Superconductivity driven by pairing of the coherent parts of the physical electrons
NASA Astrophysics Data System (ADS)
Su, Yuehua; Zhang, Chao
2018-03-01
How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.
Quantum Critical Quasiparticle Scattering within the Superconducting State of CeCoIn_{5}.
Paglione, Johnpierre; Tanatar, M A; Reid, J-Ph; Shakeripour, H; Petrovic, C; Taillefer, Louis
2016-07-01
The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.
Normal state of metallic hydrogen sulfide
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.
2017-02-01
A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.
Quantum critical quasiparticle scattering within the superconducting state of CeCoIn 5
Paglione, Johnpierre; Tanatar, M. A.; Reid, J.-Ph.; ...
2016-06-27
Here, the thermal conductivity κ of the heavy-fermion metal CeCoIn 5 was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H c2, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution ofmore » κ/T with field reveals that the electron-electron scattering (or transport mass m*) of those unpaired electrons diverges as H→H c2 from below, in the same way that it does in the normal state as H→H c2 from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn 5 at H*=H c2 even from inside the superconducting state. In conclusion, the fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.« less
NASA Astrophysics Data System (ADS)
Thomas, Phillip S.; Chhantyal-Pun, Rabi; Kline, Neal D.; Miller, Terry A.
2010-03-01
The ÖX˜ electronic absorption spectrum of vinoxy radical has been investigated using room temperature cavity ringdown spectroscopy. Analysis of the observed bands on the basis of computed vibrational frequencies and rotational envelopes reveals that two distinct types of features are present with comparable intensities. The first type corresponds to "normal" allowed electronic transitions to the origin and symmetric vibrations in the à state. The second type is interpreted in terms of excitations to asymmetric à state vibrations, which are only vibronically allowed by Herzberg-Teller coupling to the B˜ state. Results of electronic structure calculations indicate that the magnitude of the Herzberg-Teller coupling is appropriate to produce vibronically induced transitions with intensities comparable to those of the normal bands.
Pressure effect on the superconducting and the normal state of β -B i2Pd
NASA Astrophysics Data System (ADS)
Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.
2018-04-01
The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .
Electron impact cross sections for the 2,2P state excitation of lithium
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.; Register, D. F.
1982-01-01
Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.
NASA Astrophysics Data System (ADS)
Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.
2016-05-01
The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.
NASA Astrophysics Data System (ADS)
Nakamura, S.; Endo, M.; Yamamoto, H.; Isshiki, T.; Kimura, N.; Aoki, H.; Nojima, T.; Otani, S.; Kunii, S.
2006-12-01
We report unusual evolution of the conduction-electron state in the localized f electron system CexLa1-xB6 from normal electron state to heavy Fermi liquid (FL) state through local FL and non-FL states with increasing Ce concentration and/or with increasing magnetic field. The effective mass of quasiparticle or the coefficient A of T2 term of resistivity is found to increase divergently near the boundary between FL state and non-FL state. The features of the non-FL state are also different from those of the typical non-FL systems previously observed or theoretically predicted.
Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.
Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J
2004-02-06
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
NASA Astrophysics Data System (ADS)
Sun, Shanshan; Wang, Shaohua; Yu, Rong; Lei, Hechang
2017-08-01
We report the growth of heavily electron doped Li-NH3 intercalated FeSe single crystals that are free of material complexities and allow access to the intrinsic superconducting properties. Lix(NH3)yFe2Se2 single crystals show extremely large electronic anisotropy in both normal and superconducting states. They also exhibit anomalous transport properties in the normal state, which are believed to possibly be related to the anisotropy of relaxation time and/or temperature-dependent electron carrier concentration. Taking into account the great chemical flexibility of intercalants in the system, our findings provide a platform to understanding the origin of superconductivity in FeSe-related superconductors.
Extensions of the Theory of the Electron-Phonon Interaction in Metals: A Collection.
1983-11-03
accepted The measured zero -field susceptibility is given 50 . . . . 26 GENERALIZATION OF THE THEORY OF THE ELECTRON-... 1199 JP by X.P_ IM T V.IM 0... Generalization of the Theory of the Electron-Phonon Inter- action: Thermodynamic Formulation of Superconducting- and Normal-State Properties...A microscopic treatment of the consequences for supercon- ductivity of a nonconstant electronic density of states is presented. Generalized
Southwest electronic one-stop shopping, state agency test report
DOT National Transportation Integrated Search
1997-12-22
The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
Low-energy surface states in the normal state of α - PdBi 2 superconductor
Choi, Hongchul; Neupane, Madhab; Sasagawa, T.; ...
2017-08-25
Topological superconductors as characterized by Majorana surface states have been actively searched for their significance in fundamental science and technological implication. The large spin-orbit coupling in Bi-Pd binaries has stimulated extensive investigations on the topological surface states in these superconducting compounds. Here we report a study of normal-state electronic structure in a centrosymmetric α-PdBi 2 within density functional theory calculations. By investigating the electronic structure from the bulk to slab geometries in this system, we predict for the first time that α-PdBi 2 can host orbital-dependent and asymmetric Rashba surface states near the Fermi energy. This study suggests that α-PdBimore » 2 will be a good candidate to explore the relationship between superconductivity and topology in condensed matter physics.« less
Electronic disorder and magnetic-field-induced superconductivity enhancement in Fe1+y(Te1-xSex)
NASA Astrophysics Data System (ADS)
Hu, Jin; Liu, Tijiang; Qian, Bin; Mao, Zhiqiang
2012-02-01
The iron chalcogenide Fe1+y(Te1-xSex) superconductor system exhibits a unique electronic and magnetic phase diagram distinct from those seen in iron pnictides: bulk superconductivity does not appear immediately following the suppression of long-range (π,0) AFM order. Instead, an intermediate phase with weak charge carrier localization appears between AFM order and bulk superconductivity (Liu et al., Nat. Mater. 9, 719 (2010)). In this talk, we report our recent studies on the relationship between the normal state and superconducting properties in Fe1+y(Te1-xSex). We show that the superconducting volume fraction VSC and normal state metallicity significantly increase while the normal state Sommerfeld coefficient γ and Hall coefficient RH drop drastically with increasing Se content in the underdoped superconducting region. Additionally, VSC is surprisingly enhanced by magnetic field in heavily underdoped superconducting samples. The implications of these results will be discussed. Our analyses suggest that the suppression of superconductivity in the underdoped region is associated with electronic disorder caused by incoherent magnetic scattering arising from (π,0) magnetic fluctuations.
Ultrafast Molecular Three-Electron Auger Decay.
Feifel, Raimund; Eland, John H D; Squibb, Richard J; Mucke, Melanie; Zagorodskikh, Sergey; Linusson, Per; Tarantelli, Francesco; Kolorenč, Přemysl; Averbukh, Vitali
2016-02-19
Three-electron Auger decay is an exotic and elusive process, in which two outer-shell electrons simultaneously refill an inner-shell double vacancy with emission of a single Auger electron. Such transitions are forbidden by the many-electron selection rules, normally making their decay lifetimes orders of magnitude longer than the few-femtosecond lifetimes of normal (two-electron) Auger decay. Here we present theoretical predictions and direct experimental evidence for a few-femtosecond three-electron Auger decay of a double inner-valence-hole state in CH_{3}F. Our analysis shows that in contrast to double core holes, double inner-valence vacancies in molecules can decay exclusively by this ultrafast three-electron Auger process, and we predict that this phenomenon occurs widely.
Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei; ...
2016-11-28
Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe 1–xCo x) 2As 2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energymore » effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-T C unconventional superconductors.« less
Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes
NASA Astrophysics Data System (ADS)
Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.
2012-11-01
The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Trajmar, S.; Cartwright, D. C.
1977-01-01
Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.
NASA Technical Reports Server (NTRS)
Yu, Jaejun; Freeman, A. J.
1991-01-01
Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations.
Applicability of tungsten/EUROFER blanket module for the DEMO first wall
NASA Astrophysics Data System (ADS)
Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.
2013-07-01
In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.
Normal state above the upper critical field in Fe 1 + y Te 1 - x ( Se , S ) x
Wang, Aifeng; Kampert, Erik; Saadaoui, H.; ...
2017-05-03
Here, we have investigated the magnetotransport above the upper critical field ( H c 2 ) in Fe 1.14 Te 0.7 Se 0.3 , Fe 1.02 Te 0.61 Se 0.39 , Fe 1.05 Te 0.89 Se 0.11 , and Fe 1.06 Te 0.86 S 0.14 . The μ SR measurements confirm electronic phase separation in Fe 1.06 Te 0.86 S 0.14 , similar to Fe 1 + y Te 1 - x Se x . We found that superconductivity is suppressed in high magnetic fields above 60 T, allowing us to gain insight into the normal-state properties below the zero-fieldmore » superconducting transition temperature ( T c ). We also show that the resistivity of Fe 1.14 Te 0.7 Se 0.3 and Fe 1.02 Te 0.61 Se 0.39 above H c 2 is metallic as T → 0 , just like the normal-state resistivity above T c . On the other hand, the normal-state resistivity in Fe 1.05 Te 0.89 Se 0.11 and Fe 1.06 Te 0.86 S 0.14 is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator transition due to electronic phase separation.« less
NASA Astrophysics Data System (ADS)
Tokumoto, T.; Brooks, J. S.; Oshima, Y.; Choi, E. S.; Brunel, L. C.; Akutsu, H.; Kaihatsu, T.; Yamada, J.; van Tol, J.
2008-04-01
Electron spin resonance reveals the spin behavior of conduction (π) and localized (d) electrons in β-(BDA-TTP)2MCl4 (M=Fe, Ga). Both the Ga3+(S=0) and Fe3+(S=5/2) compounds exhibit a metal-insulator transition at 113 K with the simultaneous formation of a spin-singlet ground state in the π electron system of the donor molecules. The behavior is consistent with charge ordering in β-(BDA-TTP)2MCl4 at the metal-insulator transition. At 5 K, the Fe3+ compound orders antiferromagnetically, even though the π electrons, which normally would facilitate magnetic exchange, are localized nonmagnetic singlets.
Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction.
Chang, W; Manucharyan, V E; Jespersen, T S; Nygård, J; Marcus, C M
2013-05-24
The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Subgap resonances for odd electron occupancy-interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states-evolve into Kondo-related resonances at higher magnetic fields. An additional zero-bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
First-Principles Correlated Approach to the Normal State of Strontium Ruthenate
Acharya, S.; Laad, M. S.; Dey, Dibyendu; Maitra, T.; Taraphder, A.
2017-01-01
The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr2RuO4. This mandates a detailed revisit of the normal state and, in particular, the T-dependent incoherence-coherence crossover. Using a modern first-principles correlated view, we study this issue in the actual structure of Sr2RuO4 and present a unified and quantitative description of a range of unusual physical responses in the normal state. Armed with these, we propose that a new and important element, that of dominant multi-orbital charge fluctuations in a Hund’s metal, may be a primary pair glue for unconventional superconductivity. Thereby we establish a connection between the normal state responses and superconductivity in this system. PMID:28220879
Molecular cascade Auger decays following Si KL23L23 Auger transitions in SiCl4
NASA Astrophysics Data System (ADS)
Suzuki, I. H.; Bandoh, Y.; Mochizuki, T.; Fukuzawa, H.; Tachibana, T.; Yamada, S.; Takanashi, T.; Ueda, K.; Tamenori, Y.; Nagaoka, S.
2016-08-01
Cascade Si LVV Auger electron spectra at the photoexcitation of the Si 1s electron in a SiCl4 molecule have been measured using an electron spectrometer combined with monochromatized undulator radiation. In the instance of the resonant excitation of the Si 1s electron into the vacant molecular orbital a peak with high yield is observed at about 106 eV, an energy considerably higher than the energies of the normal LVV Auger electron. This peak is presumed to originate from the participator decay from the state with two 2p holes and one excited electron into the state with one 2p hole and one valence hole. Following the normal KL23L23 Auger transition, the cascade spectrum shows several peak structures, e.g. 63 eV, 76 eV and 91 eV. The peak at 91 eV is probably assigned to the second step Auger decay into states having a 2p hole together with two valence holes. These findings are similar to experimental results of SiF4. The former two peaks (63 eV and 76 eV) are ascribed to Auger transitions of Si atomic ions produced through molecular ion dissociation after the first step cascade decays, although the peak heights of atomic ions are lower than those of SiF4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Trajmar, S.
1986-07-01
Normalized differential and integral cross sections for electron-impact excitation of the dipole-allowed B-italic /sup 1/..sigma../sub u//sup +/,C-italic /sup 1/Pi/sub u/ and dipole-forbidden a-italic /sup 3/..sigma../sub g//sup +/,c-italic /sup 3/Pi/sub u/ states of molecular hydrogen have been determined by analysis of energy-loss spectra obtained with a crossed-beam apparatus at electron-impact energies of 20, 30, 40, and 60 eV and scattering angles ranging from 10/sup 0/ to 120/sup 0/. Normalization of the data was achieved by utilizing the elastic differential cross sections measured previously by us (preceding article). The cross sections are compared with other available theoretical and experimental data.
Collection Management: Electronically-Delivered Information.
ERIC Educational Resources Information Center
Trawick, Theresa C.; And Others
Issues in the management of library collections of electronically delivered information are discussed, focusing on the library at Troy State University (Alabama). Because of the library's selective depository status, expensive compact disk-read only memory (CD-ROM) products are received, which the library could not normally afford. At the Troy…
NASA Astrophysics Data System (ADS)
Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.
2005-07-01
Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.
Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.
Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P S M; Lejay, Pascal; Homes, Christopher C; Hall, Jesse S; Kinross, Alison W; Purdy, Sarah K; Munsie, Tim; Williams, Travis J; Luke, Graeme M; Timusk, Thomas
2012-11-20
Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.
Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid
Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P. S. M.; Lejay, Pascal; Homes, Christopher C.; Hall, Jesse S.; Kinross, Alison W.; Purdy, Sarah K.; Munsie, Tim; Williams, Travis J.; Luke, Graeme M.; Timusk, Thomas
2012-01-01
Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau–Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau–Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu2Si2, instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu2Si2. Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized. PMID:23115333
Non-local electron transport through normal and topological ladder-like atomic systems
NASA Astrophysics Data System (ADS)
Kurzyna, Marcin; Kwapiński, Tomasz
2018-05-01
We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.
ERIC Educational Resources Information Center
Lee, HeeJeong Jasmine; Messom, Chris; Yau, Kok-Lim Alvin
2013-01-01
An electronic textbook (e-Textbook) is a digitized (or electronic) form of textbook, which normally needs an endorsement by the national or state government when it is used in the K-12 education system. E-Textbooks have been envisioned to replace existing paper-based textbooks due to its educational advantages. Hence, it is of paramount importance…
Nakajima, Yasuyuki; Hu, Rongwei; Kirshenbaum, Kevin; Hughes, Alex; Syers, Paul; Wang, Xiangfeng; Wang, Kefeng; Wang, Renxiong; Saha, Shanta R; Pratt, Daniel; Lynn, Jeffrey W; Paglione, Johnpierre
2015-06-01
We report superconductivity and magnetism in a new family of topological semimetals, the ternary half-Heusler compound RPdBi (R: rare earth). In this series, tuning of the rare earth f-electron component allows for simultaneous control of both lattice density via lanthanide contraction and the strength of magnetic interaction via de Gennes scaling, allowing for a unique tuning of the normal-state band inversion strength, superconducting pairing, and magnetically ordered ground states. Antiferromagnetism with ordering vector (½,½,½) occurs below a Néel temperature that scales with de Gennes factor dG, whereas a superconducting transition is simultaneously supressed with increasing dG. With superconductivity appearing in a system with noncentrosymmetric crystallographic symmetry, the possibility of spin-triplet Cooper pairing with nontrivial topology analogous to that predicted for the normal-state electronic structure provides a unique and rich opportunity to realize both predicted and new exotic excitations in topological materials.
NASA Astrophysics Data System (ADS)
Amami, Sadek; Ozer, Zehra N.; Dogan, Mevlut; Yavuz, Murat; Varol, Onur; Madison, Don
2016-09-01
There have been several studies of electron-impact ionization of inert gases for asymmetric final state energy sharing and normally one electron has an energy significantly higher than the other. However, there have been relatively few studies examining equal energy final state electrons. Here we report experimental and theoretical triple differential cross sections for electron impact ionization of Ar (3p) for equal energy sharing of the outgoing electrons. Previous experimental results combined with some new measurements are compared with distorted wave born approximation (DWBA) results, DWBA results using the Ward-Macek (WM) approximation for the post collision interaction (PCI), and three-body distorted wave (3DW) which includes PCI without approximation. The results show that it is crucially important to include PCI in the calculation particularly for lower energies and that the WM approximation is valid only for high energies. The 3DW, on the other hand, is in reasonably good agreement with data down to fairly low energies.
Electronic Excitation of Furan by Low Energy Electrons
NASA Astrophysics Data System (ADS)
Hargreaves, Leigh R.; Khakoo, Murtadha A.; Lopes, Maria Cristina A.; da Costa, Romarly; Bettega, Marcio H. F.; Lima, Marco A. P.
2011-10-01
We present absolute differential cross section (DCS) measurements and calculations of electron impact excitation of the lowest lying triplet 3B2 and 3A1 electronic states of furan. The incident electron energy range of the present study was 5-15eV. The experimental data were normalized to the elastic DCS data of. The cross sections were determined by unfolding electron energy loss spectra, using an open source data analysis package and the spectroscopic assignments of. The calculations employ a Multichannel Schwinger method with a 9-state closed coupling CI configuration including polarized pseudo-potentials. The preliminary theoretical results show reasonable agreement with experiment below 10eV, but differ at higher energies. Funded by the US NSF and the Brazilian funding agencies CNPq, CAPES and FAPESP.
Iron chalcogenide superconductors at high magnetic fields
Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir
2012-01-01
Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518
Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes
2011-04-21
Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
NASA Technical Reports Server (NTRS)
Cartwright, D. C.; Trajmar, S.; Williams, W.
1971-01-01
Use of new electron impact excitation cross sections for the six lowest triplet states (A, B, W, C, E, D) of N2, and solution of the coupled equations of statistical equilibrium to obtain the vibrational population of each electronic state. The results show that cascade from high levels of the A super 3 sigma sub u(+) state and from the W super 3 delta sub u state is significant in populating the lower vibrational levels of the B state and hence the character of its ?apparent' excitation cross sections. For the B state excited under auroral conditions, the fraction of the total population due to cascade processes exceeds 25% for all levels lower than 7 and is greater than 80% for B(v' = 0). For the A state under similar conditions, cascade from the B state contributes 50% or more of the total vibrational population for levels lower than 7, and 80% or more for levels below 4. For levels of the A state greater than 7, the A yields B transitions depopulate the levels rapidly and indicate that the Vegard-Kaplan emissions from these higher levels will be weak or totally absent in normal auroras.
Optimized unconventional superconductivity in a molecular Jahn-Teller metal
Zadik, Ruth H.; Takabayashi, Yasuhiro; Klupp, Gyöngyi; Colman, Ross H.; Ganin, Alexey Y.; Potočnik, Anton; Jeglič, Peter; Arčon, Denis; Matus, Péter; Kamarás, Katalin; Kasahara, Yuichi; Iwasa, Yoshihiro; Fitch, Andrew N.; Ohishi, Yasuo; Garbarino, Gaston; Kato, Kenichi; Rosseinsky, Matthew J.; Prassides, Kosmas
2015-01-01
Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above Tc is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C603– electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of Tc with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. PMID:26601168
VizieR Online Data Catalog: Thermodynamic quantities of molecular hydrogen (Popovas+, 2016)
NASA Astrophysics Data System (ADS)
Popovas, A.; Jorgensen, U. G.
2016-07-01
New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20000K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Reported internal partition functions and thermodynamic quantities in the present work are shown to be more accurate than previously available data. (4 data files).
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
Helicon normal modes in Proto-MPEX
NASA Astrophysics Data System (ADS)
Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.
2018-05-01
The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).
Helicon normal modes in Proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.
Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less
Helicon normal modes in Proto-MPEX
Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.; ...
2018-05-22
Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less
NASA Astrophysics Data System (ADS)
Green, M. A.; Teubner, P. J. O.; Campbell, L.; Brunger, M. J.; Hoshino, M.; Ishikawa, T.; Kitajima, M.; Tanaka, H.; Itikawa, Y.; Kimura, M.; Buenker, R. J.
2002-02-01
Absolute differential cross sections (DCSs) for electron impact excitation of electronic states of CO2 in the 10.8-11.5 eV energy-loss range are reported. These data were obtained at the incident electron energies 20,30,60,100 and 200 eV and over the scattered electron angular range 3.5°-90°. The accuracy of our experimental methods has been established independently by using several different normalization techniques at both Sophia and Flinders Universities. Generalized oscillator strengths were derived from our measured DCSs and then extrapolated to zero momentum transfer, in order to determine the optical oscillator strengths. These optical oscillator strengths, where possible, are compared with the results from previous measurements and calculations.
Superconducting cuprate heterostructures for hot electron bolometers
NASA Astrophysics Data System (ADS)
Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.
2013-11-01
Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.
NASA Astrophysics Data System (ADS)
Williams, Tess Lawanna
Despite 25 years of intense research activity, high-temperature superconductors remain poorly understood, with the underlying pairing mechanism still unidentified. Efforts are complicated by the remarkably complex phase diagram, rich in energy-dependent charge and spin orders. In this thesis I describe the use of a Scanning Tunneling Microscope (STM) to study energy-dependent charge orders in Bi2-- yPbySr2CuO6+delta , a cuprate high-temperature superconductor. STM, a surface-sensitive probe used to map electronic structure with sub-meV energy resolution and sub-A spatial resolution, has contributed greatly to our current understanding of the cuprate high-temperature superconductors. However, STM data is acquired with a constant-current normalization condition. The measured differential conductance, g(x, y, V), is often taken to be proportional to the density of states at energy eV (where V is the voltage applied between tip and sample). In fact, due to the normalization condition, the measured g(x, y, V) is actually the quotient of the density of states at energy eV and the integrated density of states from the Fermi energy to eV. This unavoidable quotient may fold electronic structure from its true energy range into other energies. I discuss a new method to correct STM differential conductance spectra to remove the constant-current normalization condition. Using local work function measurements and the constant-current topograph, I create a map which does not suffer from the setpoint effect and contains a mixture of topographic information and properly normalized spectroscopic information. I apply this method to the extraction of the incommensurate charge modulation at q⃗˜34 2pa0 . I also extend the study of electronic nematic order, an atomic-lattice-periodic C4 → C2 symmetry breaking, from highly underdoped Bi2 Sr2CaCu2O 8+delta [28] to overdoped Bi2--yPb ySr2CuO6+/-delta. I find that the electronic nematic order parameter is robust to change of scan angle. I define and contrast three different electronic nematic orders with different phases with respect to the crystal. I discuss the effect of the choice of normalization and possible alternate explanations for the source of the calculated nematic order. Finally, I discuss a drift-correction technique, which removes picometer scale drift that is introduced into a spectral map by experimental imperfections, and characterize the optimal algorithm and potential artifacts that drift-correction may introduce.
Electronic structure and dynamics of thin Ge/GaAs(110) heterostructures
NASA Astrophysics Data System (ADS)
Haight, R.; Silberman, J. A.
1990-10-01
Using angle-resolved picosecond laser photoemission we have investigated both occupied and transiently excited empty states at the surface of Ge grown epitaxially on GaAs(110). We observe a normally unoccupied, Ge layer derived state whose separation from the valence-band maximum of the system is 700±50 meV at six monolayers Ge coverage. The evolution of the electronic structure is followed as a function of coverage and correlated with low-energy electron diffraction. The time dependence of the transiently occupied Ge signal is compared with that of the clean GaAs(110) surface and shows that electrons are
Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.
2017-12-11
Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less
Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics
NASA Astrophysics Data System (ADS)
Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao
2018-02-01
Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.
Superconducting Polarons and Bipolarons
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
The seminal work by Bardeen, Cooper and Schrieffer (BCS) extended further by Eliashberg to the intermediate coupling regime solved one of the major scientific problems of Condensed Matter Physics in the last century. The BCS theory provides qualitative and in many cases quantitative descriptions of low-temperature superconducting metals and their alloys, and some novel high-temperature superconductors like magnesium diboride. The theory has been extended by us to the strong-coupling regime where carriers are small lattice polarons and bipolarons. Here I review the multi-polaron strong-coupling theory of superconductivity. Attractive electron correlations, prerequisite to any superconductivity, are caused by an almost unretarded electron-phonon (e-ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low energy physics is that of small polarons and bipolarons, which are real-space electron (hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch states attemperatures below the characteristic phonon frequency. Since there is almost no retardation (i.e. no Tolmachev-Morel-Anderson logarithm) reducing the Coulomb repulsion, e-ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so carriers mustbe polaronic to form pairs in novel superconductors. I identify the long-range Fröhlich electron-phonon interaction as the most essential for pairing in superconducting cuprates. A number of key observations have been predicted or explained with polarons and bipolarons including unusual isotope effects and upper critical fields, normal state (pseudo)gaps and kinetic properties, normal state diamagnetism, and giant proximity effects. These and many other observations provide strong evidence for a novel state of electronic matter in layered cuprates, which is a charged Bose-liquid of small mobile bipolarons.
Electron elevator: Excitations across the band gap via a dynamical gap state
Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...
2016-01-27
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less
Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.
Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A
2016-01-29
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.
Electron localization mechanism in the normal state of high- T c superconductors
NASA Astrophysics Data System (ADS)
Yamani, Z.; Akhavan, M.
The ceramic compounds Gd 1- xPr xCu 3O 7- y (GdPr-123) with 0.0 ≤ x≤1.0, were synthesized by standard solid state reaction technique. XRD analysis shows a predominantly single phase perovskite structure with the orthorhombic Pmmm symmetry. The samples have been examined for superconductivity by measuring electrical resistivity within the temperature range 10-300 K. These measurements show a suppression of superconductivity with increasing x. It is observed that the critical Pr concentration ( x cr) required to suppress superconductivity is about 0.45, the samples with x < 0.45 become superconducting and are metallic in their normal state, the samples with x ≥ 0.45 do not become superconducting and show a semiconducting behavior above 10 K. To interpret the normal state properties of the samples, the quantum percolation theory based on localized states is applied. A cross-over between variable-range hopping (VRH) and Coulomb gap (CG) mechanisms is observed as a result of decreasing the Pr content.
Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbard, J. A.; Softley, T. P.
2016-06-21
Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that “handshake” electronmore » transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.
2007-05-15
Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.
NASA Technical Reports Server (NTRS)
Zipf, Edward C.
1988-01-01
The rate coefficient for the excitation of the O(1S) state due to the dissociative recombination of O2(+) (v of not greater than 3) ions has been determined as a function of the electron temperature from 300-3500 K. In agreement with the work of Guberman (1987), the results suggest that the absolute magnitude of alpha(1S) is nearly the same for a wide variety of O2(+) vibrational distributions over the electron temperature range normally encountered in the nocturnal F-region. It is noted that previous studies which modeled 5577-A airglow data using a fixed value for f(1S) may be misleading.
Exotic Superconductivity in Correlated Electron Systems
Mu, Gang; Sandu, Viorel; Li, Wei; ...
2015-05-25
Over the past decades, the search for high-T c superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high- c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge,more » spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei
Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe 1–xCo x) 2As 2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energymore » effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-T C unconventional superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz
2015-06-15
We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
NASA Astrophysics Data System (ADS)
Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian
2018-03-01
The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.
Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian
2018-03-28
The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.
1992-03-14
overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Electron-impact excitation of the BΣ1u+ and CΠ1u electronic states of H2
NASA Astrophysics Data System (ADS)
Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.
2008-06-01
Differential and integral cross sections for electron-impact excitation of the dipole-allowed BΣ1u+ and CΠ1u electronic states of molecular hydrogen have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at the electron-impact energies of 40, 100, and 200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to investigate some ambiguities between earlier experimental data and recent BEf-scaled cross sections as defined and calculated by Kim [J. Chem. Phys. 126, 064305 (2007)] and also to extend the energy range of the available data. Optical oscillator strengths, also determined as a part of the present investigation, were found to be in fair accordance with previous measurements and some calculations.
Electron-impact excitation cross sections for the b /sup 3/. sigma. /sub u//sup +/ state of H/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Trajmar, S.; McAdams, R.
1987-04-01
Differential and integral cross sections for electron-impact excitation of the b /sup 3/..sigma../sub u//sup +/ state of H/sub 2/ have been determined in the 20--100-eV impact energy region. The calibration of the cross sections was achieved through the H/sub 2/ elastic scattering cross sections, which in turn were normalized to absolute He elastic scattering cross sections. Comparison is made with available experimental data and with theoretical results applying Born-Ochkur-Rudge, distorted-wave, and close-coupling approximations.
Charge transfer excitons and image potential states on organic semiconductor surfaces
NASA Astrophysics Data System (ADS)
Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.
2009-09-01
We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.
Biophoton research in blood reveals its holistic properties.
Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D
2003-05-01
Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.
Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken
2014-03-03
This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.
Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei
2013-09-11
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.
Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Gu, Meng; Zhou, Yungang
2013-08-14
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less
NASA Astrophysics Data System (ADS)
Saira, Olli-Pentti; Maisi, Ville; Kemppinen, Antti; Möttönen, Mikko; Pekola, Jukka
2013-03-01
Superconducting thin films and tunnel junctions are the building blocks of many state-of-the-art technologies related to quantum information processing, microwave detection, and electronic amplification. These devices operate at millikelvin temperatures, and - in a naive picture - their fidelity metrics are expected to improve as the temperature is lowered. However, very often one finds in the experiment that the device performance levels off around 100-150 mK. In my presentation, I will address three common physical mechanisms that can cause such saturation: stray microwaves, nonequilibrium quasiparticles, and sub-gap quasiparticle states. The new experimental data I will present is based on a series of studies on quasiparticle transport in Coulomb-blockaded normal-insulator-superconductor tunnel junction devices. We have used a capacitively coupled SET electrometer to detect individual quasiparticle tunneling events in real time. We demonstrate the following record-low values for thin film aluminum: quasiparticle density nqp < 0 . 033 / μm3 , normalized density of sub-gap quasiparticle states (Dynes parameter) γ < 1 . 6 ×10-7 . I will also discuss some sample stage and chip designs that improve microwave shielding.
Chemical Bonding and Thermodynamics in Superconductivity and Superfluidity
NASA Astrophysics Data System (ADS)
Love, Peter
2012-05-01
Superconductivity and superfluidity are physical states that occur in a variety of chemical and physical systems. These physical states share a common type of real, or virtual, chemical bonding. Each of the systems discussed herein contain at least one real, or effective, coordinate covalent bond. This is formed from an electron pair donor species and an electron pair acceptor species. When the electronegativity difference between the electron pair donor and acceptor species is sufficiently small, the resultant coordinate covalent bond density can be substantial. If delocalized, this bond density can result in a significant increase in the electron pair orbital volume relative to that of the parent species, and an increase in the valence shell orbital entropy. In terms of the normalized Gibbs-Helmholtz equation, this results in a concomitant decrease in free energy of the delocalized electronic system. A decrease in free energy to negative values can support a boson state, and superconductivity. A clear example of these principles is the occurrence of superconductivity in the ceramic material, MgB2. These generalizations apply to superconducting elements, high temperature superconductors, superconducting alloys, and equivalently to superfluid 4He.
Improving NIS Tunnel Junction Refrigerators: Modeling, Materials, and Traps
NASA Astrophysics Data System (ADS)
O'Neil, Galen Cascade
This thesis presents a systematic study of electron cooling with Normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS refrigerators have an exciting potential to simplify 100 mK and 10 mK cryogenics. Rather than using an expensive dilution refrigerator, researchers will be able to use much simpler cryogenics to reach 300 mK and supplement them with mass fabricated thin-film NIS refrigerators to reach 100 mK and below. The mechanism enabling NIS refrigeration is energy selective tunneling. Due to the gap in the superconducting density of states, only hot electrons tunnel from the normal-metal. Power is removed from the normal-metal, that same power and the larger IV power are both deposited in the superconductor. NIS refrigerators often cool less than theory predicts because of the power deposited in the superconductor returns to the normal-metal. When the superconductor temperature is raised, or athermal phonons due to quasiparticle recombination are absorbed in the normal-metal, refrigerator performance will be reduced. I studied the quasiparticle excitations in superconductors to develop the most complete thermal model of NIS refrigerators to date. I introduced overlayer quasiparticle traps, a new method for heatsinking the superconductor. I present measurements on NIS refrigerators with and without quasiparticle traps, to determine their effectiveness. This includes an NIS refrigerator that cools from 300 mK to 115 mK or lower, a large improvement over previous designs. I also looked into reducing the power deposited in the superconductor, by choosing the transition temperature of the superconductor based upon the NIS refrigerator launch temperature. I performed a detailed study of the density of states of superconducting AlMn alloys, demonstrating that Mn impurities behave non-magnetically in Al due to resonant scattering. The density of states remains BCS-like, but my measurements show that the deviations from a BCS density of states harm cooling in NIS refrigerators.
Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3
Smylie, M. P.; Willa, K.; Claus, H.; ...
2018-05-16
Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less
Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smylie, M. P.; Willa, K.; Claus, H.
Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less
Superconducting and normal-state anisotropy of the doped topological insulator Sr0.1Bi2Se3.
Smylie, M P; Willa, K; Claus, H; Koshelev, A E; Song, K W; Kwok, W-K; Islam, Z; Gu, G D; Schneeloch, J A; Zhong, R D; Welp, U
2018-05-16
Sr x Bi 2 Se 3 and the related compounds Cu x Bi 2 Se 3 and Nb x Bi 2 Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr x Bi 2 Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2 Se 3 . Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1 Bi 2 Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr 0.1 Bi 2 Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr x Bi 2 Se 3 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiede, D.M.; Kellogg, E.C.; Kolaczkowski, S.
We have carried out a more stringent test for electron transfer along the M-pathway at low temperature. This has been done by directly detecting transient states generated from the trapped PH{sub L}{sup {minus}}H{sub M} state in Rps viridis reaction centers. Under these conditions the normal forward electron transfer to H{sub L} is blocked, and the yield of transient P{sup +}H{sub M}{sup {minus}} is determined with respect to the lifetime of P*. Others have measured this lifetime to be 20 ps at room temperature. This enhances the opportunity for detecting a reaction between P* and H{sub M} by 20-fold. These experimentsmore » find that transient bleaching of the P990 nm band occurs from the trapped PH{sub L}{sup {minus}}H{sub M} state on the ns time scale, with a quantum yield of 0.09 {plus minus} 0.06 compared to normal photochemistry. This measurement places an upper limit on the yield of a transient P{sup +}H{sub M}{sup {minus}} state. The measured yield and estimated lifetime of P* suggest that the maximum electron transfer rate P* {yields} H{sub M} is about 5 {times} 10{sup 9} sec{sup {minus}1} ({tau}{sub M} = 200 ps). This corresponds to a k{sub L}/k{sub M} ratio of at least 200. This large value of the branching ratio is remarkable in view of the structural symmetry of the reaction center. 13 refs., 2 figs.« less
Space charge in nanostructure resonances
NASA Astrophysics Data System (ADS)
Price, Peter J.
1996-10-01
In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
Cooper pair splitter realized in a two-quantum-dot Y-junction.
Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C
2009-10-15
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
Superconducting and Normal State Properties of OsB2*
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.
2007-03-01
OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S.-J.; Nagler, P. C.; Smith, S. J.
2015-01-01
We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
Electronic structure and relaxation dynamics in a superconducting topological material
Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...
2016-03-03
Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less
Low-energy electron-impact ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schow, E.; Hazlett, K.; Childers, J. G.
2005-12-15
Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scalemore » to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.« less
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
48 CFR 252.225-7012 - Preference for certain domestic commodities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... States: (1) Food. (2) Clothing and the materials and components thereof, other than sensors, electronics, or other items added to, and not normally associated with, clothing and the materials and components thereof. Clothing includes items such as outerwear, headwear, underwear, nightwear, footwear, hosiery...
48 CFR 252.225-7012 - Preference for certain domestic commodities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... States: (1) Food. (2) Clothing and the materials and components thereof, other than sensors, electronics, or other items added to, and not normally associated with, clothing and the materials and components thereof. Clothing includes items such as outerwear, headwear, underwear, nightwear, footwear, hosiery...
48 CFR 252.225-7012 - Preference for certain domestic commodities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... United States: (1) Food. (2) Clothing and the materials and components thereof, other than sensors, electronics, or other items added to, and not normally associated with, clothing and the materials and components thereof. Clothing includes items such as outerwear, headwear, underwear, nightwear, footwear...
Modeling target normal sheath acceleration using handoffs between multiple simulations
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard
2013-10-01
We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.
NASA Astrophysics Data System (ADS)
Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong
2014-10-01
The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.
Dynamic Jahn-Teller effect in the parent insulating state of the molecular superconductor Cs₃C₆₀.
Klupp, Gyöngyi; Matus, Péter; Kamarás, Katalin; Ganin, Alexey Y; McLennan, Alec; Rosseinsky, Matthew J; Takabayashi, Yasuhiro; McDonald, Martin T; Prassides, Kosmas
2012-06-19
The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the dynamic Jahn-Teller effect as the source of the dramatic change in electronic structure occurring during the transition from the metallic to the localized state. We apply infrared spectroscopy, which can detect subtle changes in the shape of the C(60)3- ion due to the Jahn-Teller distortion. The temperature dependence of the spectra in the insulating phase can be explained by the gradual transformation from two temperature-dependent solid-state conformers to a single one, typical and unique for Jahn-Teller systems. These results unequivocally establish the relevance of the dynamic Jahn-Teller effect to overcoming Hund's rule and forming a low-spin state, leading to a magnetic Mott-Jahn-Teller insulator.
Kemper, A. F.; Sentef, M. A.; Moritz, B.; ...
2017-07-13
Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemper, A. F.; Sentef, M. A.; Moritz, B.
Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less
Effect of normal impurities on anisotropic superconductors with variable density of states
NASA Astrophysics Data System (ADS)
Whitmore, M. D.; Carbotte, J. P.
1982-06-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.
Nonequilibrium radiation and dissociation of CO molecules in shock-heated flows
NASA Astrophysics Data System (ADS)
Macdonald, R. L.; Munafò, A.; Johnston, C. O.; Panesi, M.
2016-08-01
This work addresses the study of the behavior of the excited electronic states of CO molecules in the nonequilibrium relaxation zone behind a normal shock for a CO2-N2 mixture representative of the Mars atmosphere. The hybrid state-to-state (StS) model developed accounts for thermal nonequilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The electronic states of CO molecules are treated as separate species, allowing for non-Boltzmann distributions of their populations. The StS model is coupled with a nonequilibrium radiation solver, hpc-rad, allowing for the calculation of the radiation signature from the molecular and atomic species in the gas. This study focuses on the radiation from the fourth positive system of CO, which dominates the radiation heating on the forebody for higher speed Mars entry applications. In the rapidly dissociating regime behind strong shock waves, the population of the ground electronic state of CO [ CO(X 1Σ )], departs from Maxwell-Boltzmann distributions, owing to the efficient collisional excitation to the electronically excited CO(A 1Π ) state. In general the assumption of the equilibrium between electronic and vibration fails when the excitation of electronic states is driven by heavy particles. The comparison of the radiation heating predictions obtained using the conventional quasi-steady-state (QSS) approach and the physics-based StS approach revealed differences in radiative heating predictions of up to 50%. These results demonstrate that the choice of nonequilibrium model can have a significant impact on radiative heating simulations, and more importantly, they cast serious doubts on the validity of the QSS assumption for the condition of interest to this work.
Alff, L; Krockenberger, Y; Welter, B; Schonecke, M; Gross, R; Manske, D; Naito, M
2003-04-17
The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.
NASA Astrophysics Data System (ADS)
Regeta, K.; Allan, M.
2015-05-01
Detailed experimental information on the motion of a nuclear packet on a complex (resonant) anion potential surface is obtained by measuring 2-dimensional (2D) electron energy loss spectra. The cross section is plotted as a function of incident electron energy, which determines which resonant anion state is populated, i.e., along which normal coordinate the wave packet is launched, and of the electron energy loss, which reveals into which final states each specific resonant state decays. The 2D spectra are presented for acrylonitrile and methacrylonitrile, at the incident energy range 0.095-1.0 eV, where the incoming electron is temporarily captured in the lowest π∗ orbital. The 2D spectra reveal selectivity patterns with respect to which vibrations are excited in the attachment and de-excited in the detachment. Further insight is gained by recording 1D spectra measured along horizontal, vertical, and diagonal cuts of the 2D spectrum. The methyl group in methacrylonitrile increases the resonance width 7 times. This converts the sharp resonances of acrylonitrile into boomerang structures but preserves the essence of the selectivity patterns. Selectivity of vibrational excitation by higher-lying shape resonances up to 8 eV is also reported.
NASA Astrophysics Data System (ADS)
Li, Wen-Hsien; Karna, Sunil K.; Hsu, Han; Li, Chi-Yen; Lee, Chi-Hung; Sankar, Raman; Cheng Chou, Fang
2015-06-01
The general picture established so far for the links between superconductivity and magnetic ordering in iron chalcogenide Fe1+y(Te1-xSex) is that the substitution of Se for Te directly drives the system from the antiferromagnetic end into the superconducting regime. Here, we report on the observation of a ferromagnetic component that developed together with the superconducting transition in Fe-excess Fe1.12Te1-xSex crystals using neutron and x-ray diffractions, resistivity, magnetic susceptibility and magnetization measurements. The superconducting transition is accompanied by a negative thermal expansion of the crystalline unit cell and an electronic charge redistribution, where a small portion of the electronic charge flows from around the Fe sites toward the Te/Se sites. First-principles calculations show consistent results, revealing that the excess Fe ions play a more significant role in affecting the magnetic property in the superconducting state than in the normal state and the occurrence of an electronic charge redistribution through the superconducting transition.
Li, Yuan; Jalil, Mansoor B. A.; Tan, S. G.; Zhao, W.; Bai, R.; Zhou, G. H.
2014-01-01
Time-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage. PMID:24713634
Photophysical and quantum chemical study on a J-aggregate forming perylene bisimide monomer.
Ambrosek, David; Marciniak, Henning; Lochbrunner, Stefan; Tatchen, Jörg; Li, Xue-Qing; Würthner, Frank; Kühn, Oliver
2011-10-21
Perylene bisimides (PBIs) are excellent dyes and versatile building blocks for supramolecular structures. Only recently have PBIs been shown to depict absorption characteristics of J-aggregates. We apply electronic structure calculations and femtosecond pump-probe spectroscopy to the monomeric, bay-substituted building-block of a PBI aggregate in dichloromethane to investigate its electronically excited states in order to provide the ingredients for the description of excitons in the aggregates and their annihilation processes. The PBI S(1)←S(0) absorption spectrum and the S(1)→S(0) emission spectrum have been assigned based on time-dependent Density Functional Theory calculations for the geometry-optimized electronic ground state and excited state structures in the gas phase. The monomeric absorption spectrum contains a strong transition at 580 nm and a broad shoulder between 575-500 nm, both features are attributed to a vibrational progression with an effective vibrational mode of 1415 cm(-1) whose major contributing vibrational normal modes are breathing modes of the perylene body. The effective vibrational mode of the emission spectrum is characterized by a frequency of 1369 cm(-1), whose major contributing vibrational normal modes are characterized by perylene and phenol (bay-substituent) CH bendings. The S(n)←S(1) excited state absorption spectrum is assigned based on Multi-Reference Configuration Interaction methodology. Here, we identify three transitions which give rise to two broad experimental features, one being located between 500 and 600 nm and the other one ranging from 650 to 750 nm. This journal is © the Owner Societies 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... must not be less than: (1) 2.5g for the normal state of the electronic flight control system with the... speeds. For the FAA to consider a trajectory change as satisfactory, the applicant should propose and...
NASA Astrophysics Data System (ADS)
Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.
2014-12-01
The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L˜3.5-4. In the region between, 90° minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 < L < 3) during injection times. As for the 90° minimum PADs, by performing a detailed case study, we find in the slot region this type of PAD is likely caused by chorus wave heating, but this mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.
Superconductivity of Ca2 InN with a layered structure embedding an anionic indium chain array
NASA Astrophysics Data System (ADS)
Jeong, Sehoon; Matsuishi, Satoru; Lee, Kimoon; Toda, Yoshitake; Wng Kim, Sung; Hosono, Hideo
2014-05-01
We report the emergence of superconductivity in Ca2InN consisting of a two-dimensional (2D) array of zigzag indium chains embedded between Ca2N layers. A sudden drop of resistivity and a specific heat (Cp) jump attributed to the superconducting transition were observed at 0.6 K. The Sommerfeld coefficient γ = 4.24 mJ mol-1K-2 and Debye temperature ΘD = 322 K were determined from the Cp of the normal conducting state and the superconducting volume fraction was estimated to be ˜80% from the Cp jump, assuming a BCS-type weak coupling. Density functional theory calculations demonstrated that the electronic bands near the Fermi level (EF) are mainly derived from In 5p orbitals with π and σ bonding states and the Fermi surface is composed of cylindrical parts, corresponding to the quasi-2D electronic state of the In-chain array. By integrating the projected density of states of the In-p component up to EF, a valence electron population of ˜1.6 electrons/In was calculated, indicating that partially anionic state of In. The In 3d binding energies observed in Ca2InN by x-ray photoemission spectroscopy were negatively shifted from that in In metal. The superconductivity of Ca2InN is associated with the p-p bonding states of the anionic In layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr
We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.
Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Mihailovic, D.
2015-01-01
A ‘pseudogap' was introduced by Mott to describe a state of matter that has a minimum in the density of states at the Fermi level, deep enough for states to become localized. It can arise either from Coulomb repulsion between electrons, and/or incipient charge or spin order. Here we employ ultrafast spectroscopy to study dynamical properties of the normal to pseudogap state transition in the prototype high-temperature superconductor Bi2Sr2CaCu2O8+δ. We perform a systematic temperature and doping dependence study of the pseudogap photodestruction and recovery in coherent quench experiments, revealing marked absence of critical behaviour of the elementary excitations, which implies an absence of collective electronic ordering beyond a few coherence lengths on short timescales. The data imply ultrafast carrier localization into a textured polaronic state arising from a competing Coulomb interaction and lattice strain, enhanced by a Fermi surface instability. PMID:25891310
NASA Astrophysics Data System (ADS)
Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.
2013-04-01
Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1994-01-01
The primary accomplishments of the project were as follows: (1) From an overall standpoint, the primary accomplishment of this research was the development of a complete gasdynamic-radiatively coupled nonequilibrium viscous shock layer solution method for axisymmetric blunt bodies. This method can be used for rapid engineering modeling of nonequilibrium re-entry flowfields over a wide range of conditions. (2) Another significant accomplishment was the development of an air radiation model that included local thermodynamic nonequilibrium (LTNE) phenomena. (3) As part of this research, three electron-electronic energy models were developed. The first was a quasi-equilibrium electron (QEE) model which determined an effective free electron temperature and assumed that the electronic states were in equilibrium with the free electrons. The second was a quasi-equilibrium electron-electronic (QEEE) model which computed an effective electron-electronic temperature. The third model was a full electron-electronic (FEE) differential equation model which included convective, collisional, viscous, conductive, vibrational coupling, and chemical effects on electron-electronic energy. (4) Since vibration-dissociation coupling phenomena as well as vibrational thermal nonequilibrium phenomena are important in the nonequilibrium zone behind a shock front, a vibrational energy and vibration-dissociation coupling model was developed and included in the flowfield model. This model was a modified coupled vibrational dissociation vibrational (MCVDV) model and also included electron-vibrational coupling. (5) Another accomplishment of the project was the usage of the developed models to investigate radiative heating. (6) A multi-component diffusion model which properly models the multi-component nature of diffusion in complex gas mixtures such as air, was developed and incorporated into the blunt body model. (7) A model was developed to predict the magnitude and characteristics of the shock wave precursor ahead of vehicles entering the Earth's atmosphere. (8) Since considerable data exists for radiating nonequilibrium flow behind normal shock waves, a normal shock wave version of the blunt body code was developed. (9) By comparing predictions from the models and codes with available normal shock data and the flight data of Fire II, it is believed that the developed flowfield and nonequilibrium radiation models have been essentially validated for engineering applications.
NASA Astrophysics Data System (ADS)
Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.
2018-05-01
A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.
Beam normal spin asymmetry for the e p →e Δ (1232 ) process
NASA Astrophysics Data System (ADS)
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; Vanderhaeghen, Marc
2017-12-01
We calculate the single spin asymmetry for the e p →e Δ (1232 ) process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such a two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell Δ →Δ as well as N*→Δ electromagnetic transitions. We present the general formalism to describe the e p →e Δ beam normal spin asymmetry, and we provide a numerical estimate of its value using the nucleon, Δ (1232 ), S11(1535 ), and D13(1520 ) intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.
Collisional damping rates for electron plasma waves reassessed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Brunner, S.; Berger, R. L.
Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less
Collisional damping rates for electron plasma waves reassessed
Banks, J. W.; Brunner, S.; Berger, R. L.; ...
2017-10-13
Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is proportional to the electron-ion collision rate, ν ei,th. Here in this work, it is shown that the damping rate normalized to ν ei,th depends on the charge state, Z, on the magnitude of ν ei,th and the wave number k in contrast with the commonly used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the commonly accepted value. The resultmore » presented here corrects the result presented in textbooks at least as early as 1973. Lastly, the complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron scattering, which itself contains contributions to both pitch-angle scattering and thermalization.« less
Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex
2008-10-01
Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E) becomes >or=1) is reduced, suggesting improved DCM. However, whether the normalized E0/epsilong increases or decreases as the dot size increases depends on dot material.
Signature of nonadiabatic coupling in excited-state vibrational modes.
Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian
2014-11-13
Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.
NASA Astrophysics Data System (ADS)
Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng
2018-03-01
The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.
Tunnelling spectroscopy of Andreev states in graphene
NASA Astrophysics Data System (ADS)
Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
2017-08-01
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.
Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.
Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K
2003-02-18
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.
NASA Astrophysics Data System (ADS)
Wang
2015-01-01
Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04445b
Pressure induced change in the electronic state of Ta 4 Pd 3 Te 16
Jo, Na Hyun; Xiang, Li; Kaluarachchi, Udhara S.; ...
2017-04-24
Here, we present measurements of superconducting transition temperature, resistivity, magnetoresistivity, and temperature dependence of the upper critical field of Ta 4 Pd 3 Te 16 under pressures up to 16.4 kbar. All measured properties have an anomaly at ~ 2 $-$ 4 kbar pressure range; in particular there is a maximum in T c and upper critical field, H c2 ( 0 ), and minimum in low temperature, normal state resistivity. Qualitatively, the data can be explained considering the density of state at the Fermi level as a dominant parameter.
What is beta-carotene doing in the photosystem II reaction centre?
Telfer, Alison
2002-01-01
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation. PMID:12437882
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
Self-assembled ultrathin nanotubes on diamond (100) surface
NASA Astrophysics Data System (ADS)
Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming
2014-04-01
Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.
Effect of spin fluctuations on the electronic structure in iron-based superconductors
NASA Astrophysics Data System (ADS)
Heimes, Andreas; Grein, Roland; Eschrig, Matthias
2012-08-01
Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.
NASA Astrophysics Data System (ADS)
Freeman, A. J.; Yu, Jaejun
1990-04-01
For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.
NASA Technical Reports Server (NTRS)
Freeman, A. J.; Yu, Jaejun
1990-01-01
For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Walkup, Daniel; Derry, Philip; Scaffidi, Thomas; Rak, Melinda; Vig, Sean; Kogar, Anshul; Zeljkovic, Ilija; Husain, Ali; Santos, Luiz H.; Wang, Yuxuan; Damascelli, Andrea; Maeno, Yoshiteru; Abbamonte, Peter; Fradkin, Eduardo; Madhavan, Vidya
2017-08-01
The single-layered ruthenate Sr2RuO4 is presented as a potential spin-triplet superconductor with an order parameter that may break time-reversal invariance and host half-quantized vortices with Majorana zero modes. Although the actual nature of the superconducting state is still a matter of controversy, it is believed to condense from a metallic state that is well described by a conventional Fermi liquid. In this work we use a combination of Fourier transform scanning tunnelling spectroscopy (FT-STS) and momentum-resolved electron energy loss spectroscopy (M-EELS) to probe interaction effects in the normal state of Sr2RuO4. Our high-resolution FT-STS data show signatures of the β-band with a distinctly quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly strong interaction effects that dramatically renormalize the Fermi velocity, suggesting that the normal state of Sr2RuO4 is that of a `correlated metal' where correlations are strengthened by the quasi-1D nature of the bands. In addition, kinks at energies of approximately 10 meV, 38 meV and 70 meV are observed. By comparing STM and M-EELS data we show that the two higher energy features arise from coupling with collective modes. The strong correlation effects and the kinks in the quasi-1D bands could provide important information for understanding the superconducting state.
NASA Astrophysics Data System (ADS)
Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.
2018-04-01
Coincidences between energy selected electrons and ions produced in the decay of a core hole ionized (excited) state in a free nitrogen molecule have been measured at three specified energies of emitted electrons to reveal the individual pathways produced in 3.5 keV electron-induced fragmentation processes. From these measurements, it has been possible to show, for the first time, that in addition to the normal Auger decay, the resonant Auger excitation channels also share their appreciable contributions in producing singly charged parent ions in an electron-induced collision system. The correlations between ion fragmentation products and electronic structures with a hole configuration in singly-, doubly- and possibly in triply charged molecular electronic states populated in the electronic decay of the initial core hole have been studied and discussed. KER values obtained from our experiments are found to be consistent with the previous results of photo absorption experiments for fragmentation channel {{{{N}}}2}2+ → N+ + N+ however, N2+ fragment ions are found to arise mainly from the fragmentation channel {{{{N}}}2}2+ → N2+ + N and to possess relatively low kinetic energies in the considered region of binding energies.
Kimura, Yoshifumi; Fukuda, Masanori; Suda, Kayo; Terazima, Masahide
2010-09-16
Fluorescence dynamics of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) and its methoxy derivative (DEAMF) in various room temperature ionic liquids (RTILs) have been studied mainly by an optical Kerr gate method. DEAMF showed a single band fluorescence whose peak shifted with time by the solvation dynamics. The averaged solvation time determined by the fluorescence peak shift was proportional to the viscosity of the solvent except for tetradecyltrihexylphosphonium bis(trifluoromethanesulfonyl)amide. The solvation times were consistent with reported values determined with different probe molecules. DEAHF showed dual fluorescence due to the normal and tautomer forms produced by the excited state intramolecular proton transfer (ESIPT), and the relative intensities were dependent on the time and the solvent cation or anion species. By using the information of the fluorescence spectrum of DEAMF, the fluorescence spectrum of DEAHF at each delay time after the photoexcitation was decomposed into the normal and the tautomer fluorescence components, respectively. The normal component showed a very fast decay simulated by a biexponential function (2-3 and 20-30 ps) with an additional slower decay component. The tautomer component showed a rise with the time constants corresponding to the faster decay of the normal form with an additional instantaneous rise. The faster dynamics of the normal and tautomer population changes were assigned to the ESIPT process, while the slower decay of the fluorescence was attributed to the population decay from the excited state through the radiative and nonradiative processes. The average ESIPT time was much faster than the averaged solvation time of RTILs. Basically, the ESIPT kinetics in RTILs is similar to those in conventional liquid solvents like acetonitrile (Chou et al. J. Phys. Chem. A 2005, 109, 3777). The faster ESIPT is interpreted in terms of the activation barrierless process from the Franck-Condon state before the solvation of the normal state in the electronic excited state. With the advance of the solvation in the excited state, the normal form becomes relatively more stable than the tautomer form, which makes the ESIPT become an activation process.
Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W
2015-05-01
We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.
Park, Jung In; Pruinelli, Lisiane; Westra, Bonnie L; Delaney, Connie W
2014-01-01
With the pervasive implementation of electronic health records (EHR), new opportunities arise for nursing research through use of EHR data. Increasingly, comparative effectiveness research within and across health systems is conducted to identify the impact of nursing for improving health, health care, and lowering costs of care. Use of EHR data for this type of research requires use of national and internationally recognized nursing terminologies to normalize data. Research methods are evolving as large data sets become available through EHRs. Little is known about the types of research and analytic methods for applied to nursing research using EHR data normalized with nursing terminologies. The purpose of this paper is to report on a subset of a systematic review of peer reviewed studies related to applied nursing informatics research involving EHR data using standardized nursing terminologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, T. Maurice; Robinson, Neil J.; Tsvelik, Alexei M.
Here, the high-temperature normal state of the unconventional cuprate superconductors has resistivity linear in temperature T, which persists to values well beyond the Mott-Ioffe-Regel upper bound. At low temperatures, within the pseudogap phase, the resistivity is instead quadratic in T, as would be expected from Fermi liquid theory. Developing an understanding of these normal phases of the cuprates is crucial to explain the unconventional superconductivity. We present a simple explanation for this behavior, in terms of the umklapp scattering of electrons. This fits within the general picture emerging from functional renormalization group calculations that spurred the Yang-Rice-Zhang ansatz: Umklapp scatteringmore » is at the heart of the behavior in the normal phase.« less
Electronic phase diagram of disordered Co doped BaFe2As2-δ
NASA Astrophysics Data System (ADS)
Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.
2013-02-01
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Superconducting Oxide Films for Multispectral Infrared Sensors
1989-02-07
films of both low - and high-temperature supercon- resistances below our measurement sensitivity of 4x 10-10 ductors, including BaPb,-Bi2 O.,’ NbN /BN, 2...Simon, " NbN /BN Granular Films - A states, such as normal metal barriers, will improve the noise Sensitive, High-Speed Detector For Pulsed Far- Infrared ...A. W. Kleinsasser, and R. L Sandstrom, "Electron Trap States and Low Frequency Noise in Tunnel Summary and Conclusions Junctions", IREE Trans. nMa n
Characteristics of photonic nanojets from two-layer dielectric hemisphere
NASA Astrophysics Data System (ADS)
Liu, Yunyue; Liu, Xianchao; Li, Ling; Chen, Weidong; Chen, Yan; Huang, Yuerong; Xie, Zhengwei
2017-10-01
Not Available Project supported by State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences; Sichuan Provincial Department of Education, China (Grant No. 16ZA0047); the State Key Laboratory of Metastable Materials Science and Technology, Yansan University, China (Grant No. 201509); and the Large Precision Instruments Open Project Foundation of Sichuan Normal University, China (Grant Nos. DJ2015-57, DJ2015-58, DJ2015-60, DJ2016-58, and DJ2016-59).
Khan, Sameera Shamim; Shreedhar, Balasundari; Kamboj, Mala
2016-01-01
The study was undertaken to correlate epithelial surface pattern changes of oral exfoliated cells of tobacco smokers and betel nut chewers and also to compare them with patients of oral squamous cell carcinoma (OSCC) and healthy individuals. In this cross-sectional study, a total of fifty persons were included in the study, out of which thirty formed the study group (15 each tobacco smokers and betel nut chewers) and twenty formed the control group (ten each of OSCC patients - positive control and ten normal buccal mucosa - negative control). Their oral exfoliated cells were scraped, fixed, and studied under scanning electron microscope (SEM). The statistical analysis was determined using ANOVA, Tukey honestly significant difference, Chi-square test, and statistical SPASS software, P < 0.05. OSCC, Individual cell modifications, intercellular relationships and surface characteristics observed by scanning electron microscopy between OSCC, tobacco smokers, betel nut chewers compared to normal oral mucosa have been tabulated. In normal oral mucosa, cell surface morphology depends on the state of keratinization of the tissue. Thus, it could prove helpful in detecting any carcinomatous change at its incipient stage and also give an insight into the ultra-structural details of cellular differentiations in epithelial tissues.
NASA Astrophysics Data System (ADS)
Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.; Ostermaier, C.
2014-07-01
The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ΔVth, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness tD and barrier thickness tB, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ΔNit, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ΔNit is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Hrovat, David A.; Deng, S. H. M.
Negative ion photoelectron (NIPE) spectra of the radical anion of meta-benzoquinone (MBQ, m-OC6H4O) have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show well-resolved peaks and complex spectral patterns. The electron affinity of MBQ is determined from the first resolved peak to be 2.875 ±17 0.010 eV. Single-point, CASPT2/aug-cc-pVTZ//CASPT2/ aug-cc-pVDZ calculations predict accurately the positions of the 0-0 bands in the NIPE spectrum for formation of the four lowest electronic states of neutral MBQ from the 2A2 state of MBQ•-. In addition, the Franck-Condon factors that are computed from the CASPT2/aug-cc-pVDZmore » optimized geometries,vibrational frequencies, and normal mode vectors, successfully simulate the intensities and frequencies of the vibrational peaks in the NIPE spectrum that are associated with each of these electronic states. The successful simulation of the NIPE spectrum of MBQ•- allows the assignment of 3B2 as the ground state of MBQ, followed by the 1B2 and 1A1 electronic states, respectively 9.0 ± 0.2 and 16.6 ± 0.2 kcal/mol higher in energy than the triplet. These experimental energy differences are in good agreement with the calculated values of 9.7 and 15.7 kcal/mol. The relative energies of these two singlet states in MBQ confirm the previous prediction that their relative energies would be reversed from those in meta-benzoquinodimethane (MBQDM, m-CH2C6H4CH2).« less
Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.
Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon
2009-06-22
In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.
Percolative theories of strongly disordered ceramic high-temperature superconductors.
Phillips, J C
2010-01-26
Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T(c) much larger than strongly coupled metallic superconductors like Pb (T(c) = 7.2 K, E(g)/kT(c) = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This "double percolation" model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T(c) in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T(c) ratios, and shows that these are similar to those of conventional strongly coupled superconductors.
NASA Astrophysics Data System (ADS)
Hassanien, H. H.; Abdelmoly, S. S.; Elmeshad, N.
The exact series solutions of finite parabolic potential disc-like quantum dot are given in the absence and presence of uniform applied electric field. We define some normalized parameters. From the complex eigenenergy E=E0 - i G/2, due to the electric field, we calculate the resonance width G of a bounded state. The ground and the first excited state of the electron and the hole are obtained with and without the electric field. The corresponding envelope functions are presented as a function of the disc dimensionality, radius R and half-width L.
Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jun; Hou, Xing-Yuan; Guan, Tong
2015-05-18
We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained inmore » the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.« less
NASA Astrophysics Data System (ADS)
Teyssier, J.; Lortz, R.; Petrovic, A.; van der Marel, D.; Filippov, V.; Shitsevalova, N.
2008-10-01
We report a detailed study of specific heat, electrical resistivity, and optical spectroscopy in the superconducting boride LuB12 (Tc=0.4K) , and compare it to the higher Tc compound ZrB12 (Tc=6K) . Both compounds have the same structure based on enclosed metallic Lu or Zr ions in oversized boron cages. The infrared reflectivity and ellipsometry in the visible range allow us to extract the optical conductivity from 6 meV to 4 eV in the normal state from 20 to 280 K. By extracting the superconducting properties, phonon density of states, and electron-phonon coupling function from these measurements, we discuss the important factors governing Tc and explain the difference between the two compounds. The phonon density of states seems to be insignificantly modified by substitution of Zr with Lu. However, the soft vibrations of the metal ions in boron cages, responsible for the relatively high Tc in ZrB12 , have almost no contribution to the electron-phonon coupling in LuB12 .
Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems
NASA Technical Reports Server (NTRS)
Zhao, Y.; Zhang, Q. R.; Zhang, H.
1990-01-01
A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed.
Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors
NASA Astrophysics Data System (ADS)
Huang, Edwin W.; Mendl, Christian B.; Liu, Shenxiu; Johnston, Steve; Jiang, Hong-Chen; Moritz, Brian; Devereaux, Thomas P.
2017-12-01
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms of the physics of fluctuating stripes. These findings provide a different perspective on the intertwined orders emerging from the cuprates’ normal state.
Mankowsky, R.; Fechner, M.; Forst, M.; ...
2017-02-28
Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa 2Cu 3O 6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of themore » CuO 2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. As a result, femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.« less
NASA Astrophysics Data System (ADS)
Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.
2014-12-01
The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (L<2), while normal PADs dominate at L~3.5-4. In the region between, 90°-minimum PADs dominate during injection times and normal PADs dominate during quiet times. Cap PADs appear mostly at the decay phase of storms in the slot region and are likely caused by the pitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2
Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav
Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less
Beam normal spin asymmetry for the e p → e Δ ( 1232 ) process
Carlson, Carl E.; Pasquini, Barbara; Pauk, Vladyslav; ...
2017-12-26
Here, we calculate the single spin asymmetry for themore » $$e p \\to e \\Delta(1232)$$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $$\\Delta \\to \\Delta$$ as well as $$N^\\ast \\to \\Delta$$ electromagnetic transitions. We present the general formalism to describe the $$e p \\to e \\Delta$$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucleon, $$\\Delta(1232)$$, $$S_{11}(1535)$$, and $$D_{13}(1520)$$ intermediate states. We compare our results with the first data from the Qweak@JLab experiment and give predictions for the A4@MAMI experiment.« less
Back-scattered electron imaging of skeletal tissues.
Boyde, A; Jones, S J
The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Brent R.; Khakoo, Murtadha A.
2011-04-15
We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less
Electron beams in research and technology
NASA Astrophysics Data System (ADS)
Mehnert, R.
1995-11-01
Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.
Cross sections for electron impact excitation of the C 1Π and D 1Σ+ electronic states in N2O
NASA Astrophysics Data System (ADS)
Kawahara, H.; Suzuki, D.; Kato, H.; Hoshino, M.; Tanaka, H.; Ingólfsson, O.; Campbell, L.; Brunger, M. J.
2009-09-01
Differential and integral cross sections for electron-impact excitation of the dipole-allowed C Π1 and D Σ1+ electronic states of nitrous oxide have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at six electron energies in the range 15-200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to check both the validity of the only other comprehensive experimental study into these excitation processes [Marinković et al., J. Phys. B 32, 1949 (1998)] and to extend the energy range of those data. Agreement with the earlier data, particularly at the lower common energies, was typically found to be fair. In addition, the BEf-scaling approach [Kim, J. Chem. Phys. 126, 064305 (2007)] is used to calculate integral cross sections for the C Π1 and D Σ1+ states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, the only exception being at the lowest energies of this study. Finally, optical oscillator strengths, also determined as a part of the present investigations, were found to be in fair accordance with previous corresponding determinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, M. G., E-mail: sumg@nwnu.edu.cn; Sun, D. X.; Dong, C. Z.
2016-03-15
Temporal evolution of extreme ultraviolet emission from laser-produced aluminum (Al) plasma has been experimentally and theoretically investigated. Al plasmas have been measured by using the temporal-spatially resolved laser-produced plasma technique. The emission lines can be identified from 2p-3s, 3d, 4s, 4d, 5d transition lines from Al{sup 3+} to Al{sup 6+} ions. In order to quickly diagnose the plasma, the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model are used to estimate the values of electron temperature and electron density in plasma. We succeeded in reproducing the simulated spectra related to the different timemore » delays, which are in good agreement with experiments. Temporal evolution behavior of highly charged Al ions in plasma has been analyzed, and the exponential decay about electron temperature and electron density has been obtained. The results indicate that the temporal-spatially resolved measurement is essential for accurate understanding of evolution behavior of highly charged ions in laser-produced plasmas.« less
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
Rigorous Relativistic Methods for Addressing {P}- and {T}-NONCONSERVATION in Heavy-Element Molecules
NASA Astrophysics Data System (ADS)
Fleig, Timo
2013-06-01
A new and rigorous method for accurate ab-initio calculations of the electron electric dipole moment {P,T}-odd interaction constant is presented. The approach uses string-based Configuration Interaction wavefunctions and Dirac four-component spinors as one-particle basis functions, and the {P,T}-odd constant is obtained as an expectation value over these correlated wavefunctions. The method has been applied to the HfF^+ molecular ion to determine spectroscopic constants for four low-lying electronic states. For one of these states (Ω = 1) we have determined a new accurate benchmark value for the effective electric field E_{ eff} correlating 34 valence and outer atomic core electrons and using wavefunction expansions with nearly 5 \\cdot 10^8 coefficients. For the Ω = 1 state of the ThO molecule the first ab-initio result for the electron EDM interaction constant is presented. Aspects of modern all-electron relativistic many-body approaches applicable to both atoms and molecules will be discussed, including perspectives for the treatment of other interesting candidate systems and {P}- or {P,T}-non-conserving effects in molecular systems. %Zero-kinetic-energy (ZEKE) photoelectron spectroscopy was used to probe the vibrational levels in the ground electronic state of the chlorobenzene cation using a two-color photoionization scheme via the S{_1} electronic state of the neutral. Exciting through different S{_1} vibrational levels has revealed mixing of some S{_1} normal coordinates in the ground state of the cation. A previously-identified Fermi resonance in the S{_1} state of the neutral is also confirmed by the ZEKE spectra. The adiabatic ionization energy is measured as 73 170±5 cm^{-1}. S. Knecht, H. J. Å. Jensen and T. Fleig J. Chem. Phys. {132}, 014108 (2010 T. Fleig, H. J. Å. Jensen, J. Olsen and L. Visscher J. Chem. Phys. {124}, 104106 (2006) T. Fleig and M. K. Nayak Phys. Rev. X {XXX}, XXXX (submitted). T. G. Wright, S. I. Panov and T. A. Miller J. Chem. Phys. {102}(12), XXXX March 1995.
The Pierce-diode approximation to the single-emitter plasma diode
NASA Astrophysics Data System (ADS)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-01
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ɛ,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.
The Pierce-diode approximation to the single-emitter plasma diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.
2006-11-15
The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations mustmore » be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the ({epsilon},{eta}) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions.« less
NASA Technical Reports Server (NTRS)
Samoska, L. A.; Brar, Berinder; Kroemer, H.
1993-01-01
We report on long-wavelength intersubband absorption under normal incidence in heavily doped binary-binary GaSb-AlSb superlattices. Due to a small energy difference between the ellipsoidal L valleys in GaSb and the low-density-of-states Gamma minimum, electrons spill over from the first Gamma subband into the higher-energy L subband in GaSb wells, where they are allowed to make an intersubband transition under normally incident radiation. A peak fractional absorption per quantum well of 6.8 x 10 exp 3 (absorption coefficient alpha of about 8500/cm) is observed at about 15 microns wavelength for a sheet concentration of 1.6 x 10 exp 12 sq cm/well.
Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces
NASA Astrophysics Data System (ADS)
Nedeljković, N.; Nedeljković, Lj.; Mirković, M.
2003-07-01
We have investigated the electron capture into large-l Rydberg states of multiply charged ionic projectiles (e.g., the core charges Z=6, 7, and 8) escaping solid surfaces with intermediate velocities (v≈1 a.u.) in the normal emergence geometry. A model of the nonresonant electron capture from the solid conduction band into the moving large angular-momentum Rydberg states of the ions is developed through a generalization of our results obtained previously for the low-l cases (l=0, 1, and 2). The model is based on the two-wave-function dynamics of the Demkov-Ostrovskii type. The electron exchange process is described by a mixed flux through a moving plane (“Firsov plane”), placed between the solid surface and the ionic projectile. Due to low eccentricities of the large-l Rydberg systems, the mixed flux must be evaluated through the whole Firsov plane. It is for this purpose that a suitable asymptotic method is developed. For intermediate ionic velocities and for all relevant values of the principal quantum number n≈Z, the population probability Pnl is obtained as a nonlinear l distribution. The theoretical predictions concerning the ions S VI, Cl VII, and Ar VIII are compared with the available results of the beam-foil experiments.
Stability of bulk Ba2YCu3O(7-x) in a variety of environments
NASA Technical Reports Server (NTRS)
Gaier, James R.; Hepp, Aloysius F.; Curtis, Henry B.; Schupp, Donald A.; Hambourger, Paul D.; Blue, James W.
1988-01-01
Small bars of ceramic Ba2YCu3O(7-x) were fabricated and subjected to environments similar to those that might be encountered during some NASA missions. These conditions include ambient conditions, high humidity, vacuum, and high fluences of electrons and protrons. The normal state resistivity or critical current density (J sub c) were monitored during these tests to assess the stability of the material. When normal state resistivity is used as a criterion, the ambient stability of these samples was relatively good, exhibiting only a 2 percent degradation over a 3 month period. The humidity stability was shown to be very poor, and to be a steep function of temperature. Samples stored at 50 C for 40 min increased in normal state resistivity by four orders of magnitude. Kinetic analysis indicates that the degradation reaction is second order with water vapor concentration. It is suspected that humidity degradation also accounts for the ambient instability. The samples were stable to vacuum over a period of at least 3 months. Degradation of J sub c in a 1 MeV electron fluence of 9.7 x 10 to the 14th e(-)/sq cm was determined to be no more than about 2 percent. Degradation of J sub c in a 8.7 x 10 to the 14th p(+)/sq cm of 42 MeV protons was found to be grain size dependent. Samples with smaller grain size and initial J sub c of about 240 A/sq cm showed no degradation. while that with larger grain size and an initial J sub c of about 30 A/sq cm degraded to 37 percent of its original value.
Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers
Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya
2016-01-01
Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691
The Induction of Chaos in Electronic Circuits Final Report-October 1, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.M.Wheat, Jr.
2003-04-01
This project, now known by the name ''Chaos in Electronic Circuits,'' was originally tasked as a two-year project to examine various ''fault'' or ''non-normal'' operational states of common electronic circuits with some focus on determining the feasibility of exploiting these states. Efforts over the two-year duration of this project have been dominated by the study of the chaotic behavior of electronic circuits. These efforts have included setting up laboratory space and hardware for conducting laboratory tests and experiments, acquiring and developing computer simulation and analysis capabilities, conducting literature surveys, developing test circuitry and computer models to exercise and test ourmore » capabilities, and experimenting with and studying the use of RF injection as a means of inducing chaotic behavior in electronics. An extensive array of nonlinear time series analysis tools have been developed and integrated into a package named ''After Acquisition'' (AA), including capabilities such as Delayed Coordinate Embedding Mapping (DCEM), Time Resolved (3-D) Fourier Transform, and several other phase space re-creation methods. Many computer models have been developed for Spice and for the ATP (Alternative Transients Program), modeling the several working circuits that have been developed for use in the laboratory. And finally, methods of induction of chaos in electronic circuits have been explored.« less
Aharonov-Bohm and Aharonov-Casher effects for local and nonlocal Cooper pairs
NASA Astrophysics Data System (ADS)
Tomaszewski, Damian; Busz, Piotr; López, Rosa; Žitko, Rok; Lee, Minchul; Martinek, Jan
2018-06-01
We study combined interference effects due to the Aharonov-Bohm (AB) and Aharonov-Casher (AC) phases in a Josephson supercurrent of local and nonlocal (split) Cooper pairs. We analyze a junction between two superconductors interconnected through a normal-state nanostructure with either (i) a ring, where single-electron interference is possible, or (ii) two parallel nanowires, where the single-electron interference can be absent, but the cross Andreev reflection can occur. In the low-transmission regime in both geometries the AB and AC effects can be related to only local or nonlocal Cooper pair transport, respectively.
Spectroscopic method to study low charge state ion and cold electron population in ECRIS plasma
NASA Astrophysics Data System (ADS)
Kronholm, R.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2018-04-01
The results of optical emission spectroscopy experiments probing the cold electron population of a 14 GHz Electron Cyclotron Resonance Ion Source (ECRIS) are reported. The study has been conducted with a high resolution spectrometer and data acquisition setup developed specifically for the diagnostics of weak emission line characteristic to ECRIS plasmas. The optical emission lines of low charge state ions and neutral atoms of neon have been measured and analyzed with the line-ratio method. The aforementioned electron population temperature of the cold electron population (Te < 100 eV) is determined for Maxwell-Boltzmann and Druyvesteyn energy distributions to demonstrate the applicability of the method. The temperature was found to change significantly when the extraction voltage of the ion source is turned on/off. In the case of the Maxwellian distribution, the temperature of the cold electron population is 20 ± 10 eV when the extraction voltage is off and 40 ± 10 eV when it is on. The optical emission measurements revealed that the extraction voltage also affects both neutral and ion densities. Based on the rate coefficient analysis with the aforementioned temperatures, switching the extraction voltage off decreases the rate coefficient of neutral to 1+ ionization to 42% and 1+ to 2+ ionization to 24% of the original. This suggests that switching the extraction voltage on favors ionization to charge states ≥2+ and, thus, the charge state distributions of ECRIS plasmas are probably different with the extraction voltage on/off. It is therefore concluded that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions in normal ECRIS operation.
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.
Infrared photodetectors based on graphene van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Ryzhii, V.; Ryzhii, M.; Svintsov, D.; Leiman, V.; Mitin, V.; Shur, M. S.; Otsuji, T.
2017-08-01
We propose and evaluate the graphene layer (GL) infrared photodetectors (GLIPs) based on the van der Waals (vdW) heterostructures with the radiation absorbing GLs. The operation of the GLIPs is associated with the electron photoexcitation from the GL valence band to the continuum states above the inter-GL barriers (either via tunneling or direct transitions to the continuum states). Using the developed device model, we calculate the photodetector characteristics as functions of the GL-vdW heterostructure parameters. We show that due to a relatively large efficiency of the electron photoexcitation and low capture efficiency of the electrons propagating over the barriers in the inter-GL layers, GLIPs should exhibit the elevated photoelectric gain and detector responsivity as well as relatively high detectivity. The possibility of high-speed operation, high conductivity, transparency of the GLIP contact layers, and the sensitivity to normally incident IR radiation provides additional potential advantages in comparison with other IR photodetectors. In particular, the proposed GLIPs can compete with unitravelling-carrier photodetectors.
NASA Astrophysics Data System (ADS)
Patz, Aaron; Li, Tianqi; Ran, Sheng; Fernandes, Rafael M.; Schmalian, Joerg; Bud'Ko, Sergey L.; Canfield, Paul C.; Perakis, Ilias E.; Wang, Jigang
2014-02-01
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behaviour these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven nematicity has been suggested, but distinguishing this as an independent degree of freedom from magnetic and structural orders is difficult, as these couple together to break the same tetragonal symmetry. Here we use time-resolved polarimetry to reveal critical nematic fluctuations in unstrained Ba(Fe1-xCox)2As2. The femtosecond anisotropic response, which arises from the two-fold in-plane anisotropy of the complex refractive index, displays a characteristic two-step recovery absent in the isotropic response. The fast recovery appears only in the magnetically ordered state, whereas the slow one persists in the paramagnetic phase with a critical divergence approaching the structural transition temperature. The dynamics also reveal a gigantic magnetoelastic coupling that far exceeds electron-spin and electron-phonon couplings, opposite to conventional magnetic metals.
Lattice instability and enhancement of superconductivity in YB6
NASA Astrophysics Data System (ADS)
Sluchanko, N.; Glushkov, V.; Demishev, S.; Azarevich, A.; Anisimov, M.; Bogach, A.; Voronov, V.; Gavrilkin, S.; Mitsen, K.; Kuznetsov, A.; Sannikov, I.; Shitsevalova, N.; Filipov, V.; Kondrin, M.; Gabáni, S.; Flachbart, K.
2017-10-01
The superconducting and normal state characteristics of yttrium hexaboride (YB6) have been investigated for the single crystals with a transition temperatures Tc ranging between 4.2 K and 7.6 K. The extracted set of microscopic parameters [the coherence length ξ (0 )˜320 -340 Å , the penetration depth λ (0 )˜1100 -3250 Å and the mean free path of charge carriers l =11 -58 Å , the Ginzburg-Landau-Maki parameters κ1 ,2(0 ) ˜3.3 -9.5, and the superconducting gap Δ (0 )˜6.2 -14.8 K] confirms the type II superconductivity in "dirty limit" (ξ ≫l ) with a medium to strong electron-phonon interaction (the electron-phonon interaction constant λe -ph=0.32 -0.96 ) and s -type pairing of charge carriers in this compound [2 Δ (0 ) /kBTc≈3 -4]. The comparative analysis of charge transport (resistivity, Hall and Seebeck coefficients) and thermodynamic (heat capacity, magnetization) properties in the normal state in YB6 allowed to assume a transition into the cage-glass state at T*˜50 K with a static disorder in the arrangement of the Y3 + ions. We argue that the significant Tc variations in YB6 single crystals are determined by two main factors: (i) the superconductivity enhancement is related with the increase of the number of vacancies, both at yttrium and boron sites, leading to nonstoichiometric composition, which is accompanied by the enhancement of electron-phonon interaction in the hexaboride lattice; (ii) stronger Tc depression is observed in near stoichiometric and more dense crystals and it is induced by the development of bcc lattice instability producing strong distortion, disordering, and formation of defect complexes in the matrix of YB6.
Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System
NASA Astrophysics Data System (ADS)
Mao, Yiyuan; Li, Jun; Huan, Yulong; Yuan, Jie; Li, Zi-an; Chai, Ke; Ma, Mingwei; Ni, Shunli; Tian, Jinpeng; Liu, Shaobo; Zhou, Huaxue; Zhou, Fang; Li, Jianqi; Zhang, Guangming; Jin, Kui; Dong, Xiaoli; Zhao, Zhongxian
2018-05-01
The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the Tc of (Li, Fe)OHFeSe superconductor is questioned. Here we report a systematic study on a series of (Li, Fe)OHFeSe single crystal samples with Tc up to ~41 K. We observe an evident drop in the static magnetization at Tafm ~125 K, in some of the SC (Tc < ~38 K, cell parameter c < ~9.27 {\\AA}) and non-SC samples. We verify that this AFM signal is intrinsic to (Li, Fe)OHFeSe. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal (below Tafm) or SC (below Tc) state in (Li, Fe)OHFeSe. We explain such coexistence by electronic phase separation, similar to that in high-Tc cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of (Li, Fe)OHFeSe, particularly it is never observed in the SC samples of Tc > ~38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. It is suggested that the microscopic static phase separation reaches vanishing point in high-Tc (Li, Fe)OHFeSe, by the occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as Tafm reported previously for a (Li, Fe)OHFeSe (Tc ~42 K) single crystal. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-Tc superconductivity.
Differential conductance and defect states in the heavy-fermion superconductor CeCoIn 5
John S. Van Dyke; Davis, James C.; Morr, Dirk K.
2016-01-22
We demonstrate that the electronic band structure extracted from quasiparticle interference spectroscopy [Nat. Phys. 9, 468 (2013)] and the theoretically computed form of the superconducting gaps [Proc. Natl. Acad. Sci. USA 111, 11663 (2014)] can be used to understand the dI/dV line shape measured in the normal and superconducting state of CeCoIn5 [Nat. Phys. 9, 474 (2013)]. In particular, the dI/dV line shape, and the spatial structure of defect-induced impurity states, reflects the existence of multiple superconducting gaps of d x2–y2 symmetry. As a result, these results strongly support a recently proposed microscopic origin of the unconventional superconducting state.
Numerical evidence of fluctuating stripes in the normal state of high- T c cuprate superconductors
Huang, Edwin W.; Mendl, Christian B.; Liu, Shenxiu; ...
2017-12-01
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high–transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms ofmore » the physics of fluctuating stripes. Furthermore, these findings provide a different perspective on the intertwined orders emerging from the cuprates’ normal state.« less
Numerical evidence of fluctuating stripes in the normal state of high- T c cuprate superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Edwin W.; Mendl, Christian B.; Liu, Shenxiu
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high–transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms ofmore » the physics of fluctuating stripes. Furthermore, these findings provide a different perspective on the intertwined orders emerging from the cuprates’ normal state.« less
Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.
Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje
2017-05-03
Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.
NASA Technical Reports Server (NTRS)
Budd, P. A.
1981-01-01
The secondary electron emission coefficient was measured for a charged polymer (FEP-Teflon) with normally and obliquely incident primary electrons. Theories of secondary emission are reviewed and the experimental data is compared to these theories. Results were obtained for angles of incidence up to 60 deg in normal electric fields of 1500 V/mm. Additional measurements in the range from 50 to 70 deg were made in regions where the normal and tangential fields were approximately equal. The initial input angles and measured output point of the electron beam could be analyzed with computer simulations in order to determine the field within the chamber. When the field is known, the trajectories can be calculated for impacting electrons having various energies and angles of incidence. There was close agreement between the experimental results and the commonly assumed theoretical model in the presence of normal electric fields for angles of incidence up to 60 deg. High angle results obtained in the presence of tangential electric fields did not agree with the theoretical models.
NASA Astrophysics Data System (ADS)
Nakatani, Y.; Aratani, H.; Fujiwara, H.; Mori, T.; Tsuruta, A.; Tachibana, S.; Yamaguchi, T.; Kiss, T.; Yamasaki, A.; Yasui, A.; Yamagami, H.; Miyawaki, J.; Ebihara, T.; Saitoh, Y.; Sekiyama, A.
2018-03-01
We present clear experimental evidence for the momentum-dependent heavy fermionic electronic structures of the 4 f -based strongly correlated system CeNi2Ge2 by soft x-ray angle-resolved photoemission spectroscopy. A comparison between the experimental three-dimensional quasiparticle dispersion of LaNi2Ge2 and CeNi2Ge2 has revealed that heavy fermionic electronic structures are seen in the region surrounding a specific momentum. Furthermore, the wave vectors between the observed "heavy spots" are consistent with a result of neutron scattering reflecting magnetic correlations, which could be a trigger for the superconductivity in CeNi2Ge2 .
Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P
2008-07-25
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.
Specific heat and Knight shift of cuprates within the van Hove scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Das, A.N.
1996-12-01
The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
Electrical resistivity well-logging system with solid-state electronic circuitry
Scott, James Henry; Farstad, Arnold J.
1977-01-01
An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.
Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor.
Bawden, L; Cooil, S P; Mazzola, F; Riley, J M; Collins-McIntyre, L J; Sunko, V; Hunvik, K W B; Leandersson, M; Polley, C M; Balasubramanian, T; Kim, T K; Hoesch, M; Wells, J W; Balakrishnan, G; Bahramy, M S; King, P D C
2016-05-23
Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.
A first principles study of the mechanical, electronic, and vibrational properties of lead oxide
NASA Astrophysics Data System (ADS)
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-11-01
The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.
NASA Astrophysics Data System (ADS)
Zou, Wenli; Filatov, Michael; Cremer, Dieter
2015-06-01
The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.
Superconductivity-insensitive order at q~1/4 in electron doped cuprates
Lee, Jun -Sik; Jang, H.; Asano, S.; ...
2017-12-15
One of the central questions in the cuprate research is the nature of the ‘normal state’ which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-T c cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate throughmore » direct comparisons between as-grown and post-annealed Nd 1.86Ce 0.14CuO 4 (NCCO) single crystals using Cu L 3-edge resonant soft x-ray scattering (RSXS) and angleresolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, l) as like the reported superconducting NCCO. This superconductivity-insensitivesignal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. Furthermore, these results call into question the universality of CDW phenomenon in the cuprates.« less
NASA Astrophysics Data System (ADS)
Popovas, A.; Jørgensen, U. G.
2016-11-01
Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when using polynomial fits to the computed values. Reported internal partition functions and thermodynamic quantities in the present work are shown to be more accurate than previously available data. The full datasets in 1 K temperature steps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A130
Jeon, I.; Huang, K.; Yazici, D.; ...
2016-03-07
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less
The Pseudogap in Multiband Superconductivity
NASA Astrophysics Data System (ADS)
Kristoffel, N.; Rubin, P.
2012-11-01
The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
Fast, automatically darkening welding filter offering an improved level of safety.
Palmer, S
1996-03-01
A mode of operation is introduced for the standard 90° twisted nematic (TN) liquid-crystal cell when placed together with an interference filter and positioned between crossed polarizers such that a small stimulating voltage of between ±2.0 and ±13.0 V is required in order to attain the light state. Further incrementation of the driving electronics reverts the system back to a darker phase. Such cells offer advantages over those of the standard 90° TN device operating in the normally white mode, in that the unit maintains the fast response time from the light to the dark state associated with the employment of TN cells placed between crossed polarizers. In addition, a low transmittance state is achieved when the unit is in the inactivated phase; this is an effect usually correlated with the normally black mode of operation. These cells are therefore ideal candidates for incorporation into fast, automatically darkening, welding filters that are designed to change rapidly from the light to the dark protective state, while offering an improved level of safety by not holding in a potentially hazardous light state should the controlling electronics malfunction. The requirement for this phenomenon to be observed is that the cell displays a low optical transmittance over the green wavelengths of the visible spectrum when in the inactivated phase and placed between crossed polarizers. The presence of an interference filter that possesses a peak transmittance over the central part of the visible spectrum is also necessary. It is shown that there are only two possible cell types that satisfy this criteria, and the optical properties of such cells are analyzed in some detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu; Yamani, Zahra; Cao, Chongde
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe 1-xCu xAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5,more » the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ~x=0.05. Our discovery of a Mott-insulating state in NaFe 1-xCu xAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-T c superconductivity.« less
First and second energy derivative analyses for open-shell self-consistent field wavefunctions
NASA Astrophysics Data System (ADS)
Yamaguchi, Yukio; Schaefer, Henry F., III; Frenking, Gernot
A study of first and second derivatives of the orbital, electronic, nuclear and total energies for the self-consistent field (SCF) wavefunction has been applied to general open-shell SCF systems. The diagonal elements of the Lagrangian matrix for the general open-shell SCF wavefunction are adapted as the 'oŕbital' energies. The first and second derivatives of the orbital energies in terms of the normal coordinates are determined via the finite difference method, while those of the electronic, nuclear and total energies are obtained by analytical techniques. Using three low lying states of the CH2 and H2CO molecules as examples, it is demonstrated that the derivatives of the SCF energetic quantities with respect to the normal coordinates provide useful chemical information concerning the respective molecular structures and reactivities. The conventional concept of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been extended to the molecular vibrational motion, and the terminology of vibrationally active MOs (va-MOs), va-HOMO and va-LUMO has been introduced for each normal coordinate. The energy derivative analysis method may be used as a powerful semi-quantitative modelin understanding and interpreting various chemical phenomena.
Long-range Cooper pair splitter with high entanglement production rate
Chen, Wei; Shi, D. N.; Xing, D. Y.
2015-01-01
Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal. PMID:25556521
Thermal conductance of Nb thin films at sub-kelvin temperatures.
Feshchenko, A V; Saira, O-P; Peltonen, J T; Pekola, J P
2017-02-03
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T 4.5 , instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Thermal conductance of Nb thin films at sub-kelvin temperatures
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-02-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions
NASA Astrophysics Data System (ADS)
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; Jakowski, Jacek; Garashchuk, Sophya
2017-02-01
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of H2 and isotopologues on metal ions, are examined using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. The lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions. Analysis of the nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) performed for complexes of Li+ and Cu+2 with H2/D2/HD shows that the PES anharmonicity changes the ZPE by up to 9%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparov, V. A., E-mail: vgasparo@issp.ac.r
Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.
Rossi-Schneider, Tíssiana Rachel; Verli, Flaviana Dornela; Yurgel, Liliane Soares; De Souza, Maria Antonieta Lopes; Cherubini, Karen
2008-10-01
The study of anatomical structures in their normal state allows the identification of pathological changes that can occur in them. Angiogenesis and the vasculature have been widely studied, mainly because of their association with the development of neoplasms. One of the methods applied for such purposes is the corrosion cast technique, which provides a copy of the vessels with normal as well as pathological structures. The replica of the vasculature provided by this technique allows the three-dimensional analysis of vessels by means of scanning electron microscopy. The aim of the present study was to demonstrate, by means of corrosion casts, the angioarchitecture of the submandibular and sublingual glands and lymph nodes. Scanning electron microscopy showed that the three structures have distinct vascular patterns. The corrosion cast technique can be employed in the study of the angioarchitecture of the submandibular and sublingual glands and lymph nodes, but requires specific precautions. The removal of the structures en bloc and the handling of the replicas with the aid of a stereoscopic magnifier reduce the risk of fractures. (c) 2008 Wiley-Liss, Inc.
Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiang; Geva, Eitan
2016-08-14
The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less
A comparative study of different methods for calculating electronic transition rates
NASA Astrophysics Data System (ADS)
Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan
2018-03-01
We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.
Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.
Song, Juntao; Liu, Haiwen; Jiang, Hua
2012-05-30
A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.
Photoionization and electron-impact ionization of Ar5+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.C.; Lu, M.; Esteves, D.
2007-02-27
Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less
Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime
NASA Astrophysics Data System (ADS)
Ren, Q.
2015-11-01
Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, and the NMCFP of China under 2015GB110000 and 2015GB102000.
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro
2013-06-01
We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.
Quantum transport through 3D Dirac materials
NASA Astrophysics Data System (ADS)
Salehi, M.; Jafari, S. A.
2015-08-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salehi, M.; Jafari, S.A., E-mail: jafari@physics.sharif.edu; Center of Excellence for Complex Systems and Condensed Matter
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances themore » 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belitz, D.
1989-07-01
It is shown theoretically that for both bulk and thin-film superconductorsthe dominant contributions to the disorder-induced degradation of/ital T//sub /ital c// can be expressed in terms of the disorder-induced suppression/delta//ital N/ of the normal-state electronic density of states. This explains thecorrelation found experimentally between /ital T//sub /ital c// and /delta//ital N/, and iteliminates the resistivity scale as an adjustable parameter for comparisonbetween theory and experiment. Agreement with recent experimental results on Pbis very good. We also discuss the disorder dependence of the superconductinggap.
Coulomb drag as a probe of the nature of compressible States in a magnetic field.
Muraki, K; Lok, J G S; Kraus, S; Dietsche, W; von Klitzing, K; Schuh, D; Bichler, M; Wegscheider, W
2004-06-18
Magnetodrag reveals the nature of compressible states and the underlying interplay of disorder and interactions. At nu=3/2 clear T(4/3) dependence is observed, which signifies the metallic nature of the N=0 Landau level. In contrast, drag in higher Landau levels reveals an additional contribution, which anomalously grows with decreasing T before turning to zero following a thermal activation law. The anomalous drag is discussed in terms of electron-hole asymmetry arising from disorder and localization, and the crossover to normal drag at high fields as due to screening of disorder.
Naumann, Robert; Kerzig, Christoph; Goez, Martin
2017-11-01
The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J. T.; Inosov, D. S.; Sun, G. L.
2009-03-20
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} by means of x-ray powder diffraction, neutron scattering, muon-spin rotation ({mu}SR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below T{sub m}{approx_equal}70 K as inferred from the neutron scattering and zero-field-{mu}SR data. Transverse-field {mu}SR below T{sub c} shows a coexistence of magnetically ordered and nonmagnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting- or normal-state regions on a lateral scale of several tens of nanometers. Our findings indicatemore » that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.« less
NASA Astrophysics Data System (ADS)
Gramajo Feijoo, M.; Fernández-Liencres, M. P.; Gil, D. M.; Gómez, M. I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M. E.
2018-03-01
Density Functional Theory (DFT) calculations were performed with the aim of investigating the vibrational, electronic and structural properties of [Cu(uracilato-N1)2 (NH3)2]ṡ2H2O complex. The IR and Raman spectra were recorded leading to a complete analysis of the normal modes of vibration of the metal complex. A careful study of the intermolecular interactions observed in solid state was performed by using the Hirshfeld surface analysis and their associated 2D fingerprint plots. The results indicated that the crystal packing is stabilized by Nsbnd H⋯O hydrogen bonds and π-stacking interactions. In addition, Csbnd H···π interactions were also observed. Time-dependent density functional theory (TD-DFT) calculations revealed that all the low-lying electronic states correspond to a mixture of intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions. Finally, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis were performed to shed light on the intermolecular interactions in the coordination sphere.
Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.
2018-05-01
We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milisavljevic, S.; Rabasovic, M. S.; Sevic, D.
2007-08-15
Experimental measurements of electron impact excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms have been made at incident electron energies E{sub 0}=10, 20, 40, 60, 80, and 100 eV and scattering angles from 10 deg. to 150 deg. In addition, relativistic distorted-wave calculations have been carried out at these energies. The data obtained include the differential (DCS), integral (Q{sub I}), momentum transfer (Q{sub M}), and viscosity (Q{sub V}) cross sections. Absolute values for the differential cross sections have been obtained by normalizing the relative DCSs at 10 deg. to the experimental DCS values of [S. Milisavljevic, M.more » S. Rabasovic, D. Sevic, V. Pejcev, D. M. Filipovic, L. Sharma, R. Srivastava, A. D. Stauffer, and B. P. Marinkovic, Phys. Rev. A 75, 052713 (2007)]. The integrated cross sections were determined by numerical integration of the absolute DCSs. The experimental results have been compared with the corresponding calculations and good agreement is obtained.« less
NASA Astrophysics Data System (ADS)
Dzhumanov, S.; Karimboev, E. X.
2014-07-01
In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu
2015-06-07
The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less
Determination of interfacial states in solid heterostructures using a variable-energy positron beam
Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.
1993-01-01
A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.
Determination of interfacial states in solid heterostructures using a variable-energy positron beam
Asokakumar, P.P.V.; Lynn, K.G.
1993-04-06
A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2015-11-15
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific featuresmore » of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)« less
Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser
NASA Astrophysics Data System (ADS)
Ji, Yu-Pin; Wang, Shi-Jian; Xu, Jing-Yue; Xu, Yong-Gen; Liu, Xiao-Xu; Lu, Hong; Huang, Xiao-Li; Zhang, Shi-Chang
2014-02-01
Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron-beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.
Ciezak, Jennifer A; Trevino, S F
2006-04-20
Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.
Assigning the low lying vibronic states of CH3O and CD3O
NASA Astrophysics Data System (ADS)
Johnson, Britta A.; Sibert, Edwin L.
2017-05-01
The assignment of lines in vibrational spectra in strongly mixing systems is considered. Several low lying vibrational states of the ground electronic X˜ 2E state of the CH3O and CD3O radicals are assigned. Jahn-Teller, spin-orbit, and Fermi couplings mix the normal mode states. The mixing complicates the assignment of the infrared spectra using a zero-order normal mode representation. Alternative zero-order representations, which include specific Jahn-Teller couplings, are explored. These representations allow for definitive assignments. In many instances it is possible to plot the wavefunctions on which the assignments are based. The plots, which are shown in the adiabatic representation, allow one to visualize the effects of various higher order couplings. The plots also enable one to visualize the conical seam and its effect on the wavefunctions. The first and the second order Jahn-Teller couplings in the rocking motion dominate the spectral features in CH3O, while first order and modulated first order couplings dominate the spectral features in CD3O. The methods described here are general and can be applied to other Jahn-Teller systems.
NASA Astrophysics Data System (ADS)
Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.
2017-05-01
Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.
Electronic structure, irreversibility line and magnetoresistance of Cu 0.3Bi 2Se 3 superconductor
Hemian, Yi; Gu, Genda; Chen, Chao -Yu; ...
2015-06-01
Cu xBi 2Se 3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the Cu xBi 2Se 3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi 2Se 3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper criticalmore » field at zero temperature of ~4000 Oe for the Cu 0.3Bi 2Se 3 superconductor with a middle point T c of 1.9K. The relation between the upper critical field Hc2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu 0.3Bi 2Se 3 superconductors up to room temperature. As a result, these observations provide useful information for further study of this possible candidate for topological superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Masanori; Yamada, Yuji; Saito, Taku
2012-04-12
We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on single-crystalline Ba1-xKxFe2As2 for x = 0.27–1. 75As nuclear quadruple resonance frequency (νQ) increases linearly with increasing x. The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak temperature T dependence. K increases gradually with increasing x. By contrast, the nuclear spin–lattice relaxation rate 1/T1 in the normal state has a strong T dependence, which indicates the existence of large antiferomagnetic (AF) spin fluctuations for all x's. The T dependence of 1/T1 shows a gaplike behavior below approximately 100 K formore » 0.6 < x < 0.9. This behaviors is well explained by the change in the band structure with the expansion of hole Fermi surfaces and the shrinkage and disappearance of electron Fermi surfaces at the Brillouin zone (BZ) with increasing x. The anisotropy of 1/T1, represented by the ratio of 1/T1ab to 1/T1c, is always larger than 1 for all x's, which indicates that stripe-type AF fluctuations are dominant in this system. The K in the superconducting (SC) state decreases, which corresponds to the appearance of spin-singlet superconductivity. The T dependence of 1/T1 in the SC state indicates a multiple-SC-gap feature. A simple two-gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and a smaller gap decreases rapidly and nearly vanishes for x > 0.6 where electron pockets in BZ disappear.« less
How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics.
Nguyen, Triet S; Nanguneri, Ravindra; Parkhill, John
2015-04-07
It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.
Fast superconducting magnetic field switch
Goren, Yehuda; Mahale, Narayan K.
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
NASA Astrophysics Data System (ADS)
Molteni, Elena; Onida, Giovanni; Cappellini, Giancarlo
2016-04-01
We study the electronic properties of the Si(001):Uracil, Si(001):Thymine, and Si(001):5-Fluorouracil systems, focusing on the Si dimer-bridging configuration with adsorption governed by carbonyl groups. While the overall structural and electronic properties are similar, with small differences due to chemical substitutions, much larger effects on the surface band dispersion and bandgap show up as a function of the molecular orientation with respect to the surface. An off-normal orientation of the molecular planes is favored, showing larger bandgap and lower total energy than the upright position. We also analyze the localization of gap-edge occupied and unoccupied surface states. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70011-1
Validity of the local approximation in iron pnictides and chalcogenides
Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel
2017-05-08
We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t 2g electrons and single site DMFT for the e g electrons to study the normal state of the iron pnictides and chalcogenides. Furthermore, in the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. Here we solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severemore » in regimes of moderate mass renormalization.« less
Graphene field effect transistor without an energy gap.
Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A
2013-05-28
Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.
Shandilya, Bhavesh K; Sen, Shrabani; Sahoo, Tapas; Talukder, Srijeeta; Chaudhury, Pinaki; Adhikari, Satrajit
2013-07-21
The selective control of O-H/O-D bond dissociation in reduced dimensionality model of HOD molecule has been explored through IR+UV femtosecond pulses. The IR pulse has been optimized using simulated annealing stochastic approach to maximize population of a desired low quanta vibrational state. Since those vibrational wavefunctions of the ground electronic states are preferentially localized either along the O-H or O-D mode, the femtosecond UV pulse is used only to transfer vibrationally excited molecule to the repulsive upper surface to cleave specific bond, O-H or O-D. While transferring from the ground electronic state to the repulsive one, the optimization of the UV pulse is not necessarily required except specific case. The results so obtained are analyzed with respect to time integrated flux along with contours of time evolution of probability density on excited potential energy surface. After preferential excitation from [line]0, 0> ([line]m, n> stands for the state having m and n quanta of excitations in O-H and O-D mode, respectively) vibrational level of the ground electronic state to its specific low quanta vibrational state ([line]1, 0> or [line]0, 1> or [line]2, 0> or [line]0, 2>) by using optimized IR pulse, the dissociation of O-D or O-H bond through the excited potential energy surface by UV laser pulse appears quite high namely, 88% (O-H ; [line]1, 0>) or 58% (O-D ; [line]0, 1>) or 85% (O-H ; [line]2, 0>) or 59% (O-D ; [line]0, 2>). Such selectivity of the bond breaking by UV pulse (if required, optimized) together with optimized IR one is encouraging compared to the normal pulses.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1986-01-01
The ratio of the cross sections for the direct and dissociative excitation of the OI(3s 3S0-2p 3P; 1304 A wavelength) transition, sigma A/sigma D, are accurately determined, and the sigma A/sigma D ratio is directly normalized to the ratio of the O(+) and O2(+) ionization cross sections using a high-density diffuse gas source, an electrostatically focused electron gun, a vacuum-ultraviolet monochromater, and a quadrupole mass spectrometer for simultaneous optical and composition measurements. Using revised sigma A(1304 A) values calculated with new calibration standards, the shape of the cross section for the excitation of the O(3s 3S0) state agrees well with previous results, though the absolute magnitude of sigma A(1304 A) is smaller than the results of Stone and Zipf (1974) by a factor of 2.8. The revised cross sections agree well with recent quantum calculations when cascade excitation of the 3s 3S0 state is taken into account.
Qiu, Chenguang; Zhang, Zhiyong; Zhong, Donglai; Si, Jia; Yang, Yingjun; Peng, Lian-Mao
2015-01-27
Field-effect transistors (FETs) based on moderate or large diameter carbon nanotubes (CNTs) usually suffer from ambipolar behavior, large off-state current and small current on/off ratio, which are highly undesirable for digital electronics. To overcome these problems, a feedback-gate (FBG) FET structure is designed and tested. This FBG FET differs from normal top-gate FET by an extra feedback-gate, which is connected directly to the drain electrode of the FET. It is demonstrated that a FBG FET based on a semiconducting CNT with a diameter of 1.5 nm may exhibit low off-state current of about 1 × 10(-13) A, high current on/off ratio of larger than 1 × 10(8), negligible drain-induced off-state leakage current, and good subthreshold swing of 75 mV/DEC even at large source-drain bias and room temperature. The FBG structure is promising for CNT FETs to meet the standard for low-static-power logic electronics applications, and could also be utilized for building FETs using other small band gap semiconductors to suppress leakage current.
A Mott insulator continuously connected to iron pnictide superconductors
Song, Yu; Yamani, Zahra; Cao, Chongde; ...
2016-12-19
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe 1-xCu xAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5,more » the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ~x=0.05. Our discovery of a Mott-insulating state in NaFe 1-xCu xAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-T c superconductivity.« less
A Mott insulator continuously connected to iron pnictide superconductors
Song, Yu; Yamani, Zahra; Cao, Chongde; Li, Yu; Zhang, Chenglin; Chen, Justin S.; Huang, Qingzhen; Wu, Hui; Tao, Jing; Zhu, Yimei; Tian, Wei; Chi, Songxue; Cao, Huibo; Huang, Yao-Bo; Dantz, Marcus; Schmitt, Thorsten; Yu, Rong; Nevidomskyy, Andriy H.; Morosan, Emilia; Si, Qimiao; Dai, Pengcheng
2016-01-01
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1−xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1−xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity. PMID:27991514
[KEEPING THE ELECTRON-DONOR PROPERTIES OF DRINKING WATER].
Gibert, K K; Stekhin, A A; Iakovleva, G V; Sul'ina, Iu S
2015-01-01
In a study there was performed the experimental evaluation of long-term structural--physical changes of the phase of associated water in drinking water treated in hypomagnetic conditions according to the the technology providing the retention of of ortho/para isomers of water in the presence of a catalyst--triplet oxygen. According to the results of measurements ofparameters of nano-associates formed in the water there was found a series ofconsistencies, allowing to determine the mechanisms of the impact of hypomagnetic treatment on the catalytic properties ofwater and long-term stability of its activated state, that provides the long-term maintenance of high biological activity of drinking water. In particular, under hypomagnetic conditions of the treatment there is formed denser packing of amorphous ice--VI in the composition of associates peroxide, serving as a kind of "reservoir" of atmospheric gases. In such a "reservoir" there realized higher pressure, compared with normal geophysical conditions, that stimulates the gas-phase reactions with the formation of dimers and trimers of oxygen existing in the 2-electron--active configurations with binding energies of 0.3 eVand ~0.2 eV providing phase modulation, resulting in condensation of environment additional electrons on paramagnetic oxygen, which provides the long-term maintenance of the electron--donor ability of water and electrically non-equilibrium state.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-05-01
In the present work, L-phenylalanine is studied using the experimental and theoretical methods. The spectral characterization of the molecule has been done using Raman, FTIR, Hartee-Fock(HF), density functional theory (DFT) and vibrational energy distribution analysis (VEDA) calculation. The optimization of the molecule has been studied using basis set HF/6-31G(d,p) and B3LYP/6-31G(d,p) for Hartree Fock and density functional theory calculation. The complete vibrational assignment of the molecule in monomer and dimer states have been attempted. The potential energy distribution and normal mode analysis are also carried out to determine the contributions of bond oscillators in each normal mode. The molecular geometry, HOMO-LUMO energy gap, molecular hardness (η), ionization energy (IE), electron affinity (EA), total energy and dipole moment were determined from the calculated data. The observed experimental and the scaled theoretical results are compared and found to be in good agreement. The vibrational assignment of molecule in different dimer states has also been done using SERS data and better correlated Raman peaks are observed as compare to normal Raman technique.
Superconductivity and the periodic table: from elements to materials.
Simon, Arndt
2015-03-13
Based on the normal-state electronic band structure, the necessary condition for a metal to become a superconductor is the simultaneous occurrence of flat and steep bands at the Fermi level. The sufficient condition at least for conventional superconductors is a strong enough coupling of the flat band states to the lattice, e.g. via phonons. Selected elements (Te) and compounds of the rare earth metals (RE(2)C(3), REC(2), RE(2)X(2)C(2) with X=halogen) and MgB(2) serve as examples to illustrate the idea. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Prospects of Anderson's theorem for disordered cuprate superconductors
NASA Astrophysics Data System (ADS)
Ghosal, Amit; Chakraborty, Debmalya; Kaushal, Nitin
2018-05-01
We develop a simple pairing theory of superconductivity in strongly correlated d-wave superconductors for up to a moderate strength of disorder. Our description implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in addition takes care of the inherent strong electronic repulsion in these compounds, as well as the inhomogeneities. We first obtain the self-consistent one-particle states, that capture the effects of disorder exactly, and strong correlations using Gutzwiller approximation. These 'normal states' (at zero temperature) when coupled through BCS-type pairing attractions, produces results which are nearly identical to those from a more sophisticated Gutzwiller augmented Bogoliubov-de Gennes analysis.
Andreev bound states probed in three-terminal quantum dots
NASA Astrophysics Data System (ADS)
Gramich, J.; Baumgartner, A.; Schönenberger, C.
2017-11-01
Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single-electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
Electron refrigeration in hybrid structures with spin-split superconductors
NASA Astrophysics Data System (ADS)
Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.
2018-01-01
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
Physics and chemistry of MoS2 intercalation compounds
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Somoano, R. B.
1977-01-01
An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.
NASA Astrophysics Data System (ADS)
Wang, L. M.; Wang, Chih-Yi; Zen, Sha-Min; Chang, Jin-Yuan; Kuo, C. N.; Lue, C. S.; Chang, L. J.; Su, Y.; Wolf, Th; Adelmann, P.
2017-03-01
Electrical transports in iron-pnictide Ba(Fe1-x Co x )2As2 (BFCA) single crystals are heavily debated in terms of the hidden Fermi-liquid (HFL) and holographic theories. Both HFL and holographic theories provide consistent physic pictures and propose a universal expression of resistivity to describe the crossover of transports from the non-Fermi-liquid (FL) to FL behavior in these so-called ‘strange metal’ systems. The deduced spin exchange energy J and model-dependent energy scale W in BFCA are almost the same, or are of the same order of several hundred Kelvin for over-doped BFCA, which is in agreement with the HFL theory. Moreover, a drawn line of W/3.5 for BFCA in the higher-doping region up to the right demonstrates the crossover from non-FL-like behavior to FL-like behavior at high doping, and shows a new phase diagram of BFCA. The electronic correlation strength in superconductors has been newly probed by the normal-state Hall angle, which found that, for the first time, correlation strength can be characterized by the ratios of T c to the Fermi temperature T F, J/T F, and the transverse mass to longitudinal mass.
Origin of photovoltaic effect in superconducting YBa2Cu3O6.96 ceramics
Yang, F.; Han, M. Y.; Chang, F. G.
2015-01-01
We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface. PMID:26099727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jun -Sik; Jang, H.; Asano, S.
One of the central questions in the cuprate research is the nature of the ‘normal state’ which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-T c cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate throughmore » direct comparisons between as-grown and post-annealed Nd 1.86Ce 0.14CuO 4 (NCCO) single crystals using Cu L 3-edge resonant soft x-ray scattering (RSXS) and angleresolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, l) as like the reported superconducting NCCO. This superconductivity-insensitivesignal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. Furthermore, these results call into question the universality of CDW phenomenon in the cuprates.« less
NASA Astrophysics Data System (ADS)
Ye, Hong; Trippel, Sebastian; Di Fraia, Michele; Fallahi, Arya; Mücke, Oliver D.; Kärtner, Franz X.; Küpper, Jochen
2018-04-01
A velocity-map-imaging spectrometer is demonstrated to characterize the normalized emittance (root-mean-square, rms) of photoemitted electron bunches. Both the two-dimensional spatial distribution and the projected velocity distribution images of photoemitted electrons are recorded by the detection system and analyzed to obtain the normalized emittance (rms). With the presented distribution function of the electron photoemission angles, a mathematical method is implemented to reconstruct the three-dimensional velocity distribution. As a first example, multiphoton emission from a planar Au surface is studied via irradiation at a glancing angle by intense 45-fs laser pulses at a central wavelength of 800 nm. The reconstructed energy distribution agrees very well with the Berglund-Spicer theory of photoemission. The normalized emittance (rms) of the intrinsic electron bunch is characterized to be 128 and 14 nm rad in the X and Y directions, respectively. The demonstrated imaging spectrometer has the ability to characterize the normalized emittance (rms) in a few minutes with a fine energy resolution of 0.2 meV in the image center and will, thereby, foster the further development of x-ray free-electron-laser injectors and ultrafast electron diffraction, and it opens up opportunities for studying correlated electron emission from surfaces and vacuum nanoelectronic devices.
Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.
NASA Astrophysics Data System (ADS)
Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.
2007-12-01
Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for a range of initial wave normal angles. We conclude that whistler-mode waves with highly oblique wave normal angles may be more effective than previously believed at precipitating > 1 MeV electrons, despite the dependence of the scattering coefficients on wave normal direction.
Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A
2014-09-10
In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.
NASA Astrophysics Data System (ADS)
Lyo, In-Whan
Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is critically discussed against other explanations.
Thermal conductance of Nb thin films at sub-kelvin temperatures
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-01-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1–0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection. PMID:28155895
Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.
2015-11-01
Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.
Anomalous Normal State and Quasi Particle Transport in High-Tc Superconductors
NASA Astrophysics Data System (ADS)
Ong, N. P.
1997-03-01
The quasi-particles (qp) below Tc are much less studied compared to excitations of the normal state. The thermal conductivity tensor κ_ij provides a window on their transport properties. In YBaCuO, the large thermal Hall response allows the qp mean-free-path l to be estimated. l rises rapidly from 90 Åat Tc to over 6,000 Åat 20 K in untwinned crystals. The intense scattering rate above Tc is rapidly suppressed, leaving qp's that travel great distances at low T. In LaSrCuO, where there is substantial disorder, κ_xx varies logarithmically with field B. While the field dependence is entirely electronic, it is incompatible with scattering from vortices. κ_xx fits well to the digamma function form ψ(1/2+ fracB_0B) + ln(fracBB_0), with a T-linear field-scale B_0. Possible field destruction of a quantum interference effect or depairing effects in a d-wave superconductor will be discussed.
Maraviglia, B; Herring, F G; Weeks, G; Godin, D V
1979-01-01
The membrane fluidity of erythrocytes from patients with Lecithin: cholesterol acyltransferase (LCAT) deficiency was studied by means of electron spin resonance. The temperature dependence of the separation of the outer extrema of the spectra of 2-(3-carboxy-propyl)-4,4-dimethyl, 2-tridecyl-3-oxazolidinyloxyl spin probe was monitored for normal, presumed carrier and clinically affected subjects. The temperature profile of controls was significantly different from that of the presumed carriers and the clinically affected individuals. The results show that the compositional abnormalities previously noted in erythrocyte membranes from patients with LCAT deficiency are associated with alterations in the physiocochemical state of the membrane. An investigation of the spectral lineshapes below 10 degrees C allowed a distinction to be made at the membrane level between clinically affected subjects and clinically normal heterozygous carriers. Alterations in the temperature dependence of elec-ron spin resonance parameters may provide a sensitive index of red cell membrane alterations in pathological states of generalized membrane involvement.
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-01-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X.; Senftleben, A.; Pflueger, T.
Absolutely normalized (e,2e) measurements for H{sub 2} and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich cross-section structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H{sub 2} their behavior is consistent with multiple scattering of the projectile as discussed before [Al-Hagan et al., Nature Phys. 5, 59 (2009)]. For He the binary and recoil lobes are significantly larger thanmore » for H{sub 2} and partly cover the multiple scattering structures. To highlight these patterns we propose a alternative representation of the triply differential cross section. Nonperturbative calculations are in good agreement with the He results and show discrepancies for H{sub 2} in the recoil peak region. For H{sub 2} a perturbative approach reasonably reproduces the cross-section shape but deviates in absolute magnitude.« less
NASA Technical Reports Server (NTRS)
McComas, D. J.; Bame, S. J.; Barker, P. L.; Delapp, D. M.; Gosling, J. T.; Skoug, R. M.; Tokar, R. L.; Riley, P.; Feldman, W. C.; Santiago, E.
2001-01-01
This paper reports the first scientific results from the Solar Wind Electron Proton Alpha Monitor (SWEPAM) instrument on board the Advanced Composition Explorer (ACE) spacecraft. We analyzed a coronal mass ejection (CME) observed in the solar wind using data from early February, 1998. This event displayed several of the common signatures of CMEs, such as counterstreaming halo electrons and depressed ion and electron temperatures, as well as some unusual features. During a portion of the CME traversal, SWEPAM measured a very large helium to proton abundance ratio. Other heavy ions, with a set of ionization states consistent with normal (1 to 2x10(exp 6) K) coronal temperatures, were proportionately enhanced at this time. These observations suggest a source for at least some of the CME material, where heavy ions are initially concentrated relative to hydrogen and then accelerated up into the solar wind, independent of their mass and first ionization potential.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
NASA Astrophysics Data System (ADS)
Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.
2017-06-01
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread--an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.
Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.
Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R
2017-05-10
Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
NASA Astrophysics Data System (ADS)
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl; Voogt, F. C.
2015-02-14
Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament ismore » formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.« less
NASA Astrophysics Data System (ADS)
Oosthoek, J. L. M.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.; Kooi, B. J.
2015-02-01
Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.
NASA Astrophysics Data System (ADS)
Huang, Shyh-Jer; Chou, Cheng-Wei; Su, Yan-Kuin; Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long; Ruan, Jian-Long
2017-04-01
In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiOx capping layer. The p-NiOx layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O2 environment to achieve high hole concentration. The Vth shifts from -3 V in the conventional transistor to 0.33 V, and on/off current ratio became 107. The forward and reverse gate breakdown increase from 3.5 V and -78 V to 10 V and -198 V, respectively. The reverse gate leakage current is 10-9 A/mm, and the off-state drain-leakage current is 10-8 A/mm. The Vth hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiOx after annealing in oxygen environment resulted from the change of Ni2+ to Ni3+ and the surge of (111)-orientation.
Specific heat and Nernst effect of electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Balci, Hamza
This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.
Emergence of superconductivity in heavy-electron materials
Yang, Yi-feng; Pines, David
2014-01-01
Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102
NASA Astrophysics Data System (ADS)
Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.
2018-05-01
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eidietis, N. W.; Choi, W.; Hahn, S. H.
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less
a Zero-Order Picture of the Infrared Spectrum for the Methoxy Radical: Assignment of States
NASA Astrophysics Data System (ADS)
Johnson, Britta; Sibert, Edwin
2016-06-01
The ground tilde{X}^2E vibrations of the methoxy radical have intrigued both experimentalists and theorists alike due to the presence of a conical intersection at the C3v molecular geometry. This conical intersection causes methoxy's vibrational spectrum to be strongly influenced by Jahn-Teller vibronic coupling which leads to large amplitude vibrations and extensive mixing of the two lowest electronic states. This coupling combined with spin-orbit and Fermi couplings greatly complicates the assignments of states. Using the potential force field and calculated spectra of Nagesh and Sibert1,2, we assign quantum numbers to the infrared spectrum. When the zero-order states are the diabatic normal mode states, there is sufficient mode mixing that the normal mode quantum numbers are poor labels for the final states. We define a series of zero-order Hamiltonians which include additional coupling elements beyond the normal mode picture but still allow for the assignment of Jahn-Teller quantum numbers. In methoxy, the two lowest frequency e} modes, the bend (q_5) and the rock (q_6), are the modes with the strongest Jahn-Teller coupling. In general, a zero-order Hamiltonian which includes first-order Jahn-Teller coupling in q_6 is sufficient for most states of interest. Working in a representation which includes first-order Jahn-Teller coupling in q_6, we identify states in which additional coupling elements must be included; these couplings include first-order Jahn-Teller coupling in q_5, higher order Jahn-Teller coupling in q_5 and q_6, and, in the dueterated case, Jahn-Teller coupling which is modulated by the corresponding a modes. [^1] Nagesh, J.; Sibert, E. L. J. Phys. Chem. A 2012, 116, 3846-3855. Lee, Y.F.; Chou, W.T.; Johnson, B.A.; Tabor, D.P. ; Sibert, E.L.; Lee, Y.P. J. Mol. Spectrosc. 2015, 310, 57-67. Barckholtz, T. A.; Miller, T. A. Int. Revs. in Phys. Chem. 1998, 17, 435-524.
Eidietis, N. W.; Choi, W.; Hahn, S. H.; ...
2018-03-29
A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiplemore » events and actuator prioritization. The finite-state logic is implemented in Matlab*/Stateflow* to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies “catch and subdue” electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to minimize the number and topological complexity of states as the finite-state ONFR system is scaled to a large, highly constrained device like ITER.« less
NASA Astrophysics Data System (ADS)
Maletz, J.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Yaresko, A. N.; Kordyuk, A. A.; Shermadini, Z.; Luetkens, H.; Sedlak, K.; Khasanov, R.; Amato, A.; Krzton-Maziopa, A.; Conder, K.; Pomjakushina, E.; Klauss, H.-H.; Rienks, E. D. L.; Büchner, B.; Borisenko, S. V.
2013-10-01
In this study, we investigate the electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and μSR spectroscopies as well as band-structure calculations. We demonstrate that the unusual behavior of these materials is the result of separation into metallic (˜12%) and insulating (˜88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe slabs. Our results thus imply that the antiferromagnetic insulating phase is just a by-product of Rb intercalation and its magnetic properties have no direct relation to the superconductivity. Instead, we find that also in this class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a Van Hove singularity to the Fermi level.
NASA Astrophysics Data System (ADS)
Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro
The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors
The CALorimetric Electron Telescope (CALET) Launch and Early On-Orbit Performance
NASA Astrophysics Data System (ADS)
Guzik, T. Gregory; Calet Collaboration
2016-03-01
The CALET space experiment, has been developed by collaborators in Japan, Italy and the United States, will study electrons to 20 TeV, gamma rays above 10 GeV and nuclei with Z =1 to 40 up to 1,000 TeV during a five-year mission on the International Space Station. The instrument consists of a particle charge identification module, a thin imaging calorimeter (3 r.l. in total) with tungsten plates interleaving scintillating fiber planes, and a thick calorimeter (27 r.l.) composed of lead tungstate logs. CALET has the depth, imaging capabilities and energy resolution for excellent separation between hadrons, electrons and gamma rays. The instrument was launched into orbit on August 19, 2015 and on August 25, 2015 was mounted as an attached payload on the International Space Station (ISS) Japanese Experiment Module - Exposed Facility (JEM-EF). The experiment has successfully completed on-orbit checkout and has now been transitioned to normal science operations. This presentation summarizes the instrument design, science goals and early on-orbit performance. This effort is supported by NASA in the United States, by JAXA in Japan, and ASI in Italy.
NASA Astrophysics Data System (ADS)
Niestemski, F. C.; Johnston, S.; Contryman, A. W.; Camp, C. D.; Devereaux, T. P.; Manoharan, H. C.
2012-02-01
In high-temperature superconductors the meaning of the common feature labeled ``peak-dip-hump'' is still a point of great debate. In terms of scanning tunneling spectroscopy (STS) this refers to the shape of satellite features that occur outside the coherence peaks in the dI/dV spectra. There are many conflicting interpretations and labeling schemes for this feature in both the hole- and electron-doped cuprates. The path to resolving this confusion is to study a well-understood BCS superconductor to better observe the way that the STM measures bosonic information. Utilizing the ultra-low electronic noise of our home-built low-temperature STM, and utilizing a superconducting tip for increased spectral resolution, we recreate the original McMillan and Rowell S-I-S junctionootnotetextW. L. McMillan and J. M. Rowell Phys. Rev. Lett., 14, 108-112 (1965) with the STM equivalent (S-Vacuum-S). This method provides very high energy resolution for both the filled and empty electronic states in both the superconducting and normal state. We compare this data to first-principle Eliashberg calculations and relate this data to ``peak-dip-hump'' in the high Tc case.
Competing Phases of 2D Electrons at ν = 5/2 and 7/3
NASA Astrophysics Data System (ADS)
Xia, Jing
2011-03-01
The N=1 Landau level (LL) exhibits collective electronic phenomena characteristic of both fractional quantum Hall (FQHE) states seen in the lowest LL and anisotropic nematic states in the higher LLs. A modest in-plane magnetic field B| | is sufficient to destroy the fractional quantized Hall states at ν = 5 / 2 (and 7/2) and replace them with anisotropic compressible nematic phases, revealing the close competition between the two. We find that at larger B| | these anisotropic phases ν = 5 / 2 can themselves be replaced by a new isotropic state, dubbed re-entrant isotropic compressible (RIC) phase. We present strong evidence that this transition is a consequence of the mixing of Landau levels from different electric subbands in the confinement potential. In addition, we find that with B| | , the normally isotropic ν = 7 / 3 FQHE state can transform into an anisotropic phase with an accurately quantized Hall plateau but an anisotropic longitudinal resistivities. As temperature is lowered towards zero, ρxx diminishes while ρyy tends to diverge, reminiscent of the anisotropic nematic states, while surprisingly ρxy and ρyx remain quantized at 3 h / 7e2 , indicating a completely new quantum phase. This work represents a collaboration with J.P. Eisenstein (Caltech) and L.N. Pfeiffer and K.W West (Princeton), and is supported by Microsoft Project Q.
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.
2017-01-01
This paper describes FORTRAN program dParFit, which performs least-squares fits of diatomic molecule spectroscopic data involving one or more electronic states and one or more isotopologues, to parameterized expressions for the level energies. The data may consist of any combination of microwave, infrared or electronic vibrotational bands, fluorescence series or binding energies (from photo-association spectroscopy). The level energies for each electronic state may be described by one of: (i) band constants {Gv ,Bv ,Dv , … } for each vibrational level, (ii) generalized Dunham expansions, (iii) pure near-dissociation expansions (NDEs), (iv) mixed Dunham/NDE expressions, or (v) individual term values for each distinct level of each isotopologue. Different representations may be used for different electronic states and/or for different types of constants in a given fit (e.g., Gv and Bv may be represented one way and centrifugal distortion constants another). The effect of Λ-doubling or 2Σ splittings may be represented either by band constants (qvB or γvB, qvD or γvD, etc.) for each vibrational level of each isotopologue, or by using power series expansions in (v + 1/2) to represent those constants. Fits to Dunham or NDE expressions automatically incorporate normal first-order semiclassical mass scaling to allow combined analyses of multi-isotopologue data. In addition, dParFit may fit to determine atomic-mass-dependent terms required to account for breakdown of the Born-Oppenheimer and first-order semiclassical approximations. In any of these types of fits, one or more subsets of these parameters for one or more of the electronic states may be held fixed, while a limited parameter set is varied. The program can also use a set of read-in constants to make predictions and calculate deviations [ycalc -yobs ] for any chosen input data set, or to generate predictions of arbitrary data sets.
Elements configuration of the open lead test circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp; Ono, Akira
In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a testmore » circuit in the past. This paper propose elements configuration of the test circuit.« less
Superconducting Electronic Film Structures
1991-02-14
diameter YBCO films are being tested as the endplates in a cylindrical dielectric resonator. The Q and phase noise of the 15 dielectric resonator will...vortex state. Magnus force ne(v, -VL)x O/C is balanced by a drag force an- Josephson 9 demonstrated that the motion of flux vor- tiparallel to the...age of the same sign as in the normal metal [Fig. 3(b)i. the Magnus force Thus a reversal of the sign of the Hall voltage upon enter- "Se ing the mixed
ESREF 98 - 9th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis
1998-10-19
Gap effects within a nanosecond time scale. Effective Density of States Because of the limited possibility of compact Mobility models to deal with the...brackets) and the dislocation source action mobility M. The force is the balance between the normal stress a,, on the dislocations and the osmotic The...on, the electromigration force acts theration kt. on the atoms and a transport to the anode side of the t It is the mobility term that accounts for
Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.
Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming
2014-08-20
Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial interferences in the electron transport of heavy-fermion materials
NASA Astrophysics Data System (ADS)
Zhang, Shu-feng; Liu, Yu; Song, Hai-Feng; Yang, Yi-feng
2016-08-01
The scanning tunneling microscopy/spectroscopy and the point contact spectroscopy represent major progress in recent heavy-fermion research. Both have revealed important information on the composite nature of the emergent heavy-electron quasiparticles. However, a detailed and thorough microscopic understanding of the similarities and differences in the underlying physical processes of these techniques is still lacking. Here we study the electron transport in the normal state of the periodic Anderson lattice by using the Keldysh nonequilibrium Green's function technique. In addition to the well-known Fano interference between the conduction and f -electron channels, our results further reveal the effect of spatial interference between different spatial paths at the interface on the differential conductance and their interesting interplay with the band features such as the hybridization gap and the Van Hove singularity. We find that the spatial interference leads to a weighted average in the momentum space for the electron transport and could cause suppression of the electronic band features under certain circumstances. In particular, it reduces the capability of probing the f -electron spectral weight near the edges of the hybridization gap for large interface depending on the Fermi surface of the lead. Our results indicate an intrinsic inefficiency of the point contact spectroscopy in probing the f electrons.
Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M
2015-11-01
A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300-500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered =-0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2 O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2 =39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10(-2) ∼10(-1) cm(2) V(-1) s(-1)) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Zhang, M. Y.; Chen, R. Y.; Dong, T.; Wang, N. L.
2017-04-01
YbInCu4 undergoes a first-order structural phase transition near Tv=40 K associated with an abrupt change of Yb valence state. We perform an ultrafast pump-probe measurement on YbInCu4 and find that the expected heavy-fermion properties arising from the c -f hybridization exist only in a limited temperature range above Tv. Below Tv, the compound behaves as a normal metal though a prominent hybridization energy gap is still present in the infrared measurement. We elaborate that those seemingly controversial phenomena could be well explained by assuming that the Fermi level suddenly shifts up and moves away from the flat f -electron band as well as the indirect hybridization energy gap in the intermediate valence state below Tv.
NASA Astrophysics Data System (ADS)
Wu, Zong-Kwei J.
2006-12-01
Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.
NASA Astrophysics Data System (ADS)
Hull, A. J.; Scudder, J. D.; Fitzenreiter, R. J.; Ogilvie, K. W.; Newbury, J. A.; Russell, C. T.
We present a survey of the trends between the electron temperature increase ΔTe and the de Hoffmann-Teller frame (HTF) electrostatic potential jump ΔΦHT and their correlation with other parameters that characterize the shock transition using a new ISEE 1 database of 129 Earth bow shock crossings. A fundamental understanding of the HTF potential is central to distinguishing the reversible and irreversible changes to electron temperature across collisionless shocks. The HTF potential is estimated using three different techniques: (1) integrating the steady state, electron fluid momentum equation across the shock layer using high time resolution plasma and field data from ISEE 1, (2) using the steady state, electron fluid energy equation, and (3) using an electron polytrope approximation. We find that ΔΦHT and ΔTe are strongly and positively correlated with |Δ(mpUn2/2)|, which is in good qualitative agreement with earlier experimental surveys [Thomsen et al., 1987b; Schwartz et al., 1988] that used bow shock model normals and used the flow in the spacecraft frame. There is a strong linear organization of the ΔTe with ΔΦHT, which suggests an average effective electron polytropic index of <γe>~2. In addition, ΔTe and ΔΦHT are organized by βe, although our results may be biased by our limited sampling of shock conditions. Comparisons indicate that the differentials in the HTF potential δΦHT are proportional to the differentials in the magnetic field intensity δB across the shock, with a proportionality constant κ that is a fixed constant for a given shock crossing.
NASA Astrophysics Data System (ADS)
Jawad, Enas A.
2018-05-01
In this paper, The Monte Carlo simulation program has been used to calculation the electron energy distribution function (EEDF) and electric transport parameters for the gas mixtures of The trif leoroiodo methane (CF3I) ‘environment friendly’ with a noble gases (Argon, Helium, kryptos, Neon and Xenon). The electron transport parameters are assessed in the range of E/N (E is the electric field and N is the gas number density of background gas molecules) between 100 to 2000Td (1 Townsend = 10-17 V cm2) at room temperature. These parameters, namely are electron mean energy (ε), the density –normalized longitudinal diffusion coefficient (NDL) and the density –normalized mobility (μN). In contrast, the impact of CF3I in the noble gases mixture is strongly apparent in the values for the electron mean energy, the density –normalized longitudinal diffusion coefficient and the density –normalized mobility. Note in the results of the calculation agreed well with the experimental results.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Carlson, R. W.
2007-12-01
The presence of hydrogen peroxide and condensed phase molecular oxygen on the surface of Europa is now well established [1,2] and laboratory experiments have repeatedly demonstrated the viability of various radiolytic processes for explaining the observations [see e.g. 3, 4]. To date, however, both the Europa observations and the laboratory work have been limited to only the upper few, or few tens of microns, of ice. The spectrum of charged particles incident on the surface of Europa penetrates deeper, and deposits energy over a much greater range, than any laboratory experiment has aimed to replicate [5, 6]. Here we present results from laboratory work on hydrogen peroxide production using energetic electrons (4 keV - 16 keV) and couple these results with a numerical model for the integrated steady-state density of hydrogen peroxide as a function of depth into the ice. Production rates and steady-state peroxide levels for a range of initial electron energies are used to generate functions for the number of peroxide molecules produced per initial electron as it penetrates through the ice. We examined the electron energy spectrum from 0.01 MeV to 10 MeV and accounted for electrons incident to the surface over the solid angle from cosine(theta) = 0.3-1.0, where theta is the angle from the normal to the surface. We found that, accounting for production and destruction as a function of energy deposition, steady-state hydrogen peroxide concentrations resulting from electron radiolysis likely increases by a factor of a few to an order of magnitude at a depth of a few hundred microns. In other words, the 0.13 percent by number abundance of peroxide observed by NIMS [1] may be a low-end value; at depth the peroxide concentration could increase to a few percent by number relative to water. [1] Carlson et al. 1999. [2] Spencer and Calvin, 2002. [3] Moore and Hudson, 2000. [4] Loeffler et al., 2006. [5] Cooper et al., 2001 [6] Paranicas et al., 2001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.; Bollinger, A. T.; He, X.
The origin of high-temperature superconductivity in copper oxides and the nature of the ‘normal’ state above the critical temperature are widely debated. In underdoped copper oxides, this normal state hosts a pseudogap and other anomalous features; and in the overdoped materials, the standard Bardeen–Cooper–Schrieffer description fails, challenging the idea that the normal state is a simple Fermi liquid. To investigate these questions, we have studied the behaviour of single-crystal La 2–xSr xCuO 4 films through which an electrical current is being passed. Here we report that a spontaneous voltage develops across the sample, transverse (orthogonal) to the electrical current. The dependence of this voltage on probe current, temperature, in-plane device orientation and doping shows that this behaviour is intrinsic, substantial, robust and present over a broad range of temperature and doping. If the current direction is rotated in-plane by an anglemore » $$\\phi$$, the transverse voltage oscillates as sin(2$$\\phi$$), breaking the four-fold rotational symmetry of the crystal. The amplitude of the oscillations is strongly peaked near the critical temperature for superconductivity and decreases with increasing doping. We find that these phenomena are manifestations of unexpected in-plane anisotropy in the electronic transport. The films are very thin and epitaxially constrained to be tetragonal (that is, with four-fold symmetry), so one expects a constant resistivity and zero transverse voltage, for every $$\\phi$$. The origin of this anisotropy is purely electronic—the so-called electronic nematicity. Unusually, the nematic director is not aligned with the crystal axes, unless a substantial orthorhombic distortion is imposed. The fact that this anisotropy occurs in a material that exhibits high-temperature superconductivity may not be a coincidence.« less
Spontaneous breaking of rotational symmetry in copper oxide superconductors
Wu, J.; Bollinger, A. T.; He, X.; ...
2017-07-26
The origin of high-temperature superconductivity in copper oxides and the nature of the ‘normal’ state above the critical temperature are widely debated. In underdoped copper oxides, this normal state hosts a pseudogap and other anomalous features; and in the overdoped materials, the standard Bardeen–Cooper–Schrieffer description fails, challenging the idea that the normal state is a simple Fermi liquid. To investigate these questions, we have studied the behaviour of single-crystal La 2–xSr xCuO 4 films through which an electrical current is being passed. Here we report that a spontaneous voltage develops across the sample, transverse (orthogonal) to the electrical current. The dependence of this voltage on probe current, temperature, in-plane device orientation and doping shows that this behaviour is intrinsic, substantial, robust and present over a broad range of temperature and doping. If the current direction is rotated in-plane by an anglemore » $$\\phi$$, the transverse voltage oscillates as sin(2$$\\phi$$), breaking the four-fold rotational symmetry of the crystal. The amplitude of the oscillations is strongly peaked near the critical temperature for superconductivity and decreases with increasing doping. We find that these phenomena are manifestations of unexpected in-plane anisotropy in the electronic transport. The films are very thin and epitaxially constrained to be tetragonal (that is, with four-fold symmetry), so one expects a constant resistivity and zero transverse voltage, for every $$\\phi$$. The origin of this anisotropy is purely electronic—the so-called electronic nematicity. Unusually, the nematic director is not aligned with the crystal axes, unless a substantial orthorhombic distortion is imposed. The fact that this anisotropy occurs in a material that exhibits high-temperature superconductivity may not be a coincidence.« less
Rectification of electronic heat current by a hybrid thermal diode.
Martínez-Pérez, Maria José; Fornieri, Antonio; Giazotto, Francesco
2015-04-01
Thermal diodes--devices that allow heat to flow preferentially in one direction--are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection and quantum information, or in emerging fields such as phononics and coherent caloritronics. However, both in terms of phononic and electronic heat conduction (the latter being the focus of this work), their experimental realization remains very challenging. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07-1.4 has been reported in phononic devices, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we calculate the pitch-angle diffusion coefficients using the typical wave normal distributions obtained from our self-consistent ring current-EMIC wave model, and try to quantify the effect of EMIC wave normal angle characteristics on relativistic electron scattering.
Angular particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1985-01-01
Scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluorethylene (PTFE), and ultra-high-molecular-weight polyethylene (UHMWPE). Erosion was caused by a jet of angular microparticles of crushed glass at normal incidence. Material built up above the original surface on all of the materials. As erosion progressed, this buildup disappeared. UHMWPE was the most resistant material and PMMA the least. The most favorable properties for high erosion resistance were high values of ultimate elongation, maximum service temperature, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibited incubation, acceleration, and steady-state periods. PMMA also exhibited a deceleration period, and an incubation period with deposition was observed for UHMWPE.
NASA Astrophysics Data System (ADS)
Ghadiri, Hassan; Saffarzadeh, Alireza
2018-03-01
Low-energy coherent transport and a Goos-Hänchen (GH) lateral shift of valley electrons in planar heterojunctions composed of normal MoS2 and ferromagnetic WS2 monolayers are theoretically investigated. Two types of heterojunctions in the forms of WS2/MoS2/WS2 (type-A) and MoS2/WS2/MoS2 (type-B) with incident electrons in the MoS2 region are considered in which the lateral shift of electrons is induced by band alignments of the two constituent semiconductors. It is shown that the type-A heterojunction can act as an electron waveguide due to electron confinement between the two WS2/MoS2 interfaces which cause the incident electrons with an appropriate incidence angle to propagate along the interfaces. In this case, the spin- and valley-dependent GH shifts of totally reflected electrons from the interface lead to separated electrons with distinct spin-valley indexes after traveling a sufficiently long distance. In the type-B heterojunction, however, transmission resonances occur for incident electron beams passing through the structure, and large spin- and valley-dependent lateral shift values in propagating states can be achieved. Consequently, the transmitted electrons are spatially well-separated into electrons with distinct spin-valley indexes. Our findings reveal that the planar heterojunctions of transition metal dichalcogenides can be utilized as spin-valley beam filters and/or splitters without external gating.
Plasma levels of coenzyme Q10 in children with hyperthyroidism.
Menke, Thomas; Niklowitz, Petra; Reinehr, Thomas; de Sousa, Gideon John; Andler, Werner
2004-01-01
In hyperthyroidism, increased oxygen consumption and free radical production in the stimulated respiratory chain leads to oxidative stress. Apart from its antioxidative function, coenzyme Q10 (CoQ10) is involved in electron transport in the respiratory chain. The aim of this study was to determine whether there is a correlation between an increased respiratory chain activity and the state of CoQ10 in children with hyperthyroidism. The CoQ10 plasma concentration was measured by high-performance liquid chromatography in 12 children with hyperthyroidism before and after treatment. In the hyperthyroid state, the plasma level of CoQ10 was significantly decreased in comparison with the level in the euthyroid state. The correction of the hyperthyroid state resulted in a normalization of the CoQ10 level. Plasma CoQ10 deficiency appears to be related to the stimulated respiratory chain activity in children with hyperthyroidism. Copyright 2004 S. Karger AG, Basel
Josephson supercurrent through a topological insulator surface state.
Veldhorst, M; Snelder, M; Hoek, M; Gang, T; Guduru, V K; Wang, X L; Zeitler, U; van der Wiel, W G; Golubov, A A; Hilgenkamp, H; Brinkman, A
2012-02-19
The long-sought yet elusive Majorana fermion is predicted to arise from a combination of a superconductor and a topological insulator. An essential step in the hunt for this emergent particle is the unequivocal observation of supercurrent in a topological phase. Here, direct evidence for Josephson supercurrents in superconductor (Nb)-topological insulator (Bi(2)Te(3))-superconductor electron-beam fabricated junctions is provided by the observation of clear Shapiro steps under microwave irradiation, and a Fraunhofer-type dependence of the critical current on magnetic field. Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a topologically non-trivial two-dimensional surface state. This surface state is attributed to mediate the ballistic Josephson current despite the fact that the normal state transport is dominated by diffusive bulk conductivity. The lateral Nb-Bi(2)Te(3)-Nb junctions hence provide prospects for the realization of devices supporting Majorana fermions.
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...
2016-11-07
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Shooting quasiparticles from Andreev bound states in a superconducting constriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riwar, R.-P.; Houzet, M.; Meyer, J. S.
2014-12-15
A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetrymore » of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.« less
Lattice-matched heterojunctions between topological and normal insulators: A first-principles study
NASA Astrophysics Data System (ADS)
Lee, Hyungjun; Yazyev, Oleg V.
2017-02-01
Gapless boundary modes at the interface between topologically distinct regions are one of the most salient manifestations of topology in physics. Metallic boundary states of time-reversal-invariant topological insulators (TIs), a realization of topological order in condensed matter, have been of much interest not only due to such a fundamental nature, but also due to their practical significance. These boundary states are immune to backscattering and localization owing to their topological origin, thereby opening up the possibility to tailor them for potential uses in spintronics and quantum computing. The heterojunction between a TI and a normal insulator (NI) is a representative playground for exploring such a topologically protected metallic boundary state and expected to constitute a building block for future electronic and spintronic solid-state devices based on TIs. Here, we report a first-principles study of two experimentally realized lattice-matched heterojunctions between TIs and NIs, Bi2Se3 (0001)/InP(111) and Bi2Te3 (0001)/BaF2(111). We evaluate the band offsets at these interfaces from many-body perturbation theory within the G W approximation as well as density-functional theory. Furthermore, we investigate the topological interface states, demonstrating that at these lattice-matched heterointerfaces, they are strictly localized and their helical spin textures are as well preserved as those at the vacuum-facing surfaces. These results taken together may help in designing devices relying on spin-helical metallic boundary states of TIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waidyawansa, Dinayadura Buddhini
2013-08-01
The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least threemore » orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.« less
Parallel Quantum Circuit in a Tunnel Junction
NASA Astrophysics Data System (ADS)
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-25
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).
Structural fluctuation governed dynamic diradical character in pentacene.
Yang, Hongfang; Chen, Mengzhen; Song, Xinyu; Bu, Yuxiang
2015-06-07
We unravel intriguing dynamical diradical behavior governed by structural fluctuation in pentacene using ab initio molecular dynamics simulation. In contrast to static equilibrium configuration of pentacene with a closed-shell ground state without diradical character, due to structural fluctuation, some of its dynamical snapshot configurations exhibit an open-shell broken-symmetry singlet ground state with diradical character, and such diradical character presents irregular pulsing behavior in time evolution. Not all structural changes can lead to diradical character, only those involving the shortening of cross-linking C-C bonds and variations of the C-C bonds in polyacetylene chains are the main contributors. This scenario about diradicalization is distinctly different from that in long acenes. The essence is that structural distortion cooperatively raises the HOMO and lowers the LUMO, efficiently reducing the HOMO-LUMO and singlet-triplet energy gaps, which facilitate the formation of a broken-symmetry open-shell singlet state. The irregular pulsing behavior originates from the mixing of normal vibrations in pentacene. This fascinating behavior suggests the potential application of pentacene as a suitable building block in the design of new electronic devices due to its magnetism-controllability through energy induction. This work provides new insight into inherent electronic property fluctuation in acenes.
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
NASA Astrophysics Data System (ADS)
Yarman, Tolga; Yarman, Faruk; Ozaydin, Fatih
2003-05-01
The first author has previously shown the following [1]: Theorem 1: In a ``real" atomic or molecular wave-like description (i.e. a description embodying potential energy terms, in only Coulombian form), if different masses involved by the object are all over multiplied by the arbitrary number C, then the size of space R in which this object is installed, shrinks as much, and the total energy E of the object, is increased as much. We shall call M, the characteristic mass, a compound mass carrying the labour delineated by the internal motion of the object in hand. Since this is a mass, multiplying all of the different particles masses taking place in the object by C, makes it that M too is multiplied by C. This leads Theorem 2, as well as Theorem 3. Theorem 2: For any real wave like object, the product EMR^2 remains invariant, were M multiplied by the arbitrary number C. Theorem 3: The quantity EMR^2 is strapped to h^2. Thus, EMR^2 ˜ h^2 (1). Herein, we consider the cast EMR^2 , along the Born and Oppenheimer (B and O) Approximation [2], applied to the Schrodinger description of a diatomic molecule. It is known that, through the B and O Approximation, the nuclei motion of a diatomic molecule on the one hand, and the electronic motion associated with it on the other hand, can be handled through separate descriptions. In this work we are interested in only the electronic motion, for which the Schrodinger equation embodies only one mass, that of the electron mass; furthermore the overall potential energy input to this equation is made of just Coulomb potential energy terms, which makes that the description of concern is a real one. Thus Eq.(1), for the electronic motion of the bond in consideration, becomes 8π^2Emg_(in)R=n_in_jh^2 (2) ; m is the electron mass (here playing the role of the characteristic mass); E is the magnitude of the electronic energy of the molecule in hand, at the given state, and R the internuclear distance of the molecule at this state; ni and nj are the principal quantum numbers to be associated with the bond electrons; g_in usually around unity, is a coefficient insuring the equality; since it purely depends on the electronic configuration, it is expected to remain the same for excited levels configured similarly. Let N= n_inj (3), since we will have to deal with only the product of the quantum numbers coming into play. We show elsewhere that, for excited electronic states of a given molecule bearing an electronic configuration similar to that displayed by the ground state, we have [3] N=R/R0 (4), where R is the internuclear distance of the bond at the excited electronic level in consideration, and R0 the internuclear distance the bond assumes at the ground level. E is normally given as E=E0 - Te (5), where E0 is the magnitude of the ground state electronic energy of the molecule, and Te a tabulated quantity. Eq.(2) then becomes T_e=E0 - n_in_jh^2/(8π^2mg_inR) (6). For electronic states configured like the ground state, we expect the coefficient g_in, to remain practically the same. Thence the plot of Te for these states versus 1/R should come out as a decreasing straight line; it indeed does. The intersection of this straight line with the Te axis, furnishes E_0, the ground state electronic energy, and the slope of it furnishes the coefficient g_in. Note that Eq.(6) is valid for any diatomic molecule. We check this equation, on the basis of H_2, the only molecule providing us with sufficient amount of data. Thus out of some twenty pairs of electronic data, for which g_in is practically the same as that of the ground state, we have drawn Te versus the inverse of the corresponding internuclear distance, to obtain a nicely decreasing straight straight line, whose intersection with the axis of Te satisfactorily furnishes ˜ 31 ev. [1] T. Yarman, A New Approach to the Architecture of Diatomic Molecules, DAMOP 2001 Meeting, APS, May 16-19, 2001, London, Ontario, Canada. [2] Born and Oppenheimer, Ann. Physik, 84, 457 (1927). [3] T. Yarman, Quantum Numbers Related to Excited States of Complex Structures, APS Meeting, April 5-8, Philadelphia, USA
Freeze Tape Cast Thick Mo Doped Li 4Ti 5O 12 Electrodes for Lithium-Ion Batteries
Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit; ...
2017-08-30
Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less
Nuclear quantum effects on adsorption of H 2 and isotopologues on metal ions
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; ...
2017-01-03
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of Hmore » $$_2$$ and isotopologues on metal ions, are examined in this study using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. To estimate for the anharmonicity, a nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) have been employed for complexes of Li$^+$ and Cu$$^{+2}$$ with H$$_2$$, D$$_2$$, HD. The dynamics analysis shows that incorporation of the PES anharmonicity changes the ZPE by up to 9%. Finally, the lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions.« less
Hidden One-Dimensional Electronic Structure of η-Mo_4O_11
NASA Astrophysics Data System (ADS)
Gweon, G.-H.; Mo, S.-K.; Allen, J. W.; Höchst, H.; Sarrao, J. L.; Fisk, Z.
2002-03-01
η-Mo_4O_11 is a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K, and is unique in showing a bulk quantum Hall effect. Research so far indicates that this material has a ``hidden one-dimensional'' (hidden-1d) Fermi surface (FS) in the normal state (T > 109 K), whose nesting property drives the 109 K CDW formation. Here, we directly confirm this picture by angle resolved photoemission spectroscopy (ARPES). We also observe a gap opening associated with the 109 K transition. Most interesting, this material shows the same ARPES line shape anomalies that suggest electron fractionalization in other hidden-1d materials like NaMo_6O_17 and KMo_6O_17. Studies of the 30 K transition are in progress.
NASA Astrophysics Data System (ADS)
Karkut, M. G.; Hake, R. R.
1983-08-01
Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio < ea > in the range 5.05<=< ea ><=6.40 in fair agreement with previous results for these systems and contrary to the Tc vs < ea > behavior of both amorphous and crystalline transition-metal alloys formed between near neighbors in the Periodic Table. Upper-critical-field and normal-state electrical resistivity measurements suggest that the molar electronic specific-heat coefficient γm decreases with x in parallel with Tc in the Zr1-xCox and Zr1-xNix series. In the equal-< ea > (Zr1-xTix)0.78Ni0.22 system, Tc decreases with x; in the (Zr1-xNbx)0.78Ni0.22 system, Tc first increases and then decreases with x (hence with < ea >). These diverse < ea > dependencies of Tc appear consistent with the ultraviolet-photoemission-spectroscopy indicated split-band model of such amorphous transition-metal alloys and the associated idea that the alloying dependence of Tc cannot be described by general Tc vs < ea > rules.
Hundt, P. Morten; van Reijzen, Maarten E.; Beck, Rainer D.; ...
2017-02-07
Quantum state resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH 4 on Ni(111). IR-IR double resonance excitation in a molecular beam was used to prepare CH 4 in three different vibrational symmetry components A 1, E, and F 2 of the 2ν 32 antisymmetric stretch overtone vibration as well as in the ν1+ν3 symmetric plus antisymmetric C-H stretch combination band of F 2 symmetry. We measured the quantum state specific dissociation probability S 0 (sticking coefficient) for each of the four vibrational states by detecting chemisorbed carbon on Ni(111)more » as the product of CH 4 dissociation by Auger electron spectroscopy. We also observe strong mode specificity, where S 0 for the most reactive state ν 1+ν 3 is an order of magnitude higher than for the least reactive, more energetic 2ν 3-E state. Our first principles quantum scattering calculations show that as molecules in the ν1 state approach the surface, the vibrational amplitude becomes localized on the reacting C-H bond, making them very reactive. We found that this behavior results from the weakening of the reacting C-H bond as the molecule approaches the surface, decoupling its motion from the three non-reacting C-H stretches. Similarly, we find that overtone normal mode states with more ν 1 character are more reactive: S 0(2ν 1) > S 0(ν 1+ν 3) > S 0(2ν 3). The 2ν 3 eigenstates excited in the experiment can be written as linear combinations of these normal mode states. The highly reactive 2ν 1 and ν 1+ν 3 normal modes, being of A 1 and F 2 symmetry, can contribute to the 2ν 3-A 1 and 2ν 3-F 2 eigenstates, respectively, boosting their reactivity over the E component, which contains no ν 1 character due to symmetry.« less
Manahan, Grace G.; Habib, A. F.; Scherkl, P.; ...
2017-06-05
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m –1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wavemore » can be locally overloaded without compromising the witness bunch normalized emittance. Here, this reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.« less
The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
Qi, Jing Shan; Huang, Jian Yu; Feng, Ji; Shi, Da Ning; Li, Ju
2011-05-24
Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor-metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments.
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige
2015-04-10
Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.
Yost, Andrew J.; Pimachev, Artem; Ho, Chun -Chih; ...
2016-10-10
Scanning tunneling microscopy is utilized to investigate the local density of states of a CH 3NH 3PbI 3-xCl x perovskite in cross-sectional geometry. Two electronic phases, 10-20 nm in size, with different electronic properties inside the CH 3NH 3PbI 3-xCl x perovskite layer are observed by the dI/ dV mapping and point spectra. A power law dependence of the dI/dV point spectra is revealed. In addition, the distinct electronic phases are found to have preferential orientations close to the normal direction of the film surface. Density functional theory calculations indicate that the observed electronic phases are associated with local deviationmore » of I/Cl ratio, rather than different orientations of the electric dipole moments in the ferroelectric phases. Furthermore, by comparing the calculated results with experimental data we conclude that phase A (lower contrast in dI/dV mapping at -2.0 V bias) contains a lower I/Cl ratio than that in phase B (higher contrast in dI/dV).« less
Pulse length of ultracold electron bunches extracted from a laser cooled gas
Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.
2017-01-01
We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879
Spherical microglass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Buckley, D. H.
1984-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe
Kothapalli, K.; Bohmer, A. E.; Jayasekara, W. T.; ...
2016-09-01
A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mossbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures ≳1.7 GPa, reminiscentmore » of what has been found for the evolution of these transitions in the prototypical system Ba(Fe 1–xCo x) 2As 2. Lastly, our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors.« less
A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency.
Boitier, E; Degoul, F; Desguerre, I; Charpentier, C; François, D; Ponsot, G; Diry, M; Rustin, P; Marsac, C
1998-01-01
We report severe coenzyme Q10 deficiency of muscle in a 4-year-old boy presenting with progressive muscle weakness, seizures, cerebellar syndrome, and a raised cerebro-spinal fluid lactate concentration. State-3 respiratory rates of muscle mitochondria with glutamate, pyruvate, palmitoylcarnitine, and succinate as respiratory substrates were markedly reduced, whereas ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine were oxidized normally. The activities of complexes I, II, III and IV of the electron transport chain were normal, but the activities of complexes I+III and II+III, both systems requiring coenzyme Q10 as an electron carrier, were dramatically decreased. These results suggested a defect in the mitochondrial coenzyme Q10 content. This was confirmed by the direct assessment of coenzyme Q10 level by high-performance liquid chromatography in patient's muscle homogenate and isolated mitochondria, revealing levels of 16% and 6% of the control values, respectively. We did not find any impairment of the respiratory chain either in a lymphoblastoid cell line or in skin cultured fibroblasts from the patient, suggesting that the coenzyme Q10 depletion was tissue-specific. This is a new case of a muscle deficiency of mitochondrial coenzyme Q in a patient suffering from an encephalomyopathy.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.
2018-03-01
We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.
Anisotropic Magnus Force in Type-II Superconductors with Planar Defects
NASA Astrophysics Data System (ADS)
Monroy, Ricardo Vega; Gomez, Eliceo Cortés
2015-02-01
The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.
Heat capacity and transport measurements in sputtered niobium-zirconium multilayers
NASA Astrophysics Data System (ADS)
Broussard, P. R.; Mael, D.
1989-08-01
We have studied the electrical resistivity and heat capacity for multilayers of niobium and zirconium prepared by magnetron sputtering for values of the bilayer period Λ varying from 4 to 950 Å. We find a transition in the thermal part of the resistivity that correlates with the coherent-to-incoherent transition seen in earlier work. The heat capacity data for the normal state show anomalous behavior for both the electronic coefficient γ and the Debye temperature. We also study the variation in Tc and the jump in the specific heat.
NASA Astrophysics Data System (ADS)
Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.
2018-05-01
Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.
Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol
NASA Astrophysics Data System (ADS)
Nelson, Daniel J.; Gichuhi, Wilson K.; Miller, Elisa M.; Lehman, Julia H.; Lineberger, W. Carl
2017-02-01
The anion photoelectron spectra of ortho-, meta-, and para-methylphenoxide, as well as methyl deprotonated meta-methylphenol, were measured. Using the Slow Electron Velocity Map Imaging technique, the Electron Affinities (EAs) of the o-, m-, and p-methylphenoxyl radicals were measured as follows: 2.1991±0.0014, 2.2177±0.0014, and 2.1199±0.0014 eV, respectively. The EA of m-methylenephenol was also obtained, 1.024±0.008 eV. In all four cases, the dominant vibrational progressions observed are due to several ring distortion vibrational normal modes that were activated upon photodetachment, leading to vibrational progressions spaced by ˜500 cm-1. Using the methylphenol O-H bond dissociation energies reported by King et al. and revised by Karsili et al., a thermodynamic cycle was constructed and the acidities of the methylphenol isomers were determined as follows: Δa c i dH298K 0=348.39 ±0.25 , 348.82±0.25, 350.08±0.25, and 349.60±0.25 kcal/mol for cis-ortho-, trans-ortho-, m-, and p-methylphenol, respectively. The excitation energies for the ground doublet state to the lowest excited doublet state electronic transition in o-, m-, and p-methylphenoxyl were also measured as follows: 1.029±0.009, 0.962±0.002, and 1.029±0.009 eV, respectively. In the photoelectron spectra of the neutral excited states, C-O stretching modes were excited in addition to ring distortion modes. Electron autodetachment was observed in the cases of both m- and p-methylphenoxide, with the para isomer showing a lower photon energy onset for this phenomenon.
Theory of optical transitions in conjugated polymers. I. Ideal systems.
Barford, William; Marcus, Max
2014-10-28
We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑(n)|Ψ(n)|(4))(-1), where Ψ(n) is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F(0v)(N) = S(N)(v)exp ( - S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F00(N) and F01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is mixing of the electronic and nuclear states and a partial breakdown of the Born-Oppenheimer approximation, meaning that the ratio of the 0 - 0 to 0 - 1 absorption intensities no longer increases as fast as the IPR. When ℏω/J = 0.1, a value applicable to phenyl-based polymers, the critical value of N is ~20 monomers.
Theory of optical transitions in conjugated polymers. I. Ideal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barford, William, E-mail: william.barford@chem.ox.ac.uk; Marcus, Max; Magdalen College, University of Oxford, Oxford OX1 4AU
We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive anmore » expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑{sub n}|Ψ{sub n}|{sup 4}){sup −1}, where Ψ{sub n} is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F{sub 0v}(N) = S(N){sup v}exp ( − S(N))/v! for the vth vibronic manifold. We show that the 0 − 0 and 0 − 1 optical intensities are proportional to F{sub 00}(N) and F{sub 01}(N), respectively, and thus the ratio of the 0 − 1 to 0 − 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is mixing of the electronic and nuclear states and a partial breakdown of the Born-Oppenheimer approximation, meaning that the ratio of the 0 − 0 to 0 − 1 absorption intensities no longer increases as fast as the IPR. When ℏω/J = 0.1, a value applicable to phenyl-based polymers, the critical value of N is ∼20 monomers.« less
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-09-01
The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Loppnow, G R; Mathies, R A
1988-01-01
Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates. PMID:3416032
Topological transitions in continuously deformed photonic crystals
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Wang, Hai-Xiao; Xu, Changqing; Lai, Yun; Jiang, Jian-Hua; John, Sajeev
2018-02-01
We demonstrate that multiple topological transitions can occur, with high sensitivity, by continuous change of the geometry of a simple two-dimensional dielectric-frame photonic crystal consisting of circular air holes. By changing the radii of the holes and/or the distance between them, multiple transitions between normal and topological photonic band gaps (PBGs) can appear. The time-reversal symmetric topological PBGs resemble the quantum spin Hall insulator of electrons and have two counterpropagating edge states. We search for optimal topological transitions, i.e., sharp transitions sensitive to the geometry, and optimal topological PBGs, i.e., large PBGs with a clean spectrum of edge states. Such optimizations reveal that dielectric-frame photonic crystals are promising for optical sensors and unidirectional waveguides.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
Tunable Electronic and Topological Properties of Germanene by Functional Group Modification
Ren, Ceng-Ceng; Zhang, Shu-Feng; Ji, Wei-Xiao; Zhang, Chang-Wen; Li, Ping; Wang, Pei-Ji
2018-01-01
Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3) at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC), all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3) is a normal insulator and strain leads to a phase transition to a topological insulator (TI) phase. However, GeX (X = F, OH) becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics. PMID:29509699
Villa, R F; Gorini, A; Hoyer, S
2006-11-01
The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.
Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light.
Landsman, A S; Hofmann, C; Pfeiffer, A N; Cirelli, C; Keller, U
2013-12-27
We present experimental data that show significant deviations from theoretical predictions for the location of the center of the electron momenta distribution at low values of ellipticity ε of laser light. We show that these deviations are caused by significant Coulomb focusing along the minor axis of polarization, something that is normally neglected in the analysis of electron dynamics, even in cases where the Coulomb correction is otherwise taken into account. By investigating ellipticity-resolved electron momenta distributions in the plane of polarization, we show that Coulomb focusing predominates at lower values of ellipticity of laser light, while Coulomb asymmetry becomes important at higher values, showing that these two complementary phenomena can be used to probe long-range Coulomb interaction at all polarizations of laser light. Our results suggest that both the breakdown of Coulomb focusing and the onset of Coulomb asymmetry are linked to the disappearance of Rydberg states with increasing ellipticity.
Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis
2014-08-25
High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The electronic emission spectrum of methylnitrene
NASA Astrophysics Data System (ADS)
Carrick, P. G.; Engelking, P. C.
1984-08-01
The à 3E-X˜ 3A2ultraviolet emission spectrum of methylnitrene (CH3N) was obtained in two ways: (1) by reacting methylazide (CH3N3) with metastable N2 in a flowing afterglow; and (2) by discharging a mixture of methylazide (CH3N3) and helium in a corona excited supersonic expansion (CESE). The origin appears at T0=31 811 cm-1. Several vibrational progressions were observed leading to the determination of a number of vibrational frequencies: v″1=2938, v■2=1350, v″3=1039, v■4=3065, and v″6=902 cm-1. Deuterium substitution confirmed the assignments of the vibrational frequencies. The X˜ 3A2 state is a normal, bound local minimum on the triplet electronic potential surface, and the upper à 3E state is able to support at least one quantum of vibration, assigned to v3, predominantly a C-N stretch. A comparison of flowing afterglow hollow cathode discharge sources and corona excited supersonic expansion sources shows the advantage of the CESE method of radical production for spectroscopy.
Electronic properties and optical absorption of a phosphorene quantum dot
NASA Astrophysics Data System (ADS)
Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.
2018-03-01
Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.
Shock Radiation Tests for Saturn and Uranus Entry Probes
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Bogdanoff, David W.
2017-01-01
This paper describes a test series in the Electric Arc Shock Tube at NASA Ames Research Center with the objective of quantifying shock-layer radiative heating magnitudes for future probe entries into Saturn and Uranus atmospheres. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11 by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 kms. No shock layer radiation is detected within measurement limits below 25 kms, a finding consistent with predictions for Uranus entries. Between 25-30 kms, radiance is quantified from the Vacuum Ultraviolet through Near Infrared, with focus on the Lyman-a and Balmer series lines of Hydrogen. Shock profiles are analyzed for electron number density and electronic state distribution. The shocks do not equilibrate over several cm, and in many cases the state distributions are non-Boltzmann. Radiation data are compared to simulations of Decadal Survey entries for Saturn and shown to be as much as 8x lower than predicted with the Boltzmann radiation model. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length.
Band structure of the quasi two-dimensional purple molybdenum bronze
NASA Astrophysics Data System (ADS)
Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.
2006-09-01
The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.
Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E
2015-08-04
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
Planar Tunneling Spectroscopy of Graphene Nanodevices
NASA Astrophysics Data System (ADS)
Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.
Superconducting gap structure in the electron doped BiS2-based superconductor
NASA Astrophysics Data System (ADS)
Bhattacharyya, A.; Adroja, D. T.; Hillier, A. D.; Jha, R.; Awana, V. P. S.; Strydom, A. M.
2017-07-01
The influence of electron doping on semimetallic SrFBiS2 has been investigated by means of resistivity, zero and transverse - field (ZF/TF) muon spin relaxation/rotation (μSR) experiments. SrFBiS2 is semimetallic in its normal state and small amounts of La doping results in bulk superconductivity at 2.8 K, at ambient pressure. The temperature dependence of the superfluid density as determined by TF-μSR can be best modelled by an isotropic s - wave type superconducting gap. We have estimated the magnetic penetration depth {λL}(0)=1087 nm, superconducting carrier density {{n}s}=3.7× {{10}26} carriers m-3 and effective-mass enhancement m * = 1.558 m e. Additionally, there is no clear sign of the occurrence of spontaneous internal magnetic fields below {{T}\\mathbf{c}} , which implies that the superconducting state in this material can not be categorized by the broken time-reversal symmetry which is in agreement with the previous theoretical prediction.
Wang, Jinghui; Zhong, Ruidan; Li, Shichao; ...
2015-01-05
We have performed systematic resistivity and inelastic neutron scattering measurements on Fe₀.₉₈₋ zNi zTe₀.₅Se₀.₅ samples to study the impact of Ni substitution on the transport properties and the low-energy (≤ 12 meV) magnetic excitations. It is found that, with increasing Ni doping, both the conductivity and superconductivity are gradually suppressed; in contrast, the low-energy magnetic spectral weight changes little. Comparing with the impact of Co and Cu substitution, we find that the effects on conductivity and superconductivity for the same degree of substitution grow systematically as the atomic number of the substituent deviates from that of Fe. The impact ofmore » the substituents as scattering centers appears to be greater than any contribution to carrier concentration. The fact that low-energy magnetic spectral weight is not reduced by increased electron scattering indicates that the existence of antiferromagnetic correlations does not depend on electronic states close to the Fermi energy.« less
Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures
NASA Astrophysics Data System (ADS)
Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.
2018-06-01
In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.
Cerezo, Javier; Santoro, Fabrizio
2016-10-11
Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.
Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells
NASA Astrophysics Data System (ADS)
Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu
2017-07-01
Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.
Zhang, Zhiyun; Wu, Yu-Sin; Tang, Kuo-Chun; Chen, Chi-Lin; Ho, Jr-Wei; Su, Jianhua; Tian, He; Chou, Pi-Tai
2015-07-08
A tailored strategy is utilized to modify 5,10-dimethylphenazine (DMP) to donor-acceptor type N,N'-disubstituted-dihydrodibenzo[a,c]phenazines. The representative compounds DMAC (N,N'-dimethyl), DPAC (N,N'-diphenyl), and FlPAC (N-phenyl-N'-fluorenyl) reveal significant nonplanar distortions (i.e., a saddle shape) and remarkably large Stokes-shifted emission independent of the solvent polarity. For DPAC and FlPAC with higher steric hindrance on the N,N'-substituents, normal Stokes-shifted emission also appears, for which the peak wavelength reveals solvent-polarity dependence. These unique photophysical behaviors are rationalized by electronic configuration coupled conformation changes en route to the geometry planarization in the excited state. This proposed mechanism is different from the symmetry rule imposed to explain the anomalously long-wavelength emission for DMP and is firmly supported by polarity-, viscosity-, and temperature-dependent steady-state and nanosecond time-resolved spectroscopy. Together with femtosecond early dynamics and computational simulation of the reaction energy surfaces, the results lead us to establish a sequential, three-step kinetics. Upon electronic excitation of N,N'-disubstituted-dihydrodibenzo[a,c]phenazines, intramolecular charge-transfer takes place, followed by the combination of polarization stabilization and skeletal motion toward the planarization, i.e., elongation of the π-delocalization over the benzo[a,c]phenazines moiety. Along the planarization, DPAC and FlPAC encounter steric hindrance raised by the N,N'-disubstitutes, resulting in a local minimum state, i.e., the intermediate. The combination of initial charge-transfer state, intermediate, and the final planarization state renders the full spectrum of interest and significance in their anomalous photophysics. Depending on rigidity, the N,N'-disubstituted-dihydrodibenzo[a,c]phenazines exhibit multiple emissions, which can be widely tuned from red to deep blue and even to white light generation upon optimization of the surrounding media.
Electron spectroscopy analysis
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.
Fast electron transfer through a single molecule natively structured redox protein
NASA Astrophysics Data System (ADS)
Della Pia, Eduardo Antonio; Chi, Qijin; MacDonald, J. Emyr; Ulstrup, Jens; Jones, D. Dafydd; Elliott, Martin
2012-10-01
The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent.The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent. Electronic supplementary information (ESI) available: Experimental methods, DNA and protein sequences, additional STM statistical analysis and images, electrochemical data and It-z data analysis. See DOI: 10.1039/c2nr32131a
The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle.
Cooke, Roger
2011-03-01
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.
Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach
NASA Astrophysics Data System (ADS)
Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver
2017-02-01
Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.
Energy absorption in cold inhomogeneous plasmas - The Herlofson paradox.
NASA Technical Reports Server (NTRS)
Crawford, F. W.; Harker, K. J.
1972-01-01
Confirmation of Barston's (1964) conclusions regarding the underlying mechanism of the Herlofson paradox by examining in detail several analytically tractable cases of delta-function and sinusoidal excitation. The effects of collisions and nonzero electron temperature in determining the steady state fields and dissipation are considered. Energy absorption without dissipation in plasmas is shown to be analogous to that occurring after application of a signal to a network of lossless resonant circuits. This analogy is pursued and is extended to cover Landau damping in a warm homogeneous plasma in which the resonating elements are the electron streams making up the velocity distribution. Some of the practical consequences of resonant absorption are discussed, together with a number of paradoxical plasma phenomena which can also be elucidated by considering a superposition of normal modes rather than a single Fourier component.
Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles
NASA Astrophysics Data System (ADS)
Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.
2015-11-01
MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.
Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens
NASA Technical Reports Server (NTRS)
Nealson, K. H.; Moser, D. P.; Saffarini, D. A.
1995-01-01
Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.
Potassium-intercalated H2Pc films: Alkali-induced electronic and geometrical modifications
NASA Astrophysics Data System (ADS)
Nilson, K.; Åhlund, J.; Shariati, M.-N.; Schiessling, J.; Palmgren, P.; Brena, B.; Göthelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Göthelid, M.; Mârtensson, N.; Puglia, C.
2012-07-01
X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In addition, the comparison of valence band photoemission spectra with the density functional theory calculations of the density of states of the H2Pc- anion indicates a filling of the formerly lowest unoccupied molecular orbital by charge transfer from the alkali. This is further confirmed by x-ray absorption spectroscopy (XAS) studies, which show a decreased density of unoccupied states. XAS measurements in different experimental geometries reveal that the molecules in the pristine film are standing upright on the surface or are only slightly tilted away from the surface normal but upon K intercalation, the molecular orientation is changed in that the tilt angle of the molecules increases.
Assessing Hypervalency in Iodanes.
Stirling, András
2018-02-01
The so-called hypervalent iodane compounds are very useful and versatile reactants and oxidizing agents in modern organic chemistry. The hypercoordinated central iodine in these compounds hints at a hypervalent state, which is often stressed to justify their reactivity. In this study a theoretical analysis of the electronic structure of a large, representative set of hypercoordinated iodane compounds has been carried out. We observed that the iodonium is not hypervalent in these compounds. In contrast, the analysis reveals a variation of the iodine valence state from a normal octet state to hypovalent depending on the ligands, but irrespective of the coordination number. On the basis of the calculations the reactivity of these compounds can be ascribed to the strong unquenched charge separation present in these molecules which represents a compromise between Coulomb interaction and the resistance of iodonium toward hypervalency. In extreme cases this leads to hypovalency and enhanced reactivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip
NASA Astrophysics Data System (ADS)
Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng
2018-03-01
The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577
The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
NASA Astrophysics Data System (ADS)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.
Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T
1976-04-01
Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.
NASA Astrophysics Data System (ADS)
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
Nitric oxide excited under auroral conditions: Excited state densities and band emissions
NASA Astrophysics Data System (ADS)
Cartwright, D. C.; Brunger, M. J.; Campbell, L.; Mojarrabi, B.; Teubner, P. J. O.
2000-09-01
Electron impact excitation of vibrational levels in the ground electronic state and nine excited electronic states in NO has been simulated for an IBC II aurora (i.e., ˜10 kR in 3914 Å radiation) in order to predict NO excited state number densities and band emission intensities. New integral electron impact excitation cross sections for NO were combined with a measured IBC II auroral secondary electron distribution, and the vibrational populations of 10 NO electronic states were determined under conditions of statistical equilibrium. This model predicts an extended vibrational distribution in the NO ground electronic state produced by radiative cascade from the seven higher-lying doublet excited electronic states populated by electron impact. In addition to significant energy storage in vibrational excitation of the ground electronic state, both the a 4Π and L2 Φ excited electronic states are predicted to have relatively high number densities because they are only weakly connected to lower electronic states by radiative decay. Fundamental mode radiative transitions involving the lowest nine excited vibrational levels in the ground electronic state are predicted to produce infrared (IR) radiation from 5.33 to 6.05 μm with greater intensity than any single NO electronic emission band. Fundamental mode radiative transitions within the a 4Π electronic state, in the 10.08-11.37 μm region, are predicted to have IR intensities comparable to individual electronic emission bands in the Heath and ɛ band systems. Results from this model quantitatively predict the vibrational quantum number dependence of the NO IR measurements of Espy et al. [1988].
Phenomenological characteristic of the electron component in gamma-quanta initiated showers
NASA Technical Reports Server (NTRS)
Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.
1985-01-01
The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.
FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†
Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki
2012-01-01
Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528
NASA Astrophysics Data System (ADS)
Khodas, M.; Levchenko, A.; Catelani, G.
2012-06-01
We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.
NASA Astrophysics Data System (ADS)
Barański, J.; Kobiałka, A.; Domański, T.
2017-02-01
We investigate the subgap spectrum and transport properties of the quantum dot on the interface between the metallic and superconducting leads and additionally side-coupled to the edge of the topological superconducting (TS) chain, hosting the Majorana quasiparticle. Due to the chiral nature of the Majorana states only one spin component of the quantum dot electrons (say \\uparrow ) is directly affected, however the proximity induced on-dot pairing transmits its influence on the opposite spin as well. We investigate the unique interferometric patterns driven by the Majorana quasiparticle that are different for each spin component. We also address the spin-sensitive interplay with the Kondo effect manifested at the same zero-energy and we come to the conclusion that quantum interferometry can unambiguously identify the Majorana quasiparticle.
Photonic topological insulator with broken time-reversal symmetry
He, Cheng; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yulin; Feng, Liang; Chen, Yan-Feng
2016-01-01
A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators. PMID:27092005
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Li, Wen
2016-03-01
We report state-resolved electron-momentum correlation measurement of strong-field nonsequential double ionization in benzene. With a novel coincidence detection apparatus, highly efficient triple coincidence (electron-electron dication) and quadruple coincidence (electron-electron-cation-cation) are used to resolve the final ionic states and to characterize three-dimensional (3D) electron-momentum correlation. The primary states associated with dissociative and nondissociative dications are assigned. A 3D momentum anticorrelation is observed for the electrons in coincidence with dissociative benzene dication states whereas such a correlation is absent for nondissociative dication states.
Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T
1992-01-01
In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Optimal plane-wave Hartree-Fock states for many-fermion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Llano, M.; Plastino, A.; Zabolitzky, J.G.
1979-12-01
The possibility of taking plane-wave orbitals of a Hartree-Fock determinant to fill k space differently from the ''normal'' Fermi sphere is investigated for several two-body potentials including the ''homework'' v/sub 0/, v/sub 1/, and v/sub 2/ - aken from the Reid nucleon-nucleon force - as well as a sum-of-Gaussians potential chosen to fit the deuteron binding and size. A random-search and random-walk numerical algorithm shows that, provided the potential strengths are made large enough, a single-shell ''abnormal'' occupation is always found to be lower in energy than the normal one if sufficient attraction is present in the two-body interaction. Nomore » abnormal occupation is possible for, among other pair interactions, the electron or charged-boson fluid, the repulsive square barrier, and a common form of the He-He interaction.« less
NASA Astrophysics Data System (ADS)
Schweitzer-Stenner, Reinhard; Stichternath, Andreas; Dreybrodt, Wolfgang; Jentzen, Walter; Song, Xing-Zhi; Shelnutt, John A.; Nielsen, Ole Faurskov; Medforth, Craig J.; Smith, Kevin M.
1997-08-01
We have measured the polarized Raman cross sections and depolarization ratios of 16 fundamental modes of nickel octaethyltetraphenylporphyrin in a CS2 solution for 16 fundamental modes, i.e., the A1g-type vibrations ν1, ν2, ν3, ν4, ν5, and φ8, the B1g vibrations ν11 and ν14, the B2g vibrations ν28, ν29, and ν30 and the antisymmetric A2g modes ν19, ν20, ν22, and ν23 as function of the excitation wavelength. The data cover the entire resonant regions of the Q- and B-bands. They were analyzed by use of a theory which describes intra- and intermolecular coupling in terms of a time-independent nonadiabatic perturbation theory [E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993)]. This approach explicitly accounts in a self-consistent way for multimode mixing with all Raman modes investigated. The vibronic coupling parameters obtained from this procedure were then used to successfully fit the vibronic side bands of the absorption spectrum and to calculate the resonance excitation profiles in absolute units. Our results show that the porphyrin macrocycle is subject to B2u-(saddling) and B1u-(ruffling) distortions which lower its symmetry to S4. Thus, evidence is provided that the porphyrin molecule maintains the nonplanar structure of its crystal phase in an organic solvent. The vibronic coupling parameters indicate a breakdown of the four-orbital model. This notion is corroborated by (ZINDO/S) calculations which reveal that significant configurational interaction occurs between the electronic transitions into |Q>- and |1B>-states and various porphyrin→porphyrin, metal→porphyrin, and porphyrin→metal transitions. The intrastate coupling parameters are used to estimate the excited electronic states' displacements along the normal coordinates with respect to the ground state and their contributions to the reorganization energy. It turns out that the |B>-state is predominantly affected by symmetric A1g-displacements, whereas the |Q>-state is subject to A2g, B1g, and B2g displacements of its equilibrium configuration. While the former is induced by the combined effect of ruffling and saddling, the latter arises from Jahn-Teller coupling within the degenerate states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeClair, L.R.; Trajmar, S.; Khakoo, M.A.
1996-05-01
We describe a crossed electron beam-atomic beam apparatus which utilizes a pulsed electron gun and field free drift tube to obtain time-of-flight (TOF) spectra of electrons scattered from atoms and molecules. This apparatus was constructed for the purpose of obtaining inelastic-to-elastic differential cross-section (DCS) ratios in the energy range extending from threshold to several eV above the threshold of the inelastic channel. The TOF approach eliminates the need for complicated calibration procedures required when using conventional electrostatic electron energy-loss spectroscopy (EELS) at these low energies. The characteristics of the apparatus will be given, along with representative TOF spectra from carbonmore » monoxide. From those spectra we obtained DCS ratios at 90{degree} scattering angle for excitation of the {ital a}{sup 3}{Pi} state of CO, in the impact energy range of 6{endash}15 eV. These ratios were measured with uncertainties as small as {plus_minus}4{percent}, which represents a substantial improvement over previous measurements in this energy range. This demonstrates the feasibility of using the TOF technique to measure DCS ratios which in turn can serve as secondary standards to normalize other inelastic DCSs obtained from measurements with EELS. {copyright} {ital 1996 American Institute of Physics.}« less
Li, Yuanzuo; Sun, Chaofan; Song, Peng; Ma, Fengcai; Yang, Yanhui
2017-02-17
A series of dyes, containing thiophene and thieno[3,2-b]thiophene as π-conjugated bridging units and six kinds of groups as electron acceptors, were designed for dye-sensitized solar cells (DSSCs). The ground- and excited-state properties of the designed dyes were investigated by using density functional theory (DFT) and time-dependent DFT, respectively. Moreover, the parameters affecting the short-circuit current density and open-circuit voltage were calculated to predict the photoelectrical performance of each dye. In addition, the charge difference density was presented through a three-dimensional (3D) real-space analysis method to investigate the electron-injection mechanism in the complexes. Our results show that the longer conjugated bridge would inhibit the intramolecular charge transfer, thereby affecting the photoelectrical properties of DSSCs. Similarly, owing to the lowest chemical hardness, largest electron-accepting ability, dipole moment (μnormal ) and the change in the energy of the TiO 2 conduction band (ΔECB ), the dye with a (E)-3-(4-(benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-2-cyanoacrylic acid (TCA) acceptor group would exhibit the most significant photoelectrical properties among the designed dyes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
New Developments in the Theory of HTSC [High Temperature Superconductors
DOE R&D Accomplishments Database
Abrikosov, A.A.
1994-09-01
The superconductor is supposed to consist of alternating layers of two kinds: (1) layers with an attractive electron interaction and an effective mass of usual magnitude, (2) layers without interaction and with a large effective mass. The overlap between the layers is assumed to be small, its energy, t, being much less than {Delta}. It is shown, that such a model explains the most peculiar property found in experiments on electronic Raman light scattering in BSCCO 2212: different threshold values for the Raman satellite measured at two different polarizations of the incident and scattered light. The tunneling conductance G(V)= dJ/dV is analyzed for the same model. In order to fit the qualitative features of experimental data, it is assumed that the tunneling probability to the normal layers is much less, than to the superconducting layers. The conductance is calculated for the case t{much_lt}{Delta}. A brief analysis is given for the case t{approximately}{Delta}, which proves that such an assumption definitely contradicts the experimental data for BSCCO. The possible nature of the electronic states in the normal layers is discussed. In connection with the experimental discovery (angle resolved photoemission spectroscopy, ARPES) of the extended saddle point singularities in the electron spectrum of a variety of HTSC consequences are derived for T{sub c} and {Delta} in a simple model. A large enhancement of superconductivity is possible if the singularity has a sufficient extension and is located close to the Fermi energy. In order to explain the anisotropy of the energy gap, observed in ARPES experiments, on the basis of the "extended saddle point singularities" an assumption is done that the Coulomb interactions are weakly screened, i.e. the Debye screening radius is much larger than the lattice period; this makes the electron interaction long ranged (E-L model).
Noise-induced transitions in a double-well oscillator with nonlinear dissipation.
Semenov, Vladimir V; Neiman, Alexander B; Vadivasova, Tatyana E; Anishchenko, Vadim S
2016-05-01
We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.
Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.
Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M
2010-07-01
Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the significant difference in shoot morphology.
Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy.
Bytautas, Laimutis; Henderson, Thomas M; Jiménez-Hoyos, Carlos A; Ellis, Jason K; Scuseria, Gustavo E
2011-07-28
We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction. © 2011 American Institute of Physics
Liouville master equation for multi-electron dynamics during ion-surface interactions
NASA Astrophysics Data System (ADS)
Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.
2003-05-01
We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.
Pawlowski, David R; Metzger, Daniel J; Raslawsky, Amy; Howlett, Amy; Siebert, Gretchen; Karalus, Richard J; Garrett, Stephanie; Whitehouse, Chris A
2011-03-16
Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.
Pawlowski, David R.; Metzger, Daniel J.; Raslawsky, Amy; Howlett, Amy; Siebert, Gretchen; Karalus, Richard J.; Garrett, Stephanie; Whitehouse, Chris A.
2011-01-01
Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism. PMID:21436885
Magnetism and the spin state in cubic perovskite CaCo O3 synthesized under high pressure
NASA Astrophysics Data System (ADS)
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; Yin, Yunyu; Wang, Xiao; Liu, Zhehong; Liu, Min; McGuire, Michael A.; Li, Xiang; Li, Zongyao; Jin, Changqing; Yang, Yifeng; Zhou, Jianshi; Long, Youwen
2017-07-01
Cubic SrCo O3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O3 (M =M4 + of transition metals, G e4 + , S n4 + , and Z r4 + ) at room temperature. This structural change narrows the bandwidth, so as to further enhance the Curie temperature as the crossover to the localized electronic state is approached. We report a successful synthesis of the perovskite CaCo O3 with a HPHT treatment. Surprisingly, CaCo O3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Metallic CaCo O3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t4e1 of C o4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t3e2 increases for T >100 K . The shortest Co-O bond length in cubic CaCo O3 is responsible for delocalizing electrons in the π*-band and itinerant-electron ferromagnetism at T <54 K . A comprehensive comparison between SrCo O3 and CaCo O3 and the justification of their physical properties by first-principles calculation have also been made in this report. Partially filled π* and σ* bands would make CaCo O3 suitable to study the Hund's coupling effect in a metal.
Diagnostic electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickersin, G.R.
1988-01-01
In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.
Intrinsically shunted Josephson junctions for electronics applications
NASA Astrophysics Data System (ADS)
Belogolovskii, M.; Zhitlukhina, E.; Lacquaniti, V.; De Leo, N.; Fretto, M.; Sosso, A.
2017-07-01
Conventional Josephson metal-insulator-metal devices are inherently underdamped and exhibit hysteretic current-voltage response due to a very high subgap resistance compared to that in the normal state. At the same time, overdamped junctions with single-valued characteristics are needed for most superconducting digital applications. The usual way to overcome the hysteretic behavior is to place an external low-resistance normal-metal shunt in parallel with each junction. Unfortunately, such solution results in a considerable complication of the circuitry design and introduces parasitic inductance through the junction. This paper provides a concise overview of some generic approaches that have been proposed in order to realize internal shunting in Josephson heterostructures with a barrier that itself contains the desired resistive component. The main attention is paid to self-shunted devices with local weak-link transmission probabilities that are so strongly disordered in the interface plane that transmission probabilities are tiny for the main part of the transition region between two super-conducting electrodes, while a small part of the interface is well transparent. We discuss the possibility of realizing a universal bimodal distribution function and emphasize advantages of such junctions that can be considered as a new class of self-shunted Josephson devices promising for practical applications in superconducting electronics operating at 4.2 K.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-11-01
Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Identifying the chiral d-wave superconductivity by Josephson φ0-states.
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-03-07
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ 0 -junction state where the current-phase relation is shifted by a phase φ 0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ 0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ 0 -states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ 0 - junction, which is useful in superconducting electronics and superconducting quantum computation.
Identifying the chiral d-wave superconductivity by Josephson φ0-states
Liu, Jun-Feng; Xu, Yong; Wang, Jun
2017-01-01
We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation. PMID:28266582
Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3
NASA Astrophysics Data System (ADS)
Hamid, A. S.
2009-12-01
We present the results of a first-principle full-potential linearized augmented plane wave (FLAPW) method to study the effect of defects on the electronic structure of SrTiO3. In addition, the relaxation of nearest neighbor atoms around those defects were calculated self-consistently. The calculations were performed using the local (spin) density approximations (L(S)DA), for the exchange-correlation potential. SrTiO3 was found to experience an insulator-to-metal transition upon the formation of oxygen vacancies or the substitution of Nb at the Ti site. The formation of oxygen divacancy disclosed additional states below the conduction band edge. The crystalline lattice relaxation showed displacements of atoms in rather large defective region. The magnitudes of atomic movements, however, were not large, normally not exceeding 0.15 Å. Our results were compared to the available experimental observations.
Optical Probe of the Superconducting Normal Mixed State in a Magnetic Penetration Thermometer
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Lee, S. -J.; Nagler, P. C.; Smith, S. J.
2016-01-01
Using ultraviolet photon pulses, we have probed the internal behavior of a molybdenum-gold Magnetic Penetration Thermometer (MPT) that we designed for x-ray microcalorimetry. In this low-temperature detector, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons. We have previously described an approximate model that explains the high responsivity of the detector to temperature changes as a consequence of a Meissner transition of the molybdenum-gold film in the magnetic field applied by the superconducting circuit used to bias the detector. We compare measurements of MPT heat capacity and thermal conductance, derived from UV photon pulse data, to our model predictions for the thermodynamic properties of the sensor and for the electron cooling obtained by quasiparticle recombination. Our data on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors.
NASA Astrophysics Data System (ADS)
Phan, G. N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; Takahashi, T.
2017-06-01
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (Tc). It was found in FeSe that the lattice strain leads to a drastic increase in Tc, accompanied by suppression of nematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (Δ Eh -e ) between the hole and electron pockets in the normal state. The change in Δ Eh -e modifies the Fermi-surface volume, leading to a change in Tc. Furthermore, the strength of nematicity is also found to be characterized by Δ Eh -e . These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.
Superconducting and normal-state properties of the layered boride OsB2
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.
2007-12-01
OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.
Electron interaction in matter
NASA Technical Reports Server (NTRS)
Dance, W. E.; Rainwater, W. J.; Rester, D. H.
1969-01-01
Data on the scattering of 1-MeV electrons in aluminum for the case of non-normal incidence, electron-bremsstrahlung cross-sections in thin targets, and the production of bremstrahlung by electron interaction in thick targets, are presented both in tabular and graphic form. These results may interest physicists and radiologists.
Storage of charge carriers on emitter molecules in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn
2012-08-01
Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn
2016-04-14
The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less
Biochemistry of free radicals: from electrons to tissues.
Boveris, A
1998-01-01
Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.
Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations
NASA Astrophysics Data System (ADS)
Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.
2018-04-01
The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.
Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.
Walls, Jamie D; Hadad, Daniel
2015-02-13
Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.
NASA Technical Reports Server (NTRS)
Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.
2004-01-01
In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.
Imaging mammalian cells with soft x rays: The importance of specimen preparation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.T.; Meyer-Ilse, W.
1997-04-01
Studies of mammalian cell structure and spatial organization are a very prominent part of modern cell biology. The interest in them as well as their size make them very accommodating subject specimens for imaging with soft x-rays using the XM-1 transmission microscope built and operated by The Center for X-ray Optics on Beam Line 6.1 at the Advanced Light Source. The purpose of these experiments was to determine if the fixative protocols normally used in electron or visible light microscopy were adequate to allow imaging cells, either fibroblasts or neurons, with minimal visible radiation damage due to imaging with softmore » x-rays at 2.4 nm. Two cell types were selected. Fibroblasts are easily cultured but fragile cells which are commonly used as models for the detailed study of cell physiology. Neurons are complex and sensitive cells which are difficult to prepare and to culture for study in isolation from their connections with surrounding cells. These cell types pose problems in their preparation for any microscopy. To improve the contrast and to prevent postmortem alteration of the chemistry and hence the structure of cells extracted from culture or from living organisms, fixation and staining techniques are employed in electron and visible light microscopy. It has been accepted by biologists for years that these treatments create artifacts and false structure. The authors have begun to develop protocols for specimens of each of these two cell types for soft x-ray microscopy which will preserve them in as near normal state as possible using minimal fixation, and make it possible to image them in either a hydrated or dried state free of secondary addition of stains or other labels.« less
NASA Astrophysics Data System (ADS)
Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu
2009-06-01
Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.
Small-Scale Dayside Magnetic Reconnection Analysis via MMS
NASA Astrophysics Data System (ADS)
Pritchard, K. R.; Burch, J. L.; Fuselier, S. A.; Webster, J.; Genestreti, K.; Torbert, R. B.; Rager, A. C.; Phan, T.; Argall, M. R.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Giles, B. L.
2017-12-01
The Magnetospheric Multiscale (MMS) mission has the primary objective of understanding the physics of the reconnection electron diffusion region (EDR), where magnetic energy is transformed into particle energy. In this poster, we present data from an EDR encounter that occurred in late December 2016 at approximately 11:00 MLT with a moderate guide field. The spacecraft were in a tetrahedral formation with an average inter-spacecraft distance of approximately 7 kilometers. During this event electron crescent-shaped distributions were observed in the electron stagnation region as is typical for asymmetric reconnection. Based on the observed ion velocity jets, the spacecraft traveled just south of the EDR. Because of the close spacecraft separation, fairly accurate computation of the Hall, electron pressure divergence, and electron inertia components of the reconnection electric field could be made. In the region of the crescent distributions good agreement was observed, with the strongest component being the normal electric field and the most significant sources being electron pressure divergence and the Hall electric field. While the strongest currents were in the out-of-plane direction, the dissipation was strongest in the normal direction because of the larger magnitude of the normal electric field component. These results are discussed in light of recent 3D PIC simulations performed by other groups.
NASA Astrophysics Data System (ADS)
Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian
2018-02-01
An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.
ERIC Educational Resources Information Center
Finch, A. J., Jr.; And Others
1976-01-01
Responses of emotionally disturbed and normal children to the State-Trait Anxiety Inventory for Children were factor analyzed separately. Two A-State and two A-Trait factors were found, with A-State factors accounting for significantly more variance. Four A-State and two A-Trait factors were found for the normal group, with no significant…
Sulfur isotopic and proteomic profiles of sulfate reducers grown under differential steady-states
NASA Astrophysics Data System (ADS)
Leavitt, W.; Venceslau, S.; Waldbauer, J.; Smith, D. A.; Boidi, F. J.; Bradley, A. S.
2016-12-01
Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The product sulfide is depleted in the heavier isotopes of sulfur, relative to the reactant sulfate, consistent with a normal kinetic isotope effect. However, the magnitude of the net fractionation during MSR can range over a range of 70 permil, consistent with a multi-step set of reactions. This range in MSR fractionation has been shown to mainly depend on: i) the cell-specific sulfate reduction rate (csSRR), and ii) the ambient sulfate concentration. However, the fractionation under identical conditions differs among strains (Bradley et al. 2016. Geobio), and so must also be mediated by strain-specific processes, such as the nature and quantity of individual proteins involved in sulfate reduction, electron transport, and growth. In recent work we have examined the influence of electron donor, electron acceptor, and co-limitation under controlled steady-state culture conditions in order better inform models of MSR isotope fractionation, and the physiological and isotopic response to differential environmental forcings (e.g. Leavitt et al. (2013) PNAS). Recent models of the fractionation response to MSR rate (c.f. Bradley 2016; Wing & Halevy, 2016) make specific predictions for the responses of the cellular metabolome and proteome. Here we compare the steady-state S-isotopic fractionation and proteome of `fast' versus `slow' grown D. vulgaris, using replicate chemostats under electron donor limitation. We observe clear and statistically robust changes in some key central MSR and C-metabolism enzymes, though a host of the critical energy-transfer enzymes show no statistically discernable change. We discuss these results in light of recent theoretical advances and their relevance to modern and ancient geochemical records.
Southwest electronic one-stop shopping, motor carrier test report
DOT National Transportation Integrated Search
1997-12-22
The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...
APPARATUS FOR ELECTRON BEAM HEATING CONTROL
Jones, W.H.; Reece, J.B.
1962-09-18
An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)
NASA Technical Reports Server (NTRS)
Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.
1986-01-01
Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.
Quantum entanglement and quantum information in biological systems (DNA)
NASA Astrophysics Data System (ADS)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
Loret, B.; Sakai, S.; Benhabib, S.; ...
2017-09-25
We combine electronic Raman scattering experiments with cellular dynamical mean field theory and present evidence of the pseudogap in the superconducting state of various hole-doped cuprates. In Bi 2 Sr 2 CaCu 2 O 8 + δ we also track the superconducting pseudogap hallmark, a peak-dip feature, as a function of temperature T and doping p , well beyond the optimal one. We show that, at all temperatures under the superconducting dome, the pseudogap disappears at the doping p c , between 0.222 and 0.226, where also the normal-state pseudogap collapses at a Lifshitz transition. This demonstrates that the superconductingmore » pseudogap boundary forms a vertical line in the T - p phase diagram.« less
NASA Astrophysics Data System (ADS)
Qi, Jingshan; Li, Xiao; Qian, Xiaofeng
2016-06-01
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.
Comparative studies of '1212' superconductors
NASA Astrophysics Data System (ADS)
Gapud, Albert Agcaoili
Several properties of highly isomorphic species of HgBa2CaCu 2O6+delta (Hg-1212) and TlBa2CaCu2O 7-delta (Tl-1212) were compared. The samples used were high-quality, c-oriented thin films with epitaxial growth. In particular, the Hg-1212 films were made from either Tl-2212 or Tl-1212 films using a novel method in which the Tl cations were surgically replaced by Hg cations, during which the 1212 structure was retained. Properties studied were: the irreversibility line, critical current density, the magnetic phase diagram, the normal-state Hall effect, and the mixed-state Hall effect. There are several indications that the most significant difference between the 1212 species is mostly in their superconducting charge carrier density. However, the subtle differences in their electronic band structure may have also been discerned.
Electron-transfer dynamics of photosynthetic reaction centers in thermoresponsive soft materials.
Laible, Philip D; Kelley, Richard F; Wasielewski, Michael R; Firestone, Millicent A
2005-12-15
Poly(ethylene glycol)-grafted, lipid-based, thermoresponsive, soft nanostructures are shown to serve as scaffolding into which reconstituted integral membrane proteins, such as the bacterial photosynthetic reaction centers (RCs) can be stabilized, and their packing arrangement, and hence photophysical properties, can be controlled. The self-assembled nanostructures exist in two distinct states: a liquid-crystalline gel phase at temperatures above 21 degrees C and a non-birefringent, reduced viscosity state at lower temperatures. Characterization of the effect of protein introduction on the mesoscopic structure of the materials by 31P NMR and small-angle X-ray scattering shows that the expanded lamellar structure of the protein-free material is retained. At reduced temperatures, however, the aggregate structure is found to convert from a two-dimensional normal hexagonal structure to a three-dimensional cubic phase upon introduction of the RCs. Structural and functional characteristics of the RCs were determined by ground-state and femtosecond transient absorption spectroscopy. Time-resolved results indicate that the kinetics of primary electron transfer for the RCs in the low-viscosity cold phase of the self-assembled nanostructures are identical to those observed in a detergent-solubilized state in buffered aqueous solutions (approximately 4 ps) over a wide range of protein concentrations and experimental conditions. This is also true for RCs held within the lamellar gel phase at low protein concentrations and at short sample storage times. In contrast are kinetics from samples that are prepared with high RC concentrations and stored for several hours, which display additional kinetic components with extended electron-transfer times (approximately 10-12 ps). This observation is tentatively attributed to energy transfer between RCs that have laterally (in-plane) organized within the lipid bilayers of the lamellar gel phase prior to charge separation. These results not only demonstrate the use of soft nanostructures as a matrix in which to stabilize and organize membrane proteins but also suggest the possibility of using them to control the interactions between proteins and thus to tune their collective optical/electronic properties.
Ground and excited states of CaSH through electron propagator calculations
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1990-05-01
Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Eric D; Mitchell, Jeremy N; Booth, C H
2009-01-01
The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well asmore » between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.« less
Research to Operations Transition of an Auroral Specification and Forecast Model
NASA Astrophysics Data System (ADS)
Jones, J.; Sanders, S.; Davis, B.; Hedrick, C.; Mitchell, E. J.; Cox, J. M.
Aurorae are generally caused by collisions of high-energy precipitating electrons and neutral molecules in Earth’s polar atmosphere. The electrons, originating in Earth’s magnetosphere, collide with oxygen and nitrogen molecules driving them to an excited state. As the molecules return to their normal state, a photon is released resulting in the aurora. Aurora can become troublesome for operations of UHF and L-Band radars since these radio frequencies can be scattered by these abundant free electrons and excited molecules. The presence of aurorae under some conditions can lead to radar clutter or false targets. It is important to know the state of the aurora and when radar clutter is likely. For this reason, models of the aurora have been developed and used in an operational center for many decades. Recently, a data-driven auroral precipitation model was integrated into the DoD operational center for space weather. The auroral precipitation model is data-driven in a sense that solar wind observations from the Lagrangian point L1 are used to drive a statistical model of Earth’s aurorae to provide nowcasts and short-duration forecasts of auroral activity. The project began with a laboratory-grade prototype and an algorithm theoretical basis document, then through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourages rapid and flexible response to customer-driven changes. The result was an operational capability that met customer expectations for reliability, security, and scientific accuracy. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.
Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P
2015-11-20
We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.
Electronic recordkeeping is increasingly replacing hadwritten records in the course of "normal business." As this trend continues, it is important that organizations develop and implement electronic recordkeeping policies and procedures. This is especially true for Research and...
Elaboration of the α-model derived from the BCS theory of superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, David C.
2013-10-14
The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is The single-band α-model of superconductivity (Padamsee et al 1973 J. Low Temp.more » Phys. 12 387) is a popular model that was adapted from the single-band Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Δ(T)/Δ(0) and therefore the normalized London penetration depth λL(T)/λL(0) are the same as in BCS theory, calculated using the BCS value αBCS ≈ 1.764 of α ≡ Δ(0)/kBTc, where kB is Boltzmann's constant and Tc is the superconducting transition temperature. On the other hand, to calculate the electronic free energy, entropy, heat capacity and thermodynamic critical field versus T, the α-model takes α to be an adjustable parameter. Here we write the BCS equations and limiting behaviors for the superconducting state thermodynamic properties explicitly in terms of α, as needed for calculations within the α-model, and present plots of the results versus T and α that are compared with the respective BCS predictions. Mechanisms such as gap anisotropy and strong coupling that can cause deviations of the thermodynamics from the BCS predictions, especially the heat capacity jump at Tc, are considered. Extensions of the α-model that have appeared in the literature, such as the two-band model, are also discussed. Tables of values of Δ(T)/Δ(0), the normalized London parameter Λ(T)/Λ(0) and λL(T)/λL(0) calculated from the BCS theory using α = αBCS are provided, which are the same in the α-model by assumption. Tables of values of the entropy, heat capacity and thermodynamic critical field versus T for seven values of α, including αBCS, are also presented.« less
Modulation of superconducting transition temperature in LaAlO3/SrTiO3 by SrTiO3 structural domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noad, Hilary; Moler, Kathryn
2018-01-01
The tetragonal domain structure in SrTiO3 (STO) is known to modulate the normal-state carrier density in LaAlO3/SrTiO3 (LAO/STO) heterostructures, among other electronic properties, but the effect of STO domains on the superconductivity in LAO/STO has not been fully explored. Using a scanning SQUID susceptometer microscope to map the superconducting response as a function of temperature in LAO/STO, we find that the superconducting transition temperature is spatially inhomogeneous and modulated in a pattern that is characteristic of structural domains in the STO.
NASA Astrophysics Data System (ADS)
Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.; Kamchatnaya, S. N.; Dobrovolskiy, O. V.
2018-02-01
We reveal that the temperature dependence of the basal-plane normal-state electrical resistance of optimally doped YBa2Cu3O7-δ single crystals can be with great accuracy approximated within the framework of the model of s-d electron-phonon scattering. This requires taking into account the fluctuation conductivity whose contribution exponentially increases with decreasing temperature and decreases with an increase of oxygen deficiency. Room-temperature annealing improves the sample and, thus, increases the superconducting transition temperature. The temperature of the 2D-3D crossover decreases during annealing.
Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.
2017-01-15
The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.
Departures from LTE Populations Versus Anomalous Abundances: the Effects of Heating
NASA Technical Reports Server (NTRS)
Underhill, A. B.
1985-01-01
The deposit of nonradiative heat and momentum in the mantle of a hot star affects the interpretation of the stellar spectrum in two ways. First, a superheated and moving plasma should be considered when doing the analysis, and second, a model atom which is appropriate for the physical state of the line forming regions. Some examples are presented for H and He showing how the changes in the electron temperature affect the solution of the equations of statistical equilibrium. The observed spectra of the Wolf-Raynet stars HD 191765, HD 192103, and HD 192163 are compatible with a normal H/He abundance ratio.
On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices
NASA Astrophysics Data System (ADS)
Efthymiou, L.; Longobardi, G.; Camuso, G.; Chien, T.; Chen, M.; Udrea, F.
2017-03-01
In this study, an investigation is undertaken to determine the effect of gate design parameters on the on-state characteristics (threshold voltage and gate turn-on voltage) of pGaN/AlGaN/GaN high electron mobility transistors (HEMTs). Design parameters considered are pGaN doping and gate metal work function. The analysis considers the effects of variations on these parameters using a TCAD model matched with experimental results. A better understanding of the underlying physics governing the operation of these devices is achieved with a view to enable better optimization of such gate designs.
Effects of strain on Goos-Hänchen shifts of monolayer phosphorene
NASA Astrophysics Data System (ADS)
Li, Kaihui; Cheng, Fang
2018-03-01
We investigate the Goos-Hänchen(GH) shift for ballistic electrons (i) reflected from a step-like inhomogeneity of strain, and (ii) transmitted through a monolayer phosphoresce junction consisting of a positive strained region and two normal regions (or a normal region and two negative strained regions). Refraction occurs at the interface between the unstrained/positive-strain(negative-strain/unstrained), in analogy with optical refraction. The critical angle is different for different strengths and directions of the strains. The critical angles for electrons tunneling through unstrained/positive-strain junction can even decrease to zero when the positive strain exceeds a critical value. For the monolayer phosphorene junction consisting of a positive strain region and two normal regions (or a normal region and two negative strain regions), we find that the GH shifts resonantly depends on the middle region width. The resonant values and the plus-minus sign of the displacement can be controlled by the incident angle, incident energy and the strain. These properties will be useful for the applications in phosphorene-based electronic devices.
Electronic origin of structural transition in 122 Fe based superconductors
NASA Astrophysics Data System (ADS)
Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay
2017-03-01
Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.
NASA Technical Reports Server (NTRS)
Chillier, Xavier D. F.; Stone, Bradley M.; Joblin, Christine; Salama, Farid; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Fluorescence spectra of the perylene cation, pumped by direct laser excitation via the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) and D(sub 5)(2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transitions, are presented. Direct excitation into the D5 or D2 states is followed by rapid non-radiative relaxation to D1 that, in turn,relaxes radiatively. Excitation spectroscopy across the D(sub 2)((2)B(sub 3g)) (left arrow) D(sub 0)((2)A(sub u)) transition near 730 nm shows that site splitting plays little or no role in determining the spectral substructure in the ion spectra. Tentative assignments for ground state vibrational frequencies are made by comparison of spectral intervals with calculated normal mode frequencies.
Normal Auger spectra of iodine in gas phase alkali iodide molecules
NASA Astrophysics Data System (ADS)
Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo
2005-06-01
Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.
An incompressible state of a photo-excited electron gas
Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis
2015-01-01
Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
NASA Astrophysics Data System (ADS)
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Masuda, Shumpei; Tan, Kuan Y; Partanen, Matti; Lake, Russell E; Govenius, Joonas; Silveri, Matti; Grabert, Hermann; Möttönen, Mikko
2018-03-02
We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.
Nacarelli, Timothy; Azar, Ashley; Sell, Christian
2014-01-01
The regulation of mitochondrial mass and DNA content involves a complex interaction between mitochondrial DNA replication machinery, functional components of the electron transport chain, selective clearance of mitochondria, and nuclear gene expression. In order to gain insight into cellular responses to mitochondrial stress, we treated human diploid fibroblasts with ethidium bromide at concentrations that induced loss of mitochondrial DNA over a period of 7 days. The decrease in mitochondrial DNA was accompanied by a reduction in steady state levels of the mitochondrial DNA binding protein, TFAM, a reduction in several electron transport chain protein levels, increased mitochondrial and total cellular ROS, and activation of p38 MAPK. However, there was an increase in mitochondrial mass and voltage dependent anion channel levels. In addition, mechanistic target of rapamycin (mTOR) activity, as judged by p70S6K targets, was decreased while steady state levels of p62/SQSTM1 and Parkin were increased. Treatment of cells with rapamycin created a situation in which cells were better able to adapt to the mitochondrial dysfunction, resulting in decreased ROS and increased cell viability but did not prevent the reduction in mitochondrial DNA. These effects may be due to a more efficient flux through the electron transport chain, increased autophagy, or enhanced AKT signaling, coupled with a reduced growth rate. Together, the results suggest that mTOR activity is affected by mitochondrial stress, which may be part of the retrograde signal system required for normal mitochondrial homeostasis. PMID:25104948
NASA Astrophysics Data System (ADS)
Baïri, A.; Laraqi, N.; Adeyeye, K.
2018-03-01
This study examines the thermal behavior of a hemispherical electronic component subjected to a natural nanofluidic convective flow. During its operation, this active dome generates a high power, leading to Rayleigh number values reaching 4.56×109 . It is contained in a hemispherical enclosure and the space between the dome and the cupola is filled with a monophasic water-based copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. According to the intended application, the disc of the enclosure may be tilted at an angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards, respectively). The numerical solution has been obtained by means of the volume control method. The surface average temperature of the dome has been determined for many configurations obtained by combining the Rayleigh number, the cavity's tilt angle and the nanofluid volume fraction which vary in wide ranges. The temperature fields presented for several configurations confirm the effects of natural convection. The results clearly highlight the effects of these influence parameters on the thermal state of the assembly. The study shows that some combinations of the Rayleigh-tilt angle-volume fraction are incompatible with a normal operating system at steady state and that a thermoregulation is required. The correlation of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out the thermal dimensioning of the considered electronic assembly.
Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells
NASA Astrophysics Data System (ADS)
Aeberhard, Urs; Rau, Uwe
2017-06-01
The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p -i -n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.
Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.
Aeberhard, Urs; Rau, Uwe
2017-06-16
The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.
Spin textures on general surfaces of the correlated topological insulator SmB6
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Vojta, Matthias
2016-05-01
Employing the k .p expansion for a family of tight-binding models for SmB6, we analytically compute topological surface states on a generic (l m n ) surface. We show how the Dirac-cone spin structure depends on model ingredients and on the angle θ between the surface normal and the main crystal axes. We apply the general theory to (001), (110), (111), and (210) surfaces, for which we provide concrete predictions for the spin pattern of surface states which we also compare with tight-binding results. As shown in previous work, the spin pattern on a (001 ) surface can be related to the value of mirror Chern numbers, and we explore the possibility of topological phase transitions between states with different mirror Chern numbers and the associated change of the spin structure of surface states. Such transitions may be accessed by varying either the hybridization between conduction and f electrons or the crystal-field splitting of the low-energy f multiplets, and we compute corresponding phase diagrams. Experimentally, chemical doping is a promising route to realize such transitions.
Physical property and electronic structure characterization of bulk superconducting Bi3Ni
NASA Astrophysics Data System (ADS)
Kumar, Jagdish; Kumar, Anuj; Vajpayee, Arpita; Gahtori, Bhasker; Sharma, Devina; Ahluwalia, P. K.; Auluck, S.; Awana, V. P. S.
2011-07-01
We report the experimental and theoretical study of the magnetic nature of the Bi3Ni system. The structure is found to be orthorhombic (Pnma) with lattice parameters a = 8.879 Å, b = 4.0998 Å and c = 4.099 Å. The title compound is synthesized via a solid state reaction route by quartz vacuum encapsulation of 5 N purity stoichiometric ingredients of Ni and Bi. The superconducting transition temperature is found to be 4.1 K as confirmed from magnetization and specific heat measurements. The lower critical field (Hc1) and irreversibility field (Hirr) are around 150 and 3000 Oe respectively at 2 K. Upper critical field (Hc2), as determined from in-field (up to 4 T) ac susceptibility, is found to be around 2 T at 2 K. The normal state specific heat is fitted using the Sommerfeld-Debye equation C(T) = γT + βT3 + δT5 and the parameters obtained are γ = 11.08 mJ mol - 1 K - 2, β = 3.73 mJ mol - 1 K - 4 and δ = 0.0140 mJ mol - 1 K - 6. The calculated electronic density of states (DOS) at the Fermi level N(EF) and Debye temperature ΘD are 4.697 states/eV/f.u. and 127.7 K respectively. We also estimated the value of the electron-phonon coupling constant (λ) to be 1.23, which when substituted in the MacMillan equation gives Tc = 4.5 K. Density functional theory (DFT) based calculations for experimentally determined lattice parameters show that Ni in this compound is non-magnetic and ferromagnetic interactions seem to play no role. The Stoner condition IN(EF) = 0.136 per Ni atom also indicates that the system cannot have any ferromagnetism. The fixed spin moment (FSM) calculations, by fixing total magnetic moment on the unit cell, also suggested that this system does not exhibit any signatures of ferromagnetism.
Biophysical basis of low-power-laser effects
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-06-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1995-05-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Mechanisms of interaction of monochromatic visible light with cells
NASA Astrophysics Data System (ADS)
Karu, Tiina I.
1996-01-01
Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O'2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low- power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Besides explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive results achieved in treating wounds, chronic inflammation, and ischemia, all characterized by acidosis and hypoxia.
Polaronic behavior in a weak-coupling superconductor.
Swartz, Adrian G; Inoue, Hisashi; Merz, Tyler A; Hikita, Yasuyuki; Raghu, Srinivas; Devereaux, Thomas P; Johnston, Steven; Hwang, Harold Y
2018-02-13
The nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm -3 ) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3 , using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.
Enhanced superconductivity at the interface of W/Sr2RuO4 point contact
NASA Astrophysics Data System (ADS)
Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.
Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
NASA Astrophysics Data System (ADS)
Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus
2017-12-01
Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Haaranen, Mikko; Suhonen, Jouni
2017-04-01
Evolution of the electron spectra with the effective value of the weak axial-vector coupling constant gA was followed for 26 first-, second-, third-, fourth- and fifth-forbidden β- decays of odd-A nuclei by calculating the involved nuclear matrix elements (NMEs) in the framework of the microscopic quasiparticle-phonon model (MQPM). The next-to-leading-order terms were included in the β -decay shape factor of the electron spectra. The spectrum shapes of third- and fourth-forbidden nonunique decays were found to depend strongly on the value of gA, while first- and second-forbidden decays were mostly unaffected by the tuning of gA. The gA-driven evolution of the normalized β spectra was found to be quite universal, largely insensitive to the small changes in the nuclear mean field and the adopted residual many-body Hamiltonian producing the excitation spectra of the MQPM. This makes the comparison of experimental and theoretical electron spectra, coined "the spectrum-shape method" (SSM), a robust tool for extracting information on the effective values of the weak coupling constants. In this exploratory work two new experimentally interesting decays for the SSM treatment were discovered: the ground-state-to-ground-state decays of 99Tc and 87Rb. Comparing the experimental and theoretical spectra of these decays could shed light on the effective values of gA and gV for second- and third-forbidden nonunique decays. The measurable decay transitions of 135Cs and 137Cs, in turn, can be used to test the SSM in different many-body formalisms. The present work can also be considered as a (modest) step towards solving the gA problem of the neutrinoless double beta decay.
Nagaev, K E
2001-04-02
The shot noise in long diffusive superconductor-normal-metal-superconductor contacts is calculated using the semiclassical approach. At low frequencies and for purely elastic scattering, the voltage dependence of the noise is of the form S(I) = (4Delta+2eV)/3R. The electron-electron scattering suppresses the noise at small voltages resulting in vanishing noise yet infinite dS(I)/dV at V = 0. The distribution function of electrons consists of a series of steps, and the frequency dependence of noise exhibits peculiarities at omega = neV, omega = neV-2Delta, and omega = 2Delta-neV for integer n.
New era of electronic brachytherapy
Ramachandran, Prabhakar
2017-01-01
Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679
Quantitative secondary electron detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi
Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
Electron density studies of methyl cellobioside
USDA-ARS?s Scientific Manuscript database
Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...
Observation of autoionization in O 2 by an electron-electron coincidence method
NASA Astrophysics Data System (ADS)
Doering, J. P.; Yang, J.; Cooper, J. W.
1995-01-01
A strong transition to an autoionizing stata has been observed in O 2 at 16.83 ± 0.11 eV by means of a new electron-electron conincidence method. The method uses the fact that electrons arising from autoionizing states appear at a constant energy loss corresponding to the excitation energy of the autoionizing state rather than at a constant ionization potential as do electrons produced by direct ionization. Comparison of the present data with previous photoionization studies suggests that the autoionizing O 2 state is the same state deduced to be responsible for abnormal vibrational intensities in the O 2+X 2Πg ground state when 16.85 eV Ne(I) photons are used. These electron-electron coincidence experiments provide a direct new method for the study of autoionization produced by electron impact.
The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
NASA Astrophysics Data System (ADS)
Lei, Mingda; Xie, Lun; Li, Jinxing; Pu, Zuyin; Fu, Suiyan; Ni, Binbin; Hua, Man; Chen, Lunjin; Li, Wen
2017-12-01
Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles, and MS waves with off 90° wave normal angles scatter electrons more efficiently. By simulating the diffusion coefficients and the electron phase space density evolution at different L shells under different plasma environment circumstances, we find that MS waves can readily produce electron butterfly distributions in the inner part of the plasmasphere where the ratio of electron plasma-to-gyrofrequency (fpe/fce) is large, while they may essentially form a two-peak distribution outside the plasmapause and in the inner radiation belt where fpe/fce is small.
Phase-incoherent superconducting pairs in the normal state of Ba(Fe(1-x)Co(x))₂As₂.
Sheet, Goutam; Mehta, Manan; Dikin, D A; Lee, S; Bark, C W; Jiang, J; Weiss, J D; Hellstrom, E E; Rzchowski, M S; Eom, C B; Chandrasekhar, V
2010-10-15
The normal state properties of the recently discovered ferropnictide superconductors might hold the key to understanding their exotic superconductivity. Using point-contact spectroscopy we show that Andreev reflection between an epitaxial thin film of Ba(Fe(0.92)Co(0.08))₂As₂ and a silver tip can be seen in the normal state of the film up to temperature T∼1.3T(c), where T(c) is the critical temperature of the superconductor. Andreev reflection far above T(c) can be understood only when superconducting pairs arising from strong fluctuation of the phase of the complex superconducting order parameter exist in the normal state. Our results provide spectroscopic evidence of phase-incoherent superconducting pairs in the normal state of the ferropnictide superconductors.
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
Paul, Mishu; Balanarayan, P
2018-06-05
Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using electron-tunneling refrigerators to cool electrons, membranes, and sensors
NASA Astrophysics Data System (ADS)
Miller, Nathan A.
Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate chips.
The vibronic level structure of the cyclopentadienyl radical
NASA Astrophysics Data System (ADS)
Ichino, Takatoshi; Wren, Scott W.; Vogelhuber, Kristen M.; Gianola, Adam J.; Lineberger, W. Carl; Stanton, John F.
2008-08-01
The 351.1 nm photoelectron spectrum of the cyclopentadienide ion has been measured, which reveals the vibronic structure of the X~ 2E1'' state of the cyclopentadienyl radical. Equation-of-motion ionization potential coupled-cluster (EOMIP-CCSD) calculations have been performed to construct a diabatic model potential of the X~ 2E1'' state, which takes into account linear Jahn-Teller effects along the e2' normal coordinates as well as bilinear Jahn-Teller effects along the e2' and ring-breathing a1' coordinates. A simulation based on this ab initio model potential reproduces the spectrum very well, identifying the vibronic levels with linear Jahn-Teller angular momentum quantum numbers of +/-1/2. The angular distributions of the photoelectrons for these vibronic levels are highly anisotropic with the photon energies used in the measurements. A few additional weak photoelectron peaks are observed when photoelectrons ejected parallel to the laser polarization are examined. These peaks correspond to the vibronic levels for out-of-plane modes in the ground X~ 2E1'' state, which arise due to several pseudo-Jahn-Teller interactions with excited states of the radical and quadratic Jahn-Teller interaction in the X~ 2E1'' state. A variant of the first derivative of the energy for the EOMIP-CCSD method has been utilized to evaluate the strength of these nonadiabatic couplings, which have subsequently been employed to construct the model potential of the X~ 2E1'' state with respect to the out-of-plane normal coordinates. Simulations based on the model potential successfully reproduce the weak features that become conspicuous in the 0° spectrum. The present study of the photoelectron spectrum complements a previous dispersed fluorescence spectroscopic study Miller and co-workers [J. Chem. Phys. 114, 4855 (2001); 4869 (2001) Miller and co-workers [J. Chem. Phys.114, 4869 (2001)] to provide a detailed account of the vibronic structure of X~ 2E1'' cyclopentadienyl. The electron affinity of the cyclopentadienyl radical is determined to be 1.808+/-0.006 eV. This electron affinity and the gas-phase acidity of cyclopentadiene have been combined in a negative ion thermochemical cycle to determine the C-H bond dissociation energy of cyclopentadiene; D0(C5H6,C-H)=81.5+/-1.3 kcal mol-1. The standard enthalpy of formation of the cyclopentadienyl radical has been determined to be ΔfH298(C5H5)=63.2+/-1.4 kcal mol-1.
Role of failure-mechanism identification in accelerated testing
NASA Technical Reports Server (NTRS)
Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.
1993-01-01
Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.
Granular superconductors and their intrinsic and extrinsic surface impedance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbritter, J.
1995-12-01
High-frequency experiments depend sensitively on homogeneous and inhomogeneous {open_quotes}defects{close_quotes} in the normal and superconducting state. As homogeneous effects, the intrinsic scattering time is of great theoretical importance above 0.1 THz in the surface impedance Z. Of practical importance are the planar defects, {open_quotes}the weak links (WL),{close_quotes} which interrupt the rf shielding currents and thus enhance Z{sub eff}. In the superconducting state, the Josephson current j{sub cJ} crosses the WL in parallel with the normal, leakage current j{sub bl}. The latter explains the observed, finite rf residual losses R{sub res}(T{approx}0) quantitatively and as a function of material parameters, temperature T, fieldmore » H, and frequency {omega} for Nb, NbN, and cuprate superconductors. With increasing field, Z deteriorates like H{sup 2} up to H{sub c1J}{approx}0.1-10 mT, JF dynamics dominates Z with hysteresis losses and reactive components. The nonlinear JF effects are enforced by thinfilm edge enhancements limiting the performance of various devices by enhanced dissipation, reactance, and flux noise. A method is presented which is able to separate electron dynamics at the WL from their strength and distribution.« less
NASA Astrophysics Data System (ADS)
Quraan, Maher A.
Photonuclear reactions are excellent means for understanding final state interactions (FSI). The photon interacts only electromagnetically, allowing a clean separation of the strong interaction channels in the final state. The availability of high duty factor electron machines and large acceptance detectors in the past decade have allowed a further investigation of these effects covering wider regions of phase space. In this experiment, we have successfully measured the D(/gamma, pp/pi/sp-) reaction cross section at the Saskatchewan Accelerator Laboratory (SAL) utilizing the Saskatchewan- Alberta Large Acceptance Detector (SALAD). This is the first measurement of the /gamma D /to pp/pi/sp--cross section covering a wide range of phase space with an attempt to study the FSI's and the /Delta - N interaction that has successfully reproduced the normalizations. The cross section for this reaction is compared to the calculation of J. M. Laget. Laget's theory is quite successful in describing the shapes of the distributions. as well as the overall magnitude of the cross section. The different FSI's and the /Delta - N interaction have an overall effect of 10%-15% on the single differential cross section, with the calculation that includes /Delta - N interaction having the best normalization compared to the data.
NASA Astrophysics Data System (ADS)
Wiecki, P.; Taufour, V.; Chung, D. Y.; Kanatzidis, M. G.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.
2018-02-01
We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe2As2 under pressure (p ). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3 d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure pc=1.8 GPa where a change of slope of the superconducting (SC) transition temperature Tc(p ) has been observed. In contrast, Tc(p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1 /T1 data, although such a correlation cannot be seen in the replacement effects of A in the A Fe2As2 (A =K , Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1 s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1 /T1 L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe2As2 under pressure.
In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films
NASA Astrophysics Data System (ADS)
Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji
2018-03-01
Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.
Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana
2017-02-01
This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2017-04-01
A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
Accessing the Elastic Form-Factors of the $Delta(1232)$ Using the Beam-Normal Asymmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, Mark M.
2016-08-01
The beam-normal single-spin asymmetry,more » $$B_n$$, exists in the scattering of high energy electrons, polarized transverse to their direction of motion, from nuclear targets. To first order, this asymmetry is caused by the interference of the one-photon exchange amplitude with the imaginary part of the two-photon exchange amplitude. Measurements of $$B_n$$, for the production of a $$\\Delta(1232)$$ resonance from a proton target, will soon become available from the Qweak experiment at Jefferson Lab and the A4 experiment at Mainz. The imaginary part of two-photon exchange allows only intermediate states that are on-shell, including the $$\\Delta$$ itself. Therefore such data is sensitive to $$\\gamma\\Delta\\Delta$$, the elastic form-factors of the $$\\Delta$$. This article will introduce the form-factors of the $$\\Delta$$, discuss what might be learned about the elastic form-factors from these new data, describe ongoing efforts in calculation and measurement, and outline the possibility of future measurements.« less
Cancer cell redirection biomarker discovery using a mutual information approach.
Roche, Kimberly; Feltus, F Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B S; Bentires-Alj, Mohamed; Booth, Brian W
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.
Cancer cell redirection biomarker discovery using a mutual information approach
Roche, Kimberly; Feltus, F. Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B. S.; Bentires-Alj, Mohamed
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state. PMID:28594912
Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot
Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2015-01-01
Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582
Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Burkard, Guido
2006-03-01
Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=<δI δI>φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.
2018-01-09
Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less
Flexas, Jaume; Escalona, José Mariano; Evain, Sebastian; Gulías, Javier; Moya, Ismaël; Osmond, Charles Barry; Medrano, Hipólito
2002-02-01
Water stress experiments were performed with grapevines (Vitis vinifera L.) and other C3 plants in the field, in potted plants in the laboratory, and with detached leaves. It was found that, in all cases, the ratio of steady state chlorophyll fluorescence (Fs) normalized to dark-adapted intrinsic fluorescence (Fo) inversely correlated with non-photochemical quenching (NPQ). Also, at high irradiance, the ratio Fs/Fo was positively correlated with CO2 assimilation in air, with electron transport rate calculated from fluorescence, and with stomatal conductance, but no clear correlation was observed with qP. The significance of these relationships is discussed. The ratio Fs/Fo, measured with a portable instrument (PAM-2000) or with a remote sensing FIPAM system, provides a good method for the early detection of water stress, and may become a useful guide to irrigation requirements.
Ding, Q. -P.; Wiecki, P.; Anand, V. K.; ...
2016-04-07
The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu
2016-06-20
Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less
Non-Fermi-liquid nature and exotic thermoelectric power in the heavy-fermion superconductor UBe13
NASA Astrophysics Data System (ADS)
Shimizu, Yusei; Pourret, Alexandre; Knebel, Georg; Palacio-Morales, Alexandra; Aoki, Dai
2015-12-01
We report quite exotic thermoelectric power S in UBe13. At 0 T, the negative S /T continues to strongly enhance down to the superconducting transition temperature with no Fermi-liquid behavior. |S /T | is dramatically suppressed and becomes rather modest with increasing field. We have also obtained precise field dependencies of (i) an anomaly in S due to an exotic Kondo effect and (ii) a field-induced anomaly in S /T associated with the anomalous upward Hc 2(T ) . In contrast to the field-sensitive transport property, the normal-state specific heat is magnetically robust, indicating that the largeness of the 5 f density of states remains in high fields. This unusual behavior in UBe13 can be explained by a considerable change in the energy derivative of the conduction-electron lifetime τc(ɛ ) at the Fermi level under magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Q. -P.; Wiecki, P.; Anand, V. K.
The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.
Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less
Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes
NASA Astrophysics Data System (ADS)
Campbell, L.; Cartwright, D. C.; Brunger, M. J.; Teubner, P. J. O.
2006-09-01
Vibrationally excited N2 is important in determining the ionospheric electron density and has also been proposed to play a role in the production of NO in disturbed atmospheres. We report here predictions of the absolute vibrational distributions in the ground electronic state of N2 produced by electron impact excitation, at noon and midnight under quiet geomagnetic conditions and disturbed conditions corresponding to the aurora IBCII+ and IBCIII+ at 60°N latitude and 0° longitude, at altitudes between 130 and 350 km. These predictions were obtained from a model which includes thermal excitation and direct electron impact excitation of the vibrational levels of the N2 ground state and its excited electronic states; radiative cascade from all excited electronic states to all vibrational levels of the ground electronic state; quenching by O, O2, and N2; molecular and ambipolar diffusion; and the dominant chemical reactions. Results from this study show that for both aurora and daytime electron environments: (1) cascade from the higher electronic states of N2 determines the population of the higher vibrational levels in the N2 ground state and (2) the effective ground state vibrational temperature for levels greater than 4 in N2 is predicted to be in the range 4000-13000 K for altitudes greater than 200 km. Correspondingly, the associated enhancement factor for the O+ reaction with vibrationally excited N2 to produce NO+ is predicted to increase with increasing altitude (up to a maximum at a height which increases with auroral strength) for both aurora and daytime environments and to increase with increasing auroral strength. The contribution of the cascade from the excited electronic states was evaluated and found to be relatively minor compared to the direct excitation process.
Carhart-Harris, Robin L; Leech, Robert; Hellyer, Peter J; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R; Nutt, David
2014-01-01
Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.
Representing the thermal state in time-dependent density functional theory
Modine, N. A.; Hatcher, R. M.
2015-05-28
Classical molecular dynamics (MD) provides a powerful and widely used approach to determining thermodynamic properties by integrating the classical equations of motion of a system of atoms. Time-Dependent Density Functional Theory (TDDFT) provides a powerful and increasingly useful approach to integrating the quantum equations of motion for a system of electrons. TDDFT efficiently captures the unitary evolution of a many-electron state by mapping the system into a fictitious non-interacting system. In analogy to MD, one could imagine obtaining the thermodynamic properties of an electronic system from a TDDFT simulation in which the electrons are excited from their ground state bymore » a time-dependent potential and then allowed to evolve freely in time while statistical data are captured from periodic snapshots of the system. For a variety of systems (e.g., many metals), the electrons reach an effective state of internal equilibrium due to electron-electron interactions on a time scale that is short compared to electron-phonon equilibration. During the initial time-evolution of such systems following electronic excitation, electron-phonon interactions should be negligible, and therefore, TDDFT should successfully capture the internal thermalization of the electrons. However, it is unclear how TDDFT represents the resulting thermal state. In particular, the thermal state is usually represented in quantum statistical mechanics as a mixed state, while the occupations of the TDDFT wave functions are fixed by the initial state in TDDFT. Two key questions involve (1) reformulating quantum statistical mechanics so that thermodynamic expectations can be obtained as an unweighted average over a set of many-body pure states and (2) constructing a family of non-interacting (single determinant) TDDFT states that approximate the required many-body states for the canonical ensemble. In Section II, we will address these questions by first demonstrating that thermodynamic expectations can be evaluated by averaging over certain many-body pure states, which we will call thermal states, and then constructing TDDFT states that approximate these thermal states. In Section III, we will present some numerical tests of the resulting theory, and in Section IV, we will summarize our main results and discuss some possible future directions for this work.« less
Tanaka, Shigenori
2016-12-07
Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ=0, the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant r s ≤100), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ≈1), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of r s and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable agreements with earlier results including the PIMC-based fitting over the whole fluid region at finite degeneracies in the paramagnetic state. In contrast, a systematic difference between the HNC and PIMC results is observed in the ferromagnetic state, which suggests a necessity of further studies on the exchange-correlation free energies from both aspects of analytical theory and simulation.
Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji
Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less
Magnetism and the spin state in cubic perovskite CaCo O 3 synthesized under high pressure
Xia, Hailiang; Dai, Jianhong; Xu, Yuanji; ...
2017-07-17
Cubic SrCo O 3 with an intermediate spin state can only be stabilized by high pressure and high temperature (HPHT) treatment. It is metallic and ferromagnetic with the highest Curie temperature of the transition-metal perovskites. The chemical substitution by Ca on Sr sites would normally lower crystal symmetry from cubic to orthorhombic as seen in the perovskite family of Ca M O 3 ( M = M 4 + of transition metals, G e 4 + , S n 4 + , and Z r 4 +) at room temperature. This structural change narrows the bandwidth, so as to furthermore » enhance the Curie temperature as the crossover to the localized electronic state is approached. Here, we report a successful synthesis of the perovskite CaCo O 3 with a HPHT treatment. Surprisingly, CaCo O 3 crystallizes in a simple cubic structure that remains stable down to 20 K, the lowest temperature in the structural study. The new perovskite has been thoroughly characterized by a suite of measurements including transport, magnetization, specific heat, thermal conductivity, and thermoelectric power. Furthermore, metallic CaCo O 3 undergoes two successive magnetic transitions at 86 K and 54 K as temperature decreases. The magnetization at 5 K is compatible with the intermediate spin state t 4 e 1 of C o 4 + at the octahedral site. The thermal expansion of the Co-O bond length indicates that the population of high spin state t 3 e 2 increases for T > 100 K . The shortest Co-O bond length in cubic CaCo O 3 is responsible for delocalizing electrons in the π * -band and itinerant-electron ferromagnetism at T < 54 K . In our comprehensive comparison between SrCo O 3 and CaCo O 3 and the justification of their physical properties by first-principles calculation were made in this report. Partially filled π * and σ * bands would make CaCo O 3 suitable to study the Hund's coupling effect in a metal.« less
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Perry, Joseph (Inventor); Marder, Seth (Inventor)
2001-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.
Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers
NASA Technical Reports Server (NTRS)
Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry
2004-01-01
A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.