edgerton, V Reggie

    2010-03-10

    The degree of automaticity of locomotion in primates compared with other mammals remains unclear. Here, we examine the possibility for activation of the spinal locomotor circuitry in noninjured humans by spinal electromagnetic stimulation (SEMS). SEMS (3 Hz and 1.3-1.82 tesla) at the T11-T12 vertebrae induced involuntary bilateral locomotor-like movements in the legs of individuals placed in a gravity-neutral position. The formation of locomotor-like activity during SEMS started with a latency of 0.68 +/- 0.1 s after delivering the first stimulus, unlike continuous vibration of muscles, which requires several seconds. The first EMG burst in response to SEMS was observed most often in a proximal flexor muscle. We speculate that SEMS directly activates the circuitry intrinsic to the spinal cord, as suggested by the immediate response and the electrophysiological observations demonstrating an absence of strictly time-linked responses within the EMG burst associated with individual stimuli during SEMS. SEMS in the presence of vibration of the leg muscles was more effective in facilitating locomotor-like activity than SEMS alone. The present results suggest that SEMS could be an effective noninvasive clinical tool to determine the potential of an individual to recover locomotion after a spinal cord injury, as well as being an effective rehabilitation tool itself.

  12. Sullivan and Ride Show Sleep Restraints

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronauts Kathryn D. Sullivan, left, and Sally K. Ride display a 'bag of worms.' The 'bag' is a sleep restraint and the majority of the 'worms' are springs and clips used with the sleep restraint in its normal application. Clamps, a bungee cord and velcro strips are other recognizable items in the 'bag.'

  13. Objective measures of sleep and dim light melatonin onset in adolescents and young adults with delayed sleep phase disorder compared to healthy controls.

    PubMed

    Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn

    2013-08-01

    Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed.

  14. A Subset of Cholinergic Mushroom Body Neurons Requires Go Signaling to Regulate Sleep in Drosophila

    PubMed Central

    Yi, Wei; Zhang, Yunpeng; Tian, Yinjun; Guo, Jing; Li, Yan; Guo, Aike

    2013-01-01

    Study Objectives: Identifying the neurochemistry and neural circuitry of sleep regulation is critical for understanding sleep and various sleep disorders. Fruit flies display sleep-like behavior, sharing essential features with sleep of vertebrate. In the fruit fly's central brain, the mushroom body (MB) has been highlighted as a sleep center; however, its neurochemical nature remains unclear, and whether it promotes sleep or wake is still a topic of controversy. Design: We used a video recording system to accurately monitor the locomotor activity and sleep status. Gene expression was temporally and regionally manipulated by heat induction and the Gal4/UAS system. Measurements and Results: We found that expressing pertussis toxin (PTX) in the MB by c309-Gal4 to block Go activity led to unique sleep defects as dramatic sleep increase in daytime and fragmented sleep in nighttime. We narrowed down the c309-Gal4 expressing brain regions to the MB α/β core neurons that are responsible for the Go-mediated sleep effects. Using genetic tools of neurotransmitter-specific Gal80 and RNA interference approach to suppress acetylcholine signal, we demonstrated that these MB α/β core neurons were cholinergic and sleep-promoting neurons, supporting that Go mediates an inhibitory signal. Interestingly, we found that adjacent MB α/β neurons were also cholinergic but wake-promoting neurons, in which Go signal was also required. Conclusion: Our findings in fruit flies characterized a group of sleep-promoting neurons surrounded by a group of wake-promoting neurons. The two groups of neurons are both cholinergic and use Go inhibitory signal to regulate sleep. Citation: Yi W; Zhang Y; Tian Y; Guo J; Li Y; Guo A. A subset of cholinergic mushroom body neurons requires go signaling to regulate sleep in Drosophila. SLEEP 2013;36(12):1809-1821. PMID:24293755

  15. Melatonin, Circadian Rhythms, and Sleep.

    PubMed

    Zhdanova, Irina V.; Tucci, Valter

    2003-05-01

    Experimental data show a close relationship among melatonin, circadian rhythms, and sleep. Low-dose melatonin treatment, increasing circulating melatonin levels to those normally observed at night, promotes sleep onset and sleep maintenance without changing sleep architecture. Melatonin treatment can also advance or delay the phase of the circadian clock if administered in the evening or in the morning, respectively. If used in physiologic doses and at appropriate times, melatonin can be helpful for those suffering from insomnia or circadian rhythm disorders. This may be especially beneficial for individuals with low melatonin production, which is established by measuring individual blood or saliva melatonin levels. However, high melatonin doses (over 0.3 mg) may cause side effects and disrupt the delicate mechanism of the circadian system, dissociating mutually dependent circadian body rhythms. A misleading labeling of the hormone melatonin as a "food supplement" and lack of quality control over melatonin preparations on the market continue to be of serious concern.

  16. Evidence that birds sleep in mid-flight

    PubMed Central

    Rattenborg, Niels C; Voirin, Bryson; Cruz, Sebastian M.; Tisdale, Ryan; Dell'Omo, Giacomo; Lipp, Hans-Peter; Wikelski, Martin; Vyssotski, Alexei L.

    2016-01-01

    Many birds fly non-stop for days or longer, but do they sleep in flight and if so, how? It is commonly assumed that flying birds maintain environmental awareness and aerodynamic control by sleeping with only one eye closed and one cerebral hemisphere at a time. However, sleep has never been demonstrated in flying birds. Here, using electroencephalogram recordings of great frigatebirds (Fregata minor) flying over the ocean for up to 10 days, we show that they can sleep with either one hemisphere at a time or both hemispheres simultaneously. Also unexpectedly, frigatebirds sleep for only 0.69 h d−1 (7.4% of the time spent sleeping on land), indicating that ecological demands for attention usually exceed the attention afforded by sleeping unihemispherically. In addition to establishing that birds can sleep in flight, our results challenge the view that they sustain prolonged flights by obtaining normal amounts of sleep on the wing. PMID:27485308

  17. Sleep behaviors in children with different frequencies of parental-reported sleep bruxism.

    PubMed

    Restrepo, Claudia; Manfredini, Daniele; Lobbezoo, Frank

    2017-08-12

    Knowledge on the relationship between sleep bruxism (SB) and sleep behaviors in children is still fragmental, especially when socioeconomic factors are concerned. To assess sleep behaviors in children with different frequencies of proxy-reported SB. Parents of 1475 Colombian children, aged 9.8±1.6years, belonging to 3 different social layers, filled out a questionnaire on their childreńs sleep (Childreńs Sleep Habits Questionnaire [CSHQ]). Differences in sleep behaviors were assessed for the total sample and the three socioeconomic layers, using one-way ANOVA and Bonferroni post-hoc tests or Kruskal-Wallis and Dunn's post-hoc tests, based on the normality of outcome variables. Most sleep patterns and daytime sleepiness were similar for children with different frequencies of proxy-reported SB, without differences among socioeconomic layers, whilst sleep disorders and parasomnias increased with the frequency of proxy-reported SB, independently on the socioeconomic layer (Bonferroni post-hoc<0.001). The association between sleep-related habits and the frequency of proxy-reported SB was different for each socioeconomic layer. Among the various sleep behaviors under investigation, some sleep disorders and parasomnias seem to be associated with parental-reported SB in children. The influence of socioeconomic conditions on sleep behaviors seems not relevant. Based on these results, more specific studies on the association between different sleep behaviors are needed. Sleep behaviors, sociodemographic and socioeconomic features are correlated with SB in adults. However, in children, good evidence about this topic is lacking. This article give information to help clinicians evaluating sleep behaviors, sociodemographic and socioeconomic characteristics, when assessing sleep bruxism, based on evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOEpatents

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  19. Sleep deprivation induced anxiety and anaerobic performance.

    PubMed

    Vardar, Selma Arzu; Oztürk, Levent; Kurt, Cem; Bulut, Erdogan; Sut, Necdet; Vardar, Erdal

    2007-01-01

    The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1) following a full-night of habitual sleep (baseline measurements), (2) following 30 hours of sleep deprivation, and (3) following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02) whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance. Key pointsShort time total sleep deprivation (30 hours) increases state anxiety without any competition stress.Anaerobic performance parameters such as peak power, mean power and minimum power may not show a distinctive difference from anaerobic performance in a normal sleep day despite the high anxiety level induced by short time sleep deprivation.Partial sleep deprivation does not affect anxiety level and anaerobic performance of the next day.

  20. [Anxiety and sleep in experiment and clinic].

    PubMed

    Verbitsky, E V

    2017-01-01

    High anxiety is a genetically determined personal trait. It is produced by limbic system and other cerebral structures involved in maintenance of wakefulness and development of sleep. Analysis of experiments on the animals and clinic observations showed that animals and individuals with high personal anxiety have a high risk of anxiety disorders. Inhibition of GABA-benzodiazepine system which is typical for high anxiety dramatically influences sleep duration and sleep quality. Phenazepamum due to its anxiolytic properties deactivates the excitation focus in the brain, jugulates anxiety and normalize sleep.

  1. Sleep disturbance in mental health problems and neurodegenerative disease

    PubMed Central

    Anderson, Kirstie N; Bradley, Andrew J

    2013-01-01

    Sleep has been described as being of the brain, by the brain, and for the brain. This fundamental neurobiological behavior is controlled by homeostatic and circadian (24-hour) processes and is vital for normal brain function. This review will outline the normal sleep–wake cycle, the changes that occur during aging, and the specific patterns of sleep disturbance that occur in association with both mental health disorders and neurodegenerative disorders. The role of primary sleep disorders such as insomnia, obstructive sleep apnea, and REM sleep behavior disorder as potential causes or risk factors for particular mental health or neurodegenerative problems will also be discussed. PMID:23761983

  2. Sleep in the surgical intensive care unit: continuous polygraphic recording of sleep in nine patients receiving postoperative care.

    PubMed Central

    Aurell, J; Elmqvist, D

    1985-01-01

    Sleep was studied in nine patients for two to four days after major non-cardiac surgery by continuous polygraphic recording of electroencephalogram, electrooculogram, and electromyogram. Presumed optimal conditions for sleep were provided by a concerted effort by staff to offer constant pain relief and reduce environmental disturbance to a minimum. All patients were severely deprived of sleep compared with normal. The mean cumulative sleep time (stage 1 excluded) for the first two nights, daytime sleep included, was less than two hours a night. Stages 3 and 4 and rapid eye movement sleep were severely or completely suppressed. The sustained wakefulness could be attributed to pain and environmental disturbance to only minor degree. Sleep time as estimated by nursing staff was often grossly misjudged and consistently overestimated when compared with the parallel polygraphic recording. The grossly abnormal sleep pattern observed in these patients may suggest some fundamental disarrangement of the sleep-wake regulating mechanism. PMID:3921096

  3. Sleep and plasticity in the visual cortex: more than meets the eye.

    PubMed

    Frank, Marcos G

    2017-01-23

    The visual cortex has provided key insights into how experience shapes cortical circuitry. Scientists have identified how different manipulations of visual experience trigger distinct forms of plasticity as well as many of the underlying cellular and molecular mechanisms. Intriguingly, experience is not the only factor driving plasticity in the visual system. Sleep is also required for the full expression of plasticity in the developing visual cortex. In this review, I discuss what we have learned about the role of sleep in visual cortical plasticity and what it tells us about sleep function.

  4. Narcolepsy with Long Sleep Time: A Specific Entity?

    PubMed Central

    Vernet, Cyrille; Arnulf, Isabelle

    2009-01-01

    Background: The classical narcolepsy patient reports intense feelings of sleepiness (with/out cataplexy), normal or disrupted nighttime sleep, and takes short and restorative naps. However, with long-term monitoring, we identified some narcoleptics resembling patients with idiopathic hypersomnia. Objective: To isolate and describe a new subtype of narcolepsy with long sleep time). Setting: University Hospital Design: Controlled, prospective cohort Participants: Out of 160 narcoleptics newly diagnosed within the past 3 years, 29 (18%) had a long sleep time (more than 11 h/24 h). We compared narcoleptics with (n = 23) and without (n = 29) long sleep time to 25 hypersomniacs with long sleep time and 20 healthy subjects. Intervention: Patients and controls underwent face-to face interviews, questionnaires, human leukocyte antigen (HLA) genotype, an overnight polysomnography, multiple sleep latency tests, and 24-h ad libitum sleep monitoring. Results: Narcoleptics with long sleep time had a similar disease course and similar frequencies of cataplexy, sleep paralysis, hallucinations, multiple sleep onset in REM periods, short mean sleep latencies, and HLA DQB1*0602 positivity as narcoleptics with normal sleep time did. However, they had longer sleep time during 24 h, and higher sleep efficiency, lower Epworth Sleepiness Scale scores, and reported their naps were more often unrefreshing. Only 3/23 had core narcolepsy (HLA and cataplexy positive). Conclusions: The subgroup of narcoleptics with a long sleep time comprises 18% of narcoleptics. Their symptoms combine the disabilities of both narcolepsy (severe sleepiness) and idiopathic hypersomnia (long sleep time and unrefreshing naps). Thus, they may constitute a group with multiple arousal system dysfunctions. Citation: Vernet C; Arnulf I. Narcolepsy with long sleep time: a specific entity? SLEEP 2009;32(9):1229-1235. PMID:19750928

  5. Genotype-dependent differences in sleep, vigilance, and response to stimulants.

    PubMed

    Landolt, Hans-Peter

    2008-01-01

    To better understand the neurobiology of sleep disorders, detailed understanding of circadian and homeostatic sleep-wake regulation in healthy volunteers is mandatory. Sleep physiology and the repercussions of experimentally-induced sleep deprivation on sleep and waking electroencephalogram (EEG), vigilance and subjective state are highly variable, even in healthy individuals. Accumulating evidence suggests that many aspects of normal sleep-wake regulation are at least in part genetically controlled. Current heritability estimates of sleep phenotypes vary between approximately 20-40 % for habitual sleep duration, to over 90 % for the spectral characteristics of the EEG in nonREM sleep. The molecular mechanisms underlying the trait-like, inter-individual variation are virtually unknown, and the human genetics of normal sleep is only at the beginning of being explored. The first studies identified distinct polymorphisms in genes contributing to the endogenous circadian clock and neurochemical systems previously implicated in sleep-wake regulation, to modulate sleep architecture and sleep EEG, vulnerability to sleep loss, and subjective and objective effects of caffeine on sleep. These insights are reviewed here. They disclose molecular mechanisms contributing to normal sleep-wake regulation in humans, and have potentially important implications for the neurobiology of sleep-wake disorders and their pharmacological treatment.

  6. Subjective sleep complaints indicate objective sleep problems in psychosomatic patients: a prospective polysomnographic study.

    PubMed

    Linden, Michael; Dietz, Marie; Veauthier, Christian; Fietze, Ingo

    2016-01-01

    To elucidate the relationship between subjective complaints and polysomnographical parameters in psychosomatic patients. A convenience sample of patients from a psychosomatic inpatient unit were classified according to the Pittsburgh Sleep Quality Index (PSQI) as very poor sleepers (PSQI >10, n=80) and good sleepers (PSQI <6, n=19). They then underwent a polysomnography and in the morning rated their previous night's sleep using a published protocol (Deutschen Gesellschaft für Schlafforschung und Schlafmedizin morning protocol [MP]). In the polysomnography, significant differences were found between very poor and good sleepers according to the PSQI with respect to sleep efficiency and time awake after sleep onset. When comparing objective PSG and subjective MP, the polysomnographical sleep onset latency was significantly positively correlated with the corresponding parameters of the MP: the subjective sleep onset latency in minutes and the subjective evaluation of sleep onset latency (very short, short, normal, long, very long) were positively correlated with the sleep latency measured by polysomnography. The polysomnographical time awake after sleep onset (in minutes) was positively correlated with the subjective time awake after sleep onset (in minutes), evaluation of time awake after sleep onset (seldom, normal often), and subjective restfulness. The polysomnographical total sleep time (TST) was positively correlated with the subjective TST. Conversely, the polysomnographical TST was negatively correlated with the evaluation of TST (high polysomnographical TST was correlated with the subjective evaluation of having slept short or normal and vice versa). The polysomnographical sleep efficiency was positively correlated with subjective feeling of current well-being in the morning and subjective TST and negatively with subjective restfulness, subjective sleep onset latency, subjective evaluation of sleep onset latency, and evaluation of time awake after sleep

  7. Subjective sleep complaints indicate objective sleep problems in psychosomatic patients: a prospective polysomnographic study

    PubMed Central

    Linden, Michael; Dietz, Marie; Veauthier, Christian; Fietze, Ingo

    2016-01-01

    Objective To elucidate the relationship between subjective complaints and polysomnographical parameters in psychosomatic patients. Method A convenience sample of patients from a psychosomatic inpatient unit were classified according to the Pittsburgh Sleep Quality Index (PSQI) as very poor sleepers (PSQI >10, n=80) and good sleepers (PSQI <6, n=19). They then underwent a polysomnography and in the morning rated their previous night’s sleep using a published protocol (Deutschen Gesellschaft für Schlafforschung und Schlafmedizin morning protocol [MP]). Results In the polysomnography, significant differences were found between very poor and good sleepers according to the PSQI with respect to sleep efficiency and time awake after sleep onset. When comparing objective PSG and subjective MP, the polysomnographical sleep onset latency was significantly positively correlated with the corresponding parameters of the MP: the subjective sleep onset latency in minutes and the subjective evaluation of sleep onset latency (very short, short, normal, long, very long) were positively correlated with the sleep latency measured by polysomnography. The polysomnographical time awake after sleep onset (in minutes) was positively correlated with the subjective time awake after sleep onset (in minutes), evaluation of time awake after sleep onset (seldom, normal often), and subjective restfulness. The polysomnographical total sleep time (TST) was positively correlated with the subjective TST. Conversely, the polysomnographical TST was negatively correlated with the evaluation of TST (high polysomnographical TST was correlated with the subjective evaluation of having slept short or normal and vice versa). The polysomnographical sleep efficiency was positively correlated with subjective feeling of current well-being in the morning and subjective TST and negatively with subjective restfulness, subjective sleep onset latency, subjective evaluation of sleep onset latency, and evaluation of

  8. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis

    PubMed Central

    Averette, Anna F.; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E.

    2016-01-01

    Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation

  9. Trypanosoma cruzi Disrupts Thymic Homeostasis by Altering Intrathymic and Systemic Stress-Related Endocrine Circuitries

    PubMed Central

    Lepletier, Ailin; de Carvalho, Vinicius Frias; e Silva, Patricia Machado Rodrigues; Villar, Silvina; Pérez, Ana Rosa; Savino, Wilson; Morrot, Alexandre

    2013-01-01

    -related endocrine circuitries with major consequences upon the normal process of intrathymic T cell development. PMID:24324845

  10. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex

    NASA Technical Reports Server (NTRS)

    DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.

    2002-01-01

    The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.

  11. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex

    NASA Technical Reports Server (NTRS)

    DeFelipe, J.; Arellano, J. I.; Merchan-Perez, A.; Gonzalez-Albo, M. C.; Walton, K.; Llinas, R.

    2002-01-01

    The establishment of the adult pattern of neocortical circuitry depends on various intrinsic and extrinsic factors, whose modification during development can lead to alterations in cortical organization and function. We report the effect of 16 days of spaceflight [Neurolab mission; from postnatal day 14 (P14) to P30] on the neocortical representation of the hindlimb synaptic circuitry in rats. As a result, we show, for the first time, that development in microgravity leads to changes in the number and morphology of cortical synapses in a laminar-specific manner. In the layers II/III and Va, the synaptic cross-sectional lengths were significantly larger in flight animals than in ground control animals. Flight animals also showed significantly lower synaptic densities in layers II/III, IV and Va. The greatest difference was found in layer II/III, where there was a difference of 344 million synapses per mm(3) (15.6% decrease). Furthermore, after a 4 month period of re-adaptation to terrestrial gravity, some changes disappeared (i.e. the alterations were transient), while conversely, some new differences also appeared. For example, significant differences in synaptic density in layers II/III and Va after re-adaptation were no longer observed, whereas in layer IV the density of synapses increased notably in flight animals (a difference of 185 million synapses per mm(3) or 13.4%). In addition, all the changes observed only affected asymmetrical synapses, which are known to be excitatory. These results indicates that terrestrial gravity is a necessary environmental parameter for normal cortical synaptogenesis. These findings are fundamental in planning future long-term spaceflights.

  12. Sleep stage classification based on respiratory signal.

    PubMed

    Tataraidze, Alexander; Anishchenko, Lesya; Korostovtseva, Lyudmila; Kooij, Bert Jan; Bochkarev, Mikhail; Sviryaev, Yurii

    2015-01-01

    One of the research tasks, which should be solved to develop a sleep monitor, is sleep stages classification. This paper presents an algorithm for wakefulness, rapid eye movement sleep (REM) and non-REM sleep detection based on a set of 33 features, extracted from respiratory inductive plethysmography signal, and bagging classifier. Furthermore, a few heuristics based on knowledge about normal sleep structure are suggested. We used the data from 29 subjects without sleep-related breathing disorders who underwent a PSG study at a sleep laboratory. Subjects were directed to the PSG study due to suspected sleep disorders. A leave-one-subject-out cross-validation procedure was used for testing the classification performance. The accuracy of 77.85 ± 6.63 and Cohen's kappa of 0.59 ± 0.11 were achieved for the classifier. Using heuristics we increased the accuracy to 80.38 ± 8.32 and the kappa to 0.65 ± 0.13. We conclude that heuristics may improve the automated sleep structure detection based on the analysis of indirect information such as respiration signal and are useful for the development of home sleep monitoring system.

  13. Insufficient sleep in adolescents: causes and consequences.

    PubMed

    Owens, Judith A; Weiss, Miriam R

    2017-02-17

    Insufficient sleep poses an important and complicated set of health risks in the adolescent population. Not only is deficient sleep (defined as both sleep duration inadequate to meet sleep needs and sleep timing misaligned with the body's circadian rhythms) at epidemic levels in this population, but the contributing factors are both complex and numerous and there are a myriad of negative physical and mental health, safety and performance consequences. Causes of inadequate sleep identified in this population include internal biological processes such as the normal shift (delay) in circadian rhythm that occurs in association with puberty and a developmentally-based slowing of the "sleep drive", and external factors including extracurricular activities, excessive homework load, evening use of electronic media, caffeine intake and early school start times. Consequences range from inattentiveness, reduction in executive functioning and poor academic performance to increased risk of obesity and cardio-metabolic dysfunction, mood disturbances which include increased suicidal ideation, a higher risk of engaging in health risk behaviors such as alcohol and substance use, and increased rates of car crashes, occupational injuries and sports-related injuries. In response to these concerns, a number of promising measures have been proposed to reduce the burden of adolescent sleep loss, including healthy sleep education for students and families, and later school start times to allow adolescents to obtain sufficient and appropriately-timed sleep.

  14. [Correlation between eating disorders and sleep disturbances].

    PubMed

    Eiber, R; Friedman, S

    2001-01-01

    Anorectics and bulimics often complain sleep onset insomnia and disrupted sleep. During awakenings bulimics can have binges. Conversely, eating disorders can be a clinical expression of a concomitantly occurring sleep disorder. Two clinical entities have been recently described: the Night Eating Syndrome (NES) and the Sleep Related Eating Disorders. The main goal of this literature review was to better characterize the relationships between eating disorders and sleep disturbances. No specific EEG sleep pattern emerges in anorectic and bulimic patients. However, all studies include several methodological limitations: a few number of patients, heterogeneous patient groups, various diagnostic criteria. The results of studies evaluating the impact of depression on sleep EEG in eating disorder patients are also subject to controversy. The only study examining the relationship between sleep EEG and morphological alterations in anorectics and normal weight bulimics shows that patients with enlarged cerebrospinal fluid spaces spent more time in slow wave sleep and that the duration of rapid eye movement (REM) sleep was reduced. The ventricular brain ratio was negatively correlated with REM sleep. The Night Eating Syndrome consists in insomnia, binge eating and morning anorexia. Other criteria are proposed to characterize the NES: more than 50% of the daily energy intake is consumed after the last evening meal, awakenings at least once a night, repetition of the provisional criteria for more than 3 months, subjects do not meet criteria for bulimia nervosa or binge eating disorder. Patients have no amnesia nor alteration of alertness, and no other sleep disorder. There is no modification of sleep EEG except sleep maintenance. The prevalence of the NES is 1.5% in the general population. Some neuroendocrine disturbances have been found in the NES. The delimitation with eating disorders is not yet clearly established. If it shares the compulsive features with eating disorders

  15. Involvement of cytokines in slow wave sleep.

    PubMed

    Krueger, James M; Clinton, James M; Winters, Bradley D; Zielinski, Mark R; Taishi, Ping; Jewett, Kathryn A; Davis, Christopher J

    2011-01-01

    Cytokines such as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) play a role in sleep regulation in health and disease. TNFα or IL1β injection enhances non-rapid eye movement sleep. Inhibition of TNFα or IL1β reduces spontaneous sleep. Mice lacking TNFα or IL1β receptors sleep less. In normal humans and in multiple disease states, plasma levels of TNFα covary with EEG slow wave activity (SWA) and sleep propensity. Many of the symptoms induced by sleep loss, for example, sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, are elicited by injection of exogenous TNFα or IL1β. IL1β or TNFα applied unilaterally to the surface of the cortex induces state-dependent enhancement of EEG SWA ipsilaterally, suggesting greater regional sleep intensity. Interventions such as unilateral somatosensory stimulation enhance localized sleep EEG SWA, blood flow, and somatosensory cortical expression of IL1β and TNFα. State oscillations occur within cortical columns. One such state shares properties with whole animal sleep in that it is dependent on prior cellular activity, shows homeostasis, and is induced by TNFα. Extracellular ATP released during neuro- and gliotransmission enhances cytokine release via purine type 2 receptors. An ATP agonist enhances sleep, while ATP antagonists inhibit sleep. Mice lacking the P2X7 receptor have attenuated sleep rebound responses after sleep loss. TNFα and IL1β alter neuron sensitivity by changing neuromodulator/neurotransmitter receptor expression, allowing the neuron to scale its activity to the presynaptic neurons. TNFα's role in synaptic scaling is well characterized. Because the sensitivity of the postsynaptic neuron is changed, the same input will result in a different network output signal and this is a state change. The top-down paradigm of sleep regulation requires intentional action from sleep/wake regulatory brain circuits to initiate whole-organism sleep. This raises unresolved

  16. Elevated ghrelin predicts food intake during experimental sleep restriction.

    PubMed

    Broussard, Josiane L; Kilkus, Jennifer M; Delebecque, Fanny; Abraham, Varghese; Day, Andrew; Whitmore, Harry R; Tasali, Esra

    2016-01-01

    Sleep curtailment has been linked to obesity, but underlying mechanisms remain to be elucidated. This study assessed whether sleep restriction alters 24-h profiles of appetite-regulating hormones ghrelin, leptin, and pancreatic polypeptide during a standardized diet and whether these hormonal alterations predict food intake during ad libitum feeding. Nineteen healthy, lean men were studied under normal sleep and sleep restriction in a randomized crossover design. Blood samples were collected for 24 h during standardized meals. Subsequently, participants had an ad libitum feeding opportunity (buffet meals and snacks) and caloric intake was measured. Ghrelin levels were increased after sleep restriction as compared with normal sleep (P < 0.01). Overall, sleep restriction did not alter leptin or pancreatic polypeptide profiles. Sleep restriction was associated with an increase in total calories from snacks by 328 ± 140 kcal (P = 0.03), primarily from carbohydrates (P = 0.02). The increase in evening ghrelin during sleep restriction was correlated with higher consumption of calories from sweets (r = 0.48, P = 0.04). Sleep restriction as compared with normal sleep significantly increases ghrelin levels. The increase in ghrelin is associated with higher consumption of calories. Elevated ghrelin may be a mechanism by which sleep loss leads to increased food intake and the development of obesity. © 2015 The Obesity Society.

  17. Clock and cycle limit starvation-induced sleep loss in Drosophila.

    PubMed

    Keene, Alex C; Duboué, Erik R; McDonald, Daniel M; Dus, Monica; Suh, Greg S B; Waddell, Scott; Blau, Justin

    2010-07-13

    Neural systems controlling the vital functions of sleep and feeding in mammals are tightly interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep, suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep-suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms as shown by the fact that starved period mutants sleep like wild-type flies. By selectively targeting subpopulations of Clk-expressing neurons, we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Organization of the neural switching circuitry underlying reflex micturition

    PubMed Central

    de Groat, W. C.; Wickens, C.

    2013-01-01

    The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain and spinal cord that coordinates the activity of the bladder and urethral outlet. Experimental studies in animals indicate that urine storage is modulated by reflex mechanisms in the spinal cord, whereas voiding is mediated by a spinobulbospinal pathway passing through a coordination centre in the rostral brain stem. Many of the neural circuits controlling micturition exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. This study summarizes the anatomy and physiology of the spinal and supraspinal micturition switching circuitry and describes a computer model of these circuits that mimics the switching functions of the bladder and urethra at the onset of micturition. PMID:23033877

  19. Magnonic beam splitter: The building block of parallel magnonic circuitry

    SciTech Connect

    Sadovnikov, A. V.; Grishin, S. V. Romanenko, D. V.; Sharaevskii, Yu. P.; Davies, C. S.; Kruglyak, V. V.; Nikitov, S. A.

    2015-05-11

    We demonstrate a magnonic beam splitter that works by inter-converting magnetostatic surface and backward-volume spin waves propagating in orthogonal sections of a T-shaped yttrium iron garnet structure. The inter-conversion is enabled by the overlap of the surface and volume spin wave bands. This overlap results from the demagnetising field induced along the transversely magnetised section(-s) of the structure and the quantization of the transverse wave number of the propagating spin waves (which are therefore better described as waveguide modes). In agreement with numerical micromagnetic simulations, our Brillouin light scattering imaging experiments reveal that, depending on the frequency, the incident fundamental waveguide magnonic modes may also be converted into higher order waveguide modes. The magnonic beam splitter demonstrated here is an important step towards the development of parallel logic circuitry of magnonics.

  20. System and circuitry to provide stable transconductance for biasing

    NASA Technical Reports Server (NTRS)

    Garverick, Steven L. (Inventor); Yu, Xinyu (Inventor)

    2012-01-01

    An amplifier system can include an input amplifier configured to receive an analog input signal and provide an amplified signal corresponding to the analog input signal. A tracking loop is configured to employ delta modulation for tracking the amplified signal, the tracking loop providing a corresponding output signal. A biasing circuit is configured to adjust a bias current to maintain stable transconductance over temperature variations, the biasing circuit providing at least one bias signal for biasing at least one of the input amplifier and the tracking loop, whereby the circuitry receiving the at least one bias signal exhibits stable performance over the temperature variations. In another embodiment the biasing circuit can be utilized in other applications.

  1. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  2. Anhedonia and the brain reward circuitry in depression

    PubMed Central

    Heshmati, Mitra; Russo, Scott J.

    2015-01-01

    Anhedonia, or the loss of pleasure in previously rewarding stimuli, is a core symptom of major depressive disorder that may reflect an underlying dysregulation in reward processing. The mesolimbic dopamine circuit, also known as the brain’s reward circuit, is integral to processing the rewarding salience of stimuli to guide actions. Manifestation of anhedonia and associated depression symptoms like feelings of sadness, changes in appetite, and psychomotor effects, may reflect changes in the brain reward circuitry as a common underlying disease process. This review will synthesize the recent literature from human and rodent studies providing a circuit-level framework for understanding anhedonia in depression, with emphasis on the nucleus accumbens. PMID:26525751

  3. Photoreceptors and neural circuitry underlying phototaxis in insects.

    PubMed

    Yamaguchi, Satoko; Heisenberg, Martin

    2011-01-01

    Visual behavior of insects has long been studied, but it is only recently that a wide variety of genetic tools has become available for its analysis. Perhaps the most basic visual behaviour is phototaxis, locomotion towards a source of light. It is known in many insects and has been studied for over a century but the neural network underlying it is little understood. We recently described in the fruit fly Drosophila how different photoreceptor types contribute to phototaxis. By blocking subsets of them we showed that at least four of the five types are involved. In this short review, we compare phototactic behaviour in fruit flies and other insects (especially honeybees), and discuss what is known about the underlying neural circuitry. :

  4. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    PubMed

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  5. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    PubMed Central

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression. PMID:27069381

  6. Serotonin: a regulator of neuronal morphology and circuitry

    PubMed Central

    Daubert, Elizabeth A.; Condron, Barry G.

    2010-01-01

    Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms for how serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggests a developmental window during which altered serotonin levels permanently impact circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance. PMID:20561690

  7. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  8. Regulation of dietary choice by the decision-making circuitry

    PubMed Central

    Rangel, Antonio

    2014-01-01

    To advance our understanding of how the brain makes food decisions, it is essential to combine knowledge from two fields that have not yet been well integrated: the neuro-computational basis of decision-making and the homeostatic regulators of feeding. This Review integrates these two literatures from a neuro-computational perspective, with an emphasis in describing the variables computed by different neural systems and how they affect dietary choice. We highlight what is unique about feeding decisions, the mechanisms through which metabolic and endocrine factors affect the decision-making circuitry, why making healthy food choices is difficult for many people, and key processes at work in the obesity epidemic. PMID:24270272

  9. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    PubMed

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  10. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    PubMed Central

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  11. Sleep and immune function.

    PubMed

    Ganz, Freda DeKeyser

    2012-04-01

    Scientists are only beginning to fully understand the purpose of sleep and its underlying mechanisms. Lack of sleep is associated with many diseases, including infection, and with increased mortality. Lack of proper sleep is an important problem in the intensive care unit, and interventions have been designed to improve it. Sleep is associated with immune function, and this relationship is partially based on the physiological basis of sleep, sleep architecture, the sleep-wake cycle, cytokines and the hypothalamic-pituitary axis.

  12. Polysomnographic study of nocturnal sleep in idiopathic hypersomnia without long sleep time.

    PubMed

    Pizza, Fabio; Ferri, Raffaele; Poli, Francesca; Vandi, Stefano; Cosentino, Filomena I I; Plazzi, Giuseppe

    2013-04-01

    We investigated nocturnal sleep abnormalities in 19 patients with idiopathic hypersomnia without long sleep time (IH) in comparison with two age- and sex- matched control groups of 13 normal subjects (C) and of 17 patients with narcolepsy with cataplexy (NC), the latter considered as the extreme of excessive daytime sleepiness (EDS). Sleep macro- and micro- (i.e. cyclic alternating pattern, CAP) structure as well as quantitative analysis of EEG, of periodic leg movements during sleep (PLMS), and of muscle tone during REM sleep were compared across groups. IH and NC patients slept more than C subjects, but IH showed the highest levels of sleep fragmentation (e.g. awakenings), associated with a CAP rate higher than NC during lighter sleep stages and lower than C during slow wave sleep respectively, and with the highest relative amount of A3 and the lowest of A1 subtypes. IH showed a delta power in between C and NC groups, whereas muscle tone and PLMS had normal characteristics. A peculiar profile of microstructural sleep abnormalities may contribute to sleep fragmentation and, possibly, EDS in IH.

  13. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress

    PubMed Central

    Bassett, Sarah M.; Lupis, Sarah B.; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M.

    2016-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed towards understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body’s capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and sleep quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test (TSST) were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women’s stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e., having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal HPA functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation. PMID:26414625

  14. Optogenetic disruption of sleep continuity impairs memory consolidation.

    PubMed

    Rolls, Asya; Colas, Damien; Adamantidis, Antoine; Carter, Matt; Lanre-Amos, Tope; Heller, H Craig; de Lecea, Luis

    2011-08-09

    Memory consolidation has been proposed as a function of sleep. However, sleep is a complex phenomenon characterized by several features including duration, intensity, and continuity. Sleep continuity is disrupted in different neurological and psychiatric conditions, many of which are accompanied by memory deficits. This finding has raised the question of whether the continuity of sleep is important for memory consolidation. However, current techniques used in sleep research cannot manipulate a single sleep feature while maintaining the others constant. Here, we introduce the use of optogenetics to investigate the role of sleep continuity in memory consolidation. We optogenetically targeted hypocretin/orexin neurons, which play a key role in arousal processes. We used optogenetics to activate these neurons at different intervals in behaving mice and were able to fragment sleep without affecting its overall amount or intensity. Fragmenting sleep after the learning phase of the novel object recognition (NOR) task significantly decreased the performance of mice on the subsequent day, but memory was unaffected if the average duration of sleep episodes was maintained at 62-73% of normal. These findings demonstrate the use of optogenetic activation of arousal-related nuclei as a way to systematically manipulate a specific feature of sleep. We conclude that regardless of the total amount of sleep or sleep intensity, a minimal unit of uninterrupted sleep is crucial for memory consolidation.

  15. The emotional brain and sleep: an intimate relationship.

    PubMed

    Vandekerckhove, Marie; Cluydts, Raymond

    2010-08-01

    Research findings confirm our own experiences in life where daytime events and especially emotionally stressful events have an impact on sleep quality and well-being. Obviously, daytime emotional stress may have a differentiated effect on sleep by influencing sleep physiology and dream patterns, dream content and the emotion within a dream, although its exact role is still unclear. Other effects that have been found are the exaggerated startle response, decreased dream recall and elevated awakening thresholds from rapid eye movement (REM)-sleep, increased or decreased latency to REM-sleep, increased REM-density, REM-sleep duration and the occurrence of arousals in sleep as a marker of sleep disruption. However, not only do daytime events affect sleep, also the quality and amount of sleep influences the way we react to these events and may be an important determinant in general well-being. Sleep seems restorative in daily functioning, whereas deprivation of sleep makes us more sensitive to emotional and stressful stimuli and events in particular. The way sleep impacts next day mood/emotion is thought to be affected particularly via REM-sleep, where we observe a hyperlimbic and hypoactive dorsolateral prefrontal functioning in combination with a normal functioning of the medial prefrontal cortex, probably adaptive in coping with the continuous stream of emotional events we experience. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Sleep Applications to Assess Sleep Quality.

    PubMed

    Fietze, Ingo

    2016-12-01

    This article highlights the potential uses that smartphone applications may have for helping those with sleep problems. Applications in smartphones offer the promised possibility of detection of sleep. From the author's own experience, one can also conclude that sleep applications are approximately as good as polysomnography in detection of sleep time, similar to the conventional wearable actimeters. In the future, sleep applications will help to further enhance awareness of sleep health and to distinguish those who actually poorly and only briefly sleep from those who suffer more likely from paradox insomnia. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans.

    PubMed

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J; Dinges, David F; Kuna, Samuel T; Maislin, Greg; Van Dongen, Hans P A; Tufik, Sergio; Hogenesch, John B; Hakonarson, Hakon; Pack, Allan I

    2014-08-01

    Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336.

  18. Relationship of plasma growth hormone to slow-wave sleep in African sleeping sickness.

    PubMed

    Radomski, M W; Buguet, A; Doua, F; Bogui, P; Tapie, P

    1996-04-01

    Human African trypanosomiasis (sleeping sickness) is a unique disease model of disrupted circadian rhythms in the sleep-wake cycle and cortisol and prolactin secretion. This study examined the temporal relationship between growth hormone (GH) secretion and the sleep-wake cycle in 8 infected African patients and 6 healthy indigenous African subjects. Twenty-four-hour sleep patterns were recorded by polysomnography and hourly blood samples analyzed for plasma GH. No relationships between the mean normalized plasma GH levels (Z scores) and the sleep stages (wakefulness, sleep stages 1 and 2 ('light' sleep), slow-wave sleep (stages 3 and 4, SWS), and rapid eye movement (REM) sleep) were found in the patients or healthy subjects. However, when the time of sampling of the plasma GH concentrations was lagged by 16 min with respect to the occurrence of the various sleep stages, significant correlations were found between plasma GH concentrations and SWS in both healthy subjects and patients. Thus, the association between SWS and GH secretion persisted even in the presence of disrupted circadian rhythms, further supporting the concept that sleep and the stimulation of GH secretion are outputs of a common mechanism.

  19. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other normal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< or = 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> or = 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have

  20. Partial sleep in the context of augmentation of brain function

    PubMed Central

    Pigarev, Ivan N.; Pigareva, Marina L.

    2014-01-01

    Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs. PMID

  1. Partial sleep in the context of augmentation of brain function.

    PubMed

    Pigarev, Ivan N; Pigareva, Marina L

    2014-01-01

    Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all "computational power" of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the "intellectual power" and the restorative function of sleep for visceral organs.

  2. Sleep restriction masks the influence of the circadian process on sleep propensity.

    PubMed

    Sargent, Charli; Darwent, David; Ferguson, Sally A; Kennaway, David J; Roach, Gregory D

    2012-06-01

    Previous forced desynchrony studies have highlighted the close relationship between the circadian rhythms of core body temperature (CBT) and sleep propensity. In particular, these studies have shown that a "forbidden zone" for sleep exists on the rising limb of the CBT rhythm. In these previous studies, the length of the experimental day was either ultrashort (90 min), short (20 h), or long (28 h), and the ratio of sleep to wake was normal (i.e., 1:2). The aim of the current study was to examine the relative effects of the circadian and homeostatic processes on sleep propensity using a 28-h forced desynchrony protocol in which the ratio of sleep to wake was substantially lower than normal (i.e., 1:5). Twenty-seven healthy males lived in a time-isolation sleep laboratory for 11 consecutive days. Participants completed either a control (n = 13) or sleep restriction (n = 14) condition. In both conditions, the protocol consisted of 2 × 24-h baseline days followed by 8 × 28-h forced desynchrony days. On forced desynchrony days, the control group had 9.3 h in bed and 18.7 h of wake, and the sleep restriction group had 4.7 h in bed and 23.3 h of wake. For all participants, each 30-s epoch of time in bed was scored as sleep or wake based on standard polysomnography recordings, and was also assigned a circadian phase (360° = 24 h) based on a cosine equation fitted to continuously recorded CBT data. For each circadian phase (i.e., 72 × 5° bins), sleep propensity was calculated as the percentage of epochs spent in bed scored as sleep. For the control group, there was a clear circadian rhythm in sleep propensity, with a peak of 98.5% at 5° (~05:20 h), a trough of 64.9% at 245° (~21:20 h), and an average of 82.3%. In contrast, sleep propensity for the sleep restriction group was relatively high at all circadian phases, with an average of 96.7%. For this group, the highest sleep propensity (99.0%) occurred at 60° (~09:00 h), and the lowest sleep propensity (91

  3. Loss of negative priming following sleep deprivation.

    PubMed

    Harrison, Yvonne; Espelid, Erik

    2004-04-01

    It has been argued that one night of sleep loss in young healthy adults produces changes similar to that associated with normal, healthy ageing--in particular, that young sleep-deprived adults perform similarly to 60-year-old sleep-satiated adults on some tasks of frontal lobe function. This proposition was examined using a protocol viewed by many to be a direct probe of nonvolitional attention mechanisms associated with frontal lobe function. A negative priming (NP) procedure was used to compare performance between non-sleep-deprived (NSD) and sleep-deprived (SD, 34 hr) young, healthy adults. This protocol allowed for exploration of two theories of the NP effect based on inhibitory or memorial processes. Under conditions believed to facilitate inhibitory processes a normal NP effect was found for NSD(16 ms) and SD (9 ms) participants. Under conditions believed to rely on memorial processes there was no NP effect following SD, compared with a normal NP effect for NSD participants (11 ms). Distractor interference was also greater following SD. These findings do not suggest a similar pattern of change following sleep loss in healthy young adults to that of normal, healthy, non-sleep-deprived aged groups.

  4. Upper limb function is normal in patients with restless legs syndrome (Willis-Ekbom Disease).

    PubMed

    Todd, Gabrielle; Haberfield, Miranda; Faulkner, Patrick L; Hayes, Michael; Wilcox, Robert A; Rae, Caroline; Bulathsinhala, Tarsha; Grunstein, Ron R; Yee, Brendon J; Double, Kay L

    2015-04-01

    Restless legs syndrome, now called Willis-Ekbom Disease (RLS/WED), is a sensorimotor-related sleep disorder. Little is known of the effect of RLS/WED on motor function. The current study investigated upper limb function in RLS/WED patients. We hypothesised that RLS/WED patients exhibit subtle changes in tremor amplitude but normal dexterity and movement speed and rhythmicity compared to healthy controls. RLS/WED patients (n=17, 59 ± 7 years) with moderate disease and healthy controls (n=17, 58 ± 6 years) completed screening tests and five tasks including object manipulation, maximal pinch grip, flexion and extension of the index finger (tremor assessment), maximal finger tapping (movement speed and rhythmicity assessment), and the grooved pegboard test. Force, acceleration, and/or first dorsal interosseus EMG were recorded during four of the tasks. Task performance did not differ between groups. Learning was evident on tasks with repeated trials and the magnitude of learning did not differ between groups. Hand function, tremor, and task learning were unaffected in RLS/WED patients. Patients manipulated objects in a normal manner and exhibited normal movement speed, rhythmicity, and tremor. Further research is needed to assess other types of movement in RLS/WED patients to gain insight into the motor circuitry affected and the underlying pathophysiology. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Stitching Codeable Circuits: High School Students' Learning about Circuitry and Coding with Electronic Textiles

    ERIC Educational Resources Information Center

    Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.

    2017-01-01

    Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light…

  6. Sensitive Periods of Emotion Regulation: Influences of Parental Care on Frontoamygdala Circuitry and Plasticity

    ERIC Educational Resources Information Center

    Gee, Dylan G.

    2016-01-01

    Early caregiving experiences play a central role in shaping emotional development, stress physiology, and refinement of limbic circuitry. Converging evidence across species delineates a sensitive period of heightened neuroplasticity when frontoamygdala circuitry is especially amenable to caregiver inputs early in life. During this period, parental…

  7. Sensitive Periods of Emotion Regulation: Influences of Parental Care on Frontoamygdala Circuitry and Plasticity

    ERIC Educational Resources Information Center

    Gee, Dylan G.

    2016-01-01

    Early caregiving experiences play a central role in shaping emotional development, stress physiology, and refinement of limbic circuitry. Converging evidence across species delineates a sensitive period of heightened neuroplasticity when frontoamygdala circuitry is especially amenable to caregiver inputs early in life. During this period, parental…

  8. Intracerebral Transplants and Memory Dysfunction: Circuitry Repair or Functional Level Setting?

    PubMed Central

    Will, Bruno; Kelche, Christian; Cassel, Jean-Christophe

    2000-01-01

    Intracerebral grafting techniques of fetal neural cells have been used essentially with two main types of lesion paradigms, namely damage to long projection systems, in which the source and the target are clearly separate, and damage to neurons that are involved in local circuits within a small (sub)region of the brain. With the’first lesion paradigm, grafts placed homotopically (in the source) are not appropriate because their fibers grow poorly through the host parenchyma and fail to reach their normal target. To be successful, the grafts must be placed ectopically in the target region of the damaged projection systems, where generally they work as level-setting systems. Conversely, with the second paradigm, the grafts are supposed to compensate for a local loss of neurons and must be placed homotopically to induce functional effects that are based on the reconstruction of a point-to-point circuitry. By inserting a biological or artificial bridging-substrate between the source and the target of long projection systems, it might be possible to combine the positive effects of both homotopic and ectopic grafting by achieving both target reinnervation and normal control of the grafted neurons within the source area. These issues are illustrated and discussed in this review. PMID:10709217

  9. [Sleep: regulation and phenomenology].

    PubMed

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  10. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.

    PubMed

    Martinez-Gonzalez, Dolores; Lesku, John A; Rattenborg, Niels C

    2008-06-01

    Birds provide a unique opportunity to evaluate current theories for the function of sleep. Like mammalian sleep, avian sleep is composed of two states, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep that apparently evolved independently in mammals and birds. Despite this resemblance, however, it has been unclear whether avian SWS shows a compensatory response to sleep loss (i.e., homeostatic regulation), a fundamental aspect of mammalian sleep potentially linked to the function of SWS. Here, we prevented pigeons (Columba livia) from taking their normal naps during the last 8 h of the day. Although time spent in SWS did not change significantly following short-term sleep deprivation, electroencephalogram (EEG) slow-wave activity (SWA; i.e., 0.78-2.34 Hz power density) during SWS increased significantly during the first 3 h of the recovery night when compared with the undisturbed night, and progressively declined thereafter in a manner comparable to that observed in similarly sleep-deprived mammals. SWA was also elevated during REM sleep on the recovery night, a response that might reflect increased SWS pressure and the concomitant 'spill-over' of SWS-related EEG activity into short episodes of REM sleep. As in rodents, power density during SWS also increased in higher frequencies (9-25 Hz) in response to short-term sleep deprivation. Finally, time spent in REM sleep increased following sleep deprivation. The mammalian-like increase in EEG spectral power density across both low and high frequencies, and the increase in time spent in REM sleep following sleep deprivation suggest that some aspects of avian and mammalian sleep are regulated in a similar manner.

  11. Propriospinal myoclonus at sleep onset.

    PubMed

    Montagna, P; Provini, F; Vetrugno, R

    2006-01-01

    To describe the clinical and polygraphic features of propriospinal myoclonus (PSM) at sleep onset. PSM was first described in 1997 in patients with jerks occurring in the relaxation period preceding sleep. EMG showed jerks to arise in spinally innervated muscles, propagating thereafter to rostral and caudal muscles at a low speed, typical of propriospinal pathways. PSM arose when EEG alpha activity spread over the scalp and disappeared during either active wakefulness or actual sleep. In some patients EMG activity could sometimes remain localized to the abdominal muscles, propagating to other segments only in fully developed jerks. Neurological examination, brain and spinal MRI were usually normal and clonazepam afforded partial improvement. PSM has been recently observed also in restless legs syndrome, during relaxed wakefulness preceding falling asleep, coexisting with motor restlessness and sensory discomfort. PSM disappeared when spindles and K-complexes and typical Periodic Limb Movements appeared with EMG activity limited to leg muscles, without propriospinal propagation. Conceivably, PSM arises in axial muscles due to some spinal generator set into motion by facilitating influences characteristic of the wake-sleep transition and then undergoes multimeric propriospinal propagation. In the International Classification of Sleep Disorders (ICSD-2), PSM is listed in chapter VII, among the "Isolated symptoms, apparently normal variants and unresolved issues".

  12. The clenching-grinding spectrum and fear circuitry disorders: clinical insights from the neuroscience/paleoanthropology interface.

    PubMed

    Bracha, H Stefan; Ralston, Tyler C; Williams, Andrew E; Yamashita, Jennifer M; Bracha, Adam S

    2005-04-01

    This review discusses the clenching-grinding spectrum from the neuropsychiatric/neuroevolutionary perspective. In neuropsychiatry, signs of jaw clenching may be a useful objective marker for detecting or substantiating a self-report of current subjective emotional distress. Similarly, accelerated tooth wear may be an objective clinical sign for detecting, or substantiating, long-lasting anxiety. Clenching-grinding behaviors affect at least 8 percent of the population. We argue that during the early paleolithic environment of evolutionary adaptedness, jaw clenching was an adaptive trait because it rapidly strengthened the masseter and temporalis muscles, enabling a stronger, deeper and therefore more lethal bite in expectation of conflict (warfare) with conspecifics. Similarly, sharper incisors produced by teeth grinding may have served as weaponry during early human combat. We posit that alleles predisposing to fear-induced clenching-grinding were evolutionarily conserved in the human clade (lineage) since they remained adaptive for anatomically and mitochondrially modern humans (Homo sapiens) well into the mid-paleolithic. Clenching-grinding, sleep bruxism, myofacial pain, craniomaxillofacial musculoskeletal pain, temporomandibular disorders, oro-facial pain, and the fibromyalgia/chronic fatigue spectrum disorders are linked. A 2003 Cochrane meta-analysis concluded that dental procedures for the above spectrum disorders are not evidence based. There is a need for early detection of clenching-grinding in anxiety disorder clinics and for research into science-based interventions. Finally, research needs to examine the possible utility of incorporating physical signs into Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition posttraumatic stress disorder diagnostic criteria. One of the diagnostic criterion that may need to undergo a revision in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition is Criterion D (persistent fear-circuitry

  13. Statistical physics approaches to quantifying sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan

    Sleep can be viewed as a sequence of transitions in a very complex neuronal system. Traditionally, studies of the dynamics of sleep control have focused on the circadian rhythm of sleep-wake transitions or on the ultradian rhythm of the sleep cycle. However, very little is known about the mechanisms responsible for the time structure or even the statistics of the rapid sleep-stage transitions that appear without periodicity. I study the time dynamics of sleep-wake transitions for different species, including humans, rats, and mice, and find that the wake and sleep episodes exhibit completely different behaviors: the durations of wake episodes are characterized by a scale-free power-law distribution, while the durations of sleep episodes have an exponential distribution with a characteristic time scale. The functional forms of the distributions of the sleep and wake durations hold for human subjects of different ages and for subjects with sleep apnea. They also hold for all the species I investigate. Surprisingly, all species have the same power-law exponent for the distribution of wake durations, but the exponential characteristic time of the distribution of sleep durations changes across species. I develop a stochastic model which accurately reproduces our empirical findings. The model suggests that the difference between the dynamics of the sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system. I develop a measure of asymmetry in sleep-stage transitions using a transition probability matrix. I find that both normal and sleep apnea subjects are characterized by two types of asymmetric sleep-stage transition paths, and that the sleep apnea group exhibits less asymmetry in the sleep-stage transitions.

  14. Circadian rhythms and sleep in children with autism.

    PubMed

    Glickman, Gena

    2010-04-01

    A growing body of research has identified significant sleep problems in children with autism. Disturbed sleep-wake patterns and abnormal hormone profiles in children with autism suggest an underlying impairment of the circadian timing system. Reviewing normal and dysfunctional relationships between sleep and circadian rhythms will enable comparisons to sleep problems in children with autism, prompt a reexamination of existing literature and offer suggestions for future inquiry. In addition, sleep and circadian rhythms continue to change over the course of development even in typical, healthy humans. Therefore, exploring the dynamic relationship between circadian rhythms and sleep throughout development provides valuable insight into those sleep problems associated with autism. Ultimately, a better understanding of sleep and circadian rhythms in children with autism may help guide appropriate treatment strategies and minimize the negative impact of these disturbances on both the children and their families.

  15. Altered sleep-wake cycles and physical performance in athletes.

    PubMed

    Reilly, Thomas; Edwards, Ben

    2007-02-28

    Sleep-waking cycles are fundamental in human circadian rhythms and their disruption can have consequences for behaviour and performance. Such disturbances occur due to domestic or occupational schedules that do not permit normal sleep quotas, rapid travel across multiple meridians and extreme athletic and recreational endeavours where sleep is restricted or totally deprived. There are methodological issues in quantifying the physiological and performance consequences of alterations in the sleep-wake cycle if the effects on circadian rhythms are to be separated from the fatigue process. Individual requirements for sleep show large variations but chronic reduction in sleep can lead to immuno-suppression. There are still unanswered questions about the sleep needs of athletes, the role of 'power naps' and the potential for exercise in improving the quality of sleep.

  16. Sleep and pain: interaction of two vital functions.

    PubMed

    Roehrs, Timothy; Roth, Thomas

    2005-03-01

    Disturbed sleep is a key complaint of people experiencing acute and chronic pain. These two vital functions, sleep and pain, interact in complex ways that ultimately impact the biological and behavioral capacity of the individual. Polysomnographic studies of patients experiencing acute pain during postoperative recovery show shortened and fragmented sleep with reduced amounts of slow wave and rapid eye movement (REM) sleep, and the recovery is accompanied by normalization of sleep. Objective assessments of sleep in patients with various chronic pain conditions have been less definitive with some studies showing fragmented and shortened sleep and others showing normal sleep. Although daytime fatigue is a frequent complaint associated with complaints of pain-related disturbed sleep, objective assessments of daytime sleepiness reveal minimally elevated levels of sleepiness and emphasize the importance of distinguishing sleepiness and fatigue. The pain-sleep nexus has been modeled in healthy pain-free subjects and the studies have demonstrated the bidirectionality of the sleep-pain relation. Given this bidirectionality, treatment must focus on alleviation of both the pain and sleep disturbance. Few of the treatment studies have done such, and as a result no clear consensus on treatment approaches, much less on differential etiology-based treatment strategies, has emerged.

  17. Crewmembers sleeping in sleep restraints

    NASA Image and Video Library

    1997-08-29

    STS085-327-026 (7 - 19 August 1997) --- Payload specialist Bjarni V. Tryggvason, representing the Canadian Space Agency (CSA), sleeps on the Space Shuttle Discovery's mid-deck floor. Tryggvason elected to not use a pillow, allowing his head to float freely in the Microgravity environment.

  18. Sleep duration and body mass index in children and adolescents with and without obstructive sleep apnea.

    PubMed

    Moraleda-Cibrián, Marta; O'Brien, Louise M

    2014-09-01

    The prevalence of pediatric obesity and short sleep duration has simultaneously increased in recent decades. Sleep plays a critical role in metabolic and endocrine regulation and insufficient sleep has been shown to be associated with changes in metabolism. Obesity, a major risk factor for obstructive sleep apnea (OSA), has been also associated with metabolic dysregulation. Despite this, no study investigating short sleep and obesity has addressed the potential confounder of OSA. The aim of this study was to investigate the association between short sleep duration and obesity in children with and without OSA. In this retrospective study, 306 children who underwent polysomnography between January and December 2010 were included. A diagnosis of OSA was made if the apnea/hypopnea index on polysomnography is ≥1. Typical sleep times were obtained by parental report. Short sleep duration was defined as a reduction of >1 h from the minimum total sleep time (TST) recommended for age from the National Sleep Foundation (NSF). Overall, 32% were obese, 39.5% had short sleep duration, and 78% had OSA. Children with OSA had a similar frequency of short sleep duration than those without (39.6 vs. 42.4%, p = 0.950). In children with short sleep duration, the odds ratio for obesity was 2.5 (95% CI 1.3-4.9; p = 0.009) compared to children with TST within normal limits even after accounting for the presence of OSA. A parental history of total sleep duration of only 1 h less than recommended per age by the NSF is associated with a higher risk for obesity in children independently of the presence of OSA.

  19. Acute Sleep Deprivation Enhances Post-Infection Sleep and Promotes Survival during Bacterial Infection in Drosophila

    PubMed Central

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264

  20. Sleep quality but not sleep quantity effects on cortisol responses to acute psychosocial stress.

    PubMed

    Bassett, Sarah M; Lupis, Sarah B; Gianferante, Danielle; Rohleder, Nicolas; Wolf, Jutta M

    2015-01-01

    Given the well-documented deleterious health effects, poor sleep has become a serious public health concern and increasing efforts are directed toward understanding underlying pathways. One potential mechanism may be stress and its biological correlates; however, studies investigating the effects of poor sleep on a body's capacity to deal with challenges are lacking. The current study thus aimed at testing the effects of sleep quality and quantity on cortisol responses to acute psychosocial stress. A total of 73 college-aged adults (44 females) were investigated. Self-reported sleep behavior was assessed via the Pittsburgh Sleep Quality Index and salivary cortisol responses to the Trier Social Stress Test were measured. In terms of sleep quality, we found a significant three-way interaction, such that relative to bad sleep quality, men who reported fairly good or very good sleep quality showed blunted or exaggerated cortisol responses, respectively, while women's stress responses were less dependent on their self-reported sleep quality. Contrarily, average sleep duration did not appear to impact cortisol stress responses. Lastly, participants who reported daytime dysfunctions (i.e. having trouble staying awake or keeping up enthusiasm) also showed a trend to blunted cortisol stress responses compared to participants who did not experience these types of daytime dysfunctions. Overall, the current study suggests gender-specific stress reactivity dysfunctions as one mechanism linking poor sleep with detrimental physical health outcomes. Furthermore, the observed differential sleep effects may indicate that while the body may be unable to maintain normal hypothalamic-pituitary-adrenal functioning in an acute psychosocial stress situation after falling prey to low sleep quality, it may retain capacities to deal with challenges during extended times of sleep deprivation.

  1. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep.

    PubMed

    St-Onge, Marie-Pierre; Roberts, Amy; Shechter, Ari; Choudhury, Arindam Roy

    2016-01-01

    Sleep restriction alters food intake, but less is known about how dietary patterns affect sleep. Current goals were to determine whether: (1) sleep is different after consumption of a controlled diet vs. an ad libitum diet, and (2) dietary intake during ad libitum feeding is related to nocturnal sleep. Twenty-six normal weight adults (30-45 y), habitually sleeping 7-9 h/night, participated in a randomized-crossover inpatient study with 2 phases of 5 nights: short (4 h in bed) or habitual (9 h in bed) sleep. Only data from the habitual sleep phase were used for the present analyses. During the first 4 days, participants consumed a controlled diet; on day 5, food intake was self-selected. Linear regression was used to determine relations between daytime food intake and nighttime sleep on day 5. Sleep duration did not differ after 3 days of controlled feeding vs. a day of ad libitum intake. However, sleep after ad libitum eating had less slow wave sleep (SWS, P = 0.0430) and longer onset latency (P = 0.0085). Greater fiber intake predicted less stage 1 (P = 0.0198) and more SWS (P = 0.0286). Percent of energy from saturated fat predicted less SWS (P = 0.0422). Higher percent of energy from sugar and other carbohydrates not considered sugar or fiber was associated with arousals (P = 0.0320 and 0.0481, respectively). Low fiber and high saturated fat and sugar intake is associated with lighter, less restorative sleep with more arousals. Diet could be useful in the management of sleep disorders but this needs to be tested. http://www.clinicaltrials.gov, #NCT00935402. © 2016 American Academy of Sleep Medicine.

  2. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep.

    PubMed

    Arrigoni, Elda; Chen, Michael C; Fuller, Patrick M

    2016-10-01

    Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.

  3. Subjective sleep quality in premenstrual syndrome.

    PubMed

    Ozisik Karaman, Handan Isin; Tanriverdi, Gulbu; Degirmenci, Yildiz

    2012-08-01

    Premenstrual syndrome (PMS) is a cyclical disorder observed in late luteal phase and presenting with behavioral changes that can affect interpersonal relationships and normal daily activity. Sleep disturbances are also common. The aim of this study is to investigate the relationship between PMS and subjective sleep quality with Pitsburg Sleep Quality Index (PSQI) in the Medical Academy students, whom have considerable information about menstruation. PMS was detected with "Premenstrual Syndrome Scale", and PSQI was used to evaluate subjective sleep quality. Chi-square test and Kendall's rank correlation analysis were used in statistical analysis. p values (p < 0.05) were considered as statistical significant. Poor sleep quality was found in the 75.6% of the participants with PMS, and 58.8% of the participants without PMS (p < 0.05). Only component 5 (sleep disorder component) of the PSQI components revealed statistically significant difference (1.7 ± 0.6 in participants with PMS, and 1.5 ± 0.6 without PMS, p < 0.05). There was a positive correlation between total PSQI score and all of its' components, except component 6 (sleeping pill usage component) (p < 0.05). The strongest association was found to be in the component 5 (r = 0.528; p = 0.0001). Results of our study suggested the poor sleep quality due to sleep disorders in women with PMS.

  4. A Computational Framework for Ultrastructural Mapping of Neural Circuitry

    PubMed Central

    Anderson, James R; Jones, Bryan W; Yang, Jia-Hui; Shaw, Marguerite V; Watt, Carl B; Koshevoy, Pavel; Spaltenstein, Joel; Jurrus, Elizabeth; UV, Kannan; Whitaker, Ross T; Mastronarde, David; Tasdizen, Tolga; Marc, Robert E

    2009-01-01

    Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components) are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM) remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM) image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM), mosaicking and registration (ir-tools), and large slice viewers (MosaicBuilder, Viking) can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina), terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally, this framework

  5. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have low MSLT

  6. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    NASA Technical Reports Server (NTRS)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other non-nal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. It has been shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low (< 6 minutes) MSLT scores on a consistent basis, whereas a like proportion shows consistently high MSLT scores (> 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep, as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended. We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: (1) subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated

  7. How Much Sleep Is Enough

    MedlinePlus

    ... page from the NHLBI on Twitter. How Much Sleep Is Enough? The amount of sleep you need ... Rate This Content: NEXT >> Updated: June 7, 2017 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  8. Does objectively assessed sleep at five years predict sleep and psychological functioning at 14 years? - Hmm, yes and no!

    PubMed

    Brand, Serge; Hatzinger, Martin; Stadler, Christina; Bolten, Margarete; von Wyl, Agnes; Perren, Sonja; von Klitzing, Kai; Stadelmann, Stephanie; Holsboer-Trachsler, Edith

    2015-01-01

    We tested the hypothesis that objectively assessed sleep at kindergarten level predicts sleep and psychological functioning in adolescence. Thirty-seven adolescents aged 14 years (SD = 1.3), of 67 participants assessed as preschoolers, took part in a follow-up study nine years later. Participants completed a series of questionnaires related to sleep and psychological functioning. Sleep-EEG clusters of poor, normal and good sleepers assessed as children nine years earlier were used as predictors for subjective sleep and psychological functioning in adolescence. At the age of 14, those who were normal and good sleepers rather than poor sleepers at the age of five had more positive psychological functioning on dimensions including mental toughness, peer relationship, self-esteem, and perceived stress, but did not differ in current sleep patterns. Objectively assessed sleep patterns at the age of five are predictive of aspects of psychological functioning during adolescence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. What Is Sleep Apnea?

    MedlinePlus

    ... CPAP High Blood Pressure Overweight and Obesity Sleep Deprivation and Deficiency Sleep Studies Send a link to ... it because it only occurs during sleep. A family member or bed partner might be the first ...

  10. Changing your sleep habits

    MedlinePlus

    ... sleep over a 24-hour period. Remember, the quality of sleep and how rested you feel afterward is as ... expect to start your day. Avoid beverages with caffeine or alcohol ... sleep. Find calming, relaxing activities to do before bedtime. ...

  11. Sleep studies (image)

    MedlinePlus

    During a sleep study the sleep cycles and stages of sleep are monitored. Electrodes are placed to monitor continuous recordings of brain waves, electrical activity of muscles, eye movement, respiratory ...

  12. Side Effects: Sleep Problems

    Cancer.gov

    Sleep problems are a common side effect during cancer treatment. Find out how a polysomnogram can assess sleep problems. Learn about the benefits of managing sleep disorders in men and women with cancer.

  13. Obstructive Sleep Apnea

    MedlinePlus

    ... sleep apnea increase blood pressure and strain the cardiovascular system. Many people with obstructive sleep apnea develop high blood pressure (hypertension), which can increase the risk of heart disease. The more severe the obstructive sleep apnea, the ...

  14. Sleep and Chronic Disease

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Sleep and Sleep Disorders Note: Javascript is disabled or is not ... Data Source Projects and Partners Resources For Clinicians Sleep and Chronic Disease Recommend on Facebook Tweet Share ...

  15. Brain Basics: Understanding Sleep

    MedlinePlus

    ... Home » Disorders » Patient & Caregiver Education Brain Basics: Understanding Sleep Do you ever feel sleepy or "zone out" ... The Future Tips for a Good Night's Sleep Sleep: A Dynamic Activity Until the 1950s, most people ...

  16. Treatments for Sleep Changes

    MedlinePlus

    ... Contributing medical factors Non-drug strategies Medications Common sleep changes Many people with Alzheimer’s experience changes in ... at night. Subscribe now Non-drug treatments for sleep changes Non-drug treatments aim to improve sleep ...

  17. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  18. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.

  19. Cues of Fatigue: Effects of Sleep Deprivation on Facial Appearance

    PubMed Central

    Sundelin, Tina; Lekander, Mats; Kecklund, Göran; Van Someren, Eus J. W.; Olsson, Andreas; Axelsson, John

    2013-01-01

    Study Objective: To investigate the facial cues by which one recognizes that someone is sleep deprived versus not sleep deprived. Design: Experimental laboratory study. Setting: Karolinska Institutet, Stockholm, Sweden. Participants: Forty observers (20 women, mean age 25 ± 5 y) rated 20 facial photographs with respect to fatigue, 10 facial cues, and sadness. The stimulus material consisted of 10 individuals (five women) photographed at 14:30 after normal sleep and after 31 h of sleep deprivation following a night with 5 h of sleep. Measurements: Ratings of fatigue, fatigue-related cues, and sadness in facial photographs. Results: The faces of sleep deprived individuals were perceived as having more hanging eyelids, redder eyes, more swollen eyes, darker circles under the eyes, paler skin, more wrinkles/fine lines, and more droopy corners of the mouth (effects ranging from b = +3 ± 1 to b = +15 ± 1 mm on 100-mm visual analog scales, P < 0.01). The ratings of fatigue were related to glazed eyes and to all the cues affected by sleep deprivation (P < 0.01). Ratings of rash/eczema or tense lips were not significantly affected by sleep deprivation, nor associated with judgements of fatigue. In addition, sleep-deprived individuals looked sadder than after normal sleep, and sadness was related to looking fatigued (P < 0.01). Conclusions: The results show that sleep deprivation affects features relating to the eyes, mouth, and skin, and that these features function as cues of sleep loss to other people. Because these facial regions are important in the communication between humans, facial cues of sleep deprivation and fatigue may carry social consequences for the sleep deprived individual in everyday life. Citation: Sundelin T; Lekander M; Kecklund G; Van Someren EJW; Olsson A; Axelsson J. Cues of fatigue: effects of sleep deprivation on facial appearance. SLEEP 2013;36(9):1355-1360. PMID:23997369

  20. Sleep, sleep disorders and hypocretin (orexin).

    PubMed

    Mignot, Emmanuel

    2004-06-01

    Narcolepsy is a disabling neurologic condition affecting 1 in 2000 individuals, characterized by sleepiness, cataplexy, and transitions from wakefulness into rapid-eye-movement sleep. Current treatments include amphetamine-like stimulants and antidepressants. Human narcolepsy is HLA-associated, multigenic, and environmentally influenced. Positional cloning was used to isolate narcolepsy genes in canine families with autosomal recessive narcolepsy transmission. Three mutations in the G-protein-coupled hypocretin (orexin) receptor-2 (Hcrtr-2) gene were identified. In humans, most cases of narcolepsy are not linked to hypocretin (Hcrt) ligand or receptor mutations but are associated with undetectable cerebrospinal fluid Hcrt-1 levels. A single Hcrt gene/narcolepsy mutation was identified in narcoleptic patients. Hcrt-1 is wake-promoting in vivo, and studies in sporadic human narcolepsy indicate a loss of brain Hcrt-1 and Hcrt-2 and a disappearance of Hcrt-1-containing cells in the hypothalamus. Narcolepsy with cataplexy may therefore be due to Hcrt deficiency. The HLA association in humans suggests possible autoimmune activity against hypothalamic Hcrt-containing cells. Hypocretins may also have roles in regulating normal sleep, appetite, neuroendocrine function and energy metabolism, uniquely positioning them as a link between multiple important behaviors. Abnormal Hcrt transmission is also found in neurologic disorders featuring excessive daytime sleepiness and/or hypothalamic abnormalities. Pharmacologic manipulations of Hcrts may have multiple therapeutic applications.

  1. Catecholaminergic connectivity to the inner ear, central auditory and vocal motor circuitry in the plainfin midshipman fish, Porichthys notatus

    PubMed Central

    Forlano, Paul M.; Kim, Spencer D.; Krzyminska, Zuzanna M.; Sisneros, Joseph A.

    2014-01-01

    Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory endorgan, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator which appears to largely originate from local TH-ir neurons but may include diencephalic projections as well. This study provides strong evidence for catecholamines as important neuromodulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This first demonstration of TH-ir terminals in the main endorgan of hearing in a non-mammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. PMID:24715479

  2. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus.

    PubMed

    Forlano, Paul M; Kim, Spencer D; Krzyminska, Zuzanna M; Sisneros, Joseph A

    2014-09-01

    Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition. © 2014 Wiley Periodicals, Inc.

  3. NeuronBank: A Tool for Cataloging Neuronal Circuitry.

    PubMed

    Katz, Paul S; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  4. Quest for the basic plan of nervous system circuitry

    PubMed Central

    Swanson, Larry W.

    2007-01-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the seventeenth century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late nineteenth century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for circulation in the cardiovascular system. As Cajal wrote in 1909, “To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan—the overview—can be grasped in the blink of an eye.” PMID:17267046

  5. The neural circuitry of conversion disorder and its recovery.

    PubMed

    Bryant, Richard A; Das, Pritha

    2012-02-01

    Little is understood about neural networks associated with conversion disorders. This case study reports the first investigation of the neural circuitry associated with the recovery of chronic conversion disorder. A patient with a four year history of hysterical mutism was assessed with functional MRI (fMRI) during a vocalization task, and then provided psychotherapy that attempted to reduce motivational factors that maintained mutism. The patient resumed full speech, and was readministered the fMRI vocalization task. Vocalization during mutism and following recovery of speech resulted in increases in speech-related networks, including the inferior frontal gyrus (IFG), middle frontal, and supplementary motor area of the frontal cortex, temporal and parietal cortices, and also in the primary and sensory motor regions. Following speech recovery but not during mutism, the IFG was correlated positively with the anterior cingulate cortex and negatively with the amygdala. This pattern suggests that during the conversion disorder there was impaired connectivity between speech networks and networks that regulate anxiety.

  6. Oxytonergic circuitry sustains and enables creative cognition in humans.

    PubMed

    De Dreu, Carsten K W; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J; Ebstein, Richard P; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G

    2014-08-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3-6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications.

  7. Learning and the motivation to eat: Forebrain circuitry

    PubMed Central

    Petrovich, Gorica D.

    2011-01-01

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning—learned cues—can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  8. Learning and the motivation to eat: forebrain circuitry.

    PubMed

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia.

  9. A Dynamic Role of TBX3 in the Pluripotency Circuitry

    PubMed Central

    Russell, Ronan; Ilg, Marcus; Lin, Qiong; Wu, Guangming; Lechel, André; Bergmann, Wendy; Eiseler, Tim; Linta, Leonhard; Kumar P., Pavan; Klingenstein, Moritz; Adachi, Kenjiro; Hohwieler, Meike; Sakk, Olena; Raab, Stefanie; Moon, Anne; Zenke, Martin; Seufferlein, Thomas; Schöler, Hans R.; Illing, Anett; Liebau, Stefan; Kleger, Alexander

    2015-01-01

    Summary Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs. PMID:26651606

  10. Waveguide metatronics: Lumped circuitry based on structural dispersion

    PubMed Central

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-01-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of “waveguide metatronics,” an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all “lumped” circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry. PMID:27386566

  11. Oxytonergic circuitry sustains and enables creative cognition in humans

    PubMed Central

    Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J.; Ebstein, Richard P.; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G.

    2014-01-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3–6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications. PMID:23863476

  12. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    PubMed

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  13. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning

    PubMed Central

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489

  14. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    PubMed Central

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  15. Quest for the basic plan of nervous system circuitry.

    PubMed

    Swanson, Larry W

    2007-10-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the 17th century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late 19th century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for blood circulation in the cardiovascular system. As Cajal wrote in 1909, "To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan--the overview--can be grasped in the blink of an eye."

  16. Some facts about sleep relevant for Landau-Kleffner syndrome.

    PubMed

    Mascetti, Laura; Foret, Ariane; Bonjean, Maxime; Matarazzo, Luca; Dang-Vu, Thanh; Maquet, Pierre

    2009-08-01

    Our understanding of the neural mechanisms of non-rapid eye movement sleep (NREM) is steadily increasing. Given the intriguing activation of paroxysmal activity during NREM sleep in patients with Landau-Kleffner syndrome (LKS), a thorough characterization of commonalities and differences between the neural correlates of LKS paroxysms and normal sleep oscillations might provide useful information on the neural underpinning of this disorder. Especially, given the suspected role of sleep in brain plasticity, this type of information is needed to assess the link between cognitive deterioration and electroencephalography (EEG) paroxysms during sleep.

  17. Decreased alertness due to sleep loss increases pain sensitivity in mice.

    PubMed

    Alexandre, Chloe; Latremoliere, Alban; Ferreira, Ashley; Miracca, Giulia; Yamamoto, Mihoko; Scammell, Thomas E; Woolf, Clifford J

    2017-06-01

    Extended daytime and nighttime activities are major contributors to the growing sleep deficiency epidemic, as is the high prevalence of sleep disorders like insomnia. The consequences of chronic insufficient sleep for health remain uncertain. Sleep quality and duration predict presence of pain the next day in healthy subjects, suggesting that sleep disturbances alone may worsen pain, and experimental sleep deprivation in humans supports this claim. We demonstrate that sleep loss, but not sleep fragmentation, in healthy mice increases sensitivity to noxious stimuli (referred to as 'pain') without general sensory hyper-responsiveness. Moderate daily repeated sleep loss leads to a progressive accumulation of sleep debt and also to exaggerated pain responses, both of which are rescued after restoration of normal sleep. Caffeine and modafinil, two wake-promoting agents that have no analgesic activity in rested mice, immediately normalize pain sensitivity in sleep-deprived animals, without affecting sleep debt. The reversibility of mild sleep-loss-induced pain by wake-promoting agents reveals an unsuspected role for alertness in setting pain sensitivity. Clinically, insufficient or poor-quality sleep may worsen pain and this enhanced pain may be reduced not by analgesics, whose effectiveness is reduced, but by increasing alertness or providing better sleep.

  18. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    PubMed

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future