Sample records for normal somatic tissues

  1. Problems and potentialities of cultured plant cells in retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  2. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  3. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  4. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  5. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  6. DNA Methylation Patterns in Normal Tissue Correlate more Strongly with Breast Cancer Status than Copy-Number Variants.

    PubMed

    Gao, Yang; Widschwendter, Martin; Teschendorff, Andrew E

    2018-05-04

    Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation and DNA methylation changes. It is unclear however, which type of alteration may be more informative of cancer risk. We analyzed genome-wide DNA methylation and copy-number calls from the same DNA assay in a cohort of healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate normal-adjacent from normal samples better than somatic copy-number variants. We validate this important finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of origin may offer better cancer risk prediction and early detection markers than copy-number changes. Copyright © 2018. Published by Elsevier B.V.

  7. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands

    PubMed Central

    Nishimoto, Koshiro; Tomlins, Scott A.; Kuick, Rork; Cani, Andi K.; Giordano, Thomas J.; Hovelson, Daniel H.; Liu, Chia-Jen; Sanjanwala, Aalok R.; Edwards, Michael A.; Gomez-Sanchez, Celso E.; Nanba, Kazutaka; Rainey, William E.

    2015-01-01

    Primary aldosteronism (PA) represents the most common cause of secondary hypertension, but little is known regarding its adrenal cellular origins. Recently, aldosterone-producing cell clusters (APCCs) with high expression of aldosterone synthase (CYP11B2) were found in both normal and PA adrenal tissue. PA-causing aldosterone-producing adenomas (APAs) harbor mutations in genes encoding ion channels/pumps that alter intracellular calcium homeostasis and cause renin-independent aldosterone production through increased CYP11B2 expression. Herein, we hypothesized that APCCs have APA-related aldosterone-stimulating somatic gene mutations. APCCs were studied in 42 normal adrenals from kidney donors. To clarify APCC molecular characteristics, we used microarrays to compare the APCC transcriptome with conventional adrenocortical zones [zona glomerulosa (ZG), zona fasciculata, and zona reticularis]. The APCC transcriptome was most similar to ZG but with an enhanced capacity to produce aldosterone. To determine if APCCs harbored APA-related mutations, we performed targeted next generation sequencing of DNA from 23 APCCs and adjacent normal adrenal tissue isolated from both formalin-fixed, paraffin-embedded, and frozen tissues. Known aldosterone driver mutations were identified in 8 of 23 (35%) APCCs, including mutations in calcium channel, voltage-dependent, L-type, α1D-subunit (CACNA1D; 6 of 23 APCCs) and ATPase, Na+/K+ transporting, α1-polypeptide (ATP1A1; 2 of 23 APCCs), which were not observed in the adjacent normal adrenal tissue. Overall, we show three major findings: (i) APCCs are common in normal adrenals, (ii) APCCs harbor somatic mutations known to cause excess aldosterone production, and (iii) the mutation spectrum of aldosterone-driving mutations is different in APCCs from that seen in APA. These results provide molecular support for APCC as a precursor of PA. PMID:26240369

  8. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    PubMed

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  9. A soma-to-germline transformation in long-lived C. elegans mutants

    PubMed Central

    Curran, Sean P.; Wu, Xiaoyun; Riedel, Christian G.; Ruvkun, Gary

    2009-01-01

    Unlike the soma which ages during the lifespan of multicellular organisms, the germline traces an essentially immortal lineage. Genomic instability in somatic cells increases with age, and this decline in somatic maintenance might be regulated to facilitate resource reallocation toward reproduction at the expense of cellular senescence. We report here that C. elegans mutants with increased longevity exhibit a soma-to-germline transformation of gene expression programs normally limited to the germline. Decreased insulin-like signaling causes the somatic misexpression of germline-limited pie-1 and pgl family of genes in intestinal and ectodermal tissues. DAF-16/FoxO, the major transcriptional effector of insulin-like signaling, regulates pie-1 expression by directly binding to the pie-1 promoter. The somatic tissues of insulin-like mutants are more germline-like and protected from genotoxic stress. Gene inactivation of components of the cytosolic chaperonin complex that induce increased longevity also cause somatic misexpression of PGL-1. These results suggest that the acquisition of germline characteristics by the somatic cells of C. elegans mutants with increased longevity contributes to their increased health and survival. PMID:19506556

  10. Musculoskeletal overuse injuries and heart rate variability: Is there a link?

    PubMed

    Gisselman, Angela Spontelli; Baxter, G David; Wright, Alexis; Hegedus, Eric; Tumilty, Steve

    2016-02-01

    Accurate detection and prevention of overuse musculoskeletal injuries is limited by the nature of somatic tissue injury. In the pathogenesis of overuse injuries, it is well recognized that an abnormal inflammatory response occurs within somatic tissue before pain is perceived which can disrupt the normal remodeling process and lead to subsequent degeneration. Current overuse injury prevention methods focused on biomechanical faults or performance standards lack the sensitivity needed to identify the status of tissue injury or repair. Recent evidence has revealed an apparent increase in the prevalence and impact of overuse musculoskeletal injuries in athletics. When compared to acute injuries, overuse injuries have a potentially greater negative impact on athletes' overall health burden. Further, return to sport rehabilitation following overuse injury is complicated by the fact that the absence of pain does not equate to complete physiological healing of the injured tissue. Together, this highlights the need for exercise monitoring and injury prevention methods which incorporate assessment of somatic tissue response to loading. One system primarily involved in the activation of pathways and neuromediators responsible for somatic tissue repair is the autonomic nervous system (ANS). Although not completely understood, emerging research supports the critical importance of peripheral ANS activity in the health and repair of somatic tissue injury. Due to its significant contributions to cardiac function, ANS activity can be measured indirectly with heart rate monitoring. Heart rate variability (HRV) is one index of ANS activity that has been used to investigate the relationship between athletes' physiological response to accumulating training load. Research findings indicated that HRV may provide a reflection of ANS homeostasis, or the body's stress-recovery status. This noninvasive marker of the body's primary driver of recovery has the potential to incorporate important and as yet unmonitored physiological mechanisms involved in overuse injury development. We hypothesize that abnormal somatic tissue response to accumulating microtrauma may modulate ANS activity at the level of HRV. Exploring the link between HRV modulation and somatic tissue injury has the potential to reveal the putative role of ANS homeostasis on overuse musculoskeletal injury development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia.

    PubMed

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-08-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  12. Dubinett - Targeted Sequencing 2012 — EDRN Public Portal

    Cancer.gov

    we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.

  13. Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases.

    PubMed

    Zuckerman, Neta S; Hazanov, Helena; Barak, Michal; Edelman, Hanna; Hess, Shira; Shcolnik, Hadas; Dunn-Walters, Deborah; Mehr, Ramit

    2010-12-01

    B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Measurement of telomerase activity in dog tumors.

    PubMed

    Yazawa, M; Okuda, M; Setoguchi, A; Nishimura, R; Sasaki, N; Hasegawa, A; Watari, T; Tsujimoto, H

    1999-10-01

    Telomeres are specific structures present at the end of liner chromosomes. DNA polymerase can not synthesize the end of liner DNA and, as a result, the telomeres become progressively shortened by successive cell divisions. To overcome the end replication problem, telomerase adds new telomeric sequences to the end of chromosomal DNA. The enzyme activity is undetectable in most normal human adult somatic cells, in which shortening of the telomere is thought to limit the somatic-cell life span. In contrast to normal somatic cells, many human tumors possess telomerase activity. The present study looked at whether telomerase activity might serve as a marker for canine tumors. Telomerase activity was measured using the telomeric repeat amplification protocol assay. Normal dog somatic tissues showed little or no telomerase activity, while normal testis exhibited a high level of telomerase activity. We measured telomerase activity in tumor samples from 45 dogs; 21 mammary gland tumors, 16 tumors developed in the skin and oral cavity, 7 vascular tumors and 1 Sertoli cell tumor. Greater than 95% of the tumor samples contained telomerase activity (3-924 U/2 micrograms protein). The results obtained in this study indicated that telomerase should be a useful diagnostic marker for a variety of dog tumors, and it may serve as a target for antitumor chemotherapy.

  15. Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues.

    PubMed

    Kou, Shu-Jun; Wu, Xiao-Meng; Liu, Zheng; Liu, Yuan-Long; Xu, Qiang; Guo, Wen-Wu

    2012-12-01

    miRNAs have recently been reported to modulate somatic embryogenesis (SE), a key pathway of plant regeneration in vitro. For expression level detection and subsequent function dissection of miRNAs in certain biological processes, qRT-PCR is one of the most effective and sensitive techniques, for which suitable reference gene selection is a prerequisite. In this study, three miRNAs and eight non-coding RNAs (ncRNA) were selected as reference candidates, and their expression stability was inspected in developing citrus SE tissues cultured at 20, 25, and 30 °C. Stability of the eight non-miRNA ncRNAs was further validated in five adult tissues without temperature treatment. The best single reference gene for SE tissues was snoR14 or snoRD25, while for the adult tissues the best one was U4; although they were not as stable as the optimal multiple references snoR14 + U6 for SE tissues and snoR14 + U5 for adult tissues. For expression normalization of less abundant miRNAs in SE tissues, miR3954 was assessed as a viable reference. Single reference gene snoR14 outperformed multiple references for the overall SE and adult tissues. As one of the pioneer systematic studies on reference gene identification for plant miRNA normalization, this study benefits future exploration on miRNA function in citrus and provides valuable information for similar studies in other higher plants. Three miRNAs and eight non-coding RNAs were tested as reference candidates on developing citrus SE tissues. Best single references snoR14 or snoRD25 and optimal multiple references snoR14 + U6, snoR14 + U5 were identified.

  16. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.

  17. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    PubMed

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  18. Does telomere elongation lead to a longer lifespan if cancer is considered?

    NASA Astrophysics Data System (ADS)

    Masa, Michael; Cebrat, Stanisław; Stauffer, Dietrich

    2006-05-01

    As cell proliferation is limited due to the loss of telomere repeats in DNA of normal somatic cells during division, telomere attrition can possibly play an important role in determining the maximum life span of organisms as well as contribute to the process of biological ageing. With computer simulations of cell culture development in organisms, which consist of tissues of normal somatic cells with finite growth, we obtain an increase of life span and life expectancy for longer telomeric DNA in the zygote. By additionally considering a two-mutation model for carcinogenesis and indefinite proliferation by the activation of telomerase, we demonstrate that the risk of dying due to cancer can outweigh the positive effect of longer telomeres on the longevity.

  19. Personalized genomic analyses for cancer mutation discovery and interpretation

    PubMed Central

    Jones, Siân; Anagnostou, Valsamo; Lytle, Karli; Parpart-Li, Sonya; Nesselbush, Monica; Riley, David R.; Shukla, Manish; Chesnick, Bryan; Kadan, Maura; Papp, Eniko; Galens, Kevin G.; Murphy, Derek; Zhang, Theresa; Kann, Lisa; Sausen, Mark; Angiuoli, Samuel V.; Diaz, Luis A.; Velculescu, Victor E.

    2015-01-01

    Massively parallel sequencing approaches are beginning to be used clinically to characterize individual patient tumors and to select therapies based on the identified mutations. A major question in these analyses is the extent to which these methods identify clinically actionable alterations and whether the examination of the tumor tissue alone is sufficient or whether matched normal DNA should also be analyzed to accurately identify tumor-specific (somatic) alterations. To address these issues, we comprehensively evaluated 815 tumor-normal paired samples from patients of 15 tumor types. We identified genomic alterations using next-generation sequencing of whole exomes or 111 targeted genes that were validated with sensitivities >95% and >99%, respectively, and specificities >99.99%. These analyses revealed an average of 140 and 4.3 somatic mutations per exome and targeted analysis, respectively. More than 75% of cases had somatic alterations in genes associated with known therapies or current clinical trials. Analyses of matched normal DNA identified germline alterations in cancer-predisposing genes in 3% of patients with apparently sporadic cancers. In contrast, a tumor-only sequencing approach could not definitively identify germline changes in cancer-predisposing genes and led to additional false-positive findings comprising 31% and 65% of alterations identified in targeted and exome analyses, respectively, including in potentially actionable genes. These data suggest that matched tumor-normal sequencing analyses are essential for precise identification and interpretation of somatic and germline alterations and have important implications for the diagnostic and therapeutic management of cancer patients. PMID:25877891

  20. [Direct and indirect somatic embryogenesis in Freesia refracta].

    PubMed

    Wang, L; Duan, X G; Hao, S

    1999-06-01

    Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.

  1. Usp16 contributes to somatic stem cell defects in Down syndrome

    PubMed Central

    Adorno, Maddalena; Sikandar, Shaheen; Mitra, Siddhartha S.; Kuo, Angera; Di Robilant, Benedetta Nicolis; Haro-Acosta, Veronica; Ouadah, Youcef; Quarta, Marco; Rodriguez, Jacqueline; Qian, Dalong; Reddy, Vadiyala M.; Cheshier, Samuel; Garner, Craig C.; Clarke, Michael F.

    2013-01-01

    SUMMARY Down syndrome (DS) results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, trisomic for 132 genes homologous to HSA21, triplication of Usp16 reduces self-renewal of hematopoietic stem cells and expansion of mammary epithelial cells, neural progenitors, and fibroblasts. Moreover, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from H2AK119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal USP16 allele or by shRNAs, largely rescues all these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and post-natal neural progenitors while downregulation of USP16 partially rescues the proliferation defects of DS fibroblasts. Taken together, these results suggest that USP16 plays an important role in antagonizing the self-renewal and/or senescence pathways in Down syndrome and could serve as an attractive target to ameliorate some of the associated pathologies. PMID:24025767

  2. L1 retrotransposons and somatic mosaicism in the brain.

    PubMed

    Richardson, Sandra R; Morell, Santiago; Faulkner, Geoffrey J

    2014-01-01

    Long interspersed element 1 (LINE-1 or L1) retrotransposons have generated one-third of the human genome, and their ongoing mobility is a source of inter- and intraindividual genetic diversity. Although retrotransposition in metazoans has long been considered a germline phenomenon, recent experiments using cultured cells, animal models, and human tissues have revealed extensive L1 mobilization in rodent and human neurons, as well as mobile element activity in the Drosophila brain. In this review, we evaluate the available evidence for L1 retrotransposition in the brain and discuss mechanisms that may regulate neuronal retrotransposition in vivo. We compare experimental strategies used to map de novo somatic retrotransposition events and present the optimal criteria to identify a somatic L1 insertion. Finally, we discuss the unresolved impact of L1-mediated somatic mosaicism upon normal neurobiology, as well as its potential to drive neurological disease.

  3. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    PubMed

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  4. The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells

    PubMed Central

    Keam, Simon P.; Young, Paul E.; McCorkindale, Alexandra L.; Dang, Thurston H.Y.; Clancy, Jennifer L.; Humphreys, David T.; Preiss, Thomas; Hutvagner, Gyorgy; Martin, David I.K.; Cropley, Jennifer E.; Suter, Catherine M.

    2014-01-01

    The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. PMID:25038252

  5. In situ mutation detection and visualization of intratumor heterogeneity for cancer research and diagnostics

    PubMed Central

    Grundberg, Ida; Kiflemariam, Sara; Mignardi, Marco; Imgenberg-Kreuz, Juliana; Edlund, Karolina; Micke, Patrick; Sundström, Magnus; Sjöblom, Tobias

    2013-01-01

    Current assays for somatic mutation analysis are based on extracts from tissue sections that often contain morphologically heterogeneous neoplastic regions with variable contents of genetically normal stromal and inflammatory cells, obscuring the results of the assays. We have developed an RNA-based in situ mutation assay that targets oncogenic mutations in a multiplex fashion that resolves the heterogeneity of the tissue sample. Activating oncogenic mutations are targets for a new generation of cancer drugs. For anti-EGFR therapy prediction, we demonstrate reliable in situ detection of KRAS mutations in codon 12 and 13 in colon and lung cancers in three different types of routinely processed tissue materials. High-throughput screening of KRAS mutation status was successfully performed on a tissue microarray. Moreover, we show how the patterns of expressed mutated and wild-type alleles can be studied in situ in tumors with complex combinations of mutated EGFR, KRAS and TP53. This in situ method holds great promise as a tool to investigate the role of somatic mutations during tumor progression and for prediction of response to targeted therapy. PMID:24280411

  6. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs

    PubMed Central

    2013-01-01

    Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077

  7. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    PubMed

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  8. Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat

    PubMed Central

    Singh, Deepak K.; Rath, Pramod C.

    2012-01-01

    We report strong somatic and germ line expression of LINE RNAs in eight different tissues of rat by using a novel ~2.8 kb genomic PstI-LINE DNA (P1-LINE) isolated from the rat brain. P1-LINE is present in a 93 kb LINE-SINE-cluster in sub-telomeric region of chromosome 12 (12p12) and as multiple truncated copies interspersed in all rat chromosomes. P1-LINEs occur as inverted repeats at multiple genomic loci in tissue-specific and mosaic patterns. P1-LINE RNAs are strongly expressed in brain, liver, lungs, heart, kidney, testes, spleen and thymus into large to small heterogeneous RNAs (~5.0 to 0.2 kb) in tissue-specific and dynamic patterns in individual rats. P1-LINE DNA is strongly methylated at CpG-dinucleotides in most genomic copies in all the tissues and weakly hypomethylated in few copies in some tissues. Small (700–75 nt) P1-LINE RNAs expressed in all tissues may be possible precursors for small regulatory RNAs (PIWI-interacting/piRNAs) bioinformatically derived from P1-LINE. The strong and dynamic expression of LINE RNAs from multiple chromosomal loci and the putative piRNAs in somatic tissues of rat under normal physiological conditions may define functional chromosomal domains marked by LINE RNAs as long noncoding RNAs (lncRNAs) unrestricted by DNA methylation. The tissue-specific, dynamic RNA expression and mosaic genomic distribution of LINEs representing a steady-state genomic flux of retrotransposon RNAs suggest for biological role of LINE RNAs as long ncRNAs and small piRNAs in mammalian tissues independent of their cellular fate for translation, reverse-transcription and retrotransposition. This may provide evolutionary advantages to LINEs and mammalian genomes. PMID:23064113

  9. On the Stem Cell Origin of Cancer

    PubMed Central

    Sell, Stewart

    2010-01-01

    In each major theory of the origin of cancer—field theory, chemical carcinogenesis, infection, mutation, or epigenetic change—the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth. PMID:20431026

  10. Expression screening of cancer/testis genes in prostate cancer identifies NR6A1 as a novel marker of disease progression and aggressiveness.

    PubMed

    Mathieu, Romain; Evrard, Bertrand; Fromont, Gaëlle; Rioux-Leclercq, Nathalie; Godet, Julie; Cathelineau, Xavier; Guillé, François; Primig, Michael; Chalmel, Frédéric

    2013-07-01

    Cancer/Testis (CT) genes are expressed in male gonads, repressed in most healthy somatic tissues and de-repressed in various somatic malignancies including prostate cancers (PCa). Because of their specific expression signature and their associations with tumor aggressiveness and poor outcomes, CT genes are considered to be useful biomarkers and they are also targets for the development of new anti-cancer immunotherapies. The aim of this study was to identify novel CT genes associated with hormone-sensitive prostate cancer (HSPC), and castration-resistant prostate cancer (CRPC). To identify novel CT genes we screened genes for which transcripts were detected by RNA profiling specifically in normal testis and in either HSPC or CRPC as compared to normal prostate and 44 other healthy tissues using GeneChips. The expression and clinicopathological significance of a promising candidate--NR6A1--was examined in HSPC, CRPC, and metastatic site samples using tissue microarrays. We report the identification of 98 genes detected in CRPC, HSPC and testicular samples but not in the normal controls. Among them, cellular levels of NR6A1 were found to be higher in HSPC compared to normal prostate and further increased in metastatic lesions and CRPC. Furthermore, increased NR6A1 immunoreactivity was significantly associated with a high Gleason score, advanced pT stage and cancer cell proliferation. Our results show that cellular levels of NR6A1 are correlated with disease progression in PCa. We suggest that this essential orphan nuclear receptor is a potential therapeutic target as well as a biomarker of PCa aggressiveness. Copyright © 2013 Wiley Periodicals, Inc.

  11. Gender-Associated Mitochondrial DNA Heteroplasmy in Somatic Tissues of the Endangered Freshwater Mussel Unio crassus (Bivalvia: Unionidae): Implications for Sex Identification and Phylogeographical Studies.

    PubMed

    Mioduchowska, Monika; Kaczmarczyk, Agnieszka; Zając, Katarzyna; Zając, Tadeusz; Sell, Jerzy

    2016-11-01

    Some bivalve species possess two independent mitochondrial DNA lineages: maternally (F-type) and paternally (M-type) inherited. This phenomenon is called doubly uniparental inheritance. It is generally agreed that F-type mtDNA is typically present in female somatic and gonadal tissues as well as in male somatic tissues, whereas the M-type mtDNA occurs only in male germ line and gonadal tissue. In the present study, the mtDNA heteroplasmy (for both F and M genomes) in male somatic tissues of Unio crassus (Philipsson, 1788), species threatened with extinction, has been confirmed. Taking advantage from the presence of Mcox1 marker only in male somatic tissues, we developed a new method of sex identification in this endangered species, using nondestructive tissue sampling. Probability of correct sex identification was estimated at 97.5%. The present study is the first report on gender-associated mitochondrial DNA heteroplasmy in male somatic tissues of thick-shelled river mussel and first approach to U. crassus sex identification at molecular level. Our study also confirmed the utility of paternally inherited Mcox1 gene fragment as a complementary molecular tool for resolving phylogeographical relationships among populations of thick-shelled river mussel. © 2017 Wiley Periodicals, Inc.

  12. The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells.

    PubMed

    Keam, Simon P; Young, Paul E; McCorkindale, Alexandra L; Dang, Thurston H Y; Clancy, Jennifer L; Humphreys, David T; Preiss, Thomas; Hutvagner, Gyorgy; Martin, David I K; Cropley, Jennifer E; Suter, Catherine M

    2014-08-01

    The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Infection,

    DTIC Science & Technology

    1980-10-16

    in the number, composition, and location of intestinal microflora can result from antibiotics or purgative therapy. All of these changes, along with...skeletal muscle and other proteins of somatic tissues of normally nourished persons appear to provide an available pool of labile body ntirogen. The...superimposed secondary infection. In most acute infectious diseases that develop in a well- nourished person, the illness is relatively brief and the potential

  14. Protein Equilibration through Somatic Ring Canals in Drosophila

    PubMed Central

    McLean, Peter F.; Cooley, Lynn

    2013-01-01

    Although intercellular bridges resulting from incomplete cytokinesis were discovered in somatic Drosophila tissues decades ago, the impact of these structures on intercellular communication and tissue biology is largely unknown. In this work, we demonstrate that the ~250 nm diameter somatic ring canals permit diffusion of cytoplasmic contents between connected cells and across mitotic clone boundaries, and enable the equilibration of protein between transcriptionally mosaic follicle cells in the Drosophila ovary. We obtained similar, though more restricted, results in the larval imaginal discs. Our work illustrates the lack of cytoplasmic autonomy in these tissues and suggests a role for somatic ring canals in promoting homogeneous protein expression within the tissue. PMID:23704373

  15. Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.

    PubMed

    Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi

    2017-04-01

    High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    PubMed

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  17. Clock-like mutational processes in human somatic cells

    DOE PAGES

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; ...

    2015-11-09

    During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less

  18. Clock-like mutational processes in human somatic cells

    PubMed Central

    Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.

    2016-01-01

    During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669

  19. Somatic mitochondrial mutation in gastric cancer.

    PubMed Central

    Burgart, L. J.; Zheng, J.; Shu, Q.; Strickler, J. G.; Shibata, D.

    1995-01-01

    Likely hot spots for mutations are mitochondrial sequences as there is less repair and more damage by carcinogens compared with nuclear sequences. A somatic 50-bp mitochondrial D-loop deletion was detected in four gastric adenocarcinomas. The deletion included the CSB2 region and was flanked by 9-bp direct repeats. The deletion was more frequent in adenocarcinomas arising from the gastroesophageal junction (4/32, 12.5%) compared with more distal tumors (0/45). Topographical analysis revealed the absence of the deletion from normal tissues except in focal portions of smooth muscle in one case. In two cases, apparent mutant homoplasmy was present throughout two tumors, including their metastases. In the two other cases, the mutation was present in only minor focal portions ( < 5%) of their primary tumors. These findings document the presence of somatic mitochondrial alterations in gastric cancer, which may reflect the environmental and genetic influences operative during tumor progression. Images Figure 3 Figure 4 Figure 5 PMID:7573355

  20. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming.

    PubMed

    Couldrey, Christine; Lee, Rita Sf

    2010-03-07

    Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term or not.

  1. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    PubMed Central

    2010-01-01

    Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term or not. PMID:20205951

  2. Survival of ovarian somatic cells during sex change in the protogynous wrasse, Halichoeres trimaculatus.

    PubMed

    Nozu, Ryo; Horiguchi, Ryo; Murata, Ryosuke; Kobayashi, Yasuhisa; Nakamura, Masaru

    2013-02-01

    The three-spot wrasse (Halichoeres trimaculatus), which inhabits the coral reefs of Okinawa, changes sex from female to male. Sex change in this species is controlled by a social system. Oocytes disappear completely from the ovary, and male germ cells and somatic cells comprising testicular tissue arise a new during the sex change process. However, little is known of the fate and origin of the gonadal tissue-forming cells during sex change. In particular, the fate of ovarian somatic cells has not been determined, although the ovarian tissue regresses histologically. To approach this question, we analyzed apoptosis and cell proliferation in the sex-changing gonads. Unexpectedly, we found that few apoptotic somatic cells were present during sex change, suggesting that ovarian somatic cells might survive during the regression of the ovarian tissue. On the other hand, cell proliferation was detected in many granulosa cells surrounding the degenerating oocytes, a few epithelial cells covering ovigerous lamella and a few somatic cells associated with gonial germ cells at an early stage of sex change. Then, we found that proliferative ovarian somatic cells remained in the gonads late in the sex change process. Based on these results, we concluded that some functional somatic cells of the ovary are reused as testicular somatic cells during the gonadal sex change in the three-spot wrasse.

  3. An experiential mind-body approach to the management of medically unexplained symptoms.

    PubMed

    Bakal, D; Steiert, M; Coll, P; Schaefer, J

    2006-01-01

    This article outlines an experiential mind-body framework for understanding and treating patients with medically unexplained symptoms. The model relies on somatic awareness, a normal part of consciousness, to resolve the mind-body dualism inherent in conventional multidisciplinary approaches. Somatic awareness represents a guiding healing heuristic which allows for a linear treatment application of the biopsychosocial model. The heuristic acknowledges the validity of the patient's physical symptoms and identifies psychological and social factors needed for the healing process. Somatic awareness is used to direct changes in coping styles, illness beliefs, medication dependence and personal dynamics that are necessary to achieve symptom control. The mind-body concept is consistent with and supported by neurobiological models which draw on central nervous system mechanisms to explain medically unexplained symptoms. The concept is also supported by a recent hypothesis concerning the role peripheral connective tissue may play in influencing illness and well-being. Finally, somatic awareness is described as having potential to enhance understanding and conscious use of inner healing mechanisms at the basis of the placebo effect.

  4. Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues.

    PubMed

    Chen, Jing; Guo, Liping; Peiffer, Daniel A; Zhou, Lixin; Chan, Owen Tsan Mo; Bibikova, Marina; Wickham-Garcia, Eliza; Lu, Shih-Hsin; Zhan, Qimin; Wang-Rodriguez, Jessica; Jiang, Wei; Fan, Jian-Bing

    2008-05-15

    We employed the BeadArraytrade mark technology to perform a genetic analysis in 33 formalin-fixed, paraffin-embedded (FFPE) human esophageal carcinomas, mostly squamous-cell-carcinoma (ESCC), and their adjacent normal tissues. A total of 1,432 single nucleotide polymorphisms (SNPs) derived from 766 cancer-related genes were genotyped with partially degraded genomic DNAs isolated from these samples. This directly targeted genomic profiling identified not only previously reported somatic gene amplifications (e.g., CCND1) and deletions (e.g., CDKN2A and CDKN2B) but also novel genomic aberrations. Among these novel targets, the most frequently deleted genomic regions were chromosome 3p (including tumor suppressor genes FANCD2 and CTNNB1) and chromosome 5 (including tumor suppressor gene APC). The most frequently amplified genomic region was chromosome 3q (containing DVL3, MLF1, ABCC5, BCL6, AGTR1 and known oncogenes TNK2, TNFSF10, FGF12). The chromosome 3p deletion and 3q amplification occurred coincidently in nearly all of the affected cases, suggesting a molecular mechanism for the generation of somatic chromosomal aberrations. We also detected significant differences in germline allele frequency between the esophageal cohort of our study and normal control samples from the International HapMap Project for 10 genes (CSF1, KIAA1804, IL2, PMS2, IRF7, FLT3, NTRK2, MAP3K9, ERBB2 and PRKAR1A), suggesting that they might play roles in esophageal cancer susceptibility and/or development. Taken together, our results demonstrated the utility of the BeadArray technology for high-throughput genetic analysis in FFPE tumor tissues and provided a detailed genetic profiling of cancer-related genes in human esophageal cancer. (c) 2008 Wiley-Liss, Inc.

  5. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour

    PubMed Central

    Halliday, Benjamin J.; Markie, David M.; Grundy, Richard G.; Ludgate, Jackie L.; Black, Michael A.; Weeks, Robert J.; Catchpoole, Daniel R.; Reeve, Anthony E.

    2018-01-01

    Wilms tumour is a childhood tumour that arises as a consequence of somatic and rare germline mutations, the characterisation of which has refined our understanding of nephrogenesis and carcinogenesis. Here we report that germline loss of function mutations in TRIM28 predispose children to Wilms tumour. Loss of function of this transcriptional co-repressor, which has a role in nephrogenesis, has not previously been associated with cancer. Inactivation of TRIM28, either germline or somatic, occurred through inactivating mutations, loss of heterozygosity or epigenetic silencing. TRIM28-mutated tumours had a monomorphic epithelial histology that is uncommon for Wilms tumour. Critically, these tumours were negative for TRIM28 immunohistochemical staining whereas the epithelial component in normal tissue and other Wilms tumours stained positively. These data, together with a characteristic gene expression profile, suggest that inactivation of TRIM28 provides the molecular basis for defining a previously described subtype of Wilms tumour, that has early age of onset and excellent prognosis. PMID:29912901

  6. Coats' disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis.

    PubMed

    Black, G C; Perveen, R; Bonshek, R; Cahill, M; Clayton-Smith, J; Lloyd, I C; McLeod, D

    1999-10-01

    Coats' disease is characterized by abnormal retinal vascular development (so-called 'retinal telangiectasis') which results in massive intraretinal and subretinal lipid accumulation (exudative retinal detachment). The classical form of Coats' disease is almost invariably isolated, unilateral and seen in males. A female with a unilateral variant of Coats' disease gave birth to a son affected by Norrie disease. Both carried a missense mutation within the NDP gene on chromosome Xp11.2. Subsequently analysis of the retinas of nine enucleated eyes from males with Coats' disease demonstrated in one a somatic mutation in the NDP gene which was not present within non-retinal tissue. We suggest that Coats' telangiectasis is secondary to somatic mutation in the NDP gene which results in a deficiency of norrin (the protein product of the NDP gene) within the developing retina. This supports recent observations that the protein is critical for normal retinal vasculogenesis.

  7. Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)-Diagnosis and Management.

    PubMed

    Rodd, Celia; Millette, Maude; Iacovazzo, Donato; Stiles, Craig E; Barry, Sayka; Evanson, Jane; Albrecht, Steffen; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Trouillas, Jacqueline; Roncaroli, Federico; Sampson, Julian; Ellard, Sian; Korbonits, Márta

    2016-05-01

    Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 μg/L; normal, <18 μg/L), IGF-1 (745 μg/L; normal, 64-369 μg/L), and fasting GH > 35.0 μg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary.

  8. A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with low- and high-degree liver fibrosis.

    PubMed

    Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun

    2017-12-07

    Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.

  9. Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors

    PubMed Central

    Bornemann-Kolatzki, Kirsten; Neumann, Stephan; Escobar, Hugo Murua; Nolte, Ingo; Hammer, Susanne Conradine; Hewicker-Trautwein, Marion; Junginger, Johannes; Kaup, Franz-Josef; Brenig, Bertram; Schütz, Ekkehard

    2015-01-01

    Background A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. Methods Droplet digital PCR for PFDN5 was performed in DNA from 102 malignant, 40 benign mammary tumors/dysplasias, 11 non-neoplastic mammary tissues and each corresponding genomic DNA from leukocytes. The copy number of PFDN5 was normalized to a reference amplicon on canine chromosome 32 (CFA32). Z-scores were calculated, based on Gaussian distributed normalized PFDN5 copy numbers of the leukocyte DNA. Z-scores ≤ -3.0 in tissue were considered as being indicative of the PFDN5 deletion and called as such. The Ki-67 proliferation index was assessed in a subset of 79 tissue samples by immunohistochemistry. Results The deletion was confirmed in 24% of all malignant tumors, detected in only 7.5% of the benign tumors and was not present in any normal mammary tissue sample. The subgroup of solid carcinomas (n = 9) showed the highest frequency of the deletion (67%) and those malignomas without microscopical high fraction of benign tissue (n = 71) had a 32% frequency (p<0.01 vs. benign samples). The Ki-67 score was found to be significantly higher (p<0.05) in the PFDN5-deleted group compared to malignant tumors without the deletion. Conclusions A somatic deletion of the PFDN5 gene is recurrently present in canine mammary cancer, supporting a potential role in carcinogenesis. The association of this deletion with higher Ki-67 indicates an increased proliferation rate and thus a link to tumor aggressiveness can be hypothesized. The confirmation of earlier results warrants further studies on PFDN5 as cancer-driver gene. PMID:26132936

  10. Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

    PubMed

    Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2013-09-01

    Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  12. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells.

    PubMed

    Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori

    2015-01-01

    It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.

  13. Is gravity a morphological determinant in plants at the cellular level

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Steward, F. C.

    1978-01-01

    The present paper deals with the question whether plant development can proceed normally in the weightless state, particularly in the critical stage where single cells produce multicellular units, leading to embryos with the growing regions of shoot and root which, in turn, give rise to all the tissues of the plant body. An experiment that tested whether carrot embryos capable of developing from cultured somatic cells could do so under conditions of weightlessness is described.

  14. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.

    PubMed

    Lanza, R P; Cibelli, J B; Diaz, F; Moraes, C T; Farin, P W; Farin, C E; Hammer, C J; West, M D; Damiani, P

    2000-01-01

    Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan < 100 animals) were electrofused with enucleated oocytes from domestic cows. Twelve percent of the reconstructed oocytes developed to the blastocyst stage, and 18% of these embryos developed to the fetal stage when transferred to surrogate mothers. Three of the fetuses were electively removed at days 46 to 54 of gestation, and two continued gestation longer than 180 (ongoing) and 200 days, respectively. Microsatellite marker and cytogenetic analyses confirmed that the nuclear genome of the cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.

  15. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    PubMed

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  16. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  17. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order.

    PubMed

    Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí

    2005-03-05

    We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.

  18. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order

    PubMed Central

    Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří

    2005-01-01

    Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293

  19. Bone Metastasis in Prostate Cancer: Recurring Mitochondrial DNA Mutation Reveals Selective Pressure Exerted by the Bone Microenvironment

    PubMed Central

    Arnold, Rebecca S.; Fedewa, Stacey A.; Goodman, Michael; Osunkoya, Adeboye O.; Kissick, Haydn T.; Morrissey, Colm; True, Lawrence D.; Petros, John A.

    2015-01-01

    Background Cancer progression and metastasis occurs such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell’s description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. Methods We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Results Somatic mutations were significantly more numerous in bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (np) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at np 10436 and a tRNA Thr mutation at np 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to bone and also occurred in three patients. Conclusions Mitochondrial genomic variation was greater in metastatic sites than the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational “hot-spot” was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific “survival of the fittest” as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. PMID:25952970

  20. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment.

    PubMed

    Arnold, Rebecca S; Fedewa, Stacey A; Goodman, Michael; Osunkoya, Adeboye O; Kissick, Haydn T; Morrissey, Colm; True, Lawrence D; Petros, John A

    2015-09-01

    Cancer progression and metastasis occur such that cells with acquired mutations enhancing growth and survival (or inhibiting cell death) increase in number, a concept that has been recognized as analogous to Darwinian evolution of species since Peter C. Nowell's description in 1976. Selective forces include those intrinsic to the host (including metastatic site) as well as those resulting from anti-cancer therapies. By examining the mutational status of multiple tumor sites within an individual patient some insight may be gained into those genetic variants that enhance site-specific metastasis. By comparing these data across multiple individuals, recurrent patterns may identify alterations that are fundamental to successful site-specific metastasis. We sequenced the mitochondrial genome in 10 prostate cancer patients with bone metastases enrolled in a rapid autopsy program. Patients had late stage disease and received androgen ablation and frequently other systemic therapies. For each of 9 patients, 4 separate tissues were sequenced: the primary prostate cancer, a soft tissue metastasis, a bone metastasis and an uninvolved normal tissue that served as the non-cancerous control. An additional (10th) patient had no primary prostate available for sequencing but had both metastatic sites (and control DNA) sequenced. We then examined the number and location of somatically acquired mitochondrial DNA (mtDNA) mutations in the primary tumor and two metastatic sites in each individual patient. Finally, we compared patients with each other to determine any common patterns of somatic mutation. Somatic mutations were significantly more numerous in the bone compared to either the primary tumor or soft tissue metastases. A missense mutation at nucleotide position (n.p.) 10398 (A10398G; Thr114Ala) in the respiratory complex I gene ND3 was the most common (7 of 10 patients) and was detected only in the bone. Other notable somatic mutations that occurred in more than one patient include a tRNA Arg mutation at n.p. 10436 and a tRNA Thr mutation at n.p. 15928. The tRNA Arg mutation was restricted to bone metastases and occurred in three of 10 patients (30%). Somatic mutation at 15928 was not restricted to the bone and also occurred in three patients. Mitochondrial genomic variation was greater in metastatic sites than in the primary tumor and bone metastases had statistically significantly greater numbers of somatic mutations than either the primary or the soft tissue metastases. The genome was not mutated randomly. At least one mutational "hot-spot" was identified at the individual base level (nucleotide position 10398 in bone metastases) indicating a pervasive selective pressure for bone metastatic cells that had acquired the 10398 mtDNA mutation. Two additional recurrent mutations (tRNA Arg and tRNA Thr) support the concept of bone site-specific "survival of the fittest" as revealed by variation in the mitochondrial genome and selective pressure exerted by the metastatic site. Published by Elsevier Inc.

  1. Pms2 Suppresses Large Expansions of the (GAA·TTC)n Sequence in Neuronal Tissues

    PubMed Central

    Bourn, Rebecka L.; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A.; Bidichandani, Sanjay I.

    2012-01-01

    Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)n sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)n sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)n sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)n sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)n sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway. PMID:23071719

  2. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues.

    PubMed

    Bourn, Rebecka L; De Biase, Irene; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Al-Mahdawi, Sahar; Pook, Mark A; Bidichandani, Sanjay I

    2012-01-01

    Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.

  3. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    PubMed

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  4. Use of somatic cell banks in the conservation of wild felids.

    PubMed

    Praxedes, Érika A; Borges, Alana A; Santos, Maria V O; Pereira, Alexsandra F

    2018-05-03

    The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species. © 2018 Wiley Periodicals, Inc.

  5. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana

    PubMed Central

    Mozgová, Iva

    2017-01-01

    Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming. PMID:28095419

  6. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  7. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  8. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  9. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    PubMed

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  10. Functional and structural microanatomy of the fetal sciatic nerve.

    PubMed

    Creze, Maud; Zaitouna, Mazen; Krystel, Nyangoh Timoh; Diallo, Djibril; Lebacle, Cédric; Bellin, Marie-France; Ducreux, Denis; Benoit, Gérard; Bessede, Thomas

    2017-10-01

    The ultrastructure of a nerve has implications for surgical nerve repair. The aim of our study was to characterize the fascicular versus fibrillar anatomy and the autonomic versus somatic nature of the fetal sciatic nerve (SN). Immunohistochemistry for vesicular acetylcholine transporter, tyrosine hydroxylase, and peripheral myelin protein 22 was performed to identify cholinergic, adrenergic, and somatic axons, respectively, in the human fetal SN. Two-dimensional (2D) analysis and 3D reconstructions were performed. The fetal SN is composed of one-third stromal tissue and two-thirds neural tissue. Autonomic fibers are predominant over somatic fibers within the neural tissue. The distribution of somatic fibers is initially random, but then become topographically organized after intra- and interfascicular rearrangements have occurred within the nerve. The fetal model presents limitations but enables illustration of the nature of the nerve fibers and the 3D fascicular anatomy of the SN. Muscle Nerve 56: 787-796, 2017. © 2017 Wiley Periodicals, Inc.

  11. Transfer of inner cell mass cells derived from bovine nuclear transfer embryos into the trophoblast of bovine in vitro-produced embryos.

    PubMed

    Murakami, M; Ferguson, C E; Perez, O; Boediono, A; Paccamonti, D; Bondioli, K R; Godke, R A

    2006-01-01

    Presence of placental tissues from more normal noncloned embryos could reduce the pregnancy failure of somatic cloning in cattle. In this study, inner cell mass (ICM) cells of in vitro-produced (IVP) embryos was replaced with those of nuclear transfer (NT) embryos to reconstruct bovine blastocysts with ICM and trophoblast cells from NT and IVP embryos, respectively. A total of 65 of these reconstructed embryos were nonsurgically transferred to 20 recipient beef females. Of those, two females were diagnosed pregnant by ultrasonography on day 30 of gestation. One pregnancy was lost at 60-90 days of gestation, and the other recipient cow remained pregnant at day 240 of gestation; however, this female died on day 252 of gestation. Gross pathology of the internal organs of the recipient female, a large fetus, and a large placental tissue mass suggested the massive size of the fetus and placental tissue were likely involved in terminating the life of the recipient female. Biopsy samples were harvested from the skin of the dead recipient cow, the fetus and from cotyledonary tissue. Microsatellite DNA analysis of these samples revealed that the genotype of the fetus was the same as that of the NT donor cells and different from that of the recipient cow. Correspondingly, neither the fetus nor recipient cow had the same genotype with that of the fetal cotyledonary tissue. These results present the first known documented case of a bovine somatic NT pregnancy with nonclone placental tissues after transfer of a blastocyst reconstructed by a microsurgical method to exchange of ICM cells and trophoblast tissue between NT and IVP blastocysts.

  12. Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)—Diagnosis and Management

    PubMed Central

    Rodd, Celia; Millette, Maude; Iacovazzo, Donato; Stiles, Craig E.; Barry, Sayka; Evanson, Jane; Albrecht, Steffen; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Trouillas, Jacqueline; Roncaroli, Federico; Sampson, Julian; Ellard, Sian

    2016-01-01

    Context: Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. Case Description: A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 μg/L; normal, <18 μg/L), IGF-1 (745 μg/L; normal, 64–369 μg/L), and fasting GH > 35.0 μg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. Conclusions: Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary. PMID:26982009

  13. DNA methylation intratumor heterogeneity in localized lung adenocarcinomas.

    PubMed

    Quek, Kelly; Li, Jun; Estecio, Marcos; Zhang, Jiexin; Fujimoto, Junya; Roarty, Emily; Little, Latasha; Chow, Chi-Wan; Song, Xingzhi; Behrens, Carmen; Chen, Taiping; William, William N; Swisher, Stephen; Heymach, John; Wistuba, Ignacio; Zhang, Jianhua; Futreal, Andrew; Zhang, Jianjun

    2017-03-28

    Cancers are composed of cells with distinct molecular and phenotypic features within a given tumor, a phenomenon termed intratumor heterogeneity (ITH). Previously, we have demonstrated genomic ITH in localized lung adenocarcinomas; however, the nature of methylation ITH in lung cancers has not been well investigated. In this study, we generated methylation profiles of 48 spatially separated tumor regions from 11 localized lung adenocarcinomas and their matched normal lung tissues using Illumina Infinium Human Methylation 450K BeadChip array. We observed methylation ITH within the same tumors, but to a much less extent compared to inter-individual heterogeneity. On average, 25% of all differentially methylated probes compared to matched normal lung tissues were shared by all regions from the same tumors. This is in contrast to somatic mutations, of which approximately 77% were shared events amongst all regions of individual tumors, suggesting that while the majority of somatic mutations were early clonal events, the tumor-specific DNA methylation might be associated with later branched evolution of these 11 tumors. Furthermore, our data showed that a higher extent of DNA methylation ITH was associated with larger tumor size (average Euclidean distance of 35.64 (> 3cm, median size) versus 27.24 (<= 3cm), p = 0.014), advanced age (average Euclidean distance of 34.95 (above 65) verse 28.06 (below 65), p = 0.046) and increased risk of postsurgical recurrence (average Euclidean distance of 35.65 (relapsed patients) versus 29.03 (patients without relapsed), p = 0.039).

  14. Antimutagenicity of amifostine against the anticancer drug fotemustine in the Drosophila somatic mutation and recombination (SMART) test.

    PubMed

    Aydemir, N; Sevim, N; Celikler, S; Vatan, O; Bilaloglu, R

    2009-01-01

    Amifostine (WR-2721), a phosphorylated aminothiol pro-drug, is a selective cytoprotective agent in normal tissue against the toxicities associated with chemotherapy and irradiation. Fotemustine is a cancer chemotherapeutic agent that belongs to an extremely active class of alkylating compounds. Amifostine was tested for antimutagenicity against fotemustine in the somatic mutation and recombination test (SMART) in Drosophila melanogaster. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr were treated at different concentrations (2, 4, and 8 microg/ml for fotemustine and, 1, 2, and 4 microg/ml for amifostine) of the test compounds; for the antimutagenicity study, 8 microg/ml fotemustine plus 1 and 2 microg/ml amifostine were tested. Fotemustine showed mutagenic and recombinagenic effects in both genotypes in the wing-spot test. Amifostine significantly reduced the mutagenic and recombinagenic effects of fotemustine.

  15. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm

    USDA-ARS?s Scientific Manuscript database

    Using whole-genome bisulfite sequencing (WGBS), we profiled the DNA methylome of cattle sperms through comparison with three bovine somatic tissues (mammary grand, brain and blood). Large differences between them were observed in the methylation patterns of global CpGs, pericentromeric satellites, p...

  16. Surgical anatomy of the retroperitoneal spaces, Part V: Surgical applications and complications.

    PubMed

    Mirilas, Petros; Skandalakis, John E

    2010-04-01

    Knowledge of the surgical anatomy of the retroperitoneum is crucial for surgery of the retroperitoneal organs. Surgery is essential for treatment of retroperitoneal pathologies. The list of these diseases is extensive and comprises acute and chronic inflammatory processes (abscess, injury, hematoma, idiopathic fibrosis), metastatic neoplasms, and primary neoplasms from fibroadipose tissue, connective tissue, smooth and striated muscle, vascular tissue, somatic and sympathetic nervous tissue, extraadrenal chromaffin tissue, and lymphatic tissue. The retroperitoneum can be approached and explored by several routes, including the transperitoneal route and the extraperitoneal route. The retroperitoneal approach to the iliac fossa is used for ectopic renal transplantation. Safe and reliable primary retroperitoneal access can be performed for laparoscopic exploration. The anatomic complications of retroperitoneal surgery are the complications of the organs located in several compartments of the retroperitoneal space. Complications may arise from incisions to the somatic wall, somatic nerves, blood and lymphatic vessels, lymph nodes, visceral autonomous plexuses, and neighboring splanchna.

  17. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation

    PubMed Central

    2017-01-01

    Ribosomal RNAs (rRNAs) are transcribed from two multicopy DNA arrays: the 5S ribosomal DNA (rDNA) array residing in a single human autosome and the 45S rDNA array residing in five human autosomes. The arrays are among the most variable segments of the genome, exhibit concerted copy number variation (cCNV), encode essential components of the ribosome, and modulate global gene expression. Here we combined whole genome data from >700 tumors and paired normal tissues to provide a portrait of rDNA variation in human tissues and cancers of diverse mutational signatures, including stomach and lung adenocarcinomas, ovarian cancers, and others of the TCGA panel. We show that cancers undergo coupled 5S rDNA array expansion and 45S rDNA loss that is accompanied by increased estimates of proliferation rate and nucleolar activity. These somatic changes in rDNA CN occur in a background of over 10-fold naturally occurring rDNA CN variation across individuals and cCNV of 5S-45S arrays in some but not all tissues. Analysis of genetic context revealed associations between cancer rDNA CN amplification or loss and the presence of specific somatic alterations, including somatic SNPs and copy number gain/losses in protein coding genes across the cancer genome. For instance, somatic inactivation of the tumor suppressor gene TP53 emerged with a strong association with coupled 5S expansion / 45S loss in several cancers. Our results uncover frequent and contrasting changes in the 5S and 45S rDNA along rapidly proliferating cell lineages with high nucleolar activity. We suggest that 5S rDNA amplification facilitates increased proliferation, nucleolar activity, and ribosomal synthesis in cancer, whereas 45S rDNA loss emerges as a byproduct of transcription-replication conflict in rapidly replicating tumor cells. The observations raise the prospects of using the rDNA arrays as re-emerging targets for the design of novel strategies in cancer therapy. PMID:28880866

  18. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons

    PubMed Central

    Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.

    2017-01-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516

  19. Somatic Mutations in NEK9 Cause Nevus Comedonicus

    PubMed Central

    Levinsohn, Jonathan L.; Sugarman, Jeffrey L.; McNiff, Jennifer M.; Antaya, Richard J.; Choate, Keith A.

    2016-01-01

    Acne vulgaris (AV) affects most adolescents, and of those affected, moderate to severe disease occurs in 20%. Comedones, follicular plugs consisting of desquamated keratinocytes and sebum, are central to its pathogenesis. Despite high heritability in first-degree relatives, AV genetic determinants remain incompletely understood. We therefore employed whole-exome sequencing (WES) in nevus comedonicus (NC), a rare disorder that features comedones and inflammatory acne cysts in localized, linear configurations. WES identified somatic NEK9 mutations, each affecting highly conserved residues within its kinase or RCC1 domains, in affected tissue of three out of three NC-affected subjects. All mutations are gain of function, resulting in increased phosphorylation at Thr210, a hallmark of NEK9 kinase activation. We found that comedo formation in NC is marked by loss of follicular differentiation markers, expansion of keratin-15-positive cells from localization within the bulge to the entire sub-bulge follicle and cyst, and ectopic expression of keratin 10, a marker of interfollicular differentiation not present in normal follicles. These findings suggest that NEK9 mutations in NC disrupt normal follicular differentiation and identify NEK9 as a potential regulator of follicular homeostasis. PMID:27153399

  20. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    PubMed

    Couldrey, Christine; Wells, David N

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low.

  1. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    PubMed Central

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low. PMID:23383311

  2. Somatic Embryogenesis in Horse Chestnut (Aesculus hippocastanum L.).

    PubMed

    Capuana, Maurizio

    2016-01-01

    Embryogenic cultures of horse chestnut (Aesculus hippocastanum L.) can be obtained from different organs and tissues. We describe here the induction from stamen filaments and the procedures applied for the successive phases of somatic embryo development and maturation. Embryogenic tissues are obtained on Murashige and Skoog medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. Somatic embryos develop after transfer to hormone-free medium enriched with glutamine. Maturation and germination of isolated embryos are achieved by transfer to medium containing polyethylene glycol 4000 and activated charcoal, successive desiccation treatment, and cold storage at 4 °C for 8 weeks.

  3. Concise reviews: cancer stem cells: from concept to cure.

    PubMed

    Matchett, K B; Lappin, T R

    2014-10-01

    In 1953, noting a remarkable consistency between the agents causing mutations and those associated with cancer, Carl Nordling, a Finnish-born architect, proposed that cancer results from an accumulation of genetic mutations. It is now generally accepted that inherited mutations and environmental carcinogens can lead to the development of premalignant clones. After further mutations, one cell reaches a critical state which confers a survival or growth advantage over normal cells. Such cells have the ability to initiate a malignant tumour. They share many of the features of normal stem cells, including the capacity for self-renewal and differentiation, and are widely termed cancer stem cells (CSCs). Although CSCs have been well characterized in hematological malignancies, their existence in some other tissues has been questioned. Here, we review recent work in which stem cells and stem cell-like cells have been used to investigate the pathogenesis of cancer and potential anticancer treatment strategies, in the context of both hematological and somatic tissue disease. © 2014 AlphaMed Press.

  4. A DNA methylation map of human cancer at single base-pair resolution.

    PubMed

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-10-05

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.

  5. Cell lineage analysis in human brain using endogenous retroelements

    PubMed Central

    Evrony, Gilad D.; Lee, Eunjung; Mehta, Bhaven K.; Benjamini, Yuval; Johnson, Robert M.; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S.; Park, Peter J.; Walsh, Christopher A.

    2015-01-01

    Summary Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sub-lineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development, and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347

  6. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  7. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  8. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    PubMed

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons.

    PubMed

    Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2017-04-01

    5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements.

    PubMed

    Benni, Paul B; MacLeod, David; Ikeda, Keita; Lin, Hung-Mo

    2018-04-01

    We describe the validation methodology for the NIRS based FORE-SIGHT ELITE ® (CAS Medical Systems, Inc., Branford, CT, USA) tissue oximeter for cerebral and somatic tissue oxygen saturation (StO 2 ) measurements for adult subjects submitted to the United States Food and Drug Administration (FDA) to obtain clearance for clinical use. This validation methodology evolved from a history of NIRS validations in the literature and FDA recommended use of Deming regression and bootstrapping statistical validation methods. For cerebral validation, forehead cerebral StO 2 measurements were compared to a weighted 70:30 reference (REF CX B ) of co-oximeter internal jugular venous and arterial blood saturation of healthy adult subjects during a controlled hypoxia sequence, with a sensor placed on the forehead. For somatic validation, somatic StO 2 measurements were compared to a weighted 70:30 reference (REF CX S ) of co-oximetry central venous and arterial saturation values following a similar protocol, with sensors place on the flank, quadriceps muscle, and calf muscle. With informed consent, 25 subjects successfully completed the cerebral validation study. The bias and precision (1 SD) of cerebral StO 2 compared to REF CX B was -0.14 ± 3.07%. With informed consent, 24 subjects successfully completed the somatic validation study. The bias and precision of somatic StO 2 compared to REF CX S was 0.04 ± 4.22% from the average of flank, quadriceps, and calf StO 2 measurements to best represent the global whole body REF CX S . The NIRS validation methods presented potentially provide a reliable means to test NIRS monitors and qualify them for clinical use.

  11. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    PubMed

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

  12. Expression of M6 and M7 lysin in Mytilus edulis is not restricted to sperm, but occurs also in oocytes and somatic tissue of males and females.

    PubMed

    Heß, Anne-Katrin; Bartel, Manuela; Roth, Karina; Messerschmidt, Katrin; Heilmann, Katja; Kenchington, Ellen; Micheel, Burkhard; Stuckas, Heiko

    2012-08-01

    Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26-AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male-specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females. Copyright © 2012 Wiley Periodicals, Inc.

  13. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    NASA Astrophysics Data System (ADS)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  14. A Novel Class of Somatic Small RNAs Similar to Germ Cell Pachytene PIWI-interacting Small RNAs*

    PubMed Central

    Ortogero, Nicole; Schuster, Andrew S.; Oliver, Daniel K.; Riordan, Connor R.; Hong, Annie S.; Hennig, Grant W.; Luong, Dickson; Bao, Jianqiang; Bhetwal, Bhupal P.; Ro, Seungil; McCarrey, John R.; Yan, Wei

    2014-01-01

    PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that bind PIWI family proteins exclusively expressed in the germ cells of mammalian gonads. MIWI2-associated piRNAs are essential for silencing transposons during primordial germ cell development, and MIWI-bound piRNAs are required for normal spermatogenesis during adulthood in mice. Although piRNAs have long been regarded as germ cell-specific, increasing lines of evidence suggest that somatic cells also express piRNA-like RNAs (pilRNAs). Here, we report the detection of abundant pilRNAs in somatic cells, which are similar to MIWI-associated piRNAs mainly expressed in pachytene spermatocytes and round spermatids in the testis. Based on small RNA deep sequencing and quantitative PCR analyses, pilRNA expression is dynamic and displays tissue specificity. Although pilRNAs are similar to pachytene piRNAs in both size and genomic origins, they have a distinct ping-pong signature. Furthermore, pilRNA biogenesis appears to utilize a yet to be identified pathway, which is different from all currently known small RNA biogenetic pathways. In addition, pilRNAs appear to preferentially target the 3′-UTRs of mRNAs in a partially complementary manner. Our data suggest that pilRNAs, as an integral component of the small RNA transcriptome in somatic cell lineages, represent a distinct population of small RNAs that may have functions similar to germ cell piRNAs. PMID:25320077

  15. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    PubMed Central

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  16. Micropropagation of Iris sp.

    PubMed

    Jevremović, Slađana; Jeknić, Zoran; Subotić, Angelina

    2013-01-01

    Irises are perennial plants widely used as ornamental garden plants or cut flowers. Some species accumulate secondary metabolites, making them highly valuable to the pharmaceutical and perfume industries. Micropropagation of irises has successfully been accomplished by culturing zygotic embryos, different flower parts, and leaf base tissues as starting explants. Plantlets are regenerated via somatic embryogenesis, organogenesis, or both processes at the same time depending on media composition and plant species. A large number of uniform plants are produced by somatic embryogenesis, however, some species have decreased morphogenetic potential overtime. Shoot cultures obtained by organogenesis can be multiplied for many years. Somatic embryogenic tissue can be reestablished from leaf bases of in vitro-grown shoots. The highest number of plants can be obtained by cell suspension cultures. This chapter describes effective in vitro plant regeneration protocols for Iris species from different types of explants by somatic embryogenesis and/or organogenesis suitable for the mass propagation of ornamental and pharmaceutical irises.

  17. DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue

    PubMed Central

    Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.

    2010-01-01

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue. PMID:20081831

  18. Differential expression of Oct4 variants and pseudogenes in normal urothelium and urothelial cancer.

    PubMed

    Wezel, Felix; Pearson, Joanna; Kirkwood, Lisa A; Southgate, Jennifer

    2013-10-01

    The transcription factor octamer-binding protein 4 (Oct4; encoded by POU5F1) has a key role in maintaining embryonic stem cell pluripotency during early embryonic development and it is required for generation of induced pluripotent stem cells. Controversy exists concerning Oct4 expression in somatic tissues, with reports that Oct4 is expressed in normal and in neoplastic urothelium carrying implications for a bladder cancer stem cell phenotype. Here, we show that the pluripotency-associated Oct4A transcript was absent from cultures of highly regenerative normal human urothelial cells and from low-grade to high-grade urothelial carcinoma cell lines, whereas alternatively spliced variants and transcribed pseudogenes were expressed in abundance. Immunolabeling and immunoblotting studies confirmed the absence of Oct4A in normal and neoplastic urothelial cells and tissues, but indicated the presence of alternative isoforms or potentially translated pseudogenes. The stable forced expression of Oct4A in normal human urothelial cells in vitro profoundly inhibited growth and affected morphology, but protein expression was rapidly down-regulated. Our findings demonstrate that pluripotency-associated isoform Oct4A is not expressed by normal or malignant human urothelium and therefore is unlikely to play a role in a cancer stem cell phenotype. However, our findings also indicate that urothelium expresses a variety of other Oct4 splice-variant isoforms and transcribed pseudogenes that warrant further study. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Somatic Point Mutation Calling in Low Cellularity Tumors

    PubMed Central

    Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.

    2013-01-01

    Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782

  20. A DNA methylation map of human cancer at single base-pair resolution

    PubMed Central

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-01-01

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523

  1. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.

    PubMed

    Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J

    2015-05-15

    Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    PubMed

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  3. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  4. Cancer related gene alterations can be detected with next-generation sequencing analysis of bile in diffusely infiltrating type cholangiocarcinoma.

    PubMed

    Lee, Chang Hun; Wang, Hong En; Seo, Seung Young; Kim, Seong Hun; Kim, In Hee; Kim, Sang Wook; Lee, Soo Teik; Kim, Dae Ghon; Han, Myung Kwan; Lee, Seung Ok

    2016-08-01

    Genome-wide association study in diffusely infiltrating type cholangiocarcinoma (CC) can be limited due to the difficulty of obtaining tumor tissue. We aimed to evaluate the genomic alterations of diffusely infiltrating type CC using next-generation sequencing (NGS) of bile and to compare the variations with those of mass-forming type CC. A total of 24 bile samples obtained during endoscopic retrograde cholangiopancreatography (ERCP) and 17 surgically obtained tumor tissue samples were evaluated. Buffy coat and normal tissue samples were used as controls for a somatic mutation analysis. After extraction of genomic DNA, NGS analysis was performed for 48 cancer related genes. There were 27 men and 14 women with a mean age of 65.0±11.8years. The amount of extracted genomic DNA from 3cm(3) of bile was 66.0±84.7μg and revealed a high depth of sequencing coverage. All of the patients had genomic variations, with an average number of 19.4±2.8 and 22.3±3.3 alterations per patient from the bile and tumor tissue, respectively. After filtering process, damaging SNPs (8 sites for each type of CC) were predicted by analyzing tools, and their target genes showed relevant differences between the diffusely infiltrating and mass-forming type CC. Finally, in somatic mutation analysis, tumor-normal paired 14 tissue and 6 bile samples were analyzed, genomic alterations of EGFR, FGFR1, ABL1, PIK3CA, and CDKN2A gene were seen in the diffusely infiltrating type CC, and TP53, KRAS, APC, GNA11, ERBB4, ATM, SMAD4, BRAF, and IDH1 were altered in the mass-forming type CC group. STK11, GNAQ, RB1, KDR, and SMO genes were revealed in both groups. The NGS analysis was feasible with bile sample and diffusely infiltrating type CC revealed genetic differences compared with mass-forming type CC. Genome-wide association study could be performed using bile sample in the patients with CC undergoing ERCP and a different genetic approach for accurate diagnosis, pathogenesis study, and targeted therapy will be needed in diffusely infiltrating type CC. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Psychological comorbidities and their relationship to self-reported handicap in samples of dizzy patients.

    PubMed

    Piker, Erin G; Jacobson, Gary P; McCaslin, Devin L; Grantham, Sarah L

    2008-04-01

    Factors such as anxiety, depression, somatic awareness, autonomic symptoms, and differences in coping strategies are known to affect dizziness handicap. We studied these factors in 63 consecutive "dizzy" patients. This sample was subgrouped into normals and patients with benign paroxysmal positional vertigo, compensated and uncompensated unilateral peripheral vestibular system impairment, or abnormal vestibular evoked myogenic potential as a single significant diagnostic finding. Results showed that (1) anxiety and depression occur with greater frequency in dizzy patients than in the normal population; (2) the magnitude of anxiety, depression, somatization, and autonomic symptoms does not differ significantly in subgroups of patients; (3) women tended to report greater handicap and somatic/autonomic symptoms; and (4) Dizziness Handicap Inventory total scores were correlated with patients' complaints of somatic/autonomic symptoms, anxiety, depression, and coping strategies. These findings suggest that self-reported measures represent unique pieces of information important for the management of dizzy patients.

  6. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data.

    PubMed

    Zhang, Zhongyang; Hao, Ke

    2015-11-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity.

  7. SAAS-CNV: A Joint Segmentation Approach on Aggregated and Allele Specific Signals for the Identification of Somatic Copy Number Alterations with Next-Generation Sequencing Data

    PubMed Central

    Zhang, Zhongyang; Hao, Ke

    2015-01-01

    Cancer genomes exhibit profound somatic copy number alterations (SCNAs). Studying tumor SCNAs using massively parallel sequencing provides unprecedented resolution and meanwhile gives rise to new challenges in data analysis, complicated by tumor aneuploidy and heterogeneity as well as normal cell contamination. While the majority of read depth based methods utilize total sequencing depth alone for SCNA inference, the allele specific signals are undervalued. We proposed a joint segmentation and inference approach using both signals to meet some of the challenges. Our method consists of four major steps: 1) extracting read depth supporting reference and alternative alleles at each SNP/Indel locus and comparing the total read depth and alternative allele proportion between tumor and matched normal sample; 2) performing joint segmentation on the two signal dimensions; 3) correcting the copy number baseline from which the SCNA state is determined; 4) calling SCNA state for each segment based on both signal dimensions. The method is applicable to whole exome/genome sequencing (WES/WGS) as well as SNP array data in a tumor-control study. We applied the method to a dataset containing no SCNAs to test the specificity, created by pairing sequencing replicates of a single HapMap sample as normal/tumor pairs, as well as a large-scale WGS dataset consisting of 88 liver tumors along with adjacent normal tissues. Compared with representative methods, our method demonstrated improved accuracy, scalability to large cancer studies, capability in handling both sequencing and SNP array data, and the potential to improve the estimation of tumor ploidy and purity. PMID:26583378

  8. Widespread hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral impulse input and placebo/nocebo factors: Evidence from human psychophysics, animal models, and neuroimaging

    PubMed Central

    Price, Donald D.; Craggs, Jason G.; Zhou, QiQi; Verne, G. Nicholas; Perlstein, William M.; Robinson, Michael E.

    2010-01-01

    Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder that is often accompanied by both visceral and somatic hyperalgesia (enhanced pain from colorectal and somatic stimuli). Neural mechanisms of both types of hyperalgesia have been analyzed by neuroimaging studies of IBS patients and animal analog studies of “IBS-like” rats with delayed rectal and somatic hypersensitivity. Results from these studies suggest that pains associated with both visceral and widespread secondary cutaneous hyperalgesia are dynamically maintained by tonic impulse input from the non-inflamed colon and/or rectum and by brain-to-spinal cord facilitation. Enhanced visceral and somatic pains are accompanied by enhanced pain-related brain activity in IBS patients as compared to normal control subjects; placebos can normalize both their hyperalgesia and enhanced brain activity. That pain in IBS which is likely to be at least partly maintained by peripheral impulse input from the colon/rectum is supported by results showing that local rectal–colonic anesthesia normalizes visceral and somatic hyperalgesia in IBS patients and visceral and somatic hypersensitivity in “IBS-like” rats. Yet these forms of hyperalgesia are also highly modifiable by placebo and nocebo factors (e.g., expectations of relief or distress, respectively). Our working hypothesis is that synergistic interactions occur between placebo/nocebo factors and enhanced afferent processing so as to enhance, maintain, or reduce hyperalgesia in IBS. This explanatory model may be relevant to other persistent pain conditions. PMID:19375508

  9. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma.

    PubMed

    Zhou, Bin; Irwanto, Astrid; Guo, Yun-Miao; Bei, Jin-Xin; Wu, Qiao; Chen, Ge; Zhang, Tai-Ping; Lei, Jin-Jv; Feng, Qi-Sheng; Chen, Li-Zhen; Liu, Jianjun; Zhao, Yu-Pei

    2012-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers with more than 94% mortality rate mainly due to the widespread metastases. To find out the somatically mutated genes related to the metastasis of PDAC, we analyzed the matched tumor and normal tissue samples from a patient diagnosed with liver metastatic PDAC using intensive exome capture-sequencing analysis (> 170× coverage). Searching for the somatic mutations that drive the clonal expansion of metastasis, we identified 12 genes with higher allele frequencies (AFs) of functional mutations in the metastatic tumor, including known genes KRAS and TP53 for metastasis. Of the 10 candidate genes, 6 (ADRB1, DCLK1, KCNH2, NOP14, SIGLEC1, and ZC3H7A), together with KRAS and TP53, were clustered into a single network (p value = 1 × 10(-22)) that is related to cancer development. Moreover, these candidate genes showed abnormal expression in PDAC tissues and functional impacts on the migration, proliferation, and colony formation abilities of pancreatic cancer cell lines. Furthermore, through digital PCR analysis, we revealed potential genomic mechanisms for the KRAS and TP53 mutations in the metastatic tumor. Taken together, our study shows the possibility for such personalized genomic profiling to provide new biological insight into the metastasis of PDAC.

  10. Mutations in Mitochondrial DNA From Pancreatic Ductal Adenocarcinomas Associate With Survival Times of Patients and Accumulate as Tumors Progress.

    PubMed

    Hopkins, Julia F; Denroche, Robert E; Aguiar, Jennifer A; Notta, Faiyaz; Connor, Ashton A; Wilson, Julie M; Stein, Lincoln D; Gallinger, Steven; Boutros, Paul C

    2018-05-01

    Somatic mutations have been found in the mitochondria in different types of cancer cells, but it is not clear whether these affect tumorigenesis or tumor progression. We analyzed mitochondrial genomes of 268 early-stage, resected pancreatic ductal adenocarcinoma tissues and paired non-tumor tissues. We defined a mitochondrial somatic mutation (mtSNV) as a position where the difference in heteroplasmy fraction between tumor and normal sample was ≥0.2. Our analysis identified 304 mtSNVs, with at least 1 mtSNV in 61% (164 of 268) of tumor samples. The noncoding control region had the greatest proportion of mtSNVs (60 of 304 mutations); this region contains sites that regulate mitochondrial DNA transcription and replication. Frequently mutated genes included ND5, RNR2, and CO1, plus 29 mutations in transfer RNA genes. mtSNVs in 2 separate mitochondrial genes (ND4 and ND6) were associated with shorter overall survival time. This association appeared to depend on the level of mtSNV heteroplasmy. Non-random co-occurrence between mtSNVs and mutations in nuclear genes indicates interactions between nuclear and mitochondrial DNA. In an analysis of primary tumors and metastases from 6 patients, we found tumors to accumulate mitochondrial mutational mutations as they progress. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Bridging the divide

    PubMed Central

    McLean, Peter F; Cooley, Lynn

    2014-01-01

    Ring canals are made from arrested cleavage furrows, and provide direct cytoplasmic connections among sibling cells. They are well documented for their participation in Drosophila oogenesis, but little is known about their role in several somatic tissues in which they are also found. Using a variety of genetic tools in live and fixed tissue, we recently demonstrated that rapid intercellular exchange occurs through somatic ring canals by diffusion, and presented evidence that ring canals permit equilibration of protein among transcriptionally mosaic cells. We also used a novel combination of markers to evaluate the extent of protein movement within and across mitotic clones in follicle cells and imaginal discs, providing evidence of robust movement of GFP between the 2 sides of mitotic clones and frequently into non-recombined cells. These data suggest that, depending on the experimental setup and proteins of interest, inter-clonal diffusion of protein may alter the interpretation of clonal data in follicle cells. Here, we discuss these results and provide additional insight into the impact of ring canals in Drosophila somatic tissues. PMID:24406334

  12. Technical note: Selection of suitable reference genes for studying gene expression in milk somatic cell of yak (Bos grunniens) during the lactation cycle.

    PubMed

    Bai, W L; Yin, R H; Zhao, S J; Jiang, W Q; Yin, R L; Ma, Z J; Wang, Z Y; Zhu, Y B; Luo, G B; Yang, R J; Zhao, Z H

    2014-02-01

    Quantitative real-time PCR is the most sensitive technique for gene expression analysis. Data normalization is essential to correct for potential errors incurred in all steps from RNA isolation to PCR amplification. The commonly accepted approach for normalization is the use of reference gene. Until now, no suitable reference genes have been available for data normalization of gene expression in milk somatic cells of lactating yaks across lactation. In the present study, we evaluated the transcriptional stability of 10 candidate reference genes in milk somatic cells of lactating yak, including ACTB, B2M, GAPDH, GTP, MRPL39, PPP1R11, RPS9, RPS15, UXT, and RN18S1. Four genes, RPS9, PPP1R11, UXT, and MRPL39, were identified as being the most stable genes in milk somatic cells of lactating yak. Using the combination of RPS9, PPP1R11, UXT, and MRPL39 as reference genes, we further assessed the relative expression of 4 genes of interest in milk somatic cells of yak across lactation, including ELF5, ABCG2, SREBF2, and DGAT1. Compared with expression in colostrum, the overall transcription levels of ELF5, ABCG2, and SREBF2 in milk were found to be significantly upregulated in early, peak, and late lactation, and significantly downregulated thereafter, before the dry period. A similar pattern was observed in the relative expression of DGAT1, but no significant difference was revealed in its expression in milk from late lactation compared with colostrum. Based on these results, we suggest that the geometric mean of RPS9, PPP1R11, UXT, and MRPL39 can be used for normalization of real-time PCR data in milk somatic cells of lactating yak, if similar experiments are performed. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A feasibility study of colorectal cancer diagnosis via circulating tumor DNA derived CNV detection.

    PubMed

    Molparia, Bhuvan; Oliveira, Glenn; Wagner, Jennifer L; Spencer, Emily G; Torkamani, Ali

    2018-01-01

    Circulating tumor DNA (ctDNA) has shown great promise as a biomarker for early detection of cancer. However, due to the low abundance of ctDNA, especially at early stages, it is hard to detect at high accuracies while keeping sequencing costs low. Here we present a pilot stage study to detect large scale somatic copy numbers variations (CNVs), which contribute more molecules to ctDNA signal compared to point mutations, via cell free DNA sequencing. We show that it is possible to detect somatic CNVs in early stage colorectal cancer (CRC) patients and subsequently discriminate them from normal patients. With 25 normal and 24 CRC samples, we achieve 100% specificity (lower bound confidence interval: 86%) and ~79% sensitivity (95% confidence interval: 63% - 95%,), though the performance should be considered with caution given the limited sample size. We report a lack of concordance between the CNVs detected via cfDNA sequencing and CNVs identified in parent tissue samples. However, recent findings suggest that a lack of concordance is expected for CNVs in CRC because of their sub-clonal nature. Finally, the CNVs we detect very likely contribute to cancer progression as they lie in functionally important regions, and have been shown to be associated with CRC specifically. This study paves the path for a larger scale exploration of the potential of CNV detection for both diagnoses and prognoses of cancer.

  14. Covariation of axon initial segment location and dendritic tree normalizes the somatic action potential

    PubMed Central

    Hamada, Mustafa S.; Goethals, Sarah; de Vries, Sharon I.; Brette, Romain

    2016-01-01

    In mammalian neurons, the axon initial segment (AIS) electrically connects the somatodendritic compartment with the axon and converts the incoming synaptic voltage changes into a temporally precise action potential (AP) output code. Although axons often emanate directly from the soma, they may also originate more distally from a dendrite, the implications of which are not well-understood. Here, we show that one-third of the thick-tufted layer 5 pyramidal neurons have an axon originating from a dendrite and are characterized by a reduced dendritic complexity and thinner main apical dendrite. Unexpectedly, the rising phase of somatic APs is electrically indistinguishable between neurons with a somatic or a dendritic axon origin. Cable analysis of the neurons indicated that the axonal axial current is inversely proportional to the AIS distance, denoting the path length between the soma and the start of the AIS, and to produce invariant somatic APs, it must scale with the local somatodendritic capacitance. In agreement, AIS distance inversely correlates with the apical dendrite diameter, and model simulations confirmed that the covariation suffices to normalize the somatic AP waveform. Therefore, in pyramidal neurons, the AIS location is finely tuned with the somatodendritic capacitive load, serving as a homeostatic regulation of the somatic AP in the face of diverse neuronal morphologies. PMID:27930291

  15. The growth and dynamics of Ensis directus in the near-shore Dutch coastal zone of the North Sea

    NASA Astrophysics Data System (ADS)

    Witbaard, Rob; Duineveld, Gerard C. A.; Bergman, Magda J. N.; Witte, Hans IJ.; Groot, Lennart; Rozemeijer, Marcel J. C.

    2015-01-01

    Here we present data on the wax and wane of a subtidal Ensis directus population which settled in 2009 off the coast of Egmond (North Holland Coast in The Netherlands). Initial densities decreased from a maximum of 700 m- 2 in early 2010 to about 50 m- 2 in June 2013. In this period the average length increased from ~ 4 cm to ~ 12 cm. In 2011-2012 the population was sampled at 3 to 6 week intervals and near bottom environmental conditions were monitored continuously. Samples of animals that were collected were used to follow the change in gonadal mass, tissue glycogen content, tissue weight and shell length. On the basis of these data well defined seasonal cycles were observed. The data indicate that the maturation of gonadal tissue already starts early in the year, initially at the expense of somatic tissue. Main spawning takes place in May. After spawning net somatic tissue growth starts after compensation of losses due to spawning. Somatic growth precedes shell growth which starts at water temperatures exceeding 12-14 °C. Mortality, growth and production are comparable to those found for populations in close-by intertidal areas. As such there is no indication that this offshore population significantly suffers from nearby beach nourishments along the Dutch Coast.

  16. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    PubMed

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less

  18. Reporter gene expression in fish following cutaneous infection with pantropic retroviral vectors.

    PubMed

    Paul, T A; Burns, J C; Shike, H; Getchell, R; Bowser, P R; Whitlock, K E; Casey, J W

    2001-06-01

    A central issue in gene delivery systems is choosing promoters that will direct defined and sustainable levels of gene expression. Pantropic retroviral vectors provide a means to insert genes into either somatic or germline cells. In this study, we focused on somatic cell infection by evaluating the activity of 3 promoters inserted by vectors into fish cell lines and fish skin using pantropic retroviruses. In bluegill and zebrafish cell lines, the highest levels of luciferase expression were observed from the 5' murine leukemia virus long terminal repeat of the retroviral vector. The Rous sarcoma virus long terminal repeat and cytomegalovirus early promoter, as internal promoters, generated lower levels of luciferase. Luciferase reporter vectors infected zebrafish skin, as measured by the presence of viral DNA, and expressed luciferase. We infected developing walleye dermal sarcomas with retroviral vectors to provide an environment with enhanced cell proliferation, a condition necessary for integration of the provirus into the host genome. We demonstrated a 4-fold to 7-fold increase in luciferase gene expression in tumor tissue over infections in normal walleye skin.

  19. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    PubMed Central

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  20. Use of telomerase to create bioengineered tissues.

    PubMed

    Shay, Jerry W; Wright, Woodring E

    2005-12-01

    Telomeres are repetitive DNA (TTAGGG) elements at the ends of chromosomes. Telomerase is a ribonucleoprotein complex that catalyzes the addition of telomeric sequences to the ends of chromosomes. The catalytic protein component of telomerase (hTERT) is expressed only in specific germ line cells, proliferative stem cells of renewal tissues, and cancer cells. The expression of hTERT in normal cells reconstitutes telomerase activity and circumvents the induction of senescence. Telomeres shorten with each cell division, eventually leading to senescence (aging), due to incomplete lagging DNA strand synthesis and end-processing events, and because telomerase activity is not detected in most somatic tissues. There are specific tissues and locations in which replicative senescence likely contributes to the decline in human physiological function with increased age and with chronic illnesses. While expressing hTERT in cells results in the maintenance of telomere length and greatly extended life span, blocking replicative aging systemically would be predicted to increase the potential for tumor formation. However, there are many situations in which the transient rejuvenation of cells could be beneficial. Ectopic expression of hTERT has been shown to immortalize human skin keratinocytes, dermal fibroblasts, muscle satellite (stem), and vascular endothelial, myometrial, retinal-pigmented, and breast epithelial cells. In addition, human bronchial, corneal and skin cells expressing hTERT can be used to form organotypic (3D) cultures (bioengineered tissues) that express differentiation-specific proteins, demonstrating that hTERT by itself does not alter normal physiology. The production of hTERT-engineered tissues offers the possibility of producing tissues to treat a variety of chronic diseases and age-related medical conditions that are due to telomere-based replicative senescence.

  1. Induction of Female-to-Male Sex Change in Adult Zebrafish by Aromatase Inhibitor Treatment

    NASA Astrophysics Data System (ADS)

    Takatsu, Kanae; Miyaoku, Kaori; Roy, Shimi Rani; Murono, Yuki; Sago, Tomohiro; Itagaki, Hideyuki; Nakamura, Masaru; Tokumoto, Toshinobu

    2013-12-01

    This study investigated whether undifferentiated germ and/or somatic stem cells remain in the differentiated ovary of a species that does not undergo sex changes under natural conditions and retain their sexual plasticity. The effect of aromatase inhibitor (AI)-treatment on sexually mature female zebrafish was examined. A 5-month AI treatment caused retraction of the ovaries after which testes-like organs appeared, and cyst structures filled with spermatozoa-like cells were observed in sections of these tissues. Electron microscopic observations revealed that these cells appeared as large sperm heads without tails. Sperm formation was re-examined after changing the diet to an AI-free food. A large number of normal sperm were obtained after eight weeks, and no formation of ovarian tissue was observed. Artificial fertilization using sperm from the sex-changed females was successful. These results demonstrated that sex plasticity remains in the mature ovaries of this species.

  2. A novel molecular diagnostics platform for somatic and germline precision oncology.

    PubMed

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.

  3. Legal basis of the Advanced Therapies Regulation.

    PubMed

    Jekerle, V; Schröder, C; Pedone, E

    2010-01-01

    Advanced therapy medicinal products consist of gene therapy, somatic cell therapy and tissue engineered products. Due to their specific manufacturing process and mode of action these products require specially tailored legislation. With Regulation (EC) No. 1394/2007, these needs have been met. Definitions of gene therapy, somatic cell therapy and tissue engineered products were laid down. A new committee, the Committee for Advanced Therapies, was founded, special procedures such as the certification procedure for small- and medium-sized enterprises were established and the technical requirements for Marketing Authorisation Applications (quality, non-clinical and clinical) were revised.

  4. Analysis of cytoplasmic genomes in somatic hybrids between navel orange (Citrus sinensis Osb.) and 'Murcott' tangor.

    PubMed

    Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I

    1991-07-01

    Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.

  5. Characteristics, changes and influence of body composition during a 4486 km transcontinental ultramarathon: results from the Transeurope Footrace mobile whole body MRI-project

    PubMed Central

    2013-01-01

    Background Almost nothing is known about the medical aspects of runners doing a transcontinental ultramarathon over several weeks. The results of differentiated measurements of changes in body composition during the Transeurope Footrace 2009 using a mobile whole body magnetic resonance (MR) imager are presented and the proposed influence of visceral and somatic adipose and lean tissue distribution on performance tested. Methods 22 participants were randomly selected for the repeated MR measurements (intervals: 800 km) with a 1.5 Tesla MR scanner mounted on a mobile unit during the 64-stage 4,486 km ultramarathon. A standardized and validated MRI protocol was used: T1 weighted turbo spin echo sequence, echo time 12 ms, repetition time 490 ms, slice thickness 10 mm, slice distance 10 mm (breath holding examinations). For topographic tissue segmentation and mapping a modified fuzzy c-means algorithm was used. A semi-automatic post-processing of whole body MRI data sets allows reliable analysis of the following body tissue compartments: Total body volume (TV), total somatic (TSV) and total visceral volume (TVV), total adipose (TAT) and total lean tissue (TLT), somatic (SLT) and visceral lean tissue (VLT), somatic (SAT) and visceral adipose tissue (VAT) and somatic adipose soft tissue (SAST). Specific volume changes were tested on significance. Tests on difference and relationship regarding prerace and race performance and non-finishing were done using statistical software SPSS. Results Total, somatic and visceral volumes showed a significant decrease throughout the race. Adipose tissue showed a significant decrease compared to the start at all measurement times for TAT, SAST and VAT. Lean adipose tissues decreased until the end of the race, but not significantly. The mean relative volume changes of the different tissue compartments at the last measurement compared to the start were: TV −9.5% (SE 1.5%), TSV −9.4% (SE 1.5%), TVV −10.0% (SE 1.4%), TAT −41.3% (SE 2.3%), SAST −48.7% (SE 2.8%), VAT −64.5% (SE 4.6%), intraabdominal adipose tissue (IAAT) −67.3% (SE 4.3%), mediastinal adopose tissue (MAT) −41.5% (SE 7.1%), TLT −1.2% (SE 1.0%), SLT −1.4% (SE 1.1%). Before the start and during the early phase of the Transeurope Footrace 2009, the non-finisher group had a significantly higher percentage volume of TVV, TAT, SAST and VAT compared to the finisher group. VAT correlates significantly with prerace training volume and intensity one year before the race and with 50 km- and 24 hour-race records. Neither prerace body composition nor specific tissue compartment volume changes showed a significant relationship to performance in the last two thirds of the Transeurope Footrace 2009. Conclusions With this mobile MRI field study the complex changes in body composition during a multistage ultramarathon could be demonstrated in detail in a new and differentiated way. Participants lost more than half of their adipose tissue. Even lean tissue volume (mainly skeletal muscle tissue) decreased due to the unpreventable chronic negative energy balance during the race. VAT has the fastest and highest decrease compared to SAST and lean tissue compartments during the race. It seems to be the most sensitive morphometric parameter regarding the risk of non-finishing a transcontinental footrace and shows a direct relationship to prerace-performance. However, body volume or body mass and, therefore, fat volume has no correlation with total race performances of ultra-athletes finishing a 4,500 km multistage race. PMID:23657091

  6. Attribution of somatic symptoms in hypochondriasis.

    PubMed

    Neng, Julia M B; Weck, Florian

    2015-01-01

    The misinterpretation of bodily symptoms as an indicator of a serious illness is a key feature of the criteria and the cognitive-behavioural models of hypochondriasis. Previous research suggests that individuals suffering from health anxiety endorse attributions of physical disease, whereas persons with elevated general anxiety have the tendency to attribute psychological causes to their symptoms. However, whether a somatic attribution style is specific to patients with hypochondriasis, as opposed to those with anxiety disorders, has not yet been investigated and is therefore part of the present study. Fifty patients with hypochondriasis, 50 patients with a primary anxiety disorder and 50 healthy participants were presented with nine common bodily sensations and had to spontaneously attribute possible causes to the symptoms. Patients with hypochondriasis differed from patients with anxiety disorders and healthy controls in giving significantly fewer normalizing explanations, but attributing more often in terms of moderate or serious diseases. Patients with anxiety disorders also made significantly fewer normalizing attributions and more somatic attributions to a severe illness than healthy controls. There were no differences between the groups in the frequency of psychological attributions and somatic attributions concerning mild diseases. The present study demonstrates that hypochondriasis is associated with a disorder-specific attribution style connecting somatic symptoms primarily with moderate and serious diseases. By contrast, normalizing attributions are largely omitted from consideration by patients with hypochondriasis. The findings conform with the cognitive conception of hypochondriasis and support the strategy of modifying symptom attributions, as practiced in cognitive-behavioural therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    PubMed

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  8. Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington’s Disease

    PubMed Central

    Budworth, Helen; Harris, Faye R.; Williams, Paul; Lee, Do Yup; Holt, Amy; Pahnke, Jens; Szczesny, Bartosz; Acevedo-Torres, Karina; Ayala-Peña, Sylvette; McMurray, Cynthia T.

    2015-01-01

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible. PMID:26247199

  9. Visceral and somatic pain modalities reveal NaV1.7‐independent visceral nociceptive pathways

    PubMed Central

    Hockley, James R. F.; González‐Cano, Rafael; McMurray, Sheridan; Tejada‐Giraldez, Miguel A.; McGuire, Cian; Torres, Antonio; Wilbrey, Anna L.; Cibert‐Goton, Vincent; Nieto, Francisco R.; Pitcher, Thomas; Knowles, Charles H.; Baeyens, José Manuel; Wood, John N.; Winchester, Wendy J.; Bulmer, David C.; Cendán, Cruz Miguel

    2017-01-01

    Key points Voltage‐gated sodium channels play a fundamental role in determining neuronal excitability.Specifically, voltage‐gated sodium channel subtype NaV1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown.Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling.These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality‐specific manner and help to direct drug discovery efforts towards novel visceral analgesics. Abstract Voltage‐gated sodium channel NaV1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor‐specific NaV1.7 knockout mouse (NaV1.7Nav1.8) and selective small‐molecule NaV1.7 antagonist PF‐5198007. NaV1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve–gut preparations in mouse, or following antagonism of NaV1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage‐gated sodium channel α subunits revealed NaV1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV1.7 (in NaV1.8‐expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV1.7 antagonist PF‐5198007. Our data demonstrate that NaV1.7 (in NaV1.8‐expressing neurons) contributes to defined pain pathways in a modality‐dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV1.7 alone in the viscera may be insufficient in targeting chronic visceral pain. PMID:28105664

  10. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    PubMed Central

    Chung, H.J.; Hassan, M.M.; Park, J.O.; Kim, H.J.; Hong, S.T.

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  11. Morphological analyses and variation in carbohydrate content during the maturation of somatic embryos of Carica papaya.

    PubMed

    Vale, Ellen Moura; Reis, Ricardo Souza; Passamani, Lucas Zanchetta; Santa-Catarina, Claudete; Silveira, Vanildo

    2018-03-01

    Efficient protocols for somatic embryogenesis of papaya ( Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C . papaya . To study the effects of PEG on somatic embryogenesis of C . papaya , we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C . papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.

  12. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Clinical study report on milk production in the offspring of a somatic cell cloned Holstein cow.

    PubMed

    Takahashi, Masahiro; Tsuchiya, Hideki; Hamano, Seizo; Inaba, Toshio; Kawate, Noritoshi; Tamada, Hiromichi

    2013-12-17

    This study examined two female offspring of a somatic cell cloned Holstein cow that had reproduction problems and milk production performance issues. The two offspring heifers, which showed healthy appearances and normal reproductive characteristics, calved on two separate occasions. The mean milk yields of the heifers in the first lactation period were 9,037 kg and 7,228 kg. The relative mean milk yields of these cows were 111.2% and 88.9%, respectively, when compared with that of the control group. No particular clinical abnormalities were revealed in milk yields and milk composition rate [e.g., fat, protein and solids-not-fat (SNF)], and reproductive characteristics of the offspring of the somatic cell cloned Holstein cow suggested that the cloned offspring had normal milk production.

  14. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    PubMed

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  15. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm

    PubMed Central

    Zhou, Yang; Connor, Erin E; Bickhart, Derek M; Li, Congjun; Baldwin, Ransom L; Schroeder, Steven G; Rosen, Benjamin D; Yang, Liguo; Van Tassell, Curtis P

    2018-01-01

    Abstract Background Although sperm DNA methylation has been studied in humans and other species, its status in cattle is largely unknown. Results Using whole-genome bisulfite sequencing (WGBS), we profiled the DNA methylome of cattle sperm through comparison with three somatic tissues (mammary gland, brain, and blood). Large differences between cattle sperm and somatic cells were observed in the methylation patterns of global CpGs, pericentromeric satellites, partially methylated domains (PMDs), hypomethylated regions (HMRs), and common repeats. As expected, we observed low methylation in the promoter regions and high methylation in the bodies of active genes. We detected selective hypomethylation of megabase domains of centromeric satellite clusters, which may be related to chromosome segregation during meiosis and their rapid transcriptional activation upon fertilization. We found more PMDs in sperm cells than in somatic cells and identified meiosis-related genes such asKIF2B and REPIN1, which are hypomethylated in sperm but hypermethylated in somatic cells. In addition to the common HMRs around gene promoters, which showed substantial differences between sperm and somatic cells, the sperm-specific HMRs also targeted to distinct spermatogenesis-related genes, including BOLL, MAEL, ASZ1, SYCP3, CTCFL, MND1, SPATA22, PLD6, DDX4, RBBP8, FKBP6, and SYCE1. Although common repeats were heavily methylated in both sperm and somatic cells, some young Bov-A2 repeats, which belong to the SINE family, were hypomethylated in sperm and could affect the promoter structures by introducing new regulatory elements. Conclusions Our study provides a comprehensive resource for bovine sperm epigenomic research and enables new discoveries about DNA methylation and its role in male fertility. PMID:29635292

  16. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977. [Effects of diurnal temperature changes in Tradescantia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves,more » are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R ..gamma..) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth.« less

  17. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm.

    PubMed

    Zhou, Yang; Connor, Erin E; Bickhart, Derek M; Li, Congjun; Baldwin, Ransom L; Schroeder, Steven G; Rosen, Benjamin D; Yang, Liguo; Van Tassell, Curtis P; Liu, George E

    2018-05-01

    Although sperm DNA methylation has been studied in humans and other species, its status in cattle is largely unknown. Using whole-genome bisulfite sequencing (WGBS), we profiled the DNA methylome of cattle sperm through comparison with three somatic tissues (mammary gland, brain, and blood). Large differences between cattle sperm and somatic cells were observed in the methylation patterns of global CpGs, pericentromeric satellites, partially methylated domains (PMDs), hypomethylated regions (HMRs), and common repeats. As expected, we observed low methylation in the promoter regions and high methylation in the bodies of active genes. We detected selective hypomethylation of megabase domains of centromeric satellite clusters, which may be related to chromosome segregation during meiosis and their rapid transcriptional activation upon fertilization. We found more PMDs in sperm cells than in somatic cells and identified meiosis-related genes such asKIF2B and REPIN1, which are hypomethylated in sperm but hypermethylated in somatic cells. In addition to the common HMRs around gene promoters, which showed substantial differences between sperm and somatic cells, the sperm-specific HMRs also targeted to distinct spermatogenesis-related genes, including BOLL, MAEL, ASZ1, SYCP3, CTCFL, MND1, SPATA22, PLD6, DDX4, RBBP8, FKBP6, and SYCE1. Although common repeats were heavily methylated in both sperm and somatic cells, some young Bov-A2 repeats, which belong to the SINE family, were hypomethylated in sperm and could affect the promoter structures by introducing new regulatory elements. Our study provides a comprehensive resource for bovine sperm epigenomic research and enables new discoveries about DNA methylation and its role in male fertility.

  18. Computerized Cuff Pressure Algometry as Guidance for Circumferential Tissue Compression for Wearable Soft Robotic Applications: A Systematic Review.

    PubMed

    Kermavnar, Tjaša; Power, Valerie; de Eyto, Adam; O'Sullivan, Leonard W

    2018-02-01

    In this article, we review the literature on quantitative sensory testing of deep somatic pain by means of computerized cuff pressure algometry (CPA) in search of pressure-related safety guidelines for wearable soft exoskeleton and robotics design. Most pressure-related safety thresholds to date are based on interface pressures and skin perfusion, although clinical research suggests the deep somatic tissues to be the most sensitive to excessive loading. With CPA, pain is induced in deeper layers of soft tissue at the limbs. The results indicate that circumferential compression leads to discomfort at ∼16-34 kPa, becomes painful at ∼20-27 kPa, and can become unbearable even below 40 kPa.

  19. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    PubMed Central

    2009-01-01

    Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl)-L-cysteine) (AEC) and the acetolactate synthase (ALS) inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT) were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS) from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate) (Roundup®), AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean PMID:19922622

  20. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    PubMed

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  1. Role of Dicer1 in thyroid cell proliferation and differentiation.

    PubMed

    Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2017-01-01

    DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.

  2. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budworth, Helen; Harris, Faye R.; Williams, Paul

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  3. Suppression of somatic expansion delays the onset of pathophysiology in a mouse model of Huntington’s Disease

    DOE PAGES

    Budworth, Helen; Harris, Faye R.; Williams, Paul; ...

    2015-08-06

    Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motormore » decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.« less

  4. COPS: A Sensitive and Accurate Tool for Detecting Somatic Copy Number Alterations Using Short-Read Sequence Data from Paired Samples

    PubMed Central

    Krishnan, Neeraja M.; Gaur, Prakhar; Chaudhary, Rakshit; Rao, Arjun A.; Panda, Binay

    2012-01-01

    Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username “cops” and password “cops”. PMID:23110103

  5. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  6. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  7. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    PubMed

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  8. Regulation of Lysosomal Function by the DAF-16 Forkhead Transcription Factor Couples Reproduction to Aging in Caenorhabditis elegans.

    PubMed

    Baxi, Kunal; Ghavidel, Ata; Waddell, Brandon; Harkness, Troy A; de Carvalho, Carlos E

    2017-09-01

    Aging in eukaryotes is accompanied by widespread deterioration of the somatic tissue. Yet, abolishing germ cells delays the age-dependent somatic decline in Caenorhabditis elegans In adult worms lacking germ cells, the activation of the DAF-9/DAF-12 steroid signaling pathway in the gonad recruits DAF-16 activity in the intestine to promote longevity-associated phenotypes. However, the impact of this pathway on the fitness of normally reproducing animals is less clear. Here, we explore the link between progeny production and somatic aging and identify the loss of lysosomal acidity-a critical regulator of the proteolytic output of these organelles-as a novel biomarker of aging in C. elegans The increase in lysosomal pH in older worms is not a passive consequence of aging, but instead is timed with the cessation of reproduction, and correlates with the reduction in proteostasis in early adult life. Our results further implicate the steroid signaling pathway and DAF-16 in dynamically regulating lysosomal pH in the intestine of wild-type worms in response to the reproductive cycle. In the intestine of reproducing worms, DAF-16 promotes acidic lysosomes by upregulating the expression of v-ATPase genes. These findings support a model in which protein clearance in the soma is linked to reproduction in the gonad via the active regulation of lysosomal acidification. Copyright © 2017 by the Genetics Society of America.

  9. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  10. Growth, Nutritional Status, and Pulmonary Function in Children with Chronic Recurrent Bronchitis.

    PubMed

    Umławska, Wioleta; Lipowicz, Anna

    2016-01-01

    Bronchitis is a common health problem in children. Frequent bronchitis in infancy increases the risk of developing chronic respiratory diseases. The aim of the study was to assess the level of growth and the nutritional status in children and youths with special regard to the level of body fatness assessed by measuring skin-fold thickness. Relationships between somatic development, pulmonary function and the course of the disease were also explored. The study was carried out using anthropometric and spirometric measurements and also information on the severity and course of the disease in 141 children with chronic or recurrent bronchitis. All of the subjects were patients of the Pulmonary Medicine and Allergology Center in Karpacz, Poland. The mean body height did not differ significantly between the children examined and their healthy peers. However, the infection-prone children had excessive body fatness and muscle mass deficiency. The increased level of subcutaneous adipose tissue occurred especially in children with short duration of the disease, i.e. a maximum of 1 year. The functional lung parameters were generally normal. The presence of atopic diseases such as allergic rhinitis or atopic dermatitis did not impair the course of the children's somatic development. Also, long-term disease or the presence of additional allergic diseases did not impair lung function in the examined children. Taking appropriate preventive measures is recommended to achieve and maintain normal body weight in children who receive therapy due to bronchitis.

  11. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.).

    PubMed

    Nair, R Ramakrishnan; Dutta Gupta, S

    2006-01-01

    A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.

  12. The Importance of Somatic Symptoms in Depression in Primary Care

    PubMed Central

    Tylee, André; Gandhi, Paul

    2005-01-01

    Objective: Patients with depression present with psychological and somatic symptoms, including general aches and pains. In primary care, somatic symptoms often dominate. A review of the literature was conducted to ascertain the importance of somatic symptoms in depression in primary care. Data sources and extraction: MEDLINE, EMBASE, and PsychLIT/PsychINFO databases (1985–January 2004) were searched for the terms depression, depressive, depressed AND physical, somatic, unexplained symptoms, complaints, problems; somatised, somatized symptoms; somatisation, somatization, somatoform, psychosomatic; pain; recognition, underrecognition; diagnosis, underdiagnosis; acknowledgment, underacknowledgment; treatment, undertreatment AND primary care, ambulatory care; primary physician; office; general practice; attribution, reattribution; and normalising, normalizing. Only English-language publications and abstracts were considered. Study selection: More than 80 papers related to somatic symptoms in depression were identified using the content of their titles and abstracts. Data synthesis: Approximately two thirds of patients with depression in primary care present with somatic symptoms. These patients are difficult to diagnose, feel an increased burden of disease, rely heavily on health care services, and are harder to treat. Patient and physician factors that prevent discussion of psychological symptoms during consultations must be overcome. Conclusions: Educational initiatives that raise awareness of somatic symptoms in depression and help patients to reattribute these symptoms should help to improve the recognition of depression in primary care. PMID:16163400

  13. A study of so-called hypochondriasis.

    PubMed

    von Scheele, C; Nordgren, L; Kempi, V; Hetta, J; Hallborg, A

    1990-01-01

    Twenty-four patients with unexplained somatic complaints were subjected to a thorough somatic examination. Only when the examination proved negative was the patient entered into the study. The patients were clinically appraised according to criteria given in DSM-III. Generalized anxiety disorder (GAD) was diagnosed in 12, somatization disorder (SD) in 8, and hypochondriasis in 4 patients. Seventeen of the 24 patients agreed to participate in biochemical investigations including a TRH load, a dexamethasone test, and a determination of the monoamine metabolites 5-HIAA and HVA in cerebrospinal fluid (CSF). A normal TSH increase and a normal suppression of cortisol were registered. The HVA values correlated significantly with the 5-HIAA values as well as with the alexithymia scores. Concerning alexithymia and maturity level, no difference as to social class was found. The patients filled in a Zung depression chart. The Zung scale and the 5-HIAA values were both inconsistent with depressive illness. In so-called hypochondriasis a long-term relationship, including selected somatic and biochemical examinations and thorough information, was crucial in abating the patient's distrust and thus the need for health care.

  14. Socializing with MYC: cell competition in development and as a model for premalignant cancer.

    PubMed

    Johnston, Laura A

    2014-04-01

    Studies in Drosophila and mammals have made it clear that genetic mutations that arise in somatic tissues are rapidly recognized and eliminated, suggesting that cellular fitness is tightly monitored. During development, damaged, mutant, or otherwise unfit cells are prevented from contributing to the tissue and are instructed to die, whereas healthy cells benefit and populate the animal. This cell selection process, known as cell competition, eliminates somatic genetic heterogeneity and promotes tissue fitness during development. Yet cell competition also has a dark side. Super competition can be exploited by incipient cancers to subvert cellular cooperation and promote selfish behavior. Evidence is accumulating that MYC plays a key role in regulation of social behavior within tissues. Given the high number of tumors with deregulated MYC, studies of cell competition promise to yield insight into how the local environment yields to and participates in the early stages of tumor formation.

  15. FRAXE mutation analysis in three Spanish families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, P.; Lopez, I.; Gabarron, J.

    Very little is known about the phenotype of FRAXE-positive individuals and the relation between the genotype/phenotype and genotype/cytogenetic expression. We describe three families with normal and mildly affected individuals and a severely retarded male expressing fragility at the FRAXE locus or presenting different expansions at the CGG FRAXE triplet. In addition, we analyze the FRAXE mutation in sperm DNA from a retarded male carrier with a handicapped daughter expressing fragility at the FRAXE locus. Mental status in FRAXE individuals is highly variable and, although mild mental retardation is observed in most cases, several carrier males are apparently normal. It seemsmore » that methylation is not as strictly associated with size of CGG triplets in the FRAXE locus as in FRAXA, and it is possible that normal carrier individuals with fully methylated increments in lymphocytes have a certain proportion of unmethylated alleles in the critical (i.e., neural) tissues. FRAXE mutation is apparently similar to FRAXA in that males with somatic large methylated increments are carriers of small unmethylated ones in germinal cells. 12 refs., 2 figs., 1 tab.« less

  16. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    PubMed

    Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.

  17. A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients.

    PubMed

    Morales, Fernando; Vásquez, Melissa; Santamaría, Carolina; Cuenca, Patricia; Corrales, Eyleen; Monckton, Darren G

    2016-04-01

    Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p<0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p=0.003); Rs1677658 (p=0.009); and Rs10168 (p=0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Can Metabolic Mechanisms of Stem Cell Maintenance Explain Aging and the Immortal Germline?

    PubMed

    Snoeck, Hans-Willem

    2015-06-04

    The mechanisms underlying the aging process are not understood. Even tissues endowed with somatic stem cells age while the germline appears immortal. I propose that this paradox may be explained by the pervasive use of glycolysis by somatic stem cells as opposed to the predominance of mitochondrial respiration in gametes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota L.) cell cultures

    Treesearch

    Subhash C. Minocha; Cheryl A. Robie; Akhtar J. Khan; Nancy S. Papa; Andrew I. Samuelsen; Rakesh Minocha

    1990-01-01

    Carrot cell cultures provide a model experimental system for the analysis of biochemical and molecular events associated with morphogenesis in plants (3, 4, 5, 14). Among the biochemical changes accompanying somatic embryogenesis in this tissue is an increased biosynthesis ofpolyamines (1, 2, 7, 10, 11, 13). A variety of inhibitors of polyamine biosynthetic enzymes...

  20. In vitro somatic embryogenesis and plant regeneration of cassava.

    PubMed

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  1. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers

    PubMed Central

    Georgitsi, M; Karhu, A; Winqvist, R; Visakorpi, T; Waltering, K; Vahteristo, P; Launonen, V; Aaltonen, L A

    2007-01-01

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers. PMID:17242703

  2. Truncation of LEAFY COTYLEDON1 Protein Is Required for Asexual Reproduction in Kalanchoë daigremontiana1[OPEN

    PubMed Central

    Garcês, Helena M.P.; Koenig, Daniel; Townsley, Brad T.; Kim, Minsung; Sinha, Neelima R.

    2014-01-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively. PMID:24664206

  3. Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana.

    PubMed

    Garcês, Helena M P; Koenig, Daniel; Townsley, Brad T; Kim, Minsung; Sinha, Neelima R

    2014-05-01

    Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.

  4. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini.

    PubMed

    McMenamin, Sarah K; Minchin, James E N; Gordon, Tiffany N; Rawls, John F; Parichy, David M

    2013-04-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity.

  5. Dwarfism and Increased Adiposity in the gh1 Mutant Zebrafish vizzini

    PubMed Central

    McMenamin, Sarah K.; Minchin, James E.N.; Gordon, Tiffany N.

    2013-01-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity. PMID:23456361

  6. The dynamic genome: transposons and environmental adaptation in the nervous system.

    PubMed

    Lapp, Hannah E; Hunter, Richard G

    2016-02-01

    Classically thought as genomic clutter, the functional significance of transposable elements (TEs) has only recently become a focus of attention in neuroscience. Increasingly, studies have demonstrated that the brain seems to have more retrotransposition and TE transcription relative to other somatic tissues, suggesting a unique role for TEs in the central nervous system. TE expression and transposition also appear to vary by brain region and change in response to environmental stimuli such as stress. TEs appear to serve a number of adaptive roles in the nervous system. The regulation of TE expression by steroid, epigenetic and other mechanisms in interplay with the environment represents a significant and novel avenue to understanding both normal brain function and disease.

  7. [New possibilities will open up in human gene therapy].

    PubMed

    Portin, Petter

    2016-01-01

    Gene therapy is divided into somatic and germ line therapy. The latter involves reproductive cells or their stem cells, and its results are heritable. The effects of somatic gene therapy are generally restricted to a single tissue of the patient in question. Until now, all gene therapies in the world have belonged to the regime of somatic therapy, germ line therapy having been a theoretical possibility only. Very recently, however, a method has been developed which is applicable to germ line therapy as well. In addition to technical challenges, severe ethical problems are associated with germ line therapy, demanding opinion statement.

  8. The effectiveness of high-flow regional cerebral perfusion in Norwood stage I palliation.

    PubMed

    Miyaji, Kagami; Miyamoto, Takashi; Kohira, Satoshi; Yoshii, Takeshi; Itatani, Kei-Ichi; Sato, Hajime; Inoue, Nobuyuki

    2011-11-01

    Regional cerebral perfusion (RCP) has been shown to provide cerebral circulatory support during Norwood procedure. In our institution, high-flow RCP (HFRCP) from the right innominate artery has been induced to keep sufficient cerebral and somatic oxygen delivery via collateral vessels. We studied the effectiveness of HFRCP to regional cerebral and somatic tissue oxygenation in Norwood stage I palliation. Seventeen patients, who underwent the Norwood procedure, were separated into two groups: group C (n=6) using low-flow RCP and group H (n=11) using HFRCP (mean flow: 54 vs 92mlkg(-1)min(-1), P<0.0001). The mean duration of RCP was 64±10min (range, 49-86min) under the moderate hypothermia. Chlorpromazine (3.0mgkg(-1)) was given to group H patients before and during RCP to increase RCP flow. The mean radial arterial pressure was kept <50mmHg during RCP. To clarify the effectiveness of HFRCP for cerebral and somatic tissue oxygenation, cerebral regional oxygen saturation (rSO(2)) and systemic venous oxygenation (SvO(2)) during RCP were compared between the two groups. Changes in the lactate level before and after RCP, and changes in the blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and creatinine kinase (CK) levels before and after surgery, were also compared between the groups. Mean rSO(2) was 82.9±9.0% in group H and 65.9±10.7% in group C (P<0.05). Mean SvO(2) during RCP was 98.2±4.3% in group H and 85.4±9.7% in group C (P<0.01). During RCP, lactate concentration significantly increased in group C compared with that in group H (P<0.001). After surgery, the LDH and CK levels significantly increased in group C compared with that in group H (P<0.05). Our study revealed that HFRCP preserved sufficient cerebral and somatic tissue oxygenation during the Norwood procedure. The reduction of vascular resistance of collateral vessels increased both cerebral and somatic blood flow, resulting in improved tissue oxygen delivery. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  9. Niche players

    PubMed Central

    Seandel, Marco; Falciatori, Ilaria; Shmelkov, Sergey V.; Kim, Jiyeon; James, Daylon; Rafii, Shahin

    2010-01-01

    The undifferentiated spermatogonia of adult mouse testes are composed of both true stem cells and committed progenitors. It is unclear what normally prevents these adult germ cells from manifesting multipotency. The critical elements of the spermatogonial stem cell niche, while poorly understood, are thought to be composed of Sertoli cells with several other somatic cell types in close proximity. We recently discovered a novel orphan G-protein coupled receptor (GPR125) that is restricted to undifferentiated spermatogonia within the testis. GPR125 expression was maintained when the progenitor cells were extracted from the in vivo niche and propagated under growth conditions that recapitulate key elements of the niche. Such conditions preserved the ability of the cells to generate multipotent derivatives, known as multipotent adult spermatogonial derived progenitor cells (MASCs). Upon differentiation, the latter produced a variety tissues including functional endothelium, illustrating the potential applications of such cells. Thus, GPR125 represents a novel target for purifying adult stem and progenitors from tissues, with the goal of developing autologous multipotent cell lines. PMID:18256534

  10. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Somatosensory tinnitus: Current evidence and future perspectives

    PubMed Central

    Ralli, Massimo; Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-01-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach. PMID:28553764

  12. Somatosensory tinnitus: Current evidence and future perspectives.

    PubMed

    Ralli, Massimo; Greco, Antonio; Turchetta, Rosaria; Altissimi, Giancarlo; de Vincentiis, Marco; Cianfrone, Giancarlo

    2017-06-01

    In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach.

  13. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    PubMed

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  14. DNA methylation analysis on satellite I region in blastocysts obtained from somatic cell cloned cattle.

    PubMed

    Yamanaka, Ken-Ichi; Kaneda, Masahiro; Inaba, Yasushi; Saito, Koji; Kubota, Kaiyu; Sakatani, Miki; Sugimura, Satoshi; Imai, Kei; Watanabe, Shinya; Takahashi, Masashi

    2011-08-01

    Many observations have been made on cloned embryos and on adult clones by somatic cell nuclear transfer (SCNT), but it is still unclear whether the progeny of cloned animals is presenting normal epigenetic status. Here, in order to accumulate the information for evaluating the normality of cloned cattle, we analyzed the DNA methylation status on satellite I region in blastocysts obtained from cloned cattle. Embryos were produced by artificial insemination (AI) to non-cloned or cloned dams using semen from non-cloned or cloned sires. After 7 days of AI, embryos at blastocyst stage were collected by uterine flushing. The DNA methylation levels in embryos obtained by using semen and/or oocytes from cloned cattle were similar to those in in vivo embryos from non-cloned cattle. In contrast, the DNA methylation levels in SCNT embryos were significantly higher (P < 0.01) than those in in vivo embryos from non-cloned and cloned cattle, approximately similar to those in somatic cells used as donor cells. Thus, this study provides useful information that epigenetic status may be normal in the progeny of cloned cattle, suggesting the normality of germline cells in cloned cattle. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  15. Symptoms of somatization as a rapid screening tool for mitochondrial dysfunction in depression

    PubMed Central

    Gardner, Ann; Boles, Richard G

    2008-01-01

    Aims Somatic symptomatology is common in depression, and is often attributed to the Freudian-inspired concept of "somatization". While the same somatic symptoms and depression are common in mitochondrial disease, in cases with concurrent mood symptoms the diagnosis of a mitochondrial disorder and related therapy are typically delayed for many years. A short screening tool that can identify patients with depression at high risk for having underlying mitochondrial dysfunction is presented. Methods Six items of the Karolinska Scales of Personality (KSP) were found to differentiate among 21 chronically-depressed Swedish subjects with low versus normal muscle ATP production rates. A screening tool consisting of the six KSP questions was validated in the relatives of American genetics clinic patients, including in 24 matrilineal relatives in families with maternally inherited mitochondrial disease and in 30 control relatives. Results Among the depressed Swedish patients, the screening tool was positive in 13/14 with low and 1/7 with normal mitochondrial function (P = 0.0003). Applied to the American relatives of patients, the screening tool was positive in 13/24 matrilineal relatives and in 1/30 control relatives (P = 2 × 10-5). Conclusion Our preliminary data suggest that a small number of specific somatic-related questions can be constructed into a valid screening tool for cases at high risk for having a component of energy metabolism in their pathogenesis. PMID:18294386

  16. Somatic Symptom Disorder in Semantic Dementia: The Role of Alexisomia.

    PubMed

    Gan, Joanna J; Lin, Andrew; Samimi, Mersal S; Mendez, Mario F

    Semantic dementia (SD) is a neurodegenerative disorder characterized by loss of semantic knowledge. SD may be associated with somatic symptom disorder due to excessive preoccupation with unidentified somatic sensations. To evaluate the frequency of somatic symptom disorder among patients with SD in comparison to comparably demented patients with Alzheimer׳s disease. A retrospective cohort study was conducted using clinical data from a referral-based behavioral neurology program. Fifty-three patients with SD meeting criteria for imaging-supported semantic variant primary progressive aphasia (another term for SD) were compared with 125 patients with clinically probable Alzheimer disease. Logistic regression controlled for sex, age, disease duration, education, overall cognitive impairment, and depression. The prevalence of somatic symptom disorder was significantly higher among patients with SD (41.5%) compared to patients with Alzheimer disease (11.2%) (odds ratio = 6:1; p < 0.001). Somatic symptom disorder was associated with misidentification and preoccupation with normal bodily sensations such as hunger, bladder filling, borborygmi, rhinorrhea, and reflux; excessive concern over the incompletely understood meaning or source of pain or other symptoms; and Cotard syndrome or the delusion that unidentified somatic symptoms signify death or deterioration. SD, a disorder of semantic knowledge, is associated with somatic symptom disorder from impaired identification of somatic sensations. Their inability to read and name somatic sensations, or "alexisomia," results in disproportionate and persistent concern about somatic sensations with consequent significant disability. Copyright © 2016 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  17. Pre-screening method for somatic cell contamination in human sperm epigenetic studies.

    PubMed

    Jenkins, Timothy G; Liu, Lihua; Aston, Kenneth I; Carrell, Douglas T

    2018-04-01

    Sperm epigenetic profiles are frequently studied and are of great interest in many fields. One major technical concern when assessing these marks is the potential for somatic cell contamination. Because somatic cells have dramatically different epigenetic signatures, even small levels of contamination can result in significant problems in analysis and interpretation of data. In this study we evaluate an assay, which we designed to offer a reliable 'pre-screen' for somatic cell contamination that directly assesses the DNA being used in the study to determine tissue purity. In brief, we designed an inexpensive and simple assay that utilizes the strong differential methylation between sperm and somatic cells at four genomic loci to assess the general purity of samples prior to performing expensive and time intensive assays. The assay is able to reliably detect contamination qualitatively by running the sample on an agarose gel, or quantitatively with the use of a bioanalyzer. With this technique we have found that we can detect potentially contaminating signals in samples of many different types, including those from patients with poor sperm phenotypes (oligozoospermia, asthenozoospermia, and teratozoospermia). We also have found that the use of multiple sites to determine potential contamination is key, as some conditions (asthenozoospermia specifically) appear at one site to reflect a somatic-like profile, while at all other sites it appears to have very typical sperm DNA methylation signatures. Taken together, the use of the assay described herein was effective at identifying contamination and could be implemented in many labs to quickly and inexpensively pre-screen samples prior to performing far more expensive and labor intensive procedures. Additionally, the principles applied to the development of this assay could be easily adapted for the development of other assays to pre-screen different tissue/cell types or model organisms.

  18. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.

    PubMed

    van den Broek, Walther J A A; Nelen, Marcel R; Wansink, Derick G; Coerwinkel, Marga M; te Riele, Hein; Groenen, Patricia J T A; Wieringa, Bé

    2002-01-15

    The mechanism of expansion of the (CTG)n repeat in myotonic dystrophy (DM1) patients and the cause of its pathobiological effects are still largely unknown. Most likely, long repeats exert toxicity at the level of nuclear RNA transport or splicing. Here, we analyse cis- and trans-acting parameters that determine repeat behaviour in novel mouse models for DM1. Our mice carry 'humanized' myotonic dystrophy protein kinase (Dmpk) allele(s) with either a (CTG)84 or a (CTG)11 repeat, inserted at the correct position into the endogenous DM locus. Unlike in the human situation, the (CTG)84 repeat in the syntenic mouse environment was relatively stable during intergenerational segregation. However, somatic tissues showed substantial repeat expansions which were progressive upon aging and prominent in kidney, and in stomach and small intestine, where it was cell-type restricted. Other tissues examined showed only marginal size changes. The (CTG)11 allele was completely stable, as anticipated. Introducing the (CTG)84 allele into an Msh3-deficient background completely blocked the somatic repeat instability. In contrast, Msh6 deficiency resulted in a significant increase in the frequency of somatic expansions. Competition of Msh3 and Msh6 for binding to Msh2 in functional complexes with different DNA mismatch-recognition specificity may explain why the somatic (CTG)n expansion rate is differentially affected by ablation of Msh3 and Msh6.

  19. Recurrent SOX9 deletion campomelic dysplasia due to somatic mosaicism in the father.

    PubMed

    Smyk, M; Obersztyn, E; Nowakowska, B; Bocian, E; Cheung, S W; Mazurczak, T; Stankiewicz, P

    2007-04-15

    Haploinsufficiency of SOX9, a master gene in chondrogenesis and testis development, leads to the semi-lethal skeletal malformation syndrome campomelic dysplasia (CD), with or without XY sex reversal. We report on two children with CD and a phenotypically normal father, a carrier of a somatic mosaic SOX9 deletion. This is the first report of a mosaic deletion of SOX9; few familial CD cases with germline and somatic mutation mosaicism have been described. Our findings confirm the utility of aCGH and indicate that for a more accurate estimate of the recurrence risk for a completely penetrant autosomal dominant disorder, parental somatic mosaicism should be considered in healthy parents. Copyright 2007 Wiley-Liss, Inc.

  20. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila.

    PubMed

    Li, Michelle A; Alls, Jeffrey D; Avancini, Rita M; Koo, Karen; Godt, Dorothea

    2003-11-01

    Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline-soma interactions that are essential for germ cell differentiation.

  1. [Criteria for somatization studied in an outpatient clinic for general internal medicine].

    PubMed

    van Hemert, A M; Speckens, A E; Rooijmans, H G; Bolk, J H

    1996-06-08

    To compare the evolution of bodily symptoms and the frequency of medical consultation using three different operational definitions of 'somatization'. Descriptive follow-up study. General Internal Medicine Outpatient Clinic of Leiden University Hospital, the Netherlands. Information about physical and psychic symptoms and about the somatic-medical diagnosis was collected in a group of 158 newly referred patients. The concept of 'somatization' was operationalized in three ways: a) seeking medical consultation for somatically unexplained symptoms; b) seeking medical consultation for somatically unexplained symptoms combined with an anxiety disorder or a depressive disorder according to the 'present state examination'; c) seeking medical consultation for somatically unexplained symptoms combined with a somatization disorder or hypochondria according to the Diagnostic and statistical manual of mental disorders (DSM) III R criteria. After a follow-up period of 1.2 years, information was collected from the entire study group about the evolution of the physical symptoms and the frequency of medical consultation. Patients with somatically unexplained symptoms combined with a somatization disorder or hypochondria were characterized in the follow-up by numerous physical symptoms and a high frequency of medical consultation. Compared with the other patients with unexplained symptoms, they visited the general practitioner during the follow-up period 2.5 times as often, saw specialists twice as often and were admitted to a 'somatic' hospital, 6 times as often. Using criteria of low restrictiveness for somatization, a large group of patients were identified with a relatively normal (average) illness behaviour. Using more restrictive criteria led to identification of a smaller group with more extreme illness behaviour.

  2. Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease.

    PubMed

    Wallace, Douglas C; Lott, Marie T

    2017-01-01

    The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.

  3. Evidence of nutrient partitioning in coexisting deep-sea echinoids, and seasonal dietary shifts in seasonal breeders: Perspectives from stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Mitchell, Fraser J. G.

    2016-02-01

    The role of nutrition in echinoid growth and reproduction, as well as the mechanisms utilized to cope with food limitations in the deep sea remains under studied. We investigate echinoid feeding mechanisms within deep-sea submarine canyons in the NE Atlantic using a stable-isotope approach. Ten echinoid species were collected with a remotely operated vehicle. δ13C and δ15N stable isotope analyses (SIA) were conducted on echinoid tissues in order to investigate food sources assimilated with respect to nutrient partitioning between coexisting taxa, and seasonal dietary changes in food supply. Gut content analysis was conducted in conjunction with SIA. Echinoid taxa spanned three benthic trophic levels. This large trophic range might suggest an expansion of the trophic niches of echinoid taxa possibly to reduce interspecific competition for limited food resources. Evidence of nutrient partitioning among coexisting taxa was also found in the carbon data. Significant interspecific differences were found in the δ13C signatures of the somatic and reproductive tissues suggesting that different sources of carbon are assimilated into all tissues after the deposition of phytodetritus has taken place on the deep sea floor. However, this pattern differed for the data obtained before the deposition of phytodetritus; similar sources of carbon were assimilated into somatic tissues of different taxa, while some of these different taxa utilized significantly different sources of carbon to manufacture their reproductive tissues. While specific food sources could not be resolved from the carbon data of the present study, enriched δ15N values suggest that echinoids incorporate foods with distinctly higher δ15N values than that of POM and sediment, which could result from opportunistic feeding as well as bioerosion of the live coral framework and consequent grazing of fauna attached to the dead coral infrastructure. Seasonally deposited phytodetritus was incorporated into the reproductive tissues of the seasonal breeder, Gracilechinus alexandri, but not those of continuous breeders, Cidaroida and Echinothurioida. The material however was also found to support somatic tissue growth in cidaroids. These results suggest that seasonal breeders might utilize surface-derived phytodetritus to manufacture reproductive tissues, while continuous breeders might only utilize it for somatic tissue growth or not at all. Results for seasonal dietary shifts were compromised by poor spatial repeatability and thus require further investigation to understand better the role of phytodetritus in fuelling the growth and reproduction of deep-sea echinoids.

  4. Feasibility of Using Ultrasonography to Establish Relationships Among Sacral Base Position, Sacral Sulcus Depth, Body Mass Index, and Sex.

    PubMed

    Lockwood, Michael D; Kondrashova, Tatyana; Johnson, Jane C

    2015-11-01

    Identifying relationships among anatomical structures is key in diagnosing somatic dysfunction. Ultrasonography can be used to visualize anatomical structures, identify sacroiliac landmarks, and validate anatomical findings and measurements in relation to somatic dysfunction. As part of the osteopathic manipulative medicine course at A.T. Still University-Kirksville College of Osteopathic Medicine, first-year students are trained to use ultrasonography to establish relationships among musculoskeletal structures. To determine the ability of first-year osteopathic medical students to establish sacral base position (SBP) and sacral sulcus depth (SSD) using ultrasonography and to identify the relationship of SBP and SSD to body mass index (BMI) and sex. Students used ultrasonography to obtain the distance between the skin and the sacral base (the SBP) and the distance between the skin and the tip of the posterior superior iliac spine bilaterally. Next, students calculated the SSD (the distance between the tip of the posterior superior iliac spine and the SBP). Data were analyzed with respect to side of the body, BMI, sex, and age. The BMI data were subdivided into normal (18-25 mg/kg) and overweight (25-30 mg/kg) groups. Ultrasound images of 211 students were included in the study. The SBP was not significantly different between the left and right sides (36.5 mm vs 36.5 mm; P=.95) but was significantly different between normal and overweight BMI categories (33.0 mm vs 40.0 mm; P<.001) and between men and women (34.1 mm vs 39.0 mm; P<.001). The SSD was not significantly different between left and right sides (18.9 mm vs 19.8 mm; P=.08), normal and overweight BMI categories (18.9 mm vs 19.7 mm, P=.21), or men and women (19.7 mm vs 19.0 mm; P=.24). No significant relationship was identified between age and SBP (P=.46) or SSD (P=.39); however, the age range was narrow (21-33 years). The study yielded repeatable and reproducible results when establishing SBP and SSD using ultrasonography. The statistically significant relationship between SBP and higher BMI and between SBP and female sex may point to more soft tissue overlaying the sacrum in these groups. Further research is needed on the use of ultrasonography to establish criteria for somatic dysfunction.

  5. Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis.

    PubMed

    Gao, Tianlong; Zheng, Junke; Xing, Fengying; Fang, Haiyan; Sun, Feng; Yan, Ayong; Gong, Xun; Ding, Hui; Tang, Fan; Sheng, Hui Z

    2007-02-01

    Somatic cell nuclear transfer (SCNT) and parthenogenesis are alternative forms of reproduction and development, building new life cycles on differentiated somatic cell nuclei and duplicated maternal chromatin, respectively. In the preceding paper (Sun F, et al., Cell Res 2007; 17:117-134.), we showed that an "erase-and-rebuild" strategy is used in normal development to transform the maternal gene expression profile to a zygotic one. Here, we investigate if the same strategy also applies to SCNT and parthenogenesis. The relationship between chromatin and chromatin factors (CFs) during SCNT and parthenogenesis was examined using immunochemical and GFP-fusion protein assays. Results from these studies indicated that soon after nuclear transfer, a majority of CFs dissociated from somatic nuclei and were redistributed to the cytoplasm of the egg. The erasure process in oogenesis is recaptured during the initial phase in SCNT. Most CFs entered pseudo-pronuclei shortly after their formation. In parthenogenesis, all parthenogenotes underwent normal oogenesis, and thus had removed most CFs from chromosomes before the initiation of development. The CFs were subsequently re-associated with female pronuclei in time and sequence similar to that in fertilized embryos. Based on these data, we conclude that the "erase-and-rebuild" process observed in normal development also occurs in SCNT and in parthenogenesis, albeit in altered fashions. The process is responsible for transcription reprogramming in these procedures. The "erase" process in SCNT is compressed and the efficiency is compromised, which likely contribute to the developmental defects often observed in nuclear transfer (nt) embryos. Furthermore, results from this study indicated that the cytoplasm of an egg contains most, if not all, essential components for assembling the zygotic program and can assemble them onto appropriate diploid chromatin of distinct origins.

  6. Sequencing thousands of single-cell genomes with combinatorial indexing.

    PubMed

    Vitak, Sarah A; Torkenczy, Kristof A; Rosenkrantz, Jimi L; Fields, Andrew J; Christiansen, Lena; Wong, Melissa H; Carbone, Lucia; Steemers, Frank J; Adey, Andrew

    2017-03-01

    Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.

  7. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma.

    PubMed

    Cai, Zhi-Xiong; Chen, Geng; Zeng, Yong-Yi; Dong, Xiu-Qing; Lin, Min-Jie; Huang, Xin-Hui; Zhang, Da; Liu, Xiao-Long; Liu, Jing-Feng

    2017-09-01

    Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring. © 2017 UICC.

  8. MEN1 mutations and potentially MEN1-targeting miRNAs are responsible for menin deficiency in sporadic and MEN1 syndrome-associated primary hyperparathyroidism.

    PubMed

    Grolmusz, Vince Kornél; Borka, Katalin; Kövesdi, Annamária; Németh, Kinga; Balogh, Katalin; Dékány, Csaba; Kiss, András; Szentpéteri, Anna; Sármán, Beatrix; Somogyi, Anikó; Csajbók, Éva; Valkusz, Zsuzsanna; Tóth, Miklós; Igaz, Péter; Rácz, Károly; Patócs, Attila

    2017-09-01

    Inherited, germline mutations of menin-coding MEN1 gene cause multiple endocrine neoplasia type 1 (MEN1), while somatic MEN1 mutations are the sole main driver mutations in sporadic primary hyperparathyroidism (PHPT), suggesting that menin deficiency has a central role in the pathogenesis of PHPT. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to investigate both the role of MEN1 mutations and potentially MEN1-targeting miRNAs as the underlying cause of menin deficiency in MEN1-associated and sporadic PHPT tissues. Fifty six PHPT tissues, including 16 MEN1-associated tissues, were evaluated. Diagnosis of MEN1 syndrome was based on identification of germline MEN1 mutations. In silico target prediction was used to identify miRNAs potentially targeting MEN1. Menin expression was determined by immunohistochemistry while expression of miRNAs was analyzed by quantitative real-time PCR. Sporadic PHPT tissues were subjected to somatic MEN1 mutation analysis as well. Lack of nuclear menin was identified in all MEN1-associated and in 28% of sporadic PHPT tissues. Somatic MEN1 mutations were found in 25% of sporadic PHPTs. The sensitivity and specificity of menin immunohistochemistry to detect a MEN1 mutation were 86 and 87%, respectively. Expression levels of hsa-miR-24 and hsa-miR-28 were higher in sporadic compared to MEN1-associated PHPT tissues; however, no difference in miRNA levels occurred between menin-positive and menin-negative PHPT tissues. Menin deficiency is the consequence of a MEN1 mutation in most menin-negative PHPT tissues. Elevated expression of hsa-miR-24 and hsa-miR-28 mark the first epigenetic changes observed between sporadic and MEN1-associated PHPT.

  9. Embryonic rather than extraembryonic tissues have more impact on the development of placental hyperplasia in cloned mice.

    PubMed

    Miki, H; Wakisaka, N; Inoue, K; Ogonuki, N; Mori, M; Kim, J-M; Ohta, A; Ogura, A

    2009-06-01

    Somatic cell cloning by nuclear transfer (NT) in mice is associated with hyperplastic placentas at term. To dissect the effects of embryonic and extraembryonic tissues on this clone-associated phenotype, we constructed diploid (2n) fused with (<-->) tetraploid (4n) chimeras from NT- and fertilization-derived (FD) embryos. Generally, the 4n cells contributed efficiently to all the extraembryonic tissues but not to the embryo itself. Embryos constructed by 2n NT<-->4n FD aggregation developed hyperplastic placentas (0.33+/-0.22 g) with a predominant contribution by NT-derived cells. Even when the population of FD-derived cells in placentas was increased using multiple FD embryos (up to four) for aggregation, most placentas remained hyperplastic (0.36+/-0.13 g). By contrast, placentas of the reciprocal combination, 2n FD<-->4n NT, were less hyperplastic (0.15+/-0.02 g). These nearly normal-looking placentas had a large proportion of NT-derived cells. Thus, embryonic rather than extraembryonic tissues had more impact on the onset of placental hyperplasia, and that the abnormal placentation in clones occurs in a noncell-autonomous manner. These findings suggest that for improvement of cloning efficiency we should understand the mechanisms regulating placentation, especially those of embryonic origin that might control the proliferation of trophoblastic lineage cells.

  10. Effect of Medium Salt Concentration on Differentiation and Maturation of Somatic Embryos of Cassava (Manihot esculenta Crantz)

    PubMed Central

    GROLL, J.; MYCOCK, D. J.; GRAY, V. M.

    2002-01-01

    Culture of cassava somatic embryos on media with an altered macro‐ and micro‐nutrient salt concentration affected embryo development and germination capability. In the tests, quarter‐, half‐, full‐ or double‐strength Murashige and Skoog (MS) media were compared. The maximum number of somatic embryos differentiated from a proliferative nodular embryogenic callus (NEC) on either half‐ or full‐strength MS medium, and the greatest numbers of cotyledonary stage embryos were formed on full‐strength MS medium. Developed somatic embryos were then desiccated above a saturated K2SO4 solution for 10 d. After transfer to germination medium, embryos that had developed on half‐ and full‐strength MS medium yielded 8·3 and 8·6 germinants g–1 NEC tissue, respectively. For this important but often disregarded culture factor, either half‐ or full‐strength MS medium is recommended for both the differentiation and development of cassava somatic embryos that are capable of germination. PMID:12099540

  11. The Use of Proteomic Tools to Address Challenges Faced in Clonal Propagation of Tropical Crops through Somatic Embryogenesis.

    PubMed

    Chin, Chiew Foan; Tan, Hooi Sin

    2018-05-04

    In many tropical countries with agriculture as the mainstay of the economy, tropical crops are commonly cultivated at the plantation scale. The successful establishment of crop plantations depends on the availability of a large quantity of elite seedling plants. Many plantation companies establish plant tissue culture laboratories to supply planting materials for their plantations and one of the most common applications of plant tissue culture is the mass propagation of true-to-type elite seedlings. However, problems encountered in tissue culture technology prevent its applications being widely adopted. Proteomics can be a powerful tool for use in the analysis of cultures, and to understand the biological processes that takes place at the cellular and molecular levels in order to address these problems. This mini review presents the tissue culture technologies commonly used in the propagation of tropical crops. It provides an outline of some the genes and proteins isolated that are associated with somatic embryogenesis and the use of proteomic technology in analysing tissue culture samples and processes in tropical crops.

  12. Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive

    PubMed Central

    Winters, Bradley D.; Jin, Shan-Xue; Ledford, Kenneth R.

    2017-01-01

    The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo. SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. PMID:28213442

  13. Soft-tissue rheumatism: diagnosis and treatment.

    PubMed

    Reveille, J D

    1997-01-27

    Soft tissue rheumatism is one of the most common and most misunderstood categories of disorders facing the primary care physician. Among the more common types are subacromial bursitis, epicondylitis, trochanteric bursitis, anserine bursitis, and fibromyalgia. The keys to the diagnosis of soft-tissue rheumatism are the history and, more importantly, the physical examination. Extensive laboratory testing and radiographs are not as helpful in evaluating patients with these complaints. Treatment consists of nonsteroidal anti-inflammatory drugs (NSAIDs) and nonnarcotic analgesics. Especially in patients with localized disorders, intralesional injections of corticosteroids are particularly effective and safe and should be part of the armamentarium of the primary care practitioner. Fibromyalgia is a particularly challenging form of nonarticular rheumatism. The clinical presentation is rather characteristic, with the patient typically being a woman 30-60 years of age who presents with diffuse somatic pain. Patients often give a history of sleep disturbance, may be depressed, and show characteristic tender areas, or trigger points. Laboratory findings are normal. Management includes reassurance, correction of the underlying sleep disturbance with low doses of a tricyclic antidepressant, treatment with muscle relaxants and nonnarcotic analgesics or NSAIDs, and an exercise program with a strong aerobic component.

  14. The relationship between flesh quality and numbers of Kudoa thyrsites plasmodia and spores in farmed Atlantic salmon, Salmo salar L.

    PubMed

    Dawson-Coates, J A; Chase, J C; Funk, V; Booy, M H; Haines, L R; Falkenberg, C L; Whitaker, D J; Olafson, R W; Pearson, T W

    2003-08-01

    Atlantic salmon, Salmo salar L., were exposed to Kudoa thyrsites (Myxozoa, Myxosporea)-containing sea water for 15 months, and then harvested and assessed for parasite burden and fillet quality. At harvest, parasites were enumerated in muscle samples from a variety of somatic and opercular sites, and mean counts were determined for each fish. After 6 days storage at 4 degrees C, fillet quality was determined by visual assessment and by analysis of muscle firmness using a texture analyzer. Fillet quality could best be predicted by determining mean parasite numbers and spore counts in all eight tissue samples (somatic and opercular) or in four fillet samples, as the counts from opercular samples alone showed greater variability and thus decreased reliability. The variability in both plasmodia and spore numbers between tissue samples taken from an individual fish indicated that the parasites were not uniformly distributed in the somatic musculature. Therefore, to best predict the probable level of fillet degradation caused by K. thyrsites infections, multiple samples must be taken from each fish. If this is performed, a mean plasmodia count of 0.3 mm(-2) or a mean spore count of 4.0 x 10(5) g(-1) of tissue are the levels where the probability of severe myoliquefaction becomes a significant risk.

  15. Induced pluripotent stem cells: advances to applications

    PubMed Central

    Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156

  16. Somatic Embryogenesis in Olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris).

    PubMed

    Rugini, Eddo; Silvestri, Cristian

    2016-01-01

    Protocols for olive somatic embryogenesis from zygotic embryos and mature tissues have been described for both Olea europaea sub. europaea var. sativa and var. sylvestris. Immature zygotic embryos (no more than 75 days old), used after fruit collection or stored at 12-14 °C for 2-3 months, are the best responsive explants and very slightly genotype dependent, and one single protocol can be effective for a wide range of genotypes. On the contrary, protocols for mature zygotic embryos and for mature tissue of cultivars are often genotype specific, so that they may require many adjustments according to genotypes. The use of thidiazuron and cefotaxime seems to be an important trigger for induction phase particularly for tissues derived from cultivars. Up to now, however, the application of this technique for large-scale propagation is hampered also by the low rate of embryo germination; it proves nonetheless very useful for genetic improvement.

  17. Clonal evolution models of tumor heterogeneity.

    PubMed

    Shlush, Liran I; Hershkovitz, Dov

    2015-01-01

    Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.

  18. Fusobacterium in colonic flora and molecular features of colorectal carcinoma

    PubMed Central

    Tahara, Tomomitsu; Yamamoto, Eiichiro; Suzuki, Hiromu; Maruyama, Reo; Chung, Woonbok; Garriga, Judith; Jelinek, Jaroslav; Yamano, Hiro-o; Sugai, Tamotsu; An, Byonggu; Shureiqi, Imad; Toyota, Minoru; Kondo, Yutaka; Estécio, Marcos R. H.; Issa, Jean-Pierre J.

    2015-01-01

    Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified over-representation of Fusobacterium in colorectal cancer (CRC) tissues but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in CRCs through quantitative real-time PCR in 149 CRC tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI) and mutations in BRAF, KRAS, TP53, CHD7 and CHD8. Whole exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111/149 (74%) CRC tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals but the amount of bacteria was much lower compared to CRC tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high CRC group (FB-high) to be associated with CIMP positivity (p=0.001), TP53 wild type (p=0.015), hMLH1 methylation positivity (p=0.0028), MSI (p=0.018) and CHD7/8 mutation positivity (p=0.002). Among the 11 cases where whole exome sequencing data was available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of CRCs, offering support for a pathogenic role in CRC for this gut microbiome component PMID:24385213

  19. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    PubMed

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC gene alter the protein expression and cell cycle regulation in diffuse type gastric adenocarcinoma.

  20. The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C

    PubMed Central

    Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V.; Karpen, Gary H.

    2012-01-01

    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote. PMID:23300382

  1. Cytogenetic analysis of somatic and germinal cells from 38,XX/38,XY phenotypically normal boars.

    PubMed

    Barasc, Harmonie; Ferchaud, Stéphane; Mary, Nicolas; Cucchi, Marie Adélaïde; Lucena, Amalia Naranjo; Letron, Isabelle Raymond; Calgaro, Anne; Bonnet, Nathalie; Dudez, Anne Marie; Yerle, Martine; Ducos, Alain; Pinton, Alain

    2014-01-15

    Many chromosomal abnormalities have been reported to date in pigs. Most of them have been balanced structural rearrangements, especially reciprocal translocations. A few cases of XY/XX chimerism have also been diagnosed within the national systematic chromosomal control program of young purebred boars carried out in France. Until now, this kind of chromosomal abnormality has been mainly reported in intersex individuals. We investigated 38,XY/38,XX boars presenting apparently normal phenotypes to evaluate the potential effects of this particular chromosomal constitution on their reproductive performance. To do this, we analyzed (1) the chromosomal constitution of cells from different organs in one boar; (2) the aneuploidy rates for chromosomes X, Y, and 13 in sperm nuclei sampled from seven XY/XX boars. 2n = 38,XX cells were identified in different nonhematopoietic tissues including testis (frequency, <8%). Similar aneuploidy rates were observed in the sperm nuclei of XY/XX and normal individuals (controls). Altogether, these results suggest that the presence of XX cells had no or only a very limited effect on the reproduction abilities of the analyzed boars. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Uncoupling of Secretion From Growth in Some Hormone Secretory Tissues

    PubMed Central

    2014-01-01

    Context: Most syndromes with benign primary excess of a hormone show positive coupling of hormone secretion to size or proliferation in the affected hormone secretory tissue. Syndromes that lack this coupling seem rare and have not been examined for unifying features among each other. Evidence Acquisition: Selected clinical and basic features were analyzed from original reports and reviews. We examined indices of excess secretion of a hormone and indices of size of secretory tissue within the following three syndromes, each suggestive of uncoupling between these two indices: familial hypocalciuric hypercalcemia, congenital diazoxide-resistant hyperinsulinism, and congenital primary hyperaldosteronism type III (with G151E mutation of the KCNJ5 gene). Evidence Synthesis: Some unifying features among the three syndromes were different from features present among common tumors secreting the same hormone. The unifying and distinguishing features included: 1) expression of hormone excess as early as the first days of life; 2) normal size of tissue that oversecretes a hormone; 3) diffuse histologic expression in the hormonal tissue; 4) resistance to treatment by subtotal ablation of the hormone-secreting tissue; 5) causation by a germline mutation; 6) low potential of the same mutation to cause a tumor by somatic mutation; and 7) expression of the mutated molecule in a pathway between sensing of a serum metabolite and secretion of hormone regulating that metabolite. Conclusion: Some shared clinical and basic features of uncoupling of secretion from size in a hormonal tissue characterize three uncommon states of hormone excess. These features differ importantly from features of common hormonal neoplasm of that tissue. PMID:25004249

  3. Toxicogenomics and Cancer Susceptibility: Advances with Next-Generation Sequencing

    PubMed Central

    Ning, Baitang; Su, Zhenqiang; Mei, Nan; Hong, Huixiao; Deng, Helen; Shi, Leming; Fuscoe, James C.; Tolleson, William H.

    2017-01-01

    The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual’s susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy. PMID:24875441

  4. A mathematical model of breast cancer development, local treatment and recurrence.

    PubMed

    Enderling, Heiko; Chaplain, Mark A J; Anderson, Alexander R A; Vaidya, Jayant S

    2007-05-21

    Cancer development is a stepwise process through which normal somatic cells acquire mutations which enable them to escape their normal function in the tissue and become self-sufficient in survival. The number of mutations depends on the patient's age, genetic susceptibility and on the exposure of the patient to carcinogens throughout their life. It is believed that in every malignancy 4-6 crucial similar mutations have to occur on cancer-related genes. These genes are classified as oncogenes and tumour suppressor genes (TSGs) which gain or lose their function respectively, after they have received one mutative hit or both of their alleles have been knocked out. With the acquisition of each of the necessary mutations the transformed cell gains a selective advantage over normal cells, and the mutation will spread throughout the tissue via clonal expansion. We present a simplified model of this mutation and expansion process, in which we assume that the loss of two TSGs is sufficient to give rise to a cancer. Our mathematical model of the stepwise development of breast cancer verifies the idea that the normal mutation rate in genes is only sufficient to give rise to a tumour within a clinically observable time if a high number of breast stem cells and TSGs exist or genetic instability is involved as a driving force of the mutation pathway. Furthermore, our model shows that if a mutation occurred in stem cells pre-puberty, and formed a field of cells with this mutation through clonal formation of the breast, it is most likely that a tumour will arise from within this area. We then apply different treatment strategies, namely surgery and adjuvant external beam radiotherapy and targeted intraoperative radiotherapy (TARGIT) and use the model to identify different sources of local recurrence and analyse their prevention.

  5. Preliminary molecular detection of the somatic embryogenesis receptor-like kinase (VpSERK) and knotted-like homeobox (VpKNOX1) genes during in vitro morphogenesis of Vanilla planifolia Jacks.

    PubMed

    Ramírez-Mosqueda, Marco A; Iglesias-Andreu, Lourdes G; Sáenz, Luis; Córdova, Iván

    2018-02-01

    This work aimed to evaluate the embryogenic competence of different tissues from different stages (friable callus, bud-regenerating callus, and whole buds) of Vanilla planifolia , through the molecular detection of the somatic embryogenesis receptor-like kinase ( VpSERK ) and knotted-like homeobox ( VpKNOX1 ) genes. RNA was extracted with Trizol ® , cDNA was obtained, and the studied transcripts were amplified. Using non-specific primers, VpSERK and VpSTM gene expression was detected in the three stages evaluated. This study might contribute to providing an explanation for the recalcitrance of this Vanilla species to somatic embryogenesis.

  6. Scratching the surface: the processing of pain from deep tissues.

    PubMed

    Sikandar, Shafaq; Aasvang, Eske Kvanner; Dickenson, Anthony H

    2016-04-01

    Although most pain research focuses on skin, muscles, joints and viscerae are major sources of pain. We discuss the mechanisms of deep pains arising from somatic and visceral structures and how this can lead to widespread manifestations and chronification. We include how both altered peripheral and central sensory neurotransmission lead to deep pain states and comment on key areas such as top-down modulation where little is known. It is vital that the clinical characterization of deep pain in patients is improved to allow for back translation to preclinical models so that the missing links can be ascertained. The contribution of deeper somatic and visceral tissues to various chronic pain syndromes is common but there is much we need to know.

  7. De novo generation of HSCs from somatic and pluripotent stem cell sources

    PubMed Central

    Vo, Linda T.

    2015-01-01

    Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy. PMID:25762177

  8. Somatic awareness in the clinical care of patients with body distress symptoms

    PubMed Central

    Bakal, Donald; Coll, Patrick; Schaefer, Jeffrey

    2008-01-01

    The purpose of this paper is to provide primary care physicians and medical specialists with an experiential psychosomatic framework for understanding patients with body distress symptoms. The framework relies on somatic awareness, a normal part of consciousness, to resolve the dualism inherent in conventional multidisciplinary approaches. Somatic awareness represents a guiding healing heuristic which acknowledges the validity of the patient's physical symptoms and uses body sensations to identify the psychological, physiological, and social factors needed for symptom self-regulation. The experiential approach is based on psychobiologic concepts which include bodily distress disorder, central sensitization, dysfunctional breathing, and contextual nature of mood. PMID:18291028

  9. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing | Office of Cancer Genomics

    Cancer.gov

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions.

  10. Bacteriophage as models for virus removal from Pacific oysters (Crassostrea gigas) during re-laying.

    PubMed Central

    Humphrey, T. J.; Martin, K.

    1993-01-01

    A study was undertaken to examine the feasibility of using naturally-occurring bacteriophages to assess the impact of re-laying on levels of viral contamination in Crassostrea gigas, the Pacific oyster. Two phages were chosen. One, male-specific (F+), was enumerated using Salmonella typhimurium. The other, a somatic phage, was detected using an, as yet, uncharacterized Escherichia coli. Investigations, using a variety of re-laying sites, demonstrated that numbers of F+ phage in oyster tissue declined more rapidly than those of somatic phage. For example, in oysters placed in commercially-used sea water ponds, F+ phage reached undetectable levels within 2-3 weeks, whereas somatic phage could still be detected 5 weeks after re-laying. The studies suggest that F+ phage may not be a suitable indicator for virus removal and that somatic phage may be better suited to this role. PMID:8405159

  11. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    PubMed

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  12. Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Krikorian, A. D.

    1990-01-01

    Wounded zygotic embryos of cultivated carrot produce somatic proembryos on hormone-free nutrient medium containing 1 mM NH4+ as the sole nitrogen source. Continued maintenance of proembryos on this medium leads to a "pure" culture of preglobular stage proembryos (PGSPs). Ethylene had no effect on this process. Also, somatic embryo production was not affected by growing cultures on activated charcoal-impregnated filter papers. However, somatic proembyros initiated on activated charcoal papers were not maintainable as PGSPs and developed into later embryo stages. Normally, medium pH dropped from 5.7 to 4 during each subculture period, but when using activated charcoal papers the pH endpoint was around 6 - 7 due to a leachable substance(s) within the filter papers. When powdered, activated charcoal was used in the medium as an adsorbent of products potentially released after wounding, pH dropped at the normal rate and to the expected levels; proembryos did not mature into later embryo stages and were maintainable exclusively as PGSPs. Low pH (approximately 4) is detrimental to proembyro production, but is essential to maintaining PGSPs on hormone-free nutrient medium, whereas a sustained pH > or = 5.7 allows continued development of PGSPs into later embryo stages.

  13. Predatory stem cells in the non-zebrafish chordate, Botryllus schlosseri.

    PubMed

    Laird, Diana J; De Tomaso, Anthony W

    2005-01-01

    Botryllus schlosseri is a primitive marine chordate which provides a new model organism to study stem cell biology for several reasons. First, B. schlosseri is a colonial organism that undergoes continuous and regular asexual development. Botryllus adults regenerate themselves, including all somatic tissues and the germline, every week. Second, under natural conditions the cells responsible can mobilize and transplant between two individuals. Once transplanted, these cells can proliferate, differentiate, and often completely replace the cells of the host in both the germline and/or somatic tissues. These processes are called germ cell parasitism (gcp), or somatic cell parasitism (scp), respectively, and we have shown that there are winners and losers in this process, implying that the competitive ability of stem cells is a genetically-determined trait. Fundamental characteristics of stem cell biology, such as self-renewal capacity, homing, or differentiation kinetics must underlie the ability of a stem cell of one genotype to out-compete a stem cell of another genotype, and we are using this system prospectively to isolate the cells responsible and to analyze the molecular mechanisms underlying gcp and scp phenotypes.

  14. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    PubMed

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  15. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  16. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    PubMed Central

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses. PMID:24927412

  17. Melorheostosis: Exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS.

    PubMed

    Whyte, Michael P; Griffith, Malachi; Trani, Lee; Mumm, Steven; Gottesman, Gary S; McAlister, William H; Krysiak, Kilannin; Lesurf, Robert; Skidmore, Zachary L; Campbell, Katie M; Rosman, Ilana S; Bayliss, Susan; Bijanki, Vinieth N; Nenninger, Angela; Van Tine, Brian A; Griffith, Obi L; Mardis, Elaine R

    2017-08-01

    Melorheostosis (MEL) is the rare sporadic dysostosis characterized by monostotic or polyostotic osteosclerosis and hyperostosis often distributed in a sclerotomal pattern. The prevailing hypothesis for MEL invokes postzygotic mosaicism. Sometimes scleroderma-like skin changes, considered a representation of the pathogenetic process of MEL, overlie the bony changes, and sometimes MEL becomes malignant. Osteopoikilosis (OPK) is the autosomal dominant skeletal dysplasia that features symmetrically distributed punctate osteosclerosis due to heterozygous loss-of-function mutation within LEMD3. Rarely, radiographic findings of MEL occur in OPK. However, germline mutation of LEMD3 does not explain sporadic MEL. To explore if mosaicism underlies MEL, we studied a boy with polyostotic MEL and characteristic overlying scleroderma-like skin, a few bony lesions consistent with OPK, and a large epidermal nevus known to usually harbor a HRAS, FGFR3, or PIK3CA gene mutation. Exome sequencing was performed to ~100× average read depth for his two dermatoses, two areas of normal skin, and peripheral blood leukocytes. As expected for non-malignant tissues, the patient's mutation burden in his normal skin and leukocytes was low. He, his mother, and his maternal grandfather carried a heterozygous, germline, in-frame, 24-base-pair deletion in LEMD3. Radiographs of the patient and his mother revealed bony foci consistent with OPK, but she showed no MEL. For the patient, somatic variant analysis, using four algorithms to compare all 20 possible pairwise combinations of his five DNA samples, identified only one high-confidence mutation, heterozygous KRAS Q61H (NM_033360.3:c.183A>C, NP_203524.1:p.Gln61His), in both his dermatoses but absent in his normal skin and blood. Thus, sparing our patient biopsy of his MEL bone, we identified a heterozygous somatic KRAS mutation in his scleroderma-like dermatosis considered a surrogate for MEL. This implicates postzygotic mosaicism of mutated KRAS, perhaps facilitated by germline LEMD3 haploinsufficiency, causing his MEL. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).

    PubMed

    Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R

    2015-01-01

    Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223: possible correlation with stage and treatment response.

    PubMed

    Liu, Ting-Yun; Chen, Shee-Uan; Kuo, Sung-Hsin; Cheng, Ann-Lii; Lin, Chung-Wu

    2010-11-01

    Extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue of the stomach (gastric MALT lymphoma) is derived from memory B cells of the marginal zone. Normal memory B cells do not express markers of germinal-center B cells, such as E2A (immunoglobulin enhancer-binding factor E12/E47), B-cell chronic lymphocytic leukemia/lymphoma 6 (BCL6), or activation-induced cytidine deaminase (AID). E2A is a transcription factor that induces somatic hypermutations and blocks plasma cell differentiation. In 50 stage-I(E)/II(E1) gastric MALT lymphomas, we confirmed that all cases were BCL6(-)/AID(-), but a subset (50%, 25/50) was E2A(+). As E2A(-) and E2A(+) gastric MALT lymphomas had similar numbers of somatic hypermutations without intraclonal variations, which implied an origin from memory B cells, the expression of E2A was best regarded as a marker of aberrant follicular differentiation. Although the status of somatic hypermutation was not affected by E2A, E2A(+) gastric MALT lymphoma showed less plasmacytoid infiltrates and higher expressions of miRNA-223, a microRNA associated with memory B cells. Clinically, E2A(+) gastric MALT lymphomas were more likely to spread to perigastric lymph nodes and were less responsive to Helicobacter eradication therapy than were E2A(-) gastric MALT lymphomas. Taken together, aberrant E2A expression is a diagnostic feature of a subtype of gastric MALT lymphoma with weaker plasmacytoid infiltrates and stronger miR-223 expression. A prospective study would be necessary to verify the association between E2A expression and a poor response to Helicobacter eradication therapy.

  20. Hydrolysis by somatic angiotensin-I converting enzyme of basic dipeptides from a cholecystokinin/gastrin and a LH-RH peptide extended at the C-terminus with gly-Arg/Lys-arg, but not from diarginyl insulin.

    PubMed

    Isaac, R E; Michaud, A; Keen, J N; Williams, T A; Coates, D; Wetsel, W C; Corvol, P

    1999-06-01

    Endoproteolytic cleavage of protein prohormones often generates intermediates extended at the C-terminus by Arg-Arg or Lys-Arg, the removal of which by a carboxypeptidase (CPE) is normally an important step in the maturation of many peptide hormones. Recent studies in mice that lack CP activity indicate the existence of alternative tissue or plasma enzymes capable of removing C-terminal basic residues from prohormone intermediates. Using inhibitors of angiotensin I-converting enzyme (ACE) and CP, we show that both these enzymes in mouse serum can remove the basic amino acids from the C-terminus of CCK5-GRR and LH-RH-GKR, but only CP is responsible for converting diarginyl insulin to insulin. ACE activity removes C-terminal dipeptides to generate the Gly-extended peptides, whereas CP hydrolysis gives rise to CCK5-GR and LH-RH-GK, both of which are susceptible to the dipeptidyl carboxypeptidase activity of ACE. Somatic ACE has two similar protein domains (the N-domain and the C-domain), each with an active site that can display different substrate specificities. CCK5-GRR is a high-affinity substrate for both the N-domain and C-domain active sites of human sACE (Km of 9.4 microm and 9.0 microm, respectively) with the N-domain showing greater efficiency (kcat : Km ratio of 2.6 in favour of the N-domain). We conclude that somatic forms of ACE should be considered as alternatives to CPs for the removal of basic residues from some Arg/Lys-extended peptides.

  1. First report of bilateral pheochromocytoma in the clinical spectrum of HIF2A-related polycythemia-paraganglioma syndrome.

    PubMed

    Taïeb, David; Yang, Chunzhang; Delenne, Blandine; Zhuang, Zhengping; Barlier, Anne; Sebag, Fréderic; Pacak, Karel

    2013-05-01

    Molecular genetic research has so far resulted in the identification of 10 well-characterized susceptibility genes for hereditary pheochromocytoma (PHEO) or paraganglioma (PGL). Recently, a new syndrome characterized by multiple PGLs and somatostatinomas associated with congenital polycythemia due to somatic mutations in HIF2A has been reported. The aim of the study was to define the genetic defect in a new case of bilateral PHEO and multiple PGLs associated with congenital polycythemia. A female patient presented with neonatal polycythemia (treated by phlebotomies, 1 session approximately every 4 mo), mildly enlarged cerebral ventricles, and bilateral PHEO and multiple PGLs. There was no family history of any neuroendocrine tumor or polycythemia. Surgical removal of the tumors only temporarily normalized plasma erythropoietin (Epo) levels and discontinued phlebotomies. No germline mutations were initially detected in the SDHB, SDHC, SDHD, VHL, and PHD2 genes, known to be associated with polycythemia. The PHEOs presented with a typical noradrenergic biochemical phenotype. A heterozygous missense mutation (c.1589C>T) was identified in exon 12 of HIF2A, resulting in an alanine 530 substitution in the HIF-2α protein with valine (A530V). This somatic mutation was detected in the tissue from 1 PHEO and 1 PGL, with no HIF2A germline mutation found. This mutation led to stabilization of HIF-2α and hence a gain-of-function phenotype, as in previously published studies. This case represents the first association of a somatic HIF2A gain-of-function mutation with PHEO and congenital polycythemia, and it alerts physicians to perform proper genetic screening in patients presenting with multiple norepinephrine-producing PHEOs and polycythemia. This report also extends the previous findings of a new syndrome of only multiple PGLs, somatostatinomas, and polycythemia to multiple PHEOs.

  2. Constructing Failure: Leonard Hayflick, Biomedicine, and the Problems with Tissue Culture.

    PubMed

    Park, Hyung Wook

    2016-07-01

    By examining the use of tissue culture in post-war American biomedicine, this paper investigates how scientists experience and manage failure. I study how Leonard Hayflick forged his new definition of failure and ways of managing it by refuting Alexis Carrel's definition of failure alongside his theory of the immortality of cultured cells. Unlike Carrel, Hayflick claimed that every vertebrate somatic cell should eventually die, unless it transformed into a tumour cell. This claim defined cell death, which had been a problem leading to a laboratory failure, as a normal phenomenon. On the other hand, permanent life, which had been considered a normal cellular characteristic, became a major factor causing scientific failure, since it implied malignant transformation that scientists hoped to control. Hayflick then asserted that his cell strains and method would partly enable scientists to manage this factor-especially that occurred through viral infection-alongside other causes of failure in routine tasks, including bacterial contamination. I argue that the growing biomedical enterprise fostered this work of Hayflick's, which had repercussions in both his career and the uses of cells in diverse investigations. His redefinition of failure in the age of biomedicine resulted in the broad dissemination of his cells, medium, and method as well as his long struggle with the National Institutes of Health (NIH), which caused his temporarily failed career.

  3. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    PubMed Central

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  4. Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens)

    Treesearch

    Rakesh Minocha; Haarald Kvaalen; Subhash C. Minocha; Stephanie Long

    1993-01-01

    Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (...

  5. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment.

    PubMed Central

    Yang, N S; Burkholder, J; Roberts, B; Martinell, B; McCabe, D

    1990-01-01

    Chimeric chloramphenicol acetyltransferase and beta-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10(-3) and 6 x 10(-4), respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy. Images PMID:2175906

  6. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    PubMed

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  7. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  8. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 2. Tissue biochemistry evaluation.

    PubMed

    Lohner, T W; Reash, R J; Williams, M

    2001-11-01

    Sunfish were collected from a fly ash pond-receiving stream and an Ohio River reference site to assess biochemical responses to coal ash effluent exposure. Selenium levels in sunfish from the receiving stream were higher than toxic thresholds associated with adverse population effects and reproductive impairment. Tissue biochemistry was found to be indicative of metal exposure and effect, but varied widely. Liver glycogen was positively correlated with increased liver metal levels, indicating no adverse effect upon stored carbohydrate levels. Lipid levels decreased with increasing metals, indicating possible nutritional stress. Protein levels increased with increasing metal levels, possibly due to the synthesis of proteins to sequester the metals. ATPase, dUTPase, and alkaline phosphatase activity generally decreased with exposure to ash pond metals, but remained within normal physiological ranges. Fish condition factors and liver somatic indices were correlated with liver lipid levels, dUTPase activity, and gill ATPase and alkaline phosphatase activity. Exposure to coal ash effluents produced biochemical markers of exposure that were associated with fish condition indicators; however, the indices themselves were not significantly affected by effluent exposure.

  9. Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.

    PubMed

    Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine

    2009-05-01

    Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation. (c) 2008 Wiley-Liss, Inc.

  10. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish.

    PubMed

    Villamarín, Francisco; Magnusson, William E; Jardine, Timothy D; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction.

  11. Temporal Uncoupling between Energy Acquisition and Allocation to Reproduction in a Herbivorous-Detritivorous Fish

    PubMed Central

    Villamarín, Francisco; Magnusson, William E.; Jardine, Timothy D.; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E.

    2016-01-01

    Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction. PMID:26938216

  12. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts, large nuclei and nucleoli, and numerous plasmodesmata. Plantlets were obtained and after 3 months in culture their growth was significantly better in TIS than on solid culture medium. However, during acclimatization the survival rate of TIS-grown plantlets was lower. Conclusions The present study confirms the occurrence of secondary somatic embryos in peach palm and describes a feasible protocol for regeneration of peach palm in vitro. Further optimizations include the use of explants obtained from adult palms and improvement of somatic embryo conversion rates. PMID:21355009

  13. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottleneck.

    PubMed Central

    Marchington, D R; Hartshorne, G M; Barlow, D; Poulton, J

    1997-01-01

    While mtDNA polymorphisms at single base positions are common, the overwhelming majority of the mitochondrial genomes within a single individual are usually identical. When there is a point-mutation difference between a mother and her offspring, there may be a complete switching of mtDNA type within a single generation. It is generally assumed that there is a genetic bottleneck whereby a single or small number of founder mtDNA(s) populate the organism, but it is not known at which stages the restriction/amplification of mtDNA subtype(s) occur, and this uncertainty impedes antenatal diagnosis for mtDNA disorders. Length polymorphisms in homopolymeric tracts have been demonstrated in the large noncoding region of mtDNA. We have developed a new method, T-PCR (trimmed PCR), to quantitate heteroplasmy for two of these tracts (D310 and D16189). D310 variation is sufficient to indicate clonal origins of tissues and single oocytes. Tissues from normal individuals often possessed more than one length variant (heteroplasmy). However, there was no difference in the pattern of the length variants between somatic tissues in any control individual when bulk samples were taken. Oocytes from normal women undergoing in vitro fertilization were frequently heteroplasmic for length variants, and in two cases the modal length of the D310 tract differed in individual oocytes from the same woman. These data suggest that a restriction/amplification event, which we attribute to clonal expansion of founder mtDNA(s), has occurred by the time oocytes are mature, although further segregation may occur at a later stage. In contrast to controls, the length distribution of the D310 tract varied between tissues in a patient with heteroplasmic mtDNA rearrangements, suggesting that these mutants influence segregation. These findings have important implications for the genetic counselling of patients with pathogenic mtDNA mutations. Images Figure 2 Figure 1 Figure 3 Figure 4 Figure 5 PMID:9012414

  14. Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive.

    PubMed

    Winters, Bradley D; Jin, Shan-Xue; Ledford, Kenneth R; Golding, Nace L

    2017-03-22

    The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. Copyright © 2017 the authors 0270-6474/17/373138-12$15.00/0.

  15. Specificity in cancer immunotherapy.

    PubMed

    Schietinger, Andrea; Philip, Mary; Schreiber, Hans

    2008-10-01

    From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are often crucial for tumorigenicity, they are ideal targets for anti-cancer immunotherapy. Nevertheless, the antigens that are targeted today by anti-tumor immunotherapy are not tumor-specific antigens, but antigens that are normal molecules also expressed by normal tissues (so-called "tumor-associated" antigens). If tumor-specific antigens exist and are ideal targets for immunotherapy, why are they not being targeted? In this review, we summarize current knowledge of tumor-specific antigens: their identification, immunological relevance and clinical use. We discuss novel tumor-specific epitopes and propose new approaches that could improve the success of cancer immunotherapy, especially for the treatment of solid tumors.

  16. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments

    PubMed Central

    Goodell, Margaret A.; Nguyen, Hoang; Shroyer, Noah

    2017-01-01

    Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types. PMID:25907613

  17. Bloom syndrome: a mendelian prototype of somatic mutational disease.

    PubMed

    German, J

    1993-11-01

    Spontaneous mutations in human somatic cells occur far more often than normal in individuals with Bloom syndrome. The basis for understanding these mutations and their developmental consequences emerges from examination of BS at the molecular, cellular, and clinical levels. The major clinical feature of BS, proportional dwarfism, as well as its major clinical complication, an exceptionally early emergence of neoplasia of the types and sites that affect the general population, are attributable to the excessive occurrence of mutations in somatic cells. Here, the following aspects of BS are discussed: (i) the BS phenotype; (ii) neoplasia in BS, including the means--the Bloom's Syndrome Registry--by which the significant risk for diverse sites and types of cancer in these patients was revealed; (iii) the biological basis for the cancer proneness of BS; and, finally, (iv) the significance for both basic human biology and clinical medicine of BS as the prototype of somatic mutational disease.

  18. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  19. DK phocomelia phenotype (von Voss-Cherstvoy syndrome) caused by somatic mosaicism for del(13q).

    PubMed

    Bamforth, J S; Lin, C C

    1997-12-31

    DK phocomelia (von Voss-Cherstvoy syndrome) is a rare condition characterized by radial ray defects, occipital encephalocoele, and urogenital abnormalities. Lubinsky et al. [1994: Am J Med Genet 52:272-278] pointed out similarities between this and the del(13q) syndrome. To date, all reported cases of DK phocomelia have been apparently normal chromosomally. We report on a case of DK phocomelia in which the proposita had normal lymphocyte chromosomes, but was mosaic in fibroblasts for del(13)(q12). Fibroblast chromosomes studies on other cases of DK phocomelia have not been reported: this raises the possibility that some cases of DK phocomelia may be somatic mosaics for del(13)(q12).

  20. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.

    PubMed

    Baert, Yoni; Braye, Aude; Struijk, Robin B; van Pelt, Ans M M; Goossens, Ellen

    2015-11-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of testicular cells from fresh and frozen tissues during long-term culture. Human testicular cells derived from fresh (n = 3) and cryopreserved (n = 3) tissues were cultured for 2 months and analyzed with quantitative reverse-transcription polymerase chain reaction and immunofluorescence. Spermatogonia including spermatogonial stem cells (SSCs) were reliably detected by combining VASA, a germ cell marker, with UCHL1, a marker expressed by spermatogonia. The established markers STAR, ACTA2, and SOX9 were used to analyze the presence of Leydig cells, peritubular myoid cells, and Sertoli cells, respectively. No obvious differences were found between the cultures initiated from fresh or cryopreserved tissues. Single or small groups of SSCs (VASA(+)/UCHL1(+)) were detected in considerable amounts up to 1 month of culture, but infrequently after 2 months. SSCs were found attached to the feeder monolayer, which expressed markers for Sertoli cells, Leydig cells, and peritubular myoid cells. In addition, VASA(-)/UCHL1(+) cells, most likely originating from the interstitium, also contributed to this monolayer. Apart from Sertoli cells, all somatic cell types could be detected throughout the culture period. Testicular tissue can be cryopreserved before long-term culture without modifying its outcome, which encourages implementation of testicular tissue banking for fertility preservation. However, because of the limited numbers of SSCs available after 2 months, further exploration and optimization of the culture system is needed. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  2. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    PubMed Central

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    SUMMARY Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by IVF but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells, and its removal by ectopic expression of the H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency. PMID:25417163

  3. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis.

    PubMed

    Perera, Prasanthi I P; Hocher, Valerie; Verdeil, Jean Luc; Doulbeau, Sylvie; Yakandawala, Deepthi M D; Weerakoon, L Kaushalya

    2007-01-01

    Unfertilized ovaries isolated from immature female flowers of coconut (Cocos nucifera L.) were tested as a source of explants for callogenesis and somatic embryogenesis. The correct developmental stage of ovary explants and suitable in vitro culture conditions for consistent callus production were identified. The concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) and activated charcoal was found to be critical for callogenesis. When cultured in a medium containing 100 microM 2,4-D and 0.1% activated charcoal, ovary explants gave rise to 41% callusing. Embryogenic calli were sub-cultured into somatic embryogenesis induction medium containing 5 microM abscisic acid, followed by plant regeneration medium (with 5 microM 6-benzylaminopurine). Many of the somatic embryos formed were complete with shoot and root poles and upon germination they gave rise to normal shoots. However, some abnormal developments were also observed. Flow cytometric analysis revealed that all the calli tested were diploid. Through histological studies, it was possible to study the sequence of the events that take place during somatic embryogenesis including orientation, polarization and elongation of the embryos.

  4. Determining the Origin of Human Germinal Center B Cell-Derived Malignancies.

    PubMed

    Seifert, Marc; Küppers, Ralf

    2017-01-01

    Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which "freeze" the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.

  5. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia

    PubMed Central

    Lim, Young H.; Ovejero, Diana; Sugarman, Jeffrey S.; DeKlotz, Cynthia M.C.; Maruri, Ann; Eichenfield, Lawrence F.; Kelley, Patrick K.; Jüppner, Harald; Gottschalk, Michael; Tifft, Cynthia J.; Gafni, Rachel I.; Boyce, Alison M.; Cowen, Edward W.; Bhattacharyya, Nisan; Guthrie, Lori C.; Gahl, William A.; Golas, Gretchen; Loring, Erin C.; Overton, John D.; Mane, Shrikant M.; Lifton, Richard P.; Levy, Moise L.; Collins, Michael T.; Choate, Keith A.

    2014-01-01

    Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23. PMID:24006476

  6. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia.

    PubMed

    Lim, Young H; Ovejero, Diana; Sugarman, Jeffrey S; Deklotz, Cynthia M C; Maruri, Ann; Eichenfield, Lawrence F; Kelley, Patrick K; Jüppner, Harald; Gottschalk, Michael; Tifft, Cynthia J; Gafni, Rachel I; Boyce, Alison M; Cowen, Edward W; Bhattacharyya, Nisan; Guthrie, Lori C; Gahl, William A; Golas, Gretchen; Loring, Erin C; Overton, John D; Mane, Shrikant M; Lifton, Richard P; Levy, Moise L; Collins, Michael T; Choate, Keith A

    2014-01-15

    Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.

  7. Coordinated tissue-specific regulation of adjacent alternative 3′ splice sites in C. elegans

    PubMed Central

    Ragle, James Matthew; Katzman, Sol; Akers, Taylor F.; Barberan-Soler, Sergio; Zahler, Alan M.

    2015-01-01

    Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus. PMID:25922281

  8. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma.

    PubMed

    Elbelt, Ulf; Trovato, Alessia; Kloth, Michael; Gentz, Enno; Finke, Reinhard; Spranger, Joachim; Galas, David; Weber, Susanne; Wolf, Cristina; König, Katharina; Arlt, Wiebke; Büttner, Reinhard; May, Patrick; Allolio, Bruno; Schneider, Jochen G

    2015-01-01

    Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing's syndrome, which may present in the context of different familial multitumor syndromes. Heterozygous inactivating germline mutations of armadillo repeat containing 5 (ARMC5) have very recently been described as cause for sporadic PMAH. Whether this genetic condition also causes familial PMAH in association with other neoplasias is unclear. The aim of the present study was to delineate the molecular cause in a large family with PMAH and other neoplasias. Whole-genome sequencing and comprehensive clinical and biochemical phenotyping was performed in members of a PMAH affected family. Nodules derived from adrenal surgery and pancreatic and meningeal tumor tissue were analyzed for accompanying somatic mutations in the identified target genes. PMAH presenting either as overt or subclinical Cushing's syndrome was accompanied by a heterozygous germline mutation in ARMC5 (p.A110fs*9) located on chromosome 16. Analysis of tumor tissue showed different somatic ARMC5 mutations in adrenal nodules supporting a second hit hypothesis with inactivation of a tumor suppressor gene. A damaging somatic ARMC5 mutation was also found in a concomitant meningioma (p.R502fs) but not in a pancreatic tumor, suggesting biallelic inactivation of ARMC5 as causal also for the intracranial meningioma. Our analysis further confirms inherited inactivating ARMC5 mutations as a cause of familial PMAH and suggests an additional role for the development of concomitant intracranial meningiomas.

  9. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    PubMed

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  10. Intergeneric somatic hybrid plants of Citrus sinensis cv. Hamlin and Poncirus trifoliata cv. Flying Dragon.

    PubMed

    Grosser, J W; Gmitter, F G; Chandler, J L

    1988-01-01

    Intergeneric somatic hybrid plants between 'Hamlin' sweet orange [Citrus sinensis (L.) Osbeck] and 'Flying Dragon' trifoliate orange (Poncirus trifoliata Raf.) were regenerated following protoplast fusion. 'Hamlin' protoplasts, isolated from an habituated embryogenic suspension culture, were fused chemically with 'Flying Dragon' protoplasts isolated from juvenile leaf tissue. The hybrid selection scheme was based on complementation of the regenerative ability of the 'Hamlin' protoplasts with the subsequent expression of the trifoliate leaf character of 'Flying Dragon.' Hybrid plants were regenerated via somatic embryogenesis and multiplied organogenically. Hybrid morphology was intermediate to that of the parents. Chromosome counts indicated that the hybrids were allotetraploids (2n=4x=36). Malate dehydrogenase (MDH) isozyme patterns confirmed the hybrid nature of the regenerated plants. These genetically unique somatic hybrid plants will be evaluated for citrus rootstock potential. The cell fusion, selection, and regeneration scheme developed herein should provide a general means to expand the germplasm base of cultivated Citrus by intergeneric hybridization with related sexually incompatible genera.

  11. Simultaneous Characterization of Somatic Events and HPV-18 Integration in a Metastatic Cervical Carcinoma Patient Using DNA and RNA Sequencing

    PubMed Central

    Liang, Winnie S.; Aldrich, Jessica; Nasser, Sara; Kurdoglu, Ahmet; Phillips, Lori; Reiman, Rebecca; McDonald, Jacquelyn; Izatt, Tyler; Christoforides, Alexis; Baker, Angela; Craig, Christine; Egan, Jan B.; Chase, Dana M.; Farley, John H.; Bryce, Alan H.; Stewart, A. Keith; Borad, Mitesh J.; Carpten, John D.; Craig, David W.; Monk, Bradley J.

    2014-01-01

    Objective Integration of carcinogenic human papillomaviruses (HPVs) into the host genome is a significant tumorigenic factor in specific cancers including cervical carcinoma. Although major strides have been made with respect to HPV diagnosis and prevention, identification and development of efficacious treatments for cervical cancer patients remains a goal and thus requires additional detailed characterization of both somatic events and HPV integration. Given this need, the goal of this study was to use the next generation sequencing to simultaneously evaluate somatic alterations and expression changes in a patient’s cervical squamous carcinoma lesion metastatic to the lung and to detect and analyze HPV infection in the same sample. Materials and Methods We performed tumor and normal exome, tumor and normal shallow whole-genome sequencing, and RNA sequencing of the patient’s lung metastasis. Results We generated over 1.2 billion mapped reads and identified 130 somatic point mutations and indels, 21 genic translocations, 16 coding regions demonstrating copy number changes, and over 36 genes demonstrating altered expression in the tumor (corrected P < 0.05). Sequencing also revealed the HPV type 18 (HPV-18) integration in the metastasis. Using both DNA and RNA reads, we pinpointed 3 major events indicating HPV-18 integration into an intronic region of chromosome 6p25.1 in the patient’s tumor and validated these events with Sanger sequencing. This integration site has not been reported for HPV-18. Conclusions We demonstrate that DNA and RNA sequencing can be used to concurrently characterize somatic alterations and expression changes in a biopsy and delineate HPV integration at base resolution in cervical cancer. Further sequencing will allow us to better understand the molecular basis of cervical cancer pathogenesis. PMID:24418928

  12. Studies on Somatic Embryogenesis in Sweetpotato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  13. Studies for Somatic Embryogenesis in Sweet Potato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  14. Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation.

    PubMed

    Fang, Jong-Yi; Wetten, Andrew; Johnston, Jason

    2008-03-01

    The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.

  15. Integrative Genomics and Transcriptomics Analysis Reveals Potential Mechanisms for Favorable Prognosis of Patients with HPV-Positive Head and Neck Carcinomas

    PubMed Central

    Zhang, Wensheng; Edwards, Andrea; Fang, Zhide; Flemington, Erik K.; Zhang, Kun

    2016-01-01

    Patients with HPV-positive head neck squamous cell carcinomas (HNSCC) usually have a better prognosis than the HPV-negative cases while the underlying mechanism remains far from being well understood. We investigated this issue by an integrative analysis of clinically-annotated multi-omics HNSCC data released by the Cancer Genome Atlas. As confirmatory results, we found: (1) Co-occurrence of mutant TP53 and HPV infection was rare; (2) Regardless of HPV status, HNSCCs of wild-type TP53 implied a good survival chance for patients and had fewer genome-wide somatic mutations than those with a mutation burden on the gene. Our analysis further led to some novel observations. They included: (1) The genes involved in “DNA mismatch repair” pathway were up-regulated in HPV-positive tumors compared to normal tissue samples and HPV-negative cases, and thus constituted a strong predictive signature for the identification of HPV infection; (2) HPV infection could disrupt some regulatory miRNA-mRNA correlations operational in the HPV-negative tumors. In light of these results, we proposed a hypothesis for the favorable clinical outcomes of HPV-positive HNSCC patients. That is, the replication of HPV genome and/or its invasion into the genomes of cancer cells may enhance DNA repair mechanisms, which in turn limit the accumulation of lethal somatic mutations. PMID:27108969

  16. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  17. Paternal Somatic Mosaicism of a Novel Frameshift Mutation in ELANE Causing Severe Congenital Neutropenia.

    PubMed

    Kim, Hee-Jung; Song, Min-Jung; Lee, Ki-O; Kim, Sun-Hee; Kim, Hee-Jin

    2015-12-01

    Severe congenital neutropenia (SCN) is a bone marrow failure disease with an autosomal dominant inheritance from mutations in ELANE. Here, we report a 7-week-old Korean male with SCN. His elder sister died from pneumonia at 2 years. Direct sequencing of ELANE in the proband identified a heterozygous novel frameshift mutation: c.658delC (p.Arg220Glyfs20*). Family study involving his asymptomatic parents with normal cell counts revealed that his father had the same mutation, but at a lower burden than expected in a typical heterozygous state. Further molecular investigation demonstrated somatic mosaicism with ~18% mutant alleles. We concluded the proband inherited the mutation from his somatic mosaic father. © 2015 Wiley Periodicals, Inc.

  18. LDOC1 mRNA is differentially expressed in chronic lymphocytic leukemia and predicts overall survival in untreated patients

    PubMed Central

    Duzkale, Hatice; Schweighofer, Carmen D.; Coombes, Kevin R.; Barron, Lynn L.; Ferrajoli, Alessandra; O'Brien, Susan; Wierda, William G.; Pfeifer, John; Majewski, Tadeusz; Czerniak, Bogdan A.; Jorgensen, Jeffrey L.; Medeiros, L. Jeffrey; Freireich, Emil J; Keating, Michael J.

    2011-01-01

    We previously identified LDOC1 as one of the most significantly differentially expressed genes in untreated chronic lymphocytic leukemia (CLL) patients with respect to the somatic mutation status of the immunoglobulin heavy-chain variable region genes. However, little is known about the normal function of LDOC1, its contribution to the pathophysiology of CLL, or its prognostic significance. In this study, we have investigated LDOC1 mRNA expression in a large cohort of untreated CLL patients, as well as in normal peripheral blood B-cell (NBC) subsets and primary B-cell lymphoma samples. We have confirmed that LDOC1 is dramatically down-regulated in mutated CLL cases compared with unmutated cases, and have identified a new splice variant, LDOC1S. We show that LDOC1 is expressed in NBC subsets (naive > memory), suggesting that it may play a role in normal B-cell development. It is also expressed in primary B-cell lymphoma samples, in which its expression is associated with somatic mutation status. In CLL, we show that high levels of LDOC1 correlate with biomarkers of poor prognosis, including cytogenetic markers, unmutated somatic mutation status, and ZAP70 expression. Finally, we demonstrate that LDOC1 mRNA expression is an excellent predictor of overall survival in untreated CLL patients. PMID:21310924

  19. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs.

    PubMed

    Adachi, Noritaka; Yamaguchi, Daisuke; Watanabe, Akiyuki; Miura, Narumi; Sunaga, Seiji; Oishi, Hitoshi; Hashimoto, Michiko; Oishi, Takatsugu; Iwamoto, Masaki; Hanada, Hirofumi; Kubo, Masanori; Onishi, Akira

    2014-04-24

    The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.

  20. Growth, Reproductive Performance, Carcass Characteristics and Meat Quality in F1 and F2 Progenies of Somatic Cell-Cloned Pigs

    PubMed Central

    ADACHI, Noritaka; YAMAGUCHI, Daisuke; WATANABE, Akiyuki; MIURA, Narumi; SUNAGA, Seiji; OISHI, Hitoshi; HASHIMOTO, Michiko; OISHI, Takatsugu; IWAMOTO, Masaki; HANADA, Hirofumi; KUBO, Masanori; ONISHI, Akira

    2014-01-01

    The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production. PMID:24492641

  1. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    PubMed

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  2. Designer human tissue: coming to a lab near you.

    PubMed

    Hay, David C; O'Farrelly, Cliona

    2018-07-05

    Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology 'in a dish' or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.

  3. [New challenge of tissue repair and regenerative medicine: to achieve a perfect repair and regeneration of multiple tissues in wound sites].

    PubMed

    Fu, X B

    2016-01-01

    Great achievements in the study of tissue repair and regeneration have been made, and many of these successes have been shown to be beneficial to the patients in recent years. However, perfect tissue repair and regeneration of damaged tissues and organs remain to be great challenges in the management of trauma and diseases. Based on the progress in developmental biology in animals and advances in stem cell biology, it is possible to attain the aim of perfect repair and regeneration by means of somatic cell reprogramming and different inducing techniques.

  4. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    PubMed

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  5. Stable transformation via particle bombardment in two different soybean regeneration systems.

    PubMed

    Sato, S; Newell, C; Kolacz, K; Tredo, L; Finer, J; Hinchee, M

    1993-05-01

    The Biolistics(®) particle delivery system for the transformation of soybean (Glycine max L. Merr.) was evaluated in two different regeneration systems. The first system was multiple shoot proliferation from shoot tips obtained from immature zygotic embryos of the cultivar Williams 82, and the second was somatic embryogenesis from a long term proliferative suspension culture of the cultivar Fayette. Bombardment of shoot tips with tungsten particles, coated with precipitated DNA containing the gene for β-glucuronidase (GUS), produced GUS-positive sectors in 30% of the regenerated shoots. However, none of the regenerants which developed into plants continued to produce GUS positive tissue. Bombardment of embryogenic suspension cultures produced GUS positive globular somatic embryos which proliferated into GUS positive somatic embryos and plants. An average of 4 independent transgenic lines were generated per bombarded flask of an embryogenic suspension. Particle bombardment delivered particles into the first two cell layers of either shoot tips or somatic embryos. Histological analysis indicated that shoot organogenesis appeared to involve more than the first two superficial cell layers of a shoot tip, while somatic embryo proliferation occurred from the first cell layer of existing somatic embryos. The different transformation results obtained with these two systems appeared to be directly related to differences in the cell types which were responsible for regeneration and their accessibility to particle penetration.

  6. Resurrection of a bull by cloning from organs frozen without cryoprotectant in a -80 degrees c freezer for a decade.

    PubMed

    Hoshino, Yoichiro; Hayashi, Noboru; Taniguchi, Shunji; Kobayashi, Naohiko; Sakai, Kenji; Otani, Tsuyoshi; Iritani, Akira; Saeki, Kazuhiro

    2009-01-01

    Frozen animal tissues without cryoprotectant have been thought to be inappropriate for use as a nuclear donor for somatic cell nuclear transfer (SCNT). We report the cloning of a bull using cells retrieved from testicles that had been taken from a dead animal and frozen without cryoprotectant in a -80 degrees C freezer for 10 years. We obtained live cells from defrosted pieces of the spermatic cords of frozen testicles. The cells proliferated actively in culture and were apparently normal. We transferred 16 SCNT embryos from these cells into 16 synchronized recipient animals. We obtained five pregnancies and four cloned calves developed to term. Our results indicate that complete genome sets are maintained in mammalian organs even after long-term frozen-storage without cryoprotectant, and that live clones can be produced from the recovered cells.

  7. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma.

    PubMed

    Bosse, Kristopher R; Raman, Pichai; Zhu, Zhongyu; Lane, Maria; Martinez, Daniel; Heitzeneder, Sabine; Rathi, Komal S; Kendsersky, Nathan M; Randall, Michael; Donovan, Laura; Morrissy, Sorana; Sussman, Robyn T; Zhelev, Doncho V; Feng, Yang; Wang, Yanping; Hwang, Jennifer; Lopez, Gonzalo; Harenza, Jo Lynne; Wei, Jun S; Pawel, Bruce; Bhatti, Tricia; Santi, Mariarita; Ganguly, Arupa; Khan, Javed; Marra, Marco A; Taylor, Michael D; Dimitrov, Dimiter S; Mackall, Crystal L; Maris, John M

    2017-09-11

    We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Resurrection of a Bull by Cloning from Organs Frozen without Cryoprotectant in a −80°C Freezer for a Decade

    PubMed Central

    Hoshino, Yoichiro; Hayashi, Noboru; Taniguchi, Shunji; Kobayashi, Naohiko; Sakai, Kenji; Otani, Tsuyoshi; Iritani, Akira; Saeki, Kazuhiro

    2009-01-01

    Frozen animal tissues without cryoprotectant have been thought to be inappropriate for use as a nuclear donor for somatic cell nuclear transfer (SCNT). We report the cloning of a bull using cells retrieved from testicles that had been taken from a dead animal and frozen without cryoprotectant in a −80°C freezer for 10 years. We obtained live cells from defrosted pieces of the spermatic cords of frozen testicles. The cells proliferated actively in culture and were apparently normal. We transferred 16 SCNT embryos from these cells into 16 synchronized recipient animals. We obtained five pregnancies and four cloned calves developed to term. Our results indicate that complete genome sets are maintained in mammalian organs even after long-term frozen-storage without cryoprotectant, and that live clones can be produced from the recovered cells. PMID:19129919

  9. Punctuated Evolution of Prostate Cancer Genomes

    PubMed Central

    Baca, Sylvan C.; Prandi, Davide; Lawrence, Michael S.; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y.; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V.; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T. David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C.; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E.; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L.; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W.; Berger, Michael F.; Gabriel, Stacey B.; Golub, Todd R.; Meyerson, Matthew; Lander, Eric S.; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A.; Garraway, Levi A.

    2013-01-01

    SUMMARY The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term “chromoplexy”, frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. PMID:23622249

  10. Punctuated evolution of prostate cancer genomes.

    PubMed

    Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A

    2013-04-25

    The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Somatic hybrid plants of Nicotiana x sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina.

    PubMed

    Patel, Deval; Power, J Brian; Anthony, Paul; Badakshi, Farah; Pat Heslop-Harrison, J S; Davey, Michael R

    2011-10-01

    The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches. Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance. Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi. Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco.

  12. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    PubMed

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  13. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.

    PubMed

    Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R

    2015-06-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    PubMed Central

    Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.

    2015-01-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125

  15. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    PubMed

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  16. Predictive Genes in Adjacent Normal Tissue Are Preferentially Altered by sCNV during Tumorigenesis in Liver Cancer and May Rate Limiting

    PubMed Central

    Lamb, John R.; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Hao, Ke; Chudin, Eugene; Fraser, Hunter B.; Millstein, Joshua; Ferguson, Mark; Suver, Christine; Ivanovska, Irena; Scott, Martin; Philippar, Ulrike; Bansal, Dimple; Zhang, Zhan; Burchard, Julja; Smith, Ryan; Greenawalt, Danielle; Cleary, Michele; Derry, Jonathan; Loboda, Andrey; Watters, James; Poon, Ronnie T. P.; Fan, Sheung T.; Yeung, Chun; Lee, Nikki P. Y.; Guinney, Justin; Molony, Cliona; Emilsson, Valur; Buser-Doepner, Carolyn; Zhu, Jun; Friend, Stephen; Mao, Mao; Shaw, Peter M.; Dai, Hongyue; Luk, John M.; Schadt, Eric E.

    2011-01-01

    Background In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types. PMID:21750698

  17. Tumoral, quasitumoral and pseudotumoral lesions of the superficial and somatic soft tissue: new entities and new variants of old entities recorded during the last 25 years. Part XII: appendix.

    PubMed

    Bisceglia, M; Spagnolo, D; Galliani, C; Fisher, C; Suster, S; Kazakov, D V; Cooper, K; Michal, M

    2006-08-01

    In an eleven part series published in Pathologica, we have presented various tumoral, quasitumoral and pseudotumoral lesions of the superficial and somatic soft tissue (ST), which emerged as new entities or as variants of established entities during the last quarter of a century. Detailed clinicomorphological and differential diagnostic features of approximately sixty entities were chosen on the basis of their clinical significance and morphologic distinctiveness. The series included fibrous and myofibroblastic tumors (e.g. solitary fibrous tumor, high grade classic and pigmented dermatofibrosarcoma protuberans, inflammatory myofibroblastic tumor and myofibrosarcomas), fibromyxoid and fibrohistiocytic neoplasms (e.g., Evans' tumor, phosphaturic mesenchymal tumor, inflammatory myxohyaline tumor), special adipocytic/vascular/and smooth muscle lesions (e.g., chondroid lipoma, Dabska's tumor, ST hemangioblastoma, lipoleiomyosarcoma), epithelioid mesenchymal malignancies of diverse lineages (e.g., epithelioid liposarcoma, proximal-type epithelioid sarcoma, neuroendocrine extraskeletal chondromyxoid sarcoma), ST Ewing's tumor and peripheral nerve sheath tumors (perineuriomas and pigmented and rosetting tumors of the schwannoma/neurofibroma group), extranodal dendritic or histiocytic proliferative processes (follicular dendritic cell sarcoma, Rosai-Dorfman disease, Castleman's disease, and plexiform xanthomatous tumor), and tumors with myoepithelial differentiation. The section devoted to selected pseudotumoral entities considered representatives of the hamartoma group (neural fibrolipomatous hamartoma, ectopic hamartomatous thymoma, rudimentary meningocele), metabolic diseases (amyloid tumor, nephrogenic fibrosing dermopathy, tophaceous pseudogout, pseudoinfiltrative parathyromatosis), stromal tissue reactions to trauma (fibroosseous pseudotumors of digits) and infections (bacillary angiomatosis), and normal organs (glomus coccygeum). To conclude the descriptive phase, supplementary material has now been collected and appended in an attempt to provide a quick digest of essential knowledge both for comparison and differential diagnosis. The data have been tailored to synthesize diverse sources, integrating clinical elements and references to articles that previously appeared in Part I ("Introduction"), Part II ("The List and Review of New Entities") and Parts III to XI ("Excerpta"). At the very least we hope this final part ("Appendix") will provide the reader with a useful tabular organization of ST lesions and a reference resource.

  18. Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.

    PubMed

    Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh

    2017-04-01

    The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.

  19. Mated Progeny Production Is a Biomarker of Aging in Caenorhabditis elegans

    PubMed Central

    Pickett, Christopher L.; Dietrich, Nicholas; Chen, Junfang; Xiong, Chengjie; Kornfeld, Kerry

    2013-01-01

    The relationships between reproduction and aging are important for understanding the mechanisms of aging and evaluating evolutionary theories of aging. To investigate the effects of progeny production on reproductive and somatic aging, we conducted longitudinal studies of Caenorhabditis elegans hermaphrodites. For mated wild-type animals that were not sperm limited and survived past the end of the reproductive period, high levels of cross-progeny production were positively correlated with delayed reproductive and somatic aging. In this group of animals, individuals that generated more cross progeny also reproduced and lived longer than individuals that generated fewer cross progeny. These results indicate that progeny production does not accelerate reproductive or somatic aging. This longitudinal study demonstrated that cumulative cross progeny production through day four is an early-stage biomarker that is a positive predictor of longevity. Furthermore, in mated animals, high levels of early cross progeny production were positively correlated with high levels of late cross progeny production, indicating that early progeny production does not accelerate reproductive aging. The relationships between progeny production and aging were further evaluated by comparing self-fertile hermaphrodites that generated relatively few self progeny with mated hermaphrodites that generated many cross progeny. The timing of age-related somatic degeneration was similar in these groups, suggesting progeny production does not accelerate somatic aging. These studies rigorously define relationships between progeny production, reproductive aging, and somatic aging and identify new biomarkers of C. elegans aging. These results indicate that some mechanisms or pathways control age-related degeneration of both reproductive and somatic tissues in C. elegans. PMID:24142929

  20. The developmental basis for germline mosaicism in mouse and Drosophila melanogaster.

    PubMed

    Drost, J B; Lee, W R

    1998-01-01

    Data involving germline mosaics in Drosophila melanogaster and mouse are reconciled with developmental observations. Mutations that become fixed in the early embryo before separation of soma from the germline may, by the sampling process of development, continue as part of germline and/or differentiate into any somatic tissue. The cuticle of adult D. melanogaster, because of segmental development, can be used to estimate the proportion of mutant nuclei in the early embryo, but most somatic tissues and the germlines of both species continue from samples too small to be representative of the early embryo. Because of the small sample of cells/nuclei that remain in the germline after separation of soma in both species, mosaic germlines have percentages of mutant cells that vary widely, with a mean of 50% and an unusual platykurtic, flat-topped distribution. While the sampling process leads to similar statistical results for both species, their patterns of development are very different. In D. melanogaster the first differentiation is the separation of soma from germline with the germline continuing from a sample of only two to four nuclei, whereas the adult cuticle is a representative sample of cleavage nuclei. The presence of mosaicism in D. melanogaster germline is independent of mosaicism in the eye, head, and thorax. This independence was used to determine that mutations can occur at any of the early embryonic cell divisions and still average 50% mutant germ cells when the germline is mosaic; however, the later the mutation occurs, the higher the proportion of completely nonmutant germlines. In contrast to D. melanogaster, the first differentiation in the mouse does not separate soma from germline but produces the inner cell mass that is representative of the cleavage nuclei. Following formation of the primitive streak, the primordial germ cells develop at the base of the allantois and among a clonally related sample of cells, providing the same statistical distribution in the mouse germlines as in D. melanogaster. The proportion of mutations that are fixed during early embryonic development is greatly underestimated. For example, a DNA lesion in a postmeiotic gamete that becomes fixed as a dominant mutation during early embryonic development of the F1 may produce an individual completely mutant in the germ line and relevant somatic tissue or, alternatively, the F1 germline may be completely mutant but with no relevant somatic tissues for detecting the mutation until the F2. In both cases the mutation would be classified as complete in the F1 and F2, respectively, and not recognized as embryonic in origin. Because germ cells differentiate later in mammalian development, there are more opportunities for correlation between germline and soma in the mammal than Drosophila. However, because the germ cells and any somatic tissue, like blood, are derived from small samples, there may be many individuals that test negative in blood but have germlines that are either mosaic or entirely mutant.

  1. Stem cell fusion as an ultimate line of defense against xenobiotics.

    PubMed

    Padron Velazquez, Julio Lazaro

    2006-01-01

    There are several indications that the potential of stem cells to fuse with somatic cells is extremely high and, what's more exciting, in some instances goes as far as reprogramming and/or rescuing altered cells. It remains unclear, however, how frequent this mechanism is and what patho-physiological role it might play in nature. A plausible hypothesis, discussed in this paper, suggests that stem cell niches might provide a safeguard for the intact genome and epigenome. By fusing with somatic de-differentiated cells, stem cells might consent epigenetic reprogramming and/or genetic recovery of genes which otherwise could drive altered cells to malignancy. If the many sophisticated mechanisms of metabolism, cell repair, programmed cell death and tissue regeneration should fail, stem cells might represent a final attempt to recover dedifferentiated cells to avoid inflowing in cancer. In the current reappraisal of the different mechanisms of defense against xenobiotics, even the incidence of cancer itself is considered an evolving mechanism which, through a kind of programmed death of individuals exhibiting defective mutations, favors advancement of the phenotypes which adapt best. Additionally, with regard to the mechanisms of transmitting somatic mutations, based on stem cells' capacity to migrate and to fuse, here it is speculated that stem cells might be capable of carrying acquired somatic mutations from peripheral tissues to the gonads, and transmit that information into the germinal line. If appropriately demonstrated, these mechanisms might delineate a novel therapeutic area to be explored. The use of stem cells to reprogram/recover irreversibly damaged cells or to transmit beneficial mutations might be a valuable therapeutic approach in the future.

  2. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    PubMed

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  3. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    PubMed

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  4. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.

    PubMed

    Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken

    2014-04-15

    Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Carcinogenesis explained within the context of a theory of organisms.

    PubMed

    Sonnenschein, Carlos; Soto, Ana M

    2016-10-01

    For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa.

    PubMed

    Matsumoto, E

    1991-02-01

    Somatic hybrids between cultivated lettuce (Lactuca sativa) and a wild species L. virosa were produced by protoplast electrofusion. Hybrid selection was based on inactivation of L. sativa with 20mM iodoacetamide for 15 min, and the inability of L. virosa protoplasts to divide in the culture conditions used. Protoplasts were cultured in agarose beads in a revised MS media. In all 71 calli were formed and 21 of them differentiated shoots on LS medium containing 0.1mg/l NAA and 0.2mg/l BA. Most regenerated plants exhibited intermediate morphology. These plants were confirmed as hybrids by isoenzyme analysis. The majority of somatic hybrids had 2n=4x=36 chromosomes, and had more vigorous growth than either parent. Hybrids had normal flower morphology, but all were sterile.

  7. Influence of regeneration method and tissue source on the frequency of somatic variation in Populus to infection by Septoria musiva

    Treesearch

    Michael E. Ostry; Ronald L. Hackett; Charles H. Michler; R. Serres; B. McCown

    1994-01-01

    Septoria leaf spot and canker are serious diseases of many hybrid poplar clones in plantations established for biomass production. Developing resistant clones through breeding is the best long-term strategy to minimize tree damage caused by this disease. Tissue culture and somaclonal selection techniques may reduce the time needed to develop disease resistance in...

  8. Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming

    PubMed Central

    Kretsovali, Androniki; Hadjimichael, Christiana; Charmpilas, Nikolaos

    2012-01-01

    Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies. PMID:22550500

  9. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  10. Somatic dysfunction and its association with chronic low back pain, back-specific functioning, and general health: results from the OSTEOPATHIC Trial.

    PubMed

    Licciardone, John C; Kearns, Cathleen M

    2012-07-01

    Somatic dysfunction is diagnosed by the presence of any of 4 TART criteria: tissue texture abnormality, asymmetry, restriction of motion, or tenderness. To measure the prevalence of somatic dysfunction in patients with chronic low back pain (LBP) and to study the associations of somatic dysfunction with LBP severity, back-specific functioning, and general health. Cross-sectional study nested within a randomized controlled trial. University-based study in Dallas-Fort Worth, Texas. A total of 455 adult research patients with non-specific chronic LBP. Somatic dysfunction in the lumbar, sacrum/pelvis, and pelvis/innominate regions, including key lesions representing severe somatic dysfunction. A 10-cm visual analog scale (VAS), the Roland-Morris Disability Questionnaire (RMDQ), and the Medical Outcomes Study Short Form-36 Health Survey (SF-36) were used to measure LBP severity, back-specific functioning, and general health, respectively. Severe somatic dysfunction was most prevalent in the lumbar (225 [49%]), sacrum/pelvis (129 [28%]), and pelvis/innominate (48 [11%]) regions. Only 30 patients (7%) had no somatic dysfunction in the lumbar, sacrum/pelvis, or pelvis/innominate regions. There were 4 statistically significant pairwise correlations for severe somatic dysfunction: thoracic (T) 10-12 with ribs; T10-12 with lumbar; lumbar with sacrum/pelvis; and sacrum/pelvis with pelvis/innominate. Having a key lesion in the lumbar region (ρ=0.80) or sacrum/pelvis region (ρ=0.71) was strongly correlated with the overall number of key lesions. There were no consistent demographic or clinical predictors of somatic dysfunction. The presence (vs absence) of severe somatic dysfunction in the lumbar region was associated with greater LBP severity (median VAS score, 4.7 vs 3.8, respectively; P=.003) and greater back-specific disability (median RMDQ score, 6 vs 4, respectively; P=.01). The presence (vs absence) of severe somatic dysfunction in the sacrum/pelvis region was associated with greater back-specific disability (median RMDQ score, 6 vs 5, respectively; P=.02) and poorer general health (median SF-36 score, 62 vs 72, respectively; P=.002). An increasing number of key lesions was associated with back-specific disability (P=.009) and poorer general health (P=.02). The present study demonstrates that somatic dysfunction, particularly in the lumbar and sacrum/pelvis regions, is common in patients with chronic LBP. Forthcoming extensions of the OSTEOPATHIC Trial will assess the efficacy of OMT according to baseline levels of somatic dysfunction.

  11. The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process.

    PubMed

    Wu, Chung-I; Wang, Hurng-Yi; Ling, Shaoping; Lu, Xuemei

    2016-11-23

    Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.

  12. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain

    PubMed Central

    Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377

  13. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  14. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    PubMed

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  15. Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis.

    PubMed

    Alemanno, L; Ramos, T; Gargadenec, A; Andary, C; Ferriere, N

    2003-10-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.

  16. Localization and Identification of Phenolic Compounds in Theobroma cacao L. Somatic Embryogenesis

    PubMed Central

    ALEMANNO, L.; RAMOS, T.; GARGADENEC, A.; ANDARY, C.; FERRIERE, N.

    2003-01-01

    Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H‐ and 13C‐NMR. They were hydroxycinnamic acid amides: N‐trans‐caffeoyl‐l‐DOPA or clovamide, N‐trans‐p‐coumaroyl‐l‐tyrosine or deoxiclovamide, and N‐trans‐caffeoyl‐l‐tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non‐embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues. PMID:12933367

  17. Retrotransposon Capture Sequencing (RC-Seq): A Targeted, High-Throughput Approach to Resolve Somatic L1 Retrotransposition in Humans.

    PubMed

    Sanchez-Luque, Francisco J; Richardson, Sandra R; Faulkner, Geoffrey J

    2016-01-01

    Mobile genetic elements (MGEs) are of critical importance in genomics and developmental biology. Polymorphic and somatic MGE insertions have the potential to impact the phenotype of an individual, depending on their genomic locations and functional consequences. However, the identification of polymorphic and somatic insertions among the plethora of copies residing in the genome presents a formidable technical challenge. Whole genome sequencing has the potential to address this problem; however, its efficacy depends on the abundance of cells carrying the new insertion. Robust detection of somatic insertions present in only a subset of cells within a given sample can also be prohibitively expensive due to a requirement for high sequencing depth. Here, we describe retrotransposon capture sequencing (RC-seq), a sequence capture approach in which Illumina libraries are enriched for fragments containing the 5' and 3' termini of specific MGEs. RC-seq allows the detection of known polymorphic insertions present in an individual, as well as the identification of rare or private germline insertions not previously described. Furthermore, RC-seq can be used to detect and characterize somatic insertions, providing a valuable tool to elucidate the extent and characteristics of MGE activity in healthy tissues and in various disease states.

  18. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  19. From fibroblasts and stem cells: implications for cell therapies and somatic cloning.

    PubMed

    Kues, Wilfried A; Carnwath, Joseph W; Niemann, Heiner

    2005-01-01

    Pluripotent embryonic stem cells (ESCs) from the inner cell mass of early murine and human embryos exhibit extensive self-renewal in culture and maintain their ability to differentiate into all cell lineages. These features make ESCs a suitable candidate for cell-replacement therapy. However, the use of early embryos has provoked considerable public debate based on ethical considerations. From this standpoint, stem cells derived from adult tissues are a more easily accepted alternative. Recent results suggest that adult stem cells have a broader range of potency than imagined initially. Although some claims have been called into question by the discovery that fusion between the stem cells and differentiated cells can occur spontaneously, in other cases somatic stem cells have been induced to commit to various lineages by the extra- or intracellular environment. Recent data from our laboratory suggest that changes in culture conditions can expand a subpopulation of cells with a pluripotent phenotype from primary fibroblast cultures. The present paper critically reviews recent data on the potency of somatic stem cells, methods to modify the potency of somatic cells and implications for cell-based therapies.

  20. DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers

    PubMed Central

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810

  1. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

    PubMed

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.

  2. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

    PubMed Central

    Rios, Jonathan J.; Paria, Nandina; Burns, Dennis K.; Israel, Bonnie A.; Cornelia, Reuel; Wise, Carol A.; Ezaki, Marybeth

    2013-01-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a ‘nerve territory’. The classic terminology for this condition is ‘lipofibromatous hamartoma of nerve’ or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes. PMID:23100325

  3. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.

    PubMed

    Rios, Jonathan J; Paria, Nandina; Burns, Dennis K; Israel, Bonnie A; Cornelia, Reuel; Wise, Carol A; Ezaki, Marybeth

    2013-02-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'lipofibromatous hamartoma of nerve' or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes.

  4. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    PubMed

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  5. [Tissue-specific Changes in the Polymorphism of Simple Repeats in DNA of the Offspring of Different Sex Born from Irradiated Male or Female Mice].

    PubMed

    Lomaeva, M G; Fomenko, L A; Vasil'eva, G V; Bezlepkin, V G

    2016-01-01

    Evidence is presented indicating the differences in the polymorphism of microsatellite (MCS) repeats in DNA of somatic tissues in the offspring of BALB/c mice of different sex born from preconceptionally irradiated males or females. Brother-sister groups of the offspring born by non-irradiated parental pairs were compared with the offspring obtained after the irradiation of one parent in the same pairs. The number of MCS repeats in DNA of somatic tissues of the offspring from irradiated males or females was compared by a polymerase chain reaction using an arbitrary primer. It was found that changes in the polymorphism of the number of MCS repeats in the offspring from the males irradiated at a dose of 2 Gy was insignificant as compared with the offspring from control animals. In the offspring born by the females irradiated at a dose of 2 Gy (which does not impair the reproductive capacity), a statistically significant increase in the polymorphism was observed. Changes in the polymorphism were different in the offspring of different sex. A higher level of polymorphism was revealed in the female offspring born from the females of the F0 generation after their irradiation at a dose of 2 Gy. The increase in the polymorphism of the number of MCS repeats in DNA was more pronounced in postmitotic tissues compared with proliferating tissues.

  6. A comparison of skeletal maturity and growth.

    PubMed

    Molinari, Luciano; Gasser, Theo; Largo, Remo

    2013-07-01

    Somatic and bone development have each been studied in detail, but rarely in conjunction. The aim of this study was to determine what somatic and bone development have in common and how they differ. A second aim was to check for a pubertal spurt in bone age (BA) and to quantify it in a similar way as has been done for height. The Preece-Baines model is used to fit longitudinal data for BA. The data analysed are from the 1st Zurich Longitudinal Growth Study comprising 120 boys and 112 girls with almost complete data from birth to adulthood. Variability of somatic milestones was reduced in terms of BA and there was an aftergrowth after reaching adult RUS score 1000. A strong increase in the RUS score was seen at a late stage of the pubertal spurt (PS). Somatic milestones correlated with the RUS score attained at these ages and more so at an early stage of the PS. A PS for BA was clearly identified with a location at 14.2 years for boys and 12.2 years for girls. Age of peak bone development correlated highly with age of peak velocity of somatic variables. BA can be successfully modelled as a semi-quantitative entity. Bone development shows marked associations with somatic development, despite the fact that the latter reflects changes in size, while the former is essentially a maturity index and reflects changes in biochemical composition of tissues.

  7. Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures.

    PubMed

    Che, Ping; Love, Tanzy M; Frame, Bronwyn R; Wang, Kan; Carriquiry, Alicia L; Howell, Stephen H

    2006-09-01

    Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development. A substantial number of genes were downregulated during embryo maturation, largely histone and ribosomal protein genes, which may result from a slowdown in cell proliferation and growth during embryo maturation. The expression of these genes dramatically recovered at germination. Other genes up-regulated during embryo maturation included genes encoding hydrolytic enzymes (nucleases, glucosidases and proteases) and a few storage genes (an alpha-zein and caleosin), which are good candidates for developmental marker genes. Germination is accompanied by the up-regulation of a number of stress response and membrane transporter genes, and, as expected, greening is associated with the up-regulation of many genes encoding photosynthetic and chloroplast components. Thus, some, but not all genes typically associated with zygotic embryogenesis are significantly up or down-regulated during somatic embryogenesis in Hi II maize line regeneration. Although many genes varied in expression throughout somatic embryo development in this study, no statistically significant gene expression changes were detected between total embryogenic callus and callus enriched for transition stage somatic embryos.

  8. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre recombinase activity into pulmonary tissues, and we discuss here the different techniques underlying these applications. Concomitant with Cre/Flp recombinase-based models are the tetracycline (Tet)-inducible bitransgenic systems in which presence or absence of doxycycline can turn the expression of a specific oncogene on or off. The use of several Tet-inducible lung cancer models for NSCLC is presented here in which the reversal of oncogene expression led to complete tumor regression and provided us with important insight of how oncogene dependence influence lung cancer survival and growth. As alternative to Tet-inducible models, we discuss the application of reversible expressed, transgenic mutant estrogen receptor (ER) fusion proteins, which are regulated via systemic tamoxifen administration. Most of the various lung cancer models can be combined through the generation of transgenic compound mice so that the use of these somatic mouse models can be even more enhanced for the study of specific molecular pathways that facilitate growth and maintenance of lung cancer. Finally, this description of the practical application and methodology of mouse models for lung cancer should be helpful in assisting researchers to make the best choices and optimal use of (existing) somatic models that suits the specific experimental needs in their study of lung cancer.

  9. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  10. Combining molecular and immunohistochemical analyses of key drivers in primary melanomas: interplay between germline and somatic variations.

    PubMed

    Bruno, William; Martinuzzi, Claudia; Dalmasso, Bruna; Andreotti, Virginia; Pastorino, Lorenza; Cabiddu, Francesco; Gualco, Marina; Spagnolo, Francesco; Ballestrero, Alberto; Queirolo, Paola; Grillo, Federica; Mastracci, Luca; Ghiorzo, Paola

    2018-01-19

    Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.

  11. Androgen receptor polyglutamine repeat length (AR-CAGn) modulates the effect of testosterone on androgen-associated somatic traits in Filipino young adult men.

    PubMed

    Ryan, Calen P; Georgiev, Alexander V; McDade, Thomas W; Gettler, Lee T; Eisenberg, Dan T A; Rzhetskaya, Margarita; Agustin, Sonny S; Hayes, M Geoffrey; Kuzawa, Christopher W

    2017-06-01

    The androgen receptor (AR) mediates expression of androgen-associated somatic traits such as muscle mass and strength. Within the human AR is a highly variable glutamine short-tandem repeat (AR-CAGn), and CAG repeat number has been inversely correlated to AR transcriptional activity in vitro. However, evidence for an attenuating effect of long AR-CAGn on androgen-associated somatic traits has been inconsistent in human populations. One possible explanation for this lack of consistency is that the effect of AR-CAGn on AR bioactivity in target tissues likely varies in relation to circulating androgen levels. We tested whether relationships between AR-CAGn and several androgen-associated somatic traits (waist circumference, lean mass, arm muscle area, and grip strength) were modified by salivary (waking and pre-bed) and circulating (total) testosterone (T) levels in young adult males living in metropolitan Cebu, Philippines (n = 675). When men's waking T was low, they had a reduction in three out of four androgen-associated somatic traits with lengthening AR-CAGn (p < .1), consistent with in vitro research. However, when waking T was high, we observed the opposite effect-lengthening AR-CAGn was associated with an increase in these same somatic traits. Our finding that longer AR-CAGn predicts greater androgen-associated trait expression among high-T men runs counter to in vitro work, but is generally consistent with the few prior studies to evaluate similar interactions in human populations. Collectively, these results raise questions about the applicability of findings derived from in vitro AR-CAGn studies to the receptor's role in maintaining androgen-associated somatic traits in human populations. © 2017 Wiley Periodicals, Inc.

  12. Somatic hybridization in Citrus: navel orange (C. sinensis Osb.) and grapefruit (C. paradisi Macf.).

    PubMed

    Ohgawara, T; Kobayashi, S; Ishii, S; Yoshinaga, K; Oiyama, I

    1989-11-01

    Protoplasts of navel orange, isolated from embryogenic nucellar cell suspension culture, were fused with protoplasts of grapefruit isolated from leaf tissue. The fusion products were cultured in the hormone-free medium containing 0.6 M sucrose. Under the culture conditions, somatic embryogenesis of navel orange protoplasts was suppressed, while cell division of grapefruit mesophyll protoplasts was not induced. Six embryoids were obtained and three lines regenerated to complete plants through embryogenesis. Two of the regenerated lines exhibited intermediate morphological characteristics of the parents in the leaf shape. Chromosome counts showed that these regenerated plants had expected 36 chromosomes (2n=2x=18 for each parent). The rDNA analysis using biotin-labeled rRNA probes confirmed the presence of genomes from both parents in these plants. This somatic hybridization system would be useful for the practical Citrus breeding.

  13. Neuroendocrine regulation of somatic growth in fishes.

    PubMed

    Dai, XiangYan; Zhang, Wei; Zhuo, ZiJian; He, JiangYan; Yin, Zhan

    2015-02-01

    Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth. Among the possible growth-regulating pathways in vertebrates, components of the somatotropic axis are thought to have the greatest influence. There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish. This includes research into growth hormone, upstream hypothalamic hormones, insulin-like growth factors, and downstream signaling molecules. Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism. Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo. In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis, including emerging research using genetic modified models. These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.

  14. [Influence of genotype, explant type and component of culture medium on in vitro callus induction and shoot organogenesis of tomato (Solanum lycopersicum L.)].

    PubMed

    Khaliluev, M R; Bogoutdinova, L R; Baranova, G B; Baranova, E N; Kharchenko, P N; Dolgov, S V

    2014-01-01

    The influence of explant type as well as of the type of growth regulators and concentration on callus induction processes and somatic organogenesis of shoots was studied in vitro on four tomato genotypes of Russian breeding. Cytological study of callus tissue was conducted. It was established that tomato varieties possess a substantially greater ability to indirect shoot organogenesis compared with the F1 hybrid. The highest frequency of somatic organogenesis of shoots, as well as their number per explant, was observed for most of the genotypes studied during the cultivation of cotyledons on Murashige-Skoog culture medium containing 2 mg/l of zeatin in combination with 0.1 mg/l of 3-indoleacetic acid. An effective protocol of indirect somatic organogenesis of shoots from different explants of tomato varieties with a frequency of more than 80% was developed.

  15. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    PubMed

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  16. Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens.

    PubMed

    Muszyński, Siemowit; Tomaszewska, Ewa; Kwiecień, Małgorzata; Dobrowolski, Piotr; Tomczyk-Warunek, Agnieszka

    2018-01-01

    Zinc is required for normal bone development and cartilage formation. The purpose of this study was to assess the effect of with adding organic Zn (alone or phytase inclusion) at the reduced dose to growing male Ross 308 chickens on somatic axis and bone tissue metabolism. 200 one-day old broilers were divided into the negative control group fed diet without Zn or phytase inclusion, positive control group receiving Zn in the 100% of daily recommended dose from ZnO, and two experimental groups fed diet introduced Zn in 25% of daily recommendation as a glycine chelate (Zn-Gly) with or without phytase inclusion (500 FTU·kg-1). Supplemental organic Zn increased bone Zn and Mg content, serum IGF-1, growth hormone and leptin concentration. Additional phytase inclusion increased body weight gain, blood plasma Ca, Fe, Zn and osteocalcin concentration and tibia ash percentage when compared to the Zn-deprived control. Bone geometry, yield and ultimate strengths were enhanced in both organic Zn supplemented groups, and the overall mechanical strength parameters of bone were better in these groups than in the positive control group supplemented with standard dose of inorganic Zn. Also marked improvements in the thickness of articular and the growth plate cartilages as well as real bone volume and thickness of metaphyseal trabeculae were achieved in all broilers fed Zn-supplemented diet irrespective of phytase inclusion, however, the highest cancellous bone mass and the best trabecular structure were noted after ZnO supplementation. In concludion, although dietary organic Zn given to growing broilers in 25% of daily recommended dose improved general bone properties and mechanical strength, the obtained results do not allow to unambiguously state that organic Zn supplementation at this level, even after phytase inclusion, is sufficient for proper bone development.

  17. Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens

    PubMed Central

    Tomaszewska, Ewa; Kwiecień, Małgorzata; Dobrowolski, Piotr; Tomczyk-Warunek, Agnieszka

    2018-01-01

    Zinc is required for normal bone development and cartilage formation. The purpose of this study was to assess the effect of with adding organic Zn (alone or phytase inclusion) at the reduced dose to growing male Ross 308 chickens on somatic axis and bone tissue metabolism. 200 one-day old broilers were divided into the negative control group fed diet without Zn or phytase inclusion, positive control group receiving Zn in the 100% of daily recommended dose from ZnO, and two experimental groups fed diet introduced Zn in 25% of daily recommendation as a glycine chelate (Zn-Gly) with or without phytase inclusion (500 FTU·kg-1). Supplemental organic Zn increased bone Zn and Mg content, serum IGF-1, growth hormone and leptin concentration. Additional phytase inclusion increased body weight gain, blood plasma Ca, Fe, Zn and osteocalcin concentration and tibia ash percentage when compared to the Zn-deprived control. Bone geometry, yield and ultimate strengths were enhanced in both organic Zn supplemented groups, and the overall mechanical strength parameters of bone were better in these groups than in the positive control group supplemented with standard dose of inorganic Zn. Also marked improvements in the thickness of articular and the growth plate cartilages as well as real bone volume and thickness of metaphyseal trabeculae were achieved in all broilers fed Zn-supplemented diet irrespective of phytase inclusion, however, the highest cancellous bone mass and the best trabecular structure were noted after ZnO supplementation. In concludion, although dietary organic Zn given to growing broilers in 25% of daily recommended dose improved general bone properties and mechanical strength, the obtained results do not allow to unambiguously state that organic Zn supplementation at this level, even after phytase inclusion, is sufficient for proper bone development. PMID:29373588

  18. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo

    2010-10-22

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.

  19. Defining the lactocrine-sensitive neonatal porcine uterine transcriptome

    USDA-ARS?s Scientific Manuscript database

    Milk-borne bioactive factors, delivered from mother to nursing offspring via a lactocrine mechanism, affect development of somatic tissues including the uterus. In the pig, lactocrine-sensitive gene expression events associated with the onset of endometrial adenogenesis between birth (postnatal day...

  20. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    PubMed

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.

  1. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    PubMed

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Rescuing valuable genomes by animal cloning: a case for natural disease resistance in cattle.

    PubMed

    Westhusin, M E; Shin, T; Templeton, J W; Burghardt, R C; Adams, L G

    2007-01-01

    Tissue banking and animal cloning represent a powerful tool for conserving and regenerating valuable animal genomes. Here we report an example involving cattle and the rescue of a genome affording natural disease resistance. During the course of a 2-decade study involving the phenotypic and genotypic analysis for the functional and genetic basis of natural disease resistance against bovine brucellosis, a foundation sire was identified and confirmed to be genetically resistant to Brucella abortus. This unique animal was utilized extensively in numerous animal breeding studies to further characterize the genetic basis for natural disease resistance. The bull died in 1996 of natural causes, and no semen was available for AI, resulting in the loss of this valuable genome. Fibroblast cell lines had been established in 1985, cryopreserved, and stored in liquid nitrogen for future genetic analysis. Therefore, we decided to utilize these cells for somatic cell nuclear transfer to attempt the production of a cloned bull and salvage this valuable genotype. Embryos were produced by somatic cell nuclear transfer and transferred to 20 recipient cows, 10 of which became pregnant as determined by ultrasound at d 40 of gestation. One calf survived to term. At present, the cloned bull is 4.5 yr old and appears completely normal as determined by physical examination and blood chemistry. Furthermore, in vitro assays performed to date indicate this bull is naturally resistant to B. abortus, Mycobacterium bovis, and Salmonella typhimurium, as was the original genetic donor.

  3. Somatic hybrid plants of Nicotiana × sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina

    PubMed Central

    Patel, Deval; Power, J. Brian; Anthony, Paul; Badakshi, Farah; (Pat) Heslop-Harrison, J. S.; Davey, Michael R.

    2011-01-01

    Background and Aims The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches. Methods Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance. Key Results Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi. Conclusions Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco. PMID:21880657

  4. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging.

    PubMed

    Pabba, Mohan; Scifo, Enzo; Kapadia, Fenika; Nikolova, Yuliya S; Ma, Tianzhou; Mechawar, Naguib; Tseng, George C; Sibille, Etienne

    2017-10-01

    The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization

    PubMed Central

    Vivekananda, Umesh; Novak, Pavel; Bello, Oscar D.; Korchev, Yuri E.; Krishnakumar, Shyam S.; Volynski, Kirill E.; Kullmann, Dimitri M.

    2017-01-01

    Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog–digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization. We recorded instead from small boutons supplied by intact axons identified with scanning ion conductance microscopy in primary hippocampal cultures and asked how distinct potassium channels interact in determining the basal spike width and its modulation by subthreshold somatic depolarization. Pharmacological or genetic deletion of Kv1.1 broadened presynaptic spikes without preventing further prolongation by brief depolarizing somatic prepulses. A heterozygous mouse model of episodic ataxia type 1 harboring a dominant Kv1.1 mutation had a similar broadening effect on basal spike shape as deletion of Kv1.1; however, spike modulation by somatic prepulses was abolished. These results argue that the Kv1.1 subunit is not necessary for subthreshold modulation of spike width. However, a disease-associated mutant subunit prevents the interplay of analog and digital transmission, possibly by disrupting the normal stoichiometry of presynaptic potassium channels. PMID:28193892

  6. Resolving rates of mutation in the brain using single-neuron genomics

    PubMed Central

    Evrony, Gilad D; Lee, Eunjung; Park, Peter J; Walsh, Christopher A

    2016-01-01

    Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies. DOI: http://dx.doi.org/10.7554/eLife.12966.001 PMID:26901440

  7. Comparative gene expression analysis of bovine nuclear-transferred embryos with different developmental potential by cDNA microarray and real-time PCR to determine genes that might reflect calf normality.

    PubMed

    Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio

    2007-01-01

    Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.

  8. Colorectal Carcinomas With CpG Island Methylator Phenotype 1 Frequently Contain Mutations in Chromatin Regulators

    PubMed Central

    Tahara, Tomomitsu; Yamamoto, Eiichiro; Madireddi, Priyanka; Suzuki, Hiromu; Maruyama, Reo; Chung, Woonbok; Garriga, Judith; Jelinek, Jaroslav; Yamano, Hiro-o; Sugai, Tamotsu; Kondo, Yutaka; Toyota, Minoru; Issa, Jean-Pierre J.; Estécio, Marcos R. H.

    2014-01-01

    BACKGROUND & AIMS Subgroups of colorectal carcinomas (CRCs) characterized by DNA methylation anomalies are termed CpG island methylator phenotype (CIMP)1, CIMP2, or CIMP-negative. The pathogenesis of CIMP1 colorectal carcinomas, and their effects on patients’ prognoses and responses to treatment, differ from those of other CRCs. We sought to identify genetic somatic alterations associated with CIMP1 CRCs. METHODS We examined genomic DNA samples from 100 primary CRCs, 10 adenomas, and adjacent normal-appearing mucosae from patients undergoing surgery or colonoscopy at 3 tertiary medical centers. We performed exome sequencing of 16 colorectal tumors and their adjacent normal tissues. Extensive comparison with known somatic alterations in CRCs allowed segregation of CIMP1-exclusive alterations. The prevalence of mutations in selected genes was determined from an independent cohort. RESULTS We found that genes that regulate chromatin were mutated in CIMP1 CRCs; the highest rates of mutation were observed in CHD7 and CHD8, which encode members of the chromodomain helicase/adenosine triphosphate—dependent chromatin remodeling family. Somaticmutations in these 2 genes were detected in 5 of 9 CIMP1 CRCs. A prevalence screen showed that nonsilencing mutations in CHD7 and CHD8 occurred significantly more frequently in CIMP1 tumors (18 of 42 [43%]) than in CIMP2 (3 of 34 [9%]; P < .01) or CIMP-negative tumors (2 of 34 [6%]; P < .001). CIMP1 markers had increased binding by CHD7, compared with all genes. Genes altered in patients with CHARGE syndrome (congenital malformations involving the central nervous system, eye, ear, nose, and mediastinal organs) who had CHD7 mutations were also altered in CRCs with mutations in CHD7. CONCLUSIONS Aberrations in chromatin remodeling could contribute to the development of CIMP1 CRCs. A better understanding of the biological determinants of CRCs can be achieved when these tumors are categorized according to their epigenetic status. PMID:24211491

  9. Telomere Restriction Fragment (TRF) Analysis.

    PubMed

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    While telomerase is expressed in ~90% of primary human tumors, most somatic tissue cells except transiently proliferating stem-like cells do not have detectable telomerase activity (Shay and Wright, 1996; Shay and Wright, 2001). Telomeres progressively shorten with each cell division in normal cells, including proliferating stem-like cells, due to the end replication (lagging strand synthesis) problem and other causes such as oxidative damage, therefore all somatic cells have limited cell proliferation capacity (Hayflick limit) (Hayflick and Moorhead, 1961; Olovnikov, 1973). The progressive telomere shortening eventually leads to growth arrest in normal cells, which is known as replicative senescence (Shay et al. , 1991). Once telomerase is activated in cancer cells, telomere length is stabilized by the addition of TTAGGG repeats to the end of chromosomes, thus enabling the limitless continuation of cell division (Shay and Wright, 1996; Shay and Wright, 2001). Therefore, the link between aging and cancer can be partially explained by telomere biology. There are many rapid and convenient methods to study telomere biology such as Telomere Restriction Fragment (TRF), Telomere Repeat Amplification Protocol (TRAP) (Mender and Shay, 2015b) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this protocol paper we describe Telomere Restriction Fragment (TRF) analysis to determine average telomeric length of cells. Telomeric length can be indirectly measured by a technique called Telomere Restriction Fragment analysis (TRF). This technique is a modified Southern blot, which measures the heterogeneous range of telomere lengths in a cell population using the length distribution of the terminal restriction fragments (Harley et al. , 1990; Ouellette et al. , 2000). This method can be used in eukaryotic cells. The description below focuses on the measurement of human cancer cells telomere length. The principle of this method relies on the lack of restriction enzyme recognition sites within TTAGGG tandem telomeric repeats, therefore digestion of genomic DNA, not telomeric DNA, with a combination of 6 base restriction endonucleases reduces genomic DNA size to less than 800 bp.

  10. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225

  11. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees.

    PubMed

    Corredoira, E; Ballester, A; Ibarra, M; Vieitez, A M

    2015-06-01

    A reproducible procedure for induction of somatic embryogenesis (SE) from adult trees of Eucalyptus globulus Labill. and the hybrid E. saligna Smith × E. maidenii has been developed for the first time. Somatic embryos were obtained from both shoot apex and leaf explants of all three genotypes evaluated, although embryogenic frequencies were significantly influenced by the species/genotype, auxin and explant type. Picloram was more efficient for somatic embryo induction than naphthaleneacetic acid (NAA), with the highest frequency of induction being obtained in Murashige and Skoog medium containing 40 µM picloram and 40 mg l(-1) gum Arabic, in which 64% of the shoot apex explants and 68.8% of the leaf explants yielded somatic embryos. The embryogenic response of the hybrid was higher than that of the E. globulus, especially when NAA was used. The cultures initiated on picloram-containing medium consisted of nodular embryogenic structures surrounded by a mucilaginous coating layer that emerged from a watery callus developed from the initial explants. Cotyledonary somatic embryos were differentiated after subculture of these nodular embryogenic structures on a medium lacking plant growth regulators. Histological analysis confirmed the bipolar organization of the somatic embryos, with shoot and root meristems and closed procambial tissue that bifurcated into small cotyledons. The root pole was more differentiated than the shoot pole, which appeared to be formed by a few meristematic layers. Maintenance of the embryogenic lines by secondary SE was attained by subculturing individual cotyledonary embryos or small clusters of globular and torpedo embryos on medium with 16.11 µM NAA at 4- to 5-week intervals. Somatic embryos converted into plantlets after being transferred to liquid germination medium although plant regeneration remained poor. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier

    PubMed Central

    Gao, Jiangang; Wang, Xiang; Wu, Xudong; Aguinaga, Sal; Huynh, Kristin; Jia, Shuping; Matsuda, Keiji; Patel, Manish; Zheng, Jing; Cheatham, MaryAnn; He, David Z.; Dallos, Peter; Zuo, Jian

    2007-01-01

    The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification. PMID:17640919

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kateley, J.R.; Patel, C.B. Friedman, H.

    The immune response at the level of individual immunocytes to the somatic lipopolysaccharide antigen derived from whole Vibrio cholerae and to the purified protein exotoxin from this organism were studied in terms of the role of T- and B-lymphocytes. By adoptive cell transfer studies with irradiated recipient mice, it was shown that normal spleen cells from normal syngeneic mice could readily transfer the capability of responding to both types of cholera antigens. However, when the spleen cells were depleted of T-cells with anti-theta serum and complement, antibody responsiveness to the LPS antigen, but not the exotoxin, could be achieved inmore » recipients. Furthermore, by appropriate transfer of either bone marrow, thymus, or thymus-marrow cell mixtures to irradiated mice, it was shown that the response to the cholera somatic antigen was relatively independent of thymus cells, whereas the response to exotoxin required ''helper'' T-cells.« less

  14. Perrault's syndrome in two sisters.

    PubMed

    Bösze, P; Skripeczky, K; Gaál, M; Tóth, A; László, J

    1983-10-01

    We report on two sisters with Perrault's syndrome, i.e., autosomal recessive ovarian dysgenesis associated with sensorineural deafness. They were deaf-mute and of normal height with a few minor somatic anomalies. Both had streak gonads and an apparently normal female 46,XX chromosome constitution. The parents were apparently not consanguineous. The mother had normal hearing. Other relatives were not available for study. Epilepsy, which occurred in three relatives including one of the index patients, may have been inherited coincidentally from the mother's family.

  15. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    PubMed

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  16. Somatic instability of the expanded allele of IT-15 from patients with Huntington disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stine, O.C.; Pleasant, N.; Ross, C.A.

    1994-09-01

    Huntington`s disease (HD) is an inherited neurodegenerative disorder caused by an expanded trinucleotide repeat in the gene IT-15. Although the expanded allele of IT-15 is unstable during gametogenesis, particularly, spermatogenesis, it is not clear if there is somatic stability. There are two reports of stability and one of instability. In order to test whether somatic instability occurs in the expansions found in HD, we have compared amplified genomic DNA isolated from either blood or distinct regions of autopsied brains of persons with Huntington disease. We find that somatic variation occurs in at least two ways. First, in cases with longermore » repeats (n > 47), the cerebellum often (8 of 9 cases) has a smaller number of repeats (2 to 10 less) than other tested regions of the brain. The larger the expanded allele, the larger the reduction in size of the repeat in the cerebellum (r=0.94, p<0.0001, df=12). Second, regardless of the repeat size, the number of amplification products from genomic DNA isolated from the cerebellum is smaller than that from genomic DNA from other forebrain regions such as the dorsal parietal cortex. As the length of the expanded allele increases, the number of amplification products increase in either tissue (r=0.86, p<0.001, df=12). Therefore our data demonstrates somatic instability especially for longer repeats.« less

  17. Bovine somatic cell nuclear transfer.

    PubMed

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  18. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

    PubMed

    Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David

    2017-04-15

    Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  20. Males exceed females in PCB concentrations of cisco (Coregonus artedi) from Lake Superior

    USGS Publications Warehouse

    Madenjian, Charles P.; Yule, Daniel L.; Chernyak, Sergei M.; Begnoche, Linda J.; Berglund, Eric K.; Isaac, Edmund J.

    2014-01-01

    We determined whole-fish polychlorinated biphenyl (PCB) concentrations of 25 male and 25 female age-7 ciscoes (Coregonus artedi) captured from a spawning aggregation in Thunder Bay, Lake Superior, during November 2010. We also determined PCB concentrations in the ovaries and somatic tissue of five additional female ciscoes (ages 5–22). All 55 of these ciscoes were in ripe or nearly ripe condition. Bioenergetics modeling was used to determine the contribution of the growth dilution effect toward a difference in PCB concentrations between the sexes, as females grew substantially faster than males. Results showed that the PCB concentration of males (mean = 141 ng/g) was 43% greater than that of females (mean = 98 ng/g), and this difference was highly significant (P < 0.0001). Mean PCB concentrations in the ovaries and the somatic tissue of the five females were 135 and 100 ng/g, respectively. Based on these PCB determinations for the ovaries and somatic tissue, we concluded that release of eggs by females at previous spawnings was not a contributing factor to the observed difference in PCB concentrations between the sexes. Bioenergetics modeling results indicated that the growth dilution effect could explain males being higher than females in PCB concentration by only 3–7%. We concluded that the higher PCB concentration in males was most likely due to higher rate of energy expenditure, originating from greater activity and a higher resting metabolic rate. Mean PCB concentration in the cisco eggs was well below the U. S. Food and Drug Administration and Ontario Ministry of Environment guidelines of 2000 and 844 ng/g, respectively, and this finding may have implications for the cisco roe fishery currently operating in Lake Superior.

  1. Males exceed females in PCB concentrations of cisco (Coregonus artedi) from Lake Superior.

    PubMed

    Madenjian, Charles P; Yule, Daniel L; Chernyak, Sergei M; Begnoche, Linda J; Berglund, Eric K; Isaac, Edmund J

    2014-09-15

    We determined whole-fish polychlorinated biphenyl (PCB) concentrations of 25 male and 25 female age-7 ciscoes (Coregonus artedi) captured from a spawning aggregation in Thunder Bay, Lake Superior, during November 2010. We also determined PCB concentrations in the ovaries and somatic tissue of five additional female ciscoes (ages 5-22). All 55 of these ciscoes were in ripe or nearly ripe condition. Bioenergetics modeling was used to determine the contribution of the growth dilution effect toward a difference in PCB concentrations between the sexes, as females grew substantially faster than males. Results showed that the PCB concentration of males (mean = 141 ng/g) was 43% greater than that of females (mean = 98 ng/g), and this difference was highly significant (P<0.0001). Mean PCB concentrations in the ovaries and the somatic tissue of the five females were 135 and 100 ng/g, respectively. Based on these PCB determinations for the ovaries and somatic tissue, we concluded that release of eggs by females at previous spawnings was not a contributing factor to the observed difference in PCB concentrations between the sexes. Bioenergetics modeling results indicated that the growth dilution effect could explain males being higher than females in PCB concentration by only 3-7%. We concluded that the higher PCB concentration in males was most likely due to higher rate of energy expenditure, originating from greater activity and a higher resting metabolic rate. Mean PCB concentration in the cisco eggs was well below the U. S. Food and Drug Administration and Ontario Ministry of Environment guidelines of 2000 and 844 ng/g, respectively, and this finding may have implications for the cisco roe fishery currently operating in Lake Superior. Published by Elsevier B.V.

  2. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  3. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  4. [In vitro regeneration and applications using vegetable cell and tissue culture].

    PubMed

    Jordán, M

    1990-10-01

    Plant cells by means of their totipotency and aided by in vitro culture techniques can be induced to perform morphogenesis leading to somatic embryoids and massive clonal multiplication; microspores or pollen can be triggered to recover haploid plants, then characters expressed via haploidy can be selected and fixed. Protoplasts from different species can lead to recombinations. We report here work done on Carica pubescens, where somatic embryoids were obtained from cells; in Prunus avium androgenesis leading to pollen calli was triggered, while plants were recovered from Nicotiana tabacum anthers. Fusion products were obtained using C. pubescens and C. papaya protoplasts, leading up to calli and shoots.

  5. Tissue Regeneration and Biomineralization in Sea Urchins: Role of Notch Signaling and Presence of Stem Cell Markers

    PubMed Central

    Reinardy, Helena C.; Emerson, Chloe E.; Manley, Jason M.; Bodnar, Andrea G.

    2015-01-01

    Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions. PMID:26267358

  6. NEUROTICISM PROFILE IN CORONARY HEART DISEASE

    PubMed Central

    Bhargava, S. C.; Sharma, S. N.; Agarwal, B. V.

    1980-01-01

    SUMMARY Thirty seven cases of coronary heart disease and 30 normal healthy controls were administered Hindi version of MHQ. The coronary heart disease patients scored significantly higher on total neuroticism, free-floating anxiety and somatic anxiety subscales of MHQ. PMID:22058440

  7. Totipotency, Pluripotency and Nuclear Reprogramming

    NASA Astrophysics Data System (ADS)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  8. Prevalence of somatic mitochondrial mutations and spatial distribution of mitochondria in non-small cell lung cancer.

    PubMed

    Kazdal, Daniel; Harms, Alexander; Endris, Volker; Penzel, Roland; Kriegsmann, Mark; Eichhorn, Florian; Muley, Thomas; Stenzinger, Albrecht; Pfarr, Nicole; Weichert, Wilko; Warth, Arne

    2017-07-11

    Mitochondria are considered relevant players in many tumour entities and first data indicate beneficial effects of mitochondria-targeted antioxidants in both cancer prevention and anticancer therapies. To further dissect the potential roles of mitochondria in NSCLC we comprehensively analysed somatic mitochondrial mutations, determined the spatial distribution of mitochondrial DNA within complete tumour sections and investigated the mitochondrial load in a large-scale approach. Whole mitochondrial genome sequencing of 26 matched tumour and non-neoplastic tissue samples extended by reviewing published data of 326 cases. Systematical stepwise real-time PCR quantification of mitochondrial DNA covering 16 whole surgical tumour sections. Immunohistochemical determination of the mitochondrial load in 171 adenocarcinoma and 145 squamous cell carcinoma. Our results demonstrate very low recurrences (max. 1.7%) and a broad distribution of 456 different somatic mitochondrial mutations. Large inter- and intra-tumour heterogeneity were seen for mitochondrial DNA copy numbers in conjunction with a correlation to the predominant histological growth pattern. Furthermore, tumour cells had significantly higher mitochondrial level compared to adjacent stroma, whereas differences between tumour entities were negligible. Non-evident somatic mitochondrial mutations and highly varying mitochondrial DNA level delineate challenges for the approach of mitochondria-targeted anticancer therapies in NSCLC.

  9. Ehlers-Danlos syndrome in a young woman with anorexia nervosa and complex somatic symptoms.

    PubMed

    Lee, Michelle; Strand, Mattias

    2018-03-01

    The Ehler-Danlos syndromes (EDS) are a group of clinically heterogeneous connective tissue disorders characterized by joint hypermobility, hyperextensibility of the skin, and a general connective tissue fragility that can induce symptoms from multiple organ systems. We present a case of comorbid anorexia nervosa and EDS in a 23-year old woman with a multitude of somatic symptoms that were initially attributed to the eating disorder but that were likely caused by the underlying EDS. Various EDS symptoms, such as gastrointestinal complaints, smell and taste abnormalities, and altered somatosensory awareness may resemble or mask an underlying eating disorder, and vice versa. Because of the large clinical heterogeneity, correctly identifying symptoms of EDS presents a challenge for clinicians, who should be aware of this group of underdiagnosed and potentially serious syndromes. The Beighton Hypermobility Score is an easily applicable screening instrument in assessing potential EDS in patients with joint hypermobility. © 2017 Wiley Periodicals, Inc.

  10. Genetic Alterations in Hungarian Patients with Papillary Thyroid Cancer.

    PubMed

    Tobiás, Bálint; Halászlaki, Csaba; Balla, Bernadett; Kósa, János P; Árvai, Kristóf; Horváth, Péter; Takács, István; Nagy, Zsolt; Horváth, Evelin; Horányi, János; Járay, Balázs; Székely, Eszter; Székely, Tamás; Győri, Gabriella; Putz, Zsuzsanna; Dank, Magdolna; Valkusz, Zsuzsanna; Vasas, Béla; Iványi, Béla; Lakatos, Péter

    2016-01-01

    The incidence of thyroid cancers is increasing worldwide. Some somatic oncogene mutations (BRAF, NRAS, HRAS, KRAS) as well as gene translocations (RET/PTC, PAX8/PPAR-gamma) have been associated with the development of thyroid cancer. In our study, we analyzed these genetic alterations in 394 thyroid tissue samples (197 papillary carcinomas and 197 healthy). The somatic mutations and translocations were detected by Light Cycler melting method and Real-Time Polymerase Chain Reaction techniques, respectively. In tumorous samples, 86 BRAF (44.2%), 5 NRAS (3.1%), 2 HRAS (1.0%) and 1 KRAS (0.5%) mutations were found, as well as 9 RET/PTC1 (4.6%) and 1 RET/PTC3 (0.5%) translocations. No genetic alteration was seen in the non tumorous control thyroid tissues. No correlation was detected between the genetic variants and the pathological subtypes of papillary cancer as well as the severity of the disease. Our results are only partly concordant with the data found in the literature.

  11. Rapid Intraoperative Molecular Characterization of Glioma

    PubMed Central

    Shankar, Ganesh M.; Francis, Joshua M.; Rinne, Mikael L.; Ramkissoon, Shakti H.; Huang, Franklin W.; Venteicher, Andrew S.; Akama-Garren, Elliot H.; Kang, Yun Jee; Lelic, Nina; Kim, James C.; Brown, Loreal E.; Charbonneau, Sarah K.; Golby, Alexandra J.; Pedamallu, Chandra Sekhar; Hoang, Mai P.; Sullivan, Ryan J.; Cherniack, Andrew D.; Garraway, Levi A.; Stemmer-Rachamimov, Anat; Reardon, David A.; Wen, Patrick Y.; Brastianos, Priscilla K.; Curry, William T.; Barker, Fred G.; Hahn, William C.; Nahed, Brian V.; Ligon, Keith L.; Louis, David N.; Cahill, Daniel P.; Meyerson, Matthew

    2016-01-01

    IMPORTANCE Conclusive intraoperative pathologic confirmation of diffuse infiltrative glioma guides the decision to pursue definitive neurosurgical resection. Establishing the intraoperative diagnosis by histologic analysis can be difficult in low-cellularity infiltrative gliomas. Therefore, we developed a rapid and sensitive genotyping assay to detect somatic single-nucleotide variants in the telomerase reverse transcriptase (TERT) promoter and isocitrate dehydrogenase 1 (IDH1). OBSERVATIONS This assay was applied to tissue samples from 190 patients with diffuse gliomas, including archived fixed and frozen specimens and tissue obtained intraoperatively. Results demonstrated 96% sensitivity (95% CI, 90%–99%) and 100% specificity (95% CI, 95%–100%) for World Health Organization grades II and III gliomas. In a series of live cases, glioma-defining mutations could be identified within 60 minutes, which could facilitate the diagnosis in an intraoperative timeframe. CONCLUSIONS AND RELEVANCE The genotyping method described herein can establish the diagnosis of low-cellularity tumors like glioma and could be adapted to the point-of-care diagnosis of other lesions that are similarly defined by highly recurrent somatic mutations. PMID:26181761

  12. Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.

    PubMed

    Argyridou, Eliza; Parsch, John

    2018-05-04

    During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.

  13. Effect of long-term treatment with urocortin on the activity of somatic angiotensin-converting enzyme in spontaneously hypertensive rats.

    PubMed

    Yang, Cui; Liu, Xiuxia; Li, Shengnan

    2010-02-01

    Our previous acute study on urocortin (Ucn) demonstrated that Ucn altered serum and tissue angiotensin-converting enzyme (ACE) activity in rats. Therefore, the present investigation was designed to explore the effect of long-term treatment with Ucn on somatic ACE (sACE) and other components of the renin-angiotensin system (RAS). After 8 weeks of intravenous administration of Ucn in spontaneously hypertensive rats (SHR), serum and tissue sACE, angiotensin II (Ang II), nitric oxide (NO), Ang-(1-7), and tissue chymase activities were evaluated. RT-PCR analysis was performed to determine the quantity of tissue sACE mRNA. Serum sACE activity was reduced by Ucn, although tissue sACE activity and tissue sACE mRNA were elevated. Chymase activity was observed to be enhanced by Ucn, whereas the ACE inhibitor enalapril failed to influence chymase. Serum and tissue Ang II activity was reduced, but NO and Ang-(1-7) production was increased in a concentration-dependent manner after Ucn treatment. Meanwhile, a significant decrease of the systolic blood pressure (SBP) was observed after the long-term Ucn administration, and there was a significant positive correlation (r2 = 0.6993) between serum ACE activity and SBP. Pretreatment with the corticotropin-releasing factor (CRF) blocker astressin and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway blocker PD98059 abolished these effects of Ucn. Our findings further support the hypothesis that the changes of sACE activity and the production of other RAS components may play roles in the vasodilatory property of Ucn via the activation of the ERK1/2 pathway.

  14. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  15. Selfish cells in altruistic cell society - a theoretical oncology.

    PubMed

    Chigira, M

    1993-09-01

    In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite to germ line cells.

  16. TMC-SNPdb: an Indian germline variant database derived from whole exome sequences.

    PubMed

    Upadhyay, Pawan; Gardi, Nilesh; Desai, Sanket; Sahoo, Bikram; Singh, Ankita; Togar, Trupti; Iyer, Prajish; Prasad, Ratnam; Chandrani, Pratik; Gupta, Sudeep; Dutt, Amit

    2016-01-01

    Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html. © The Author(s) 2016. Published by Oxford University Press.

  17. Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System

    PubMed Central

    Monnot, Sophie; Gigarel, Nadine; Samuels, David C; Burlet, Philippe; Hesters, Laetitia; Frydman, Nelly; Frydman, René; Kerbrat, Violaine; Funalot, Benoit; Martinovic, Jelena; Benachi, Alexandra; Feingold, Josué; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2011-01-01

    Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc. PMID:21120938

  18. Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent

    PubMed Central

    Oschman, James L.

    2013-01-01

    Abstract Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a “γ-loop hypothesis” to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists. PMID:22775307

  19. Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.].

    PubMed

    Krishna, Gaurav; Reddy, P Sairam; Ramteke, P W; Bhattacharya, P S

    2010-10-01

    Pigeon pea [Cajanus cajan (L.) Millsp.] (Family: Fabaceae) is an important legume crop cultivated across 50 countries in Asia, Africa, and the Americas; and ranks fifth in area among pulses after soybean, common bean, peanut, and chickpea. It is consumed as a major source of protein (21%) to the human population in many developing countries. In India, it is the second important food legume contributing to 80% of the global production. Several biotic and abiotic stresses are posing a big threat to its production and productivity. Attempts to address these problems through conventional breeding methods have met with partial success. This paper reviews the chronological progress made in tissue culture through organogenesis and somatic embryogenesis, including the influence of factors such as genotypes, explant sources, and culture media including the supplementation of plant growth regulators. Comprehensive lists of morphogenetic pathways involved in in vitro regeneration through organogenesis and somatic embryogenesis using different explant tissues of diverse pigeon pea genotypes are presented. Similarly, the establishment of protocols for the production of transgenics via particle bombardment and Agrobacterium-mediated transformation using different explant tissues, Agrobacterium strains, Ti plasmids, and plant selectable markers, as well as their interactions on transformation efficiency have been discussed. Future research thrusts on the use of different promoters and stacking of genes for various biotic and abiotic stresses in pigeon pea are suggested.

  20. Sympathetic activation of cat spinal neurons responsive to noxious stimulation of deep tissues in the low back.

    PubMed

    Gillette, R G; Kramis, R C; Roberts, W J

    1994-01-01

    Prior findings from diverse studies have indicated that activity in axons located in the lumbar sympathetic chains contributes to the activation of spinal pain pathways and to low back pain; these studies have utilized sympathetic blocks in patients, electrical stimulation of the chain in conscious humans, and neuroanatomical mapping of afferent fiber projections. In the present study, dorsal horn neurons receiving nociceptor input from lumbar paraspinal tissues were tested for activation by electrical stimulation of the lumbar sympathetic chain in anesthetized cats. Of 83 neurons tested, 70% were responsive to sympathetic trunk stimulation. Excitatory responses, observed in both nociceptive specific and wide-dynamic-range neurons, were differentiable into two classes: non-entrained and entrained responses. Non-entrained responses were attenuated or blocked by systemic administration of the alpha-adrenergic antagonist phentolamine and are thought to result from sympathetic efferent activation of primary afferents in the units' receptive fields. Entrained responses were unaffected by phentolamine and are thought to result from electrical activation of somatic and/or visceral afferent fibers ascending through the sympathetic trunk into the dorsal horn. These findings from nocireceptive neurons serving lumbar paraspinal tissues suggest that low back pain may be exacerbated by activity in both efferent and afferent fibers located in the lumbar sympathetic chain, the efferent actions being mediated indirectly through sympathetic-sensory interactions in somatic and/or visceral tissues.

  1. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  2. Epimutation and cancer: A new carcinogenic mechanism of Lynch syndrome

    PubMed Central

    BANNO, KOUJI; KISU, IORI; YANOKURA, MEGUMI; TSUJI, KOSUKE; MASUDA, KENTA; UEKI, ARISA; KOBAYASHI, YUSUKE; YAMAGAMI, WATARU; NOMURA, HIROYUKI; TOMINAGA, EIICHIRO; SUSUMU, NOBUYUKI; AOKI, DAISUKE

    2012-01-01

    Epimutation is defined as abnormal transcriptional repression of active genes and/or abnormal activation of usually repressed genes caused by errors in epigenetic gene repression. Epimutation arises in somatic cells and the germline, and constitutional epimutation may also occur. Epimutation is the first step of tumorigenesis and can be a direct cause of carcinogenesis. Cancers associated with epimutation include Lynch syndrome (hereditary non-polyposis colorectal cancer, HNPCC), chronic lymphocytic leukemia, breast cancer and ovarian cancer. Epimutation has been shown for many tumor suppressor genes, including RB, VHL, hMLH1, APC and BRCA1, in sporadic cancers. Methylation has recently been shown in DNA from normal tissues and peripheral blood in cases of sporadic colorectal cancer and many studies show constitutive epimutation in cancers. Epimutation of DNA mismatch repair (MMR) genes (BRCA1, hMLH1 and hMSH2) involved in development familial cancers has also been found. These results have led to a focus on epimutation as a novel oncogenic mechanism. PMID:22735547

  3. Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis.

    PubMed

    Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita

    2014-02-25

    Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.

  4. Mesenchymal stem cells in cartilage regeneration.

    PubMed

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  5. Genetic Correction of Stem Cells in the Treatment of Inherited Diseases and Focus on Xeroderma Pigmentosum

    PubMed Central

    Rouanet, Sophie; Warrick, Emilie; Gache, Yannick; Scarzello, Sabine; Avril, Marie-Françoise; Bernerd, Françoise; Magnaldo, Thierry

    2013-01-01

    Somatic stem cells ensure tissue renewal along life and healing of injuries. Their safe isolation, genetic manipulation ex vivo and reinfusion in patients suffering from life threatening immune deficiencies (for example, severe combined immunodeficiency (SCID)) have demonstrated the efficacy of ex vivo gene therapy. Similarly, adult epidermal stem cells have the capacity to renew epidermis, the fully differentiated, protective envelope of our body. Stable skin replacement of severely burned patients have proven life saving. Xeroderma pigmentosum (XP) is a devastating disease due to severe defects in the repair of mutagenic DNA lesions introduced upon exposure to solar radiations. Most patients die from the consequences of budding hundreds of skin cancers in the absence of photoprotection. We have developed a safe procedure of genetic correction of epidermal stem cells isolated from XP patients. Preclinical and safety assessments indicate successful correction of XP epidermal stem cells in the long term and their capacity to regenerate a normal skin with full capacities of DNA repair. PMID:24113582

  6. Telomerase Activity in Human Ovarian Carcinoma

    NASA Astrophysics Data System (ADS)

    Counter, Christopher M.; Hirte, Hal W.; Bacchetti, Silvia; Harley, Calvin B.

    1994-04-01

    Telomeres fulfill the dual function of protecting eukaryotic chromosomes from illegitimate recombination and degradation and may aid in chromosome attachment to the nuclear membrane. We have previously shown that telomerase, the enzyme which synthesizes telomeric DNA, is not detected in normal somatic cells and that telomeres shorten with replicative age. In cells immortalized in vitro, activation of telomerase apparently stabilizes telomere length, preventing a critical destabilization of chromosomes, and cell proliferation continues even when telomeres are short. In vivo, telomeres of most tumors are shorter than telomeres of control tissues, suggesting an analogous role for the enzyme. To assess the relevance of telomerase and telomere stability in the development and progression of tumors, we have measured enzyme activity and telomere length in metastatic cells of epithelial ovarian carcinoma. We report that extremely short telomeres are maintained in these cells and that tumor cells, but not isogenic nonmalignant cells, express telomerase. Our findings suggest that progression of malignancy is ultimately dependent upon activation of telomerase and that telomerase inhibitors may be effective antitumor drugs.

  7. Investigation of microsatellite instability in Turkish breast cancer patients.

    PubMed

    Demokan, Semra; Muslumanoglu, Mahmut; Yazici, H; Igci, Abdullah; Dalay, Nejat

    2002-01-01

    Multiple somatic and inherited genetic changes that lead to loss of growth control may contribute to the development of breast cancer. Microsatellites are tandem repeats of simple sequences that occur abundantly and at random throughout most eucaryotic genomes. Microsatellite instability (MI), characterized by the presence of random contractions or expansions in the length of simple sequence repeats or microsatellites, is observed in a variety of tumors. The aim of this study was to compare tumor DNA fingerprints with constitutional DNA fingerprints to investigate changes specific to breast cancer and evaluate its correlation with clinical characteristics. Tumor and normal tissue samples of 38 patients with breast cancer were investigated by comparing PCR-amplified microsatellite sequences D2S443 and D21S1436. Microsatellite instability at D21S1436 and D2S443 was found in 5 (13%) and 7 (18%) patients, respectively. Two patients displayed instability at both marker loci. No association was found between MI and age, family history, lymph node involvement and other clinical parameters.

  8. Genotoxicity testing of different types of beverages in the Drosophila wing Somatic Mutation And Recombination Test.

    PubMed

    Graf, U; Moraga, A A; Castro, R; Díaz Carrillo, E

    1994-05-01

    Five wines and one brandy of Spanish origin as well as three herbal teas and ordinary black tea were tested for genotoxicity in the wing Somatic Mutation And Recombination Test (SMART) which makes use of the two recessive wing cell markers multiple wing hairs (mwh) and flare (flr3) on the left arm of chromosome 3 of Drosophila melanogaster. 3-day-old larvae trans-heterozygous for these two markers were fed the beverages at different concentrations and for different feeding periods using Drosophila instant medium. Somatic mutations or mitotic recombinations induced in the cells of the wing imaginal discs give rise to mutant single or twin spots on the wing blade of the emerging adult flies showing either the mwh phenotype or/and the flr phenotype. One of the red wines showed a clear genotoxic activity that was not due to its ethanol content. Two herbal teas (Urtica dioica, Achillea millefolium) and black tea (Camellia sinensis) proved to be weakly genotoxic as well. Furthermore, it was shown that quercetin and rutin, two flavonols present in beverages of plant origin, also exhibited weak genotoxic activity in the somatic cells of Drosophila. These results demonstrate that Drosophila in vivo somatic assays can detect the genotoxicity of complex mixtures such as beverages. In particular, it is possible to administer these test materials in the same form as that in which they are normally consumed.

  9. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment.

    PubMed

    Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang

    2016-11-22

    Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H₂ treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H₂ treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H₂ during somatic embryogenesis.

  10. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment

    PubMed Central

    Liu, Yali; Han, Suying; Ding, Xiangming; Li, Xinmin; Zhang, Lifeng; Li, Wanfeng; Xu, Haiyan; Li, Zhexin; Qi, Liwang

    2016-01-01

    Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA) libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs). A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS) homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis. PMID:27879674

  11. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    PubMed

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  12. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions.

    PubMed

    Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F

    2014-08-28

    Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.

  13. Changes in fatty acid composition in plant tissues expressing a mammalian delta9 desaturase.

    PubMed

    Moon, H; Hazebroek, J; Hildebrand, D F

    2000-05-01

    Plant tissues expressing a mammalian stearoyl-CoA delta9 desaturase were reported to accumulate delta9 hexadecenoic acid (16:1), normally very minor in most plant tissues. The transgenic plants were thoroughly analyzed for alterations of individual lipids in different subcellular sites. Western blot analysis indicated that the animal desaturase was targeted to the microsomes. The delta9 16:1 was incorporated into both the sn-1 and sn-2 positions of all the major membrane lipids tested, indicating that the endoplasmic reticulum acyltransferases do not exclude unsaturated C16 fatty acids from the sn-2 position. In addition to increases in monounsaturated and decreases in saturated fatty acids, accumulation of 16:1 was accompanied by a reduction in 18:3 in all the lipids tested except phosphatidylglycerol, and increases in 18:2 in phospholipids. Total C16 fatty acid content in the galactolipids of the transgenics was significantly higher than that in the control, but those in the phospholipids were unchanged. In transgenics, delta11 18:1 was detected in the sn-1 position of the lipids tested except phosphatidylinositol and phosphatidylserine. Introduction of the animal desaturase, controlled by a seed-specific phaseolin promoter, into soybean somatic embryo resulted in a significant reduction in saturated fatty acids. Such effects were greater in cotyledons than hypocotyl-radicles. This study demonstrated that the animal desaturase can be used to decrease the levels of saturated fatty acids in a crop plant.

  14. Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?

    PubMed Central

    Petrek, Jiri; Zitka, Ondrej; Adam, Vojtech; Bartusek, Karel; Anjum, Naser A.; Pereira, Eduarda; Havel, Ladislav; Kizek, Rene

    2015-01-01

    Background Somatic embryogenesis in conifer species has great potential for the forestry industry. Hence, a number of methods have been developed for their efficient and rapid propagation through somatic embryogenesis. Although information is available regarding the previous process-mediated generation of embryogenic cells to form somatic embryos, there is a dearth of information in the literature on the detailed structure of these clusters. Methodology/Principal Findings The main aim of this study was to provide a more detailed structure of the embryogenic tissue clusters obtained through the in vitro propagation of the Norway spruce (Picea abies (L.) Karst.). We primarily focused on the growth of early somatic embryos (ESEs). The data on ESE growth suggested that there may be clear distinctions between their inner and outer regions. Therefore, we selected ESEs collected on the 56th day after sub-cultivation to dissect the homogeneity of the ESE clusters. Two colourimetric assays (acetocarmine and fluorescein diacetate/propidium iodide staining) and one metabolic assay based on the use of 2,3,5-triphenyltetrazolium chloride uncovered large differences in the metabolic activity inside the cluster. Next, we performed nuclear magnetic resonance measurements. The ESE cluster seemed to be compactly aggregated during the first four weeks of cultivation; thereafter, the difference between the 1H nuclei concentration in the inner and outer clusters was more evident. There were clear differences in the visual appearance of embryos from the outer and inner regions. Finally, a cluster was divided into six parts (three each from the inner and the outer regions of the embryo) to determine their growth and viability. The innermost embryos (centripetally towards the cluster centre) could grow after sub-cultivation but exhibited the slowest rate and required the longest time to reach the common growth rate. To confirm our hypothesis on the organisation of the ESE cluster, we investigated the effect of cluster orientation on the cultivation medium and the influence of the change of the cluster’s three-dimensional orientation on its development. Maintaining the same position when transferring ESEs into new cultivation medium seemed to be necessary because changes in the orientation significantly affected ESE growth. Conclusions and Significance This work illustrated the possible inner organisation of ESEs. The outer layer of ESEs is formed by individual somatic embryos with high metabolic activity (and with high demands for nutrients, oxygen and water), while an embryonal group is directed outside of the ESE cluster. Somatic embryos with depressed metabolic activity were localised in the inner regions, where these embryonic tissues probably have a very important transport function. PMID:26624287

  15. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  16. Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary

    PubMed Central

    Malone, Colin D.; Brennecke, Julius; Dus, Monica; Stark, Alexander; McCombie, W. Richard; Sachidanandam, Ravi; Hannon, Gregory J.

    2010-01-01

    SUMMARY In Drosophila gonads, Piwi proteins and associated piRNAs collaborate with additional factors to form a small RNA-based immune system that silences mobile elements. Here, we analyzed nine Drosophila piRNA pathway mutants for their impacts on both small RNA populations and the subcellular localization patterns of Piwi proteins. We find that distinct piRNA pathways with differing components function in ovarian germ and somatic cells. In the soma, Piwi acts singularly with the conserved flamenco piRNA cluster to enforce silencing of retroviral elements that may propagate by infecting neighboring germ cells. In the germline, silencing programs encoded within piRNA clusters are optimized via a slicer-dependent amplification loop to suppress a broad spectrum of elements. The classes of transposons targeted by germline and somatic piRNA clusters, though not the precise elements, are conserved among Drosophilids, demonstrating that the architecture of piRNA clusters has coevolved with the transposons that they are tasked to control. PMID:19395010

  17. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE PAGES

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen; ...

    2017-01-23

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  18. Loss of CMD2‐mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis

    PubMed Central

    Chauhan, Raj Deepika; Wagaba, Henry; Moll, Theodore; Alicai, Titus; Miano, Douglas; Carrington, James C.; Taylor, Nigel J.

    2016-01-01

    Summary Cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are the two most important viral diseases affecting cassava production in Africa. Three sources of resistance are employed to combat CMD: polygenic recessive resistance, termed CMD1, the dominant monogenic type, named CMD2, and the recently characterized CMD3. The farmer‐preferred cultivar TME 204 carries inherent resistance to CMD mediated by CMD2, but is highly susceptible to CBSD. Selected plants of TME 204 produced for RNA interference (RNAi)‐mediated resistance to CBSD were regenerated via somatic embryogenesis and tested in confined field trials in East Africa. Although micropropagated, wild‐type TME 204 plants exhibited the expected levels of resistance, all plants regenerated via somatic embryogenesis were found to be highly susceptible to CMD. Glasshouse studies using infectious clones of East African cassava mosaic virus conclusively demonstrated that the process of somatic embryogenesis used to regenerate cassava caused the resulting plants to become susceptible to CMD. This phenomenon could be replicated in the two additional CMD2‐type varieties TME 3 and TME 7, but the CMD1‐type cultivar TMS 30572 and the CMD3‐type cultivar TMS 98/0505 maintained resistance to CMD after passage through somatic embryogenesis. Data are presented to define the specific tissue culture step at which the loss of CMD resistance occurs and to show that the loss of CMD2‐mediated resistance is maintained across vegetative generations. These findings reveal new aspects of the widely used technique of somatic embryogenesis, and the stability of field‐level resistance in CMD2‐type cultivars presently grown by farmers in East Africa, where CMD pressure is high. PMID:26662210

  19. Chinmo prevents transformer alternative splicing to maintain male sex identity.

    PubMed

    Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene; Bach, Erika A

    2018-02-01

    Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to "feminize", resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility.

  20. Chinmo prevents transformer alternative splicing to maintain male sex identity

    PubMed Central

    Hudry, Bruno; Miguel-Aliaga, Irene

    2018-01-01

    Reproduction in sexually dimorphic animals relies on successful gamete production, executed by the germline and aided by somatic support cells. Somatic sex identity in Drosophila is instructed by sex-specific isoforms of the DMRT1 ortholog Doublesex (Dsx). Female-specific expression of Sex-lethal (Sxl) causes alternative splicing of transformer (tra) to the female isoform traF. In turn, TraF alternatively splices dsx to the female isoform dsxF. Loss of the transcriptional repressor Chinmo in male somatic stem cells (CySCs) of the testis causes them to “feminize”, resembling female somatic stem cells in the ovary. This somatic sex transformation causes a collapse of germline differentiation and male infertility. We demonstrate this feminization occurs by transcriptional and post-transcriptional regulation of traF. We find that chinmo-deficient CySCs upregulate tra mRNA as well as transcripts encoding tra-splice factors Virilizer (Vir) and Female lethal (2)d (Fl(2)d). traF splicing in chinmo-deficient CySCs leads to the production of DsxF at the expense of the male isoform DsxM, and both TraF and DsxF are required for CySC sex transformation. Surprisingly, CySC feminization upon loss of chinmo does not require Sxl but does require Vir and Fl(2)d. Consistent with this, we show that both Vir and Fl(2)d are required for tra alternative splicing in the female somatic gonad. Our work reveals the need for transcriptional regulation of tra in adult male stem cells and highlights a previously unobserved Sxl-independent mechanism of traF production in vivo. In sum, transcriptional control of the sex determination hierarchy by Chinmo is critical for sex maintenance in sexually dimorphic tissues and is vital in the preservation of fertility. PMID:29389999

  1. Deep Sequencing Reveals Spatially Distributed Distinct Hot Spot Mutations in DICER1-Related Multinodular Goiter.

    PubMed

    de Kock, Leanne; Bah, Ismaël; Revil, Timothée; Bérubé, Pierre; Wu, Mona K; Sabbaghian, Nelly; Priest, John R; Ragoussis, Jiannis; Foulkes, William D

    2016-10-01

    Nontoxic multinodular goiter (MNG) occurs frequently, but its genetic etiology is not well established. Familial MNG and MNG occurring with ovarian Sertoli-Leydig cell tumor are associated with germline DICER1 mutations. We recently identified second somatic DICER1 ribonuclease (RNase) IIIb mutations in two MNGs. The objective of the study was to investigate the occurrence of somatic DICER1 mutations and mutational clonality in MNG. MNGs from 15 patients (10 with and five without germline DICER1 mutations) were selected based on tissue availability. Core biopsies/scrapings (n = 70) were obtained, sampling areas of follicular hyperplasia, hyperplasia within colloid pools, unremarkable thyroid parenchyma, and areas of thyroid parenchyma, not classified. After capture with a Fluidigm access array, the coding sequence of DICER1 was deep sequenced using DNA from each core/scraping. All germline DICER1-mutated cases were found to harbor at least one RNase III mutation. Specifically, we identified 12 individually distinct DICER1 RNase IIIb hot spot mutations in 32 of the follicular hyperplasia or hyperplasia within colloid pools cores/scrapings. These mutations are predicted to affect the metal-ion binding residues at positions p.Glu1705, p.Asp1709, p.Gly1809, p.Asp1810, and p.Glu1813. Somatic RNase IIIb mutations were identified in the 10 DICER1 germline mutated MNGs as follows: two cases contained one somatic mutation, five cases contained two mutations, and three cases contained three distinct somatic hot spot mutations. No RNase IIIb mutations were identified in the MNGs from individuals without germline DICER1 mutations. This study demonstrates that nodules within MNG occurring in DICER1 syndrome are associated with spatially distributed somatic DICER1 RNase IIIb mutations.

  2. qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles

    PubMed Central

    Song, Sarah; Nones, Katia; Miller, David; Harliwong, Ivon; Kassahn, Karin S.; Pinese, Mark; Pajic, Marina; Gill, Anthony J.; Johns, Amber L.; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Newell, Felicity; Cowley, Mark J.; Wu, Jianmin; Wilson, Peter; Fink, Lynn; Biankin, Andrew V.; Waddell, Nic; Grimmond, Sean M.; Pearson, John V.

    2012-01-01

    Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/. PMID:23049875

  3. Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development

    PubMed Central

    Bratic, Ivana; Hench, Jürgen; Henriksson, Johan; Antebi, Adam; Bürglin, Thomas R; Trifunovic, Aleksandra

    2009-01-01

    A number of studies showed that the development and the lifespan of Caenorhabditis elegans is dependent on mitochondrial function. In this study, we addressed the role of mitochondrial DNA levels and mtDNA maintenance in development of C. elegans by analyzing deletion mutants for mitochondrial polymerase gamma (polg-1(ok1548)). Surprisingly, even though previous studies in other model organisms showed necessity of polymerase gamma for embryonic development, homozygous polg-1(ok1548) mutants had normal development and reached adulthood without any morphological defects. However, polg-1 deficient animals have a seriously compromised gonadal function as a result of severe mitochondrial depletion, leading to sterility and shortened lifespan. Our results indicate that the gonad is the primary site of mtDNA replication, whilst the mtDNA of adult somatic tissues mainly stems from the developing embryo. Furthermore, we show that the mtDNA copy number shows great plasticity as it can be almost tripled as a response to the environmental stimuli. Finally, we show that the mtDNA copy number is an essential limiting factor for the worm development and therefore, a number of mechanisms set to maintain mtDNA levels exist, ensuring a normal development of C. elegans even in the absence of the mitochondrial replicase. PMID:19181702

  4. Myogenin induces higher oxidative capacity in pre-existing mouse muscle fibres after somatic DNA transfer

    PubMed Central

    Ekmark, Merete; Grønevik, Eirik; Schjerling, Peter; Gundersen, Kristian

    2003-01-01

    Muscle is a permanent tissue, and in the adult pronounced changes can occur in pre-existing fibres without the formation of new fibres. Thus, the mechanisms responsible for phenotype transformation in the adult might be distinct from mechanisms regulating muscle differentiation during muscle formation and growth. Myogenin is a muscle-specific, basic helix-loop-helix transcription factor that is important during early muscle differentiation. It is also expressed in the adult, where its role is unknown. In this study we have overexpressed myogenin in glycolytic fibres of normal adult mice by electroporation and single-cell intracellular injection of expression vectors. Myogenin had no effects on myosin heavy chain fibre type, but induced a considerable increase in succinate dehydrogenase and NADH dehydrogenase activity, with some type IIb fibres reaching the levels observed histochemically in normal type IIx and IIa fibres. mRNA levels for malate dehydrogenase were similarly altered. The size of the fibres overexpressing myogenin was reduced by 30–50 %. Thus, the transfected fibres acquired a phenotype reminiscent of the phenotype obtained by endurance training in man and other animals, with a higher oxidative capacity and smaller size. We conclude that myogenin can alter pre-existing glycolytic fibres in the intact adult animal. PMID:12598590

  5. Characterization of conservative somatic instability of the CAG repeat region in Huntington`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, F.V.; Calikoglu, A.S.; Whetsell, L.H.

    1994-09-01

    Instability and enlargement of a CAG repeat region at the beginning of the huntingtin gene (IT-15) has been linked with Huntington`s disease. The CAG repeat size shows a highly significant correlation with age-of-onset of clinicial features in individuals with 40 or more repeats who have Huntington disease. The clinical status of nonsymptomatic individuals with 30 to 39 CAG repeats is considered ambiguous. In order to define more carefully the nature of the HD expansion instability, we examined patients in our HD population using a discriminating fluorescence-based PCR approach. The degree of somatic mutation increases with both earlier age of onsetmore » and the size of the inherited allele. A single prominent band one repeat larger than the index peak was typical in individuals with 40-41 CAG repeats. Three to four larger bands are typically discerned in individuals with 50 or more repeats. In an extreme example, an individual with approximately 95 repeats had at least 8 prominent bands. Plotting the degree of somatic mutation relative to the size of the HD allele shows somatic mutation activity increases with size. By this approach 40-60% of the alleles in a 40-41 CAG repeat HD loci is represented in the primary allele. In contrast, the primary allele represents a relatively minor proportion of the total alleles for expansions greater than 50 CAG repeats (10-20%). The limited range of somatic mutation suggest that the instability is restricted to very early stages of embryogenesis before tissue development diverges or that persistent somatic instability occurs at a slow rate. Therefore, the properties of somatic instability in Huntington`s disease have aspects that are both in common but also different from that found in other trinucleotide repeat expanding diseases such as myotonic muscular dystrophy and fragile X syndrome.« less

  6. Reduced representation bisulphite sequencing of the cattle genome reveals DNA methylation patterns

    USDA-ARS?s Scientific Manuscript database

    Using reduced representation bisulphite sequencing (RRBS), we obtained the first single-base-resolution maps of bovine DNA methylation in ten somatic tissues. In total, we observed 1,868,049 cytosines in the CG-enriched regions. Similar to the methylation patterns in other species, the CG context wa...

  7. Phacomatosis pigmentokeratotica or the Schimmelpenning-Feuerstein-Mims syndrome?

    PubMed

    Gamayunov, Boris N; Korotkiy, Nikolay G; Baranova, Elena E

    2016-06-01

    Cutaneous symptoms in some patients with clinical picture of Schimmelpenning-Feuerstein-Mims syndrome can include a speckled lentiginous nevus, also known as nevus spilus. Recent investigations show that somatic heterozygous HRAS mutations are present in the sebaceous and speckled lentiginous nevus tissues of patients with combination of two nevi.

  8. Reduced representation bisulphite sequencing of the ten bovine somatic tissues reveals DNA methylation patterns

    USDA-ARS?s Scientific Manuscript database

    As a major component epigenetics, DNA methylation has been proved that widely functions in individual development and various diseases. It has been well studied in model organisms and human but includes limited data for the economic animals. Using reduced representation bisulphite sequencing (RRBS),...

  9. Exploring the effects of temperature and resource limitation on mercury bioaccumulation, growth and energetics, and behavior in Fundulus heteroclitus.

    EPA Science Inventory

    Aquatic ecosystems are affected by changes in both temperature and resource availability. While higher temperatures may result in increased food consumption and increased mercury (Hg) accumulation, they may also increase growth and reduce Hg tissue concentration through somatic d...

  10. Exploring the effects of temperature and resource limitation on mercury bioaccumulation, growth and energetics, and behavior in Fundulus heteroclitus

    EPA Science Inventory

    Aquatic ecosystems are affected by changes in both temperature and resource availability. While higher temperatures may result in increased food consumption and increased mercury (Hg) accumulation, they may also increase growth and reduce Hg tissue concentration through somatic d...

  11. Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes.

    PubMed

    Sugawara, Atsushi; Sugimura, Satoshi; Hoshino, Yumi; Sato, Eimei

    2009-08-01

    Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.

  12. Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation.

    PubMed

    Clemson, C M; Chow, J C; Brown, C J; Lawrence, J B

    1998-07-13

    These studies address whether XIST RNA is properly localized to the X chromosome in somatic cells where human XIST expression is reactivated, but fails to result in X inactivation (Tinker, A.V., and C.J. Brown. 1998. Nucl. Acids Res. 26:2935-2940). Despite a nuclear RNA accumulation of normal abundance and stability, XIST RNA does not localize in reactivants or in naturally inactive human X chromosomes in mouse/ human hybrid cells. The XIST transcripts are fully stabilized despite their inability to localize, and hence XIST RNA localization can be uncoupled from stabilization, indicating that these are separate steps controlled by distinct mechanisms. Mouse Xist RNA tightly localized to an active X chromosome, demonstrating for the first time that the active X chromosome in somatic cells is competent to associate with Xist RNA. These results imply that species-specific factors, present even in mature, somatic cells that do not normally express Xist, are necessary for localization. When Xist RNA is properly localized to an active mouse X chromosome, X inactivation does not result. Therefore, there is not a strict correlation between Xist localization and chromatin inactivation. Moreover, expression, stabilization, and localization of Xist RNA are not sufficient for X inactivation. We hypothesize that chromosomal association of XIST RNA may initiate subsequent developmental events required to enact transcriptional silencing.

  13. Psychological characteristics and GoNogo research of patients with functional constipation

    PubMed Central

    Li, Xiaoyi; Feng, Rui; Wu, Hao; Zhang, Lei; Zhao, Lan; Dai, Ning; Yu, Enyan

    2016-01-01

    Abstract The emotional state, psychological characteristics, cognitive function, and the relevance among above factors in patients with functional constipation (FC) are complex. This study aimed to investigate whether FC symptoms might be related to implicit processing such as psychological characteristics and emotional somatization. Thirty-five FC patients and 24 normal volunteers were recruited to collect event-related potentials (ERP) behavior and electroencephalogram data when simple digital GoNogo visual tasks were performed. Hamilton Depression Scale (HAMD-17), Hamilton Anxiety Scale (HAMA), Symptom Checklist, and Eysenck Personality Inventory (EPQ) were assessed before the ERP test. There was significant difference in average score, positive index, somatization, obsessive-compulsive disorder, anxiety, depression and psychoticism in HAMD-17, HAMA, Symptom Checklist, and extroversion or introversion and neuroticism in EPQ between the FC patients group and the normal control group (P < 0.05). There was a significant difference in the amplitude of ERP-P300 at site F4, F7, and FZ (P < 0.05). FC patients showed anxiety and depression. The asymmetric forebrain abnormal activities in the 2 hemispheres might initiate implicit automatic processing, such as somatization and obsessive-compulsive disorder, in order to cope with painful experience caused by anxiety and depression in patients with FC. Cognitive dysfunction of implicit processing might be involved in the abnormality of visual communication and information processing. PMID:28033259

  14. Mosaic generalized neurofibromatosis 1: report of two cases.

    PubMed

    Hardin, Jori; Behm, Allan; Haber, Richard M

    2014-01-01

    We report two cases of mosaic generalized neurofibromatosis 1 (NF1) and review the history of the classification of segmental neurofibromatosis (SNF; Ricardi type NF-V). Somatic mutations giving rise to limited disease, such as segmental neurofibromatosis are manifestations of mosaicism. If the mutation occurs before tissue differentiation, the clinical phenotype will be generalized disease. Mutations that occur later in development give rise to disease that is confined to a single region. Segmental neurofibromatosis is caused by a somatic mutation of neurofibromatosis type 1, and should not be regarded as a distinct entity from neurofibromatosis 1. Cases previously referred to as unilateral or bilateral segmental neurofibromatosis are now best referred to as mosaic generalized or mosaic localized neurofibromatosis 1.

  15. Recent progress and problems in animal cloning.

    PubMed

    Tsunoda, Y; Kato, Y

    2002-01-01

    It is remarkable that mammalian somatic cell nuclei can form whole individuals if they are transferred to enucleated oocytes. Advancements in nuclear transfer technology can now be applied for genetic improvement and increase of farm animals, rescue of endangered species, and assisted reproduction and tissue engineering in humans. Since July 1998, more than 200 calves have been produced by nuclear transfer of somatic cell nuclei in Japan, but half of them were stillborn or died within several months of parturition. Morphologic abnormalities have also been observed in cloned calves and embryonic stem cell-derived mice. In this review, we discuss the present situation and problems with animal cloning and the possibility for its application to human medicine.

  16. Genomic Landscape of Colorectal Mucosa and Adenomas in Familial Adenomatous Polyposis

    PubMed Central

    Borras, Ester; San Lucas, F. Anthony; Chang, Kyle; Zhou, Ruoji; Masand, Gita; Fowler, Jerry; Mork, Maureen E.; You, Y. Nancy; Taggart, Melissa W.; McAllister, Florencia; Jones, David A.; Davies, Gareth E.; Edelmann, Winfried; Ehli, Erik A.; Lynch, Patrick M.; Hawk, Ernest T.; Capella, Gabriel; Scheet, Paul; Vilar, Eduardo

    2016-01-01

    Purpose The molecular basis of the adenoma to carcinoma transition has been deduced using comparative analysis of genetic alterations observed through the sequential steps of intestinal carcinogenesis. However, comprehensive genomic analyses of adenomas and at-risk mucosa are still lacking. Therefore, our aim was to characterize the genomic landscape of colonic at-risk mucosa and adenomas. Experimental Design We analyzed the mutation profile and copy number changes of 25 adenomas and adjacent mucosa from 12 familial adenomatous polyposis patients using whole-exome sequencing and validated allelic imbalances in 37 adenomas using SNP arrays. We assessed for evidence of clonality and performed estimations on the proportions of driver and passenger mutations using a systems biology approach. Results Adenomas had lower mutational rates than did colorectal cancers and showed recurrent alterations in known cancer-driver genes (APC, KRAS, FBXW7, TCF7L2) and allelic imbalances in chromosomes 5, 7 and 13. Moreover, 80% of adenomas had somatic alterations in WNT pathway genes. Adenomas displayed evidence of multiclonality similar to stage I carcinomas. Strong correlations between mutational rate and patient age were observed in at-risk mucosa and adenomas. Our data indicate that at least 23% of somatic mutations are present in at-risk mucosa prior to adenoma initiation. Conclusions The genomic profiles of at-risk mucosa and adenomas illustrate the evolution from normal tissue to carcinoma via greater resolution of molecular changes at the inflection point of premalignant lesions. Furthermore, substantial genomic variation exists in at-risk mucosa before adenoma formation, and deregulation of the WNT pathway is required to foster carcinogenesis. PMID:27221540

  17. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation.

    PubMed

    Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi

    2010-02-23

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.

  18. Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome.

    PubMed

    Jeyapalan, Jennie N; Varley, Helen; Foxon, Jenny L; Pollock, Raphael E; Jeffreys, Alec J; Henson, Jeremy D; Reddel, Roger R; Royle, Nicola J

    2005-07-01

    Immortal human cells maintain telomere length by the expression of telomerase or through the alternative lengthening of telomeres (ALT). The ALT mechanism involves a recombination-like process that allows the rapid elongation of shortened telomeres. However, it is not known whether activation of the ALT pathway affects other sequences in the genome. To address this we have investigated, in ALT-expressing cell lines and tumours, the stability of tandem repeat sequences known to mutate via homologous recombination in the human germline. We have shown extraordinary somatic instability in the human minisatellite MS32 (D1S8) in ALT-expressing (ALT+) but not in normal or telomerase-expressing cell lines. The MS32 mutation frequency varied across 15 ALT+ cell lines and was on average 55-fold greater than in ALT- cell lines. The MS32 minisatellite was also highly unstable in three of eight ALT+ soft tissue sarcomas, indicating that somatic destabilization occurs in vivo. The MS32 mutation rates estimated for two ALT+ cell lines were similar to that seen in the germline. However, the internal structures of ALT and germline mutant alleles are very different, indicating differences in the underlying mutation mechanisms. Five other hypervariable minisatellites did not show elevated instability in ALT-expressing cell lines, indicating that minisatellite destabilization is not universal. The elevation of MS32 instability upon activation of the ALT pathway and telomere length maintenance suggests there is overlap between the underlying processes that may be tractable through analysis of the D1S8 locus.

  19. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage.

    PubMed

    Bechara, Antoine

    2004-06-01

    Most theories of choice assume that decisions derive from an assessment of the future outcomes of various options and alternatives through some type of cost-benefit analyses. The influence of emotions on decision-making is largely ignored. The studies of decision-making in neurological patients who can no longer process emotional information normally suggest that people make judgments not only by evaluating the consequences and their probability of occurring, but also and even sometimes primarily at a gut or emotional level. Lesions of the ventromedial (which includes the orbitofrontal) sector of the prefrontal cortex interfere with the normal processing of "somatic" or emotional signals, while sparing most basic cognitive functions. Such damage leads to impairments in the decision-making process, which seriously compromise the quality of decisions in daily life. The aim of this paper is to review evidence in support of "The Somatic Marker Hypothesis," which provides a systems-level neuroanatomical and cognitive framework for decision-making and suggests that the process of decision-making depends in many important ways on neural substrates that regulate homeostasis, emotion, and feeling. The implications of this theoretical framework for the normal and abnormal development of the orbitofrontal cortex are also discussed.

  20. The thorny path linking cellular senescence to organismalaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Christopher K.; Mian, Saira; Campisi, Judith

    2005-08-09

    Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggestedmore » that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.« less

  1. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: pilot study for the 100,000 Genomes Project.

    PubMed

    Robbe, Pauline; Popitsch, Niko; Knight, Samantha J L; Antoniou, Pavlos; Becq, Jennifer; He, Miao; Kanapin, Alexander; Samsonova, Anastasia; Vavoulis, Dimitrios V; Ross, Mark T; Kingsbury, Zoya; Cabes, Maite; Ramos, Sara D C; Page, Suzanne; Dreau, Helene; Ridout, Kate; Jones, Louise J; Tuff-Lacey, Alice; Henderson, Shirley; Mason, Joanne; Buffa, Francesca M; Verrill, Clare; Maldonado-Perez, David; Roxanis, Ioannis; Collantes, Elena; Browning, Lisa; Dhar, Sunanda; Damato, Stephen; Davies, Susan; Caulfield, Mark; Bentley, David R; Taylor, Jenny C; Turnbull, Clare; Schuh, Anna

    2018-02-01

    PurposeFresh-frozen (FF) tissue is the optimal source of DNA for whole-genome sequencing (WGS) of cancer patients. However, it is not always available, limiting the widespread application of WGS in clinical practice. We explored the viability of using formalin-fixed, paraffin-embedded (FFPE) tissues, available routinely for cancer patients, as a source of DNA for clinical WGS.MethodsWe conducted a prospective study using DNAs from matched FF, FFPE, and peripheral blood germ-line specimens collected from 52 cancer patients (156 samples) following routine diagnostic protocols. We compared somatic variants detected in FFPE and matching FF samples.ResultsWe found the single-nucleotide variant agreement reached 71% across the genome and somatic copy-number alterations (CNAs) detection from FFPE samples was suboptimal (0.44 median correlation with FF) due to nonuniform coverage. CNA detection was improved significantly with lower reverse crosslinking temperature in FFPE DNA extraction (80 °C or 65 °C depending on the methods). Our final data showed somatic variant detection from FFPE for clinical decision making is possible. We detected 98% of clinically actionable variants (including 30/31 CNAs).ConclusionWe present the first prospective WGS study of cancer patients using FFPE specimens collected in a routine clinical environment proving WGS can be applied in the clinic.GENETICS in MEDICINE advance online publication, 1 February 2018; doi:10.1038/gim.2017.241.

  2. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians

    PubMed Central

    Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.

    2016-01-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480

  3. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.

    PubMed

    Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A

    2016-05-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.

  4. Central control of thermogenesis in mammals

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro; Madden, Christopher J.

    2008-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis. PMID:18469069

  5. Touch imprint cytology with massively parallel sequencing (TIC-seq): a simple and rapid method to snapshot genetic alterations in tumors.

    PubMed

    Amemiya, Kenji; Hirotsu, Yosuke; Goto, Taichiro; Nakagomi, Hiroshi; Mochizuki, Hitoshi; Oyama, Toshio; Omata, Masao

    2016-12-01

    Identifying genetic alterations in tumors is critical for molecular targeting of therapy. In the clinical setting, formalin-fixed paraffin-embedded (FFPE) tissue is usually employed for genetic analysis. However, DNA extracted from FFPE tissue is often not suitable for analysis because of its low levels and poor quality. Additionally, FFPE sample preparation is time-consuming. To provide early treatment for cancer patients, a more rapid and robust method is required for precision medicine. We present a simple method for genetic analysis, called touch imprint cytology combined with massively paralleled sequencing (touch imprint cytology [TIC]-seq), to detect somatic mutations in tumors. We prepared FFPE tissues and TIC specimens from tumors in nine lung cancer patients and one patient with breast cancer. We found that the quality and quantity of TIC DNA was higher than that of FFPE DNA, which requires microdissection to enrich DNA from target tissues. Targeted sequencing using a next-generation sequencer obtained sufficient sequence data using TIC DNA. Most (92%) somatic mutations in lung primary tumors were found to be consistent between TIC and FFPE DNA. We also applied TIC DNA to primary and metastatic tumor tissues to analyze tumor heterogeneity in a breast cancer patient, and showed that common and distinct mutations among primary and metastatic sites could be classified into two distinct histological subtypes. TIC-seq is an alternative and feasible method to analyze genomic alterations in tumors by simply touching the cut surface of specimens to slides. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Emotional Considerations in Spasmodic Dysphonia: Psychometric Quantification.

    ERIC Educational Resources Information Center

    Cannito, Michael P.

    1991-01-01

    This study examined emotional characteristics of 18 female spasmodic dysphonic subjects in comparison to matched normal controls across psychometric measures of depression, anxiety, and somatic complaints. Statistically significant differences were noted between groups for all measures and over half of the dysphonic subjects exhibited clinically…

  7. Pathogenic Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  8. Somatic Embryogenesis in Peach Palm Using the Thin Cell Layer Technique: Induction, Morpho-histological Aspects and AFLP Analysis of Somaclonal Variation

    PubMed Central

    Steinmacher, D. A.; Krohn, N. G.; Dantas, A. C. M.; Stefenon, V. M.; Clement, C. R.; Guerra, M. P.

    2007-01-01

    Background and Aims The thin cell layer (TCL) technique is based on the use of very small explants and has allowed enhanced in vitro morphogenesis in several plant species. The present study evaluated the TCL technique as a procedure for somatic embryo production and plantlet regeneration of peach palm. Methods TCL explants from different positions in the shoot apex and leaf sheath of peach palm were cultivated in MS culture medium supplemented with 0–600 µm Picloram in the presence of activated charcoal. The production of primary calli and embryogenic calli was evaluated in these different conditions. Histological and amplified fragment length polymorphism (AFLP) analyses were conducted to study in vitro morphogenetic responses and genetic stability, respectively, of the regenerated plantlets. Key Results Abundant primary callus induction was observed from TCLs of the shoot meristem in culture media supplemented with 150–600 µm Picloram (83–97 %, respectively). The production of embryogenic calli depends on Picloram concentration and explant position. The best response observed was 43 % embryogenic callus production from shoot meristem TCL on 300 µm Picloram. In maturation conditions, 34 ± 4 somatic embryos per embryogenic callus were obtained, and 45·0 ± 3·4 % of these fully developed somatic embryos were converted, resulting in plantlets ready for acclimatization, of which 80 % survived. Histological studies revealed that the first cellular division events occurred in cells adjacent to vascular tissue, resulting in primary calli, whose growth was ensured by a meristematic zone. A multicellular origin of the resulting somatic embryos arising from the meristematic zone is suggested. During maturation, histological analyses revealed bipolarization of the somatic embryos, as well as the development of new somatic embryos. AFLP analyses revealed that 92 % of the regenerated plantlets were true to type. The use of TCL explants considerably improves the number of calli and somatic embryos produced in comparison with previously described protocols for in vitro regeneration of peach palm. Conclusions The present study suggests that the TCL somatic embryogenesis protocol developed is feasible, although it still requires further optimization for in vitro multiplication of peach palm, especially the use of similar explants obtained from adult palm trees. PMID:17670751

  9. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1

    PubMed Central

    Savić Pavićević, Dušanka; Miladinović, Jelena; Brkušanin, Miloš; Šviković, Saša; Djurica, Svetlana; Brajušković, Goran; Romac, Stanka

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling. PMID:23586035

  10. Somatic mutations in benign breast disease tissue and risk of subsequent invasive breast cancer.

    PubMed

    Rohan, Thomas E; Miller, Christopher A; Li, Tiandao; Wang, Yihong; Loudig, Olivier; Ginsberg, Mindy; Glass, Andrew; Mardis, Elaine

    2018-06-06

    Insights into the molecular pathogenesis of breast cancer might come from molecular analysis of tissue from early stages of the disease. We conducted a case-control study nested in a cohort of women who had biopsy-confirmed benign breast disease (BBD) diagnosed between 1971 and 2006 at Kaiser Permanente Northwest and who were followed to mid-2015 to ascertain subsequent invasive breast cancer (IBC); cases (n = 218) were women with BBD who developed subsequent IBC and controls, individually matched (1:1) to cases, were women with BBD who did not develop IBC in the same follow-up interval as that for the corresponding case. Targeted sequence capture and sequencing were performed for 83 genes of importance in breast cancer. There were no significant case-control differences in mutation burden overall, for non-silent mutations, for individual genes, or with respect either to the nature of the gene mutations or to mutational enrichment at the pathway level. For seven subjects with DNA from the BBD and ipsilateral IBC, virtually no mutations were shared. This study, the first to use a targeted multi-gene sequencing approach on early breast cancer precursor lesions to investigate the genomic basis of the disease, showed that somatic mutations detected in BBD tissue were not associated with breast cancer risk.

  11. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages.

    PubMed

    Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R

    1994-12-01

    Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.

  12. Brooke-Spiegler syndrome: report of 10 patients from 8 families with novel germline mutations: evidence of diverse somatic mutations in the same patient regardless of tumor type.

    PubMed

    Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V

    2010-06-01

    Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.

  13. Engineered LINE-1 retrotransposition in nondividing human neurons

    PubMed Central

    Macia, Angela; Widmann, Thomas J.; Heras, Sara R.; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R.; Goodier, John L.; Garcia-Perez, Jose L.

    2017-01-01

    Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80–100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. PMID:27965292

  14. Effect of KCNJ5 Mutations on Gene Expression in Aldosterone-Producing Adenomas and Adrenocortical Cells

    PubMed Central

    Monticone, Silvia; Hattangady, Namita G.; Nishimoto, Koshiro; Mantero, Franco; Rubin, Beatrice; Cicala, Maria Verena; Pezzani, Raffaele; Auchus, Richard J.; Ghayee, Hans K.; Shibata, Hirotaka; Kurihara, Isao; Williams, Tracy A.; Giri, Judith G.; Bollag, Roni J.; Edwards, Michael A.; Isales, Carlos M.

    2012-01-01

    Context: Primary aldosteronism is a heterogeneous disease that includes both sporadic and familial forms. A point mutation in the KCNJ5 gene is responsible for familial hyperaldosteronism type III. Somatic mutations in KCNJ5 also occur in sporadic aldosterone producing adenomas (APA). Objective: The objective of the study was to define the effect of the KCNJ5 mutations on gene expression and aldosterone production using APA tissue and human adrenocortical cells. Methods: A microarray analysis was used to compare the transcriptome profiles of female-derived APA samples with and without KCNJ5 mutations and HAC15 adrenal cells overexpressing either mutated or wild-type KCNJ5. Real-time PCR validated a set of differentially expressed genes. Immunohistochemical staining localized the KCNJ5 expression in normal adrenals and APA. Results: We report a 38% (18 of 47) prevalence of KCNJ5 mutations in APA. KCNJ5 immunostaining was highest in the zona glomerulosa of NA and heterogeneous in APA tissue, and KCNJ5 mRNA was 4-fold higher in APA compared with normal adrenals (P < 0.05). APA with and without KCNJ5 mutations displayed slightly different gene expression patterns, notably the aldosterone synthase gene (CYP11B2) was more highly expressed in APA with KCNJ5 mutations. Overexpression of KCNJ5 mutations in HAC15 increased aldosterone production and altered expression of 36 genes by greater than 2.5-fold (P < 0.05). Real-time PCR confirmed increases in CYP11B2 and its transcriptional regulator, NR4A2. Conclusions: KCNJ5 mutations are prevalent in APA, and our data suggest that these mutations increase expression of CYP11B2 and NR4A2, thus increasing aldosterone production. PMID:22628608

  15. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology

    PubMed Central

    Loverde, Joseph R.; Pfister, Bryan J.

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury. PMID:26379492

  16. Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment.

    PubMed

    Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Philipp, E E R; Abele, D

    2012-08-01

    Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. In late survivors low antioxidant capacity and apoptotic activity together with a fast accumulation of the age pigment lipofuscin was observed. Rates of oxygen consumption and oxidative stress markers were strongly dependent on somatic growth and reproductive state but not on temperature. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the second spawning. Superoxide dismutase activity and apoptotic cell death intensity were however higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age at the cost of fast cellular degradation in second year scallops. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar "Livin' Easy" (Rosa sp.).

    PubMed

    Estabrooks, Tammy; Browne, Robin; Dong, Zhongmin

    2007-02-01

    Somatic embryogenesis (SE) offers vast potential for the clonal propagation of high-value roses. However, some recalcitrant cultivars unresponsive to commonly employed SE-inducing agents and low induction rates currently hinder the commercialization of SE technology in rose. Rose SE technology requires improvement before it can be implemented as a production system on a commercial scale. In the present work, we assessed 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a synthetic auxin not previously tested in rose, for its effectiveness to induce SE in the rose cultivar "Livin' Easy" (Rosa sp.). We ran a parallel comparison to the commonly used 2,4-dichlorophenoxyacetic acid (2,4-D). We tested each auxin with two different basal media: Murashige and Skoog (MS) basal medium and woody plant medium (WPM). MS medium resulted in somatic embryo production, whereas WPM did not. 2,4,5-T induced SE over a greater concentration range than 2,4-D's and resulted in significantly greater embryo yields. 2,4,5-T at a concentration of 10 or 25 microM was better for embrygenic tissue initiation than 2,4,5-T at 5 microM. Further embryo development occurred when the tissue was transferred to plant growth regulator (PGR) free medium or media with 40% the original auxin concentration. However, the PGR-free medium resulted in a high percentage of abnormal embryos (32.31%) compared to the media containing auxins. Upon transfer to germination medium, somatic embryos successfully converted into plantlets at rates ranging from 33.3 to 95.2%, depending on treatment. Survival rates 3 months ex vitro averaged 14.0 and 55.6% for 2,4-D- and 2,4,5-T-derived plantlets, respectively. Recurrent SE was observed in 60.2% of the plantlets growing on germination medium. This study is the first report of SE in the commercially valuable rose cultivar 'Livin' Easy' (Rosa sp.) and a suitable methodology was developed for SE of this rose cultivar.

  18. DSM-IV-TR “pain disorder associated with psychological factors” as a nonhysterical form of somatization

    PubMed Central

    Aragona, Massimiliano; Tarsitani, Lorenzo; De Nitto, Serena; Inghilleri, Maurizio

    2008-01-01

    BACKGROUND: Elevated Minnesota Multiphasic Personality Inventory (MMPI) scores on the hysteria (Hy) scale are reported in several forms of pain. Previous results were possibly biased by diagnostic heterogeneity (psychogenic, somatic and mixed pain syndromes included in the same index sample) or Hy heterogeneity (failure to differentiate Hy scores into clinically meaningful sub-scales, such as admission of symptoms [Ad] and denial of symptoms [Dn]). METHODS: To overcome this drawback, 48 patients diagnosed as having a Diagnostic and Statistical Manual of Mental Disorders, 4th edn, Text Revision (DSM-IV-TR) diagnosis of “pain disorder associated with psychological factors” were compared with 48 patients experiencing somatic pain excluding psychological factors, and 42 somatic controls without pain. RESULTS: MMPI Hy and hypochondriasis (Hs) scores were significantly higher in the pain disorder group than in control groups, who scored similarly. MMPI correction (K) scores and Dn scores were similar in the three groups, whereas Ad was significantly higher in the pain disorder group and lower and similar in the two control groups, respectively. In the pain disorder group, Ad and Dn were negatively correlated, whereas in control groups they were unrelated. CONCLUSIONS: These findings suggest that whereas a pattern of high Hs and Hy scores together with a normal K score might characterize patients with a pain disorder associated with psychological factors, elevated Hy scores per se do not indicate hysterical traits. In the pain disorder group, elevated Hy scores reflected the Ad subscale alone, indicating a strikingly high frequency of distressing somatic symptoms. They tend not to repress or deny the emotional malaise linked to symptoms, as the hysterical construct expects. The pain disorder designation should be considered a nonhysterical form of somatization. PMID:18301811

  19. DSM-IV-TR "pain disorder associated with psychological factors" as a nonhysterical form of somatization.

    PubMed

    Aragona, Massimiliano; Tarsitani, Lorenzo; De Nitto, Serena; Inghilleri, Maurizio

    2008-01-01

    Elevated Minnesota Multiphasic Personality Inventory (MMPI) scores on the hysteria (Hy) scale are reported in several forms of pain. Previous results were possibly biased by diagnostic heterogeneity (psychogenic, somatic and mixed pain syndromes included in the same index sample) or Hy heterogeneity (failure to differentiate Hy scores into clinically meaningful subscales, such as admission of symptoms [Ad] and denial of symptoms [Dn]). To overcome this drawback, 48 patients diagnosed as having a Diagnostic and Statistical Manual of Mental Disorders, 4th edn, Text Revision (DSM-IV-TR) diagnosis of "pain disorder associated with psychological factors" were compared with 48 patients experiencing somatic pain excluding psychological factors, and 42 somatic controls without pain. MMPI Hy and hypochondriasis (Hs) scores were significantly higher in the pain disorder group than in control groups, who scored similarly. MMPI correction (K) scores and Dn scores were similar in the three groups, whereas Ad was significantly higher in the pain disorder group and lower and similar in the two control groups, respectively. In the pain disorder group, Ad and Dn were negatively correlated, whereas in control groups they were unrelated. These findings suggest that whereas a pattern of high Hs and Hy scores together with a normal K score might characterize patients with a pain disorder associated with psychological factors, elevated Hy scores per se do not indicate hysterical traits. In the pain disorder group, elevated Hy scores reflected the Ad subscale alone, indicating a strikingly high frequency of distressing somatic symptoms. They tend not to repress or deny the emotional malaise linked to symptoms, as the hysterical construct expects. The pain disorder designation should be considered a nonhysterical form of somatization.

  20. Evaluation of Allele-Specific Somatic Changes of Genome-Wide Association Study Susceptibility Alleles in Human Colorectal Cancers

    PubMed Central

    Gerber, Madelyn M.; Hampel, Heather; Schulz, Nathan P.; Fernandez, Soledad; Wei, Lai; Zhou, Xiao-Ping; de la Chapelle, Albert; Toland, Amanda Ewart

    2012-01-01

    Background Tumors frequently exhibit loss of tumor suppressor genes or allelic gains of activated oncogenes. A significant proportion of cancer susceptibility loci in the mouse show somatic losses or gains consistent with the presence of a tumor susceptibility or resistance allele. Thus, allele-specific somatic gains or losses at loci may demarcate the presence of resistance or susceptibility alleles. The goal of this study was to determine if previously mapped susceptibility loci for colorectal cancer show evidence of allele-specific somatic events in colon tumors. Methods We performed quantitative genotyping of 16 single nucleotide polymorphisms (SNPs) showing statistically significant association with colorectal cancer in published genome-wide association studies (GWAS). We genotyped 194 paired normal and colorectal tumor DNA samples and 296 paired validation samples to investigate these SNPs for allele-specific somatic gains and losses. We combined analysis of our data with published data for seven of these SNPs. Results No statistically significant evidence for allele-specific somatic selection was observed for the tested polymorphisms in the discovery set. The rs6983267 variant, which has shown preferential loss of the non-risk T allele and relative gain of the risk G allele in previous studies, favored relative gain of the G allele in the combined discovery and validation samples (corrected p-value = 0.03). When we combined our data with published allele-specific imbalance data for this SNP, the G allele of rs6983267 showed statistically significant evidence of relative retention (p-value = 2.06×10−4). Conclusions Our results suggest that the majority of variants identified as colon cancer susceptibility alleles through GWAS do not exhibit somatic allele-specific imbalance in colon tumors. Our data confirm previously published results showing allele-specific imbalance for rs6983267. These results indicate that allele-specific imbalance of cancer susceptibility alleles may not be a common phenomenon in colon cancer. PMID:22629442

  1. Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

    PubMed Central

    Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche

    2012-01-01

    The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613

  2. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  3. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview

    PubMed Central

    Alhussien, Mohanned Naif; Dang, Ajay Kumar

    2018-01-01

    Milk somatic cells (SCs) are a mixture of milk-producing cells and immune cells. These cells are secreted in milk during the normal course of milking and are used as an index for estimating mammary health and milk quality of dairy animals worldwide. Milk SC is influenced by cow productivity, health, parity, lactation stage, and breed of an animal. Any change in environmental conditions, poor management practices, and also stressful conditions significantly increases the amount of SC coming in milk. Better hygiene and proper nutrition help in reducing milk SC. Milk with low SC means better milk products with a longer shelf life. The present review describes the role of SCs (both secretory and immune) in milk, their role in maintaining the integrity of the mammary gland, and factors affecting their release in milk. This information may help to reduce milk somatic cell counts (SCCs) and to establish differential SCC standards. PMID:29915493

  4. The value of frozen cartilage tissues without cryoprotection for genetic conservation.

    PubMed

    Cetinkaya, Gaye; Hatipoglu, Ibrahim; Arat, Sezen

    2014-02-01

    Animal tissues frozen without cryoprotection are thought to be inappropriate for use as a donor for somatic cell nuclear transfer (SCNT) studies. Cells in tissues that have been frozen without a cryoprotectant are commonly thought to be dead or to have lost genomic integrity. However, in this study we show that the frozen auricular cartilage tissues of anatolian buffalo contain a considerable number of viable healthy cells. The cells in auricular cartilage tissues are resistant to cryo-injury at -80°C. Primary cell cultures were established from defrosted ear tissues which were frozen without cryoprotectant. The growth and functional characteristics of primary cell cultures are characterized according to cell growth curve, cell cycle analysis, karyotype and GAG synthesis. The results indicate that frozen cartilage tissues could be valuable materials for the conservation of species and SCNT technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. The Ecology of Youth Depression

    ERIC Educational Resources Information Center

    Kim, Kee Jeong

    2012-01-01

    Historically, teen depression has been seen as a symptom of other problems such as anxiety, irritability, mood swings, somatic complaints, substance use, and poor school performance. These symptoms were often considered as part of "adolescent turmoil"--a normal, understandable, and even expected phenomenon. For a long time, this viewpoint masked…

  7. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  8. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  9. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  10. Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model.

    PubMed

    O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D

    2013-07-16

    A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.

  11. Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.

    PubMed

    Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2016-08-05

    The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phenome-genome association studies of pancreatic cancer: new targets for therapy and diagnosis.

    PubMed

    Narayanan, Ramaswamy

    2015-01-01

    Pancreatic cancer, has a very high mortality rate and requires novel molecular targets for diagnosis and therapy. Genetic association studies over databases offer an attractive starting point for gene discovery. The National Center for Biotechnology Information (NCBI) Phenome Genome Integrator (PheGenI) tool was enriched for pancreatic cancer-associated traits. The genes associated with the trait were characterized using diverse bioinformatics tools for Genome-Wide Association (GWA), transcriptome and proteome profile and protein classes for motif and domain. Two hundred twenty-six genes were identified that had a genetic association with pancreatic cancer in the human genome. This included 25 uncharacterized open reading frames (ORFs). Bioinformatics analysis of these ORFs identified putative druggable proteins and biomarkers including enzymes, transporters and G-protein-coupled receptor signaling proteins. Secreted proteins including a neuroendocrine factor and a chemokine were identified. Five out of these ORFs encompassed non coding RNAs. The ORF protein expression was detected in numerous body fluids, such as ascites, bile, pancreatic juice, milk, plasma, serum and saliva. Transcriptome and proteome analyses showed a correlation of mRNA and protein expression for nine ORFs. Analysis of the Catalogue of Somatic Mutations in Cancer (COSMIC) database revealed a strong correlation across copy number variations and mRNA over-expression for four ORFs. Mining of the International Cancer Gene Consortium (ICGC) database identified somatic mutations in a significant number of pancreatic patients' tumors for most of these ORFs. The pancreatic cancer-associated ORFs were also found to be genetically associated with other neoplasms, including leukemia, malignant melanoma, neuroblastoma and prostate carcinomas, as well as other unrelated diseases and disorders, such as Alzheimer's disease, Crohn's disease, coronary diseases, attention deficit disorder and addiction. Based on Genome-Wide Association Studies (GWAS), copy number variations, somatic mutational status and correlation of gene expression in pancreatic tumors at the mRNA and protein level, expression specificity in normal tissues and detection in body fluids, six ORFs emerged as putative leads for pancreatic cancer. These six targets provide a basis for accelerated drug discovery and diagnostic marker development for pancreatic cancer. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  13. The genomic landscape of phaeochromocytoma.

    PubMed

    Flynn, Aidan; Benn, Diana; Clifton-Bligh, Roderick; Robinson, Bruce; Trainer, Alison H; James, Paul; Hogg, Annette; Waldeck, Kelly; George, Joshy; Li, Jason; Fox, Stephen B; Gill, Anthony J; McArthur, Grant; Hicks, Rodney J; Tothill, Richard W

    2015-05-01

    Phaeochromocytomas (PCCs) and paragangliomas (PGLs) are rare neural crest-derived tumours originating from adrenal chromaffin cells or extra-adrenal sympathetic and parasympathetic tissues. More than a third of PCC/PGL cases are associated with heritable syndromes involving 13 or more known genes. These genes have been broadly partitioned into two groups based on pseudo-hypoxic and receptor tyrosine kinase (RTK) signalling pathways. Many of these genes can also become somatically mutated, although up to one third of sporadic cases have no known genetic driver. Furthermore, little is known of the genes that co-operate with known driver genes to initiate and drive tumourigenesis. To explore the genomic landscape of PCC/PGL, we applied exome sequencing, high-density SNP-array analysis, and RNA sequencing to 36 PCCs and four functional PGL tumours. All tumours displayed low mutation frequency, in contrast to frequent large segmental copy-number alterations, aneuploidy, and evidence for chromothripsis in one case. Multi-region sampling of one benign familial PCC tumour provided evidence for the timing of mutations during tumourigenesis and ongoing clonal evolution. Thirty-one of 40 (77.5%) cases could be explained by germline or somatic mutations or structural alterations affecting known PCC/PGL genes. Deleterious somatic mutations were also identified in known tumour-suppressor genes associated with genome maintenance and epigenetic modulation. A multitude of other genes were also found mutated that are likely important for normal neuroendocrine cell function. We revisited the gene-expression subtyping of PCC/PGL by integrating published microarray data with our RNA-seq data, enabling the identification of six robust gene-expression subtypes. The majority of cases in our cohort with no identifiable driver mutation were classified into a gene-expression subtype bearing similarity to MAX mutant PCC/PGL. Our data suggest there are yet unknown PCC/PGL cancer genes that can phenocopy MAX mutant PCC/PGL tumours. This study provides new insight into the molecular diversity and genetic origins of PCC/PGL tumours. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.

    2011-01-01

    We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.

  15. Ras mutations are rare in solitary cold and toxic thyroid nodules.

    PubMed

    Krohn, K; Reske, A; Ackermann, F; Müller, A; Paschke, R

    2001-08-01

    Activation of ras proto-oncogenes as a result of point mutations is detectable in a significant percentage of most types of tumour. Similar to neoplasms of other organs, mutations of all three ras genes can be found in thyroid tumours. H-, K- and N-ras mutations have been detected in up to 20% of follicular adenomas and adenomatous nodules which were not functionally characterized. This raises the question as to whether ras mutations are specific for hypofunctional nodules and TSH receptor mutations for hyperfunctioning nodules. To investigate ras and TSH receptor mutations with respect to functional differentiation we studied 41 scintigraphically cold nodules and 47 toxic thyroid nodules. To address the likelihood of a somatic mutation we also studied the clonal origin of these tumours. Genomic DNA was extracted from nodular and surrounding tissue. Mutational hot spots in exons 1 and 2 of the H- and K-ras gene were PCR amplified and sequenced using big dye terminator chemistry. Denaturing gradient gel electrophoresis (DGGE) was used to verify sequencing results for the H-ras gene and to analyse the N-ras gene because its greater sensitivity in detecting somatic mutations. Clonality of nodular thyroid tissue was evaluated using X-Chromosome inactivation based on PCR amplification of the human androgen receptor locus. Monoclonal origin was detectable in 14 of 23 informative samples from cold thyroid nodules. In toxic thyroid nodules the frequency of clonal tissue was 20 in 30 informative cases. Only one point mutation could be found in the N-ras gene codon 61 (Gly to Arg) in a cold adenomatous nodule which was monoclonal. In toxic thyroid nodules no ras mutation was detectable. Our study suggests that ras mutations are rare in solitary cold and toxic thyroid nodules and that the frequent monoclonal origin of these tumours implies somatic mutations in genes other than H-, K- and N-ras.

  16. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity.

    PubMed

    Fagegaltier, Delphine; König, Annekatrin; Gordon, Assaf; Lai, Eric C; Gingeras, Thomas R; Hannon, Gregory J; Shcherbata, Halyna R

    2014-10-01

    MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels. First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7 as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7 result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila. Copyright © 2014 by the Genetics Society of America.

  17. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP).

    PubMed

    Tani, Tetsuya; Shimada, Hiroaki; Kato, Yoko; Tsunoda, Yukio

    2007-01-01

    Despite the long-held assumption that reprogramming factors are present in mammalian oocytes at the second metaphase stage, the molecular nature of these factors is not known. Here, we demonstrated that oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Injection of TCTP double-stranded RNA into germinal vesicle oocytes decreased the potential of nuclear-transferred (NT) oocytes, but not in vitro fertilized oocytes, to develop into blastocysts. Phosphorylated TCTP is considered to facilitate the first step of somatic cell reprogramming. After transfer of blastocysts that developed from NT oocytes fused with cumulus cells in which phosphorylated TCTP peptide was previously incorporated, the recipient pregnancy rate (47%) increased and the abortion rate (13%) decreased. Moreover, all seven cloned calves survived for at least 1 month after parturition, and had no morphologic abnormalities. The present study demonstrated that pretreatment of donor cells with phosphorylated TCTP peptide has a beneficial effect on the potential of bovine somatic cell nuclei to develop into normal cloned calves. Before widespread application of TCTP for bovine cloning, however, a large-scale embryo transfer study using different donor cell lines of various origins is necessary.

  18. A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task.

    PubMed

    Maia, Tiago V; McClelland, James L

    2004-11-09

    Bechara, Damasio, and coworkers [Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. (1997) Science 275, 1293-1295] have reported that normal participants decide advantageously before knowing the advantageous strategy in a simple card game designed to mimic real-life decision-making. Bechara et al. have used this result to support their view that nonconscious somatic markers can guide advantageous behavior. By using more sensitive methods, we show that participants have much more knowledge about the game than previously thought. In fact, participants report knowledge of the advantageous strategy more reliably than they behave advantageously. Furthermore, when they behave advantageously, their verbal reports nearly always reveal evidence of quantitative knowledge about the outcomes of the decks that would be sufficient to guide such advantageous behavior. In addition, there is evidence that participants also have access to more qualitative reportable knowledge. These results are compatible with the view that, in this task, both overt behavior and verbal reports reflect sampling from consciously accessible knowledge; there is no need to appeal to nonconscious somatic markers. We also discuss the findings of other studies that similarly suggest alternative interpretations of other evidence previously used to support a role for somatic markers in decision-making.

  19. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  20. Chromosome microduplication in somatic cells decreases the genetic stability of human reprogrammed somatic cells and results in pluripotent stem cells.

    PubMed

    Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie

    2015-05-12

    Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.

  1. Editorial: Emerging approaches for typing, detection, characterization, and traceback of Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Commensal E. coli inhabit the large intestines of humans and animals and are important in maintaining normal intestinal homeostasis. There are also many groups of disease-causing E. coli, including diarrheagenic and extra-intestinal pathogenic E. coli (ExPEC). There are approximately O188 somatic O...

  2. STABLE VARIANTS OF SPERM ANEUPLOIDY AMONG HEALTHY MEN SHOW ASSOCIATIONS BETWEEN GERMINAL AND SOMATIC ANEUPLOIDY

    EPA Science Inventory

    Abstract.

    Our objective was to identify men who consistently produced high frequencies of sperm with numerical chromosomal abnormalities (stable variants) and to determine whether healthy men with normal semen quality vary with respect to the incidence of sperm aneuploidy ...

  3. McCune-Albright syndrome: a detailed pathological and genetic analysis of disease effects in an adult patient.

    PubMed

    Vasilev, Vladimir; Daly, Adrian F; Thiry, Albert; Petrossians, Patrick; Fina, Frederic; Rostomyan, Liliya; Silvy, Monique; Enjalbert, Alain; Barlier, Anne; Beckers, Albert

    2014-10-01

    McCune Albright syndrome (MAS) is a clinical association of endocrine and nonendocrine anomalies caused by postzygotic mutation of the GNAS1 gene, leading to somatic activation of the stimulatory α-subunit of G protein (Gsα). Important advances have been made recently in describing pathological characteristics of many MAS-affected tissues, particularly pituitary, testicular, and adrenal disease. Other rarer disease related features are emerging. The objective of the investigation was to study the pathological and genetic findings of MAS on a tissue-by-tissue basis in classically and nonclassically affected tissues. This was a comprehensive autopsy and genetic analysis. The study was conducted at a tertiary referral university hospital. An adult male patient with MAS and severe disease burden including gigantism was the subject of the study. Interventions included clinical, hormonal, and radiographic studies and gross and microscopic pathology analyses, conventional PCR, and droplet digital PCR analyses of affected and nonaffected tissues. Pathological findings and the presence of GNAS1 mutations were measured. The patient was diagnosed with MAS syndrome at 6 years of age based on the association of café-au-lait spots and radiological signs of polyostotic fibrous dysplasia. Gigantism developed and hyperprolactinemia, hypogonadotropic hypogonadism, and hyperparathyroidism were diagnosed throughout the adult period. The patient died at the age of 39 years from a pulmonary embolism. A detailed study revealed mosaiscism for the p.R201C GNAS1 mutation distributed across many endocrine and nonendocrine tissues. These genetically implicated tissues included rare or previously undescribed disease associations including primary hyperparathyroidism and hyperplasia of the thymus and endocrine pancreas. This comprehensive pathological study of a single patient highlights the complex clinical profile of MAS and illustrates important advances in understanding the characteristics of somatic GNAS1-related pathology across a wide range of affected organs.

  4. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  5. Actionable mutations in canine hemangiosarcoma

    PubMed Central

    Wang, Guannan; Wu, Ming; Maloneyhuss, Martha A.; Wojcik, John; Durham, Amy C.; Mason, Nicola J.

    2017-01-01

    Background Angiosarcomas (AS) are rare in humans, but they are a deadly subtype of soft tissue sarcoma. Discovery sequencing in AS, especially the visceral form, is hampered by the rarity of cases. Most diagnostic material exists as archival formalin fixed, paraffin embedded tissue which serves as a poor source of high quality DNA for genome-wide sequencing. We approached this problem through comparative genomics. We hypothesized that exome sequencing a histologically similar tumor, hemangiosarcoma (HSA), that occurs in approximately 50,000 dogs per year, may lead to the identification of potential oncogenic drivers and druggable targets that could also occur in angiosarcoma. Methods Splenic hemangiosarcomas are common in dogs, which allowed us to collect a cohort of archived matched tumor and normal tissue samples suitable for whole exome sequencing. Mapping of the reads to the latest canine reference genome (Canfam3) demonstrated that >99% of the targeted exomal regions were covered, with >80% at 20X coverage and >90% at 10X coverage. Results and conclusions Sequence analysis of 20 samples identified somatic mutations in PIK3CA, TP53, PTEN, and PLCG1, all of which correspond to well-known tumor drivers in human cancer, in more than half of the cases. In one case, we identified a mutation in PLCG1 identical to a mutation observed previously in this gene in human visceral AS. Activating PIK3CA mutations present novel therapeutic targets, and clinical trials of targeted inhibitors are underway in human cancers. Our results lay a foundation for similar clinical trials in canine HSA, enabling a precision medicine approach to this disease. PMID:29190660

  6. Actionable mutations in canine hemangiosarcoma.

    PubMed

    Wang, Guannan; Wu, Ming; Maloneyhuss, Martha A; Wojcik, John; Durham, Amy C; Mason, Nicola J; Roth, David B

    2017-01-01

    Angiosarcomas (AS) are rare in humans, but they are a deadly subtype of soft tissue sarcoma. Discovery sequencing in AS, especially the visceral form, is hampered by the rarity of cases. Most diagnostic material exists as archival formalin fixed, paraffin embedded tissue which serves as a poor source of high quality DNA for genome-wide sequencing. We approached this problem through comparative genomics. We hypothesized that exome sequencing a histologically similar tumor, hemangiosarcoma (HSA), that occurs in approximately 50,000 dogs per year, may lead to the identification of potential oncogenic drivers and druggable targets that could also occur in angiosarcoma. Splenic hemangiosarcomas are common in dogs, which allowed us to collect a cohort of archived matched tumor and normal tissue samples suitable for whole exome sequencing. Mapping of the reads to the latest canine reference genome (Canfam3) demonstrated that >99% of the targeted exomal regions were covered, with >80% at 20X coverage and >90% at 10X coverage. Sequence analysis of 20 samples identified somatic mutations in PIK3CA, TP53, PTEN, and PLCG1, all of which correspond to well-known tumor drivers in human cancer, in more than half of the cases. In one case, we identified a mutation in PLCG1 identical to a mutation observed previously in this gene in human visceral AS. Activating PIK3CA mutations present novel therapeutic targets, and clinical trials of targeted inhibitors are underway in human cancers. Our results lay a foundation for similar clinical trials in canine HSA, enabling a precision medicine approach to this disease.

  7. Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets.

    PubMed

    Li, Jianxue; Imitola, Jaime; Snyder, Evan Y; Sidman, Richard L

    2006-07-26

    Neural stem cells (NSCs) offer special therapeutic prospects because they can be isolated from the CNS, expanded ex vivo, and re-implanted into diseased CNS where they not only migrate and differentiate according to cues from host tissue but also appear to be capable of affecting host cells. In nervous (nr) mutant mice Purkinje neuron (PN) mitochondria become abnormal by the second postnatal week, and a majority of PNs die in the fourth to fifth weeks. We previously identified in nr cerebellum a 10-fold increase in tissue plasminogen activator (tPA) as a key component of the mechanism causing nr PN death. Here we report that undifferentiated wild-type murine NSCs, when transplanted into the newborn nr cerebellar cortex, do not replace host PNs but contact imperiled PNs and support their mitochondrial function, dendritic growth, and synaptogenesis, subsequently leading to the rescue of host PNs and restoration of motor coordination. This protection of nr PNs also is verified by an in vitro organotypic slice model in which nr cerebellar slices are cocultured with NSCs. Most importantly, the integrated NSCs in young nr cerebellum rectify excessive tPA mRNA and protein to close to normal levels and protect the mitochondrial voltage-dependent anion channel and neurotrophins, downstream targets of the tPA/plasmin proteolytic system. This report demonstrates for the first time that NSCs can rescue imperiled host neurons by rectifying their gene expression, elevating somatic stem cell therapeutic potential beyond solely cell replacement strategy.

  8. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma.

    PubMed

    Srinivasainagendra, Vinodh; Sandel, Michael W; Singh, Bhupendra; Sundaresan, Aishwarya; Mooga, Ved P; Bajpai, Prachi; Tiwari, Hemant K; Singh, Keshav K

    2017-03-29

    Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer.

  9. Next-Generation Sequencing of Circulating Tumor DNA Reveals Frequent Alterations in Advanced Hepatocellular Carcinoma.

    PubMed

    Ikeda, Sadakatsu; Tsigelny, Igor F; Skjevik, Åge A; Kono, Yuko; Mendler, Michel; Kuo, Alexander; Sicklick, Jason K; Heestand, Gregory; Banks, Kimberly C; Talasaz, AmirAli; Lanman, Richard B; Lippman, Scott; Kurzrock, Razelle

    2018-05-01

    Because imaging has a high sensitivity to diagnose hepatocellular carcinoma (HCC) and tissue biopsies carry risks such as bleeding, the latter are often not performed in HCC. Blood-derived circulating tumor DNA (ctDNA) analysis can identify somatic alterations, but its utility has not been characterized in HCC. We evaluated 14 patients with advanced HCC (digital ctDNA sequencing [68 genes]). Mutant relative to wild-type allele fraction was calculated. All patients (100%) had somatic alterations (median = 3 alterations/patient [range, 1-8]); median mutant allele fraction, 0.29% (range, 0.1%-37.77%). Mutations were identified in several genes: TP53 (57% of patients), CTNNB1 (29%), PTEN (7%), CDKN2A (7%), ARID1A (7%), and MET (7%); amplifications, in CDK6 (14%), EGFR (14%), MYC (14%), BRAF (7%), RAF1 (7%), FGFR1 (7%), CCNE1 (7%), PIK3CA (7%), and ERBB2/HER2 (7%). Eleven patients (79%) had ≥1 theoretically actionable alteration. No two patients had identical genomic portfolios, suggesting the need for customized treatment. A patient with a CDKN2A -inactivating and a CTNNB1 -activating mutation received matched treatment: palbociclib (CDK4/6 inhibitor) and celecoxib (COX-2/Wnt inhibitor); des-gamma-carboxy prothrombin level decreased by 84% at 2 months (1,410 to 242 ng/mL [normal: ≤7.4 ng/mL]; alpha fetoprotein [AFP] low at baseline). A patient with a PTEN -inactivating and a MET -activating mutation (an effect suggested by in silico molecular dynamic simulations) received sirolimus (mechanistic target of rapamycin inhibitor) and cabozantinib (MET inhibitor); AFP declined by 63% (8,320 to 3,045 ng/mL [normal: 0-15 ng/mL]). ctDNA derived from noninvasive blood tests can provide exploitable genomic profiles in patients with HCC. This study reports that blood-derived circulating tumor DNA can provide therapeutically exploitable genomic profiles in hepatocellular cancer, a malignancy that is known to be difficult to biopsy. © AlphaMed Press 2018.

  10. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors.

    PubMed

    Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V

    2018-05-22

    Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.

  11. Somatic KRAS mutation in an infant with linear nevus sebaceous syndrome associated with lymphatic malformations: A case report and literature review.

    PubMed

    Lihua, Jiang; Feng, Gao; Shanshan, Mao; Jialu, Xu; Kewen, Jiang

    2017-11-01

    Linear nevus sebaceous syndrome (LNSS) is a rare neurocutaneous syndrome, characterized by nevus sebaceous,central nervous system (CNS), ocular and skeletal abnormalities. The present study describes KRAS somatic mosaic mutation in a case of LNSS with lymphatic malformations (LMs). A 4-month-old female with a clinical diagnosis of LNSS presented with infantile spasms, mental retardation, skull dysplasia, ocular abnormalities, congenital atrial septal defect, and LMs. Cervical ultrasonography revealed a 4.6 × 4.6 × 2.2cm no echo packet with clear boundary in the subcutaneous tissues of the right neck. The neck MRI indicated a cyst in the subcutaneous tissues of the right neck. Whole-exome sequencing revealed a low-level heterozygous mutation of the KRAS gene (c.35C > T; p.G12D, 19%) in the skin lesion sample. This mutation was not present in the blood samples of the patient and her parents. The patient received sclerotherapy with paicibanil (OK-432) injection for the cyst. Following 1 year of treatment, the patient exhibited fewer seizures. The mental and motor development was significantly improved. The patient can currently walk with assistance and speak simple words. LNSS is a rare, congenital neurocutaneous syndrome consisting of a spectrum of abnormalities involving the skin, central nervous system, eyes, LMs and other systems. LNSS can be caused by postzygotic somatic mutation in the RAS family of genes. Multidisciplinary evaluation and treatment is needed. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics.

    PubMed

    Sarosiek, Kristopher A; Fraser, Cameron; Muthalagu, Nathiya; Bhola, Patrick D; Chang, Weiting; McBrayer, Samuel K; Cantlon, Adam; Fisch, Sudeshna; Golomb-Mello, Gail; Ryan, Jeremy A; Deng, Jing; Jian, Brian; Corbett, Chris; Goldenberg, Marti; Madsen, Joseph R; Liao, Ronglih; Walsh, Dominic; Sedivy, John; Murphy, Daniel J; Carrasco, Daniel Ruben; Robinson, Shenandoah; Moslehi, Javid; Letai, Anthony

    2017-01-09

    It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 profiling, we find that mitochondria of many adult somatic tissues, including brain, heart, and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Disease correction by AAV-mediated gene therapy in a new mouse model of mucopolysaccharidosis type IIID.

    PubMed

    Roca, Carles; Motas, Sandra; Marcó, Sara; Ribera, Albert; Sánchez, Víctor; Sánchez, Xavier; Bertolin, Joan; León, Xavier; Pérez, Jennifer; Garcia, Miguel; Villacampa, Pilar; Ruberte, Jesús; Pujol, Anna; Haurigot, Virginia; Bosch, Fatima

    2017-04-15

    Gene therapy is a promising therapeutic alternative for Lysosomal Storage Disorders (LSD), as it is not necessary to correct the genetic defect in all cells of an organ to achieve therapeutically significant levels of enzyme in body fluids, from which non-transduced cells can uptake the protein correcting their enzymatic deficiency. Animal models are instrumental in the development of new treatments for LSD. Here we report the generation of the first mouse model of the LSD Muccopolysaccharidosis Type IIID (MPSIIID), also known as Sanfilippo syndrome type D. This autosomic recessive, heparan sulphate storage disease is caused by deficiency in N-acetylglucosamine 6-sulfatase (GNS). Mice deficient in GNS showed lysosomal storage pathology and loss of lysosomal homeostasis in the CNS and peripheral tissues, chronic widespread neuroinflammation, reduced locomotor and exploratory activity and shortened lifespan, a phenotype that closely resembled human MPSIIID. Moreover, treatment of the GNS-deficient animals with GNS-encoding adeno-associated viral (AAV) vectors of serotype 9 delivered to the cerebrospinal fluid completely corrected pathological storage, improved lysosomal functionality in the CNS and somatic tissues, resolved neuroinflammation, restored normal behaviour and extended lifespan of treated mice. Hence, this work represents the first step towards the development of a treatment for MPSIIID. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Engineered LINE-1 retrotransposition in nondividing human neurons.

    PubMed

    Macia, Angela; Widmann, Thomas J; Heras, Sara R; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R; Goodier, John L; Garcia-Perez, Jose L

    2017-03-01

    Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. © 2017 Macia et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Somatic mosaicism in plants with special reference to somatic crossing over

    PubMed Central

    Vig, Baldev K.

    1978-01-01

    Plant systems in use for the detection of environmental mutagens appear capable of detecting all types of genetic effects which can be studied in animals. The study of somatic mosaicism, however, is better developed in plants than in higher animals. A case is presented here which shows the ability of plant systems in analyzing a host of genetic end points, including chromosome aberrations like deletions, somatic crossing over, numerical inequality, gene conversion, paramutations and point mutations. The systems in general use utilize certain varieties of Tradescantia, Glycine max, Nicotiana tabacum, Antirrhinum majus, Petunia hybrida, and Arabidopsis thaliana. Heterozygous plants or their homozygous counterparts with gene markers affecting chlorophyll development or anthocyanin in floral parts are exploited in these studies. Mutagens produce different frequencies of different types of spots typical of the mode of action of the agent. Analysis of these parameters may be used to predict, at least qualitatively, the kind of genetic damage that might be produced in man. Besides, one can test the validity of interpretation by traditional progeny tests of plants raised from tissue culture from sectors as in Nicotiana and/or by precursor analysis as done in Antirrhinum. The study of mosaicism in plants offers quite inexpensive, rapid, and reliable tests of mutagenicity at least as a preliminary eukaryotic test system. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 9. PMID:367771

  16. Associations between depression and different measures of obesity (BMI, WC, WHtR, WHR).

    PubMed

    Wiltink, Jörg; Michal, Matthias; Wild, Philipp S; Zwiener, Isabella; Blettner, Maria; Münzel, Thomas; Schulz, Andreas; Kirschner, Yvonne; Beutel, Manfred E

    2013-09-12

    Growing evidence suggests that abdominal obesity is a more important risk factor for the prognosis of cardiovascular and metabolic diseases than BMI. Somatic-affective symptoms of depression have also been linked to cardiovascular risk. The relationship between obesity and depression, however, has remained contradictory. Our aim was therefore to relate body mass index (BMI) and different measures for abdominal obesity (waist circumference, WC, waist-to-hip ratio, WHR, waist-to-height ratio, WHtR) to somatic vs. cognitive-affective symptoms of depression. In a cross-sectional population based study, data on the first N = 5000 participants enrolled in the Gutenberg Health Study (GHS) are reported. To analyze the relationship between depression and obesity, we computed linear regression models with the anthropometric measure (BMI, WC, WHR, WHtR) as the dependent variable and life style factors, cardiovascular risk factors and psychotropic medications as potential confounders of obesity/depression. We found that only the somatic, but not the cognitive-affective symptoms of depression are consistently positively associated with anthropometric measures of obesity. We could demonstrate that the somatic-affective symptoms of depression rather than the cognitive-affective symptoms are strongly related to anthropometric measures. This is also true for younger obese starting at the age of 35 years. Our results are in line with previous studies indicating that visceral adipose tissue plays a key role in the relationship between obesity, depression and cardiovascular disease.

  17. Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva

    Treesearch

    M. E. Ostry; K. T. Ward

    2003-01-01

    Over 1500 trees from two hybrid poplar clones regenerated from tissue culture and expressing somatic variation in leaf disease resistance in a laboratory leaf disk bioassay were field-tested for 5-11 years to examine their resistance to Septoria leaf spot and canker and to assess their growth characteristics compared with the source clones....

  18. Somatic embryogenesis tissue culture for applying varietal forestry to conifer species

    Treesearch

    Steven C. Grossnickle; John Pait

    2008-01-01

    The use of tree improvement practices to enhance the genetic characteristics of planted seedlings is a forestry practice that consistently shows a high return on investment by increasing yields obtained from planted forests. The use of improved seeds is an effective way of bringing genetic improvement to forest regeneration programs. Seed orchards are currently used to...

  19. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor.

    PubMed

    Florez, Sergio L; Erwin, Rachel L; Maximova, Siela N; Guiltinan, Mark J; Curtis, Wayne R

    2015-05-16

    Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which similarly requires somatic cell reprogramming.

  20. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    PubMed

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  1. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    PubMed

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  2. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development

    PubMed Central

    2014-01-01

    Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421

  3. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis

    PubMed Central

    Huang, Jian; Zhang, Tianyu; Linstroth, Lisa; Tillman, Zachary; Otegui, Marisa S.; Owen, Heather A.

    2016-01-01

    A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells) and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1) is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat) domain of the EMS1 (EXCESS MICROSPOROCYTES1) receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction. PMID:27537183

  4. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    PubMed

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  5. Massive expression of germ cell-specific genes is a hallmark of cancer and a potential target for novel treatment development.

    PubMed

    Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert

    2018-06-15

    Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.

  6. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  7. Properties of body composition of female representatives of the Polish national fencing team - the sabre event.

    PubMed

    Jagiełło, Władysław; Marina, Jagiełło; Maciej, Kalina Roman; Jan, Barczyński Bartłomiej; Artur, Litwiniuk; Jarosław, Klimczak

    2017-12-01

    Fencing is a combat sport whose form of direct confrontation involves hitting the opponent with a weapon. The purpose of the study was to determine the properties of body composition of female representatives of the Polish national fencing team. The study involved 11 female athletes of the Polish national fencing team. Their age was 16-22 years (19±2.32), body weight 52-78 kg (59.7±7.4), body height 158-183 cm (167.46±6.10) and the training experience 7.64±3.47 years. The reference group consisted of 153 students of Warsaw University of Technology (Poland). Twenty basic somatic characteristics were measured. The following indices were calculated: slenderness, Rohrer's, BMI, Manouvrier's, and pelvic-shoulder indices. Density of the body, total body fat, active tissue, the overall profile of body composition and internal proportions of the body were determined. Analysis of internal proportions of factors of the athletes' body composition revealed significant differences in particular groups of features. The total size of the athletes' bodies is due to less-than-average magnitude of the length and stoutness characteristics and a high magnitude of adiposity (M = 0.63) in the Polish female national team of fencers (sabre) calculated from the normalized values for the control group. The proportions of features within the analysed factors revealed a significant advantage of the length of the upper extremity over the lower one and a distinct advantage of forearm musculature. The specific profile of body composition of female athletes practising sabre fencing is most likely due to long-term effects of training as well as the system of selection of persons with specific somatic prerequisites developed in the course of many years of training practice.

  8. A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells.

    PubMed

    Geti, Imbisaat; Ormiston, Mark L; Rouhani, Foad; Toshner, Mark; Movassagh, Mehregan; Nichols, Jennifer; Mansfield, William; Southwood, Mark; Bradley, Allan; Rana, Amer Ahmed; Vallier, Ludovic; Morrell, Nicholas W

    2012-12-01

    Induced pluripotent stem cells (iPSCs) have the potential to generate patient-specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late-outgrowth endothelial progenitor cells (L-EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L-EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof-of-principle for clinical applications we generated EPC-iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L-EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L-EPC reprogramming allowed for the reliable generation of iPSCs in a 96-well format, which is compatible with high-throughput platforms. Array comparative genome hybridization analysis of L-EPCs versus donor-matched circulating monocytes demonstrated that L-EPCs have normal karyotypes compared with their subject's reference genome. In addition, >80% of EPC-iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L-EPC line. This work identifies L-EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.

  9. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    PubMed

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  10. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation

    PubMed Central

    Reddy, Jay P.; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M.; Donehower, Larry A.; Li, Yi

    2010-01-01

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention. PMID:20133707

  11. Germline mosaicism of PHOX2B mutation accounts for familial recurrence of congenital central hypoventilation syndrome (CCHS).

    PubMed

    Rand, Casey M; Yu, Min; Jennings, Lawrence J; Panesar, Kelvin; Berry-Kravis, Elizabeth M; Zhou, Lili; Weese-Mayer, Debra E

    2012-09-01

    Congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by alveolar hypoventilation and autonomic dysregulation, is caused by mutations in the PHOX2B gene. Most mutations occur de novo, but recent evidence suggests that up to 25% are inherited from asymptomatic parents with somatic mosaicism for these mutations. However, to date, germline mosaicism has not been reported. This report describes a family with recurrence of PHOX2B mutation-confirmed CCHS due to germline mosaicism. The first occurrence was a baby girl, noted on day 2 of life to have multiple episodes of apnea, bradycardia, and cyanosis while breathing room air. PHOX2B gene testing confirmed the diagnosis of CCHS with a heterozygous polyalanine repeat expansion mutation (PARM); genotype 20/27 (normal 20/20). Both parents tested negative for this mutation using fragment analysis (limit of detection<1%). Upon subsequent pregnancy [paternity confirmed using short tandem repeat (STR) analysis], amniocentesis testing identified the PHOX2B 20/27 genotype, confirmed with repeat testing. Elective abortion was performed at 21.5 weeks gestation. Testing of abortus tissue confirmed amniocentesis testing. The PHOX2B 20/27 expansion was not observed in a paternal sperm sample. This case represents the first reported family with recurrence of PHOX2B mutation-confirmed CCHS without detection of a parental carrier state or mosaicism, confirming the previously hypothesized possibility of germline mosaicism for PHOX2B mutations. This is an important finding for genetic counseling of CCHS families, suggesting that even if somatic mosaicism is not detected in parental samples, there is still reason for careful genetic counseling and consideration of prenatal testing during subsequent pregnancies. Copyright © 2012 Wiley Periodicals, Inc.

  12. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers.

    PubMed

    Singh, Garima; Roy, Jyoti; Rout, Pratiti; Mallick, Bibekanand

    2018-01-01

    PIWI-interacting (piRNAs), ~23-36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).

  13. Evaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter

    PubMed Central

    Shinzato, Amanda; Lerario, Antonio M.; Lin, Chin J.; Danilovic, Debora S.; Marui, Suemi; Trarbach, Ericka B.

    2015-01-01

    Background DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). Material/Methods DNA and RNA samples were obtained from hyperplastic thyroid glands of 60 patients (54 females) with benign MNG. DREAM mutations were evaluated by PCR and direct automatic sequencing, whereas relative quantification of mRNA was performed by real-time PCR. Over- and under-expression were defined as a 2-fold increase and decrease in comparison to normal thyroid tissue, respectively. RQ M (relative quantification mean); SD (standard deviation). Results DREAM expression was detected in all nodules evaluated. DREAM mRNA was overexpressed in 31.7% of MNG (RQ M=6.26; SD=5.08), whereas 53.3% and 15% had either normal (RQ M=1.16; SD=0.46) or underexpression (RQ M=0.30; SD=0.10), respectively. Regarding DREAM mutations analysis, only previously described intronic polymorphisms were observed. Conclusions We report DREAM gene expression in the hyperplastic thyroid gland of MNG patients. However, DREAM expression did not vary significantly, and was somewhat underexpressed in most patients, suggesting that DREAM upregulation does not significantly affect nodular development in human goiter. PMID:26319784

  14. Molecular Characterization of Colorectal Signet-Ring Cell Carcinoma Using Whole-Exome and RNA Sequencing.

    PubMed

    Nam, Jae-Yong; Oh, Bo Young; Hong, Hye Kyung; Bae, Joon Seol; Kim, Tae Won; Ha, Sang Yun; Park, Donghyun; Lee, Woo Yong; Kim, Hee Cheol; Yun, Seong Hyeon; Park, Yoon Ah; Joung, Je-Gun; Park, Woong-Yang; Cho, Yong Beom

    2018-05-07

    Signet-ring cell carcinoma (SRCC) is a very rare subtype of colorectal adenocarcinoma (COAD) with a poor clinical prognosis. Although understanding key mechanisms of tumor progression in SRCCs is critical for precise treatment, a comprehensive view of genomic alterations is lacking. We performed whole-exome sequencing of tumors and matched normal blood as well as RNA sequencing of tumors and matched normal colonic tissues from five patients with SRCC. We identified major somatic alterations and characterized transcriptional changes at the gene and pathway level. Based on high-throughput sequencing, the pattern of mutations and copy number variations was overall similar to that of COAD. Transcriptome analysis revealed that major transcription factors, such as SRF, HNF4A, ZEB1, and RUNX1, with potential regulatory roles in key pathways, including focal adhesion, the PI3K-Akt signaling pathway, and the MAPK signaling pathway, may play a role in the tumorigenesis of SRCC. Furthermore, significantly upregulated genes in SRCCs were enriched for epithelial-mesenchymal transition genes, and accumulation of mucin in intracytoplasm was associated with the overexpression of MUC2. The results indicate that the molecular basis of colorectal SRCC exhibits key differences from that of consensus COAD. Our findings clarify important genetic features of particular abnormalities in SRCCs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    PubMed Central

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans. PMID:19878575

  16. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  17. Predicting Sensitivity of Breast Tumors to Src-targeted Therapies Through Assessment of Cas/Src/BCAR3 Activity

    DTIC Science & Technology

    2017-10-01

    expression is elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and DCIS... compared to IDC. (2) BCAR3 is significantly upregulated in triple negative breast cancer and normal tissue; (3) BCAR3 expression shows a modest...expression was seen to be elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and

  18. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche

    PubMed Central

    Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

  19. Further Confirmation of Germline Glioma Risk Variant rs78378222 in TP53 and Its Implication in Tumor Tissues via Integrative Analysis of TCGA Data

    PubMed Central

    Wang, Zhaoming; Rajaraman, Preetha; Melin, Beatrice S.; Chung, Charles C.; Zhang, Weijia; McKean-Cowdin, Roberta; Michaud, Dominique; Yeager, Meredith; Ahlbom, Anders; Albanes, Demetrius; Andersson, Ulrika; Beane Freeman, Laura E.; Buring, Julie E.; Butler, Mary Ann; Carreón, Tania; Feychting, Maria; Gapstur, Susan M.; Gaziano, J. Michael; Giles, Graham G.; Hallmans, Goran; Henriksson, Roger; Hoffman-Bolton, Judith; Inskip, Peter D.; Kitahara, Cari M.; Le Marchand, Loic; Linet, Martha S.; Li, Shengchao; Peters, Ulrike; Purdue, Mark P.; Rothman, Nathaniel; Ruder, Avima M.; Sesso, Howard D.; Severi, Gianluca; Stampfer, Meir; Stevens, Victoria L.; Visvanathan, Kala; Wang, Sophia S.; White, Emily; Zeleniuch-Jacquotte, Anne; Hoover, Robert; Fraumeni, Joseph F.; Chatterjee, Nilanjan; Hartge, Patricia; Chanock, Stephen J.

    2016-01-01

    We confirmed strong association of rs78378222:A>C (per allele odds ratio [OR] = 3.14; P = 6.48 × 10−11), a germline rare single-nucleotide polymorphism (SNP) in TP53, via imputation of a genome-wide association study of glioma (1,856 cases and 4,955 controls). We subsequently performed integrative analyses on the Cancer Genome Atlas (TCGA) data for GBM (glioblastoma multiforme) and LUAD (lung adenocarcinoma). Based on SNP data, we imputed genotypes for rs78378222 and selected individuals carrying rare risk allele (C). Using RNA sequencing data, we observed aberrant transcripts with ~3 kb longer than normal for those individuals. Using exome sequencing data, we further showed that loss of haplotype carrying common protective allele (A) occurred somatically in GBM but not in LUAD. Our bioinformatic analysis suggests rare risk allele (C) disrupts mRNA termination, and an allelic loss of a genomic region harboring common protective allele (A) occurs during tumor initiation or progression for glioma. PMID:25907361

  20. Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction

    PubMed Central

    Guerrero-Bosagna, Carlos M.; Skinner, Michael K.

    2013-01-01

    Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype. PMID:19711250

  1. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment.

    PubMed

    Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran

    2018-06-20

    Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.

  2. Expression and functional analysis of menin in a multiple endocrine neoplasia type 1 (MEN1) patient with somatic loss of heterozygosity in chromosome 11q13 and unidentified germline mutation of the MEN1 gene.

    PubMed

    Naito, Junko; Kaji, Hiroshi; Sowa, Hideaki; Kitazawa, Riko; Kitazawa, Sohei; Tsukada, Toshihiko; Hendy, Geoffrey N; Sugimoto, Toshitsugu; Chihara, Kazuo

    2006-06-01

    In some patients with multiple endocrine neoplasia type 1 (MEN1) it is not possible to identify a germline mutation in the MEN1 gene. We sought to document the loss of expression and function of the MEN1 gene product, menin, in the tumors of such a patient. The proband is an elderly female patient with primary hyperparathyroidism, pancreatic islet tumor, and breast cancer. Her son has primary hyperparathyroidism. No germline MEN1 mutation was identified in the proband or her son. However, loss of heterozygosity at the MEN1 locus and complete lack of menin expression were demonstrated in the proband's tumor tissue. The proband's cultured parathyroid cells lacked the normal reduction in proliferation and parathyroid hormone secretion in response to transforming growth factor- beta. This assessment provided insight into the molecular pathogenesis of the patient and provides evidence for a critical requirement for menin in the antiproliferative action of transforming growth factor-beta.

  3. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    PubMed

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  4. The effects of intrathecal midazolam on sympathetic nervous system reflexes in man--a pilot study.

    PubMed Central

    Goodchild, C S; Noble, J

    1987-01-01

    Nine patients were given intrathecal injections of midazolam (dose 0.3-2 mg dissolved in 3 ml 5% dextrose). No changes in motor power or general sensation were produced. Resting heart rate and blood pressure were unchanged and normal valsalva manoeuvres were elicited 30 min post-injection. Cardiovascular responses were provoked at a light plane of anaesthesia by intubation of the trachea and manipulation of peritoneum and bowel but not by surgical incision of the skin. Intrathecal administration of midazolam relieved post-operative pain of somatic origin but not of visceral origin. It is concluded that intrathecal midazolam in the dosage used interrupts somatic nociceptive afferent pathways but not abdominal visceral nociceptive afferent pathways. PMID:3567043

  5. Induction of pluripotent stem cells from fibroblast cultures.

    PubMed

    Takahashi, Kazutoshi; Okita, Keisuke; Nakagawa, Masato; Yamanaka, Shinya

    2007-01-01

    Clinical application of embryonic stem (ES) cells faces difficulties regarding use of embryos, as well as tissue rejection after implantation. One way to circumvent these issues is to generate pluripotent stem cells directly from somatic cells. Somatic cells can be reprogrammed to an embryonic-like state by the injection of a nucleus into an enucleated oocyte or by fusion with ES cells. However, little is known about the mechanisms underlying these processes. We have recently shown that the combination of four transcription factors can generate ES-like pluripotent stem cells directly from mouse fibroblast cultures. The cells, named induced pluripotent stem (iPS) cells, can be differentiated into three germ layers and committed to chimeric mice. Here we describe detailed methods and tips for the generation of iPS cells.

  6. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression

    PubMed Central

    Merrill, Liana; Malley, Susan

    2013-01-01

    Stress exacerbates symptoms of functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) in humans, but mechanisms contributing to symptom worsening are unknown. These studies address stress-induced changes in the structure and function of the micturition reflex using an animal model of stress in male rats. Rats were exposed to 7 days of repeated variate stress (RVS). Target organ (urinary bladder, thymus, adrenal gland) tissues were collected and weighed following RVS. Evans blue (EB) concentration and histamine, myeloperoxidase (MPO), nerve growth factor (NGF), brain-derived neurotropic factor (BDNF), and CXCL12 protein content (ELISA) were measured in the urinary bladder, and somatic sensitivity of the hindpaw and pelvic regions was determined following RVS. Bladder function was evaluated using continuous, open outlet intravesical infusion of saline in conscious rats. Increases in body weight gain were significantly (P ≤ 0.01) attenuated by day 5 of RVS, and adrenal weight was significantly (P ≤ 0.05) increased. Histamine, MPO, NGF, and CXCL12 protein expression was significantly (P ≤ 0.01) increased in the urinary bladder after RVS. Somatic sensitivity of the hindpaw and pelvic regions was significantly (P ≤ 0.01) increased at all monofilament forces tested (0.1–4 g) after RVS. Intercontraction interval, infused volume, and void volume were significantly (P ≤ 0.01) decreased after RVS. These studies demonstrate increased voiding frequency, histamine, MPO, NGF, and CXCL12 bladder content and somatic sensitivity after RVS suggesting an inflammatory component to stress-induced changes in bladder function and somatic sensitivity. PMID:23657640

  7. Assessment of Brain Derived Neurotrophic Factor in hair to study stress responses: A pilot investigation.

    PubMed

    Harb, H; González-de-la-Vara, M; Thalheimer, L; Klein, U; Renz, H; Rose, M; Kruse, J; Potaczek, D P; Peters, E M J

    2017-12-01

    To study pathogenic stress-effects in health and disease, it is paramount to define easy access parameters for non-invasive analysis of biological change in response to stress. Hair samples successfully provide this access for the study of hypothalamus-pituitary-adrenal axis (HPA) changes. In this study, we assess the hair expression and corresponding epigenetic changes of a neurotrophin essential for autonomic nervous system function and mental health: brain derived neurotrophic factor (BDNF). In three independent studies in healthy academic volunteers (study I: German students, N=36; study II, German academic population sample, N=28; study III: Mexican students, N=115), BDNF protein expression or BDNF gene (BDNF) histone acetylation was determined. Simultaneously, mental distress and distress-associated somatic complaints were assessed by self-report. In study I, we found a negative correlation between hair-BDNF protein level and hair-cortisol as well as between hair-BDNF and somatic complaints, while hair-cortisol correlated positively with mental distress. In study II, we found a negative correlation between H4 histone acetylation at the BDNF gene P4-promoter and somatic complaints. Regression analysis confirmed confounder stability of associations in both studies. In study III, we confirmed study I and found lower hair-BDNF protein level in volunteers with high somatic complaints, who also reported higher mental distress during the end of term exams. The results indicate that BDNF protein levels can be detected in clipped hair and are associated with somatic complaints and stress in life. In addition, we concluded that plucked hair can provide material for the study of epigenetic changes in stress-affected tissues. These tools can prove valuable for future studies on distress, both under experimental and field conditions. Copyright © 2017. Published by Elsevier Ltd.

  8. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  9. Promise of periodontal ligament stem cells in regeneration of periodontium.

    PubMed

    Maeda, Hidefumi; Tomokiyo, Atsushi; Fujii, Shinsuke; Wada, Naohisa; Akamine, Akifumi

    2011-07-28

    A great number of patients around the world experience tooth loss that is attributed to irretrievable damage of the periodontium caused by deep caries, severe periodontal diseases or irreversible trauma. The periodontium is a complex tissue composed mainly of two soft tissues and two hard tissues; the former includes the periodontal ligament (PDL) tissue and gingival tissue, and the latter includes alveolar bone and cementum covering the tooth root. Tissue engineering techniques are therefore required for regeneration of these tissues. In particular, PDL is a dynamic connective tissue that is subjected to continual adaptation to maintain tissue size and width, as well as structural integrity, including ligament fibers and bone modeling. PDL tissue is central in the periodontium to retain the tooth in the bone socket, and is currently recognized to include somatic mesenchymal stem cells that could reconstruct the periodontium. However, successful treatment using these stem cells to regenerate the periodontium efficiently has not yet been developed. In the present article, we discuss the contemporary standpoints and approaches for these stem cells in the field of regenerative medicine in dentistry.

  10. A somatic marker perspective of immoral and corrupt behavior.

    PubMed

    Sobhani, Mona; Bechara, Antoine

    2011-01-01

    Individuals who engage in corrupt and immoral behavior are in some ways similar to individuals with psychopathy. Normal people refrain from engaging in such behaviors because they tie together the moral value of society and the risk of punishment when they violate social rules. What is it, then, that allows these immoral individuals to behave in this manner, and in some situations even to prosper? When there is a dysfunction of somatic markers, specific disadvantageous impairments in decision-making arise, as in moral judgment, but, paradoxically, under some circumstances, the damage can cause the patient to make optimal financial investment decisions. Interestingly, individuals with psychopathy, a personality disorder, share many of the same behavioral characteristics seen in VMPFC and amygdala lesion patients, suggesting that defective somatic markers may serve as a neural framework for explaining immoral and corrupt behaviors. While these sociopathic behaviors of sometimes famous and powerful individuals have long been discussed, primarily within the realm of social science and psychology, here we offer a neurocognitive perspective on the possible neural roots of immoral and corrupt behaviors.

  11. A Somatic Marker Perspective of Immoral and Corrupt Behavior

    PubMed Central

    Sobhani, Mona; Bechara, Antoine

    2012-01-01

    Individuals who engage in corrupt and immoral behavior are in some ways similar to psychopaths. Normal people refrain from engaging in such behaviors because they tie together the moral value of society and the risk for punishment when they violate social rules. What is it, then, that allows these immoral individuals to behave in this manner, and in some situations to even prosper? When there is a dysfunction of somatic markers, specific disadvantageous impairments in decision-making arise, for example in moral judgment, but paradoxically, under some circumstances, the damage can cause the patient to make optimal financial investment decisions. Interestingly, individuals with psychopathy, a personality disorder, share many of these same behavioral characteristics as those seen in VMPFC and amygdala lesion patients, suggesting that defective somatic markers may serve as a neural framework for explaining immoral and corrupt behaviors. While these sociopathic behaviors of sometimes famous and powerful individuals have long been discussed primarily within the realm of social science and psychology, here we offer a neurocognitive perspective on possible neural roots for immoral and corrupt behaviors. PMID:21919563

  12. Cytoplasmic RNA Granules in Somatic Maintenance.

    PubMed

    Moujaber, Ossama; Stochaj, Ursula

    2018-05-30

    Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various RNA granules. RNA granules in plants and pathogens are briefly described. We conclude our viewpoint by summarizing the emerging concepts for RNA granule biology and the open questions that need to be addressed in future studies. © 2018 S. Karger AG, Basel.

  13. Tissue engineering and cell-based therapy toward integrated strategy with artificial organs.

    PubMed

    Gojo, Satoshi; Toyoda, Masashi; Umezawa, Akihiro

    2011-09-01

    Research in order that artificial organs can supplement or completely replace the functions of impaired or damaged tissues and internal organs has been underway for many years. The recent clinical development of implantable left ventricular assist devices has revolutionized the treatment of patients with heart failure. The emerging field of regenerative medicine, which uses human cells and tissues to regenerate internal organs, is now advancing from basic and clinical research to clinical application. In this review, we focus on the novel biomaterials, i.e., fusion protein, and approaches such as three-dimensional and whole-organ tissue engineering. We also compare induced pluripotent stem cells, directly reprogrammed cardiomyocytes, and somatic stem cells for cell source of future cell-based therapy. Integrated strategy of artificial organ and tissue engineering/regenerative medicine should give rise to a new era of medical treatment to organ failure.

  14. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies.

    PubMed

    Kirkton, Robert D; Bursac, Nenad

    2011-01-01

    Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.

  15. Bacteria-Human Somatic Cell Lateral Gene Transfer Is Enriched in Cancer Samples

    PubMed Central

    Robinson, Kelly M.; White, James Robert; Ganesan, Ashwinkumar; Nourbakhsh, Syrus; Dunning Hotopp, Julie C.

    2013-01-01

    There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5′-UTR and 3′-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome. PMID:23840181

  16. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud.

  17. Inherited Disorders as a Risk Factor and Predictor of Neurodevelopmental Outcome in Pediatric Cancer

    ERIC Educational Resources Information Center

    Ullrich, Nicole J.

    2008-01-01

    Each year in the United States, an average of one to two children per 10,000 develop cancer. The etiology of most childhood cancer remains largely unknown but is likely attributable to random or induced genetic aberrations in somatic tissue. However, a subset of children develops cancer in the setting of an underlying inheritable condition…

  18. Sexual difference in PCB concentrations of lake trout (Salvelinus namaycush) from Lake Ontario

    USGS Publications Warehouse

    Madenjian, Charles P.; Keir, Michael J.; Whittle, D. Michael; Noguchi, George E.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 61 female lake trout (Salvelinus namaycush) and 71 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). To estimate the expected change in PCB concentration due to spawning, PCB concentrations in gonads and in somatic tissue of lake trout were also determined. In addition, bioenergetics modeling was applied to investigate whether gross growth efficiency (GGE) differed between the sexes. Results showed that, on average, males were 22% higher in PCB concentration than females in Lake Ontario. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 3% and 14% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in male lake trout. According to the bioenergetics modeling results, GGE of males was about 2% higher than adult female GGE, on average. Thus, bioenergetics modeling could not explain the higher PCB concentrations exhibited by the males. Nevertheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations of the lake trout.

  19. Sexual difference in PCB concentrations of walleyes (Sander vitreus) from a pristine lake

    USGS Publications Warehouse

    Madenjian, C.P.; Hanchin, P.A.; Chernyak, S.M.; Begnoche, L.J.

    2009-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 15 adult female walleyes (Sander vitreus) and 15 adult male walleyes from South Manistique Lake (Michigan, United States), a relatively pristine lake with no point source inputs of PCBs. By measuring PCB concentration in gonads and in somatic tissue of the South Manistique Lake fish, we also estimated the expected change in PCB concentration due to spawning for both sexes. To determine whether gross growth efficiency differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, adult males were 34% higher in PCB concentration than adult females in South Manistique Lake. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 1% and 5% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in adult male walleyes. Bioenergetics modeling results indicated that the sexual difference in PCB concentrations of South Manistique Lake walleyes was attributable, at least in part, to a sexual difference in gross growth efficiency (GGE). Adult female GGE was estimated to be up to 17% greater than adult male GGE.

  20. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

    PubMed

    Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A

    2011-06-30

    Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

Top